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OBSERVATIONS OF ORDER AND CHAOS IN NONLINEAR SYSTEMS 

Harry L. SWINNEY 
Department of Physics, University o]" Texas, Austin, Texas 78712, USA 

Experiments on nonlinear electrical oscillators, the Belousov-Zhabotinskii reaction, Rayleigh-Brnard convection, and 
Couette Taylor flow have revealed several common routes to chaos that have also been found in numerical studies of models 
with a few degrees of freedom. Experimental results are presented illustrating the following transition sequences: period 
doubling and the U-sequence, intermittency, the periodic-quasiperiodic-chaotic sequence, frequency locking, and an 
alternating periodic-chaotic sequence. 

1. Introduction 

We will describe some recent experimental stud- 
ies of order and chaos in nonlinear systems. Al- 
though no attempt at completeness will be made, 
we will mention most of the transition sequences 
that have been found to be common to diverse 
systems. 

Noisy (nonperiodic) behavior arising from sto- 
chastic driving forces such as thermal fluctuations 
and fluctuations in a system's environment has 
long been studied in laboratory experiments, but 
the experiments to be discussed here concern the 
nonperiodic (chaotic) behavior that arises primar- 
ily from the nonlinear nature of the systems rather 
than stochastic driving forces. The distinction be- 
tween stochastic and determiriistic noise in experi- 
ments is difficult, but the papers of Guckenheimer 
[55], and Farmer, Ott, and Yorke [53] in this 
volume suggest that the distinction can be made in 
systems with a few active degrees of freedom. We 
will show that the Poincar6 sections and maps 
obtained in experiments on some rather complex 
nonlinear systems indicate that these systems (for 
some control parameter ranges) exhibit a dynam- 
ical behavior that can be described accurately by 
deterministic models with a few degrees of free- 
dom. 

Four well-studied nonlinear systems are de- 
scribed in section 2, and methods used to charac- 
terize their dynamical behavior are outlined in 

section 3. Some transition sequences that have 
been observed for a number of different systems 
are described in section 4. Section 5 is a discussion. 

2. Four nonfinear systems 

Nonlinear electrical circuits. The characteristic fre- 
quencies of electrical circuits can easily be made 
a b o u t  107 times higher than the typical oscillation 
frequencies of the chemical and hydrodynamic 
systems described in the following paragraphs. 
Such high information production rates make non- 
linear electrical circuits (analog computers) ideal 
for examining different types of dynamical behav- 
ior, developing methods of data analysis, and 
studying the dependence of behavior on several 
control parameters [I-4, 51, 57, 63, 64, 68, 70]. An 
example of a simple nonlinear circuit is shown in 
fig. la; this series circuit has three degrees of 
freedom-q (the charge across the varactor), q, and 
the angle 0, where the driving voltage is V(t)  = Vo 

sin 0 with 0 = ogt. The behavior of this circuit is 
usually studied as a function of V 0, but it can also 
be studied as a function of other control 
parameters--co, R, L, Co, and fl, where the nonlinear 
capacitance under reverse voltage is given by 
C ~ C0/[l + ~vc] '/2. 

The Belousov-Zhabotinskii  reaction [5-15]. This 
reaction, the most thoroughly studied oscillating 

0167-2789/83/0000-O000/$03.00 © 1983 North-Holland 



4 H.L. Swinney/Observations qf order and chaos in nonlinear systems 
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dC 
- k f A B  - k b C  - rC, 

dt  

where A 0, B 0, and C ° (with C O = 0) are the concen- 

trations of the chemicals in the input to the reactor 

and r is the flow rate. Generalizing, the reactions 

among N chemical species of concentration X,( t )  

are described by 
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Fig. 1. Four nonlinear systems. (a) A series circuit with a 
varactor diode which conducts for a forward voltage and has 
a nonlinear capacitance for a reverse voltage [3, 4]. (b) A stirred 
flow chemical reactor. In the Belousov-Zhabotinskii reaction 
M = 4 (malonic acid, potassium bromate, cerium sulfate, and 
sulfuric acid) and N > 30. (c) Rayleigh B6nard convection in a 
finite box. (d) Couette Taylor system. 

chemical system, involves the cerium-catalyzed 

bromination and oxidation of malonic acid by a 

sulfuric acid solution of bromate. (See the papers 

of Roux [9] and Epstein [5] in this volume.) The 

reaction can be maintained in a steady state away 

from equilibrium by continuously pumping the 

chemicals into a stirred flow reactor, as shown in 

fig. lb. In a vigorously stirred reactor the system 

is essentially homogeneous so the reaction can be 
modeled by a set of coupled nonlinear ordinary 

differential equations. For example, the reaction 

kf 
A + B ~  ~C 

kb 

is described by the equations 

dA 

dt 
- kfA B + k b C  - r (A - A 0), 

d B  

dt  
-- k f A B  + kbC - r ( B  - B°), 

dX, 
dt - g ' ( X ) - r ( X ~ -  X °) [ i , j=  l . . . . .  N], 

where the functions g i (X )  involve nonlinear terms 

of the form X~ and XiXj (i.e., three-body inter- 

actions can be neglected). Transitions in the dy- 

namical behavior are studied as a function of the 

flow rate: as r--,0, the system approaches thermo- 

dynamic equilibrium, while for large r the chem- 

icals have no time to react as they pass through the 

reactor; the interesting dynamics occurs for r be- 

tween these extremes. The behavior can also be 
studied as a function of other control 

parameters-the reactor temperature and the input 
concentrations X, °. 

Rayleigh Bbnard convection [16-30]. In contrast 
to the nonlinear oscillator and stirred flow reactor, 

which presumably have a well-defined finite num- 

ber of degrees of freedom, the next two examples, 
the Rayleigh-B6nard and Couette-Taylor systems, 

are continuum hydrodynamic systems which can in 

principle have an infinite number of degrees of 

freedom (although just beyond the onset of chaos 
there are presumably only a few degrees of freedom 
that are excited). 

In a Rayleigh-B6nard system a fluid is contained 

between parallel plates heated from below, as 
shown in fig. ic. (Also see the papers of Libchaber 

[26] and Maeno and Haucke [28] in this volume.) 
The behavior is usually studied as function of 
the (dimensionless) Rayleigh number R~= 
(gotd3/Kv)AT, where g is the gravitational acceler- 

ation, c¢ the thermal expansion coefficient, d the 
separation between the plates, ~¢ the thermal 
diffusivity, and v the kinematic viscosity. Other 
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control variables are the Prandtl number, P = v/K, 
the aspect ratios, F~ = L~/d and F 2 = L2/d, and the 
boundary conditions at the side walls. 

Couette-Taylor system [31-41]. In this system a 
fluid is contained between concentric cylinders that 
rotate independently with angular velocities f2i 
(inner) and f2 o (outer); see fig. ld. The (dimen- 
sionless) Reynolds numbers are then 

R i = (b - a ) a O i / v  and Ro = (b - a)bf2o/v, where a 
and b are the radii of  the inner and outer cylinders, 
respectively. Most experiments including those to 
be described here have been conducted with 
Ro = 0. The behavior is quite different and much 
richer when both cylinders are rotated (Andereck, 
Liu, and Swinney [31]), because the instabilities do 

not depend simply on the differential rotation rate 
of the cylinders, but on a subtle interplay between 
the radial pressure gradient and the centrifugal 
force r(f2~,~d)< (There is no equivalence principle 
for rotating reference frames!) Other control pa- 
rameters for this system are the radius ratio a/b, 
the aspect ratio F = L/(b - a), and the boundary 
conditions at the ends. 

Other systems. Some results from experiments on 
a few other systems [42-50] will be mentioned in 
section 4. 
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Fig. 2. Power spectra for different dynamical regimes in the 
Couette-Taylor system (from [35, 41]). (a) R / R  c = 9.6, periodic; 
the spectrum consists of a single fundamental frequency, og~. (b) 
R / R  c = 11.0, quasiperiodic; the spectrum consists of  two funda- 
mental frequencies, o9~, and 0)2, and integer combinations. (c) 
R / R ~  = 18.9, chaotic; the spectrum contains broadband noise in 
addition to the sharp components ~o I and ~o 2. The noise in (a) 
and (b) is instrumental, while in (c) the fluid noise is well above 
the instrumental noise level. These spectra illustrate the 
periodic-quasiperiodic~chaotic transition sequence discussed in 
section 4.3. 

3. Analysis of dynamical behavior [51-72] 

In experiments the time dependence of a dynam- 
ical variable V(t) is determined in sequential time 
intervals 4 = k(At) ,  where k = 1 . . . . .  n (typically 
n = 8192). The time series V(4) is recorded in a 
computer and its power spectral density P@o) (the 
modulus squared of the Fourier transform) is 
calculated using the Cooley-Tukey fast Fourier 
transform algorithm. 

Power spectra make it possible to distinguish 
between periodic, quasiperiodic, and chaotic re- 
gimes, as fig. 2 illustrates. However, the broadband 
noise or broadened spectral lines that indicate 
nonperiodic (chaotic) behavior could arise from 

stochastic as well as deterministic processes. A 
better method of  analysis is needed to determine if 
the nonperiodic behavior is characteristic of a 
deterministic nonlinear system. 

Before the turn of the century Poincar~ showed 
that much can be learned about dynamical behav- 
ior from an analysis of trajectories in a multi- 
dimensional phase space in which a single point 
characterizes the entire system at an instant of 
time. The experimenters' dilemma has been that 
for a system with N degrees of freedom it seemed 
that it would be necessary to measure N indepen- 
dent variables, an almost impossible chore for 
complex systems. 
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A much simpler alternative was suggested 
several years ago by Ruelle [65] and Packard et al. 
[63]. Their idea, which is justified by embedding 
theorems [69, 71], was that a multi-dimensional 
phase portrait can be constructed from mea- 
surements of a single variable, as follows: For 
almost every observable V(t) and time delay T the 
m-dimensional portrait constructed from the vec- 
tors {V(tk), V(t k+ T ) , . . . , V ( t k + ( m - 1 ) T ) } ,  
k = 1 . . . . .  oo, will have many of the same proper- 
ties (strictly speaking, will give an embedding of 
the original manifold) as one constructed from 
measurements of the N independent variables, if 
m ~> 2N + 1. In practice m is increased by one at 
a time until additional structure fails to appear in 
the phase portrait when an extra dimension is 
added. Phase portraits constructed for a periodic 
state and a chaotic state in the 
Belousov-Zhabotinskii reaction are shown in fig. 3 
[11, 14]. 

Rather than analyze the phase portrait directly 
it is easier to analyze Poincar6 sections and maps. 
A Poincar6 section is formed by the intersection of 
"positively" directed orbits with a ( m - 1 ) -  
dimensional hypersurface. For example, fig. 4(a) 
shows a Poincar6 section constructed for the 
3-dimensional phase portrait in fig. 3b. The orbits 
for this chaotic attractor clearly lie essentially 
along a sheet, Thus intersections of this sheet-like 
attractor with a plane lie to a good approximation 
along a parameterizable curve, not on a higher 
dimensional set. (Actually, the Poincar6 section 
must have a dimension at least slightly greater than 
unity because of the fractal nature of the attractor 
[52, 53, 61]). The parameter values at successive 
intersections provide a sequence {X,} which defines 
a one-dimensional map, X,+l =f(X,) ,  as shown in 
fig. 4b. The data appear to fall on a single-valued 
curved. This indicates that the system is 
deterministic: for any X,, the map determines X, + ,. 

The power spectrum for the data in fig. 3b 
contains broadband noise [11, 14], indicating that 
the state is nonperiodic, but the phase portrait 
must be analyzed to determine if the system is 
really characterized by a strange attractor. To 
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Fig. 3. (a) A two-dimensional phase portrait for a periodic state 
observed in experiments on the Belousov-Zhabotinskii reac- 
tion; the corresponding power spectrum has a single sharp 
fundamental component and its harmonics. (b) A two- 
dimensional projection of a three-dimensional phase portrait 
[with the third axis, V(t k + 17.6s), normal to the page] for a 
chaotic state observed in the Belousov Zhabotinskii reaction; 
the corresponding power spectrum contains broadband noise. 
The attractor in (a) is a limit cycle and in (b) a strange attractor. 
(From [11, 14].) 

demonstrate that the phase space trajectories 
define a strange attractor it must be shown that the 
post-transient subset described by the trajectories 
is: 

(1) An attractor-orbits rapidly return to this 
subset after finite perturbations. However, per- 
turbations too large could send the orbit out of the 
basin of  attraction for the attractor; see [59, 66, 
67].) 

(2) Strange-nearby orbits diverge exponentially 
on the average ("sensitive dependence on initial 
conditions" [66]) [59, 62, 67, 68]. 

Studies of the effect of perturbations on the state 
characterized by the phase portrait in fig. 3b show 
that the trajectories lie on an attractor [11, 12]). In 
addition, an analysis of the corresponding map, 
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Fig. 4. (a) A Poincarb section formed by the intersection of 
trajectories in a three-dimensional phase space with the plane 
(normal to the page) passing through the dashed line in fig. 3b. 
(b) A one-dimensional map constructed from the data in fig. 4a. 
(From [11, 14].) 

fig. 4b, shows that the attractor is strange-the 

largest Lyapunov exponent, given by 

1 

0 

where P ( X ) d X  is the probability of finding an 
iterate of the map in the interval (X, X + dX), is 
positive [7, 11, 12]. 

The one-dimensional map [fig. 4b] indicates that 
the attracting sheet seen in cross-section in fig. 4a 
must exhibit the stretching and folding that is 
characteristic of strange attractors. This stretching 

and folding has been directly observed by analyz- 
ing Poincar6 sections through the different parts of 
the attractor [12]; in fig. 3b the folding occurs in the 
part of the attractor where the orbits appear (at the 
resolution of this figure) to narrow down to a line. 

Other methods of analysis of phase portraits 
include the determination of the following proper- 
ties (see the papers in this volume by Farmer, Ott 
and Yorke [53], Guckenheimer [55], Mandelbrot 
[61], Packard [63], and Shaw [68]); (1) attractor 
dimension (the terms capacity, Hausdorff, fractal, 
information or Renyi, and Lyapunov dimension 
correspond to different definitions of dimension); 
(2) entropy (topological, metric or Kolmogorov- 
Sinai); (3) the spectrum of Lyapunov exponents; 
and (4) probability distribution functions for the 
Poincar6 sections and maps. 

4. Transition sequences 

4.1. Intermittency 

Some systems exhibit a transition from periodic 
behavior (for R < RT) to a chaotic behavior (for 
R > RT) characterized by occasional bursts of 
noise [73, 74]. For R only slightly greater than RT 
there are long intervals of periodic behavior be- 
tween the short bursts, but with increasing R the 
intervals between the bursts decrease; it becomes 
more and more diffcult and finally impossible to 
recognize the regular oscillations of the periodic 
state. Examples of intermittency transitions are 
shown in fig. 5. 

Pomeau and Manneville [74] have shown that 
intermittency appears at a tangent bifurcation 
where a stable fixed point of a map disappears. 
Direct evidence of the tangent bifurcation has been 
observed in the experiments by Pomeau et al. [8] on 
the Belousov-Zhabotinskii reaction; by Jeffries 
and Perez [2] on a nonlinear oscillator; and by 
Berg6 et al. [17] on convection. Also, the predicted 
behavior of the mean time T between bursts, 
Toc(R - R : r )  - 1 / 2 ,  has been observed in the experi- 
ments of Jeffries et al. 
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Fig. 5. Intermittency in convection. The turbulent bursts occur 
with increasing frequency with increasing Rayleigh number. (a) 
Temperature measurements of Maurer and Libehaber [30]; 
Prandtl number, 0.62, and aspect ratios / ' t  = 2.4 and F z = 2.0. 
(b) Velocity measurements of Berg~ et al. [17]; Prandtl number, 
130, and aspect ratios F t = 2.0 and F 2 = 1.2. 

4.2. Frequency locking 

In some experiments a transition from a quasi- 

periodic state to a frequency-locked (periodic) state 

has been observed with increasing control  parame- 
ter. The periodic state persists for some range in 

control  parameter  and then, in some cases, there is 
a well-defined transition to a chaotic state, as 
illustrated by data  f rom a Rayle igh-Brnard  

experiment shown in fig. 6. This 

quasiperiodic--* locked --* chaotic sequence has been 
discussed theoretically [75-78]. 

4.3. Periodic-quasiperiodic-chaotic sequence 

This transition sequence, first suggested by 
Ruelle and Takens [82] more  than a decade ago, 

has been observed in many  experiments since it was 
first observed by Gol lub and Swinney in 1975 [36]. 
The sequence is illustrated by data  for the 
Coue t te -Taylor  system in fig. 2. 
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Fig. 6. Frequency locking in the convection experiments of 
Gollub and Benson [23]. The Prandtl number was 2.5 and the 
aspect ratios were F t = 3.5 and F 2 = 2.0. The curve through the 
data is drawn to guide the eye. 

In the Ruelle-Takens picture [80, 82], when a 

system makes a transition from a quasiperiodic 
state with two incommensurate  frequencies (a flow 

on a 2-torus) to quasiperiodic state with three 

incommensurate  frequencies (a flow on a 3-torus), 

there is in every suitably differentiable neigh- 

bo rhood  of  the vector field on the 3-torus a vector 
field which has a strange attractor.  Since chaos 

could thus arise f rom infinitesimal tSerturbations o f  

a 3-frequency state, states with three independent  
frequencies would usually not be observed. (Three 

independent frequencies have, in fact, been seen in 
only a few experiments; see [20] and [24].) 

An alternative theoretical picture of  the 

quasiperiodic--chaotic transition has recently been 
developed by Rand  et al. [81], Shenker [84], and 

Feigenbaum et al. [79], and is described in the 
papers of  Shenker [83] and Siggia [85] in this 

volume. In this theory the 2-torus develops wrin- 
kles as the onset o f  chaos is approached,  and the 

corresponding power spectrum has a self-similar 
structure, at least for a system with the ratio o f  
frequencies near the Golden Mean, (5 . /2 -  1)/2. 
Al though the detailed predictions have been devel- 
oped for frequencies in the ratio o f  the Golden 
Mean, the breakdown of  the torus is predicted to 
occur for other irrational frequency ratios. Thus 
far there have been no experimental observations 
o f  the predicted self-similar spectrum near the 
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Fig. 7. Period doubling sequence time series with periods 
r ( l l 5 s ) ,  2z, and 2zr, obtained in experiments on the 
Belousov-Zhabotinskii reaction; period 23r was also observed. 
The quantity measured was the bromide ion potential. The dots 
above the time series are separated by one period. (From [13].) 

onset of chaos, but experiments are underway in 
several laboratories on periodically driven oscil- 
lating systems where the frequency ratio can be 
adjusted to the Golden Mean. 

4.4 Period doubling 
The period doubling route to chaos [87-90] has 

been observed in experiments on Rayleigh-B6nard 
convection [21, 24, 26, 29], nonlinear electrical os- 
cillators [3, 4], acoustics [48-50], shallow water 
waves [46~7], a hybrid optical system [45], and the 
Belousov-Zhabotinskii reaction [13]. At least two 
or three period doublings were observed in each of 
these experiments; for example, see fig. 7. The 
measured values of Feigenbaum's universal num- 
ber 6 [87-90] (which describes asymptotically the 
ratio of successive intervals in the bifurcation 
parameter between period doubling transitions) 
and the scaling parameter ~ are consistent with the 
theory for one-dimensional maps with a single 
extremum. However, the experimental values of 6 
and ~ are accurate to only about 5~ at best [4] 
because the rapid convergence rate of the doubling 
sequence makes it very difficult to observe many 
doublings. 

In systems with many active degrees of freedom, 
departures from the period doubling sequence are 
observed. In Rayleigh-B6nard convection Arneodo 
et al. [86] have shown that this departure can be 
understood in terms of a two-dimensional H~non- 
like map. 

4.5. The U-sequence 
Universality in the period doubling sequence for 

one-dimensional maps is now well known. Perhaps 

less well known is the U (universal)-sequence that 
occurs beyond the accumulation point (2~-cycle) 
of the 2"-sequence. Metropolis, Stein, and Stein 
[93] found, several years before the universal 
scaling properties of one-dimensional quadratic 
maps were discovered by Feigenbaum, that one- 
dimensional maps with a single extremum (not 
necessarily quadratic) exhibit universal dynamics 
as a function of the bifurcation parameter. Beyond 
the period doubling sequence, which is an infinite 
sequence of doublings of a periodic state with one 
oscillation per period, periodic states with K oscil- 
lations per period appear for all natural numbers 
K, and each of these "K-cycles" undergoes its own 
infinite period doubling sequence, 2°K [87, 92, 93]. 
Fig. 8a shows examples of a fundamental 5-cycle, 
6-cycle, and 3-cycle (and the first doubling of the 
3-cycle) observed in the Belousov-Zhabotinskii 
reaction. 

The order in which the periodic states appear as 
a function of bifurcation parameter and the iter- 
ation patterns of the corresponding maps are all 
deduced in the theory using only the single- 
extrenum property of the one-dimensional map [92]. 
Table I shows all U-sequence states with K <~ 6. 
The full U-sequence consists of the (infinitely long) 
extension of table I to include all the periodic states 
allowed by the theory. The larger the fundamental 

Table I 
The U-sequence states with periods up to 6 
(in order of occurrence as a function of  
bifurcation parameter) [93] 

Period Map iteration pattern 

1 0 
2 0~1 
2 x 2 2q)-3-1 
6 2-0-4-3 5-1 
5 2-0- 3-4-1 
3 2q)-I  
2 x 3 2-5-3-0-4-1 
5 2 - 3 ~ 4  - 1 
6 2-3-0-4-5-1 
4 2 - 3 ~ - 1  
6 2-3-4-0-5-1 
5 2-3-4~0-1 
6 2-3-4-5-0-1 
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Fig. 8. Observations of  the U-sequence. (a) Time series with periods 6~ (where r = 115 s), 57, 37, and 2 x 37, observed in the 
Belousov-Zhabotinskii reaction [13]. The dots above the time series are separated by one period. (b) The one-dimensional map 
constructed from data for the state with period 67 shown in (a); the iteration pattern is 2 ~ e - 3 - 5 - 1 ,  as predicted (see table I) [13]. 
(c) A bifurcation diagram obtained in experiments of Testa et al. [4] on a nonlinear electrical oscillator. The vertical axis is the voltage 
across a varactor [see fig. la] and the horizontal axis is the control parameter, the amplitude Vo of the driving voltage. The onsets 
of some of the U-sequence states are indicated at the bottom of  the diagram. 

period K, the larger the number of allowed states; 
there are three distinct allowed 5-cycles, four dis- 
tinct 6-cycles (see table I), and 27 distinct 9-cycles. 

Table I also shows the predicted map iteration 
patterns-the order of visitation of points on the 
X-axis-for periodic states with K ~< 6. Each iter- 
ation pattern occurs only once, and for a given 
value of the bifurcation parameter not more than 
one periodic state is stable. An experimentally 
determined map illustrating the iteration pattern 
for a period-six state is shown in fig. 8b. 

Beyond the 2~K-cycle of each period doubling 
sequence there is a chaotic reverse bifurcation 
sequence, as discussed by Lorenz [60]; although the 
chaotic states do not exist for intervals in bifur- 
cation parameter, the set of bifurcation parameter 
values for which the behavior is chaotic has posi- 
tive measure [56]. Both chaotic and periodic states 
can be seen in the bifurcation diagram obtained for 
a nonlinear oscillator shown in fig. 8c. 

Many states of the U-sequence have been ob- 
served in experiments on nonlinear electrical oscil- 
lators [4], the Belousov-Zhabotinskii reaction [13], 

and Rayleigh-Brnard convection in a magnetic 
field [26]. The observed iteration patterns and 
ordering of the states are in accord with the theory 
for one-dimensional maps. 

4.6. Alternathlg periodic-chaotic sequences 

Fig. 9a shows an alternating periodic-chaotic 
transition sequence observed in an experiment on 
the Belousov-Zhabotinskii reaction [11, 14]; time 
series for the first three periodic states (p0, PI, and 
P~) are shown in figs. 9b-d, respectively, and the 
time series for the third chaotic state (C~'3), which 
occurs between P~ and P~, is shown in fig. 9e. 
[Notation: P =  periodic, C =chaotic.  The sub- 
script (superscript) is the number of large (small) 
amplitude oscillations per period; see fig. 9.] Alter- 
nating periodic-chaotic transition sequences simi- 
lar to that in fig. 9 have been observed in other 
experiments on the Belousov-Zhabotinskii reac- 
tion [6, 7, 10, 15] (for rather different control 
parameters) and in an experiment on a driven 
Josephson junction [42]. In addition, alternating 
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Fig. 9. (a) An alternating periodic-chaotic sequence observed in the Belousov-Zhabotinskii reaction. (b) A time series for the first 
periodic state, p0. (c) pt. (d) P~. (e) A time series for the third chaotic state, C~'2, where the number of small amplitude oscillations 
following each large amplitude oscillation is either two or three but is unpredictable. (From [11, 14].) 

per iodic-chaot ic  sequences have been found in 
studies of  models of  the Belousov-Zhabot inski i  
reaction [14, 97, 98] and the Josephson junct ion 
[94] (or, equivalently, the forced pendulum [95]) 
and in a symbolic dynamics analysis o f  a driven 
van der Pol oscillator [96]. A one-dimensional  map 
that has an alternating per iodic-chaot ic  sequence 
is described in the paper  by Roux [9] in this 
volume. 

Perhaps these alternating per iodic-chaot ic  se- 
quences have different mathematical  descriptions; 
nevertheless, several common  features can be 
noted: (1) The sequences are finite, not  infinite; 
successive states exist for comparable  ranges in 
control  parameter .  (2) Successive periodic states 
are simply related; for example, the states p0, PI, 

and P~ in figs. 9b-d  have (in each period) one large 
ampli tude oscillation and, respectively 0, 1, and 2 
small ampli tude oscillations. (3) The chaotic states 
are mixtures of  nearby periodic states; for example, 
Cn, n+l is a nonperiodic mixture of  states P7 and 1 

p~,+ 1 (and perhaps occasional cycles of  P]'-1 and 
p~, + 2), as fig. 9e illustrates. (4) The route by which 
a periodic state becomes chaotic has not  been 
established in most  cases, but presumably the 
transition occurs through period doubling or inter- 
mittency (see [9]). For  the data in fig. 9 the p0 to 
C o' ' transition occurs through period doubling, as 
fig. 7 illustrates. (5) Each "chaot ic"  regime can 
contain many  subintervals that  are periodic. For  
example, the U-sequence states shown in fig. 8 
occur within the C O' ' regime. 
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4.7. Soft mode instability 

Langford et al. [101] predicted that an instability 
associated with a low frequency mode could result 
from the nonlinear competition between a 
symmetry-breaking linear instability and oscil- 
latory instability (see also [99, 100]); just above the 
instability the soft-mode frequency would increase 
linearly as a function of the bifurcation parameter. 
Such an instability has been observed in the con- 
vection experiments of Libchaber [26] described in 
this volume; he found that the system gradually 
became chaotic with increasing Rayleigh number 
beyond the instability. 

5. Discussion 

but the extreme degree of nonuniqueness in real 
systems is not often appreciated. For example, 
experiments in our laboratory indicate that a 
Couette Taylor system with R~= 10R~, Ro=0 ,  
a/b = 0.88 and F = 30 has more than 100 different 
stable states, some periodic, some quasiperiodic, 
and some chaotic! Each of these states corresponds 
to a phase space attractor which has its own basin 
of attraction (set of initial conditions for which the 
system will asymptotically approach that attrac- 
tor). There is no systematic way to determine if all 
basins of attraction have been discovered, even at 
particular values of the control parameters. In fact, 
two independent investigators working on the 
same kind of system at the same control parame- 
ters could observe quite different phenomena be- 
cause of different Reynolds number histories. 

In section 4 we have considered some common 
features of transitions observed in experiments on 
diverse systems. While it is natural to focus on 
common features, it should be emphasized that the 
range of dynamical behavior that has been ob- 
served is quite large. We consider now some obser- 
vations not mentioned in section 4. 

Aspect ratio dependence. In experiments on 

Rayleigh-B6nard convection Ahlers and co- 
workers [16] found that as the aspect ratio was 
increased, nonperiodic behavior occurred at lower 
and lower Rayleigh numbers. A similar de- 
pendence on aspect ratio was subsequently ob- 
served in other hydrodynamic experiments 
[27, 32, 34, 37]. The number of accessible modes 
and the equilibration time both increase rapidly 
with increasing aspect ratio; therefore, a large 
aspect ratio system is especially susceptible to small 
external perturbations and apparently never settles 
down into an ideal ordered state. Thus the non- 
periodic behavior observed in large aspect ratio 
systems at small Rayleigh or Reynolds numbers 
may not correspond to deterministic chaos. 

Nonuniqueness. It is widely recognized that non- 
linear systems can have two or more stable states 
at a given set of values of the control parameters, 

Multiple control parameters. Transition sequences 
are usually investigated as a function of a single 
control parameter (e.g., voltage, flow rate, Ray- 
leigh number, or Reynolds number; see section 1). 
New kinds of bifurcations are possible when the 
dependence on two control parameters is consid- 
ered [56]. The bifurcations that can occur with 
more than two control parameters have not been 
classified, but the experiments of Andereck et al. 
[31] and King and Swinney [38] on the 
Couette-Taylor system as a function of Ri, Ro, F, 
and a/b reveal an incredible richness in dynamical 
behavior. 

Summary. In view of the great variety of behavior 
observed in experiments on nonlinear systems, it 
would be premature at this time to make sweeping 
generalizations about routes to chaos. Never- 
theless, it is encouraging that a small number of 
common transition scenarios, as described in sec- 
tion 4, are beginning to emerge from theory and 
experiment. 
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