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42 For group elements g, h ∈ G we have 
g ◦ h ∈ G. For elements of the Lie 
algebra X, Y ∈ g we have [X, Y] ∈ g and 
in general X ◦ Y �∈ g

From Schwichtenberg textbook (2015)

Now we want to take a look at an example of how one can derive 
the Lie algebra of a given group.

3.4.1 The Generators and Lie Algebra of SO(3)

The defining conditions of the SO(3) group are (Eq. 3.10)

OTO !
= I and det(O)

!
= 1. (3.58)

We can write every group element O in terms of a generator J:

O = eΦJ . (3.59)

Putting this into the first defining condition yields

OTO = eΦJT
eΦJ !

= 1 → JT + J !
= 0. (3.60)

Using the second condition in Eq. 3.58 and the identity43 43 tr(A) denotes the trace of the matrix
A, which means the sum of all elements
on the main diagonal. For example for

A =

(
A11 A12
A21 A22

)
we have

tr(A) = A11 + A22.

det(eA) = etr(A) for the matrix exponential function, we see

det(O)
!
= 1 → det(eΦJ) = eΦtr(J) !

= 1

→ tr(J) !
= 0 (3.61)
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Three linearly independent matrices fulfilling the conditions 
Eq. 3.60 and Eq. 3.61 are

J1 =

⎛
⎜⎝0 0 0

0 0 −1
0 1 0

⎞
⎟⎠ J2 =

⎛
⎜⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎟⎠ J3 =

⎛
⎜⎝0 −1 0

1 0 0
0 0 0

⎞
⎟⎠ .

(3.62)
These matrices form a basis for the generators of the group SO(3).

This means any generator of the group can be written as a linear
combination of these basis generators: J = aJ1 + bJ2 + cJ3, where
a, b, c denote real constants. These generators can be written more
compactly by using the Levi-Civita symbol45

(Ji)jk = −εijk, (3.63)

where j, k denote the components of the generator Ji. For example,

(J1)jk = −ε1jk ↔

⎛
⎜⎝(J1)11 (J1)12 (J1)13

(J1)21 (J1)22 (J1)23

(J1)31 (J1)32 (J1)33

⎞
⎟⎠ = −

⎛
⎜⎝ε111 ε112 ε113

ε121 ε122 ε123

ε131 ε132 ε133

⎞
⎟⎠

=

⎛
⎜⎝0 0 0

0 0 −1
0 1 0

⎞
⎟⎠ . (3.64)

Let’s see what finite transformation matrix we get from the first of
these basis generators. We can focus on the lower right 2 × 2 matrix4646 This is exactly the two-dimensional 

Levi-Civita symbol (j1)ij = εijk in 
matrix form, which is the generator of 
rotations in two dimensions (of SO(2)).

j1 and ignore the zeroes for a moment:

J1 =

⎛
⎜⎜⎜⎜⎝

0 (
0 −1
1 0

)
︸ ︷︷ ︸

≡j1

⎞
⎟⎟⎟⎟⎠ . (3.65)

We can immediately compute

(j1)2 = −1, (3.66)

therefore

(j1)3 = (j1)2︸︷︷︸
=−1

j1 = −j1 , (j1)4 = +1 , (j1)5 = +j. (3.67)

In general, we have

(j1)2n = (−1)n I and (j1)2n+1 = (−1)n j1, (3.68)

which we can use when we evaluate the exponential function as
series expansion47
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R1 fin = eΦj1 =
∞

∑
n=0

Φn jn1
n!

=
∞

∑
n=0

Φ2n

(2n)!
(j1)2n︸ ︷︷ ︸
(−1)n I

+
∞

∑
n=0

Φ2n+1

(2n + 1)!
(j1)2n+1︸ ︷︷ ︸
(−1)n j1

=

(
∞

∑
n=0

Φ2n

(2n)!
(−1)n

)
︸ ︷︷ ︸

=cos(φ)

I +

(
∞

∑
n=0

Φ2n+1

(2n + 1)!
(−1)n

)
︸ ︷︷ ︸

=sin(φ)

j1

= cos(φ)

(
1 0
0 1

)
+ sin(φ)

(
0 −1
1 0

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
(3.69)

Therefore the complete, finite transformation matrix is, using
e0 = 1 for the upper-left component

R1 =

⎛
⎜⎝1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎞
⎟⎠ , (3.70)

which we can recognize as one of the well-known rotation matri-
ces in 3-dimensions that were quoted at the beginning of this chapter
(Eq. 3.23). Following the same steps, we can derive the matrices for
rotations around the other axes.

We now have the generators of the group in explicit matrix form
(Eq. 3.62) and we can compute the corresponding Lie bracket48 by

48 As explained above, the natural
product of the Lie algebra is the Lie
bracket. Here we compute how the
basis generators behave, when put into
the Lie bracket. All other generators can
be constructed by linear combination
of these basis generators. Therefore, if
we know the result of the Lie bracket
of the basis generators, we know
automatically the result for all other
generators. This behaviour of the basis
generators in the Lie bracket, will
become incredibly important in the next
section. Everything that is important
about a Lie algebra, is encoded in
the Lie bracket relation of the basis
generators.

brute force. This yields49

49 For example, we have

[J1, J2] = J1 J2 − J1 J2

=

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ −

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ =

⎛
⎝0 0 0

1 0 0
0 0 0

⎞
⎠ −

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ = ε12k︸︷︷︸

=0 except for k=3

Jk

= ε123 J3 = J3

[Ji, Jj] = εijk Jk, (3.71)

where εijk is again the Levi-Civita symbol.
In physics it’s conventional to define the generators of SO(3) with

an extra "i", that is instead of eφJ , we write eiφJ and our generators
are then

J1 = i

⎛
⎜⎝0 0 0

0 0 1
0 −1 0

⎞
⎟⎠ J2 = i

⎛
⎜⎝0 0 −1

0 0 0
1 0 0

⎞
⎟⎠ J3 = i

⎛
⎜⎝ 0 1 0
−1 0 0
0 0 0

⎞
⎟⎠ .

(3.72)
and the Lie algebra50 reads

50 We will call the Lie bracket relation of
the basis generators the Lie algebra, be-
cause everything important is encoded
here.

[Ji, Jj] = iεijk Jk. (3.73)

We do this in physics to get Hermitian generators, which means51

51 For example now we have J�1 =

i

⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ and therefore

J†
1 = (J�1 )

T = i

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠ = J
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J† = (J�)T = J, because Hermitian matrices have real eigenvalues and
this becomes important in quantum mechanics when the eigenvalues
of the generators become the values we can expect to measure in
experiments, which will be discussed in Sec. 8.3. Otherwise, that is
without the "i", the generators are anti-Hermitian J† = (J�)T = −J
and the corresponding eigenvalues are complex.

We can derive the basis generators in another way, by starting
with the well known rotation matrices and using from Eq. 3.55 that
X = dh

dθ |θ=0. For the first rotation matrix, as quoted in Eq. 3.23 and
derived in Eq. 3.70, this yields

J1 =
dR1

dθ
|θ=0 =

d
dθ

⎛
⎜⎝1 0 0

0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎞
⎟⎠ ∣∣∣

θ=0

=

⎛
⎜⎝0 0 0

0 − sin(θ) − cos(θ)
0 cos(θ) sin(θ)

⎞
⎟⎠ ∣∣∣

θ=0
=

⎛
⎜⎝0 0 0

0 0 −1
0 1 0

⎞
⎟⎠ , (3.74)

which is exactly the first generator in Eq. 3.62. Nevertheless, the
first method is more general, because we will not always start with
given finite transformation matrices. For the Lorentz group we will
start with the definition of the group, derive the basis generators and
compute only afterwards the explicit matrix form for the Lorentz
transformations. If you already have explicit transformation matrices,
you can always use Eq. 3.55 to derive the corresponding generators.

Before we move on, we will have a look at the modern definition
of a Lie algebra.

3.4.2 The Abstract Definition of a Lie Algebra

Up to this point we used a simplified definition: The Lie algebra con-
sists of all elements X that result in an element of the corresponding
group G, when put into the exponential function eX ∈ G. Later we
learned that an important part of a group, the rule for the combina-
tion of group elements, is encoded in the Lie algebra in form of the
Lie bracket. As we did for groups, we distil the defining features of
this idea into precise mathematical axioms:

A Lie algebra is a vector space g equipped with a binary operation
[, ]: g× g → g. The binary operation satisfies the following axioms:

• Bilinearity: [aX + bY, Z] = a[X, Z] + b[Y, Z] and [Z, aX + bY] =
a[Z, X] + b[Z, Y] , for arbitrary number a, b and ∀X, Y, Z ∈ g

• Anticommutativity: [X, Y] = −[Y, X] ∀ X, Y ∈ g
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• The Jacobi Identity: [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0
∀X, Y, Z ∈ g

You can check that the commutator of matrices fulfils all these con-
ditions and of course this standard commutator was used historically
to get to these axioms. Nevertheless, there are quite different binary
operations that fulfil these axioms, for example, the famous Poisson
bracket of classical mechanics.

The important point is that this definition makes no reference to
any Lie group. The definition of a Lie algebra stands on its own and
we will see that this makes sense. In the next section we will have a
look at the generators of SU(2) and find that the basis generators,
which is the set of generators we can use to construct all other gener-
ators by linear combination, fulfil the same Lie bracket relation as the
basis generators of SO(3) (Eq. 3.73). This is interpreted as SU(2) and
SO(3) having the same Lie algebra. This is an incredibly important
result and it will tell us a lot about SU(2) and SO(3).

3.4.3 The Generators and Lie Algebra of SU(2)

We stumbled upon SU(2) while trying to describe rotations in
three dimensions and discovered that SU(2) is the double cover52 52 Recall that this means that the map

from SU(2) to SO(3) identifies two
elements of SU(2) with the same
element of SO(3).

of SO(3).

Remember that SU(2) is the group of unitary 2 × 2 matrices with
unit determinant53 : 53 This is what the "S" stands for:

Special = unit determinant.
U†U = UU† = 1 (3.75)

det(U) = 1. (3.76)

The first thing we want to take a look at is the Lie algebra of this
group. Writing the defining conditions of the group in terms of the
generators J1, J2, . . . yields54 54 As discussed above, we now work

with an extra "i" in the exponent, in
order to get Hermitian matrices, which
guarantees that we get real numbers as
predictions for experiments in quantum
mechanics.

U†U = (ei Ji )†ei Ji !
= 1 (3.77)

det(U) = det(ei Ji )
!
= 1 (3.78)

The first condition tells us, using the Baker-Champell-Hausdorf The-
orem (Eq. 3.56) and [Ji, Ji] = 0
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(ei Ji )†ei Ji = e−i J†
i ei Ji !

= 1

→ e−i J†
i +i Ji+

1
2 [J

†
i ,Ji ]+... !

= 1

→︸︷︷︸
e0=1

J†
i

!
= Ji. (3.79)

A matrix fulfilling the condition J†
i = Ji is called Hermitian and we

therefore learn here that the generators of SU(2) must be Hermitian.
Using the identity det(eA) = etr(A), we see from the second condi-

tion:
det(ei Ji ) = eitr(Ji) = 1 →︸︷︷︸

e0=1

tr(Ji)
!
= 0. (3.80)

We conclude the generators of SU(2) must be Hermitian traceless
matrices. A basis for Hermitian traceless 2 × 2 matrices is given by 3
matrices55:55 A complex 2× 2 matrix has 4 complex

entries and therefore 8 degrees of
freedom. Because of the two conditions
only three degrees of freedom remain.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(3.81)
This means every Hermitian traceless 2 × 2 matrix can be writ-

ten as a linear combination of these matrices that are called Pauli

matrices.
We can put these explicit matrices for the basis generators into the

Lie bracket, which yields

[σi, σj] = 2iεijkσk, (3.82)

where εijk is again the Levi-Civita symbol. To get rid of the nasty 2 it
is conventional to define the generators of SU(2) as Ji ≡ 1

2 σi. The Lie
algebra then reads

[Ji, Jj] = iεijk Jk (3.83)

Take note that this is exactly the same Lie bracket relation we de-
rived for SO(3) (Eq. 3.73)! Therefore one says that SU(2) and SO(3)
have the same Lie algebra, because we define Lie algebras by their
Lie bracket. We will use the abstract definition of this Lie algebra,
to get different descriptions for the transformations described by
SU(2). We will learn that an SU(2) transformation doesn’t need to
be described by 2 × 2 matrices. To make sense of things like this, we
need a more abstract definition of a Lie group. At this point SU(2) is
defined as a set of 2 × 2 matrices, and a description of SU(2) by, for
example, 3 × 3 matrices, makes little sense. The abstract definition of
a Lie group will enable us to see the connection between different de-
scriptions of the same transformation. We will identify with each Lie
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group a geometrical object (a manifold) and use this abstract object to
define a group. This may seem like a strange thought, but will make
a lot of sense after taking a second look at two examples we already
encountered in earlier chapters.

3.4.4 The Abstract Definition of a Lie Group

One of the first Lie groups we discussed was U(1), the unit complex
numbers. These are defined by z�z = 1, which reads if we write
z = a + ib:

z�z = (a + ib)�(a + ib) = (a − ib)(a + ib) = a2 + b2 = 1. (3.84)

This is exactly the defining condition of the unit circle56. The set 56 The unit circle S1 is the set of all
points in two dimensions with distance
1 from the origin. In mathematical
terms this means all points (x1, x2)
fulfilling x2

1 + x2
2 = 1.

of unit-complex numbers is the unit circle in the complex plane.
Furthermore, we found that there is a one-to-one map57 between

57 To be precise: An isomorphism. To
say two things are isomorphic is the
mathematical way of saying that they
are "the same thing" and two things
are called isomorphic if there exists an
isomorphism between them.

elements of U(1) and SO(2). Therefore, for these groups it is easy
to identify them with a geometric object: The unit circle. Instead of
talking about different descriptions for SO(2) or U(1), which are
defined by objects of given dimension, it can help to think about this
group as the unit-circle. Rotations in two-dimensions are, as a Lie
group, the unit-circle and we can represent these transformations
by elements of SO(2), i.e. 2 × 2 matrices or elements of U(1), i.e.
unit-complex numbers.

The next groups we discussed were SO(3) and SU(2). Remem-
ber that we found a one-to-one map between SU(2) and the unit
quaternions. The unit quaternions are defined as those quaternions
q = a1 + bi + cj + dk that satisfy the condition (Eq. 3.29)

a2 + b2 + c2 + d2 !
= 1, (3.85)

which is the same condition that defines58 the three sphere S3! There-

58 Recall that the unit circle S1 is defined
as the set of points that satisfy the
condition x2

1 + x2
2 = 1. Equally, the two-

sphere S2 is defined by the condition
x2

1 + x2
2 + x2

3 = 1 and analogously the
three sphere S3 by x2

1 + x2
2 + x2

3 + x2
4 = 1.

The number that follows the S denotes
the dimension. In two dimensions,
with one condition we get a one-
dimensional object: S1. Equally we
get in four dimensions, with one
condition x2

1 + x2
2 + x2

3 + x2
4 = 1 a three

dimensional object S3. S3 is the surface
of the four-dimensional sphere.

fore this map provides us with a map between SU(2) and the three
sphere S3. This map is an isomorphism (1-1 and onto) and therefore
we can really think of SU(2) as a the three sphere S3.

These observations motivate the modern definition of a Lie group59:

59 The technical details that follow aren’t
important for what we want to do in
this book. The important message to
take away is: Lie group = manifold.

A Lie group is a group, which is also a differentiable manifold60. Further-

60 A manifold is a set of points, for
example a sphere that looks locally
like flat Euclidean space Rn. Another
way of thinking about a n-dimensional
manifold is that it’s a set which can
be given n independent coordinates
in some neighborhood of any point.
For some more information about
manifolds, see the appendix in Sec. 3.11
at the end of this chapter.

more, the group operation ◦ must induce a differentiable map of the manifold
into itself. This is a compatibility requirement that ensures that the group
property is compatible with the manifold property. Concretely this means
that every group element, say a induces a map that takes any element of the
group b to another element of the group c = ab and this map must be dif-
ferentiable. Using coordinates this means that the coordinates of ab must be
differentiable functions of the coordinates of b.
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By the abstract definition of a Lie algebra we say that SO(3) and
SU(2) have the same Lie algebra (Eq. 3.83). Now it’s time to talk
about the remark at the end of Sec. 3.4:

"... there is precisely one distinguished Lie group for each Lie
algebra."

We can now understand a bit better, why this one group is distin-
guished. The distinguished group has the property of being simply

connected. This means that, if we use the modern definition of a
Lie group as a manifold, any closed curve on this manifold can be
shrunk smoothly to a point61.61 We will not discuss this any further,

but you are encouraged to read about
it, for example in the books recom-
mended at the end of this chapter.
For the purpose of this book it suf-
fices to know that there is always one

distinguished group.

To emphasize this important point:62

62 A proof can be found, for example,
in Michael Spivak. A Comprehensive
Introduction to Differential Geometry, Vol.
1, 3rd Edition. Publish or Perish, 3rd
edition, 1 1999. ISBN 9780914098706

There is precisely one simply-connected Lie group correspond-

ing to each Lie algebra.

This simply-connected group can be thought of as the "mother"
of all those groups having the same Lie algebra, because there are
maps to all other groups with the same Lie algebra from the simply
connected group, but not vice versa. We could call it the mother
group of this particular Lie algebra, but mathematicians tend to be
less dramatic and call it the covering group. All other groups having
the same Lie algebra are said to be covered by the simply connected
one. We already stumbled upon an example of this: SU(2) is the
double cover of SO(3). This means there is a two-to-one map from
SU(2) to SO(3).

Furthermore, SU(2) is the three sphere, which is a simply con-
nected manifold. Therefore, we have already found the "most impor-
tant" group belonging to this Lie algebra, i.e. Eq. 3.83. We can get all
other groups belonging to this Lie algebra through maps from SU(2).

We can now see what manifold SO(3) is. The map from SU(2)
to SO(3) identifies with two points of SU(2), one point of SO(3).
Therefore, SO(3) is one half of the unit sphere.

Fig. 3.7: Two-dimensional slice of
the three Sphere S3 (which is a three
dimensional surface and therefore not
drawable itself). We can see that the top
half of the sphere is SO(3), because to
get from SU(2) to SO(3) we identify
two points, for example, p and p + 2π,
with each other.

We can see, from the point of view that Lie groups are manifolds
that SU(2) is a more complete object than SO(3). SO(3) is just part of
the complete object.

I want to take the view in this book that in order to describe na-
ture at the most fundamental level, we need to use the most funda-
mental groups. For rotations in three dimensions this group is SU(2)
and not SO(3). We will discover something similar when considering
the symmetry group of special symmetry.
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We will see that Nature agrees with such lines of thought! To
describe elementary particles one uses the representations of the
covering group of the Poincare group, instead of just the usual rep-
resentation one uses to transform four-vectors. To describe nature at
the most fundamental level, one must use the covering group, instead
of any of the other groups one can map to from the covering group.

We are able to derive the representations63 of the most fundamen- 63 This notion will be made precise in
the next section.tal group, belonging to a given Lie algebra, by deriving representa-

tions of the Lie algebra. We can then put the matrices representing
the Lie algebra elements (the generators) into the exponential func-
tion to get matrices representing group elements.

Herein lies the strength of Lie theory. By using pure mathemat-
ics we are able to reveal something fundamental about nature. The
standard symmetry group of special relativity hides64 something 64 For those who already know some

quantum mechanics: The standard
symmetry group hides spin from us!

from us, because it is not the most fundamental group belonging to
this symmetry. The covering group of the Poincare group65 is the

65 For brevity, we will avoid writing
"double cover of" or "covering group
of" most of the time. We will use one
representation of the Poincare group to
derive the corresponding Lie algebra.
Then we will use this Lie algebra to
derive the representations of the one
distinguished group that belongs to
this Lie algebra. In other words: The
representations of the double cover of
the Poincare group.

fundamental group and therefore we will use it to describe nature.

To summarize66

66 Maybe you wonder why S2, the sur-
face of the sphere in three dimensions,
is missing. S2 is not a Lie group and
this is closely related to the fact that
there are no three-dimensional complex
numbers. Recall that we had to move
from two-dimensional complex num-
bers with just i to the four-dimensional
quaternions with i,j,k.

• S1=̂U(1) ↔︸︷︷︸
one-to-one

SO(2)

• S3=̂SU(2) →︸︷︷︸
two-to-one

SO(3)=̂ half of S3

⇒ SU(2) is the distinguished group belonging to the Lie algebra
[Ji, Jj] = iεijk Jk (Eq. 3.83), because S3 is simply connected.

Next, we will introduce another important branch of Lie theory,
called representation theory. It is representation theory that enables
us to derive from a given Lie group the tools we need to describe
nature at the most fundamental level.

3.5 Representation Theory

The important thing about group theory is that it is able to describe
transformations without referring to any objects in the real world.

For theoretical considerations it is often useful to regard any group
as an abstract group. This means defining the group by its manifold
structure and the group operation. For example SU(2) is the three
sphere S3, the elements of the group are points of the manifold and
the rule associating a product point ab with any two points b and a
satisfies the usual group axioms. In physical applications one is more
interested in what the group actually does, i.e. the group action.
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An important idea is that one group can act on many different
kinds of objects67. This idea motivates the definition of a representa-67 This will make much more sense in a

moment. tion: A representation is a map68 between any group element g of a
68 The mathematical term for a map
with these special properties is ho-

momorphism. The definition of an
isomorphism is then a homomorphism,
which is in addition one-to-one.

group G and a linear transformation69 R(g) of some vector-space V

69 In the context of this book this will
always mean that we map each group
element to a matrix. Each group ele-
ment is then given by a matrix that acts
by usual matrix multiplication on the
elements of some vector space.

g →︸︷︷︸
R

R(g) (3.86)

in such a way that the group properties are preserved:

• R(e) = I (The identity element of the group transforms nothing at
all)

• R(g−1) =
(

R(g)
)−1 (Every inverse element is mapped to the

corresponding inverse transformation)

• R(g) ◦ R(h) = R(gh) (The combination of transformations corre-
sponding to g and h is the same as the transformation correspond-
ing to the point gh)

A representation70 identifies with each point (abstract group el-70 This concept can be formulated more
generally if one accepts arbitrary (not
linear) transformations of an arbitrary
(not necessarily a vector) space. Such a
map is called a realization. In physics
one is concerned most of the time with
linear transformations of objects liv-
ing in some vector space (for example
Hilpert space in quantum mechanics or
Minkowski space for special relativity),
therefore the concept of a representa-
tion is more relevant to physics than the
general concept called realization.

ement) of the group manifold (the abstract group) a linear transfor-
mation of a vector space. Although we define a representation as a
map, most of the time we will call a set of matrices a representation.
For example, the usual rotation matrices are a representation of the
group SO(3) on the vector space71 R3. The rotation matrices are lin-

71 R3 denotes three dimensional Eu-
clidean space, where elements are
ordinary 3 component vectors, as we
use them for example in appendix A.1.

ear transformations on R3. But take note that we can examine the
group action on other vector spaces, too.

Using representation theory, we able to investigate systematically
how a given group acts on very different vector spaces and that is
were things start to get really interesting.

One of the most important examples in physics is SU(2). For
example, we can examine how SU(2) acts on the complex vector
space of dimension one C1, which is especially easy, as we will see
later, or two: C2, which we will discuss in detail in the following
sections. The objects living in C2 are complex vectors of dimension
two and therefore SU(2) acts on them as 2 × 2 matrices. The matrices
(=linear transformations) acting on C2 are just the usual matrices we
already know for SU(2). In addition, we can examine how SU(2)
acts on C3. There is a well defined framework for constructing such
representations and as a result, SU(2) acts on complex vectors of
dimension three as 3 × 3 matrices. For example, a basis for the SU(2)
generators on C3 is given by7272 We will learn later in this chapter how

to derive these. At this point just take
notice that it is possible.
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J1 =
1√
2

⎛
⎜⎝0 1 0

1 0 1
0 1 0

⎞
⎟⎠ , J2 =

1√
2

⎛
⎜⎝0 −i 0

i 0 −i
0 i 0

⎞
⎟⎠ , J3 =

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠ .

(3.87)
As usual, we can then compute SU(2) matrices in this represen-

tation by putting linear combinations of these generators into the
exponential function.

One can go on and inspect how SU(2) acts on higher dimensional
vectors. This can be quite confusing and it would be better to call73 73 In an early draft version of this book

the group was consequently called S3.
Unfortunately, such a non-standard
name makes it hard for beginners to
dive deeper into the subject using the
standard textbooks.

this group S3 instead of SU(2), because usually SU(2) is defined as
the set of complex 2 × 2 (!) matrices satisfying (Eq. 3.33)

U†U = 1 and det(U) = 1 (3.88)

and now we write SU(2) as 3 × 3 matrices. Therefore one must al-
ways keep in mind that we mean the abstract group, instead of the
2 × 2 definition, when we talk about higher dimensional representa-
tion of SU(2) or any other group.

Typically a group is defined in the first place by a representation.
For example, for SU(2) we started with 2 × 2 matrices. This enables
us to study the group properties concretely, as we did in the preced-
ing chapters. After this initial study it’s often more helpful to regard
the group as an abstract group74, because it’s possible to find other, 74 For SU(2) this means using S3.

useful representations of the group.

Before we move on to examples we need to define some abstract,
but useful, notions. These notions will clarify the hierarchy of rep-
resentations, because not every possible representation is equally
fundamental.

The first notion we want to talk about is similarity transforma-

tion. Given a matrix D and an invertible75 matrix S then a transfor- 75 A matrix S is called invertible, if
there exists a matrix T, such that
ST = TS = 1. The inverse matrix is
usually denoted S−1.

mation of the form

R → R′ = S−1RS (3.89)

is called a similarity transformation. The usefulness of this kind of
transformation in this context lies in the fact that if we have a rep-
resentation R(G) of a group G, then S−1RS is also a representation.
This follows directly from the definition of a representation: Suppose
we have two group elements g1, g2 and a map R: G ⇒ GL(V), i.e.
R(g1) and R(g2). This is a representation if

R(g1)R(g2) = R(g1g2) (3.90)
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If we now look at the similarity transformation of the representa-
tion

S−1R(g1) SS−1︸ ︷︷ ︸
=1

R(g2)S = S−1R(g1)R(g2)S = S−1R(g1g2)S (3.91)

we see that this is a representation, too. Speaking colloquially, this
means that if we have a representation, we can transform its elements
wildly with literally any non-singular matrix S to get nicer matrices.

The next notion we want to introduce is invariant subspace. If
we have a representation R of a group G on a vector space V we call
V′ ⊆ V an invariant subspace if for76 v ∈ V′ we have R(g)v ∈ V′76 Of course v ∈ V, too. The vector

space V ′ must be part of the vector
space V, which is mathematically
denoted by V ′ ⊆ V. In other words this
means that every element of V′ is at the
same time an element of V.

for all g ∈ G. This means, if we have a vector in the subspace V′

and we act on it with arbitrary group elements, the transformed
vector will always be again part of the subspace V′. If we find such
an invariant subspace we can define a representation R′ of G on V′,
called a subrepresentation of R, by

R′(g)v = R(g)v (3.92)

for all v ∈ V′. Therefore, one is led to the thought that the represen-
tation R, we talked about in the first place, is not fundamental, but a
composite of smaller building blocks, called subrepresentations.

This leads us to the very important notion of an irreducible rep-

resentation. An irreducible representation is a representation of a
group G on a vector space V that has no invariant subspaces besides
0 and V itself. Such representations can be thought of as truly fun-
damental, because they are not made up by smaller representations.
The irreducible representations of a group are the building blocks
from which we can build up all other representations. There is an-
other way to think about irreducible representation: A irreducible
representation cannot be rewritten, using a similarity transforma-
tion, in block diagonal form. In contrast to a reducible representation,
which can be rewritten in block-diagonal form by similarity trans-
formations. This notion is important because nature uses irreducible
representations77 to describe elementary particles. We will see later77 What else?

that the behaviour of elementary particles under transformations is
described by irreducible representations of the corresponding sym-
metry group.

There are many possible representations78 for each group, how do78 For example we already know two
different representations for rotations
in two-dimensions. One using complex
numbers and one using 2 × 2 matrices.
Both are representations of S1 as a
group.

we know which one to choose to describe nature? There is an idea
that is based on the Casimir elements. A Casimir element C is build
from generators of the Lie algebra and its defining feature is that it
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commutes with every generator X of the group

[C, X] = 0. (3.93)

What does this mean? A famous Lemma, called Schur’s Lemma79, 79 A basic result of group theory, which
you can look up in any book about
group theory.

tells us that if we have an irreducible representation R : g → GL(V),
any linear operator T : V → V that commutes with all operators
R(X) must be a scalar multiple of the identity operator. Therefore,
the Casimir elements give us linear operators with constant values
for each representation. As we will see, these values provide us with
a way of labelling representations naturally.80 We can then start to 80 This will become much clearer as

soon as we look at an example.investigate the irreducible representations, starting with the represen-
tation with the lowest possible scalar value for the Casimir element.

Is there anything we can say about the vector space V mentioned
in the definition of a representation above? The definition states
that a representation is a map from the abstract group to the space
of linear operators on a vector space. Now, from linear algebra we
know that the eigenvectors of a linear operator always form a basis
for the vector space. We can use this to inspect the vector space. For
any Lie group, one or more of the generators of a Lie group can be
diagonalized81 using similarity transformations and we will use these

81 The set of diagonal generators is
called Cartan subalgebra, and the
corresponding generators Cartan gen-
erators. These generators play a big
role in quantum field theory, because
the eigenvalues of the Cartan genera-
tors are used to give charge labels to
elementary particles. For example, to
derive quantum chromodynamics, we
use the group SU(3), as we will see
later, and there are two Cartan gen-
erators. Therefore, each particle that
interacts via chromodynamics, carries
two charge labels. Conventionally in-
stead of writing two numbers, one uses
the words red, blue, green, and calls the
corresponding charge colour. Analo-
gous, the theory of weak interactions
uses the group SU(2), which has only
one Cartan generator. Therefore, each
particle is labelled by the corresponding
eigenvalues of this Cartan generator.

diagonalized generators to get a basis of our vector space.
We will now start deriving the irreducible representations of the

Lie algebra of SU(2) because, as we will see, the Lie algebra of the
Lorentz group can be thought of as two copies of the SU(2) algebra.
The Lorentz group is part of the Poincare group and we will talk
about these groups in this order.

3.6 SU(2)

We used in Sec. 3.4.3 specific matrices (=a specific representation) to
identify how the generators of SU(2) behave, when put into the Lie
bracket82. We can use this knowledge to find further representations. 82 Recall that this is what we use to

define the Lie algebra of a group in
abstract terms. The final result was
Eq. 3.83.

We will arrive again at the representation we started with, which
means the set of unitary 2× matrices with unit determinant and are
then able to see that it is just one special case. Before we are going
to tackle this task, we want to take a moment to think about what
representations we can expect.

3.6.1 The Finite-dimensional Irreducible Representations

of SU(2)

To learn something about what finite-dimensional, irreducible repre-
sentations of SU(2) are possible, we define new operators from the
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ones we used in Sec. 3.4.3, by linear combination8383 We can always diagonalize one of the
generators. Following the convention
we choose J3 as diagonal and therefore
yielding the basis vectors for our vector
space. Furthermore, it is conventional
to introduce the new operators J± in
the way we do here.

J+ =
1√
2
(J1 + i J2) (3.94)

J− =
1√
2
(J1 − i J2) (3.95)

These new operators obey the following commutation relations, as
you can check by using the commutator relations in Eq. 3.83

[J3, J±] = ±J± (3.96)

[J+, J−] = J3. (3.97)

If we now investigate how these operators act on an eigenvector v of
J3 with eigenvalue84 b we discover something remarkable:84 This means J3v = bv as explained in

appendix C.4.

J3(J±v) = J3(J±v) + J± J3v − J± J3v︸ ︷︷ ︸
=0

= J± J3v︸ ︷︷ ︸
=J±bv

+ J3 J±v − J± J3v︸ ︷︷ ︸
=[J3,J± ]v

=︸︷︷︸
Eq. 3.96

(b ± 1)J±v (3.98)

We conclude that J±v is again an eigenvector, let’s call him w, of J3

with eigenvalue (b ± 1):

J3w = (b ± 1)w with w = J±v. (3.99)

The operators J− and J+ are called raising and lowering or ladder

operators. We can construct more and more eigenvectors of J3 using
the operators the ladder operators J± repeatedly. This process must
come to an end, because eigenvectors with different eigenvalues are
linearly independent and we are dealing with finite-dimensional
representations. This means that the corresponding vector space is
finite-dimensional and therefore we can only find a finite number of
linearly independent vectors.

We conclude there must be an eigenvector with a maximum eigen-
value vmax. After a finite number N of applications of J+ we reach
the maximum eigenvector vmax

vmax = JN
+ v (3.100)

We have
J+vmax = 0, (3.101)
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because vmax is, by definition, the eigenvector with the highest eigen-
value. We call the maximum eigenvalue j := b + N. The same must
be true for the other direction: There must be an eigenvector with
minimum eigenvalue vmin for which the following relation holds

J−vmin = 0 (3.102)

Let us say we reach the minimum after operating M times with J− on
vmax

vmin = JM− vmax. (3.103)

Therefore, vmin has eigenvalue j-M. To go further we need to know
how exactly J± acts on eigenvectors. The computation above shows
that J−vk is, in general, a scalar multiplied by an eigenvector with
eigenvalue k − 1:

J−vk = αkvk−1. (3.104)

If we inspect in detail how J− acts on vmax we get85 the general rule 85 See, for example, page 90 in Matthew
Robinson. Symmetry and the Standard
Model. Springer, 1st edition, August
2011. ISBN 978-1-4419-8267-4

for the scalar factor

αj−k =
1√
2

√
(2j − k)(k + 1) (3.105)

Take note that this scalar factor becomes zero for k = 2j and there-
fore, we have reached the end of the ladder after 2j steps if we start at
the top. Therefore vmin has eigenvalue j − 2j = −j. We conclude that
we have in general 2j + 1 eigenstates with eigenvalues

{−j,−j + 1, . . . , j − 1, j} (3.106)

This is only possible if j is an integer or an half-integer86. Now we 86 Try it with other fractions if you don’t
believe this!know that our vector space V has 2j + 1 dimensions87, because we
87 See, for example, page 189 in Nadir
Jeevanjee. An Introduction to Tensors and
Group Theory for Physicists. Birkhaeuser,
1st edition, August 2011. ISBN 978-
0817647148

have 2j + 1 linearly independent eigenvectors. Those eigenvectors
of J3 span the complete vector space V because J1 and J2 can be ex-
pressed in terms of J+ and J− and therefore take any linear combina-
tion ∑i aivi into a possibly different linear combination ∑i bivi, with
scalar factors ai, bi. Therefore, the span of the eigenvectors of J3 is
a non-zero invariant subspace of V and because we are looking for
irreducible representations they span the complete vector space V.

We can use the construction above to define representations of
SU(2) on a vector space Vj with 2j + 1 dimensions and basis given
by the eigenvectors vk of J3. Furthermore, it’s possible to show that
every irreducible representation of SU(2) must be equivalent to one
of these88. 88 See page 190 in: Nadir Jeevanjee. An

Introduction to Tensors and Group Theory
for Physicists. Birkhaeuser, 1st edition,
August 2011. ISBN 978-0817647148
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3.6.2 The Casimir Operator of SU(2)

As described in Sec. 3.5, we can naturally label representations by
using the Casimir operators89 of the group. SU(2) has exactly one89 Recall that Casimir operators are

defined as operators C, built from the
generators of the group that commute
with every generator X of the group:
[C, X] = 0.

Casimir operator:

J2 := (J1)
2 + (J2)

2 + (J3)
2 (3.107)

that fulfils the defining condition:

[J2, Ji] = 0. (3.108)

We can re-express J2 in terms of J± by using the definition of J± in
Eq. 3.95 and Eq. 3.94:

J2 = J+ J− + J− J+ + (J3)
2

=
1
2
(J1 + i J2)(J1 − i J2) +

1
2
(J1 − i J2)(J1 + i J2) + (J3)

2

=
1
2

(
(J1)

2 − i J1 J2 + i J2 J1 + (J2)
2
)
+

1
2

(
(J1)

2 + i J1 J2 − i J2 J1 + (J2)
2
)

+ (J3)
2

= (J1)
2 + (J2)

2 + (J3)
2 � (3.109)

If we now use90

90 These are just the normalization
constants. If we act with J± onto a
normalized state, the resulting state
will in general not be normalized, too.
Nevertheless, in physics we always
prefer working with normalized states,
for reasons that will become clear in the
following chapters. The derivation is a
bit tedious, but simply starts with

J±vk = cvk±1 where c is the nor-
malization constant in question. The
complete computation can be found
in most books about quantum me-
chanics in the chapter about angular
momentum and angular momentum
ladder operators. If this is new to you,
do not waste too much time here be-
cause the result of this section is not too
important for everything that follows.

J+vk =
1√
2

√
(j + k + 1)(j − k)vk+1 (3.110)

and
J−vk =

1√
2

√
(j + k)(j − k + 1)vk−1 (3.111)

we can compute the fixed scalar value for each representation:

J2vk =

(
1
2
(J+ J− + J− J+) + (J3)

2
)

vk

= J+ J−vk + J− J+vk + k2vk

= J+
1√
2

√
(j + k)(j − k + 1)vk−1 + J−

1√
2

√
(j + k + 1)(j − k)vk+1 + k2vk

=
1√
2

√
(j + k)(j − k + 1)J+vk−1 +

1√
2

√
(j + k + 1)(j − k)J−vk+1 + k2vk

=
1√
2

√
(j + k)(j − k + 1)

1√
2

√
(j + (k − 1) + 1)(j − (k − 1))vk

+
1√
2

√
(j + k + 1)(j − k)

1√
2

√
(j + (k + 1))(j − (k + 1) + 1)vk + k2vk

=
1
2
(j + k)(j − k + 1) +

1
2
(j − k)(j + k + 1)vk + k2vk

= (j2 + j)vk = j(j + 1)vk (3.112)

Now we look at specific examples for the representations. We start,
of course, with the lowest dimensional representations.
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3.6.3 The Representation of SU(2) in one Dimension

The lowest possible value for j is zero. In this case our representation
acts on a 2j + 1 = 2 · 0 + 1 = 1 dimensional vector space. We can
see that this representation is trivial, because the only 1 × 1 matrices
fulfilling the commutation relations of the SU(2) Lie algebra

[Jl , Jm] = iεlmn Jn, are trivially 0. If we exponentiate the generator 0
we always get the transformation U = e0 = 1 which changes nothing
at all.

3.6.4 The Representation of SU(2) in two Dimensions

We now take a look at the next lowest possible value j = 1
2 . This

representation is 2 1
2 + 1 = 2 dimensional. The generator J3 has

eigenvalues 1
2 and 1

2 − 1 = − 1
2 , as can be seen from Eq. 3.106 and is

therefore given by

J3 =
1
2

(
1 0
0 −1

)
, (3.113)

because we choose J3 to be the diagonal generator91. The eigenvec- 91 For SU(2) only one generator is
diagonal, because of the commutation
relations. Furthermore, remember that
we are able to transform the generators
using similarity transformations and
could therefore easily make another
generator diagonal.

tors corresponding to the eigenvalues + 1
2 ,− 1

2 are:

v 1
2
=

(
1
0

)
and v− 1

2
=

(
0
1

)
. (3.114)

We can find the explicit matrix form of the other two generators of
SU(2) in this basis by rewriting them using the ladder operators

J1 =
1√
2
(J− + J+) (3.115)

J2 =
i√
2
(J− − J+), (3.116)

which we get directly from inverting the definitions of J± in Eq. 3.95
and Eq. 3.94. Recall that a basis four the vector space of this represen-
tation is given by the eigenvectors of J3 and we therefore express the
generators J1 and J2 in this basis. In other words: In this basis J1 and
J2 are defined by their action on the eigenvectors of J3. We compute

J1v 1
2
=

1√
2
(J− + J+)v 1

2
=

1√
2
(J−v 1

2
+ J+v 1

2︸ ︷︷ ︸
=0

) =
1√
2

J−v 1
2
=

1
2

v− 1
2
,

(3.117)
where we used that 1

2 is already the maximum value for v 1
2

and

we cannot go higher. The factor 1
2 is the scalar factor we get from

Eq. 3.105. Similarly we get

J1v− 1
2
=

1√
2
(J− + J+)v− 1

2
=

1
2

v 1
2

(3.118)
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Written in matrix form, where our basis is given by v 1
2
= (1, 0)T and

v− 1
2
= (0, 1)T :

J1 =
1
2

(
0 1
1 0

)
. (3.119)

You can check that this matrix has the action on the basis vectors we
derived above92. In the same way, we find92 We derived in Eq. 3.117:

J1v 1
2
= 1

2 v− 1
2

. Using the explicit
matrix form of J1 we get

J1v 1
2
= 1

2

(
0 1
1 0

)(
1
0

)
= 1

2

(
0
1

)
=

1
2 v− 1

2
�.

J2 =
1
2

(
0 −i
i 0

)
. (3.120)

These are the same generators Ji = 1
2 σi, with the Pauli matrices σi,

we found while investigating Lie algebra of SU(2) at the beginning
of this chapter (Eq. 3.81). We can now see that the representation we
used there was exactly this two dimensional representation. Never-
theless, there are many more, for example, in three-dimensions as we
will see in the next section93.93 Again, don’t get confused by the

name SU(2), which we originally de-
fined as the set of unitary 2 × 2 matrices
with unit determinant. Here we mean
the abstract group, defined by the cor-
responding manifold S3 and we are
going to talk about higher dimensional
representations of this group, which
result in, for example, a representation
with 3 × 3 matrices. It would help if
we could give this structure a different
name (For example, using the name of
the corresponding manifold S3), but
unfortunately SU(2) is the conventional
name.

3.6.5 The Representation of SU(2) in three Dimensions

Following the same procedure94 as in two-dimensions, we find:

94 We start again with the diagonal
generator J3, which we can write down
immediately because we know its
eigenvalues (1, 0,−1). Afterwards,
the other two generators J1, J2 can be
derived by their action, where we again
use that we can write them in terms of
J±, on the eigenvectors of J3.

J1 =
1√
2

⎛
⎜⎝0 1 0

1 0 1
0 1 0

⎞
⎟⎠ , J2 =

1√
2

⎛
⎜⎝0 −i 0

i 0 −i
0 i 0

⎞
⎟⎠ , J3 =

⎛
⎜⎝1 0 0

0 −1 0
0 0 0

⎞
⎟⎠

(3.121)
This is the representation of the generators of SU(2) in three di-
mensions. If you’re interested, you can derive the corresponding 
representation for the group elements of SU(2) in three dimensions, 
by putting these generators into the exponential function. We will 
not go any further and deriving even higher dimensional represen-
tations.

"To arrive at abstraction, it is always necessary to begin with a concrete
reality . . . You must always start with something. Afterward you can
remove all traces of reality."

95 As quoted in Robert S. Root-Bernstein
and Michele M. Root-Bernstein. Sparks
of Genius. Mariner Books, 1st edition, 8
2001. ISBN 9780618127450

- Pablo Picasso95




