
Appendix B

Fourier Series and Integrals.

Fourier series and Fourier integral representations are the most important
examples of the expansion of a function in terms of a complete orthonormal
set. The material in this appendix reviews features peculiar to these special
cases, and is intended to complement the the general discussion of orthogonal
series in chapter 2.

B.1 Fourier Series

A function defined on a finite interval may be expanded as a Fourier series .

B.1.1 Finite Fourier series

Suppose we have measured f(x) in the interval [0, L], but only at the discrete
set of points x = na, where a is the sampling interval and n = 0, 1, . . . , N−1,
with Na = L . We can then represent our data f(na) by a finite Fourier
series. This representation is based on the geometric sum

N−1∑

m=0

eikm(n′−n)a =
e2πi(n−n

′)a − 1

e2πi(n′−n)a/N − 1
, (B.1)

where km ≡ 2πm/Na. For integer n, and n′, the expression on the right
hand side of (B.1) is zero unless n′ − n′ is an integer multiple of N , when
it becomes indeterminate. In this case, however, each term on the left hand
side is equal to unity, and so their sum is equal to N . If we restrict n and n′
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to lie between 0 and N − 1, we have

N−1∑

m=0

eikm(n′−n)a = Nδn′n . (B.2)

Inserting (B.2) into the formula

f(na) =

N−1∑

n′=0

f(n′a) δn′n, (B.3)

shows that

f(na) =

N−1∑

m=0

ame
−ikmna, where am ≡

1

N

N−1∑

n=0

f(na)eikmna. (B.4)

This is the finite Fourier representation.
When f(na) is real, it is convenient to make the km sum symmetric about

km = 0 by taking N = 2M + 1 and setting the summation limits to be ±M .
The finite geometric sum then becomes

M∑

m=−M
eimθ =

sin(2M + 1)θ/2

sin θ/2
. (B.5)

We set θ = 2π(n′ − n)/N and use the same tactics as before to deduce that

f(na) =

M∑

m=−M
am e

−ikmna, (B.6)

where again km = 2πm/L, with L = Na, and

am =
1

N

2M∑

n=0

f(na) eikmna. (B.7)

In this form it is manifest that f being real both implies and is implied by
a−m = a∗m.

These finite Fourier expansions are algebraic identities. No limits have
to be taken, and so no restrictions need be placed on f(na) for them to be
valid. They are all that is needed for processing experimental data.

Although the initial f(na) was defined only for the finite range 0 ≤ n ≤
N − 1, the Fourier sum (B.4) or (B.7) is defined for any n, and so extends f
to a periodic function of n with period N .
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B.1.2 Continuum limit

Now we wish to derive a Fourier representation for functions defined every-
where on the interval [0, L], rather just at the sampling points. The natural
way to proceed is to build on the results from the previous section by re-
placing the interval [0, L] with a discrete lattice of N = 2M + 1 points at
x = na, where a is a small lattice spacing which we ultimately take to zero.
For any non-zero a the continuum function f(x) is thus replaced by the finite
set of numbers f(na). If we stand back and blur our vision so that we can no
longer perceive the individual lattice points, a plot of this discrete function
will look little different from the original continuum f(x). In other words,
provided that f is slowly varying on the scale of the lattice spacing, f(an)
can be regarded as a smooth function of x = an.

The basic “integration rule” for such smooth functions is that

a
∑

n

f(an)→
∫
f(an) a dn→

∫
f(x) dx , (B.8)

as a becomes small. A sum involving a Kronecker δ will become an integral
containing a Dirac δ-function:

a
∑

n

f(na)
1

a
δnm = f(ma)→

∫
f(x) δ(x− y) dx = f(y). (B.9)

We can therefore think of the δ function as arising from

δnn′

a
→ δ(x− x′). (B.10)

In particular, the divergent quantity δ(0) (in x space) is obtained by setting
n = n′, and can therefore be understood to be the reciprocal of the lattice
spacing, or, equivalently, the number of lattice points per unit volume.

Now we take the formal continuum limit of (B.7) by letting a → 0 and
N → ∞ while keeping their product Na = L fixed. The finite Fourier
representation

f(na) =
M∑

m=−M
ame

− 2πim
Na

na (B.11)

now becomes an infinite series

f(x) =

∞∑

m=−∞
am e

−2πimx/L, (B.12)
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whereas

am =
a

Na

N−1∑

n=0

f(na)e
2πim
Na

na → 1

L

∫ L

0

f(x)e2πimx/L dx. (B.13)

The series (B.12) is the Fourier expansion for a function on a finite interval.
The sum is equal to f(x) in the interval [0, L]. Outside, it produces L-periodic
translates of the original f .

This Fourier expansion (B.12,B.13) is same series that we would obtain
by using the L2[0, L] orthonormality

1

L

∫ L

0

e2πimx/L e−2πinx/L dx = δnm, (B.14)

and using the methods of chapter two. The arguments adduced there, how-
ever, guarantee convergence only in the L2 sense. While our present “contin-
uum limit” derivation is only heuristic, it does suggest that for reasonably-
behaved periodic functions f the Fourier series (B.12) converges pointwise to
f(x). A continuous periodic function possessing a continuous first derivative
is sufficiently “well-behaved” for pointwise convergence. Furthermore, if the
function f is smooth then the convergence is uniform. This is useful to know,
but we often desire a Fourier representation for a function with discontinu-
ities. A stronger result is that if f is piecewise continuous in [0, L] — i.e.,
continuous with the exception of at most finite number of discontinuities —
and its first derivative is also piecewise continuous, then the Fourier series
will converge pointwise (but not uniformly1) to f(x) at points where f(x) is
continuous, and to its average

F (x) =
1

2
lim
ǫ→0
{f(x+ ǫ) + f(x− ǫ)} (B.15)

at those points where f(x) has jumps. In the section B.3.2 we shall explain
why the series converges to this average, and examine the nature of this
convergence.

Most functions of interest to engineers are piecewise continuous, and this
result is then all that they require. In physics, however, we often have to
work with a broader class of functions, and so other forms of of convergence

1If a sequence of continuous functions converges uniformly, then its limit function is
continuous.
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become relevant. In quantum mechanics, in particular, the probability inter-
pretation of the wavefunction requires only convergence in the L2 sense, and
this demands no smoothness properties at all—the Fourier representation
converging to f whenever the L2 norm ‖f‖2 is finite.

Half-range Fourier series

The exponential series

f(x) =
∞∑

m=−∞
am e

−2πimx/L. (B.16)

can be re-expressed as the trigonometric sum

f(x) =
1

2
A0 +

∞∑

m=1

{Am cos(2πmx/L) +Bm sin(2πmx/L)} , (B.17)

where

Am =

{
2a0 m = 0,
am + a−m, m > 0,

Bm = i(a−m − am). (B.18)

This is called a full-range trigonometric Fourier series for functions defined on
[0, L]. In chapter 2 we expanded functions in series containing only sines. We
can expand any function f(x) defined on a finite interval as such a half-range
Fourier series. To do this, we regard the given domain of f(x) as being the
half interval [0, L/2] (hence the name). We then extend f(x) to a function
on the whole of [0, L] and expand as usual. If we extend f(x) by setting
f(x+ L/2) = −f(x) then the Am are all zero and we have

f(x) =
∞∑

m=1

Bm sin(2πmx/L), x ∈ [0, L/2], (B.19)

where,

Bm =
4

L

∫ L/2

0

f(x) sin(2πmx/L) dx. (B.20)

Alternatively, we may extend the range of definition by setting f(x+L/2) =
f(L/2− x). In this case it is the Bm that become zero and we have

f(x) =
1

2
A0 +

∞∑

m=1

Am cos(2πmx/L), x ∈ [0, L/2], (B.21)
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with

Am =
4

L

∫ L/2

0

f(x) cos(2πmx/L) dx. (B.22)

The difference between a full-range and a half-range series is therefore
seen principally in the continuation of the function outside its initial interval
of definition. A full range series repeats the function periodically. A half-
range sine series changes the sign of the continued function each time we
pass to an adjacent interval, whilst the half-range cosine series reflects the
function as if each interval endpoint were a mirror.

B.2 Fourier Integral Transforms

When the function we wish to represent is defined on the entirety of R then
we must use the Fourier integral representation.

B.2.1 Inversion formula

We formally obtain the Fourier integral representation from the Fourier series
for a function defined on [−L/2, L/2]. Start from

f(x) =
∞∑

m=−∞
am e

− 2πim
L

x, (B.23)

am =
1

L

∫ L/2

−L/2
f(x) e

2πim
L

x dx, (B.24)

and let L become large. The discrete km = 2πm/L then merge into the
continuous variable k and

∞∑

m=−∞
→
∫ ∞

−∞
dm = L

∫ ∞

−∞

dk

2π
. (B.25)

The product Lam remains finite, and becomes a function f̃(k). Thus

f(x) =

∫ ∞

−∞
f̃(k) e−ikx

dk

2π
, (B.26)

f̃(k) =

∫ ∞

−∞
f(x) eikx dx . (B.27)
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This is the Fourier integral transform and its inverse.
It is good practice when doing Fourier transforms in physics to treat x

and k asymmetrically: always put the 2π’s with the dk’s. This is because,
as (B.25) shows, dk/2π has the physical meaning of the number of Fourier
modes per unit (spatial) volume with wavenumber between k and k + dk.

The Fourier representation of the Dirac delta-function is

δ(x− x′) =
∫ ∞

−∞

dk

2π
eik(x−x

′). (B.28)

Suppose we put x = x′. Then “δ(0)”, which we earlier saw can be interpreted
as the inverse lattice spacing, and hence the density of lattice points, is equal
to
∫∞
−∞

dk
2π
. This is the total number of Fourier modes per unit length.

Exchanging x and k in the integral representation of δ(x − x′) gives us
the Fourier representation for δ(k − k′):

∫ ∞

−∞
ei(k−k

′)x dx = 2π δ(k − k′). (B.29)

Thus 2πδ(0) (in k space), although mathematically divergent, has the phys-
ical meaning

∫
dx, the volume of the system. It is good practice to put a 2π

with each δ(k) because this combination has a direct physical interpretation.
Take care to note that the symbol δ(0) has a very different physical in-

terpretation depending on whether δ is a delta-function in x or in k space.

Parseval’s identity

Note that with the Fourier transform pair defined as

f̃(k) =

∫ ∞

−∞
eikx f(x) dx (B.30)

f(x) =

∫ ∞

−∞
e−ikx f̃(k)

dk

2π
, (B.31)

Pareseval’s theorem takes the form
∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|f̃(k)|2 dk

2π
. (B.32)

Parseval’s theorem tells us that the Fourier transform is a unitary map
from L2(R)→ L2(R).
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B.2.2 The Riemann-Lebesgue lemma

There is a reciprocal relationship between the rates at which a function and
its Fourier transform decay at infinity. The more rapidly the function decays,
the more high frequency modes it must contain—and hence the slower the
decay of its Fourier transform. Conversely, the smoother a function the fewer
high frequency modes it contains and the faster the decay of its transform.
Quantitative estimates of this version of Heisenberg’s uncertainty principle
are based on the Riemann-Lebesgue lemma.

Recall that a function f is in L1(R) if it is integrable (this condition
excludes the delta function) and goes to zero at infinity sufficiently rapidly
that

‖f‖1 ≡
∫ ∞

−∞
|f | dx <∞. (B.33)

If f ∈ L1(R) then its Fourier transform

f̃(k) =

∫ ∞

−∞
f(x)eikx dx (B.34)

exists, is a continuous function of k, and

|f̃(k)| ≤ ‖f‖1. (B.35)

The Riemann-Lebesgue lemma asserts that if f ∈ L1(R) then

lim
k→∞

f̃(k) = 0. (B.36)

We will not give the proof. For f integrable in the Riemann sense, it is not
difficult, being almost a corollary of the definition of the Riemann integral.
We must point out, however, that the “| . . . |” modulus sign is essential in
the L1(R) condition. For example, the integral

I =

∫ ∞

−∞
sin(x2) dx (B.37)

is convergent, but only because of extensive cancellations. The L1(R) norm

∫ ∞

−∞
| sin(x2)| dx (B.38)
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is not finite, and whereas the Fourier transform of sin(x2), i.e.
∫ ∞

−∞
sin(x2) eikx dx =

√
π cos

(
k2 + π

4

)
, (B.39)

is also convergent, it does not decay to zero as k grows large.
The Riemann-Lebesgue lemma tells us that the Fourier transform maps

L1(R) into C∞(R), the latter being the space of continuous functions vanish-
ing at infinity. Be careful: this map is only into and not onto. The inverse
Fourier transform of a function vanishing at infinity does not necessariliy lie
in L1(R).

We link the smoothness of f(x) to the rapid decay of f̃(k), by combining
Riemann-Lebesgue with integration by parts. Suppose that both f and f ′

are in L1(R). Then

[̃f ′](k) ≡
∫ ∞

−∞
f ′(x) eikx dx = −ik

∫ ∞

−∞
f(x) eikx dx = −ikf̃ (k) (B.40)

tends to zero. (No boundary terms arise from the integration by parts be-
cause for both f and f ′ to be in L1(R) the function f must tend to zero at

infinity.) Since kf̃(k) tends to zero, f̃(k) itself must go to zero faster than
1/k. We can continue in this manner and see that each additional derivative
of f that lies in L1(R) buys us an extra power of 1/k in the decay rate of

f̃ at infinity. If any derivative possesses a jump discontinuity, however, its
derivative will contain a delta-function, and a delta-function is not in L1(R).
Thus, if n is the largest integer for which knf̃(k)→ 0 we may expect f (n)(x)
to be somewhere discontinuous. For example, the function f(x) = e−|x| has
a first derivative that lies in L1(R), but this derivative is discontinuous. The

Fourier transform f̃(k) = 2/(1 + k2) therefore decays as 1/k2, but no faster.

B.3 Convolution

Suppose that f(x) and g(x) are functions on the real line R. We define their
convolution f ∗ g, when it exists, by

[f ∗ g](x) ≡
∫ ∞

−∞
f(x− ξ) g(ξ) dξ . (B.41)

A change of variable ξ → x−ξ shows that, despite the apparently asymmetric
treatment of f and g in the definition, the ∗ product obeys f ∗ g = g ∗ f .
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B.3.1 The convolution theorem

Now, let f̃(k) denote the Fourier transforms of f , i.e.

f̃(k) =

∫ ∞

−∞
eikxf(x) dx. (B.42)

We claim that

[̃f ∗ g] = f̃ g̃. (B.43)

The following computation shows that this claim is correct:

[̃f ∗ g](k) =

∫ ∞

−∞
eikx

(∫ ∞

−∞
f(x− ξ) g(ξ) dξ

)
dx

=

∫ ∞

−∞

∫ ∞

−∞
eikxf(x− ξ) g(ξ) dξ dx

=

∫ ∞

−∞

∫ ∞

−∞
eik(x−ξ) eikξ f(x− ξ) g(ξ) dξ dx

=

∫ ∞

−∞

∫ ∞

−∞
eikx

′

eikξ f(x′) g(ξ) dξ dx′

=

(∫ ∞

−∞
eikx

′

f(x′) dx′
)(∫ ∞

−∞
eikξg(ξ) dξ

)

= f̃(k)g̃(k). (B.44)

Note that we have freely interchanged the order of integrations. This is not
always permissible, but it is allowed if f, g ∈ L1(R), in which case f ∗ g is
also in L1(R).

B.3.2 Apodization and Gibbs’ phenomenon

The convolution theorem is useful for understanding what happens when we
truncate a Fourier series at a finite number of terms, or cut off a Fourier
integral at a finite frequency or wavenumber.

Consider, for example, the cut-off Fourier integral representation

fΛ(x) ≡
1

2π

∫ Λ

−Λ

f̃(k)e−ikx dk, (B.45)
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where f̃(k) =
∫∞
−∞ f(x) eikx dx is the Fourier transform of f . We can write

this as

fΛ(x) =
1

2π

∫ ∞

−∞
θΛ(k)f̃(k) e

−ikx dk (B.46)

where θΛ(k) is unity if |k| < Λ and zero otherwise. Written this way, the
Fourier transform of fΛ becomes the product of the Fourier transform of the
original f with θΛ. The function fΛ itself is therefore the convolution

fΛ(x) =

∫ ∞

−∞
δDΛ (x− ξ)f(ξ) dξ (B.47)

of f with

δDΛ (x) ≡
1

π

sin(Λx)

x
=

1

2π

∫ ∞

−∞
θΛ(k)e

−ikx dk, (B.48)

which is the inverse Fourier transform of θΛ(x). We see that fΛ(x) is a kind of
local average of the values of f(x) smeared by the approximate delta-function
δDΛ (x). The superscript D stands for “Dirichlet,” and δDΛ (x) is known as the
Dirichlet kernel .
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Figure B.1: A plot of πδDΛ (x) for Λ = 3.

When f(x) can be treated as a constant on the scale (≈ 2π/Λ) of the oscilla-
tion in δDΛ (x), all that matters is that

∫∞
−∞ δDΛ (x) dx = 1, and so fΛ(x) ≈ f(x).

This is case if f(x) is smooth and Λ is sufficiently large. However, if f(x) pos-
sesses a discontinuity at x0, say, then we can never treat it as a constant and
the rapid oscillations in δDΛ (x) cause a “ringing” in fΛ(x) whose amplitude
does not decrease (although the width of the region surrounding x0 in which
the effect is noticeable will decrease) as Λ grows. This ringing is known as
Gibbs’ phenomenon.
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Figure B.2: The Gibbs phenomenon: A Fourier reconstruction of a piecewise
constant function that jumps discontinuously from y = −0.25 to +0.25 at
x = 0.25.

The amplitude of the ringing is largest immediately on either side of the the
point of discontinuity, where it is about 9% of the jump in f . This magnitude
is determined by the area under the central spike in δDΛ (x), which is

1

π

∫ π/Λ

−π/Λ

sin(Λx)

x
dx = 1.18 . . . , (B.49)

independent of Λ. For x exactly at the point of discontinuity, fΛ(x) receives
equal contributions from both sides of the jump and hence converges to the
average

lim
Λ→∞

fΛ(x) =
1

2

{
f(x+) + f(x−)

}
, (B.50)

where f(x±) are the limits of f taken from the the right and left, respectively.
When x = x0−π/Λ, however, the central spike lies entirely to the left of the
point of discontinuity and

fΛ(x) ≈
1

2
{(1 + 1.18)f(x−) + (1− 1.18)f(x+)}

≈ f(x−) + 0.09{f(x−)− f(x+)}. (B.51)

Consequently, fΛ(x) overshoots its target f(x−) by approximately 9% of the
discontinuity. Similarly when x = x0 + π/Λ

fΛ(x) ≈ f(x+) + 0.09{f(x+)− f(x−)}. (B.52)
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The ringing is a consequence of the abrupt truncation of the Fourier sum.
If, instead of a sharp cutoff, we gradually de-emphasize the higher frequencies
by the replacement

f̃(k)→ f̃(k) e−αk
2/2 (B.53)

then

fα(x) =
1

2π

∫ ∞

−∞
f̃(k)e−αk

2

e−ikx dk

=

∫ ∞

−∞
δGα (x− ξ)f(y) dξ (B.54)

where

δGα (x) =
1√
2πα

e−x
2/2α, (B.55)

is a non-oscillating Gaussian approximation to a delta function. The effect
of this convolution is to smooth out, or mollify , the original f , resulting in
a C∞ function. As α becomes small, the limit of fα(x) will again be the
local average of f(x), so at a discontinuity fα will converge to the mean
1
2
{f(x+) + f(x−)}.
When reconstructing a signal from a finite range of its Fourier components—

for example from the output of an aperture-synthesis radio-telescope—it is
good practice to smoothly suppress the higher frequencies in such a manner.
This process is called apodizing (i.e. cutting off the feet of) the data. If
we fail to apodize then any interesting sharp feature in the signal will be
surrounded by “diffraction ring” artifacts.

Exercise B.1: Suppose that we exponentially suppress the higher frequencies
by multiplying the Fourier amplitude f̃(k) by e−ǫ|k|. Show that the original
signal is smoothed by convolution with a Lorentzian approximation to a delta
function

δLǫ (x− ξ) =
1

π

ǫ

ǫ2 + (x− ξ)2 .

Observe that
lim
ǫ→0

δLǫ (x) = δ(x).

Exercise B.2: Consider the apodized Fourier series

fr(θ) =

∞∑

n=−∞
anr

|n|einθ,
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where the parameter r lies in the range 0 < r < 1, and the coefficients are

an ≡
1

2π

∫ 2π

0
e−inθf(θ) dθ.

Assuming that it is legitimate to interchange the order of the sum and integral,
show that

fr(θ) =

∫ 2π

0
δPr (θ − θ′)f(θ′)dθ′

≡ 1

2π

∫ 2π

0

(
1− r2

1− 2r cos(θ − θ′) + r2

)
f(θ′)dθ′.

Here the superscript P stands for for Poisson because δPr (θ) is the Poisson
kernel that solves the Dirichlet problem in the unit disc. Show that δPr (θ)
tends to a delta function as r→ 1 from below.

Exercise B.3: The periodic Hilbert transform. Show that in the limit r → 1
the sum

∞∑

n=−∞
sgn (n)einθr|n| =

reiθ

1− reiθ −
re−iθ

1− re−iθ , 0 < r < 1

becomes the principal-part distribution

P

(
i cot

(
θ

2

))
.

Let f(θ) be a smooth function on the unit circle, and define its Hilbert trans-
form Hf to be

(Hf)(θ) = 1

2π
P

∫ 2π

0
f(θ′) cot

(
θ − θ′
2

)
dθ′

Show the original function can be recovered from (Hf)(θ), together with
knowledge of the angular average f̄ =

∫ 2π
0 f(θ) dθ/2π, as

f(θ) = − 1

2π
P

∫ 2π

0
(Hf)(θ′) cot

(
θ − θ′
2

)
dθ′ +

1

2π

∫ 2π

0
f(θ′) dθ′

= −(H2f))(θ) + f̄ .
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Exercise B.4: Find a closed-form expression for the sum

∞∑

n=−∞
|n| einθr2|n|, 0 < r < 1.

Now let f(θ) be a smooth function defined on the unit circle and

an =
1

2π

∫ 2π

0
f(θ)e−inθ dθ

its n-th Fourier coefficient. By taking a limit r → 1, show that

π
∞∑

n=−∞
|n| ana−n =

π

4

∫ 2π

0

∫ 2π

0
[f(θ)− f(θ′)]2 cosec2

(
θ − θ′
2

)
dθ

2π

dθ′

2π
,

both the sum and integral being convergent. Show that these last two expres-
sions are equal to

1

2

∫∫

r<1
|∇ϕ|2 rdrdθ

where ϕ(r, θ) is the function harmonic in the unit disc, whose boundary value
is f(θ).

Exercise B.5: Let f̃(k) be the Fourier transform of the smooth real function
f(x). Take a suitable limit in the previous problem to show that that

S[f ] ≡ 1

4π

∫ ∞

−∞

∫ ∞

−∞

{
f(x)− f(x′)

x− x′
}2

dxdx′ =
1

2

∫ ∞

−∞
|k|
∣∣∣f̃(k)

∣∣∣
2 dk

2π
.

Exercise B.6: By taking a suitable limit in exercise B.3 show that, when acting
on smooth functions f such that

∫∞
−∞ |f | dx is finite, we have H(Hf) = −f ,

where

(Hf)(x) = P

π

∫ ∞

−∞

f(x′)
x− x′ dx

′

defines the Hilbert transform of a function on the real line. (Because H gives
zero when acting on a constant, some condition, such as

∫∞
−∞ |f | dx being finite,

is necessary if H is to be invertible.)
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B.4 The Poisson Summation Formula

Suppose that f(x) is a smooth function that tends rapidly to zero at infinity.
Then the series

F (x) =
∞∑

n=−∞
f(x+ nL) (B.56)

converges to a smooth function of period L. It therefore has a Fourier ex-
pansion

F (x) =
∞∑

m=−∞
am e

−2πimx/L. (B.57)

We can compute the Fourier coefficients am by integrating term-by-term

am =
1

L

∫ L

0

F (x) e2πimx/L dx

=
1

L

∞∑

n=−∞

∫ L

0

f(x+ nL) e2πimx/L dx

=
1

L

∫ ∞

−∞
f(x) e2πimx/L dx

=
1

L
f̃(2πm/L). (B.58)

Thus ∞∑

n=−∞
f(x+ nL) =

1

L

∞∑

m=−∞
f̃(2πm/L)e−2πimx/L. (B.59)

When we set x = 0, this last equation becomes

∞∑

n=−∞
f(nL) =

1

L

∞∑

m=−∞
f̃ (2πm/L) . (B.60)

The equality of this pair of doubly infinite sums is known as the Poisson
summation formula.
Example: As the Fourier transform of a Gaussian is another Gaussian, the
Poisson formula with L = 1 applied to f(x) = exp(−κx2) gives

∞∑

m=−∞
e−κm

2

=

√
π

κ

∞∑

m=−∞
e−m

2π2/κ, (B.61)
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and (rather more usefully) applied to exp(−1
2
tx2 + ixθ) gives

∞∑

n=−∞
e−

1
2
tn2+inθ =

√
2π

t

∞∑

n=−∞
e−

1
2t
(θ+2πn)2 . (B.62)

The last identity is known as Jacobi’s imaginary transformation. It reflects
the equivalence of the eigenmode expansion and the method-of-images solu-
tion of the diffusion equation

1

2

∂2ϕ

∂x2
=
∂ϕ

∂t
(B.63)

on the unit circle. Notice that when t is small the sum on the right-hand side
converges very slowly, whereas the sum on the left converges very rapidly.
The opposite is true for large t. The conversion of a slowly converging series
into a rapidly converging one is a standard application of the Poisson sum-
mation formula. It is the prototype of many duality maps that exchange a
physical model with a large coupling constant for one with weak coupling.

If we take the limit t → 0 in (B.62), the right hand side approaches a
sum of delta functions, and so gives us the useful identity

1

2π

∞∑

n=−∞
einx =

∞∑

n=−∞
δ(x+ 2πn). (B.64)

The right-hand side of (B.64) is sometimes called the “Dirac comb.”

Gauss sums

The Poisson sum formula

∞∑

m=−∞
e−κm

2

=

√
π

κ

∞∑

m=−∞
e−m

2π2/κ. (B.65)

remains valid for complex κ, provided that Reκ > 0. We can therefore
consider the special case

κ = iπ
p

q
+ ǫ, (B.66)

where ǫ is a positive real number and p and q are positive integers whose
product pq we assume to be even. We investigate what happens to (B.65)
as ǫ→ 0.
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The left-hand side of (B.65) can be decomposed into the double sum

∞∑

m=−∞

q−1∑

r=0

e−iπ(p/q)(r+mq)
2

e−ǫ(r+mq)
2

. (B.67)

Because pq is even, each term in e−iπ(p/q)(r+mq)
2

is independent of m. At the
same time, the small ǫ limit of the infinite sum

∞∑

m=−∞
e−ǫ(r+mq)

2

, (B.68)

being a Riemann sum for the integral
∫ ∞

−∞
e−ǫq

2m2

dm =
1

q

√
π

ǫ
, (B.69)

becomes independent of r, and so a common factor of all terms in the finite
sum over r.

If ǫ is small, we can make the replacement,

κ−1 =
ǫ− iπp/q
ǫ2 + π2p2/q2

→ ǫ− iπp/q
π2p2/q2

, (B.70)

after which, the right-hand side contains the double sum

∞∑

m=−∞

p−1∑

r=0

eiπ(q/p)(r+mp)
2

e−ǫ(q
2/p2)(r+mp)2 . (B.71)

Again each term in eiπ(q/p)(r+mp)
2

is independent of m, and

∞∑

m=−∞
e−ǫ(q

2/p2)(r+mp)2 →
∫ ∞

−∞
e−ǫq

2m2

dm =
1

q

√
π

ǫ
, (B.72)

becomes independent of r. Also

lim
ǫ→0

{√
π

κ

}
= e−iπ/4

√
q

p
. (B.73)

Thus, after cancelling the common factor of (1/q)
√
π/ǫ, we find that

1√
q

q−1∑

r=0

e−iπ(p/q)r
2

= e−iπ/4
1√
p

p−1∑

r=0

eiπ(q/p)r
2

, pq even. (B.74)
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This Poisson-summation-like equality of finite sums is known as the Landsberg-
Schaar identity. No purely algebraic proof is known.
Gauss considered the special case p = 2, in which case we get

1√
q

q−1∑

r=0

e−2πir2/q = e−iπ/4
1√
2
(1 + eiπq/2) (B.75)

or, more exlicitly

q−1∑

r=0

e−2πir2/q =





(1− i)√q, q = 0 (mod 4),√
q, q = 1 (mod 4),

0, q = 2 (mod 4),
−i√q, q = 3 (mod 4).

(B.76)

The complex conjugate result is perhaps slightly prettier:

q−1∑

r=0

e2πir
2/q =





(1 + i)
√
q, q = 0 (mod 4),√

q, q = 1 (mod 4),
0, q = 2 (mod 4),
i
√
q, q = 3 (mod 4).

(B.77)

Gauss used these sums to prove the law of quadratic reciprocity.

Exercise B.7: By applying the Poisson summation formula to the Fourier
transform pair

f(x) = e−ǫ|x|e−ixθ, and f̃(k) =
2ǫ

ǫ2 + (k − θ)2 ,

where ǫ > 0, deduce that

sinh ǫ

cosh ǫ− cos(θ − θ′) =
∞∑

n=−∞

2ǫ

ǫ2 + (θ − θ′ + 2πn)2
. (B.78)

Hence show that the Poisson kernel is equivalent to an infinite periodic sum
of Lorentzians

1

2π

(
1− r2

1− 2r cos(θ − θ′) + r2

)
= − 1

π

∞∑

n=−∞

ln r

(ln r)2 + (θ − θ′ + 2πn)2
.


