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The linear stability of pipe flow implies that only perturbations of sufficient strength will trigger the
transition to turbulence. In order to determine this threshold in perturbation amplitude we study the edge
of chaos which separates perturbations that decay towards the laminar profile and perturbations that
trigger turbulence. Using the lifetime as an indicator and methods developed in Skufca et al., Phys. Rev.
Lett. 96, 174101 (2006), we show that superimposed on an overall 1=Re scaling predicted and studied
previously there are small, nonmonotonic variations reflecting folds in the edge of chaos. By tracing the
motion in the edge we find that it is formed by the stable manifold of a unique flow field that is dominated
by a pair of downstream vortices, asymmetrically placed towards the wall. The flow field that generates
the edge of chaos shows intrinsic chaotic dynamics.
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The transition to turbulence in pipe flow has puzzled
scientists for more than 100 years because, in contrast to
many other flow situations, the laminar profile is stable for
all Reynolds numbers and there is no linear instability that
could trigger the transition [1–4]. Many experiments have
therefore focused on the determination of the ‘‘double
threshold’’ [5–7] in Reynolds number and perturbation
amplitude that has to be crossed in order to trigger turbu-
lence. Experimental studies quote a variety of values for
the Reynolds numbers that have to be exceeded before
sustained turbulence can be observed [3,6]. They also
support a 1=Re scaling for the threshold amplitude [8].
On the theoretical side, numerical studies have shown that
for sufficiently high Reynolds numbers a variety of 3D
persistent flow structures of traveling wave type appear in
saddle-node bifurcations. For instance, six symmetrically
arranged downstream vortices appear near Re � 1250 [9–
11]. The critical amplitude has been estimated from an
analysis of the non-normal amplification combined with an
asymptotic analysis of the equations of motion; it gives a
scaling of the critical amplitude like 1=Re for large
Reynolds numbers [7,12]. For simple models of shear
flows, more detailed studies have been possible [13–15].
In particular, it has been possible to track the dynamics at
the edge of chaos which separates initial conditions that
decay directly to the laminar profile and those that swing
up to turbulent dynamics [16]. We here apply these ideas to
pipe flow, thus contributing to the elucidation of the key
structures in the state space of pipe flow that are respon-
sible for the transition between laminar and turbulent
dynamics. The study is part of the dynamical system
scenario advocated for the transition [4,17] and can be
related to similar observations in other shear flows, such
as plane Poiseuille flow [18,19] and plane Couette flow.

In order to identify the border between laminar and
turbulent behavior we use the lifetime of perturbations as
an indicator [20,21]. The lifetime of a perturbation is

defined as the time it takes to come sufficiently close to
the laminar profile where ‘‘sufficiently close’’ is defined by
the requirement that the future evolution is governed by the
linearized equations of motion, which guarantees that it
will asymptotically decay. Within the dynamical system
picture of the transition this defines a target region around
the point in state space that corresponds to the laminar
profile. For the initial conditions we mimic the experimen-
tal protocol, where the type of perturbation (jets, blowing
and suction, periodic modulation, etc.) is predetermined by
the setup and where the strength of the perturbation is
usually controlled with one parameter. We therefore pick
a spatial structure for the velocity field and modify its
amplitude, thereby scanning the state space along a ray.
The perturbation we consider here is a pair of vortices as in
the optimally growing modes studied by Zikanov [22],
modulated in streamwise direction by applying a
z-dependent tilt in order to break translational symmetry:
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where uZik is Zikanov’s mode and L is the length of the
computation domain used in our direct numerical simula-
tion. In addition to initial conditions generated from
Zikanov modes we also used initial conditions taken
from a turbulent run at higher Re, as in the entry for the
March 2006 Gallery of Nonlinear Images [23], and we
obtained convergence to the same dynamics.

For the numerical simulations were used a pseudospec-
tral code with about 1:2� 105 degrees of freedom as in
[24]. The code was verified by reproducing linear theory,
turbulent statistics at higher Reynolds numbers, and the
nonlinear evolution of Zikanov modes [22]. The length of
the computational domain is L � 10R and times are given
in units of R=Ucl, where R is the radius of the pipe and Ucl

the center velocity of the parabolic profile with the same
mean flux. For the current study we note that a turbulent

PRL 99, 034502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
20 JULY 2007

0031-9007=07=99(3)=034502(4) 034502-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.034502


run up to an observation time of 1000 R=Ucl takes almost
24 hours on an 1.5 GHz IBM Power5 processor. More than
4000 integration runs have been carried out.

A typical variation of the lifetimes with amplitude of the
perturbation at fixed Re is shown in Fig. 1. In regions with
short lifetimes the flow relaxes quickly to the laminar
profile. Towards the boundaries of these regions the life-
times increase quickly and reach plateaus at the maximal
integration time. Magnifications of the plateau regions
show chaotic and unpredictable variations of lifetimes
[21]. The cliff structure in the lifetimes suggested the
name edge of chaos for the points at the boundary between
regions of smooth and of unbounded chaotic lifetime var-
iations, respectively [16].

The steep increase in lifetimes allows for an accurate
tracking of the edge of chaos under variations of Reynolds
number, see Fig. 2. The edge of chaos lies in an interval in
amplitude bounded by one initial condition which decays
towards the laminar profile within the observation time of
1000 units and one that swings up to the turbulent flow.
That the upper trajectory becomes turbulent is also verified
by monitoring its energy content. The widths of the inter-
vals are smaller than the size of the symbols. For Fig. 2 the
amplitude has been multiplied by Re in order to take out
the asymptotic 1=Re scaling [8,12]. In view of the low
Reynolds numbers and limited range accessible in the
numerical study, the data are compatible with the expected
scaling. However, as emphasized by the insets in Fig. 2, the
boundary clearly shows kinks, for instance near Re �
2250, or jumps (near Re � 3800) on top of the global
1=Re scaling.

The much finer scan of the lifetimes in the amplitude-
Reynolds number plane near Re � 3800 in Fig. 3 shows

that these structures are due to folds in the edge of chaos.
The two data points to the left and right of the jump in the
inset in Fig. 2 are shown as open squares at Re � 3840 and
Re � 3875. The scan at the parameter points indicated
reveals regions with long lifetimes, whose boundary can
be connected to form the fingers shown by the continuous
curve that has been drawn to guide the eye. A kink can then
result from an unresolved small fold. This picture is con-
sistent with observations in low-dimensional models where
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FIG. 1 (color online). Lifetime T as a function of scaling
amplitude A0 �
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p
at a Reynolds number of Re � 3875.

The energy E0 is measured in units of the kinetic energy Elam

of the laminar profile generating the same mean downstream
velocity. Edge points clearly separate regions where the trajec-
tory turns turbulent and the lifetime reaches the numerical cutoff
from regions where trajectories directly decay.
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FIG. 2 (color online). Minimal critical amplitude Ac �
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Ec
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required to trigger turbulence times Re as a function of Re. On
top of the proposed 1=Re scaling (straight horizontal line)
several modulations can be observed. The insets show magnifi-
cations of a ‘‘kink’’ at Re � 2200 (left) and a ‘‘jump’’ at Re �
3800 (right).
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FIG. 3 (color online). Lifetime landscape in the A0-Re plane.
Blue filled circles indicate transition to turbulence and red open
circles immediate decay. The boundary of the domain of initial
conditions that connect to the turbulent ‘‘state’’ (shaded) is
indicated by the folded back line. The scaling of the critical
amplitude Ac from the inset of Fig. 2 is presented as a black
dashed line. The jump in Ac from values near 0.0398 at Re �
3840 to 0.0380 at Re � 3875 (black open squares) can be
directly related to the folds in the stability border.
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the variations can be studied with much higher resolution
[13–15].

The monitoring of lifetimes can also be used to track the
dynamics in the edge of chaos. The studies in [16] suggest
that all edge points at a given Reynolds number are con-
nected and lie on the stable manifold of an invariant object
that resides in state space between the laminar flow and the
turbulent dynamics. To find this invariant object, we repeat
the steps from [16]: first, find the amplitude for two initial
conditions on either side of the edge of chaos, i.e., one
which decays towards the laminar profile and one that
swings up to the turbulent flow. These two trajectories
shadow one that stays in the edge for all times. After about
200 time units we refine the approximation and determine a
new pair of trajectories close to the edge. The pair of initial
conditions is found along the ray connecting the approxi-
mated state from the previous step (the one escaping to the
turbulence) and the laminar profile. Four refinements and
the exponential separation in energy within a pair are
shown in Fig. 4. The inset shows that we keep their
separation below 10�8 in energy. As long as the direction
in state space defined by the amplitude scaling is not
tangent to the edge manifold this technique can be used
to obtain arbitrarily long traces of a state that neither
decays nor swings up to the turbulence: this trajectory lives
in the edge of chaos and should approach the invariant state
embedded in the edge of chaos: the edge state.

The edge state is a relative attractor: it is attracting for
initial conditions confined to the edge of chaos, but repel-
ling perpendicular to it. In its simplest form the invariant
state is a hyperbolic fixed point and the edge is its stable
manifold. Numerical studies of the low-dimensional shear
flow models and of chaotic maps show that the edge state
can also be a periodic orbit or a chaotic relative attractor.

The continuing modulations in the energy trace in Fig. 4
indicate that the dynamics constrained within the edge of
chaos does not relax to a stationary or simply periodic
state, even when followed up to observation times of
more than 2000. Figure 5 shows a cross section of the
flow field averaged over a time interval of 200 to highlight
large scale features. The global structure of the flow field is
simple and dominated by two high-speed streaks and a
corresponding pair of strong counter-rotating vortices
which are located off center. It shows no discrete rotational
symmetry like the traveling waves studied in [9,10] or the
optimal amplification mode in [22].

The side view of an instantaneous snapshot of the edge
state in Fig. 5 shows no periodicity in the isosurfaces of the
downstream vorticity, again supporting the conclusion that
the dynamics in the edge does not settle down to a simple
periodic or quasiperiodic traveling wave. The small scale
modulations persist and reflect an intrinsically chaotic
dynamics of the vortical structures in the center region.
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FIG. 4 (color online). Energy traces of trajectories bounding
the edge of chaos. The continuous lines (a)–(d) show initial
conditions that swing up to the turbulent flow and belong to the
upper end of the interval. For the last control step, starting at
t � 1500, also the decaying trajectory (e) from the lower end of
the interval is presented as a dotted line. Control steps corre-
sponding to lines (b)–(d) are indicated by arrows. Trajectory (a)
starts at t � 900. The inset shows the energy norm of the
difference between the two bounding trajectories: the uniform
expansion for all segments shows that they all belong to the same
invariant state. In absolute values the energy of the difference
increase from initially 10�12 to at most 10�8 during one iteration
step.
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FIG. 5 (color online). The edge state at Re � 2875. Top: time-
averaged cross section perpendicular to the pipe axis. The down-
stream velocity relative to the parabolic laminar profile is shown
in color ranging form red (fast) to blue (slow). In-plane velocity
components are indicated by vectors. Bottom: the instantaneous
flow field along the axis. Isosurfaces of the downstream velocity
(red) indicate the position of the high-speed streaks. Isosurfaces
of the downstream vorticity (positive in yellow and negative in
green) highlight vortical structures in the center region. The fluid
flows from left to right.
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Pipe flow in a domain that is periodically continued in
the axial direction has two continuous symmetries of azi-
muthal and axial translations. Shifted and rotated initial
conditions will then give shifted and rotated edge states.
Except for these two continuous symmetries, the same
edge state is obtained for different initial conditions. It is
intriguing that independent of the original velocity field the
same relative attractor is reached and that this relative
attractor is dominated by two downstream vortices.

Upon variation of the Reynolds number over the range
2160–4000 studied here, the overall appearance of the
edge state does not change much. We did not detect any
bifurcations or transitions between flow topologies, as in
the low-dimensional model [16]. Energetically, the edge
state is clearly separated from both the laminar state (here
the energy of the disturbance vanishes exactly) and also
from the turbulent state (cf. Fig. 4). However, in view of the
transient nature of the turbulent state [24], the stable mani-
fold of the laminar profile and the stable manifold of the
edge state have to intermingle tightly in the region with
turbulent dynamics.

The form and topology of the edge state suggests that it
can be induced experimentally by removing fluid at one
point near the wall and by injecting fluid at two points to
the left and right of the removal point. This perturbation
will then reach into the fluid, forming a pair of vortices not
dissimilar to the optimally amplifying ones of Zikanov
[22]. The vortices will then draw energy from the base
flow and induce high- and low-speed streaks in the down-
stream velocity. As in the case of the self-sustained cycle
for near wall turbulence [25,26], one can then anticipate a
shear flow instability of the streak arrangement. A direct
visualization of this instability is difficult because of the
chaotic dynamics of the edge state, but the exponential
growth in energy supports the assumption of an instability.
Further evolution of the velocity fields then shows that
once the energy level of the fully developed turbulence is
reached, many more vortices appear, and the velocity field
shows more signatures of the symmetric vortex arrange-
ments [11,27,28]. It is satisfying to see that the concepts
developed in dynamical system theory and verified on low-
dimensional models can be transferred so directly to the
full, spatially extended systems and that they continue to
provide insights into dynamics of this old and puzzling
problem.
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Forschungsgemeinschaft for support.
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