Chapter 17

Complex Analysis I

Although this chapter is called complex analysis, we will try to develop
the subject as complex calculus — meaning that we shall follow the calculus
course tradition of telling you how to do things, and explaining why theorems
are true, with arguments that would not pass for rigorous proofs in a course
on real analysis. We try, however, to tell no lies.

This chapter will focus on the basic ideas that need to be understood
before we apply complex methods to evaluating integrals, analysing data,
and solving differential equations.

17.1 Cauchy-Riemann equations
We focus on functions, f(z), of a single complex variable, z, where z = x+1y.
We can think of these as being complex valued functions of two real variables,

x and y. For example

f(z) =sinz =sin(x +diy) = sinxcosiy + cosz sin iy

= sinxcoshy +icoszsinhy. (17.1)

Here, we have used

sinz =

COsx =
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to make the connection between the circular and hyperbolic functions. We
shall often write f(z) = u + v, where u and v are real functions of = and y.
In the present example, v = sin x cosh y and v = cos x sinh y.

If all four partial derivatives

ou Ov Ov Ou
— =, =, =, (17.2)
oxr’ 0Oy Or Oy

exist and are continuous then f = w + iv is differentiable as a complex-
valued function of two real variables. This means that we can approximate
the variation in f as

fé:c—l— 8—f5y+ (17.3)
where the dots represent a remainder that goes to zero faster than linearly
as 0x, 0y go to zero. We now regroup the terms, setting 6z = dx + idy,
0Z = dx — 10y, so that

5f =

of 0f 5=
of = o —0z + — 82 (17.4)
where we have defined
of _ L(of _.of
0z 2\ 0x Z@y ’
of 1 /of Of
oz 2 (8x 8y) ’ (17.5)
Now our function f(z) does not depend on Z, and so it must satisfy
of
7 = 0. (17.6)
Thus, with f = u + v,
10 .0 .

i.e.

ou Ov (Ov Ou
<£ - a—y) +1 (% + a—y) =0. (178)



17.1. CAUCHY-RIEMANN EQUATIONS 683

Since the vanishing of a complex number requires the real and imaginary
parts to be separately zero, this implies that

o _ o
or Oy
ov ou
% — _a_y. (17-9)

These two relations between w and v are known as the Cauchy-Riemann
equations, although they were probably discovered by Gauss. If our continu-
ous partial derivatives satisfy the Cauchy-Riemann equations at zy = x¢+1iyo
then we say that the function is complex differentiable (or just differentiable)
at that point. By taking 6z = 2z — 2y, we have

57 F(2) ~ o0 = Pz =) 4 (1710

where the remainder, represented by the dots, tends to zero faster than |z—zg|
as z — zp. This validity of this linear approximation to the variation in f(z)
is equivalent to the statement that the ratio

z) — f(z
Z— 20
tends to a definite limit as z — zy from any direction. It is the direction-
independence of this limit that provides a proper meaning to the phrase
“does not depend on Z.” Since we are not allowing dependence on Z, it is

natural to drop the partial derivative signs and write the limit as an ordinary

derivative J
lim f(2) = f=0) = _f (17.12)
z—20 2 — 2o dz
We will also use Newton’s fluxion notation
df /
— = ) 17.13
<= r) (17.13)

The complex derivative obeys exactly the same calculus rules as ordinary
real derivatives:

iz" = p" !
dz - ’
isinz = Cosz
dz - ’
d _df dg
L9 = g+ fr, et (17.14)
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If the function is differentiable at all points in an arcwise-connected® open
set, or domain, D, the function is said to be analytic there. The words regular
or holomorphic are also used.

17.1.1 Conjugate pairs

The functions v and v comprising the real and imaginary parts of an analytic
function are said to form a pair of harmonic conjugate functions. Such pairs
have many properties that are useful for solving physical problems.

From the Cauchy-Riemann equations we deduce that

0? 0?
(g o) = ©

0? 0?

and so both the real and imaginary parts of f(z) are automatically harmonic
functions of x, y.
Further, from the Cauchy-Riemann conditions, we deduce that
owon ouow _, -
Oxrdx Oy dy
This means that Vu - Vv = 0. We conclude that, provided that neither
of these gradients vanishes, the pair of curves u = const. and v = const.
intersect at right angles. If we regard u as the potential ¢ solving some
electrostatics problem V2¢ = 0, then the curves v = const. are the associated
field lines.
Another application is to fluid mechanics. If v is the velocity field of an
irrotational (curlv = 0) flow, then we can (perhaps only locally) write the
flow field as a gradient

vy = Ou,

v, = 0,0, (17.17)
where ¢ is a velocity potential. If the flow is incompressible (divv = 0), then
we can (locally) write it as a curl

vy = Oyx,
vy, = —0X, (17.18)

L Arcwise connected means that any two points in D can be joined by a continuous path
that lies wholely within D.
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where Yy is a stream function. The curves xy = const. are the flow streamlines.
If the flow is both irrotational and incompressible, then we may use either ¢
or x to represent the flow, and, since the two representations must agree, we
have

8x¢ = +8yX7
Oy¢ = —0O.x- (17.19)

Thus ¢ and x are harmonic conjugates, and so the complex combination
® = ¢ + ix is an analytic function called the complex stream function.

A conjugate v exists (at least locally) for any harmonic function u. To
see why, assume first that we have a (u, v) pair obeying the Cauchy-Riemann
equations. Then we can write

dv = —dr+ —dy
x
= ——dr+ —xdy. (17.20)

This observation suggests that if we are given a harmonic function u in some
simply connected domain D, we can define a v by setting

o(z) = / (—g—de + %@) +o(z), (17.21)

for some real constant v(zp) and point z5. The integral does not depend on
choice of path from 2y to z, and so v(z) is well defined. The path indepen-
dence comes about because the curl

0 ou 0 (0Ou 9
S () A () 17.22
8y( 3y) Ox <3x) v (17.22)

vanishes, and because in a simply connected domain all paths connecting the
same endpoints are homologous.

We now verify that this candidate v(z) satisfies the Cauchy-Riemann
realtions. The path independence, allows us to make our final approach to
z = x +1y along a straight line segment lying on either the x or y axis. If we
approach along the x axis, we have

v(z) = / <——) dr’ + rest of integral, (17.23)
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and may use

d xr
= [ @ = fa) (17.24)
dx
to see that 5 5
v u
— = 17.25
ox oy ( )
at (x,y). If, instead, we approach along the y axis, we may similarly compute
Jv  Ou
— = — 17.26
Jdy Ox ( )

Thus v(z) does indeed obey the Cauchy-Riemann equations.

Because of the utility the harmonic conjugate it is worth giving a practical
recipe for finding it, and so obtaining f(z) when given only its real part
u(z,y). The method we give below is one we learned from John d’Angelo.
It is more efficient than those given in most textbooks. We first observe that
if f is a function of z only, then f(z) depends only on Z. We can therefore

define a function f of 7 by setting f(z) = f(Z). Now

5 (F&) + 7)) = ula, ). (17.27)
Set 1 1
xzﬁ(z—l—i), yzz(z—i), (17.28)
u (%(zjt?),%(z—?)) = % (f(2)+ f(2). (17.29)
Now set Z = 0, while keeping z fixed! Thus
F(2) + F(0) = 2u (% %) . (17.30)

The function f is not completely determined of course, because we can always
add a constant to v, and so we have the result

f() =2u (2, %) +iC, CeR. (17.31)

22

For example, let u = 22 — 2. We find

f(2) + f(0) =2 (%)2 -2 (2%)2 =22, (17.32)
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or

f(z) =22 +iC, CeR. (17.33)

The business of setting setting Z = 0, while keeping z fixed, may feel like
a dirty trick, but it can be justified by the (as yet to be proved) fact that f
has a convergent expansion as a power series in z = x +1ty. In this expansion
it is meaningful to let x and y themselves be complex, and so allow z and
Z to become two independent complex variables. Anyway, you can always
check ex post facto that your answer is correct.

17.1.2 Conformal mapping

An analytic function w = f(z) maps subsets of its domain of definition in
the “z” plane on to subsets in the “w” plane. These maps are often useful
for solving problems in two dimensional electrostatics or fluid flow. Their

simplest property is geometrical: such maps are conformal.

21 1

T
S

N

Figure 17.1: An illustration of conformal mapping. The unshaded “triangle”
marked z is mapped into the other five unshaded regions by the functions
labeling them. Observe that although the regions are distorted, the angles of
the “triangle” are preserved by the maps (with the exception of those corners
that get mapped to infinity).

Suppose that the derivative of f(z) at a point zg is non-zero. Then, for z
near zp we have

f(2) = f(20) = A(z — 20), (17.34)
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where
_

dz o

A (17.35)
If you think about the geometric interpretation of complex multiplication
(multiply the magnitudes, add the arguments) you will see that the “f”
image of a small neighbourhood of zy is stretched by a factor |A|, and rotated
through an angle arg A — but relative angles are not altered. The map z +—
f(2) = w is therefore isogonal. Our map also preserves orientation (the sense
of rotation of the relative angle) and these two properties, isogonality and
orientation-preservation, are what make the map conformal? The conformal
property fails at points where the derivative vanishes or becomes infinite.

If we can find a conformal map z (= z + iy) — w (= u + ) of some
domain D to another D’ then a function f(z) that solves a potential theory
problem (a Dirichlet boundary-value problem, for example) in D will lead to
f(z(w)) solving an analogous problem in D’.

Consider, for example, the map z — w = z + e¢*. This map takes the
strip —oo < x < 00, —7 < y < 7 to the entire complex plane with cuts from
—00 + i to —1 + 4w and from —oo — im to —1 — iw. The cuts occur because
the images of the lines y = 4+ get folded back on themselves at w = —1 -+,
where the derivative of w(z) vanishes. (See figure 17.2)

In this case, the imaginary part of the function f(z) = z + iy trivially
solves the Dirichlet problem Vi,yy = 0 in the infinite strip, with y = 7
on the upper boundary and y = —n on the lower boundary. The function
y(u,v), now quite non-trivially, solves Vfw y = 0 in the entire w plane, with
y = m on the half-line running from —oo + 7 to —1 + im, and y = —7 on the
half-line running from —oo —im to —1 —im. We may regard the images of
the lines y = const. (solid curves) as being the streamlines of an irrotational
and incompressible flow out of the end of a tube into an infinite region, or as
the equipotentials near the edge of a pair of capacitor plates. In the latter
case, the images of the lines z = const. (dotted curves) are the corresponding
field-lines
Example: The Joukowski map. This map is famous in the history of aero-
nautics because it can be used to map the exterior of a circle to the exterior
of an aerofoil-shaped region. We can use the Milne-Thomson circle theorem
(see 17.3.2) to find the streamlines for the flow past a circle in the z plane,

2If f were a function of Z only, then the map would still be isogonal, but would reverse
the orientation. We call such maps antiholomorphic or anti-conformal.
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—00 < & < 00 under

<y<m,

Figure 17.2: Image of part of the strip —m

the map z — w = z + €7,
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and then use Joukowski’s transformation,

1 1

w=f(z)=3 <z + ;) , (17.36)

to map this simple flow to the flow past the aerofoil. To produce an aerofoil
shape, the circle must go through the point z = 1, where the derivative of f
vanishes, and the image of this point becomes the sharp trailing edge of the
aerofoil.

The Riemann mapping theorem

There are tables of conformal maps for D, D’ pairs, but an underlying prin-
ciple is provided by the Riemann mapping theorem:

Theorem: The interior of any simply connected domain D in C whose bound-
ary consists of more that one point can be mapped conformally one-to-one
and onto the interior of the unit circle. It is possible to choose an arbitrary
interior point wy of D and map it to the origin, and to take an arbitrary
direction through wy and make it the direction of the real axis. With these
two choices the mapping is unique.

w 2

Figure 17.3: The Riemann mapping theorem.

This theorem was first stated in Riemann’s PhD thesis in 1851. He re-
garded it as “obvious” for the reason that we will give as a physical “proof.”
Riemann’s argument is not rigorous, however, and it was not until 1912 that
a real proof was obtained by Constantin Carathéodory. A proof that is both
shorter and more in spirit of Riemann’s ideas was given by Leopold Fejér
and Frigyes Riesz in 1922.
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For the physical “proof,” observe that in the function
B ! (17.37)
5y 2z =—o_{lnfe[ +40}, :

the real part ¢ = —% In |z| is the potential of a unit charge at the origin,
and with the additive constant chosen so that ¢ = 0 on the circle |z| = 1.
Now imagine that we have solved the two-dimensional electrostatics problem
of finding the potential for a unit charge located at wy € D, also with the
boundary of D being held at zero potential. We have

Vi = —6*(w —wy), ¢1=0 on OD. (17.38)

Now find the ¢y that is harmonically conjugate to ¢;. Set
1 )
O1+igy = P(w) = ~5x In(ze*) (17.39)

where « is a real constant. We see that the transformation w — z, or

z = e e 2mW) (17.40)

Y

does the job of mapping the interior of D into the interior of the unit circle,
and the boundary of D to the boundary of the unit circle. Note how our
freedom to choose the constant a is what allows us to “take an arbitrary
direction through wy and make it the direction of the real axis.”

Example: To find the map that takes the upper half-plane into the unit
circle, with the point z = ¢ mapping to the origin, we use the method of
images to solve for the complex potential of a unit charge at w = i:

1

01+ iy = ~5- (In(w — i) — In(w + 1))

= —% In(e"z).

Therefore :
P iy (17.41)
w+1
We immediately verify that that this works: we have |z| = 1 when w is real,
and z =0 at w = 1.
The difficulty with the physical argument is that it is not clear that a so-
lution to the point-charge electrostatics problem exists. In three dimensions,




692 CHAPTER 17. COMPLEX ANALYSIS I

for example, there is no solution when the boundary has a sharp inward
directed spike. (We cannot physically realize such a situation either: the
electric field becomes unboundedly large near the tip of a spike, and bound-
ary charge will leak off and neutralize the point charge.) There might well
be analogous difficulties in two dimensions if the boundary of D is patho-
logical. However, the fact that there is a proof of the Riemann mapping
theorem shows that the two-dimensional electrostatics problem does always
have a solution, at least in the interior of D — even if the boundary is an
infinite-length fractal. However, unless 0D is reasonably smooth the result-
ing Riemann map cannot be continuously extended to the boundary. When
the boundary of D is a smooth closed curve, then the the boundary of D
will map one-to-one and continuously onto the boundary of the unit circle.

Exercise 17.1: Van der Pauw’s Theorem.? This problem explains a practical
method of for determining the conductivity ¢ of a material, given a sample in
the form of of a wafer of uniform thickness d, but of irregular shape. In practice
at the Phillips company in Eindhoven, this was a wafer of semiconductor cut
from an unmachined boule.

Figure 17.4: A thin semiconductor wafer with attached leads.

We attach leads to point contacts A, B, C, D, taken in anticlockwise order, on
the periphery of the wafer and drive a current /45 from A to B. We record the
potential difference Vp — Vi and so find Rap.pc = (Vp — Vo) /Lap. Similarly
we measure Rpc ap. The current flow in the wafer is assumed to be two
dimensional, and to obey

J=—(ed)VV, V-J=0,

3L. J. Van der Pauw, Phillips Research Reps. 13 (1958) 1. See also A. M. Thompson,
D. G. Lampard, Nature 177 (1956) 888, and D. G. Lampard. Proc. Inst. Elec. Eng. C.
104 (1957) 271, for the “Calculable Capacitor.”
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and n -J = 0 at the boundary (except at the current source and drain). The
potential V is therefore harmonic, with Neumann boundary conditions.

Van der Pauw claims that

eXp{—?TO’dRAB,Dc} + eXp{—TFO'dRBC,AD} =1

From this od can be found numerically.

a) First show that Van der Pauw’s claim is true if the wafer were the entire
upper half-plane with A, B, C, D on the real axis with z4 < 25 < ¢ <
TpD.

b) Next, taking care to consider the transformation of the current source
terms and the Neumann boundary conditions, show that the claim is
invariant under conformal maps, and, by mapping the wafer to the upper
half-plane, show that it is true in general.

17.2 Complex integration: Cauchy and Stokes

In this section we will define the integral of an analytic function, and make
contact with the exterior calculus from chapters 11-13. The most obvious
difference between the real and complex integral is that in evaluating the
definite integral of a function in the complex plane we must specify the path
along which we integrate. When this path of integration is the boundary of
a region, it is often called a contour from the use of the word in the graphic
arts to describe the outline of something. The integrals themselves are then
called contour integrals.

17.2.1 The complex integral

The complex integral
/f(z)dz (17.42)
r

over a path I' may be defined by expanding out the real and imaginary parts

/f(z)dz o /(u+iv)(dx+z’dy) = /(udm—vdy)—l—z’/(vdx—l—udy). (17.43)
r r r r

and treating the two integrals on the right hand side as standard vector-
calculus line-integrals of the form [ v-dr, one with v — (u, —v) and and one
with v — (v, u).
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- z
a=zq 1 7y =b

Figure 17.5: A chain approximation to the curve I'.

The complex integral can also be constructed as the limit of a Riemann sum
in a manner parallel to the definition of the real-variable Riemann integral
of elementary calculus. Replace the path [' with a chain composed of of N
line-segments zg-to-z1, 2z1-to-zo, all the way to zy_i-to-zy. Now let &, lie
on the line segment joining z,,—1 and z,. Then the integral [, f(z)dz is the
limit of the (Riemann) sum

= fl&m)(zm — 2m1) (17.44)

m=1

as N gets large and all the |z, — z,_1] — 0. For this definition to make
sense and be useful, the limit must be independent of both how we chop up
the curve and how we select the points &,,. This will be the case when the
integration path is smooth and the function being integrated is continuous.

The Riemann-sum definition of the integral leads to a useful inequality:
combining the triangle inequality |a 4+ b| < |a| + |b| with |ab| = |a| |b] we
deduce that

WE

| f(€m) (zm — 2m—1)]

Z f€m)(zm — 2m—1)

3
[N

WE

[fEm)l [(zm = Zm—1)]. (17.45)

3
Il

For sufficiently smooth curves the last sum converges to the real integral
Jo1f(2)] |dz|, and we deduce that

/F £(2) dz

< / £ ] (17.46)
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For curves I' that are smooth enough to have a well-defined length |I'|, we
will have [ |dz| = |T'|. From this identification we conclude that if | f| < M
on I', then we have the Darboux inequality

/F £(2)dz

We shall find many uses for this inequality.
The Riemann sum definition also makes it clear that if f(z) is the deriva-
tive of another analytic function g(z), i.e.

< M|T). (17.47)

f(z) = %, (17.48)

then, for I' a smooth path from 2z = a to z = b, we have

/F F(2)dz = g(b) — g(a). (17.49)

This claim is established by approximating f (&) = (9(2m) — 9(2m-1))/(zm —
Zm-1), and observing that the resulting Riemann sum

i <g(zm) - g(zm—1)> (17.50)

m=1

telescopes. The approximation to the derivative will become accurate in the
limit |2z, — z;—1| — 0. Thus, when f(z) is the derivative of another function,
the integral is independent of the route that I' takes from a to b.

We shall see that any analytic function is (at least locally) the derivative
of another analytic function, and so this path independence holds generally
— provided that we do not try to move the integration contour over a place
where f ceases to be differentiable. This is the essence of what is known as
Cauchy’s Theorem — although, as with much of complex analysis, the result
was known to Gauss.

17.2.2 Cauchy’s theorem

Before we state and prove Cauchy’s theorem, we must introduce an orien-
tation convention and some traditional notation. Recall that a p-chain is a
finite formal sum of p-dimensional oriented surfaces or curves, and that a
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p-cycle is a p-chain I' whose boundary vanishes: OI' = 0. A 1-cycle that con-
sists of only a single connected component is a closed curve. We will mostly
consider integrals over simple closed curves — these being curves that do not
self intersect — or 1-cycles consisting of finite formal sums of such curves.
The orientation of a simple closed curve can be described by the sense, clock-
wise or anticlockwise, in which we traverse it. We will adopt the convention
that a positively oriented curve is one such that the integration is performed
in a anticlockwise direction. The integral over a chain I' of oriented simple
closed curves will be denoted by the symbol fr fdz.

We now establish Cauchy’s theorem by relating it to our previous work
with exterior derivatives: Suppose that f is analytic with domain D, so that
0=f = 0 within D. We therefore have that the exterior derivative of f is

df =0, fdz+ 0-fdz=0,f dz. (17.51)

Now suppose that the simple closed curve I' is the boundary of a region
Q C D. We can exploit Stokes” theorem to deduce that

f;zm f2)dz = /Qd(f(Z)dZ) = /Q(azf) dz N dz = 0. (17.52)

The last integral is zero because dz A dz = 0. We may state our result as:
Theorem (Cauchy, in modern language): The integral of an analytic function
over a 1-cycle that is homologous to zero vanishes.

The zero result is only guaranteed if the function f is analytic throughout
the region €. For example, if I is the unit circle z = €% then

2 2
7{ (1) dz = / e " d (") = z/ df = 2mi. (17.53)
L \~? 0 0

Cauchy’s theorem is not applicable because 1/z is singular, i.e. not differen-
tiable, at z = 0. The formula (17.53) will hold for I any contour homologous
to the unit circle in C \ 0, the complex plane punctured by the removal of

the point z = 0. Thus
1
7{ <—) dz = 2mi (17.54)
T \ R

for any contour I' that encloses the origin. We can deduce a rather remarkable
formula from (17.54): Writing I' = 02 with anticlockwise orientation, we use
Stokes’ theorem to obtain

jgg <%) dz = /Qaz <%) dzZ Ndz = {(2)7ri, 8 ; % (17.55)
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Since dz A\ dz = 2idx N dy, we have established that

1
05 <—) = mo(x)d(y). (17.56)
z
This rather cryptic formula encodes one of the most useful results in math-
ematics.

Perhaps perversely, functions that are more singular than 1/z have van-
ishing integrals about their singularities. With I' again the unit circle, we

have
1 27 ) ) 27 )
f(—z) dz:/ e 2 d (") :z'/ e " df = 0. (17.57)
r \? 0 0

The same is true for all higher integer powers:

1
% (z_") dz=0, n>2. (17.58)
r

We can understand this vanishing in another way, by evaluating the in-
tegral as

(2= bt ] =0 v
r \ 2" rdz \ n—1z"1 n—1zr"1],

(17.59)
Here, the notation [A]. means the difference in the value of A at two ends
of the integration path I". For a closed curve the difference is zero because
the two ends are at the same point. This approach reinforces the fact that
the complex integral can be computed from the “anti-derivative” in the same
way as the real-variable integral. We also see why 1/z is special. It is the
derivative of Inz = In |z| + iarg z, and In z is not really a function, as it is
multivalued. In evaluating [In 2], we must follow the continuous evolution
of arg z as we traverse the contour. As the origin is within the contour, this
angle increases by 27, and so

[In 2], = [iarg 2] =i (arge®™ — arge™) = 2ri. (17.60)

Exercise 17.2: Suppose f(z) is analytic in a simply-connected domain D, and
20 € D. Set g(z) = f; f(2)dz along some path in D from zg to z. Use the
path-independence of the integral to compute the derivative of g(z) and show

that
_dg

f(Z)—E-
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This confirms our earlier claim that any analytic function is the derivative of
some other analytic function.

Exercise 17.3:The “D-bar” problem: Suppose we are given a simply-connected
domain 2, and a function f(z,%) defined on it, and wish to find a function
F(z,Z%) such that

OF(z,%)

5 = f(z,2), (2,2) €.

Use (17.56) to argue formally that the general solution is

Fe.0 =1 [ 152

dx A dy + g(¢),

where ¢(¢) is an arbitrary analytic function. This result can be shown to be
correct by more rigorous reasoning.

17.2.3 The residue theorem

The essential tool for computations with complex integrals is provided by
the residue theorem. With the aid of this theorem, the evaluation of contour
integrals becomes easy. All one has to do is identify points at which the
function being integrated blows up, and examine just how it blows up.

If, near the point z;, the function can be written

Y T %’ A O 17.61

(AU [EEE AR e e ) SO
where ¢ (2) is analytic and non-zero at z;, then f(z) has a pole of order N at
zi. If N =1 then f(z) is said to have a simple pole at z;. We can normalize
¢@(2) so that ¢@(z) = 1, and then the coefficient, a!”, of 1/(z — z) is
called the residue of the pole at z;. The coefficients of the more singular
terms do not influence the result of the integral, but N must be finite for the
singularity to be called a pole.
Theorem: Let the function f(z) be analytic within and on the boundary
I' = 0D of a simply connected domain D, with the exception of finite number
of points at which f(z) has poles. Then

%f(z) dz = Z 271 (residue at pole), (17.62)
r
poles € D
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the integral being traversed in the positive (anticlockwise) sense.
We prove the residue theorem by drawing small circles C; about each
singular point z; in D.

Figure 17.6: Circles for the residue theorem.

We now assert that
7{ f(2)dz = Z ]é | f(2) dz, (17.63)

because the 1-cycle

C=T-) C =00 (17.64)

is the boundary of a region 2 in which f is analytic, and hence C' is homol-
ogous to zero. If we make the radius R; of the circle C; sufficiently small, we
may replace each ¢ (z) by its limit ¢ (z;) = 1, and so take

£ i

z) — ee LN @) (5.
f(2) {(Z_Zi)+(z_zi)2+ +(z—zi)N}g (2)

(z—2) (22— 2)? (z — z)N’

on C;. We then evaluate the integral over C; by using our previous results
to get

(17.65)

f f(z)dz = 27rz'a§i). (17.66)
C;
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The integral around I' is therefore equal to 27i ), agi).

The restriction to contours containing only finitely many poles arises for
two reasons: Firstly, with infinitely many poles, the sum over ¢ might not
converge; secondly, there may be a point whose every neighbourhood contains
infinitely many of the poles, and there our construction of drawing circles
around each individual pole would not be possible.

Exercise 17.4: Poisson’s Formula. The function f(2) is analytic in |z| < R’.
Prove that if |a| < R < R/,

2 -
fla) = 5 il

T o 2|=R (z—a)(R2 — az)f(z)dz.

Deduce that, for 0 < r < R,

2m 2 .2
f(reie) - 1 R T

— 0
~ 21 Jo R?—2Rrcos(d — ¢) + 12 f(Re™)dg.

Show that this formula solves the boundary-value problem for Laplace’s equa-
tion in the disc |z| < R.

Exercise 17.5: Bergman Kernel. The Hilbert space of analytic functions on a
domain D with inner product

mmzéﬁmw

is called the Bergman? space of D.

a) Suppose that ¢,(z), n = 0,1,2,..., are a complete set of orthonormal
functions on the Bergman space. Show that

K(¢ z) = Z ©m(C)om(2)-
m=0
has the property that

90 = [[ K(G.2)9(e) dady.

4This space should not be confused with Bargmann-Fock space which is the space
analytic functions on the entirety of C with inner product

(f.9) = /Ce_‘z‘2fg d*z.

Stefan Bergman and Valentine Bargmann are two different people.
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for any function g analytic in D. Thus K (, z) plays the role of the delta
function on the space of analytic functions on D. This object is called
the reproducing or Bergman kernel. By taking g(z) = ¢, (z), show that
it is the unique integral kernel with the reproducing property.

b) Consider the case of D being the unit circle. Use the Gramm-Schmidt
procedure to construct an orthonormal set from the functions 2", n =

0,1,2,.... Use the result of part a) to conjecture (because we have not
proved that the set is complete) that, for the unit circle,
1 1
K z2)=—-———"—.
(s

c¢) For any smooth, complex valued, function g defined on a domain D and
its boundary, use Stokes’ theorem to show that

// 0z9(z,Z)dxdy = ij{ 9(z,Z)dz.
D 2i Jop

Use this to verify that this the K((,z) you constructed in part b) is
indeed a (and hence “the”) reproducing kernel.

d) Now suppose that D is a simply connected domain whose boundary 0D
is a smooth curve. We know from the Riemann mapping theorem that
there exists an analytic function f(z) = f(z;¢) that maps D onto the
interior of the unit circle in such a way that f(¢) = 0 and f'({) is real
and non-zero. Show that if we set K (¢, z) = f/(z)f'(¢)/x, then, by using
part c) together with the residue theorem to evaluate the integral over
the boundary, we have

90 = [[ K(G.2)9(e) dody.

This K (¢, z) must therefore be the reproducing kernel. We see that if we
know K we can recover the map f from

™

K(¢, Q)
e) Apply the formula from part d) to the unit circle, and so deduce that

f:50 = 1=

f(z0) = K(2,0).

is the unique function that maps the unit circle onto itself with the point
¢ mapping to the origin and with the horizontal direction through (
remaining horizontal.
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17.3 Applications

We now know enough about complex variables to work through some inter-
esting applications, including the mechanism by which an aeroplane flies.

17.3.1 Two-dimensional vector calculus

It is often convenient to use complex co-ordinates for vectors and tensors. In
these co-ordinates the standard metric on R? becomes

“ds?” = drxr®@dr+dy® dy
= dz®dz
= 0.,dz2®dz+ g5.dZ ®dz + g,zdz ® dZ + g=dZ ® dz,(17.67)
so the complex co-ordinate components of the metric tensor are g.., = g== = 0,

g:z = gz = 3. The inverse metric tensor is g% = g% = 2, g** = g7 = 0.
In these co-ordinates the Laplacian is

V? = g7} = 2(0.0= + 9-0.). (17.68)

When f has singularities, it is not safe to assume that 0.0-f = 0. f. For
example, from

0. (1) — (1), (17.69)
z
we deduce that
0:0.Inz = 76*(z, y). (17.70)

When we evaluate the derivatives in the opposite order, however, we have
0.0:Inz = 0. (17.71)

To understand the source of the non-commutativity, take real and imaginary
parts of these last two equations. Write Inz = In |z| + i, where § = arg z,
and add and subtract. We find

Vin|z| = 276%(z,y),
(0.0, — 0,0,)0 = 2mw5*(z,y). (17.72)
The first of these shows that % In |z| is the Green function for the Laplace

operator, and the second reveals that the vector field V# is singular, having
a delta function “curl” at the origin.



17.3. APPLICATIONS 703

If we have a vector field v with contravariant components (v*, v¥) and (nu-
merically equal) covariant components (v, v,) then the covariant components
in the complex co-ordinate system are v, = (v, — ivy) and vy = 5 (v, + ivy).
This can be obtained by a using the change of co-ordinates rule, but a quicker

route is to observe that
V- dr = vydx + vydy = v,dz + vzdZ. (17.73)

Now . .
Ozv; = 7 (0500 + Oyvy) +i7 (Oyve — Oovy)- (17.74)

Thus the statement that d-v, = 0 is equivalent to the vector field v being
both solenoidal (incompressible) and irrotational. This can also be expressed
in form language by setting n = v, dz and saying that dn = 0 means that the
corresponding vector field is both solenoidal and irrotational.

17.3.2 Milne-Thomson circle theorem

As we mentioned earlier, we can describe an irrotational and incompressible
fluid motion either by a velocity potential

Uy = Op, vy = Oy, (17.75)

where v is automatically irrotational but incompressibilty requires V2¢ = 0,
or by a stream function

Uy = 0OyX, Uy = —OuX, (17.76)

where v is automatically incompressible but irrotationality requires V2y = 0.
We can combine these into a single complex stream function ® = ¢ + ix
which, for an irrotational incompressible flow, satisfies the Cauchy-Riemann
equations and is therefore an analytic function of z. We see that

2, = (17.77)

Ea
¢ and x making equal contributions.

The Milne-Thomson theorem says that if ® is the complex stream func-
tion for a flow in unobstructed space, then

d=d(2)+P (a—z) (17.78)
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is the stream function after the cylindrical obstacle |z| = a is inserted into
the flow. Here ®(z) denotes the analytic function defined by ®(z) = ®(z).
To see that this works, observe that a?/z = Z on the curve |z| = a, and so on
this curve Im ® = X = 0. The surface of the cylinder has therefore become
a streamline, and so the flow does not penetrate into the cylinder. If the
original flow is created by souces and sinks exterior to |z| = a, which will be
singularities of ®, the additional term has singularites that lie only within
|z| = a. These will be the “images” of the sources and sinks in the sense of
the “method of images.”

Example: A uniform flow with speed U in the x direction has ®(z) = Uz.
Inserting a cylinder makes this

O(2) =U <z + a;) . (17.79)

Because v, is the derivative of this, we see that the perturbing effect of the
obstacle on the velocity field falls off as the square of the distance from the
cylinder. This is a general result for obstructed flows.

2

Figure 17.7: The real and imaginary parts of the function z+ z~' provide the
velocity potentials and streamlines for irrotational incompressible flow past
a cylinder of unit radius.

17.3.3 Blasius and Kutta-Joukowski theorems

We now derive the celebrated result, discovered independently by Martin
Wilhelm Kutta (1902) and Nikolai Egorovich Joukowski (1906), that the
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lift per unit span of an aircraft wing is equal to the product of the density
of the air p, the circulation k = § v - dr about the wing, and the forward
velocity U of the wing through the air. Their theory treats the air as being
incompressible—a good approximation unless the flow-velocities approach
the speed of sound—and assumes that the wing is long enough that the flow
can be regarded as being two dimensional.

G

4’@

Figure 17.8: Flow past an aerofoil.

Begin by recalling how the momentum flux tensor
T;j = pvivj + gi; P (17.80)

enters fluid mechanics. In cartesian co-ordinates, and in the presence of an

external body force f; acting on the fluid, the Euler equation of motion for
the fluid is .

Here P is the pressure and we are distinguishing between co and contravariant
components, although at the moment g;; = d,;. We can combine Euler’s
equation with the law of mass conservation,

Oip + 0 (pv;) = 0, (17.82)

to obtain .
&g(pvi) + o’ (p’Uj’UZ' + gUP) = fz (1783)

This momemtum-tracking equation shows that the external force acts as a
source of momentum, and that for steady flow f; is equal to the divergence
of the momentum flux tensor:

fi =0Ty = gMo,T;. (17.84)
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As we are interested in steady, irrotational motion with uniform density we
may use Bernoulli’s theorem, P + $plv|* = const., to substitute —1plv|? in
place of P. (The constant will not affect the momentum flux.) With this
substitution 7;; becomes a traceless symmetric tensor:

1
Tij = p(viv; — §gij|v|2)- (17.85)
Using v, = (v, — iv,) and
Ozt O’
T.. = ———-Tj, 17.86
0z 0z " ( )
together with
=z 1( +7%) =’ 1( %) (17.87)
xr = = —(Z z = = —|\Z—Z .
2 Y 2i
we find )
T=T,= Z(Tm — T,y — 2iT,,) = p(v.)*. (17.88)

This is the only component of Tj; that we will need to consider. Tz is simply
T, whereas T,z = 0 = 1%, because Tj; is traceless.
In our complex co-ordinates, the equation

fi = g" Ty (17.89)

reads
fo =970 T.. + g70. Tz, = 20:T. (17.90)

We see that in steady flow the net momentum flux P, out of a region € is
given by

) 1 1 1
P [ fedudy =, [ stz =< [ordze =5 f Tas 7oy
Q 2i Jq L Jo tJoq

We have used Stokes’ theorem at the last step. In regions where there is no
external force, T is analytic, 0T = 0, and the integral will be independent
of the choice of contour 9. We can subsititute T' = pv? to get

P, = —ip% v? dz. (17.92)
o0
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To apply this result to our aerofoil we take can take 0f) to be its boundary.
Then P, is the total force exerted on the fluid by the wing, and, by Newton’s
third law, this is minus the force exerted by the fluid on the wing. The total
force on the aerofoil is therefore

F, = ip% v2dz. (17.93)
20

The result (17.93) is often called Blasius’ theorem.

Evaluating the integral in (17.93) is not immediately possible because the
velocity v on the boundary will be a complicated function of the shape of
the body. We can, however, exploit the contour independence of the integral
and evaluate it over a path encircling the aerofoil at large distance where the
flow field takes the asymptotic form

Kk 1 1
,=U.+——+0(—=]. 17.94

Y + 4Ami z + <z2) ( )
The O(1/2?) term is the velocity perturbation due to the air having to flow
round the wing, as with the cylinder in a free flow. To confirm that this flow
has the correct circulation we compute

j{V dr = j{vzdz + j{vgdi = K. (17.95)

Substituting v, in (17.93) we find that the O(1/2?) term cannot contribute as
it cannot affect the residue of any pole. The only part that does contribute
is the cross term that arises from multiplying U, by k/(4miz). This gives

F, =ip (gﬂ’j ) d—; = iprU., (17.96)
so that ] ]
i(Fm —iF,) = Z'pFLQ(Um —1U,). (17.97)
Thus, in conventional co-ordinates, the reaction force on the body is
F, = prU,y,
F, = —prU,. (17.98)

The fluid therefore provides a lift force proportional to the product of the
circulation with the asymptotic velocity. The force is at right angles to the
incident airstream, so there is no drag.
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The circulation around the wing is determined by the Kutta condition
that the velocity of the flow at the sharp trailing edge of the wing be finite.
If the wing starts moving into the air and the requisite circulation is not
yet established then the flow under the wing does not leave the trailing edge
smoothly but tries to whip round to the topside. The velocity gradients
become very large and viscous forces become important and prevent the air
from making the sharp turn. Instead, a starting vortex is shed from the
trailing edge. Kelvin’s theorem on the conservation of vorticity shows that
this causes a circulation of equal and opposite strength to be induced about
the wing.

For finite wings, the path independence of § v - dr means that the wings
must leave a pair of trailing wingtip vortices of strength s that connect back
to the starting vortex to form a closed loop. The velocity field induced by the
trailing vortices cause the airstream incident on the aerofoil to come from a
slighly different direction than the asymptotic flow. Consequently, the lift is
not quite perpendicular to the motion of the wing. For finite-length wings,
therefore, lift comes at the expense of an inevitable induced drag force. The
work that has to be done against this drag force in driving the wing forwards
provides the kinetic energy in the trailing vortices.

17.4 Applications of Cauchy’s theorem

Cauchy’s theorem provides the Royal Road to complex analysis. It is possible
to develop the theory without it, but the path is harder going.

17.4.1 Cauchy’s integral formula

If f(z) is analytic within and on the boundary of a simply connected domain
Q, with 02 =T, and if ( is a point in €2, then, noting that the the integrand
has a simple pole at z = ( and applying the residue formula, we have Cauchy’s
integral formula

(2)
el e, dz, (€. (17.99)

f(¢) =
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Figure 17.9: Cauchy contour.

This formula holds only if { lies within £2. If it lies outside, then the integrand
is analytic everywhere inside (), and so the integral gives zero.

We may show that it is legitimate to differentiate under the integral sign
in Cauchy’s formula. If we do so n times, we have the useful corollary that

Nm_ﬁﬁT&L@ (17.100)

C2mi Jp (=)t

This shows that being once differentiable (analytic) in a region automatically
implies that f(z) is differentiable arbitrarily many times!

Exercise 17.6: The generalized Cauchy formula. Suppose that we have solved a
D-bar problem (see exercise 17.3), and so found an F(z,z) with 0zF = f(z,%)
in a region 2. Compute the exterior derivative of

F(z,%)
z2=C

using (17.56). Now, manipulating formally with delta functions, apply Stokes’
theorem to show that, for (¢, () in the interior of 2, we have

A\ 1 F(Z,E) 1 f(Z,E)

This is called the generalized Cauchy formula. Note that the first term on the
right, unlike the second, is a function only of ¢, and so is analytic.

Liouville’s theorem

A dramatic corollary of Cauchy’s integral formula is provided by
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Liouville’s theorem: If f(z) is analytic in all of C, and is bounded there,
meaning that there is a positive real number K such that |f(z)| < K, then
f(2) is a constant.

This result provides a powerful strategy for proving that two formulee,
fi(z) and f5(z), represent the same analytic function. If we can show that
the difference f; — fs is analytic and tends to zero at infinity then Liouville’s
theorem tells us that f; = fs.

Because the result is perhaps unintuitive, and because the methods are
typical, we will spell out in detail how Liouville’'s theorem works. We select
any two points, z; and z,, and use Cauchy’s formula to write

f(zl)—f(,zQ):i]{( L ! )f(z)dz. (17.101)

271 Z—21 Z— 29

We take the contour I' to be circle of radius p centered on z;. We make
p > 2|z; — 29|, so that when z is on I' we are sure that |z — 29| > p/2.

%

Figure 17.10: Contour for Liouville’ theorem.

Then, using | [ f(z)dz| < [|f(2)||dz|, we have
]_ (Zl — 22)
_ - d
)= Fe)l = 5| )
i /‘27T ‘Zl — 22|K do — 2‘21 — 22|K
2m Jo p/2 P
The right hand side can be made arbitrarily small by taking p large enough,

so we we must have f(z1) = f(z2). As 2z; and zy were any pair of points, we
deduce that f(z) takes the same value everywhere.

< . (17.102)
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Exercise 17.7: Let a1,...,any be N distinct complex numbers. Use Liouville’s
theorem to prove that

ZZ (z —a;) (z — ag)? ZZ z—lak)z'

— A
ki j=1 i = w — ag)

17.4.2 Taylor and Laurent series

We have defined a function to be analytic in a domain D if it is (once)
complex differentiable at all points in D. It turned out that this apparently
mild requirement automatically implied that the function is differentiable
arbitrarily many times in D. In this section we shall see that knowledge
of all derivatives of f(z) at any single point in D is enough to completely
determine the function at any other point in D. Compare this with functions
of a real variable, for which it is easy to construct examples that are once
but not twice differentiable, and where complete knowledge of function at a
point, or in even in a neighbourhood of a point, tells us absolutely nothing
of the behaviour of the function away from the point or neighbourhood.

The key ingredient in these almost magical properties of complex ana-
lytic functions is that any analytic function has a Taylor series expansion
that actually converges to the function. Indeed an alternative definition of
analyticity is that f(z) be representable by a convergent power series. For
real variables this is the definition of a real analytic function.

To appreciate the utility of power series representations we do need to
discuss some basic properties of power series. Most of these results are ex-
tensions to the complex plane of what we hope are familiar notions from real
analysis.

Consider the power series

Z an(z — 20)" = ]\}I_Iil)o Sn, (17.103)

n=0

where Sy are the partial sums
N
Sy = Zan(z — 2p)". (17.104)

Suppose that this limit exists (i.e the series is convergent) for some z = (;
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then it turns out that the series is absolutely convergent® for any |z — zg| <
¢ — 2.

To establish this absolute convergence we may assume, without loss of
generality, that zg = 0. Then, convergence of the sum > a, (" requires that
|a,(" — 0, and thus |a,("| is bounded. In other words, there is a B such
that |a,("| < B for any n. We now write

z
¢

The sum > |a,2"| therefore converges for |z/¢| < 1, by comparison with a
geometric progression.

This result, that if a power series in (z — zy) converges at a point then
it converges at all points closer to zg, shows that a power series possesses
some radius of convergence R. The series converges for all |z — z5| < R, and
diverges for all |z — z5| > R. What happens on the circle |z — 25| = R is
usually delicate, and harder to establish. A useful result, however, is Abel’s
theorem, which we will not try to prove. Abel’s theorem says that if the sum
>~ a, is convergent, and if A(z) =Y 7 a,2" for |z| < 1, then

n
|an2"| = lanC"| :

(17.105)

" zZ
B_
<'<

lim A(z) = > an. (17.106)
n=0
The converse is not true: if A(z) has a finite limit as we approach the circle
of convergence, the corresponding sum need not converge
By comparison with a geometric progression, we may establish the fol-
lowing useful formulee giving R for the series > a,z":
. ‘an—l‘

R = lim

= lim |a,|*" (17.107)

n—oo

The proof of these formulee is identical the real-variable version.

°Recall that absolute convergence of > a, means that > |a,| converges. Absolute
convergence implies convergence, and also allows us to rearrange the order of terms in the
series without changing the value of the sum. Compare this with conditional convergence,
where > a,, converges, but 3 |a,| does not. You may remember that Riemann showed
that the terms of a conditionally convergent series can be rearranged so as to get any
answer whatsoever!
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We soon show that the radius of convergence of a power series is the
distance from 2z to the nearest singularity of the function that it represents.

When we differentiate the terms in a power series, and thus take a,z" —
na,z""!, this does not alter R. This observation suggests that it is legitimate
to evaluate the derivative of the function represented by the powers series by
differentiating term-by-term. As step on the way to justifying this, observe
that if the series converges at z = ¢ and D, is the domain |z| < r < |(| then,
using the same bound as in the proof of absolute convergence, we have

on
a2 < B— < B— =M, 17.108
a0 < Bl < Biem (17.108)

where > M, is convergent. As a consequence Y a,z" is uniformly con-
vergent in D, by the Weierstrass “M” test. You probably know that uni-
form convergence allows the interchange the order of sums and integrals:
S fulx) = > [ fa(z)dz. For real variables, uniform convergence is
not a strong enough a condltlon for us to to safely interchange order of sums
and derivatives: (Y f,(x))" is not necessarily equal to > f/(x). For complex
analytic functions, however, Cauchy’s integral formula reduces the operation
of differentiation to that of integration, and so this interchange is permitted.
In particular we have that if

n

=S 4, (17.109)
n=0

and R is defined by R = |(| for any ( for which the series converges, then
f(2) is analytic in |z| < R and

=> na,z"", (17.110)
n=0

is also analytic in |z| < R.

Morera’s theorem

There is is a partial converse of Cauchy’s theorem:

Theorem (Morera): If f(2) is defined and continuous in a domain D, and
if ¢ f( =0 for all c]osed contours, then f(z) is analytic in D. To
prove thls we set F'(z f p f(¢)d¢. The integral is path-independent by the
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hypothesis of the theorem, and because f(z) is continuous we can differentiate
with respect to the integration limit to find that F’(z) = f(z). Thus F(z)
is complex differentiable, and so analytic. Then, by Cauchy’s formula for
higher derivatives, F”(z) = f'(z) exists, and so f(z) itself is analytic.

A corollary of Morera’s theorem is that if f,(z) — f(z) uniformly in D,
with all the f,, analytic, then

i) f(z) is analytic in D, and

ii) f/(z) — f'(2) uniformly.

We use Morera’s theorem to prove (i) (appealing to the uniform conver-
gence to justify the interchange the order of summation and integration),
and use Cauchy’s theorem to prove (ii).

Taylor’s theorem for analytic functions

Theorem: Let I' be a circle of radius p centered on the point a. Suppose that
f(2) is analytic within and on I, and and that the point z = ( is within I".
Then f(¢) can be expanded as a Taylor series

70 = fla) + 3 =W oo g, (7.111)

n!

meaning that this series converges to f(() for all ( such that |( — a| < p.
To prove this theorem we use identity
R SO (e RN (S L SN (S A

2—(C z—a (Z—a)2+'”+ GV +(Z—a)Nz—C (17.112)

and Cauchy’s integral, to write

1O = 5 b s
I N (SO G © N (SO @
N ; 27 %(z—a)““d * 2mi %(Z—G)N(Z—Od
R (S ;'a)"fw(a) b Ry (17.113)
where
aef ((—a) f(2)
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This is Taylor’s theorem with remainder. For real variables this is as far as
we can go. Even if a real function is differentiable infinitely many times,
there is no reason for the remainder to become small. For analytic functions,
however, we can show that Ry — 0 as N — oo. This means that the
complex-variable Taylor series is convergent, and its limit is actually equal
to f(z). To show that Ry — 0, recall that I' is a circle of radius p centered
on z =a. Let r = |( — a|] < p, and let M be an upper bound for f(z) on I'.
(This exists because f is continuous and I' is a compact subset of C.) Then,
estimating the integral using methods similar to those invoked in our proof
of Liouville’s Theorem, we find that

N
Ry < — (M) . (17.115)
2 \pN(p—1)

As r < p, this tends to zero as N — oc.

We can take p as large as we like provided there are no singularities of
f end up within, or on, the circle. This confirms the claim made earlier:
the radius of convergence of the powers series representation of an analytic
functionis the distance to the nearest singularity.

Laurent series

Theorem (Laurent): Let I'y and I'y be two anticlockwise circlular paths with
centre a, radii p; and py, and with py < py. If f(2) is analytic on the circles
and within the annulus between them, then, for { in the annulus:

FO=Danl¢—a)"+> bu(¢—a)™ (17.116)

Figure 17.11: Contours for Laurent’s theorem.
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The coefficients a,, and b, are given by

ay, = ! &) dz, b, = ! f(2)(z—a)" tdz.

T o Jp, (z—a)n "~ 27 ),

Laurent’s theorem is proved by observing that

_ 1 f(z) z—i f(z) z
f@_m'jgl -q° 27”'7{“2 -9

and using the identities

R T (S N (e L (S A
Z—C_z—a+(z—a)2+ * (z—a)V +(z—a)Nz—C’
and
11 (z—a) (z—a)1 (z—a)V 1
s=C Cma e T Gy T

Once again we can show that the remainder terms tend to zero.

(17.117)

(17.118)

(17.119)

(17.120)

Warning: Although the coefficients a,, are given by the same integrals as in
Taylor’s theorem, they are not interpretable as derivatives of f unless f(z)

is analytic within the inner circle, in which case all the b, are zero.

17.4.3 Zeros and singularities

This section is something of a nosology — a classification of diseases — but
you should study it carefully as there is some tight reasoning here, and the

conclusions are the essential foundations for the rest of subject.
First a review and some definitions:

a) If f(z) is analytic with a domain D, we have seen that f may be

expanded in a Taylor series about any point zg € D:

F(2) =) an(z— 2)" (17.121)
n=0
Ifagy=a,=--+=a,1 =0, and a, # 0, so that the first non-zero

term in the series is a,(z — z0)", we say that f(z) has a zero of order n

at zp.
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b) A singularity of f(z) is a point at which f(z) ceases to be differentiable.
If f(z) has no singularities at finite z (for example, f(z) = sin z) then
it is said to be an entire function.

c) If f(2) is analytic in D except at z = a, an isolated singularity, then
we may draw two concentric circles of centre a, both within D, and in
the annulus between them we have the Laurent expansion

f(2) =) an(z—a)"+> bu(z—a)™" (17.122)

The second term, consisting of negative powers, is called the principal
part of f(z) at z = a. It may happen that b,, # 0 but b, = 0, n > m.
Such a singularity is called a pole of order m at z = a. The coefficient
by, which may be 0, is called the residue of f at the pole z = a. If the
series of negative powers does not terminate, the singularity is called
an isolated essential singularity

Now some observations:

i) Suppose f(z) is analytic in a domain D containing the point z = a.
Then we can expand: f(2) = > a,(z —a)". If f(z) is zero at z = 0,
then there are exactly two possibilities: a) all the a,, vanish, and then
f(2) is identically zero; b) there is a first non-zero coefficient, a,, say,
and so f(z) = 2"p(z), where ¢(a) # 0. In the second case f is said to
possess a zero of order m at z = a.

ii) If 2 = a is a zero of order m, of f(z) then the zero is isolated — i.e.
there is a neighbourhood of a which contains no other zero. To see this
observe that f(z) = (z —a)™g(z) where p(z) is analytic and ¢(a) # 0.
Analyticity implies continuity, and by continuity there is a neighbour-
hood of a in which ¢(z) does not vanish.

iii) Limit points of zeros I: Suppose that we know that f(z) is analytic in D
and we know that it vanishes at a sequence of points ay, as,as,... € D.
If these points have a limit point® that is interior to D then f(z) must,
by continuity, be zero there. But this would be a non-isolated zero, in
contradiction to item ii), unless f(z) actually vanishes identically in D.
This, then, is the only option.

iv) From the definition of poles, they too are isolated.

6A point zq is a limit point of a set S if for every e > 0 there is some a € S, other than
2o itself, such that |a — zp| < e. A sequence need not have a limit for it to possess one or
more limit points.
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v) If f(2) has a pole at z = a then f(z) — oo as z — a in any manner.

vi) Limit points of zeros II: Suppose we know that f is analytic in D,
except possibly at z = a which is limit point of zeros as in iii), but we
also know that f is not identically zero. Then z = a must be singularity
of f — but not a pole ( because f would tend to infinity and could
not have arbitrarily close zeros) — so a must be an isolated essential
singularity. For example sin 1/z has an isolated essential singularity at
z = 0, this being a limit point of the zeros at z = 1/nm.

vii) A limit point of poles or other singularities would be a non-isolated
essential singularity.

17.4.4 Analytic continuation

Suppose that fi(z) is analytic in the (open, arcwise-connected) domain D,
and fy(z) is analytic in Do, with Dy N Dy # (). Suppose further that fi(z) =
f2(2) in Dy N Dy. Then we say that f, is an analytic continuation of f; to
Ds. Such analytic continuations are unique: if f3 is also analytic in Dy, and
f3 = fiin Dy N Dy, then fy — f3 = 0 in Dy N Dy. Because the intersection
of two open sets is also open, f; — fo vanishes on an open set and, so by
observation iii) of the previous section, it vanishes everywhere in Dj.

Figure 17.12: Intersecting domains.

We can use this uniqueness result, coupled with the circular domains of
convergence of the Taylor series, to extend the definition of analytic functions
beyond the domain of their initial definition.
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The distribution ¢

An interesting and useful example of analytic continuation is provided by the
distribution $i‘1, which, for real positive «, is defined by its evaluation on
a test function () as

(2571 ) = /000 r* Yo(x) da. (17.123)

The pairing ($i‘1, ¢) extends to an complex analytic function of o provided
the integral converges. Test functions are required to decrease at infinity
faster than any power of x, and so the integral always converges at the upper
limit. It will converge at the lower limit provided Re () > 0. Assume that
this is so, and integrate by parts using

d [z el x*
. (;gp(x)) =2 p(x) + o (x). (17.124)
We find that, for € > 0,

z® > = a—1 o a” /

—p(x)| = " p(r) dr + —¢'(x) dx. (17.125)

«

The integrated-out part on the left-hand-side of (17.125) tends to zero as
we take € to zero, and both of the integrals converge in this limit as well.
Consequently

Li(a) = - /000 ¢ (z) dx (17.126)

is equal to (237", ¢) for 0 < Re(a) < co. However, the integral defining
I («) converges in the larger region —1 < Re (a)) < oco. It therefore provides
an analytic continuation to this larger domain. The factor of 1/« reveals that
the analytically-continued function possesses a pole at a = 0, with residue

— /000 o' (z) dr = ¢(0). (17.127)

We can repeat the integration by parts, and find that

L(a) = ﬁ /000 Y () do (17.128)
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provides an analytic continuation to the region —2 < Re(a) < oo. By
proceeding in this manner, we can continue (:L"j‘__l, ©) to a function analytic
in the entire complex « plane with the exception of zero and the negative
integers, at which it has simple poles. The residue of the pole at « = —n is
2" (0) /.

There is another, much more revealing, way of expressing these analytic
continuations. To obtain this, suppose that ¢ € C*[0,00] and ¢ — 0 at
infinity as least as fast as 1/z. (Our test function ¢ decreases much more
rapidly than this, but 1/z is all we need for what follows.) Now the function

I(a) = / h 71 o(z) do (17.129)

0

is convergent and analytic in the strip 0 < Re (a) < 1. By the same reasoning
as above, I(«) is there equal to

_ /°o 2 §(z) da. (17.130)

Again this new integral provides an analytic continuation to the larger strip
—1 < Re(a) < 1. But in the left-hand half of this strip, where —1 <
Re (a) < 0, we can write

_/OOO %a¢'(x) dr = ygé{[o 27 0(x) dr — {%a¢(x>]j°}

= lim { / h 2 Yo(z) dx + ¢(e)§}

e—0

— tid [T a0t - ot a

_ /0 20 o) — 6(0)] da. (17.131)

Observe how the integrated out part, which tends to zero in 0 < Re (o) < 1,
becomes divergent in the strip —1 < Re(«) < 0. This divergence is there
craftily combined with the integral to cancel its divergence, leaving a finite
remainder. As a consequence, for —1 < Re () < 0, the analytic continuation
is given by

I(a) = /Ooo 7 p(z) — $(0)] da. (17.132)
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Next we observe that x(z) = [¢(x) — ¢(0)]/z tends to zero as 1/z for
large x, and at 2 = 0 can be defined by its limit as x(0) = ¢/(0). This x(z)
then satisfies the same hypotheses as ¢(z). With I(«) denoting the analytic
continuation of the original I, we therefore have

I(a) = /OOO 227 p(x) — ¢(0)] da, 1 <Re(a) <0
_ /OO 21 [M] do. where §—a s 1

; / 1 [cb(af) ~s0)
-
(17.133)

_— - ¢’(0)} dr, —1<Re(B)<0
the arrow denoting the same analytic continuation process that we used with

x
0.

o0

e
o0

"

o(x) — 6(0) — 2¢/(0)] dz, —2 <Re(a) < -1,

We can now apply this machinary to our original ¢(x), and so deduce
that the analytically-continued distribution is given by

( /000 r* Yo(x) da, 0 < Re(a) < oo,
@) = [ e lpte) — ol0)] da ~1<Re(a) <0,
[ o) = 9(0) o O] s, 2 < Re(a) < -1,

(17.134)
and so on. The analytic continuation automatically subtracts more and more
terms of the Taylor series of ¢(x) the deeper we penetrate into the left-hand
half-plane. This property, that analytic continuation covertly subtracts the
minimal number of Taylor-series terms required ensure convergence, lies be-
hind a number of physics applications, most notably the method of dimen-
stonal reqularization in quantum field theory.

The following exercise illustrates some standard techniques of reasoning
via analytic continuation.

Exercise 17.8: Define the dilogarithm function by the series

z Z2 23

Lis(z) = 5+ 5z +3z+
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The radius of convergence of this series is unity, but the domain of Lia(z) can
be extended to |z| > 1 by analytic continuation.

a) Observe that the series converges at z = 1, and at z =1 is

) 1 1 2
Rearrange the series to show that
2
T
Lis(—1) = ——.
i2(—1) D

b) Identify the derivative of the power series for Liz(z) with that of an
elementary function. Exploit your identification to extend the definition
of [Lig(z)]" outside |z| < 1. Use the properties of this derivative function,
together with part a), to prove that the extended function obeys

. . 1 1 w2
Lig(—z) + Lio (—;) = —5(1112)2 — 5

This formula allows us to calculate values of the dilogarithm for |z| > 1
in terms of those with |z| < 1.

Many weird identities involving dilogarithms exist. Some, such as

1 1 1 1 1 1
Lig(—= )+ sLiz (= | = ——=7?+In2In3 — =(In2)? — =(In 3)?
12< 2)—1—612(9) 187T+n n3 2(11) 3(n3),
were found by Ramanujan. Others, originally discovered by sophisticated
numerical methods, have been given proofs based on techniques from quantum
mechanics. Polylogarithms, defined by
2 3

. z z z
le(z)zl—k+2—k+3—k

occur frequently when evaluating Feynman diagrams.

_|_...7

17.4.5 Removable singularities and the Weierstrass-
Casorati theorem

Sometimes we are given a definition that makes a function analytic in a
region with the exception of a single point. Can we extend the definition to
make the function analytic in the entire region? Provided that the function
is well enough behaved near the point, the answer is yes, and the extension
is unique. Curiously, the proof that this is so gives us insight into the wild
behaviour of functions near essential singularities.
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Removable singularities

Suppose that f(z) is analytic in D\ a, but that lim,_,(z—a)f(z) = 0, then f

may be extended to a function analytic in all of D — i.e. z = a is a removable

singularity. To see this, let ( lie between two simple closed contours I'; and
I'y, with a within the smaller, I'y. We use Cauchy to write

1 f(z 1 f(z

£(O) = = (2) , (2)

2mi Jp, 2 — ¢ 2w ry 2= G

dz. (17.135)

Now we can shrink I's down to be very close to a, and because of the condition
on f(z) near z = a, we see that the second integral vanishes. We can also
arrange for I'; to enclose any chosen point in D. Thus, if we set

F0 =5 § L5

(17.136)

within I'y, we see that f = fin D\a, and is analytic in all of D. The extension
is unique because any two analytic functions that agree everywhere except
for a single point, must also agree at that point.

Weierstrass-Casorati

We apply the idea of removable singularities to show just how pathological
a beast is an isolated essential singularity:
Theorem (Weierstrass-Casorati): Let z = a be an isolated essential singular-
ity of f(z), then in any neighbourhood of a the function f(z) comes arbitrarily
close to any assigned valued in C.

To prove this, define Ns(a) = {z € C: |z —a|] < d§}, and N(¢) = {z €
C : |z = (] < €}. The claim is then that there is an z € Ns(a) such that
f(2) € N(C). Suppose that the claim is not true. Then we have |f(2)—(| > €
for all z € Ns(a). Therefore

17.137
o= < w1130
in Ns(a), while 1/(f(z) — () is analytic in Ns(a) \ a. Therefore z = a is a
removable singularity of 1/(f(z) — (), and there is an an analytic g(z) which
coincides with 1/(f(z) — {) at all points except a. Therefore

f(z)=C+ WZ) (17.138)
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except at a. Now g(z), being analytic, may have a zero at z = a giving a
pole in f, but it cannot give rise to an essential singularity. The claim is
true, therefore.

Picard’s theorems

Weierstrass-Casorati is elementary. There are much stronger results:
Theorem (Picard’s little theorem): Every nonconstant entire function attains
every complex value with at most one exception.

Theorem (Picard’s big theorem): In any neighbourhood of an isolated essen-
tial singularity, f(z) takes every complex value with at most one exception.
The proofs of these theorems are hard.

As an illustration of Picard’s little theorem, observe that the function
exp z is entire, and takes all values except 0. For the big theorem observe
that function f(z) = exp(1/z). has an essential singularity at z = 0, and
takes all values, with the exception of 0, in any neighbourhood of z = 0.

17.5 Meromorphic functions and the winding-
number

A function whose only singularities in D are poles is said to be meromor-
phic there. These functions have a number of properties that are essentially
topological in character.

17.5.1 Principle of the argument
If f(2) is meromorphic in D with 0D =T, and f(z) # 0 on I, then

L /),
27 b 70 dz=N—P (17.139)

where N is the number of zero’s in D and P is the number of poles. To show
this, we note that if f(z) = (2 — a)™p(2) where ¢ is analytic and non-zero
near a, then

e m Y6 A
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so f'/f has a simple pole at a with residue m. Here m can be either positive
or negative. The term ¢'(z)/¢(2) is analytic at z = a, so collecting all the
residues from each zero or pole gives the result.

Since f'/f = diz In f the integral may be written

F'(2) 0 AT o) — iA e £
ﬁf(z) dz = Arln f(z) = iArarg f(2), (17.141)

the symbol Ar denoting the total change in the quantity after we traverse I.
Thus 1
N —-P = 2—AF arg f(2). (17.142)
T

This result is known as the principle of the argument.

Local mapping theorem

Suppose the function w = f(z) maps a region {2 holomorphicly onto a region
2, and a simple closed curve v C  onto another closed curve I' C €, which
will in general have self intersections. Given a point a € ', we can ask
ourselves how many points within the simple closed curve v map to a. The
answer is given by the winding number of the image curve I' about a.

Figure 17.13: An analytic map is one-to-one where the winding number is
unity, but two-to-one at points where the image curve winds twice.

To that this is so, we appeal to the principal of the argument as

1
# of zeros of (f —a) within v = —7{
27 J,

1

2mi Jpw—a’
= n(la), (17.143)

O
CET
dw
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where n(I', a) is called the winding number of the image curve I' about a. It
is equal to

n(la) = %AW arg (w — a), (17.144)

and is the number of times the image point w encircles a as z traverses the
original curve 7.

Since the number of pre-image points cannot be negative, these winding
numbers must be positive. This means that the holomorphic image of curve
winding in the anticlockwise direction is also a curve winding anticlockwise.

For mathematicians, another important consequence of this result is that
a holomorphic map is open— i.e. the holomorphic image of an open set is
itself an open set. The local mapping theorem is therefore sometime called
the open mapping theorem.

17.5.2 Rouché’s theorem

Here we provide an effective tool for locating zeros of functions.

Theorem (Rouché): Let f(z) and g(z) be analytic within and on a simple
closed contour 7. Suppose further that |g(z)| < |f(z)| everywhere on -y, then
f(z) and f(z) + g(z) have the same number of zeros within ~y.

Before giving the proof, we illustrate Rouché’s theorem by giving its most
important corollary: the algebraic completeness of the complex numbers, a
result otherwise known as the fundamental theorem of algebra. This asserts
that, if R is sufficiently large, a polynomial P(2) = a,2" +a,_12" 1+ +ag
has exactly n zeros, when counted with their multiplicity, lying within the
circle |z| = R. To prove this note that we can take R sufficiently big that

2" = |an|R"
> |an_1|R"_1 + |(1n_2|Rn_2 R |CLO|
> |an_a2" Tt F ap_02" 2 agl, (17.145)
on the circle |z| = R. We can therefore take f(z) = a,2" and g(z) =

Up—g?™ P 4 ay_92"2 -« + ag in Rouché. Since a,z" has exactly n zeros, all

lying at z = 0, within |z| = R, we conclude that so does P(z).
The proof of Rouché is a corollary of the principle of the argument. We
observe that

# of zerosof f+¢g = n(l,0)
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1
= %Avarg(f+9)

1
= 5-An(f+g)

1 1
= 5O I f+ oA In(1+g/f)
1 1
= g-Oargf+ A arg(1+g/f). (17.146)

Now |g/f] < 1 on v, so 1+ g/f cannot circle the origin as we traverse -.
As a consequence A, arg (1 + g/f) = 0. Thus the number of zeros of f + g
inside v is the same as that of f alone. (Naturally, they are not usually in
the same places.)

The geometric part of this argument is often illustrated by a dog on a
lead. If the lead has length L, and the dog’s owner stays a distance R > L
away from a lamp post, then the dog cannot run round the lamp post unless
the owner does the same.

U

Figure 17.14: The curve I is the image of v under the map f+g. If |g| < |f|,
then, as z traverses v, f+ g winds about the origin the same number of times
that f does.

Exercise 17.9: Jacobi Theta Function. The function 6(z|7) is defined for
Im7 > 0 by the sum

oo
9(Z|7') — Z ein‘rn2e27rinz‘
n=—00

Show that §(z+1|7) = 0(z|7), and 0(z+7|7) = e """ ~2720(|7). Use this infor-
mation and the principle of the argument to show that 6(z|7) has exactly one
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zero in each unit cell of the Bravais lattice comprising the points z = m + nr;
m,n € Z. Show that these zeros are located at z = (m + 1/2) + (n+ 1/2)7.

Exercise 17.10: Use Rouché’s theorem to find the number of roots of the
equation z°% 4+ 15z 4+ 1 = 0 lying within the circles, i) |z| = 2, ii) |z| = 3/2.

17.6 Analytic functions and topology

17.6.1 The point at infinity

Some functions, f(z) = 1/z for example, tend to a fixed limit (here 0) as z
become large, independently of in which direction we set off towards infinity.
Others, such as f(z) = exp z, behave quite differently depending on what
direction we take as |z| becomes large.

To accommodate the former type of function, and to be able to legiti-
mately write f(oo) = 0 for f(z) = 1/z, it is convenient to add “co” to the
set of complex numbers. Technically, we are constructing the one-point com-
pactification of the locally compact space C. We often portray this extended
complex plane as a sphere S? (the Riemann sphere), using stereographic
projection to locate infinity at the north pole, and 0 at the south pole.

LS
y

Figure 17.15: Stereographic mapping of the complex plane to the 2-Sphere.

By the phrase a open neighbourhood of z, we mean an open set containing
z. We use the stereographic map to define an open neighbourhood of infinity
as the stereographic image of a open neighbourhood of the north pole. With
this definition, the extended complex plane C U {oo} becomes topologically
a sphere, and in particular, becomes a compact set.
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If we wish to study the behaviour of a function “at infinity,” we use the
map z — ( = 1/z to bring oo to the origin, and study the behaviour of the
function there. Thus the polynomial

f(z)=ap+arz+--+ayz" (17.147)

becomes
fQ) =ap+ar ¢+ +an(, (17.148)

and so has a pole of order N at infinity. Similarly, the function f(z) = 273 has
a zero of order three at infinity, and sin z has an isolated essential singularity
there.

We must be a careful about defining residues at infinity. The residue is
more a property of the 1-form f(z)dz than of the function f(z) alone, and
to find the residue we need to transform the dz as well as f(z). For example,
if we set z = 1/C in dz/z we have

dz 1 d¢
~ ¢d <<) 0 (17.149)
so the 1-form (1/z)dz has a pole at z = 0 with residue 1, and has a pole
with residue —1 at infinity—even though the function 1/z has no pole there.
This 1-form viewpoint is required for compatability with the residue theorem:
The integral of 1/z around the positively oriented unit circle is simultane-
ously minus the integral of 1/z about the oppositely oriented unit circle, now
regarded as a a positively oriented circle enclosing the point at infinity. Thus
if f(z) has of pole of order N at infinity, and

f(z) = o tawr+a 1z fagt+arz+agd® + -+ Ay
= ~~+a_2C2—|—a_1§+a0+a1§_1+a2C_2+-~-+ANC_N
(17.150)

near infinity, then the residue at infinity must be defined to be —a_;, and
not a; as one might naively have thought.

Once we have allowed oo as a point in the set we map from, it is only
natural to add it to the set we map to — in other words to allow oo as a
possible value for f(z). We will set f(a) = oo, if | f(2)| becomes unboundedly
large as z — a in any manner. Thus, if f(z) = 1/z we have f(0) = oo.

The map
zZ— 20 21 — 2o
= 17.151
(=) (53) om0
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takes
20 07
71 — 1,
Zoo — 00, (17.152)

for example. Using this language, the Mobius maps

az+b
- 17.153
v cz+d ( )

become one-to-one maps of S2 — S2. They are the only such globally con-
formal one-to-one maps. When the matrix

(‘C’ Z) (17.154)

is an element of SU(2), the resulting one-to-one map is a rigid rotation of
the Riemann sphere. Stereographic projection is thus revealed to be the
geometric origin of the spinor representations of the rotation group.

If an analytic function f(z) has no essential singularities anywhere on
the Riemann sphere then f is rational, meaning that it can be written as
f(z) = P(2)/Q(z) for some polynomials P, Q.

We begin the proof of this fact by observing that f(z) can have only a
finite number of poles. If, to the contrary, f had an infinite number of poles
then the compactness of S? would ensure that the poles would have a limit
point somewhere. This would be a non-isolated singularity of f, and hence
an essential singularity. Now suppose we have poles at zy, 2o, ..., 2y with
principal parts

m
2 n: bn,m
m

= (2= 2)

If one of the z, is 0o, we first use a Mobius map to move it to some finite

point. Then
Z Z T (17.155)

is everywhere analytic, and therefore continuous, on S?. But S? being com-
pact and F(z) being continuous implies that F' is bounded. Therefore, by
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Liouville’s theorem, it is a constant. Thus

N mnp

=> Z AT +C, (17.156)

n=1m=1

and this is a rational function. If we made use of a Mobius map to move
a pole at infinity, we use the inverse map to restore the original variables.
This manoeuvre does not affect the claimed result because Mobius maps take
rational functions to rational functions.

The map z — f(z) given by the rational function

P(z)  ap2" + 12" L+ ag
- Q(Z) N ann + bn_lz"_l + - b()

(17.157)

wraps the Riemann sphere n times around the target S2. In other words, it
is a n-to-one map.

17.6.2 Logarithms and branch cuts

The function y = In z is defined to be the solution to z = expy. Unfortu-
nately, since exp 27i = 1, the solution is not unique: if y is a solution, so is
y + 2mi. Another way of looking at this is that if z = pexpif, with p real,
then y = In p + i, and the angle # has the same 27¢ ambiguity. Now there
is no such thing as a “many valued function.” By definition, a function is a
machine into which we plug something and get a unique output. To make
In z into a legitimate function we must select a unique 6 = arg z for each z.
This can be achieved by cutting the z plane along a curve extending from
the the branch point at z = 0 all the way to infinity. Exactly where we put
this branch cut is not important; what ¢s important is that it serve as an
impenetrable fence preventing us from following the continuous evolution of
the function along a path that winds around the origin.

Similar branch cuts serve to make fractional powers single valued. We
define the power 2 for for non-integral v by setting

2 =exp{alnz} = |z (17.158)
where z = |z|e?. For the square root z'/? we get

1/2 _

z |2]et/2, (17.159)
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where /|z| represents the positive square root of |z|. We can therefore make

this single-valued by a cut from 0 to co. To make \/(z —a)(z — b) single
valued we only need to cut from a to b. (Why? — think this through!).

We can get away without cuts if we imagine the functions being maps from
some set other than the complex plane. The new set is called a Riemann
surface. It consists of a number of copies of the complex plane, one for each
possible value of our “multivalued function.” The map from this new surface
is then single-valued, because each possible value of the function is the value
of the function evaluated at a point on a different copy. The copies of the
complex plane are called sheets, and are connected to each other in a manner
dictated by the function. The cut plane may now be thought of as a drawing
of one level of the multilayered Riemann surface. Think of an architect’s floor
plan of a spiral-floored multi-story car park: If the architect starts drawing
at one parking spot and works her way round the central core, at some point
she will find that the floor has become the ceiling of the part already drawn.
The rest of the structure will therefore have to be plotted on the plan of the
next floor up — but exactly where she draws the division between one floor
and the one above is rather arbitrary. The spiral car-park is a good model
for the Riemann surface of the In z function. See figure 17.16.

—

Figure 17.16: Part of the Riemann surface for In z. Fach time we circle the
origin, we go up one level.

To see what happens for a square root, follow 2'/2 along a curve circling the
branch point singularity at z = 0. We come back to our starting point with
the function having changed sign; A second trip along the same path would
bring us back to the original value. The square root thus has only two sheets,
and they are cross-connected as shown in figure 17.17.
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Figure 17.17: Part of the Riemann surface for \/z. Two copies of C are cross-
connected. Circling the origin once takes you to the lower level. A second
circuit brings you back to the upper level.

In figures 17.16 and 17.17, we have shown the cross-connections being
made rather abruptly along the cuts. This is not necessary —there is no
singularity in the function at the cut — but it is often a convenient way
to think about the structure of the surface. For example, the surface for

(z —a)(z — b) also consists of two sheets. If we include the point at infinity,
this surface can be thought of as two spheres, one inside the other, and cross
connected along the cut from a to b.

17.6.3 Topology of Riemann surfaces

Riemann surfaces often have interesting topology. Indeed much of modern
algebraic topology emerged from the need to develop tools to understand
multiply-connected Riemann surfaces. As we have seen, the complex num-
bers, with the point at infinity included, have the topology of a sphere. The
\/(z —a)(z — b) surface is still topologically a sphere. To see this imagine
continuously deforming the Riemann sphere by pinching it at the equator
down to a narrow waist. Now squeeze the front and back of the waist to-
gether and (imagining that the the surface can pass freely through itself) fold
the upper half of the sphere inside the lower. The result is the precisely the
two-sheeted /(z — a)(z — b) surface described above. The Riemann surface
of the function /(2 — a)(z — b)(z — ¢)(z — d), which can be thought of a two
spheres, one inside the other and connected along two cuts, one from a to
b and one from c to d, is, however, a torus. Think of the torus as a bicycle
inner tube. Imagine using the fingers of your left hand to pinch the front and
back of the tube together and the fingers of your right hand to do the same
on the diametrically opposite part of the tube. Now fold the tube about the
pinch lines through itself so that one half of the tube is inside the other,
and connected to the outer half through two square-root cross-connects. If
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o

Figure 17.18: The 1-cycles o and 3 on the plane with two square-root branch
cuts. The dashed part of « lies hidden on the second sheet of the Riemann
surface.

o

Figure 17.19: The 1-cycles o and [3 on the torus.

you have difficulty visualizing this process, figures 17.18 and 17.19 show how
the two 1-cycles, o and 3, that generate the homology group H,(T?) appear
when drawn on the plane cut from a to b and ¢ to d, and then when drawn
on the torus. Observe, in figure 17.18, how the curves in the two-sheeted
plane manage to intersect in only one point, just as they do when drawn on
the torus in figure 17.19.

That the topology of the twice-cut plane is that of a torus has important
consequences. This is because the elliptic integral

w=1"2)= dt (17.160)
20V ({E—a)t —Db)(t—c)(t—d)

maps the twice-cut z-plane 1-to-1 onto the torus, the latter being considered
as the complex w-plane with the points w and w + nw; +mw- identified. The
two numbers w, » are given by

b — dt
L V-t hE-ot—d)
wy = a (17.161)

5/t =a)t =)t =)t —d)
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and are called the periods of the elliptic function z = I(w). The map w +—
z = I(w) is a genuine function because the original z is uniquely determined
by w. It is doubly periodic because

I(w 4 nwy + mwy) = I(w), n,m € Z. (17.162)

The inverse “function” w = I~1(z) is not a genuine function of z, however,
because w increases by wy or wy each time z goes around a curve deformable
into « or 3, respectively. The periods are complicated functions of a, b, ¢, d.
If you recall our discussion of de Rham’s theorem from chapter 4, you
will see that the w; are the results of pairing the closed holomorphic 1-form.
“du” = dz e HY(T?) (17.163)
V(z—a)(z = b)(z — c)(z — d)
with the two generators of H{(T?). The quotation marks about dw are
there to remind us that dw is not an exact form, i.e. it is not the exterior
derivative of a single-valued function w. This cohomological interpretation
of the periods of the elliptic function is the origin of the use of the word
“period” in the context of de Rham’s theorem. (See section 19.5 for more
information on elliptic functions.)

More general Riemann surfaces are oriented 2-manifolds that can be
thought of as the surfaces of doughnuts with g holes. The number g is called
the genus of the surface. The sphere has ¢ = 0 and the torus has g = 1.
The Euler character of the Riemann surface of genus ¢ is x = 2(1 — g). For
example, figure 17.20 shows a surface of genus three. The surface is in one
piece, so dim Hy(M) = 1. The other Betti numbers are dim H;(M) = 6 and
dim Hy(M) =1, so

WE

x= (=1)Pdim Hy(M) =1—-6+1=—4, (17.164)

3
Il
=)

in agreement with xy = 2(1 — 3) = —4. For complicated functions, the genus
may be infinite.

If we have two complex variables z and w then a polynomial relation
P(z,w) = 0 defines a complez algebraic curve. Except for degenerate cases,
this one (complex) dimensional curve is simultaneously a two (real) dimen-
sional Riemann surface. With

P(z,w) = 2* + 3w’z +w+3 =0, (17.165)
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a] (Xz 063
Figure 17.20: A surface M of genus 3. The non-bounding 1-cycles a; and

B; form a basis of Hi(M). The entire surface forms the single 2-cycle that
spans Hy(M).

for example, we can think of z(w) being a three-sheeted function of w defined
by solving this cubic. Alternatively we can consider w(z) to be the two-
sheeted function of z obtained by solving the quadratic equation

1 (3+2%)

2
— ——F— =0. 17.166
w” + 3 + e ( )

In each case the branch points will be located where two or more roots
coincide. The roots of (17.166), for example, coincide when

1—122(3+2%) =0. (17.167)

This quartic equation has four solutions, so there are four square-root branch
points. Although constructed differently, the Riemann surface for w(z) and
the Riemann surface for z(w) will have the same genus (in this case g = 1)
because they are really are one and the same object — the algebraic curve
defined by the original polynomial equation.

In order to capture all its points at infinity, we often consider a complex
algebraic curve as being a subset of CP2. To do this we make the defining

equation homogeneous by introducing a third co-ordinate. For example, for
(17.165) we make

P(z,w) = 22+ 3wz +w+3 — P(z,w,v) = 2> + 3w’z +wv? + 303 (17.168)

The points where P(z,w,v) = 0 define” a projective curve lying in CP2
Places on this curve where the co-ordinate v is zero are the added points at

"A homogeneous polynomial P(z,w,v) of degree n does not provide a map from
CP? — C because P(Az, \w,\v) = A\"P(z,w,v) usually depends on A, while the co-
ordinates (Az, \w, \v) and (z,w,v) correspond to the same point in CP2. The zero set
where P = 0 is, however, well-defined in CPZ2.
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infinity. Places where v is non-zero (and where we may as well set v = 1)
constitute the original affine curve.
A generic (non-singular) curve

P(z,w) =Y apz"w® =0, (17.169)
with its points at infinity included, has genus
1
g= §(d —1)(d —2). (17.170)

Here d = max (r + s) is the degree of the curve. This degree-genus relation
is due to Pliicker. It is not, however, trivial to prove. Also not easy to prove
is Riemann’s theorem of 1852 that any finite genus Riemann surface is the
complex algebraic curve associated with some two-variable polynomial.

The two assertions in the previous paragraph seem to contradict each
other. “Any” finite genus, must surely include g = 2, but how can a genus
two surface be a complex algebraic curve? There is no integer value of d such
that (d — 1)(d — 2)/2 = 2. This is where the “non-singular” caveat becomes
important. An affine curve P(z,w) = 0 is said to be singular at P = (zq, wy)
if all of

oP 0P
P _ -
(Z7 w)? az Y aw )
vanish at P. A projective curve is singular at P € CP? if all of
opP 0P 0P
Plewel 50 o0 o

are zero there. If the curve has a singular point then then it degenerates and
ceases to be a manifold. Now Riemann’s construction does not guarantee
an embedding of the surface into CP?, only an immersion. The distinction
between these two concepts is that an immersed surface is allowed to self-
intersect, while an embedded one is not. Being a double root of the defining
equation P(z,w) = 0, a point of self-intersection is necessarily a singular
point.

As an illustration of a singular curve, consider our earlier example of the
curve

w? = (z —a)(z —b)(z —c)(z — d) (17.171)

whose Riemann surface we know to be a torus once two some points are
added at infinity, and when a, b, ¢, d are all distinct. The degree-genus formula
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applied to this degree four curve gives, however, g = 3 instead of the expected
g = 1. This is because the corresponding projective curve

w? = (z — av)(z — ) (2 — cv)(z — dv) (17.172)

has a tacnode singularity at the point (z,w,v) = (0,1,0). Rather than
investigate this rather complicated singularity at infinity, we will consider
the simpler case of what happens if we allow b to coincide with ¢. When b
and ¢ merge, the finite point P = (wy, z9) = (0,b) becomes a singular. Near
the singularity, the equation defining our curve looks like

0 =w?—ad(z —b)? (17.173)

which is the equation of two lines, w = Vad (z — b) and w = —vad (z — b),
that intersect at the point (w, z) = (0,b). To understand what is happening
topologically it is first necessary to realize that a complex line is a copy of C
and hence, after the point at infinity is included, is topologically a sphere. A
pair of intersecting complex lines is therefore topologically a pair of spheres
sharing a common point. Our degenerate curve only looks like a pair of
lines near the point of intersection however. To see the larger picture, look
back at the figure of the twice-cut plane where we see that as b approaches
¢ we have an « cycle of zero total length. A zero length cycle means that
the circumference of the torus becomes zero at P, so that it looks like a
bent sausage with its two ends sharing the common point P. Instead of two
separate spheres, our sausage is equivalent to a single two-sphere with two
points identified.

Figure 17.21: A degenerate torus is topologically the same as a sphere with
two points identified.
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As it stands, such a set is no longer a manifold because any neighbourhood of
P will contain bits of both ends of the sausage, and therefore cannot be given
co-ordinates that make it look like a region in R2. We can, however, simply
agree to delete the common point, and then plug the resulting holes in the
sausage ends with two distinct points. The new set is again a manifold, and
topologically a sphere. From the viewpoint of the pair of intersecting lines,
this construction means that we stay on one line, and ignore the other as it
passes through.

A similar resolution of singularities allows us to regard immersed surfaces
as non-singular manifolds, and it is this sense that Riemann’s theorem is to
be understood. When n such self-intersection double points are deleted and
replaced by pairs of distinct points The degree-genus formula becomes

g %(d _1)(d=2)—n, (17.174)

and this can take any integer value.

17.6.4 Conformal geometry of Riemann surfaces

In this section we recall Hodge’s theory of harmonic forms from section 13.7.1,
and see how it looks from a complex-variable perspective. This viewpoint
reveals a relationship between Riemann surfaces and Riemann manifolds that
forms an important ingredient in string and conformal field theory.

Isothermal co-ordinates and complex structure

Suppose we have a two-dimensional orientable Riemann manifold M with
metric

ds* = g;; dv'da’. (17.175)

In two dimensions g;; has three independent components. When we make a
co-ordinate transformation we have two arbitrary functions at our disposal,
and so we can use this freedom to select local co-ordinates in which only one
independent component remains. The most useful choice is isothermal (also
called conformal) co-ordinates z,y in which the metric tensor is diagonal,
9ij = 6052‘]', and so

ds® = e (da® + dy?). (17.176)
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The €7 is called the scale factor or conformal factor. If we set z = x + iy
and Z = x — 1y the metric becomes

ds* = e? A dz dz. (17.177)

We can construct isothermal co-ordinates for some open neighbourhood of
any point in M. If in an overlapping isothermal co-ordinate patch the metric
is

ds® = e"&OdC dc, (17.178)

and if the co-ordinates have the same orientation, then in the overlap region
¢ must be a function only of z and ( a function only of Z. This is so that

2

e (17.179)

dg

without any d(? or dZ2 terms appearing. A manifold with an atlas of complex
charts whose change-of-co-ordinate formulae are holomorphic in this way is
said to be a complex manifold, and the co-ordinates endow it with a complex
structure. The existence of a global complex structure allows to us to de-
fine the notion of meromorphic and rational functions on M. Our Riemann
manifold is therefore also a Riemann surface.

While any compact, orientable, two-dimensional Riemann manifold has
a complex structure that is determined by the metric, the mapping: metric
— complex structure is not one-to-one. Two metrics g;;, g;; that are related
by a conformal scale factor

eT(C’Z)dZ d¢ = 7=

gij = )\(xl,I2)§ij (17180)

give rise to the same complex structure. Conversely, a pair of two-dimensional
Riemann manifolds having the same complex structure have metrics that are
related by a scale factor.

The use of isothermal co-ordinates simplifies many computations. Firstly,
observe that g% /,/g = &;;, the conformal factor having cancelled. If you look
back at its definition, you will see that this means that when the Hodge “x”
map acts on one-forms, the result is independent of the metric. If w is a
one-form

w = pdx + qdy, (17.181)

then
*w = —qdx + pdy. (17.182)
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Note that, on one-forms,

*ok = —1. (17.183)
With z =z 41y, 7 = x — iy, we have
1 . 1 N
w= i(p—zq) dz + §(p+zq) dz. (17.184)

Let us focus on the dz part:

1 1
A= 3(p—ig)dz = 5(p —iq)(dw + idy). (17.185)
Then ]
*xA = §(p —iq)(dy —idz) = —iA. (17.186)
Similarly, with
1
B = §(p +iq)dz (17.187)
we have
*B =1iB. (17.188)

Thus the dz and dz parts of the original form are separately eigenvectors of x
with different eigenvalues. We use this observation to construct a resolution
of the identity Id into the sum of two projection operators

1 1
1d = F(1+i) +5(1—ix),

- P + P (17.189)

where P projects on the dz part and P onto the dz part of the form.

The original form is harmonic if it is both closed dw = 0, and co-closed
dxw = 0. Thus, in two dimensions, the notion of being harmonic (i.e. a
solution of Laplace’s equation) is independent of what metric we are given.
If w is a harmonic form, then (p —iq)dz and (p+iq)dz are separately closed.
Observe that (p —iq)dz being closed means that d-(p —iq) = 0, and so p —iq
is a holomorphic (and hence harmonic) function. Since both (p —iq) and dz
depend only on z, we will call (p—iq)dz a holomorphic 1-form. The complex
conjugate form

(p—iq)dz = (p +iq)dz (17.190)

then depends only on Z and is anti-holomorphic.
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Riemann bilinear relations

As an illustration of the interplay of harmonic forms and two-dimensional
topology, we derive some famous formuse due to Riemann. These formulae
have applications in string theory and in conformal field theory.

Suppose that M is a Riemann surface of genus g, with oy, 5; i =1,...,¢,
the representative generators of H;(M) that intersect as shown in figure
17.20. By applying Hodge-de Rham to this surface, we know that we can
select a set of 2g independent, real, harmonic, 1-forms as a basis of H'(M,R).
With the aid of the projector P we can assemble these into g holomorphic
closed 1-forms w;, together with g anti-holomorphic closed 1-forms @;, the
original 2¢g real forms being recovered from these as w; + @; and *(w; +
w;) = i(W; — w;). A physical interpretation of these forms is as the z and
Z components of irrotational and incompressible fluid flows on the surface
M. Tt is not surprising that such flows form a 2g real dimensional, or g
complex dimensional, vector space because we can independently specify the
circulation ¢ v-dr around each of the 2¢ generators of Hy(M). If the flow field
has (covariant) components v, vy, then w = v,dz where v, = (v, — iv,)/2,
and @ = vzdZz where vz = (v, + iv,)/2.

Suppose now that a and b are closed 1-forms on M. Then, either by
exploiting the powerful and general intersection-form formula (13.77) or by
cutting open the surface along the curves «a;, §; and using the more direct
strategy that gave us (13.79), we find that

/Ma/\bzg{/aia/ib—/ia/aib}. (17.191)

We use this formula to derive two bilinear relations associated with a closed
holomorphic 1-form w. Firstly we compute its Hodge inner-product norm

= fine = Lo f Lo L)
- S{fefe oL

i=1
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where A; = f w and B; = f w. We have used the fact that @ is an anti-
holomorphic 1 form and thus an eigenvector of x with eigenvalue 7. It follows,
therefore, that if all the A; are zero then |jw|| = 0 and so w = 0.

Let A;; = fa, w;. The determinant of the matrix A;; is non-zero: If it
were zero, then there would be numbers i, not all zero, such that

0= Aij)\j = / (wj)\j), (17193)

but, by (17.192), this implies that ||w;\,|| = 0 and hence w;\; = 0, contrary
to the linear independence of the w;. We can therefore solve the equations

AijNjk = i (17.194)

for the numbers A;; and use these to replace each of the w; by the linear
combination w;\j;. The new w; then obey fai wj = 0;5. From now on we
suppose that this has be done.

Define 7;; = fﬁi w;. Observe that dz A dz = 0 forces w; A w; = 0, and
therefore we have a second relation

g
O:/wm/\wn = Z{/wm/wn—/wm/wn}
M i=1 (&7 i i (67

g
i=1

= Tmn — Tam- (17.195)

The matrix 7;; is therefore symmetric. A similar compuation shows that

so the matrix (Im7;;) is positive definite. The set of such symmetric matrices
whose imaginary part is positive definite is called the Siegel upper half-plane.
Not every such matrix correponds to a Riemann surface, but when it does it
encodes all information about the shape of the Riemann manifold M that is
left invariant under conformal rescaling.

17.7 Further exercises and problems

Exercise 17.11: Harmonic partners. Show that the function

u = sinz coshy + 2 cos z sinh y
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is harmonic. Determine the corresponding analytic function u + iv.

Exercise 17.12: Mébius Maps. The Map

az+b
cz+d

ZH=w =

is called a M6bius transformation. These maps are important because they are
the only one-to-one conformal maps of the Riemann sphere onto itself.

a) Show that two successive Mobius transformations

, _az+b z,,_Az’—i—B
cz+d’ - CZ+D

give rise to another Mobius transformation, and show that the rule for
combining them is equivalent to matrix multiplication.

b) Let 21, 22, 23, 24 be complex numbers. Show that a necessary and suffi-
cient condition for the four points to be concyclic is that their cross-ratio

def (21 — 24)(23 — 22)
Z1,R2,R3,%4 5 =

be real (Hint: use a well-known property of opposite angles of a cyclic
quadrilateral). Show that Mobius transformations leave the cross-ratio
invariant, and thus take circles into circles.

Exercise 17.13: Hyperbolic geometry. The Riemann metric for the Poincaré-
disc model of Lobachevski’s hyperbolic plane (See exercises 1.7 and 12.13) can
be taken to be

4|dz|?
ds? = ———— 2 <1,
T F
a) Show that the Mobius transformation
o w =L la| <1, AeR

az—1’
provides a 1-1 map of the interior of the unit disc onto itself. Show that
these maps form a group.

b) Show that the hyperbolic-plane metric is left invariant under the group
of maps in part (a). Deduce that such maps are orientation-preserving
isometries of the hyperbolic plane.

c) Use the circle-preserving property of the M&bius maps to deduce that
circles in hyperbolic geometry are represented in the Poincaré disc by
Fuclidean circles that lie entirely within the disc.
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The conformal maps of part (a) are in fact the only orientation preserving
isometries of the hyperbolic plane. With the exception of circles centered at
z = 0, the center of the hyperbolic circle does not coincide with the center
of its representative Euclidean circle. Euclidean circles that are internally
tangent to the boundary of the unit disc have infinite hyperbolic radius and
their hyperbolic centers lie on the boundary of the unit disc and hence at
hyperbolic infinity. They are known as horocycles.

Exercise 17.14: Rectangle to Ellipse. Consider the map w — z = sinw. Draw
a picture of the image, in the z plane, of the interior of the rectangle with
corners u = +7/2, v = £\. (w = u + ). Show which points correspond to
the corners of the rectangle, and verify that the vertex angles remain 7/2. At
what points does the isogonal property fail?

Exercise 17.15: The part of the negative real axis where x < —1 is occupied
by a conductor held at potential —Vy. The positive real axis for x > +1
is similarly occupied by a conductor held at potential +V;. The conductors
extend to infinity in both directions perpendicular to the x — y plane, and so
the potential V satisfies the two-dimensional Laplace equation.
a) Find the image in the ¢ plane of the cut z plane where the cuts run from
—1 to —oco and from +1 to +oco under the map z +— ¢ =sin~!z
b) Use your answer from part a) to solve the electrostatic problem and
show that the field lines and equipotentials are conic sections of the form
az’4by? = 1. Find expressions for a and b for the both the field lines and
the equipotentials and draw a labelled sketch to illustrate your results.

Exercise 17.16: Draw the image under the map z — w = e™/® of the infinite
strip S, consisting of those points z = =z + iy € C for which 0 < y < a.
Label enough points to show which point in the w plane corresponds to which
in the z plane. Hence or otherwise show that the Dirichlet Green function
G(z,y;x0,y0) that obeys

V3G = 6(z — 20)0(y — yo)
in S, and G(x,y;z0,y0) = 0 for (z,y) on the boundary of S, can be written as
1
G(x,y;x0,y0) = Dy In|sinh(7(z — 20)/2a)| + ...

The dots indicate the presence of a second function, similar to the first, that
you should find. Assume that (xg,yo) € S.
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Exercise 17.17: State Laurent’s theorem for functions analytic in an annulus.
Include formulae for the coefficients of the expansion. Show that, suitably
interpreted, this theorem reduces to a form of Fourier’s theorem for functions
analytic in a neighbourhood of the unit circle.

Exercise 17.18: Laurent Paradox. Show that in the annulus 1 < |z| < 2 the

function
1

1= e —9
has a Laurent expansion in powers of z. Find the coefficients. The part of the

series with negative powers of z does not terminate. Does this mean that f(z)
has an essential singularity at z = 07

Exercise 17.19: Assuming the following series

1 1 1 N 7 3y
== ——z+—z
sinh 2 z 6 16 ’

evaluate the integral

1
1= ——dz.
?ézzl Zsinhz

Now evaluate the integral

1
|2|=4 2°sinh 2

(Hint: The zeros of sinh z lie at z = ni.)

Exercise 17.20: State the theorem relating the difference between the number
of poles and zeros of f(z) in a region to the winding number of argument of
f(z). Hence, or otherwise, evaluate the integral

524 +1
I= jq{ 57+dz
cz?+z+1
where C' is the circle |z] = 2. Prove, including a statement of any relevent
theorem, any assertions you make about the locations of the zeros of 2°+z+1.

Exercise 17.21: Arcsine branch cuts. Let w = sin~'z. Show that
w=nm£tiln{iz + V1 — 22}

with the 4+ being selected depending on whether n is odd or even. Where
would you put cuts to ensure that w is a single-valued function?
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Figure 17.22: Concurrent 1-cycles on a genus-2 surface.

Figure 17.23: The cut-open genus-2 surface. The superscripts L and R denote
respectively the left and right sides of each 1-cycle, viewed from the direction
of the arrow orienting the cycle.
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Problem 17.22: Cutting open a genus-2 surface. The Riemann surface for the
function

y=+/(z—a1)(z —az)(z — a3)(z — as)(z — as)(z — ag)

has genus g = 2. Such a surface M is sketched in figure 17.22, where the four
independent 1-cycles a2 and (2 that generate H;(M) have been drawn so
that they share a common vertex.

a) Realize the genus-2 surface as two copies of C U {oo} cross-connected by
three square-root branch cuts. Sketch how the 1-cycles a; and 3;, 1 = 1,2
of figure 17.22 appear when drawn on your thrice-cut plane.

b) Cut the surface open along the four 1-cycles, and convince yourself that
resulting surface is homeomorphic to the octagonal region appearing in
figure 17.23.

c) Apply the direct method that gave us (13.79) to the octagonal region of
part b). Hence show that for closed 1-forms a, b, on the surface we have

/MaAb:g{/ma/ib_/ia/mb}.



