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1 Turbulenzübergang in linear stabilen Scherströmungen

Man soll öfters dasjenige untersuchen,

was von den Menschen meist vergessen wird,

wo sie nicht hinsehen, und was so sehr

als bekannt angenommen wird,

daß es keiner Untersuchung

mehr wert geachtet wird.

G. C. Lichtenberg, KA 13[60]

1.1 Einleitung

Die Entstehung der Turbulenz bei den in der Praxis häufig auftretenden Scherströmungen

gilt als eines der großen noch ungelösten Probleme der klassischen Physik. Obgleich die Be-

wegungsgleichung eines inkompressiblen Fluids bereits seit mehr als hundertfünfzig Jahren

bekannt ist, ist eine vollständige analytische Lösung dieser Gleichung bisher nur in wenigen

Fällen gelungen. Man versucht in der Regel mit Hilfe experimenteller oder numerischer

Untersuchungen die wesentlichen Elemente der untersuchten Dynamik zu ermitteln, um

die Bewegungsgleichung entsprechend vereinfachen zu können. Das Phänomen des Tur-

bulenzübergangs ist jedoch so komplex, daß nicht klar ist, wie die Dynamik vereinfacht

werden kann. Wird eine Scherströmung turbulent, findet eine chaotische, zeitabhängige Dy-

namik statt. Selten ist die turbulente Strömung zweidimensional. In der Regel ist sie drei-

dimensional, und sehr viele unterschiedliche Längen- und Zeitskalen sind an ihr beteiligt.

Nur in wenigen Fällen war man bisher in der Lage, die wesentlichen Elemente dieses

Turbulenzübergangs zu identifizieren. Dabei wäre ein tiefergehendes Verständnis dieses

Übergangs von großem praktischen Interesse, könnte es doch neue Wege zur Kontrolle des

Übergangs aufzeigen.

Einer der Mechanismen, die einen Übergang hervorrufen, ist das Auftreten einer linearen

Instabilität des laminaren Strömungsprofils [20, 35, 61]. Tritt diese auf, entstehen neue,

häufig stabile Strömungsstrukturen, die wiederum instabil werden und unter Umständen

einen chaotischen Attraktor generieren können [73]. In der Rayleigh-Bénard Konvektion,

bei der eine Flüssigkeitsschicht durch einen Temperaturgradienten getrieben wird, oder in der
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Ebenen Poiseuille-Strömung, der druckgetriebenen Strömung zwischen zwei unendlich aus-

gedehnten, parallelen Platten, treten solche Instabilitäten auf. So wird die Ebene Poiseuille-

Strömung linear instabil, wenn die Reynoldszahl einen Wert von ������ überschreitet [56,

73, 74].1 Eine solche Analyse ist erfolgreich, wenn die relevanten Phasenraumstrukturen aus

dem laminaren Profil hervorgehen. Doch bereits die Ebene Poiseuille-Strömung zeigt die

Grenzen dieser Untersuchung auf. Ein Turbulenzübergang ist bereits bei einer Reynoldszahl

von ���� zu beobachten, wenn die Störung eine endliche Amplitude besitzt [51]. Zudem

gibt es eine Reihe von Systemen, die nicht linear instabil werden und die dennoch einen

Übergang zur Turbulenz zeigen [9, 31, 80]. Hierzu gehört die Hagen-Poiseuille-Strömung,

bei der das Fluid mit einem konstanten Druckgradienten durch ein Rohr getrieben wird

[14, 35, 61, 102, 110], wie auch die Ebene Couette-Strömung, bei der ein Fluid zwischen

zwei unendlich ausgedehnten, parallelen Platten geschert wird. Aufgrund ihrer einfachen

Geometrie ist die Ebene Couette-Strömung der Hauptgegenstand der vorliegenden Arbeit.

Ausgangspunkt dieser Arbeit ist die Beobachtung, daß es in diesen beiden Systemen im

Gegensatz zu linear instabilen Systemen keine scharfe Grenze zwischen jenen Bereichen

gibt, in denen alle Störungen des laminaren Profils zerfallen, und denjenigen, in denen ein

Übergang zu beobachten ist [9, 15, 31, 96]. Vielmehr erscheint diese Grenze diffus und stark

von der eingebrachten Störung und ihrer Amplitude abzuhängen. In der Ebenen Couette-

Strömung zeigen numerische Untersuchungen, daß die nicht zerfallenden Störungen in ein

bestimmtes Phasenraumgebiet relaxieren. In diesem Gebiet laufen nahe beieinanderliegende

Zustände exponentiell auseinander [95]. Es handelt sich jedoch nicht um einen chaotischen

Attraktor, denn die Störungen haben fast alle eine endliche Lebensdauer. Es liegt nahe, diese

langlebigen, turbulenten Zustände als chaotische Transienten zu interpretieren, die durch

einen chaotischen Repellor erzeugt werden. Ein chaotischer Repellor oder chaotischer Sat-

tel [15, 28, 36, 54, 59, 98, 99] unterscheidet sich von einem chaotischen Attraktor darin, daß

er über eine instabile Mannigfaltigkeit verfügt. Über diese Mannigfaltigkeit verläßt jeder

Zustand den Repellor. Solange sich der Zustand auf dem Repellor befindet, weist seine

Dynamik allerdings dieselben Eigenschaften auf, wie sie bei einem chaotischen Attraktor

zu beobachten sind. Die Lebensdauern der auftauchenden chaotischen Transienten können

dabei unter Umständen bedeutend größer sein, als die zur Verfügung stehende Beobach-

1Die dimensionslose Reynoldszahl definiert sich aus einer charakteristischen Geschwindigkeit U , einer

charakteristischen Länge L und der kinematischen Viskosität � gemäß

Re �
U L

�

Die kritische Reynoldszahl von ������ bei der Ebenen Poiseuille-Strömung bezieht sich auf die mittlere

Strömungsgeschwindigkeit als charakteristische Geschwindigkeit und den Plattenabstand als charakteristische

Länge.
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tungszeit. Brosa machte ähnliche Beobachtungen, als er die Evolution von Störungen der

Hagen-Poiseuille-Strömung über einen längeren Zeitraum hinweg verfolgte [15]. Bereits

Crutchfield und Kaneko konnten zeigen [28], daß in nichtlinearen Systemen mit sehr vielen

Freiheitsgraden chaotische Transienten auftauchen können. Die von Crutchfield und Kaneko

beobachteten Lebensdauern wuchsen dabei schneller als exponentiell mit der Zahl der Frei-

heitsgrade an.

Der Ursprung dieses Repellors in der Ebenen Couette-Strömung konnte bisher noch nicht

geklärt werden. Hierzu ist es notwendig, nach Phasenraumstrukturen zu suchen, die nicht

mit dem laminaren Profil verbunden sind. In der Ebenen Couette-Strömung gelang es Na-

gata [68, 69], Busse und Clever [27] ein Paar von stationären Zuständen zu identifizieren, die

durch eine Sattel-Knoten Bifurkation entstehen. Die lineare Stabilitätsanalyse des Knotens

zeigt, daß dieser mehrere Hopf-Bifurkationen durchläuft. In der Umgebung dieses Zustan-

des wird daher ein ähnlicher Übergang wie in linear instabilen Systemen beobachtet: Ein

vormals stabiler Zustand verliert seine Stabilität und ein neuer, stabiler Zustand geht aus ihm

hervor, der weitere Bifurkationen durchläuft. Die Existenz des von Nagata, Busse und Clever

gefundenen Paares von Zuständen erklärt jedoch nicht den Übergang zur Turbulenz. Dieses

Sattel-Knoten Paar liegt in Gebieten des Phasenraums, die nur von entsprechend präparierten

Störungen erreicht werden können. Außerdem findet die turbulente Dynamik zufällig einge-

brachter Störungen erst bei deutlich höheren Reynoldszahlen und in anderen Gebieten des

Phasenraums statt.

Die Untersuchungen dieser Arbeit zeigen jedoch, daß noch weitere stationäre Zustände

existieren, die allerdings alle linear instabil sind. Einige von ihnen liegen jedoch in Ge-

bieten des Phasenraums, in denen auch die turbulente Dynamik beobachtet wird. Das

Studium der heteroklinen und homoklinen Flüsse in der Umgebung dieser Zustände deutet

an, wie der Turbulenzübergang in der Ebenen Couette-Strömung erfolgen könnte: Mit wach-

sender Reynoldszahl entstehen immer neue stationäre Zustände und neue Verbindungen.

Eine Störung des laminaren Profils wird von der stabilen Mannigfaltigkeit eines Zustandes

angezogen und gelangt so in das Netzwerk aus instabilen heteroklinen und homoklinen

Verbindungen. Diesem Netzwerk kann die Störung folgen, bis sie letztlich auf das laminare

Profil zurückfällt.

Die Situation ist vergleichbar mit dem Besucher des Raritätenkabinetts, dem Titelbild dieser

Arbeit: Keines der Ausstellungsstücke ist für sich allein in der Lage, einen Besucher ewig

zu fesseln. Letztlich wird jeder Gast irgendwann das Kabinett verlassen. Doch je mehr

interessante Objekte vorhanden sind, und je mehr der Besucher in der Lage ist, Verknüpfun-

gen, Gemeinsamkeiten und Beziehungen zwischen den einzelnen Gegenständen zu erken-

nen, desto länger wird er verweilen.
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Diese Arbeit gliedert sich in fünf Abschnitte: Nach einer Vorstellung der Ebenen Couette-

Strömung untersuche ich zunächst das Verhalten endlicher Störungen. Diese Experimente

dienen der Charakterisierung des Übergangs und dem Studium der Eigenschaften der tur-

bulenten Dynamik. Dann werden die Eigenschaften verschiedener stationärer Zustände un-

tersucht. Ihre unterschiedlichen Topologien werden diskutiert und die einzelnen Zustände

klassifiziert. Es werden zwei lineare Mechanismen vorgestellt, die an der Entstehung der

stationären Zustände beteiligt sind.

Die heteroklinen und homoklinen Flüsse in der Umgebung der Zustände werden untersucht,

die Bedeutung dieser Flüsse für die Entstehung von Turbulenz dargestellt und mit dem Ein-

fluß der von Nagata, Busse und Clever gefundenen Zustände verglichen.

Die Arbeit wird mit der Untersuchung des Turbulenzübergangs in einem niedrigdimensio-

nalen Modell einer linear stabilen Scherströmung abgeschlossen. In diesem Modell, das

ein ähnliches Übergangsverhalten wie die Ebene Couette-Strömung aufweist, wird der Re-

pellor durch periodische Bahnen aufgespannt. Mit Hilfe dieser periodischen Bahnen wird

versucht, die Entweichrate und der größte Lyapunov-Exponent des Repellors quantitativ zu

bestimmen.

1.2 Untersuchungen zum Turbulenzübergang

Experimentelle Untersuchungen zum Turbulenzübergang in der Ebenen Couette-Strömung

zeigen, daß der Übergang nicht mit einer bestimmten kritischen Reynoldszahl in Verbindung

gebracht werden kann. Die kritischen Reynoldszahlen, ab denen erste Übergänge beobachtet

wurden, hängen von der Art der verwendeten Störung ab und reichen von ��� bis ��� [1, 11,

13, 32, 34, 63, 101].2

Um das Auftreten dieser unterschiedlichen Werte genauer zu untersuchen, bestimmte ich in

Kapitel 4 die Lebensdauern unterschiedlicher finiter Störungen in Abhängigkeit ihrer Am-

plitude und der Reynoldszahl. Dabei definiert sich die Lebensdauer einer Störung als jene

Zeit, bis zu der die Geschwindigkeitskomponente des Fluids in wandnormaler Richtung nicht

unter einen Schwell-Wert gefallen ist. Da diese Geschwindigkeitskomponente die einzige ist,

die dem laminaren Grundprofil Energie entnehmen kann, zerfallen dann auch die anderen

beiden Geschwindigkeitskomponenten und die Störung verschwindet. Diese Untersuchun-

gen zeigen, daß es drei verschiedene Arten von Zuständen gibt: lineare Transienten, nichtli-

neare Transienten und turbulente Zustände. Während die transienten Zustände innerhalb der

Beobachtungszeit zerfallen, bleiben die turbulenten Zustände bis zum Ende der numerischen

2Im Gegensatz zur Ebenen Poiseuille-Strömung bezieht sich hier die Reynoldszahl auf die halbe Rela-

tivgeschwindigkeit der Platten und den halben Plattenabstand.
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Integration bestehen.

Darüberhinaus weisen die Lebensdauern eine extreme Abhängigkeit von der Art der An-

fangsbedingung auf. Selbst eine hohe Auflösung in der Amplitude oder der Reynolds-

zahl zeigt keine Glättung der funktionalen Abhängigkeit. Angesichts dieser sensitiven

Abhängigkeit von den Parametern ist es praktisch unmöglich eine Grenze zu bestimmen, bei

der diese langlebigen Zustände erstmals (als Funktion der Reynoldszahl) auftreten. Daher

erscheint es sinnvoller, den Turbulenzübergang mit einer statistisch definierten Transitions-

Reynoldszahl Retr in Verbindung zu bringen. Retr definiert sich als jene Reynoldszahl, ab

der die Hälfte der beobachteten Störungen für eine bestimmte Beobachtungszeit turbulent

bleibt. Eine solche statistische Definition schlugen bereits Darbyshire und Mullin für die

Untersuchung des Übergangs innerhalb einer Rohrströmung vor [31]. Bottin und Chaté grif-

fen diese Definition auf und bestimmten für die Ebene Couette-Strömung eine Transitions-

Reynoldszahl von Retr 	 ��� [11]. In dieser Arbeit wurde ein Wert von ���� �� bestimmt,

dabei lag die Beobachtungszeit bei ���� Zeiteinheiten. In ihrem Experiment konnten Bot-

tin und Chaté das System über einen Zeitraum von ����� Zeiteinheiten beobachten. Die

Verlängerung der Beobachtungszeit um einen Faktor � liefert lediglich eine vierprozentige

Verschiebung zu höheren Reynoldszahlen. Reduziert man die Beobachtungszeit auf ����

Zeiteinheiten, erhält man eine Transitions-Reynoldszahl, die zwischen ��� und ��� liegt und

die in noch stärkerem Maße von der Art der Anfangsbedingung abhängt.

Die nichtlinearen Transienten und die turbulenten Zustände unterscheiden sich nur in ihren

Lebensdauern voneinander. Sie gleichen sich in ihren statistischen Eigenschaften, die un-

abhängig von der Art der induzierten Störung sind. Dies läßt vermuten, daß der Übergang

zur Turbulenz in der Ebenen Couette-Strömung durch die Entstehung eines Repellors verur-

sacht wird. Dieser zieht endliche Störungen an, entläßt sie aber letztlich. Die Zeitskalen,

auf denen dieses geschieht, die Relaxationsrate und die Entweichrate, lassen sich numerisch

bestimmen.

Um zu bestimmen, wann erste turbulente Zustände bzw. nichtlineare Transienten auftreten

können, versuchte ich mit Hilfe von Kühl-Experimenten turbulente Zustände zu kleineren

Reynoldszahlen hin zu verfolgen. Bei diesen Experimenten wird zunächst ein turbulen-

ter Zustand bei einer Reynoldszahl oberhalb der Transitions-Reynoldszahl erzeugt. Danach

wird die Reynoldszahl langsam reduziert, was einer zeitabhängigen Änderung der Viskosität

entspricht. Im Gegensatz zu den Quench-Experimenten von Bottin und Chaté [11], bei denen

die Reynoldszahl instantan reduziert wird, berücksichtigen die Kühl-Experimente, daß der

turbulente Zustand bei verschiedenen Reynoldszahlen in unterschiedlichen Bereichen des

Phasenraums zu beobachten ist. Die Störung kann auf den verschobenen Zustand relaxieren

und folgt seiner Bewegung. So läßt sich die turbulente Dynamik zu deutlich niedrigeren
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Reynoldszahlen verfolgen, als dies bei Quench-Experimenten der Fall ist. Mit Hilfe dieser

Experimente gelingt es, die turbulente Dynamik bis zu einer Kühl Reynoldszahl Reanneal von

��� zu verfolgen.

1.3 Stationäre Zustände in der Ebenen Couette-Strömung

Um den Ursprung des turbulenten Zustands zu klären, suchte ich nach zeitunabhängigen

Lösungen der Navier-Stokes Gleichung. Ein erstes Paar von Zuständen fanden bereits Na-

gata [68, 69], sowie Busse und Clever [27]. Dieses entsteht bei einer Reynoldszahl von ��


durch eine Sattel-Knoten Bifurkation. Bei Reynoldszahlen oberhalb ���� fanden Cherhabili

und Ehrenstein [21] sowie Balakumar [5] weitere Paare von Zuständen. Es handelt sich dabei

um räumlich lokalisierte, zweidimensionale Strukturen, aus denen bei höherer Reynoldszahl

ein dreidimensionaler Zustand herausbifurkiert [22].

Diese Zustände gingen aus bekannten stationären Zuständen linear instabiler Scher-

strömungen hervor. Indem man die linear instabilen Scherströmungen stetig in die Ebene

Couette-Strömung überführte und den stationären Zustand verfolgte, gelang es den Autoren,

diese Zustände in der Ebenen Couette-Strömung zu realisieren. Nagata untersuchte dabei

den Übergang vom Couette-Taylor System zur Ebenen Couette-Strömung. Busse und Clever

brachten einen Temperaturgradienten in die Ebene Couette-Strömung ein und führten so

einen Übergang vom Rayleigh-Bénard System zur Ebenen Couette-Strömung durch. Cher-

habili und Ehrenstein sowie Balakumar führten einen Druckgradienten ein und verfolgten so

den Übergang von der Ebenen Poiseuille-Strömung zur Ebenen Couette-Strömung.

Die Untersuchungen dieser Arbeit erfolgten nicht durch eine solche Modifikation.

Stattdessen wurde zur Bestimmung von Lösungen der zeitunabhängigen Navier-Stokes Glei-

chung ein Newton-Raphson Verfahren verwendet [83]. Die Anfangsbedingungen wurden

einem turbulenten Zeitsignal entnommen. Die Lösungszweige der gefundenen stationären

Lösungen wurden mit Hilfe des Pfadverfolgungsprogramms PITCON ermittelt [88, 89].

Dabei suchte ich nach Zuständen, die bestimmten Symmetriegruppen zugeordnet werden

konnten. Ich untersuchte zum einen jene Symmetriegruppe, der das von Nagata, Busse und

Clever gefundene Paar angehörte, sowie eine weitere Symmetriegruppe. Beide Gruppen

setzten sich aus Punkt- und Flächenspiegelungen zusammen.

Weitere Zustände konnten gefunden werden. Diese Zustände haben alle eine ähnliche

Topologie: Sie bestehen aus in Scherrichtung modulierten schlauchartigen Regionen, die

einen hohen Fluid-Transport entgegen der Scherrichtung aufweisen. Diese Regionen wer-

den von Wirbeln durchdrungen, deren Achse in Strömungsrichtung weist. Die Wirbel trans-

portieren schnell fließendes Fluid von den scherenden Wänden in diese Regionen hinein.
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Dieser sogenannte lift-up Effekt ist bereits seit langem beim Blasius-Profil bekannt. Es ist

eine direkte Konsequenz der Nichtnormalität der Evolutionsgleichung [43, 65, 81, 103].

Die stationären Zustände lassen sich in vier Klassen einteilen. Dabei dient die Form der

schlauchartigen Regionen – man bezeichnet sie als streamwise streaks – zur Charakterisie-

rung. Die einfachsten Formen stellen die S- und I-Schläuche dar. Diese Zustände bestehen

aus einzelnen Schläuche, die nicht miteinander verbunden sind. S- und I-Schläuche unter-

scheiden sich in ihrer Modulation in Strömungsrichtung voneinander. Sie ist bei S-streaks

deutlicher ausgeprägt als bei den I-streaks.

Bei den H-Schläuchen verschmelzen zwei Schläuche in einem gewissen Raumgebiet und

trennen sich wieder. Sie ähneln den �-Schläuchen, bei denen sich ein einzelner Schlauch zu

zwei Schläuchen aufspaltet, die sich wieder vereinigen.

In der von Nagata, Busse und Clever untersuchten Symmetriegruppe bifurkiert der von ih-

nen gefundene Zustand bei der niedrigsten Reynoldszahl. Variationen der Breite des Pe-

riodizitätsvolumens3 zeigen, daß dieser ein optimales Seitenverhältnis von d � �� d � � d

(Plattenabstand: Länge: Breite) besitzt und bei Re 	 ��� aus einer Sattel-Knoten Bifurka-

tion entsteht.

Neben Zuständen dieser Symmetriegruppe untersuchte ich noch eine weitere Symme-

triegruppe. Hier bifurkierte ein Zustand bereits bei einer Reynoldszahl von Re 	 �����,

wenn man ein Seitenverhältnis von d � �� d � ���
� d wählt. Dieser Zustand besteht aus zwei

übereinanderliegenden Strömungsschläuchen. Das von Nagata, Busse und Clever gefundene

Paar besteht aus zwei nebeneinanderliegenden Strömungsschläuchen.

Elementare Überlegungen bezüglich der Entstehung dieser Strukturen erklären qualitativ,

welche physikalischen Mechanismen für die Wahl der optimalen Längenverhältnisse verant-

wortlich sind. Diese Überlegungen folgen im Wesentlichen den Ideen von Waleffe, der das

dynamisch beobachtete Auftreten von Schläuchen und Wirbeln untersuchte [105] und das

Entstehen dieser Strukturen zusammen mit Hamilton und Kim studierte [41].

Mit Hilfe des lift-up Effektes gewinnen die Schläuche ihre Energie aus den Wirbeln, deren

Achse in Strömungsrichtung weist. Die Breite dieser Wirbel gibt die Breite der Schläuche

vor. Diese wird durch den Plattenabstand festgelegt. Läßt man nur jeweils eine Mode für die

Modulation der Wirbel in wandnormaler Richtung und der Geschwindigkeitskomponente in

Scherrichtung zu, erhält man eine optimale Wirbelbreite von Ly 	 �����
 d.

Die in die Schläuche gepumpte Energie muß wieder in die Wirbel zurückgeführt werden.

Da der Schlauch einer Scherinstabilität unterliegt, kann angenommen werden, daß der Ener-

3Das Geschwindigkeitfeld wurde entlang der Scherrichtung und quer dazu als periodisch angenommen.
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gieaustausch über die instabilste Mode erfolgt. Betrachtet man den Fall einer zweidimen-

sionalen Scherinstabilität mit einer Scheramplitude von � und geht von einer Schlauchbrei-

te von Ly aus, liegt die Wellenlänge der optimalen Scherinstabiliät bei Lx 	 ��
�� d im

nichtviskosen Fall und Lx 	 ����� d im viskosen Fall. Dabei wurde eine Reynoldszahl von

��� betrachtet. Diese Ergebnisse legen ein optimales Verhältnis von d � ����Ly �
Ly nahe.

1.4 Untersuchungen zur Vernetzung der stationären Zustände

Vergleiche der Energien und Scherraten von turbulenten Zeitsignalen mit den Energien und

Scherraten der stationären Zustände zeigen, daß nicht alle stationären Zustände in Gebie-

ten des Phasenraums liegen, in denen der turbulente Zustand beobachtet wird. Ähnliche

Ergebnisse erhielten auch Ehrenstein und Koch bei ihren Untersuchungen von stationären

Lösungen der Ebenen Poiseuille-Strömung [104].4

Bei Reynoldszahlen oberhalb der Transitions-Reynoldszahl liegt der beobachtete turbulente

Zustand in der Umgebung einer großen Zahl von stationären Zuständen. Extrapoliert man

die Verschiebung des turbulenten Zustands zu kleineren Reynoldszahlen, zeigt sich, daß er

bei Re � ��� jenen Bereich verläßt, in dem stationäre Zustände existieren. Dieser Wert

entspricht ungefähr der Kühl-Reynoldszahl. Dies deutet darauf hin, daß nichtlineare Tran-

sienten und turbulente Zustände nur in der Umgebung der stationären Zustände auftreten

können.

Um den Einfluß der stationären Zustände auf die Struktur des Phasenraums zu untersuchen,

betrachtete ich den Fluß, der in der Umgebung der stationären Zustände herrscht. Dabei

verfolgte ich die Evolution von �� Störungen eines stationären Zustands und projizierte sie

auf die Energie/Schermaß -Ebene.5 Es handelt sich dabei um eine Projektion eines hochdi-

mensionalen Systems auf einen zweidimensionalen Unterraum. Dabei können Überschnei-

dungen auftreten, die im vollen System nicht existieren. Die Untersuchungen der sta-

tionären Zustände zeigte jedoch keine zufälligen Überlagerungen. Die Betrachtung der Evo-

lution eines Ensembles reduziert zusätzlich die Wahrscheinlichkeit, solche Überlagerungen

4Im Fall der Ebenen Poiseuille-Strömung bezieht sich dabei der Begriff stationär auf ein mitbewegtes Ko-

ordinatensystem, welches dem mittleren Fluß folgt.
5Bei dem hier verwandten Schermaß handelt es sich um das Integral der Quadrate der Scherraten in wand-

normaler Richtung:
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u ist die Geschwindigkeitskomponente der Störung in Scherrichtung, z entspricht dem laminaren Profil in

Einheiten der Plattengeschwindigkeit. Dieses Maß berücksichtigt nicht nur die Scherung an den Wänden,

sondern auch die Scherung innerhalb des Fluids.



1.4 Untersuchungen zur Vernetzung der stationären Zustände XV

mehrmals zu treffen. Bekannte Flüsse zwischen Zuständen desselben Lösungszweiges kon-

nten außerdem reproduziert werden.

Ein Vorteil dieser Projektion ist der Umstand, daß alle Zustände, die durch Anwendung der

Punkt- oder Flächenspiegelung oder einer Translation eines stationären Zustands hervorge-

hen, als derselbe Zustand identifiziert werden.

Zwei Typen von lokalen Bifurkationen, die eine Auswirkung auf den globalen Fluß haben,

konnten identifiziert werden: Gabelverzweigungen und rückwärtsgerichtete Sattel-Knoten

Bifurkationen. Der Begriff der rückwärtsgerichteten Sattel-Knoten Bifurkation bezieht sich

hier auf das Bifurkationsverhalten in Abhängigkeit von der Reynoldszahl.

Bei der Gabelverzweigung bifurkiert aus einem bereits existierenden Zustand ein weiteres

Paar von stationären Zuständen heraus. Dieses bricht eine Symmetrie des vorherigen Zu-

stands. Die erste Bifurkation eines solchen Typs findet sich bei einer Reynoldszahl von ���.

Bei der rückwärtsgerichteten Sattel-Knoten Bifurkation verschmelzen zwei Zustände

miteinander und löschen sich aus. Vor dieser Verschmelzung sind sie über eine heterokli-

ne Verbindung verbunden. Ist einer der beiden Zustände bereits aus einer anderen Sattel-

Knoten Bifurkation hervorgegangen, existiert ein Fluß zwischen dem dritten Zustand und

den anderen beiden. Die erste Bifurkation diesen Typs tritt bei einer Reynoldszahl von ���

auf.

Bereits Busse und Clever konnten zeigen, daß der Knoten des ersten Paares von stationären

Zuständen in der Ebenen Couette-Strömung mehrere Hopf-Bifurkationen durchläuft [27].

Dabei entsteht am Knoten zunächst ein stabiler Grenzzyklus. Weitere Hopf Bifurkationen

des Knotens sorgen dafür, daß der Zyklus zu einem instabilen Torus aufbricht. Dieser

befindet sich in einem Gebiet des Phasenraums, in dem eine turbulente Dynamik nur

beobachtet wird, wenn eine Störung entsprechend präpariert wird. Er kann daher nicht mit

den turbulenten Zuständen in Verbindung gebracht werden. Erst bei Reynoldszahlen ober-

halb ��� erreicht der Torus jene Gebiete des Phasenraums, in denen der turbulente Zustand

beobachtet wird.

Da die heteroklinen Verbindungen, die durch Gabelverzweigungen und rückwärtsgerich-

tete Sattel-Knoten Bifurkationen einzelner Zweige entstehen, keinen geschlossenen Orbit

generieren, ist eine weitere Vernetzung notwendig, damit langlebige chaotische Transienten

möglich werden. Bei wachsender Reynoldszahl nimmt die Zahl der beobachteten hetero-

klinen Verbindungen zu. Während bei einer Reynoldszahl von ��� nur sechs Verbindungen

ermittelt werden konnten, wurden bei einer Reynoldszahl von ��� elf gefunden. Der Großteil

dieser Verbindungen liegt in jenem Bereich des Phasenraums, in dem sich auch zeitliche Mit-

telwerte des turbulenten Zustands befinden.
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1.5 Der Übergang zur Turbulenz in einem niedrigdimensionalen Modell

einer Scherströmung

Es zeigt sich, daß die Vernetzung von stationären Zuständen nicht die einzigen Phasen-

raumstrukturen sind, die langlebige chaotische Transienten erzeugen können. Auch instabile

periodische Bahnen, die nicht aus heteroklinen oder homoklinen Verbindungen stationärer

Zustände hervorgehen, können langlebige chaotische Transienten erzeugen. Da die Bestim-

mung instabiler periodischer Bahnen in einem hochdimensionalen System extrem schwierig

und zeitaufwendig ist, studierte ich einen solchen Übergang in einem niedrigdimensionalen

Modell einer linear stabilen Scherströmung.

Das Modell – eine weitere Vereinfachung des �
-Moden Modells von Eckhardt und Mers-

mann [38] – zeigt ein ähnliches Transitionsverhalten wie die Ebene Couette-Strömung.

Obwohl das System linear stabil ist, treten langlebige chaotische Transienten auf. Die

Verteilung der Lebensdauern dieser Zustände hängt auch hier empfindlich von der Art der

Startbedingung ab. Stationäre Zustände entstehen in diesem Modell erst bei Reynoldszahlen,

die deutlich oberhalb der Transitions-Reynoldszahl liegen. In diesem System sind es insta-

bile periodische Bahnen, die den Repellor bilden.

Bei einer Reynoldszahl von ������ entsteht ein erstes Paar von Periode-� Orbits in einer

Sattel-Knoten Bifurkation. Der Sattel durchläuft weitere vor- und rückwärtsgerichtete Bi-

furkationen. Bei einer Reynoldszahl von ����� bifurkiert ein neues Paar von Periode-� Or-

bits. Dieses Paar generiert durch vor- und rückwärtsgerichtete Bifurkationen bis zu acht

verschiedene Orbits. Von diesen bleiben oberhalb von Re 	 ��� nur zwei Orbits bestehen.

Erste Periode-� Orbits entstehen bei Reynoldszahlen oberhalb ���. Dabei existieren zwei

Typen von Periode-� Orbits. Bei dem ersten Typ oszillieren zwei Komponenten gegenphasig,

so daß das Zeitverhalten der Gesamtamplitude des Zustandsvektors der eines Periode-� Or-

bits entspricht. Der zweite Typ entspricht einer Oszillation mit zwei unterschiedlichen Fre-

quenzen.

Diese periodischen Zustände besitzen eine ähnliche Topologie wie die stationären Zustände

in der Ebenen Couette-Strömung: Es handelt sich um schlauchförmige Regionen, die einen

hohen Fluidtransport in Scherrichtung aufweisen und von Wirbeln durchzogen sind, deren

Achse in Scherrichtung weist. Aufgrund der Symmetrie des Systems liegen stets zwei

Schläuche mit unterschiedlicher Strömungsrichtung übereinander. Diese Schläuche treiben

durch das Periodizitätsvolumen in entgegengesetzten Richtungen und ändern dabei ihre

Form. Es handelt sich um advektierte, atmende Schläuche.
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1.6 Ausblick

Die Ergebnisse dieser Arbeit zeigen, daß der Turbulenzübergang in der Ebenen Couette-

Strömung – und vermutlich auch in anderen linear stabilen Strömungen – durch die Ent-

stehung von ausgezeichneten Phasenraumstrukturen erzeugt wird. Bei diesen Strukturen

handelt es sich um instabile stationäre Zustände oder instabile periodische Bahnen, die aus

Sattel-Knoten-Bifurkationen hervorgehen und die den globalen Fluß innerhalb des Phasen-

raums ändern.

In Strömungssystemen, die sowohl einen Übergang durch eine Instabilität als auch einen

Übergang ohne Instabilität aufweisen, wie zum Beispiel dem Blasius-Profil oder der Ebenen

Poiseuille-Strömung, existiert der turbulente Zustand bereits bevor ein chaotischer Attraktor

entstanden ist. Es stellt sich die Frage, inwieweit die Phasenraumstrukturen, die den Repellor

bilden, mit dem Attraktor wechselwirken, und inwieweit diese beiden Phasenraumstrukturen

ineinander übergehen.

Die Identifizierung der verantwortlichen Phasenraumstrukturen erlaubt neue Konzepte der

aktiven und passiven Kontrolle des Turbulenzübergangs. Die Strömungsgeometrie kann

so modifiziert werden, daß die Entstehung der verantwortlichen Strömungsstrukturen un-

terstützt oder gehemmt wird. Das Experiment von Bottin et al. [12] kann als ein solcher

Versuch interpretiert werden. Indem ein Draht in der neutralen Fläche quer zur Scherrich-

tung aufgespannt wurde, war man in der Lage, Strömungsschläuche zu fixieren und ihre

Eigenschaften zu kontrollieren. Dabei wurde durch Variation der Drahtdicke die Störung

des laminaren Profils graduell geändert.

Die Techniken zur aktiven Kontrolle sind noch nicht sehr weit entwickelt. In Experimenten

am Blasius-Profil konnte Boikov im linear stabilen Bereich einen Turbulenzübergang her-

vorrufen [10]. Dabei wurde ein Wirbel, dessen Achse in Strömungsrichtung wies, in das

System eingebracht. Weitere Konzepte, die die Kontrolle der Grenzschicht zum Ziel haben,

werden unter anderem von Kozlov entwickelt [57]. Noch konzentrieren sich diese Techniken

auf die Kontrolle der amplifizierenden Strukturen. Ein tiefergehendes Studium der repellor-

bildenden Phasenraumstrukturen und ihrer Kontrolle eröffnet neue Möglichkeiten einer dif-

ferenzierteren und effektiveren Kontrolle und kann von großem praktischen Interesse sein.
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The transition to turbulence in linearly stable flows is one of the unsolved problems in hy-

drodynamics. While big advances have been made in understanding linearly unstable flows

like the Rayleigh-Bénard problem, i.e. the flow of a fluid layer heated from below, less is

known about the transition in linearly stable flows, such as the Hagen-Poiseuille pipe flow

and the plane Couette flow, where a fluid is sheared between two infinite parallel plates. In

case of the plane Couette flow Romanov [93] has proven that the laminar flow is linearly sta-

ble for all Reynolds numbers. Similar results have been obtained by linear stability analysis

of the Hagen-Poiseuille pipe flow [14, 35, 61, 102, 110]. However, both systems undergo a

transition to turbulence if finite perturbations are introduced at sufficient high Reynolds num-

bers. Furthermore, even in linearly unstable flows, like the plane Poiseuille flow, the flow

between two infinite parallel plates driven by constant pressure, and the Blasius boundary

layer, i.e. the flow over a flat plate, a transition to turbulence can be observed at Reynolds

numbers where both flows are linearly stable [67, 72].

It is the aim of this work to shed some light on this transition. I restrict my investigations

to the plane Couette flow, which undergoes a transition to turbulence if finite perturbations

are imposed. After I have introduced the system and the results obtained by other authors, I

start with an investigation of the transition to turbulence of this flow. The lifetime of finite

perturbations show a strong dependence on their shape and the Reynolds number, and all

long living perturbations relax to the same turbulent state independent of their original shape.

Some of them escape from this state and decays. This suggests that the turbulent state is a

chaotic repellor, which attracts perturbations but repels them after some time.

In chapter 5, I investigate the bifurcation of stationary states. The different types of topolo-

gies of the stationary states are discussed and the states are classified by their symmetries.

Since these stationary states might be responsible for the transition to turbulence, I study the

heteroclinic and homoclinic flow in the vicinity of these states. The obtained results suggest

that the turbulent state might be build up by the growing network of heteroclinic connections

and homoclinic orbits.

In order to get a deeper insight of the formation of a chaotic repellor in a linearly stable shear

flow, I study a low dimensional model consisting of � degrees of freedom, which show a
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similar transitional behavior like the plane Couette flow. Finally the results are summarized

and an outlook to further investigations is given.



3 The plane Couette flow

3.1 The plane Couette flow

One of the simplest shear flows is the plane Couette flow (Fig. 3.1), where a fluid is sheared

between two infinite parallel plates. The gap width is d and the relative velocity of these

plates equals �U�. Measuring lengths in units of half the gap width d�� and velocities in

units of the velocity of one plate U�, the laminar flow equals U� � z ex. In these units the

Reynolds number becomes

Re �
U�d

��
�

where � is the kinematic viscosity. Throughout this work the advective timescale is used

which is defined as d
�U�

.

3.2 Experimental realization

In order to realize the plane Couette flow experimentalists have to deal with two different

problems: to exclude growing perturbations generated at the edges of the moving plates

which travel into the system, the gap width must be significantly smaller than the spanwise

and streamwise extension of the system. Furthermore, both plates should move because

a mean flow decreases the accessible observation time. On the other hand, the assembly

of a measuring device at one plate is only possible for a non moving plate. In case of two

moving plates only laser-doppler anemometry and particle-image velocimetry are applicable.

Furthermore, the preparation of a distinct disturbance is difficult if both plates move.

Different realizations are shown in figure 3.2. The first setup realized by Reichardt [86]

(Fig. 3.2a) had only a small aspect ratio but used a counter moving belt. Unfortunately,

the two cylinders driving the belt induce additional disturbances. Later realizations by

Robertson [91], Robertson and Johnson [92], Leutheusser and Chu [58], and Ahydin and

Leutheusser [1] (Fig. 3.2b-d) improved the aspect ratio and used only one moving plate to

apply hot-wire anemometry.

In ���� Tillmark and Alfredsson [101] set up an apparatus (Fig. 3.3) similar to the one used

by Reichardt; but additional cylinders squeezed the moving belt and improved the aspect

ratio.
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Figure 3.1: Sketch of the plane Couette flow geometry. Two infinite parallel plates shear a

fluid between them. The gap width is d and the relative velocity of these plates equals �U�.

All later investigations use this experimental architecture. Tillmark and Alfredsson used

an aspect ratio of ����m � ���	m � ����m (streamwise:spanwise:wall normal) [101]. The

apparatus of Daviaud et al. was smaller but had a similar aspect ratio of ����m � ����m �

����
m [11, 12, 32–34].

3.3 Former investigations of the plane Couette flow

3.3.1 Transition to turbulence

Experiments and numerical simulations show that the plane Couette flow undergoes a tran-

sition to turbulence if finite disturbances are introduced. The experiments done by Till-

mark and Alfredsson [100, 101], Dauchot and Daviaud [32], and numerical investigations

by Lundbladh and Johansson [62] focused on the evolution of spot like disturbances. These

turbulent spots play an important role in bypass transition [90]. The bypass transition de-

scribes the transition to turbulence of a Blasius boundary layer in cases where the flow is

linearly stable and the transition via Tolmien-Schlichting waves [35, 61] is not possible. In

these cases one observes a fast spreading of the localized disturbance and a turbulent state in

which streamwise streaks and vortices dominate the flow [2, 51, 53, 67].

For different experimental setups and different types of disturbances the critical Reynolds

number, i.e. the Reynolds number where the first transition to turbulence can be observed,

varies. Ahydin and Leutheusser observed a transition near Rec � ��� [1]. By inducing

jet-like perturbations Daviaud et al. measured Rec � �
� [34], Bottin et al. Rec � ��� [12],

and Tillmark and Alfredsson Re � �	� � �� [101]. Lundbladh and Johansson [62] found

in numerical simulations Rec � �
�. Furthermore, Daviaud, Hegseth and Bergé observed
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Figure 3.2: Different experimental realizations of the plane Couette flow. xm describes the

region of measurements [1].

a) Reichardt et al. [86]: l � ����m, xm � ����m, u��max � ���	m
s

b) Reichardt et al. [87]: l � �����m, xm � ����m, u��max � ����m
s
;

Robertson et al. [91, 92]: l � ����m, xm � ����m, u��max � �����m
s

c) Leutheusser and Chu [58]:l � 
���m, xm�max � 
���m, u��max � ����m
s

d) Ahydin and Leutheusser [1]: l � ����m, xm�max � ����m, u��max � ����m
s



6 3 The plane Couette flow

Figure 3.3: Experimental setup used by Tillmark and Alfredsson [101].

growing variations in the lifetime of perturbations near the critical Reynolds number [34].

These experimental observations indicate the existence of a turbulent state at some Reynolds

number between ��� and ��� but little is known about the mechanism of this transition.

3.3.2 Coherent structures

Investigations of the turbulent state approached by bypass transition in the Blasius bound-

ary layer at Reynolds numbers where the flow is linearly stable show the dominance of

specific flow structures [50, 51, 67, 90]. These structures consist of streamwise streaks and

streamwise vortices. Such coherent structures can also be observed in plane Couette flow

[62, 100, 101]. In order to stabilize the observed streamwise streaks and streamwise vortices

Bottin et al. modified the plane Couette flow by spanning a wire in the neutral plane along the

spanwise direction. The streaks stabilized by this method were extended along the stream-

wise direction and periodic in the spanwise direction. They started to form at a Reynolds

number of �	� and became unstable at ���, where a turbulent state established [12]. Barkly

and Tuckerman tried to reproduce these results numerically [6]. They used a spectral ele-

ment code and performed a two dimensional and three dimensional stability analysis of this

modified Couette flow. Though the values for the first Reynolds number differ from the

experimental values, they obtained a similar flow structure.

In their numerical investigations of the turbulent plane Couette flow, at a Reynolds number

of 
��, Lundbladh, Johansson and Komminaho studied coherent structure in a very large

computational domain [55]. They observed large-scale elongated structures similar to the

one observed by Dauchot et al. [32].

The origin of these coherent structures is yet unknown. They might be connected to the

formation of nonlinear finite amplitude solutions of the steady Navier-Stokes equation. Na-

gata [68] and Busse and Clever [26] found such solutions born in a saddle-node bifurcation

at Re � ���. The node undergoes a hopf bifurcation at Re � ��� and becomes linearly un-

stable. These states have been found by changing the flow geometry from the Couette-Taylor
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flow [68] or Rayleigh-Bénard flow [26] to the plane Couette flow. At Reynolds numbers of

about ���� Cherhabili and Ehrenstein found additional solutions [21, 22] by investigating a

plane Couette-Poiseuille flow. Similar investigations were done by Balakumar [5]. These

states look different from the one observed by Nagata, Busse and Clever, which consists of

streamwise vortices and streamwise streaks. The states found by Cherhabili, Ehrenstein and

Balakumar are localized along the streamwise direction and have strong vortices at the walls.

3.3.3 Theoretical work on the transition

Although experiments prove that plane Couette flow can become turbulent the theoretical

understanding is still rather limited. Linear stability analysis of the laminar flow field shows

that it is linearly stable for all Reynolds numbers [93]. Watson [108] and later Ellingsen,

Gjevik and Palm [40] performed a weakly nonlinear stability analysis of the laminar flow. For

Reynolds numbers above ��� they were able to predict the existence of a threshold amplitude

which scales like �Re��
�

� where � refers to the spatial periodicity.

Trefethen et al. [103] and Gebhardt and Grossmann [43] argued that the non normality of

the linearized evolution equation can explain how a transition can occur though the laminar

profile is linearly stable. The non normality is able to amplify an infinitesimal disturbance up

to finite size though the linear operator has no unstable eigenmodes. Reddy and Hennigson

[2, 85] and Butler and Farrell [17] investigated these amplification rates in case of plane

Couette and plane Poiseuille flow and also in Blasius boundary layer. In pipe flow, which is

also linearly stable for all Reynolds numbers, Boberg and Brosa identified the flow structures

representing the effects of this non normal amplification [9]. If the disturbance has grown to

finite size the nonlinearity can no longer be ignored. New effects take place which are not

accessible via linear or weakly nonlinear analysis of the laminar flow field (see also [47]).

Some authors focus on the energy transfer in the turbulent motion. Since the linear terms

of the linearized Navier-Stokes equation amplify energy and the nonlinear terms conserve

energy, low dimensional models have been derived which consist of a non normal linear and

an energy conserving nonlinear part [4, 43, 106]. These models illustrate the non normal

amplification and the nonlinear redistribution of energy.

The interpretation of these results in terms of hydrodynamical systems was given by Waleffe

et al. [41, 105, 107]. They interpret the turbulent motion as a self sustained process. In this

process streamwise vortices amplify the streamwise streaks; these streaks perform a linear

breakdown and their energy is transfered by nonlinear interactions. This energy transfer has

been studied by Reddy [84] in a full DNS-code, with a reduced resolution in the spanwise

and streamwise direction. It turns out that the mean flow plays an important role in the

self sustaining process. Though this flow is not able to gain energy via the non normal
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amplification it profits from the nonlinear redistribution of energy. Other modes benefit from

this saved energy by a later nonlinear transport.

In the same spirit of Reddy’s work Brosa and Grossmann [16] reduced the degrees of freedom

of the Hagen-Poiseuille flow to the most relevant modes. They observed that almost ��

degrees of freedom are needed to sustain turbulent motions in pipe flow.

3.4 Equations of motion, their symmetry and numerical representation

3.4.1 Equations of motion

The problem is formulated in its dimensionless form. Lengths are measured in units of half

the gap width d�� and velocities in units of the velocity of one plate U�. The turbulent flow

field is decomposed into its laminar time independent part U� � z ex and a time dependent

perturbation with a finite amplitude u � u� v� w�. The evolution equation for this distur-

bance follows to
�

� t
u � � u � r�u� z

�

� x
u� w ex � grad p�Re���u � (3.1)

where the Reynolds number is defined as

Re �
U�d

��
�

The incompressible disturbance u must fulfill the continuity equation,

divu � � � (3.2)

and the boundary conditions,

ujz��� � � � (3.3)

The flow is assumed to be periodic along the streamwise and spanwise direction. Lx�y are the

streamwise and spanwise lengths of the periodic box. Beside this discrete symmetry these

equations conserve four additional basic symmetries:

P �

�
B�

u

v

w

�
CA x� y� z� �

�
B�

�u

�v

�w

�
CA �x��y��z� (3.4)

R �

�
B�

u

v

w

�
CA x� y� z� �

�
B�

u

�v

w

�
CA x��y� z� (3.5)

T�x��y �

�
B�

u

v

w

�
CA x� y� z� �

�
B�

u

v

w

�
CA x��x� y ��y� z� (3.6)
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P corresponds to a point reflexion at x � �� �� ��,R equals a reflexion at the x,z-plane, and

T�x��y are translations along the streamwise or the spanwise direction.

3.4.2 The NBC and the I symmetry groups

To simplify the investigation of nontrivial finite amplitude solutions in the plane Couette

flow I reduced the phase space to members of two different symmetry groups. The first one,

the NBC-group, corresponds to the symmetry group investigated by Nagata [68] and Busse

and Clever [26, 27] where the first pair of stationary states bifurcates at Re � ���. The NBC

group consists of four elements: the unity �, the two symmetry operationsW and V , and the

combination of both WV . W and V are defined as:

W �

�
B�

u

v

w

�
CA x� y� z� �

�
B�

u

�v

w

�
CA x� Lx����y� z� (3.7)

V �

�
B�

u

v

w

�
CA x� y� z� �

�
B�

�u

v

�w

�
CA �x� y � Ly����z� � (3.8)

W refers to the waviness of the stationary states found in the Rayleigh-Bénard system and the

Couette-Taylor flow [25, 26]. It supports an additional shear along the streamwise direction,

where stationary states can benefit from. The V symmetry supports counter rotating vortices

which transport high speed fluid from the wall region into the bulk. These two symmetries

are combined in a way that stationary streaks benefit from both processes. W induces sheared

streaks and V induces streamwise vortices, which transport the high-speed fluid into these

streaks.

The NBC group supports streaks of equal width in the periodic box. To allow streaks of

different width or even localized streaks I also investigate the I group. It is formed by the

symmetry operations P , the point reflexion at x � �� �� ��, and �R, a reflexion symmetry at

y � Ly
�

,

P �

�
B�

u

v

w

�
CA x� y� z� �

�
B�

�u

�v

�w

�
CA �x��y��z� (3.9)

�R �

�
B�

u

v

w

�
CA x� y� z� �

�
B�

u

�v

w

�
CA x��y � Ly��� z� � (3.10)

the unity 1, and the combination P �R. P supports the formation of the streamwise vortices
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but there is no spanwise correlation between these vortices. �R supports the formation of

streamwise streaks with a width of Ly��.

3.4.3 The numerical representation

For the numerical representation of the flow field u is expanded in Fourier modes in the

spanwise and streamwise directions and normalized Legendre polynomials �pz� in the wall

normal direction:

ux� t� �
X

nx�ny�p

�unx�ny�pt� exp

�
�	 i

�
nxx

Lx

�
nyy

Ly

��
�pz� � (3.11)

Lx and Ly are the spanwise and streamwise lengths of the integration domain. Following

Nagata [68] and Busse and Clever [27] I take Lx � �	 d and Ly � 	 d. The wave vectors in

these directions are constrained by jnxj � jnyj � N . I use N � 	 in my simulations. The

maximum order Nz of Legendre polynomials used is Nz � � in the dynamical observations

(chapter 4) and Nz � �� for investigations of stationary states (chapter 5) and the chaotic

repellor (chapter 6).

The conditions at the boundary (3.3) and on the divergence (3.2) are linear constraints and

are accounted for by applying projections onto the allowed subspaces. These projections

conserve energy and have to be applied to both the initial conditions and the equations of

motion, where for the latter the Lagrange formalism of the first kind, familiar from classical

mechanics, was used [44]. More details on the numerics are given in appendix A. See also

appendix B for the spectral implementation of the investigated symmetries.

The code was tested and verified in three ways: I confirmed energy conservation in the Eu-

lerian undriven case and checked the critical Reynolds number and stability of the steady

states found by Nagata [68] and Busse and Clever [27]. The stability test required an in-

crease in the number of Legendre polynomials to Nz � �� but other aspects of the dynamics

(fluctuations in mean energy and shear rate, for instance) did not change. Therefore most

of the simulations presented here were done with Nz � � and thus ���� independent and

dynamically active degrees of freedom were used. I am confident that I can follow the time

evolution up to a time of about tmax � ����� without changing the energy more than �����

using an Adams-Bashford method with an accuracy of ����. For d � � cm, the viscosity of

water � � ����cm
�

s
, and a Reynolds number of Re � ��� this corresponds to about �� min.

For Nz � � and a numerical accuracy of ���� the numerical integration over a time interval

of ��� time units needs on a DEC Alpha ��� workstation about � minutes CPU time. Using

Nz � ��, which corresponds to ���� active degrees of freedom, this integration takes about

�� minutes CPU time.



4 Transition of finite perturbations in plane Couette flow

Hätte ich zu Wardhöus einen Kirschkern in die See geworfen,

so hätte der Tropfen Seewasser den Myn Herr

am Kap von der Nase wischt nicht gnau an dem Ort gesessen.

G. C. Lichtenberg, D 54[60]

In this chapter the evolution of different finite perturbations in plane Couette flow is investi-

gated. It will be shown that the lifetime of a finite perturbation for a fixed Reynolds number

depends sensitively on its shape. Instead of connecting the transition to turbulence in plane

Couette flow with a critical Reynolds number where a first transition can be observed it is

more practical to define the transitional Reynolds number Retr in a statistical sense. I will

give an operational definition and calculate values of the transitional Reynolds number for

different types of perturbations which vary between ��� and ���.

Three different types of states have been observed: linear and nonlinear transients and turbu-

lent states. For different perturbations the statistical properties of the nonlinear transients and

the turbulent state are the same. This suggests that the transition to turbulence is connected

with the appearance of a chaotic repellor, which attracts perturbations, allows a chaotic mo-

tion on it, and repels them after some time. I will calculate some quantities of this chaotic

repellor, namely the two time scales connected with such a repellor: the escape rate � and

the relaxation rate �. The first one gives information about the average lifetime of a state on

this repellor. The latter contains information about the timescale needed to approach it. Its

location in phase space will be estimated by calculating the distribution of the shear rate and

the energy.

In order to follow turbulent states down to Reynolds numbers below the transitional Reynolds

number, I performed annealing experiments. In these experiments the Reynolds number is

slowly decreased, while the turbulent state follows the movement of the repellor. I will

introduce the annealing Reynolds number Reanneal, which gives the lower bounds for which

turbulent motions can be followed down by these experiments.
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Figure 4.1: Sketch of a closed vortex filament with streamwise orientation.

4.1 Finite perturbations

I chose two different classes of perturbations, one initially imposed and the other dynamically

induced. The first class consists of a closed vortex filament, the second class uses a body

force that is slowly turned on and off for a finite time interval.

4.1.1 Finite vortex structures

It is known that for Reynolds number below ���� transitional perturbations have to be intrin-

sically three dimensional [80]. A simple three dimensional flow structure is a closed vortex

filament u�t � �	 � curl curl �f�x	e	, where the vector e is perpendicular to the area closed

by the filament and corresponds to its orientation. Such a filament consists of vortices ar-

ranged on a torus (see Fig. 4.1). I chose

f�x	 � Ae���x
��y��z�� �

where � � 
. Such a vortex filament is localized in the streamwise and spanwise direction,

but rather extended in the wall normal direction. The vortex filament was orientated along

the streamwise, the spanwise or the wall normal direction, i.e. e � ex�y�z.

These filaments preserve theP (3.4) and theR (3.5) symmetry of the Navier-Stokes equation

(3.1). These symmetries are not broken by rotating the vortex filament as it was the case in

the investigations of Lundbladh and Johansson [62]. Furthermore, the vortex filaments are

normalized to the energy of the wall normal velocity w.

A closed vortex filament advects itselves along its axis [94]. The laminar flow shears and

stretches it. The shear causes a rotation of the filament in the x,z-plane. Therefore a vortex

filament initially orientated along the streamwise direction becomes similar to a vortex fila-

ment with a wall normal orientation. In both cases the self advection of the vortex filament
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moves it into the wall region, where the vortices are able to transport high speed fluid from

the wall region into the bulk.

The orientation of the vortex filament does not change if it is initially orientated along the

spanwise direction. In this case the filament advects itself along the spanwise direction and

not into the wall region. The stretching also leads to streamwise vortices and the advection

amplifies the momentum transport from the boundary flow into the bulk.

4.1.2 Injected perturbations

In the experiments of Tillmark and Alfredsson [101], Daviaud, Hegseth and Bergé [34],

Daviaud and Dauchot [32], and Malerud, Mâløy and Goldburg [63] the perturbation was

induced by injecting water through a hole in the moving belt.

This perturbation corresponds to the application of a pulse acting in a small region near the

wall affecting the velocity normal to the wall. It can be modeled by adding a time dependent

volume force to the equation of motion (3.1), reading

�u

� t
� N �u	 � f�t	F �x	 � (4.1)

N refers to the right hand side of the evolution equation (3.1). f�t	 fades the volume force

in and out. For � � t � tin it equals

f�t	 � A�

�
sin

�
�

�
�

t

tin
� �

�

��
� �

�
� (4.2)

where A� is the maximum amplitude and tin the time of injection. Two different kinds of

injection forces F �x	 have been used. The first one corresponds to a localized injection at

one of the plates. The analytical form of the z-component is

Fz �x	 � e���x
��y�	��z�z��� � (4.3)

with � � �� and �z � ��. The other components are also non-zero after projecting onto the

divergence free subspace (see appendix A). In order to break the P symmetry no outflow at

the opposite wall has been modeled. This force produces a localized vortex region, which

contains most of the induced energy.

Figure 4.2 displays the evolution of the flow field at Re � ��� for t � tin � � in the

y � � plane. Contours show the local energy E � �
�
��u� U�	

� � v� � w�	 of the fluid. The

volume force generates a small region of high speed fluid within the boundary layer. This

localized region is lifted into the bulk and generates spanwise vortices.

In order to break the R symmetry of the system a volume force with inflow and outflow in

the wall region is used. It was modeled by performing a sine-transformation on the Fourier
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Figure 4.2: Evolution of the time dependent (4.3) perturbation at Re � ��� for t � tin at

t � �� � 
� ��. The arrows are the streamwise and wall normal component of u � U�, the

contour plot is the local kinetic energy �
�
�u� U�	

� � v� � w�.

components of the symmetric disturbance (4.3). Its analytical form is

Fz �x	 � e��x
�����z���

�
Z �

�

d �	

Z �

�

d	e�� �
�

cos �	�		 sin ��	y	 ez

� e��x
�����z���

�
Z �

�

d �	
�

�

r
�

�
e�

��
�

�� sin ��	y	 ez

�
p
�e���y

��x�	����z���

Z p
�x

�

d �y e��y�
ez � (4.4)
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4.2 Transition to turbulence

4.2.1 Different types of dynamical behavior

There are three different types of dynamical behavior [96, 97]: linear transients, nonlinear

transients and turbulent states. They can be distinguished by investigating the temporal be-

havior of the energy density of the perturbation, expressed in terms of the energy of the

laminar flow field E�

E �
�

�V E�

Z
u � u� dV (4.5)

and the shear rate of the full flow field

S �
�

A

Z
�

� z
�u� z	 jz	� dA � (4.6)

If the amplitudes are sufficiently small the Navier-Stokes equation can be linearized and

the perturbation decay with rates calculated earlier by Reddy and Hennigson [85]. Typical

traces of the energy density and the shear rate are shown in figure 4.3a. Since the wall

normal velocity transfers energy into the streamwise component the perturbation is able to

gain energy until the former vanishes. This is the effect of the non normality of the linearized

equations of motion [9, 43, 103] (see also chapter 5.4.2 for more details). The energy content

of a perturbation will thus not decay monotonically but perhaps with a hump. If the amplitude

in the wall normal component is sufficiently small the energy content will continue to decay

monotonically. This allows to define the lifetime of a perturbation as the time it takes for

the energy to decay below a threshold that a perturbation cannot recover. In the following

investigations this limit was an energy in the wall normal component of ���
.

For larger amplitudes and Reynolds numbers a different behavior is observed. The perturba-

tion can recover from a decay and a nonlinearly sustained oscillatory behavior occurs (see

Fig. 4.3b). Energy is continually shifted between the components, but the lifetimes for all

perturbations are finite since at some stage the energy content in the wall normal component

drops below the critical value for regeneration. For slightly higher values of the Reynolds

number and sufficiently large amplitudes of the perturbation the lifetimes seem to grow in-

definitely (see Fig. 4.3c).

Later it will be shown that the properties of these turbulent states equal the properties of the

nonlinear transients. In view of the large computing times the calculations were limited to

tmax � ����.

4.2.2 Lifetimes of perturbations

The figures 4.4, 4.5 and 4.6 show the lifetimes for perturbations orientated in the downstream,

spanwise and wall normal direction, respectively, calculated on a dense grid of points in the
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Figure 4.3: Time signals of energy (left column) and shear rate (right column) for the same

initial state at Reynolds numbers ���, ��� and ��� (top to bottom). There are three different

types of dynamical behavior: linear and nonlinear transients and turbulent dynamics. Note

the different scales of both axes.

amplitude vs. Reynolds number plane. The location and width of the transition region differ

for the three orientations of the filaments. The details of the pictures depend on the specific

choice of the grid since a magnification shows large fluctuations due to small variations in

amplitude and Reynolds number (Fig. 4.7). This strong dependence of the lifetime on the

shape of the disturbance and the Reynolds number seems to be a generic feature of the transi-

tion in linearly stable shear flows [96]. It has been also observed by Darbyshire and Mullin in

pipe flow [31] and Eckhardt and Mersmann in a low dimensional model of a linearly stable

shear flow [38] (See also chapter 7 for more details on this model). To illustrate this fea-

ture, successive magnifications of amplitude and Reynolds number for a strongly localized

filament f�x	 � 
�x� y	e���z
�

with a streamwise orientation is shown in figure 4.8. The 
-

function was approximated by setting the real parts of all Fourier-coefficients to one. These

measurements were done using an aspect ratio of d � �� d � �� d (wall normal: streamwise:

spanwise), where the repellor is rather thin at Re � ���.

In case of a streamwise orientated filament only linear transients are observed for Reynolds
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Figure 4.4: Lifetime of a streamwise orientated vortex filament for different values of the

amplitude and Reynolds number.

Figure 4.5: Lifetime of a vortex filament orientated along the wall normal direction for

different values of the amplitude and Reynolds number.
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Figure 4.6: Lifetime of a spanwise orientated vortex filament for different values of the

amplitude and Reynolds number.

Figure 4.7: Magnification of a small subset of Fig. 4.4.
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Figure 4.8: Successive magnifications of cuts through the lifetime distribution for Re � �
�

and varying amplitude (left column) and fixed A � �� and varying Reynolds number (right

column). These calculations have been done in an aspect ratio of d � �� d � �� d (wall

normal:spanwise: streamwise) with f�x	 � 
�x� y	e���z
�

[96].

numbers below ���, then up to Re � ��� the nonlinear transients dominates the dynamic.

The appearance of nonlinear transients and turbulent states depends not only on the energy

of the wall normal velocity but also on the shape of the perturbation. A spanwise orientated

filament shows nonlinear transients at Re � ��� with larger lifetimes for amplitudes which

are four times smaller. The filament with a wall normal orientation shows only a very small

region where nonlinear transients occur, starting at Re � ���. The similar lifetimes for

streamwise and wall normal orientated filaments are plausible since a streamwise orientated

vortex filament is quickly rotated along the wall normal direction.

The lifetime distributions suggest that the number of long lived initial conditions increases

with Reynolds number. The median and the maximal lifetime of each vortex filament are
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Figure 4.9: Median of the lifetimes that entered figures 4.4, 4.5 and 4.6 (filled symbols) and

the observed maximum lifetime for fixed Reynolds number and different amplitudes (open

symbols). ex�y�z corresponds to the orientation of the introduced vortex filament.
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Figure 4.10: Number of initial conditions in the A/Re-plane having a lifetime greater than

����. ex�y�z corresponds to the orientation of the introduced vortex filament.
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Figure 4.11: Probability of long living states for repeated experiments with similar amplitude

(A � ���
� �����) as a function of the Reynolds number. The data points are derived from

�� repetitions of the lifetime experiment for Reynolds numbers in the interval ��. A state

was defined as long lived if the time was above the levels tc as indicated. A variance in p is

obtained as p��� p	 under the assumption of a binomial distribution.

collected for fixed Reynolds numbers (Fig. 4.9). In all three cases the median increases

for Reynolds numbers between �
� and ���. In case of a spanwise orientated filament the

median starts to grow at Re � ���. In the other two cases this growth sets in later at about

Re � �
� and it shows an high increase at Re � ���.

As a possible operational definition for the transition to turbulence the occurrence of the first

states with lifetimes exceeding the observation time is less suitable since it depends sensi-

tively on the initial conditions. A statistical measure such as the median is more stable and

reproducible. The median exceeds the maximal integration time if half the initial conditions

do so. Using this definition the transitional Reynolds number lies between of ��� and ���,

since more than half the initial conditions life longer than the observation time. If the obser-

vation time is lowered to 2500 the fraction of initial conditions with life times exceeding this

time is shown in figure. 4.10. More than half the initial conditions life longer than this time

for Reynolds numbers above about ���; for spanwise orientation of the vortex the value is a

bit lower. Experiments by Bottin and Chaté [11] with a cut-off of ����� time units show a

critical Reynolds number of about Re � ��
. Thus an increase in lifetimes about a factor of


 changes the Reynolds numbers by only about 4�.
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Figure 4.12: Energy and shear rate statistics for the long lived states in different intervals

of Reynolds numbers. Indicated are the mean shear rate (left panel) and the mean energy

(right panel) as well as the variances for all states with lifetimes longer than t � ���� at

the given values of Reynolds numbers. Open symbols correspond to the values of turbulent

states originated from closed vortex filaments. Closed symbols correspond to the values of

the symmetric and asymmetric induced perturbations.

Following Darbyshire and Mullin [31] I also studied the lifetime distributions observed in

repeated experiments with similar initial conditions. The amplitude was taken from the fixed

interval A � ����
 � ����� and the Reynolds number was within an interval of �� from the

indicated value (the widths of the Reynolds number interval is the experimental resolution

of Bottin et al. [12]). A state was classified as long lived if the time was above the level

tc as indicated. Figure 4.11 shows the probability to hit a long lived initial condition. On

the assumption that the probabilities are drawn from a binominal distribution a variance of

p�� � p	 can be assigned to each value. The probability of obtaining a long living state

grows rapidly between Re � ��� and Re � ���. This interval shifts to higher Re for larger

lifetimes. The probability does not reach � within the range of Reynolds numbers studied,

indicating that nonlinear transients are still possible.

4.3 Properties of the turbulent state

In this section I study the statistical properties of the nonlinear transient and turbulent states.

It turns out that their properties are independent of the symmetry and the shape of the im-

posed perturbation. Connecting the transition to turbulence to the formation of a chaotic
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Figure 4.13: Time evolution of asymmetric time dependent perturbations (4.5) with ran-

domly selected amplitudes A � ������ ����� at Re � ���. The dots are the energy of each

perturbation at the given time. The line at E � ��� indicates the time average of a turbulent

signal generated by a streamwise orientated filament. Also shown are the mean energy (�)

of the ensemble and its variance at each time step.

repellor suggests the existence of two different timescales: the escape rate and the relaxation

rate. I measure these rates by evaluating the former lifetime measurements and turbulent time

signals. In order to follow turbulent states down to Reynolds numbers below the transitional

Reynolds number, annealing experiments have been performed, where the Reynolds number

is dynamically decreased. These experiments allow the definition of the annealing Reynolds

number, as the smallest Reynolds number where turbulent states have been followed down

to.

4.3.1 Energy and shear rate statistics

The energy and shear rate statistics of the turbulent states and nonlinear transients indicate

that the turbulent dynamic takes place in a distinct region of the phase space. Figure 4.12

shows the time averages of the energy

hEi � �

T

Z
T

dt E�t	 (4.7)
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Figure 4.14: Time evolution of ��� asymmetric time dependent perturbations with randomly

selected amplitudes of A � ������ ����� at Re � ���. The full temporal behavior is shown

for two perturbations. For the other runs only the instantaneous values are indicated by dots.

The dots become denser for energies less that ��� and energies around ���.

and the shear rate

hSi � �

T

Z
T

dt S�t	� (4.8)

of long living nonlinear transients and turbulent states approached by vortex filaments with

different orientations and their variance. Also long living nonlinear transients and turbulent

states reached by symmetric (4.3) and asymmetric (4.5) time dependent perturbations entered

the figure. There is no significant difference between nonlinear transient and turbulent states.

The dynamics take place in the same region of phase space, which is independent of the

nature of the perturbations.

In Fig. 4.13 the time signals of ��� asymmetric time dependent perturbations (4.5) with

randomly selected amplitudes of A � ������ ����� and a time of injection of �� time units

at a Reynolds number of ��� are shown. Figure 4.13 shows the energy of each calculated

state and the ensemble average with its variance at a given time. At about ��� time units the

average energy approach a value of ���. The turbulent time signal of a streamwise orientated

filament show the same average energy and the same variation (horizontal line). Hence, the

perturbations evolve to the same region in phase space, independent of the shape and the

symmetry of the perturbation. The time needed to begin the approach to this region depends
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sensitively on the perturbation. Even small variations in the amplitude can cause a drastic

change. In Fig. 4.14 the time signals of ��� asymmetric time dependent perturbations (4.5)

with randomly selected amplitudes of A � ����� � ����� at Re � ��� are shown. The

full temporal behavior of two perturbations illustrates this sensitivity. Between t � ��� and

t � ��� the ensemble spreads into two parts, one decaying into the laminar state and another

part approaching the turbulent state.

4.3.2 The distribution of energy and the shear rates of the turbulent state

The changes in the energy as well as the shear rate and their variances shown in figure 4.12

suggest that the turbulent state is not only moving in phase space but also changes its shape

for varying Reynolds number.

To get the distribution of energy and shear rate two turbulent time signals at Re � ��� up

to Re � ��� have been measured imposing a symmetric (4.3) and an asymmetric (4.5) time

dependent perturbation. The symmetric perturbation had an amplitude of A� � � and the

asymmetric perturbation had an amplitude of A� � ���. The injection time was � time units

for both perturbations and their evolution was followed up for ��� time units. The investiga-

tion of the energy and the shear rate of the turbulent state started after the first ��� time units.

These time signals are combined and the integrated probability distribution of the energy

and the shear rates was calculated. Then a cubic spline fit with �� points on the normalized

integrated distributions was applied. Using a center differentiation scheme one obtains the

distributions of energy PE and shear rates PS. These distributions are asymmetric for lower

Reynolds numbers with a fast decay to smaller energies and shear rates (See Figure 4.15).

This asymmetry becomes less significant for increasing Reynolds numbers and presumably

vanishes at sufficiently high Reynolds numbers. While the maximum of PE increases and

therefore the variation decreases the maximum of the shear rate distribution becomes smaller

and the variance increases. For growing Reynolds numbers the active degrees of freedom in-

crease and the dynamic also take place on smaller lengthscales. Therefore the energy is

evenly distributed and large fluctuations becomes less possible. On the other hand, since

velocity fluctuations also occurs on smaller lengthscales larger gradients appear which shift

the shear rate to higher values.

4.3.3 Escape rate and relaxation rate: timescales on a repellor

Two different timescales characterize a chaotic repellor [36, 54, 59]: The escape rate � and the

relaxation rate �. The probability ��t	 of staying on a repellor at a time t decays like ��t	 	
exp ��� t	. The escape rate � is accessible by the former calculations. One is able to calculate

the probability that a perturbation has left the repellor at a time t, which equals � � ��t	.
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Figure 4.15: Distribution of energy (upper panel) and mean squared shear rates (lower panel)

taken from two turbulent time signal with a cut-off of tmax � ��� for a symmetric and an

asymmetric time dependent perturbation at Re � ��� up to Re � ���.

Assuming that such timescale also exists for the nonlinear transients, one is able to calculate

� by evaluating �� ��t	 from the previous lifetime measurements. For high escape rates one

needs good initial conditions and for lower ones long lifetime measurements, therefore one

is only able to calculate � in a small region of Reynolds number.

A state staying at a distance d on the stable manifold of a repellor will be attracted to the

repellor. Such behavior has also been observed in the previous section. Any non decaying

perturbation relaxates on the same turbulent state. d decreases like d�t	 	 exp ��� t	. In

order to estimate this rate, the relaxation of an ensemble of initial perturbations was studied

since the position of the stable manifold is not known. For sufficiently high amplitudes the

ensemble approached the turbulent state before it spreads (Fig. 4.13). The ensemble average

of the distance d � E�t	 � hEi also decreases like d�t	 	 exp ��� t	. Figure 4.13 shows

that this decrease consists of an oscillating part and an exponential decay. The frequence of

oscillation 	 was determed by calculating the time interval between the first maxima of the

distance d of the ensemble averages, the interval between the first minima, and the interval

between the first two times where E�t	 equals hEi and calculate the average of these times.
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Figure 4.16: Relaxation rate � and oscillation frequency 	 for the approach to the turbulent

state as a function of the Reynolds number. The data points are based on ��� realizations of

time dependent perturbations as in Fig. 4.13.

Values of the relaxation rate � and the frequency of oscillation 	 are shown in figure 4.16.

They were only calculated for higher Reynolds numbers because the turbulent state is more

attractive at higher Reynolds numbers. The relaxation rate � shows a slight increased which

indicates a stabilization of the turbulent state. The values of 	 do not change in the observed

range of Reynolds number. This suggests that the oscillation is only slightly influenced by

the linear terms, which would show a scaling proportional to Re��, but dominated by the

nonlinear effects, which are independent from the Reynolds number.

Figure 4.17 shows values of � and �. � decays for a Reynolds number of about ���. � is

larger than � but grows slowly. Extrapolation of both rates suggest a Reynolds number of

Re � ��� where the escape rate equals the relaxation rate.

4.4 Annealing experiments

In order to follow the turbulent states down to Reynolds numbers below the transitional

Reynolds number annealing experiments have been performed. In these experiments the

Reynolds number decreases slowly in time. This corresponds to a change of the viscosity
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Figure 4.17: Escape rates � and relaxation rates �. � is taken from lifetime measurements

for different vortex filaments. � is extracted by relaxation experiments shown in Fig. 4.13.

Extrapolation of both rates show that the escape rate equals the relaxation rate at a Reynolds

number of about ���.

because a change of the velocity of the plates would introduce a time dependent laminar

profile in the equation of motions (3.1).

In the same spirit Bottin and Chaté performed quench experiments [11] where they decreased

the velocity of the plates abruptly. They observed a minimal Reynolds number of Re � ����
� which equals the transitional Reynolds number observed by their experiments. Since the

statistical properties of the repellor change with the Reynolds number, a quenched turbulent

state may decay since it is no longer near the repellor. Therefore, it is more practical to reduce

the Reynolds number slowly. Then the turbulent state lies always near the repellor, until it

leaves the repellor via the unstable manifold. In these experiments about �� turbulent states

at Re� � ��� were taken. This Reynolds number is lowered at a rate c, Re�t	 � Re� � c t.

Typical energy curves for a specific turbulent state are shown in figure 4.18.

For the very small lowering rate c � ���� � ������� the turbulent state disappears after

t � ����, corresponding to a final Reynolds number of about ���. Since here the decay

rate is much smaller than the escape rate, this should be the regular decay of the turbulent

state. For a somewhat larger rate c � ��� � ����� the turbulent state can be followed all the

way to a Reynolds number of Re � ���. This is less than the transitional Reynolds number
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Figure 4.18: Temporal behavior of a turbulent perturbation for different annealing rates. The

lower abscissa give the time, the upper labels the Reynolds number reached at that time.

but compatible with the appearance of the first maximal lifetime at Re � ��� observed

in the previous section. Moreover, the fluctuations before the decay show no indications

that the end of the turbulent state is reached. I take this as an evidence that until shortly

before the decay the dynamics is still dominated by the turbulent behavior and that indeed

a continuation of the turbulent state to lower Reynolds number is visible. At the even faster

annealing rate c � ���� the dynamics is markedly different. It shows a gradual decay to zero

without any turbulent revivals as in the other cases.

The results for many such annealing experiments are collected in Fig. 4.19. For fast anneal-

ing rates the lifetimes cluster tightly, around about �� for c � 
. Decreasing c the lifetime

increases, as do the variations between the experiments. For slower annealing rates the vari-

ability increases drastically, lifetimes differ by one order of magnitude, and the dynamics

changes, as indicated by the traces in Fig. 4.18. It is here that the longest living states indeed

seem to follow the turbulent state down to Reynolds numbers of about Re � ���. For even

slower annealing rates the lifetimes increase drastically, with fluctuations covering almost

two decades. For such small annealing rates the escape rate dominates the lifetime distribu-

tion and the large fluctuations are the ones known from lifetime measurements. Note that I

calculated the lifetime up to �����, which is much higher than the numerical cut-off used in

previous investigations.
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Figure 4.19: Final points for annealing experiments with different annealing rates c. The

ordinate gives the time for which the wall normal energy in the perturbation is larger than

���
. The dashed lines are lines of constant Reynolds number. Starting at Re � ��� down

to Re � ��� (from left to right). The vertical dashed line marks the region, where neither the

escape rate nor the relaxation rate dominates the dynamics.

The ranges of annealing rates that showed the lowest Reynolds numbers with turbulent be-

havior are indicated in figure 4.19 by vertical bars. The slowest limit is about a factor of three

above the escape rate of the turbulent state, to avoid spontaneous decay of the perturbation.

The upper limit is about a factor of five faster than the relaxation rates � of the turbulent

state. This can be justified by the fact that in the annealing experiments the deviations from

the turbulent state will be much smaller than in the strong perturbation experiments used to

determine �, so that even with faster annealing rates the dynamics has a chance to follow the

turbulent state.

It seems possible to follow adiabatically a turbulent state from a higher Reynolds number to

values as small as Re � ��� if the annealing rate lies between ���� and ���. This value is

close to the one where the nonlinear transients and turbulent states were observed but still

much larger than the bifurcation value for the first stationary states, which will be discussed

in the next chapter. This suggests that the domain of attraction for the turbulent state shrinks

rapidly with decreasing Reynolds number and becomes almost negligible for Reynolds num-

bers around Re � ���.
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4.5 Conclusions

The above investigations show that the lifetime depends strongly on the shape of the pertur-

bation and the Reynolds number. Therefore the transition is best described in a statistical

sense. The transitional Reynolds number Retr is defined as the Reynolds number where the

probability of finding perturbations with life times above ���� exceed a value of ���. For

a streamwise orientated closed vortex filament Retr equals ���, which equals the value of

a filament with a wall normal orientation. A vortex filament orientated along the spanwise

direction shows an earlier transition at ���. These values suggest a general transition at

Retr � ���� ��.

There are three different types of states: linear and nonlinear transients and turbulent states.

The statistics of a turbulent state equal the statistics of the nonlinear transients and are inde-

pendent of the shape and the symmetry of the initial perturbation. These observations suggest

that the transition to turbulence comes along with the formation of a chaotic repellor, which

attracts perturbations on a timescale �, the relaxation rate, but repels them on a timescale �,

the escape rate.

The repellor already exists at values belowRetr. One can follow the turbulent motion down to

Reynolds number below ���� �� by performing annealing experiments where the Reynolds

number is slowly decreased. The annealing Reynolds number Reanneal is the lowest value

of a Reynolds number where a turbulent dynamic was sustained. This value is about ���,

which is similar to the occurrence of first nonlinear transients for the propagation of a vortex

filament with a spanwise orientation.

At a value of Re � ��� a couple of stationary states already exist. They are presumably

responsible for the formation of this repellor. The properties of these stationary states are

discussed in the next chapter. In chapter 6 I will discuss and illustrate how these states are

presumably responsible for the formation of the repellor.
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Palmström bekam ein Operglas geschenkt

womit er sich nun in die Welt versenkt.

Doch glaub nicht, daß man ihn beneiden darf:

denn ach! Es ist für seine Welt zu scharf.

Die Welt, die ihn umfängt und interessiert,

mißt dreihundert Meter im Geviert.

Das Fernglas aber zeigt immer Gegenstände,

die viel, viel weiter draußen im Gelände

Er sieht mit seinen Linsen lediglich

ein gewissen Nebelreich um sich,

ja, Zirkus selbst, Konzertsaal und Theater

sind nicht wie einige verschwommne Krater

Palmstöm versucht hierauf nach solchem Scheitern

den Horizont behutsam zu erweitern.

Umsonst! es weiß der wundervolle “Zeiss”

allein von Solchem, wovon er nichts weiß.

Das achtfache Glas, C. Morgenstern[66]

Recent investigations focused on finite amplitude solutions of the time independent Navier-

Stokes equation in the plane Couette flow. Since the birth of a new finite amplitude solution

and its secondary bifurcation marks a well-known route to turbulence in linearly unstable

flows, one would expect these states to play also an important role in the transition to tur-

bulence in plane Couette flow. It is known that one pair of stationary states bifurcates at

Re � ������, which was found by Nagata [68, 69], Busse and Clever [27]. Nagata found an

additional pair of states bifurcating at Re � ��� [71]. At a Reynolds number of about ����

Cherhabili and Ehrenstein [21] and later Balakumar [5] found a two dimensional stationary

solution. From this solution a three dimensional solution bifurcates at a higher Reynolds

number [22].

All these states have been found by applying path-following methods. These methods modify

the plane Couette flow by adding additional forces to the equation of motions, which desta-
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bilize the laminar flow and allow primary and secondary bifurcations. Cherhabili, Ehrenstein

and Balakumar add a pressure gradient, Nagata used centrifugal forces and Busse and Clever

used a temperature gradient.

My investigations show that there are various stationary states beside the ones observed

by Nagata, Busse and Clever, Cherhabili and Ehrenstein, and Balakumar. In this chapter

I discuss these various states. The numerical methods of the investigation, the observed

stationary states, different topologies of the stationary state are described and the states are

classified. Some of the characteristics of these states can be explained with simple, linear

arguments. This chapter is closed with a discussion of these arguments.

5.1 Numerical methods

Stationary states are solutions of the time independent evolution equation:

� � � 	u � r
u� z
�

� x
u� w e

x
� grad p�Re���u � (5.1)

which fulfill also the continuity equation,

divu � � � (5.2)

and satisfy the boundary conditions,

ujz��� � � � (5.3)

The search is restricted to members of the two symmetry groups I and NBC (see chapter

3.4). The latter equals to the symmetry group investigated by Nagata [68–70] and Busse

and Clever [25–27], where the first pair of stationary states have been found. In accordance

to their work I used an aspect ration of d  �� d  � d (wall normal:streamwise:spanwise),

where d is the gap width. Solution branches of members of the NBC group are named in

Greek letters, members of the I group in capital Latin letters.

In order to find a solution of equation (5.1) also solving equations (5.2) and (5.3), I used the

Lagrangian formalism of the second kind (see appendix A), i.e. the flow field u is expanded

in terms of incompressible vector fields vanishing at the boundary. The resulting formulation

can be solved with a standard Newton-Raphson method [83]. The initial conditions for this

method are taken from the turbulent state. The Pittsburgh path-following program PITCON

[88, 89] is used to follow the solution branch to different Reynolds numbers.
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Figure 5.1: Energy and shear rate of various stationary states found in plane Couette flow

reduced to the NBC symmetry group. Each symbol corresponds to a stationary solution found

at a given Reynolds number. They are connected by lines to sketch the solution branch.
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Figure 5.2: Energy and shear rate of various stationary states found in plane Couette flow

reduced to the I symmetry group. Each symbol corresponds to a stationary solution found

at a given Reynolds number. They are connected by lines to sketch the solution branch.
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5.2 Classes of stationary states in plane Couette flow

In this section I introduce the stationary states found in plane Couette flow in the investigated

symmetric subspaces. It turns out that the states found by Nagata [68, 69] and Busse and

Clever [27] are only a few members of a great variety of stationary states. Figure 5.1 shows

the energy and the shear rate of the stationary states which are member of the NBC group (See

also D.1). Figure 5.2 show the same in the I group (See D.2). Each symbol corresponds to

a found stationary solution at a given Reynolds number. They are connected to sketch the

solution branch.

The first pair of states bifurcates at Re � ���. This value is slightly below the value of

the state found by Nagata [68, 69] and Busse and Clever [27]. The difference is presumably

caused by the different applied numerical methods and spectral representation.

At Re � ��� a new pair of states bifurcates being member of the NBC group. New solutions

split off from this branch at Re � ��� from the upper part and at Re � ��� from the

lower part. A new pair bifurcates in both groups at Re � ��� and vanishes at Re � ���.

For Reynolds numbers larger than ��� various additional states bifurcate. The energy and

the shear rates of the states of the I group lie between the upper and the lower part of the

solution branch of the first pair of states. It is also the state bifurcating at Re � ��� in the

NBC symmetry group which marks the highest and the lowest energy and shear rate. The

upper and the lower part of the solution branch of the state bifurcating at Re � ��� does not

spread in this way.

While the members of the I group perform a complex framework of backward and forward

bifurcations, most of the members of the NBC group show only few additional backward and

forward bifurcations. Such complex bifurcations occur only at higher Reynolds numbers in

the NBC group.

The topological features of these stationary states are all the same. These features are de-

scribed in the next section.

5.3 Topological characterization of the stationary states

Figure 5.3 shows the flow field u of the first state of the NBC group at the bifurcation point

at Re � ���. The streamwise velocity (contour) and the spanwise and wall normal velocity

(vectors) are shown at x � �� �
�
� �
�
� �

�
�. The whole flow can be reconstructed by applying

the W (3.7) and the V (3.8) symmetry operation. The state consists of two localized regions

with a high fluid transport along the streamwise direction, referred as streamwise streaks.
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Figure 5.3: Flow field u of the first state bifurcating in the NBC group at Re � ���. The

streamwise velocity (contour) and the spanwise and wall normal velocity (vectors) are shown

at x � �� �
�
� �
�
� �

�
�. The whole flow can be reconstructed by applying the W (3.7) and the V

(3.8) symmetry operation.

Averaging the flow field along the streamwise direction

hui �
Z
Lx

dxu	x� y� z
� (5.4)

filters the variation along the streamwise direction and clarifies the topology of these state

(Fig. 5.4 left panel).

To study the spanwise and streamwise dependence of these states the positive streamwise
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Figure 5.4: Flow field u of the first state of the NBC group at the bifurcation point (Re � ���)

averaged along the streamwise direction (left panel) and u� (shade contour) and � (contour

lines) of the this state (right panel).

velocity is integrated along the wall normal direction, i.e.

u� 	x� y
 �

Z �

��

dz� u 	x� y� z�
� 	u 	x� y� z�

 � (5.5)

where � is the Heaviside function,

�	x
 �

�
� x � �

� x � �
� (5.6)

The right panel of Fig. 5.4 shows u� of the first state of the NBC group. The wavy structure

of this state imposed by the W symmetry is clearly visible.

Figure 5.3 shows that these streaks are penetrated by two strong vortices which transport

fluid between them. When the streamwise vorticity �x �
�
� y
w � �

� z
v is integrated along the

wall normal direction,

� 	x� y
 �

Z �

��

dz� �x 	x� y� z
�
 � (5.7)

it becomes visible that these vortices follow the movement of the streaks (Fig. 5.4 right

panel).

Further studies of other stationary states show that this is the universal structure of the ob-

served stationary states. All states consist of streamwise streaks and vortices which transport

fluid between the streaks. The arrangement differs, i.e. the streaks can be staggered in a

way that no average fluid transport between the neutral plane occurs. Additional topological

changes are also possible.

There are four different basic streak topologies: S-, �-, H- and I-streaks. The S-streak is

shown in figure 5.4, the other ones are displayed in figure 5.5.
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Figure 5.5: The different topologies of the stationary states, which can be identified by hui,
u� and �. There are four different basic streak topologies: S-, I- a), H- b) and �-streaks c).

The S-streak is shown in figure 5.4.

S-streaks consists of elongated streamwise streaks. These streaks not always extend over the

whole spanwise box length. The sign of the velocity inside the streaks alternate along the

spanwise direction. There exist states with two layers of streaks. These states are similar to

the I-streaks (Fig. 5.5a), which are localized along the spanwise direction. I-streaks only

occurs in the I symmetry group. They do not show the streamwise waviness as the S-streaks

do, and they are always staggered in two layers with a fluid transport in opposite directions

(Fig. 5.5a).
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Additional topological changes are possible. Two streaks can combine and split again. These

kind of streaks are referred as H-streaks (Fig. 5.5b) and they are similar to the �-streaks,

where one streak splits into two streaks, which unify again (Fig. 5.5c).

Different streak topologies can be observed within the same stationary state. In the state

shown in figure 5.5a I-streaks coexist with littleS-streaks. Since at higher Reynolds numbers

lengthscales and the spatial correlation of the flow field decrease, more states with different

coexisting streak topologies may exist for sufficient high Reynolds numbers.

The different states found in plane Couette flow can be classified by the symmetry proper-

ties of hui, u� and � and the number of streaks and streak layers. Two different reflexion

symmetries can be observed:

Ry 

�
u

v

�
	x� y
 �

�
u

�v

�
	x��y
 (5.8)

Rz 

�
B�

u

v

w

�
CA 	x� y
 �

�
B�

u

v

�w

�
CA 	x� y��z
 (5.9)

Furthermore, some of these solution show a translation symmetry along the spanwise or the

streamwise direction or a diagonal translation:

T�x��y 

�
u

v

�
	x� y
 �

�
u

v

�
	x ��x� y ��y
 � (5.10)

hui, u� and � of all classes of states are given in appendix E. The linear stability analysis

of the stationary states shows, that they are all linearly unstable except the �-node at low

Reynolds numbers. In the following, I discuss the characteristics of the different classes in

the NBC and the I symmetry group. Table 5.1 and table 5.2 summarize the results of these

classifications.

5.3.1 Stationary states in the NBC symmetry group

A class

This class consists of S-streaks, long wavy streamwise streaks extending over the whole

streamwise box length. The streaks lie next to each other and show an alternate sign. The �-

branch, i.e. the state found by Nagata[68, 69] and Busse and Clever [27], is the first member

of the A class. At Re � ��� the �-branch bifurcates. This state is similar to the �-branch

but shows a weaker modulation along the spanwise direction. The 	-branch, A�, is the third

member of this group. It bifurcates at Re � ��� and consists of three streamwise streaks.
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Name branch No. of streaks No. of streak layers Symmetries Recr�

A� � 1 1 ���

A� � 1 1 ���

A� 	 3 1 TLx��� TLy�� ���

B� 
 4 2 TLx���Ly��, Rz ���

B� � 4 2 TLx���Ly��, Rz ���

B�� � 4 2 Rz ���

B���  4 2 ���

B� � 6 2 ���

B� � 8 2 TLx���Ly��, Ry, Rz ���

B�� � 8 2 TLx���Ly��, Rz ���

B� � 12 4 TLx���Ly��, Rz ���

B	 � 16 4 TLx���Ly��, Ry, Rz ���

C� � 8 2 TLx���Ly��, Ry ���

C� � 8 2 ���

C� � 8 2 Rz ���

D� � 4 2 TLx���Ly��, Ry, Rz ���

D�

� � 4 2 ���

D� � 4 2 ���

D� � 4 2 ���

D� � 4 2 ���

D� � 4 2 ���

D	 � 4 2 ���

Table 5.1: Classification of the different solution branches in the NBC symmetry group.

The energy and the shear rate of the three solution branches are shown in Fig. 5.6. All states

are born in saddle node bifurcations and are not connected with each other.

B class

Members of the B class consist of streaks with alternate sign along the streamwise and span-

wise direction. Figure 5.7 shows the basic state B�, the 
-branch. This state conserves the

TLx���Ly�� and the Rz symmetries. The later implies that there is no average fluid transport

between the neutral plane. The �-branch is similar to the B� state but its streaks a more

elongated. The �-branch and the -branch break the observed symmetries. The �-branch,

referred as B�, is connected with the 
-branch via a pitchfork bifurcation at Re � ���. The

-branch, B��� , and the �-branch, B��, are not connected to the 
-branch.
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Figure 5.6: Energy and shear rate of the members of the A class.

Figure 5.7: hui, u� and � of a state of the 
-branch. This branch is the first state of the B
class.

The bifurcation diagram of this class (Fig. 5.8) shows that except the �-branch all states are

born by saddle node bifurcations and are not connected with each other. B� and B	 consist

of four streak layers. Since the sign of these streaks changes on each layer, there are streaks

with an high fluid transport along the direction of the mean flow. These regions are smaller

and less intensive than the dominant streaks at the plates, which show the familiar transport

opposite to the laminar flow.
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Figure 5.8: Energy and shear rate of the members of the B class.

Figure 5.9: hui, u� and � of a state of the �-branch. This branch is the first state of the C
class.

C class

All states of the C class are born in pitchfork bifurcations of the �-branch, B� (Fig. 5.10).

They all consist of eight streaks on two layers and break the symmetries of the �-branch.

The intensity and the spatial extension of these streaks changes. The �-branch, C�, has four

intensive streaks and four weaker streaks with a diffusive border (Fig. 5.9). The �-branch, C�,
also shows four intensive and four weak streaks, which are elongated along the streamwise

direction with a sharp border in the spanwise direction. The �-branch, C�, has only two

intensive and six weaker streaks of nearly equal width.
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Figure 5.10: Energy and shear rate of the members of the C class. Since all states are born

by a pitchfork bifurcation of the �-branch, the �-branch, B�, is also shown.
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Figure 5.11: Energy and shear rate of the members of the D class.

D class

The D class consists of spatial localized streaks which undergo topological changes. �- and

H-streaks of the NBC belong to this class. The state shown in figure 5.5c belongs to the

�-branch,D�. It conserves the TLx���Ly��,Ry,Rz symmetries. These symmetries are broken
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Figure 5.12: hui, u� and � of a state of the F-branch. This branch is the first state of the E
class and the first stationary state bifurcating in the I symmetric subspace.
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Figure 5.13: Energy and shear rate of the members of the E class.

by the other members. Due to its high symmetry the �-branch, D�, exists in both symmetry

groups NBC and I. The bifurcation diagram (Fig. 5.11) shows that this state exists only in

a distinct range of Reynolds numbers. It is born by a forward saddle node bifurcation and

vanishes by performing a back saddle node bifurcation.

5.3.2 Stationary states in the I symmetry group

E class

States of the E class are similar to the members of the B class. They consist of localized

streaks with alternating sign arranged on a grid with a grid space of Lx�y��. The first state of
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Figure 5.14: Energy and shear rate of the members of the F class. The N-branch, E� bifur-

cates from the F-branch, which also entered the figure.
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Figure 5.15: Energy and shear rate of the members of the G class.

the I symmetry group, the F-branch (Fig. 5.12) is member of this class. There are four in-

tensive streaks and four weaker streaks on two layers. There is no average transport between

these two layers.

The Q-branch and the R-branch bifurcate from the F-branch and break the TLx���Ly�� sym-
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Name branch No. of streaks No. of streak layers Symmetries Recr�

E� M 6 2 Ry ���

E �� I 6 2 Ry ���

E� F 8 2 TLx���Ly��, Ry, Rz ���

E �� C 8 2 ���

E� Q 8 2 TLx��, Ry, Rz ���

E� E 8 2 TLx�� ���

E� G 8 2 TLx�� ���

E	 H 8 2 ���

E
 D 8 2 TLx���Ly�� ���

E� R 10 4 Rz ���

F� N 8 2 TLx���Ly��, Ry, Rz ���

F �

� B 8 2 TLx���Ly��, Rz ���

F ��

� A 8 2 ���

G� P 4 2 ���

G� L 6 2 ���

G� J 8 2 ���

G� O 10 2 TLx���Ly��, Ry, Rz ���

Table 5.2: Classification of the different solution branches in the I symmetry group.

metry. So does the N-branch, but this branch belongs to the F class.

F class

The first state of the F class, the N-branch, bifurcates from the F-branch. The other states

of this group bifurcate from this branch via pitchfork bifurcations. Therefore, they have

all a similar topology. They consist of I-streaks. A state of the N-branch is displayed in

figure 5.5a. These elongated streaks extend over the whole spanwise periodic box. Weak

S-streaks lie between these long intensive streaks. All streaks on one layer have the same

sign and only the A-branch, F ��

� , show an average transport between the neutral plane.

G class

Spatial extended structures characterize the member of this class. They consist of �- and

H-streaks and are similar to the members of the D class of the NBC symmetry group. The

basic state, the P-branch, G�, preserves none of the additional symmetries (See figure 5.5b).
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Figure 5.16: Critical Reynolds numbers for the �- and the F-branch for different spanwise

extensions and Lx � �� d. The �-branch shows an optimal aspect ratio of d  �� d  � d (wall

normal: streamwise: spanwise), where its critical Reynolds number equals Recr � ���. The

F-branch has an optimal aspect ratio of d  �� d  ����� d. In this aspect ratio, it bifurcates

at Recr � �����.

5.4 The wavelength selection

In this section, I investigate the optimal aspect ratio of the first branch of the NBC and the

I group. Then I will show how the basic physical mechanisms responsible for the forma-

tion of the stationary state determine the aspect ratio. The ideas follow the work done by

Waleffe [105], though he applied these ideas on the self sustaining process in turbulent flow

instead for the structure of stationary states in plane Couette flow. I will show that the basic

properties of the stationary states can be interpreted by the two basic mechanisms of this self

sustained process.

5.4.1 The optimal aspect ratio for the �- and the F-branch

The �- and the F-branch are the first stationary states bifurcating in the NBC and the I sym-

metry group, respectively. While the �-states consist of two neighboring S-streaks (Fig. 5.4),

the F-states consist of two layers of streaks (Fig. 5.12 left panel). The streaks of the �-branch

show a width of �
�
d and fill the gap. The F-branch are only of d

�
height and have a width of �

�
d,

but their length does not equal the half box length along the streamwise direction (Fig. 5.12

right panel).
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Varying the spanwise boxlength Ly for fixed gap size and streamwise extension Lx � �� d

shows that the two branches have a different optimal aspect ratio (Fig. 5.16). The �-branch

has an optimal aspect ratio of d  �� d  � d (wall normal: spanwise: streamwise), which

is in agreement with the results obtained by Busse and Clever [27]. In this aspect ratio the

F-branch has a critical Reynolds number of ���. However, the optimal critical Reynolds

number for the F-branch lies below this value. For a ratio of d  �� d  ����� d it bifurcates

at Recr � �����.

To understand qualitatively the existence of optimal wavelengths, I discuss the basic mech-

anism which are responsible for the topological structure of the stationary states: the lift-up

effect and the streak breakdown.

5.4.2 The lift-up effect

Consider the linearized evolution equation (3.1) for an infinitesimal disturbance of the plane

Couette flow without streamwise dependence:

�

� t
u � �w �

�

Re
�u

�

� t
v � � �

� y
p�

�

Re
�v

�

� t
w � � �

� z
p�

�

Re
�w � (5.11)

u vanishes at the plates since no-slip boundary conditions are applied:

ujz�� �

�

� ��

Note, that in this investigations the gap width is set to one and not to two. Since there is no

streamwise dependence the continuity equation simplifies to

div u �
�

� y
v �

�

� z
w � �� (5.12)

The equations of motion for v and w decouple from �
� t
u. The evolution equation for u equals

a passive scalar problem where u is driven by w. Such type of equation have been studied

by Pearson and Abernathy [81] and Moore [65]. 	v� w
 are expressed in terms of a stream

function �, i.e. 	v� w
 � curl 	� ex
. The equation of motion for � equals

�

� t
�� � Re����� � (5.13)

and the no-slip boundary conditions for v and w give the following boundary conditions for

�:

�jz�� �

�

�
�

�z
�jz�� �

�

� � � (5.14)
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One can apply a Fourier-expansion in u and � along the spanwise direction. Along the wall

normal direction two different expansions are needed since u and � fulfill different boundary

conditions.

� can be expanded in terms of the even and odd Chandrasekhar-beam-functions Ci	x
 and

Si	x
 [20], where

Cm	x
 �
cosh �mx

cosh �

�
�m

� cos�mx

cos �

�
�m

(5.15)

Sm	x
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sinh�mx

sinh �

�
�m

� sin�mx

sin �

�
�m

(5.16)

and �m and �m are roots of the characteristic equations

� � tanh
�

�
�� tan

�

�
� (5.17)

� � coth
�

�
�� cot

�

�
� � (5.18)

Expanding the stream function � only in terms of Cm	x
 a solution of (5.13) reads
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where the coefficients ��n are

��n �

Z �

�

�
�

�

dz Cn	z

��

�z�
Cn	z
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u is expanded in a Cosine expansion, which also fulfills the boundary conditions:

u �
�X
n��

�X
l���

�un�l	t
 cos 		�n� �
� z
 exp

�
�� il
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� (5.20)

The reality of both u and � demands further that �un�l � �u�n��l and ��n�l � ���n��l.

The evolution equation for the coefficients �un�l	t
 equals

�

� t
�un�l	t
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�X
m��

��i l
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Pm�n

��m�l � ��

Re

�
�

L�
y

l� � 	�n� �
�
	
�un�l � (5.21)

where Pm�n is the projection of the even Cm�� onto the cosine:

Pm�n �

Z �

�

�
�

�

dz cos		�n� �
�z
Cm��	z
 � (5.22)
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The vortex � transfers energy from the mean flow into the streamwise velocity u and build

up the streaks. Since the vortex vanishes for t � � this amplification is only of transient

nature. The imaginary unit i induces the observed phase shift and the width of the streak

equals the width of the vortices.

Using one distinct wavelength and only the first coefficient for the expansions of � and

u in the wall normal direction simplifies the equations. Setting l � �, n � �, using

� � �

Re



���

L�
y
� ���

�
, � � ��

Re



�

L�
y
� �
�

, and A � ��i
Ly
P���

��, equation (5.21) reduces to

�

� t
�u	t
 � �Ae��t � ��u	t
 � (5.23)

which has the solution

�u	t
 �
A

�� �

�
e��t � e��t


� (5.24)

The amplitude of �u	t
 shows a growth followed by an exponential decay. It reaches its

maximum at tmax �
ln��ln�
���

and the maximum amplitude is

umax	tmax
 �
A

�� �

��
�

�

	� �
���

�
�
�

�

	� �
���

�
� (5.25)

Since � and � are proportional to Re�� the maximum of �u	t
 grows linear with Re. Fig. 5.17

shows umax at a Reynolds number of ��� and �� � � i Ly
��P���

for different spanwise extensions

Ly. The optimal width equals �Ly � ������.

The above investigations are the hydrodynamical interpretation of the non normality of the

linear evolution equation for infinitesimal disturbances of parallel shear flows [4, 43, 46, 47,

105, 106]. Butler and Farrell studied the general case of the linearized evolution equation

[17]. They calculate an optimal spanwise length for a streamwise vortex at Re � ��� of

����.

Though the stationary states are intrinsically time independent this mechanism is responsible,

because it is the only mechanism to amplify energy. In the next section, I will show how an

additional linear mechanism selects the lengths of the streaks: the breakdown of streamwise

streaks.

5.4.3 Streak breakdown

The vortices feed the streaks by the lift-up effect. Since the fluid is sheared between these

streaks a shear instability occurs which breaks down the streaks. The above discussion

showed that the amplitude of the streak is of the order Re. Since the investigated streaks

are not staggered one can simplify the stability analysis to a two dimensional streak having
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only a streamwise and a spanwise dependence. The linear evolution of a �d disturbance

represented by a stream function �	x� y� t
 of a time independent laminar flow �	y
 equals:

�

� t
�� �
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� x
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� y
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� y
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� x
���

�

Re
��� � (5.26)

Since �
� y
� � u, this equation reduces to the Orr-Sommerfeld equation: [35, 61]
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��� � (5.27)

The streak corresponds to

u	y
 � u� cos

�
��

Ly

y

	
� u� cos	�y
 � (5.28)

and the disturbance is expressed in a Cosine-expansion,

�	x� y� t
 �
�X

m���

exp 	im
x

�X
n��

gm�n cos 	�ny
 e
�t � (5.29)

with gm�n � g�
�m�n. Using only the first two terms of the Cosine-expansion, taking only one

wave in streamwise direction, i.e. jmj � �, and substituting equation (5.28) and (5.29) into
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Figure 5.18: Real part of the leading eigenvalue of the Orr-Sommerfeld equation for the

infinitesimal perturbation of a periodic two dimensional streamwise streak, with a spanwise

width of �Ly � ������ and an amplitude of u� � �. In the inviscid case and the viscid case at

Re � ���.

equation (5.27) leads to an eigenvalue problem for the vector 	g�� g�
:
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u�
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Re
g� (5.30)
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In the inviscid case, i.e neglecting the dissipative terms, the eigenvalues are

���� �
j
u�jp

�

s
�� � 
�

�� � 
�
� (5.32)

Disturbances with a wavelength smaller than the streak width are marginally stable and show

an oscillatory instability in the inviscid and a damped oscillatory decay in the viscid case.

All disturbances with a wavelength larger than the streak width are linearly unstable. In

figure 5.18 values for the leading eigenvalue � in the inviscid and the viscid case at Re � ���

are shown. The width of the streak was chosen as the optimal value calculated in the above

section 5.4.2, �Ly � ������. The amplitude of the streak was set to u� � �. The maximum of

the leading eigenvalue lies for the inviscid case �Lx � �����, and at �Lx � �����, in the viscid

case.
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After the streak instability occurs vortex filaments start to grow at the shear layer. These vor-

tex filaments are rotated by the shearing of the laminar flow field and change their orientation

into the streamwise direction. Then they start to build up new streamwise streaks via the lift

up effect.

The above mechanisms are also relevant for the stationary states. Since the lift-up effect is

the only mechanism which compensates the energy loss by viscous effects, stationary states

have to consist of streamwise vortices. The optimal width of the vortex corresponds to the

optimal energy input. These vortices feed streaks which have a shear instability. The most

unstable disturbance will break down these streaks and transfer most of the energy into vortex

filament, which are coupled via nonlinear effects to the streamwise vortices. Hence, the

width of the streaks presumably corresponds to the optimal width of the streamwise vortices

and their length corresponds to the most unstable wavelength of the shear instability. These

two wavelengths give an optimal energy flow and lead to the following optimal aspect ratios:

for the inviscid case, the optimal ratio is about d  ������Ly d  �Ly d (streamwise:spanwise)

and in the viscid case the ratio equals d  ������Ly d  �Ly d.

The values of the obtained aspect ratio are between the observed values. The differences have

their origin in the strong simplifications which have been applied in the above investigations.

In fact, the streamwise vortices and the streamwise streaks have a streamwise dependence

and the nonlinear coupling between the streak breakdown and the streamwise streaks has not

been investigated here. The influence of the symmetries which imply a streamwise depen-

dence and spatial correlations between vortices and streaks have also been ignored.

However, the above results illustrate the effects leading to a selection of the wavelengths and

the basic mechanisms being responsible for the formation of stationary states.

5.5 Conclusions

There is a great variety of stationary states in plane Couette flow. These states consist of

streamwise vortices and streamwise streaks and show four different streak topologies: S��
I�� H� and � streaks. All states are born in saddle node or pitchfork bifurcations. All

states are linearly unstable, except the �-node (See chapter 6.2.1 for a further discussion

of its stability properties). A further classification of the stationary states show that there

are four different classes of states in the NBC symmetry group and three classes in the I

symmetry group. The members of these classes can be distinguish by the number streaks

and streak layers, and the symmetry properties of hui, u� and �.

The first state of the NBC symmetry group, the �-branch, has an optimal aspect ratio

of d  �� d  � d, where it bifurcates at Recr � ���. In this aspect ratio, the F-branch,
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the first state in the I symmetry group, bifurcates at ���. Changing the aspect ratio to

d  �� d  ����� d shows that its critical Reynolds number equals �����.

The mechanisms responsible for the formation of the stationary states are the linear lift-up

effect and the streak breakdown. Both effects are linear and have been studied by Waleffe

et al. to explain the self-sustaining process in turbulent motions [41, 42, 105, 107]. Looking

for the optimal coupling between these two mechanism suggests an optimal aspect ratio of

about d  ����� �Ly d  �Ly d, where �Ly � ������.

So far, the role of this stationary states for the transition to turbulent has not been investigated.

In the next chapter, I will discuss their influence on this transition.



6 Stationary states and the transition to turbulence

Blödem Volke unverständlich

treiben wir des Lebens Spiel.

Gerade das, was unabwendlich,

fruchtet userm Spott als Ziel.

Magst es Kinder-Rache nennen

an des Daseins tiefem Ernst;

wirst das Leben besser kennen,

wenn du uns verstehen lernst.

Galgenberg, C. Morgenstern[66]

There are various stationary states in plane Couette flow. At Re � ��� a first pair of states

bifurcates in the NBC group. Further pairs bifurcate at Re � ��� in both symmetry groups.

The number of stationary states increases rapidly for higher Reynolds number. In this chap-

ter, I will show how these stationary states change the flow in the phase space. Energy, shear

rates and an additional shear measure for the stationary states are compared with the time

averaged values of the turbulent state, measured in chapter 4, and give another interpretation

of the results obtained in the annealing experiments. The different types of possible hetero-

clinic connections are discussed and the flow between the stationary states is investigated at

Re � ��� and Re � ���.

6.1 Statistical properties of the stationary states and the turbulent state –

an interpretation of the annealing experiment.

The lifetime statistics of finite perturbations in chapter 4 have shown that the transitional

Reynolds number is about Re � ��� � ��. By performing annealing experiments it was

also possible to follow the turbulent dynamics down to Reynolds numbers of about ���. The

turbulent dynamic take place in a distinct region of the phase space, which is independent

of the nature of the perturbation. The region shifts for different Reynolds numbers. The

annealing experiments take care of this shift. The perturbation lies always in the vicinity

of the turbulent state and can relax onto this state, while the Reynolds number is decreased.
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Figure 6.1: Energy (upper panel), the shear rate (middle panel), and the average shear mea-

sure (6.1) (lower panel) of the stationary states of the NBC (dotted lines) and the I (solid lines)

symmetry group, and the time average of turbulent perturbations calculated in chapter 4 (�)

for different Reynolds numbers. The dashed lines extrapolate the shift of the turbulent state

to lower Reynolds numbers. At Re � ��� the shear measure of the time average quantity

falls below the value of the stationary states.

The perturbation is able to follow the movement of the turbulent state until it escapes via the

unstable manifold of the turbulent state.

Figure 6.1 shows the time averaged energy and the shear rate of the turbulent state measured

in chapter 4 and the values of the stationary states. Since the shear rate reflects only the

shearing at one plate and ignores internal shearing due to staggered streaks, an average shear

measure, defined by

M �
�

A

Z �

��

dz

�Z
A

�

� z
	u
 z�

��

� (6.1)

also entered Figure 6.1.
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At Reynolds numbers above Retr the turbulent state lies in regions of the phase space, where

a couple of stationary states exists. For decreasing Reynolds numbers the values of the

energy, shear rate, and the shear measure decrease. Linear extrapolation of this shift to lower

Reynolds numbers shows that the value of the average shear measure falls below the values

of the stationary states at Re � ��� (Fig. 6.1). This observation suggests that the turbulent

state can only sustain in the vicinity of the stationary states. And that the turbulent state

approached by time dependent perturbations and close vortex filaments, which dominates

the phase space at higher Reynolds numbers, leaves the vicinity of the stationary states at

Re � ���.

On the other hand, stationary states exists for Reynolds numbers below ��� and nonlinear

transients and even turbulent states might be observed if the perturbation starts in the vicinity

of these stationary states. The statistical properties of these states are different from the one

of the turbulent state which dominates the phase space at higher Reynolds numbers. This

observation suggest that these turbulent states become less dominant at higher Reynolds

numbers and might even unify with the observed dominant turbulent state.

The responsible phase space structure might be heteroclinic or homoclinic connections be-

tween the stationary states. These connections are able to generate a nontrivial flow between

different stationary states and allow a perturbation starting on this flow to sustain before it

decays.

6.2 Investigation of heteroclinic and homoclinic connecting flows

In this section I will focus on the heteroclinic and homoclinic flows in the vicinity of the sta-

tionary states, which are presumably generated by heteroclinic connections and homoclinic

orbits. Additionally, I study the dynamic in the vicinity of the �-branch, which allows peri-

odic and nonlinear transient motions at Reynolds numbers below ��� in regions of the phase

space not approached by the turbulent state studied in chapter 4.

I start with an investigation of the stability of the �-branch. Then I discuss the different types

of the known heteroclinic connections build up by saddle node and pitchfork bifurcations and

investigate the formation of heteroclinic and homoclinic flows for Re � ��� and Re � ���.

6.2.1 Hopf bifurcations of the �-node

Busse and Clever showed that in a small region of the parameter space the node of the �-

branch is linearly stable until it undergoes a stable Hopf bifurcation [27]. Figure 6.2 shows

the real part of the eigenvalues of the Jacobian of the �-branch. At Re � ��� a first pair
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Figure 6.2: Largest real parts of the eigenvalues of the Jacobian of the �-branch for different

Reynolds numbers. Circles correspond to the eigenvalues of the node. Squares corresponds

to the eigenvalues of the saddle. The node undergoes additional Hopf bifurcations at Re �

���, Re � ��� and Re � � (arrows).

of complex conjugate eigenvalues crosses the real axis and generates a stable limit cycle

[3, 48, 64, 109].

The singular eigenvalue of the node becomes complex after the saddle node bifurcation at

Re � ��� and crosses the real axis at Re � ���. Since the eigenvalue of the center manifold

of the saddle is the most unstable eigenvalue, perturbations move from the saddle to the node.

The second bifurcation at Re � ��� adds a new unstable manifold to the node. The formerly

stable limit cycle changes into an unstable torus. This is illustrated in Figure 6.3 where the

time signal of a perturbation starting near the node of the �-branch at Re � ��� is shown:

the time signal is not able to approach the formerly stable limit cycle since an additional

unstable manifold exists.

The node of the �-branch allows long living states at low Reynolds numbers. Below Re �

��� the node is linearly stable and between ��� and ��� a stable limit cycle exists, which

allows a periodic dynamic. Above ��� nonlinear transients are possible since the limit cycle

changes into an unstable torus. The energy, shear rate and the shear measure of this orbit

and values of the observed nonlinear transients are different from the ones for the turbulent

state (See chapter 4 and figure 6.1). Furthermore, its basin of attraction is rather small as

the former investigation of finite perturbations suggests. Although the �-branch allows a
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Figure 6.3: Time signal of a perturbation starting at the node of the �-branch at Re � ���,

which has already undergone three stable Hopf bifurcations. The time signal is not able to

approach the formerly stable periodic orbit since additional unstable manifolds exist.

complex motion it is not responsible for the formation of the turbulent state observed at

higher Reynolds numbers.

6.2.2 The origin of heteroclinic connections – pitchfork bifurcations and back saddle node

bifurcations

The linear stability analysis of the stationary states shows that there are two types of local

bifurcations, which are responsible for the formation of stationary states: pitchfork bifurca-

tions and backward saddle node bifurcations. The term backward and forward bifurcation is

related to a bifurcation where the Reynolds number is the control parameter.

Figure 6.4 illustrates the effect of these two types of bifurcations. Suppose a saddle node pair.

This pair is connected with each other via the center manifold. If one of the members of the

pair undergoes a pitchfork or a backward saddle node bifurcation a heteroclinic connection

between the new saddle node pair and the other member exists.

An example of a backward saddle node bifurcation is the �-branch, which undergoes a back-

ward saddle node bifurcation at Re � ��� and is born by a forward saddle node bifurcation

at Re � ��� (Fig. 6.5). Part a of the branch is connected with b via the center manifold.

At Re � ���, where the c branch exists, the a part is connected with the center manifold
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Figure 6.4: Birth of a heteroclinic connection by a pitchfork bifurcation or a backward saddle

node bifurcation. A saddle node pair is connected via the center manifold a). This connection

still exists though the node undergoes a pitchfork bifurcation b). Now, the saddle is connected

with both new states. In case of a backward saddle node bifurcation an existing second

connection vanishes because the two states unify b)� a).

connecting b and c.

In the NBC subspace the first pitchfork bifurcation occurs at Re � ���, where the �-branch

leaves the �-branch. This type of bifurcation is symmetry breaking and the �-branch consists

of two states with the same symmetry and equal energy, shear rate and values of the shear

measure (See also appendix E).

The first pitchfork bifurcation in the I subspace occurs at Re � ���. The lower part of

the F-branch undergoes a pitchfork bifurcation at ��� while the upper part of the branch

undergoes a pitchfork bifurcation at ���. These four branches are connected via different

heteroclinic connections. The first backward saddle node bifurcation occurs at Re � ��� in

the NBC subspace on the �-branch. The D-branch undergo such bifurcations at Re � ���.

Most stationary states undergo backward and forward saddle node bifurcations. As the num-

ber of states generated by bifurcations increases for growing Reynolds numbers the number

of heteroclinic connections also increases. However, this mechanism can only generate a

global flow between states of the same solution branch. The flow becomes even more com-

plex if a heteroclinic connection between different branches occurs. Furthermore, most of the

connections are unstable, i.e. the saddle has an additional unstable eigenspace with a higher

growth rate than the one of the center manifold. In cases, where the node also has additional

unstable eigenspaces the flow induced by the center manifold is no longer observable.
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Figure 6.5: Example of a backward saddle node bifurcation. The �-branch is born in a

saddle node bifurcation at Re � ��� and undergoes a backward saddle node bifurcation

at Re � ���. The branch a is connected with the branch b via the center manifold. At

Re � ���, where the c branch exists, the a branch is connected to the center manifold of b

and c.

6.2.3 Investigations of the global flow

In the former section I have illustrated how the bifurcation of stationary states and addi-

tional backward and forward bifurcations or pitchfork bifurcations can generate complex

heteroclinic connections. Unfortunately, the numerical search for heteroclinic connections

for systems with many degrees of freedom is an difficult task [8].

Problems arise from the mathematical definition of a heteroclinic connection: if x��� are two

stationary states of a given flow F, then a solution �x	t� of the dynamical system d

d t
x � F	x�

is referred to a heteroclinic connection, if

lim
t���

�x	t� � x� (6.2)

lim
t��

�x	t� � x� � (6.3)

If x� � x� this connection is a homoclinic orbit.
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Figure 6.6: Illustration of the flow between the states of the N-branch at Re � ���. The

circles correspond to the stationary states of the N-branch. The evolution of an ensemble

of �� perturbations of each stationary state is shown. There is a flow from the two states at

higher energies and values of the shear measure down to the third one.

One can weaken this definition by setting the infinite time interval to a finite one. To refor-

mulate this problem into a boundary value problem, one uses projection boundary conditions

[8]. �� i
��� is the ith eigenvector of the N���� dimensional stable (-) or unstable (+) manifold at

x���. Using an inner product 	�� �� the projection boundary conditions equal:

�i � �� ���� N�� �
�
�� i
� � �x	T��� x�

�
� � (6.4)

�i � �� ���� N�
� �

�
�� i
� � �x	T��� x�

�
� � � (6.5)

T� is the maximal investigated time. Equation (6.4) consists of N�� equations and (6.5)

consists of N�
� equations. The sum of N�� and N�

� does not always equal the active de-

grees of freedom. In general, the above problem is under- or overestimated. In case of an

overestimated problem one can formulate a well defined problem by introducing additional

parameters. However, this needs a knowledge about the presumably connected states.

Furthermore, a time integration of the dynamical system in the interval T� is needed. The

time integration of the plane Couette flow reduced to the I symmetry with Nz �  and N �

�, corresponding to ��� active degrees of freedom, and a temporal accuracy of ���� for a time

interval of ��� time units, takes about � minutes on a DEC Alpha 500 workstation. Using
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a shooting method also the numerical calculation of the Jacobian is needed. Calculating

the Jacobian via a finite difference method of first order takes about �� hours. Hence, the

computation of one correction of the initial guess needs about one day of CPU time.

Therefore, I applied another method which focuses on the flow between the stationary states.

If there is a presumably unstable connection an ensemble of states starting at x� will follow

this connection into the vicinity of x�.

I show such an experiment in figure 6.6. An ensemble of �� perturbations with a distance

of ������ was randomly distributed in the vicinity of a stationary state. By studying the

evolution of such an ensemble one can identify the dominant existing connections. Figure 6.6

shows the flow between the states of the N-branch at Re � ���. There is a flow from the two

states at higher energies and values of the shear measure down to the third one.

To investigate the heteroclinic and homoclinic connecting flows, I study the evolution of an

ensemble of states lying near a stationary state and follow their evolution. I restrict myself

to investigations within the energy-shear measure space. It is reasonable to investigate the

evolution in this space because any measurement of distances between the perturbations and

the stationary states has to deal with the multiplicity of each state, since the application

of one of the symmetry operations fP�S� T�x��yg and combinations of them produces a

new state. The energy and the shear measure do not change after the application of these

symmetric operations and one is always able to identify a stationary state in terms of its

energy and its shear measure. Furthermore, the investigations of the time averages of the

turbulent states and the energy, shear rate and shear measure of the stationary states showed

that the shear measure characterizes the location of the turbulent state better than the shear

rate does. Since these investigations base on an investigation of a two dimensional projection

of a high dimensional dynamic, the obtained results may be misleading, but the investigation

of stationary states showed that those cases are rare and these two scalars identify different

states very well.

Connecting flows at Re � ���

Although no nonlinear transient states have been observed at a Reynolds number of ��� (See

chapter 4) almost �� stationary states exist at this Reynolds number. Most stationary states

have a dominant unstable manifold which generates a flow to the laminar profile. Only a few

stationary states generate a non decaying flow. In Figure 6.7 all stationary states are shown

in the E	M -plane at Re � ���. Stationary states marked by open circles show only a flow

to the laminar state. Though their lifetime is higher than the lifetime of a finite perturbation

one can not speak off a nonlinear transient dynamic. Since, after the perturbation leaves the

stationary state the time signal shows an exponential decay.
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Figure 6.7: Heteroclinic and homoclinic flows extracted from investigations of the global

flow at Re � ���. Each circle corresponds to a stationary state. The flow in the vicinity of

the open circles goes to the laminar flow. Only the nontrivial flow between stationary states

is displayed. Numbers mark the connections, which are shown in table 6.1.

Some stationary states show a different behavior. A heteroclinic flow between these states

is visible. These nontrivial connecting flows are listed in table 6.1. There are flows between

different branches, like the connection between the D- and the L-branch, and connections

of members of different symmetry groups, like the C-� and the C-
 connection. The node

of the C-branch shows a heteroclinic connecting flow to the 
-node (Fig. 6.7-1). Another

heteroclinic connecting flow which connects states of the NBC and the I group connects the

L-node with the �-saddle of the (Fig. 6.7-3). Both, the �-saddle and the �-node show ho-

moclinic connecting flows (Fig. 6.7-5 and Fig. 6.7-6). Though there is a connection between

these two states via the center manifold no flow have been observed.

Connecting flow at Re � ���

At a Reynolds number of ��� almost �� stationary states have been observed. There are still

many stationary states showing only a flow to the laminar state but there exist at least ��

nontrivial heteroclinic connecting flows which are able to amplify the energy and the shear

measure of a perturbation. Figure 6.8 shows these stationary states and the global, nontrivial
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1 C � �

2 D� L

3 C � L

4 C � �

5 �� � (saddle)

6 �� � (node)

7 N � �

8 �� �

Table 6.1: Nontrivial heteroclinic flows at Re � ���. The flow within the E	M -plane is

shown in figure 6.7.
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Figure 6.8: Heteroclinic and homoclinic flows extracted from investigation of the flow at

Re � ���. Each circle corresponds to a stationary state. The flow in the vicinity of the

open circles decays to the laminar flow. Only the non trivial flow between stationary states

is shown. The diamond marks the average energy and shear measure and the bars mark its

variation, extracted from turbulent time signals 4 at a Reynolds number of about ���.

flow in the E	M -plane. To illustrate the region where turbulent motion takes place at higher

Reynolds number the average energy and shear measure, extracted from a turbulent time

signal at Re � ���, and its variations are shown. The turbulent state appears in a region of
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1) B � B

2) C � �

3) �� L

4) I � I

5) E� 


6) L � �

7) O � L

8) N � L

9) ��� (saddle)

10) �� 


11) �� �

12) �� � (node)

Table 6.2: Nontrivial heteroclinic flows at Re � ���. The flow within the E	M -plane is

shown in figure 6.8.

the E	M -plane where at a Reynolds number of ��� many heteroclinic connecting flows are

observed. The unstable homocline flow of the �-saddle approaches this region (Fig. 6.8-9).

Some of the former heteroclinic flows have vanished, for example the connection between

the G-branch and the �-branch (Fig. 6.7-2). Other branches form additional connections:

the �-branch which is connected to the �-branch (Fig.6.7-6) connects with the 
-branch

(Fig.6.8-10) and with the �-branch.

At a Reynolds number of Re � ��� unstable homoclinic flows exist in the vicinity of the

�-branch. A perturbation is only able to move from one stationary state to another. At

a Reynolds number of Re � ��� heteroclinic flows to the existing homoclinic flows of

the states at the �, the B-, I-, and the N-branches are possible. In table 6.3 the different

connections leading to such closed flows are listed.

The formation of the turbulent state

The former investigation shows that there are two different phase space structures which

allow nonlinear transients. The first one is built up by the �-branch at Re � ��� where

a Hopf bifurcation generates a stable limit cycle around the �-node. This bifurcation has

already been investigated by Busse and Clever. These authors proposed that these states are

responsible for the transition to turbulence [27]. The dynamic in the vicinity of the �-node

shows significantly longer lifetimes even after the birth of additional unstable directions at

Re � ��� and Re � �. But as the leading eigenvalue of the additional unstable eigenspace

grows the lifetime of perturbations starting in the vicinity of the �-node decreases for higher
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1) 1 � 1

3) 3 � 6 � 9 � 9

4) 4 � 4

5) 5 � 8 � 3 � 6 � 9 � 9

6) 6 � 9 � 9

7) 7 � 1 � 1

8) 8 � 3 � 6 � 9 � 9

9) 9 � 9

10) 10 � 3 � 6 � 9 � 9

11) 10 � 7 � 1 � 1

12) 12 � 12

Table 6.3: List of combinations of the heteroclinic and homoclinic flows between different

branches to perform closed orbits. The numbers correspond to the number in figure 6.8 and

table 6.2.

Reynolds number. The basin of attraction of this structure is rather low. Only states start-

ing near the �-node approach it. Small but finite perturbations of the laminar flow do not

approach this structure, as the investigation in chapter 4 showed.

Furthermore, the statistical properties of the timesignals of perturbation on this phase space

structure are different from the ones observed by lifetime measurements done in chapter

4. Figure 6.9 shows the dynamics of two perturbations starting at the �-saddle and the �-

node at Re � ��� and Re � ��� in the E	M -plane (left panel) and the time signals of

the shear measure (right panel). The dynamic of the perturbation starting on the �-saddle

consist of a burst of energy but the perturbation is not able to regenerate because it falls off

the homoclinic connecting flow. The perturbation starting at the �-node follows the flow to

the limit cycle but falls off this cycle since the unstable manifold already dominates.

At a Reynolds number of Re � ��� the homoclinic connecting flow of the �-saddle reaches

the regions of the phase space where the turbulent state have been observed. The diamond

marks the time averaged energy and the shear measure, obtained in chapter 4. The orbit in

the vicinity of the �-node is more unstable and the perturbation leaves this region rather fast

to approach the turbulent state.

This turbulent state is formed by the complex framework of heteroclinic connecting flows.

These flows have their origin in pitchfork bifurcations and backward saddle node bifurca-

tions, but also connecting flows between different branches occurs. A first pitchfork bifurca-

tion occurs at Re � ��� in both symmetric subspaces, where the �-branch and the F-branch

undergo further bifurcations. First backward saddle node bifurcations occur at Re � ���
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Figure 6.9: Evolution of a perturbation starting at the saddle (squares) and the node (circles)

of the �-branch at Re � ��� (upper) and Re � ��� (lower) in the E	M -plane. The open

circles correspond to the stationary states at the given Reynolds number. The right panel

shows the timesignal of the shear measure. The solid line is the dynamic of a perturbation

starting near the node. The dotted line is the dynamic of a perturbation starting near the

saddle. The diamond marks the time averaged energy and shear measure of a turbulent state.

and Re � ���. At such small Reynolds numbers no nonlinear transient dynamics has been

observed.

The formation of this second structure is a collective phenomenon. For Reynolds numbers

above ��� the network of heteroclinic connecting flows starts to grow. At Re � ��� the

framework of different connecting flows becomes thick enough to support nonlinear transient

dynamics besides the dynamics in the vicinity of the �-node.

While the leading eigenvalue of the �-node increases the escape rate of the second repellor

decreases and its relaxation rate increases (chapter 4). At Reynolds numbers aboveRe � ���

the dominance of the turbulent state in the vicinity of the �-node starts to vanish because the

leading eigenvalue of the unstable manifold of the �-node grows and additional unstable

eigendirections occurs at Re � ���� ���� ��� ��.
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6.3 Conclusions

Two different phase space structures have been identified to be responsible for a transition

to turbulence in the plane Couette flow. The first one arises from a stable Hopf bifurcation

which has already been investigated by Busse and Clever [27]. This limit cycle is born at a

Re � ���. Additional Hopf bifurcations of the �-node destabilized this cylces and supports

the formation of an unstable torus. Its basin of attraction is rather small, only perturbations

lying in the vicinity of the �-branch approach this structure. Finite but small perturbations

of the laminar profile do not seem to be able to approach this cycle.

The second phase space structure is formed by a complex framework of heteroclinic flows.

First connections are generated at a Reynolds number of Re � ��� by a pitchfork bifurca-

tion. The first backward saddle node bifurcation occurs at Re � ���. While the connected

stationary states approach different regions of the phase space this structure grows rapidly.

Additional stationary states bifurcate and add their heteroclinic flows to it.

These two different phase space structures unify at higher Reynolds number. Since the un-

stable torus at the �-node becomes more and more unstable for higher Reynolds numbers,

it looses its dominant role in the phase space and plays only a part in the framework of the

turbulent state.
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Ein Paradigma aufzusuchen,

wo[r]nach man dieses deklinieren kann.

G.C. Lichtenberg, J 1257[60]

In order to get a deeper understanding of the transition to turbulence in linearly stable shear

flows, a low dimensional model of such a flow is studied. This model, derived by Eckhardt

and Mersmann [38], consists of �� degrees of freedom. Further symmetric decompositions

are applied and decrease its degrees of freedom down to �.

After an introduction to the model and the successive simplification leading to a reduction

from �� down to � degrees of freedom, I will show that this system also undergoes a transition

to turbulence. It turns out that stationary states bifurcate after the turbulent state has already

established. The responsible phase space structures forming this turbulent state are unstable

periodic orbits which are not formed by heteroclinic connections and homoclinic orbits of

stationary states.

The bifurcations of these periodic orbits are studied and the chapter is closed by evaluating

the escape rate and the leading Lyapunov exponent of this turbulent state.

7.1 The model

Consider a plane shear flow. Following the notation of Eckhardt and Mersmann [38], x refers

to the spanwise, y to the streamwise and z to the wall normal direction. The incompressible

fluid is described by toroidal and poloidal vector fields and two additional flow fields for the

mean flow in spanwise and streamwise direction:

u � curl curl �� �x� ez� � curl �� �x� ez� � f �z� ex � g �z� ey � (7.1)

The flow is periodic in the streamwise and spanwise direction and solves stress-free boundary

conditions in the wall normal direction:

�

� z
ujz���z�� �

�

� z
vjz���z�� � wjz���z�� � 	 � (7.2)
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The velocity fields are expressed by Fourier modes. In this representation the poloidal and

toroidal vector fields look like:

�curl curl �� �x� ez��k �
�q

� � k�z
k�x�k�y

�
BB�

� kx kz
k�x�k�y

� ky kz
k�x�k�y

�

�
CCA

�curl �� �x� ez��k �
�p

k�x � k�y

�
B�

ky

�kx
	

�
CA � (7.3)

and the full velocity field is expressed by:

u�x� t� �
X
k

uk�t�e
ikx

�
X
k

��k�t� �curl curl �� �x� ez��k � �k�t� �curl �� �x� ez��k� e
ikx �

(7.4)

The Navier-Stokes equation for the amplitudes uk�t� reads

�

� t
uk�t� � �ipkk� i

X
p�q�k

�up�t� � p�uq�t�� �k�uk�t� � Fk � (7.5)

where pk is the kth Fourier component of the pressure (divided by the density) and � is the

kinematic viscosity.

The pressure vanishes in the evolution equation of �, �, f and g because these quantities

are orthogonal to k. To sustain a laminar shear flow a volume force F with its corresponding

Fourier component Fk is introduced. F is chosen in a way that the resulting flow field U�

equals

U� �
�


��
cos�z�ez � (7.6)

which corresponds to the first term of the Fourier expansion of a linear flow field with an

amplitude of �� at the boundaries. To compare the results with plane Couette flow the

velocity is measured in units of the approximated mean flow at z � �, U� � �, instead of

units of the actual mean flow U� �
��
��

. Lengths are measured in units of the half gap width
d
�
. Together with the kinematic viscosity �, the Reynolds number equals

Re �
�

�
� (7.7)

To reduce the degrees of freedom only a finite set of wave vectors was used. Three wave
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vectors along the wall normal direction;

ki �

�
B�

	

	

i

�
CA � i � �� �� � � (7.8)

and a triangle in each kx, ky plane;

k� �

�
B�

��

	

	

�
CA � k� �

�
B�

�

�

	

�
CA � k� �

�
B�

�

��
	

�
CA � (7.9)

There are �� additional wave vectors:

k	 � k� � k� k
 � k� � k� k� � k� � k�

k�� � k� � k� k�� � k� � k� k�� � k� � k�

k�� � k� � k� k�� � k� � k� k�� � k� � k�

k�� � k� � k� k�	 � k� � k� k�
 � k� � k� � (7.10)

In order to fulfill the boundary conditions some �k and �k are related to each other:

�k�� � ���k� �k�� � ���k� �k�� � ���k�
�k�� � ���k�� �k�� � ���k�	 �k�� � ���k�

�k�� � ���k� �k�� � ���k� �k�� � ���k�
�k�� � ���k�� �k�� � ���k�	 �k�� � ���k�
 � (7.11)

Using this set of wave vectors and relations, the resulting model consists of �
 degrees of

freedom. Restricting the flow to a point symmetry P reduces the dynamics down to a ��

dimensional subspace. Eckhardt and Mersmann number these degrees of freedom in the
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following way:

�k� � y� �k� � y�

�k� � y� �k� � y�

�k	 � iy�

�k
 � iy�

�k� � iy	

�k� � y
 �k� � y�

�k� � y�� �k� � y��

�k� � y�� �k� � y��

�k�� � iy�� �k�� � iy��

�k�	 � iy�� �k�	 � iy�	

�k�
 � iy�
 �k�
 � iy�� � (7.12)

This ��-model has � additional discrete symmetries:

R 

�
B�

u

v

w

�
CA �x� y� z� �

�
B�

�u
v

w

�
CA ��x� y� z�

T� 

�
B�

u

v

w

�
CA �x� y� z� �

�
B�

u

v

w

�
CA �x � Lx	�� y� z�

T� 

�
B�

u

v

w

�
CA �x� y� z� �

�
B�

u

v

w

�
CA �x � Lx	�� y � Ly	�� z� �

These symmetries plus the unity form nine symmetry groups. Restricting the dynamics to

members of these groups reduces the degrees of freedom down to �	, � or � (See table 7.1).
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f��RT �g 10

f��Rg 9

f�� T�g 9

f�� T�g 9

f��RT �g 9

f�� T�T�g 9

f�� T�� T�� T�T�g 4

f�� T��R�RT�g 4

f�� T��R�RT�g 4

f�� T�� T��R�RT��RT�� T�T�g 4

Table 7.1: Degrees of freedom of the 19-model reduced to the above symmetry groups. The

investigations in this chapter are done in the f��RT �g symmetry group. Note, that the

dynamical system reduced to � degrees of freedom has a trivial dynamic shown in equation

(7.14).

The equations in case of � degrees of freedom reads

�

� t
x� �

��

��
�
p
�x�x� � �x�

�

� t
x� � ��

p
�x�x� � ��x�

�

� t
x� �

�

�

p
�x�x� �

�

�

p
�x�x� � ��x�

�

� t
x� � ���x� � (7.13)

The dynamics of this system is simple: while x� decays exponentially it amplifies x�, which

is coupled with the other two components. After x� has vanished there is no drive and the

other components also vanish. This system shows only a nonlinear transient dynamic.

In case of �	, � degrees of freedom the system is able to show a chaotic behavior. The fol-

lowing investigations were done for members of the f��RT�g symmetry group. This choice

is motivated by the fact that streamwise vortices solve the P symmetry which is already con-

served and streamwise streaks solve theR symmetry. To allow streaks and vorticesRT� was



78 7 Transition to turbulence in a low dimensional model

imposed. This gives the following constraints to xi:

x� � x� � x� � x
 � x�� � 	

x� � �x	� x�� � x��

x�� � �x��� x�� � x�
� x�	 � �x�� � (7.14)

The dynamic active degrees of freedom are numbered in the following way:

y� � x� y� � x� y� � x�

y� � x� y� � x�� y� � x��

y	 � x�� y
 � x�� y� � x�	 � (7.15)

The original model used a specific spanwise and streamwise periodicity, i.e. � � �	� and

� �
p
�	�, which are now two additional parameters. Since y� � 
�

��
corresponds to the lam-

inar profile, 
�
��

was subtracted from y�. The resulting equations correspond to the equations

of motion of a finite perturbation of the laminar profile. The general form of these equations

is shown in appendix C. Most of the investigations in this chapter have been done with an

aspect ration of d  �� d  � d (wall normal: streamwise: spanwise). For this aspect ratio the

equations of motions are

d
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7.2 Transitional behavior

The ��-model and the �-model show a similar transitional behavior as the plane Couette flow.

The lifetimes of a finite perturbation depends sensitively on the amplitude and the Reynolds

number [37, 38]. An example of this sensitivity is given in figure 7.1, where the lifetime of

a random initial condition is shown in the amplitude-Reynolds number plane. To separate

the influence of the nonlinear effects from the linear ones, the lifetimes of the perturbations
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Figure 7.1: The lifetime of a specific finite random initial condition of the �-model as a

function of the amplitude and the Reynolds number. Note that the lifetime t is divided by the

Reynolds number to split the nonlinear influence on the lifetime from the linear one.

are divided by the Reynolds number. First chaotic transients occur at Re � ���. At a

Reynolds number of about ��	 most perturbations show a significantly long lifetime. In

these calculations the lifetime was defined as the time, until the energy of the disturbances

drop below a given threshold, here y� � �	��.

Since the lifetime also depends on the specific type of perturbation the median of �		 per-

turbations with a distinct amplitude A is calculated. It shows a change at Re � �
	 and

Re � ��	 (Fig. 7.2). This suggests that the turbulent state is rather thin at Re � ��� and

grows at Re � �
	 and Re � ��	. The maximum lifetime observed in these runs shows a

sudden increase at Re � ��	 and a decrease at Re � ��	. The lifetime grows between these

two values and shows transient trajectories with lifetimes up to ���	 time units.

7.3 Stationary states

The ��-model shows an increasing number of stationary states [38]. The first state bifurcates

at Re � ��	 , with � � �	� and � �
p
�	� and all these solutions are linearly unstable.

In order to find stationary solutions in the �-model a Newton-Raphson method was applied

[83]. The initial conditions are taken from the chaotic time signal and the found solutions are
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Figure 7.2: Median of the distribution of lifetime (left panel) and maximum lifetime (right

panel) of an ensemble of �		 random initial conditions of the �-model with a distinct am-

plitude A. Note that the lifetime t is divided by the Reynolds number to split the nonlinear

influence on the lifetime from the linear one.

followed to different Reynolds numbers using the Pittsburgh continuation program PITCON

[88, 89].

7.3.1 Bifurcation of stationary states

For Reynolds numbers up to �			 only two pairs of stationary states exist. The first pair

bifurcates at Re � ��	���, the second one at Re � ������ (Fig. 7.3). Both pairs are born

in a saddle-node bifurcation. Figure 7.4 displays the real parts of the highest eigenvalues of

the first pair of states for the upper and the lower branch. After the bifurcation the singular

eigenvalue becomes negative for the lower branch, the node, and positive for the upper one,

the saddle. Both branches have additional positive eigenvalues, hence both states are linearly

unstable. The real parts of two eigenvalues of the upper branch meets at Re � �		, where

they form a complex conjugate pair of eigenvalues. These eigenvalues become positive at

higher Reynolds numbers and make a forward Hopf bifurcation.

The second pair bifurcates from a saddle-node bifurcation in a similar way (Fig. 7.5). The

singular eigenvalue becomes negative for the lower and positive for the upper branch. Both
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Figure 7.3: Stationary states for the �-model in the case of � � ���� and � � ���.
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Figure 7.4: Real parts of the largest eigenvalues of states of the saddle and the node of the

first pair of stationary states for � � � ��� and � � ���� at different Reynolds numbers.

states have additional positive eigenvalues. Two eigenvalues of the upper branch start to

form a complex conjugate pair of eigenvalues at Re � ��	 but they do not undergo a Hopf
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Figure 7.5: Real parts of the largest eigenvalues of states of the saddle and the node of the

second pair of stationary states for � � � ��� and � � ���� at different Reynolds numbers.
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Figure 7.6: Critical Reynolds number as a function of Ly. Each point corresponds to a

calculated Recrit. The circles correspond to the critical Reynolds numbers of the first pair of

stationary states, the squares to the second one.
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bifurcation for Reynolds numbers less than �			.

Variation of Ly, i.e. the periodicity along the streamwise direction, shows that the first pair

of states have a critical Reynolds number of Recrit � ��� at Ly � 	�
�� (Fig.7.6). In this

geometry the second state does not bifurcate for Reynolds number less than �			. Their

optimal aspect ratio equals d  	�
�� d  � d (wall normal: streamwise: spanwise).

The second pair of stationary states bifurcates at a critical Reynolds number of Recrit� � ���

at Ly � ��
��. In this case, the first state bifurcates at Recrit� � 
��. Their optimal aspect

ratio equals d  ��
�� d  � d, which is in good agreement to the investigation made in chapter

5.4.

7.3.2 Are stationary states responsible for the formation of the turbulent state?

The linear stability analysis shows that the dynamics around these stationary states are dom-

inated by one unstable direction (Fig. 7.4 and Fig. 7.5). Starting near these stationary states

shows the dominance of the unstable manifold. In Fig. 7.8 the propagation of two ensembles

of perturbations near the states of the first pair of states at Re � �			 is displayed in the

y�,y�-plane. None of the two ensembles follows the connecting center manifold. At t � �		

the ensembles are stretched along the unstable manifold. Then each trajectory spirals away

from the center manifold. At t � �		 the ensemble is spread over the turbulent state.

The dynamical influence of the stationary states seems to be negligible. Every perturbation

is repulsed by these states and attracted by the turbulent state. These stationary states are not

perceivable. The investigation of lifetimes supports this conclusion. Long living nonlinear

transients can be observed before stationary states bifurcate (Fig.7.1). This behavior is dif-

ferent from the transition in plane Couette flow where the first stationary states bifurcates at

Re � ��� and transitions occur at Reynolds numbers two times higher.

7.4 Periodic orbits

It is known that periodic orbits together with unstable stationary states, heteroclinic connec-

tions and homoclinic orbits form the skeleton of a chaotic attractor or repellor. Christiansen,

Cvitanović and Putkaradze [24] showed that in case of the Kuramoto-Sivashinsky equation

the turbulent state can be characterized by periodic orbits. For plane shear flows Waleffe

[105, 106] suggests a self sustaining process to be responsible for the turbulent dynamic,

where streamwise vortices induce streamwise streaks and gain energy by the breakdown of

these streaks via a nonlinear feedback mechanism (See chapter 5.4 for more details). This

picture suggests the existence of periodic orbits which might be responsible for the turbulent

motion. The �-model has unstable periodic orbits, which start to fill the phase space before
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Figure 7.7: Streamwise velocity (contour) and spanwise and wall normal velocity (vectors)

of states of the lower branch of the first (left column) and the second (right column) pair of

stationary states at Re � �		 at x � 	� Ly	�� Ly	� d� �	�Ly.
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Figure 7.8: Evolution of �		 initial conditions starting near the first � stationary states (�) at

Re � �			. Open symbols correspond to the ensemble starting near the state of the lower

branch. Closed symbols correspond to the ensemble starting at the state of the upper branch.

The additional stationary states are not shown. They lie at regions with y� 
 �	��.

any stationary state bifurcates. Therefore, these orbits are studied and their influence on the

transition to turbulence will be discussed.

7.4.1 Poincaré section

Since the �-model is an autonomous system there is no obvious choice for the periodicity

of the periodic orbits. The evolution of the components yi at Re � �		 shows, that the first

component y� dominates the dynamics (Fig 7.9). It has the largest timescale and contributes

mainly to the energy of the system. Therefore a Poincaré section is applied at y� � �	��.

Every pass from lower to higher values corresponds to the � dimensional discrete map

�yn�� � f��yn� � (7.16)
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Figure 7.9: Time evolution of a random initial condition at a Reynolds number of �		. The

upper panel shows the inner product of the state vector y�, the lower panel the value of the

first � components.

A Newton-Raphson method [83] is used to search stationary solutions of the Poincaré map

(7.16). The initial values are taken from the chaotic time signal. In order to follow the

solution branch initial guesses for the Newton-Raphson method are calculated at different

Reynolds numbers using the implicit function theorem .

7.4.2 Bifurcation of periodic orbits

Period-� orbits

A first pair of unstable periodic orbits originates at Re � ����	�. These orbits move very fast

in phase space if the Reynolds number varies and the Poincaré section has to be modified

for different values of the Reynolds number. They are born in a saddle node bifurcation.

The upper branch moves to lower energies and makes no further bifurcation until Re � �		.

The lower branch moves to higher energies. The energy defined by EP � �y� � y�� with

y� � �	���� for the lower branch is shown in figure 7.10. Between Re � ������ and

Re � ����
 and between Re � ����� and Re � �	� four orbits exist. They are connected

with the branch of the first orbit via backward and forward saddle node bifurcations. This
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Figure 7.10: Ep � �y� � y�i of the first periodic orbit at Re � ��	� ���� ��	. These or-

bits are connected with an additional orbit not displayed here. The Poincaré section equals

y� � �	����. These four orbits form a small repellor, which is responsible for the first tran-

sient states between Re � ��	 and Re � �		 shown in figure 7.1.
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Figure 7.11: Magnitude of the eigenvalues of the Monodromie matrix of the first pair of

periodic orbits.
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Figure 7.12: Ep � �y��y�i of the period-� orbits at the Poincaré section at Re � ��	� ���� �		.

The Poincaré section lies at y� � �	��.

range of values corresponds to the range of Reynolds numbers where first long living states

have been observed (Fig.7.2).

All these periodic orbits are linearly unstable. The absolute values of leading the eigenvalue

of their Monodromie matrices are of order �	, except for the surviving lower branch at higher

Reynolds numbers (Fig. 7.11). Its absolute value is of order �			 and grows rapidly. The

absolute values of the other eigenvalues are very small.

However, these first orbits are not responsible for the formation of the repellor at higher

Reynolds numbers. They do not touch the Poincaré section suggested by the turbulent time

signal (Fig. 7.9). Even at higher Reynolds number both orbits lie in a region of the phase

space where the turbulent dynamics do not take place. Since they have no neighbors in

phase space they are only able to built up a repellor when four orbits exits. These first

periodic orbits generate a first repellor, which is not connected to the second one, build up for

Reynolds numbers above ��	, which dominates the dynamics at higher Reynolds numbers.

At Re � ����� two new orbits bifurcate (Fig. 7.12) crossing the Poincaré section at a value of

y� � �	��. Additional orbits bifurcate at Re � ����
 and Re � ��
�
. They are connected

with these first orbits by saddle node bifurcations at Re � ����� and Re � ����
. These

orbits undergo additional backward and forward bifurcations and generate up to � different

orbits. Most of these states vanish at Re � ��	 and only two survive.
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Figure 7.13: Streamwise velocity of the period-� orbit at Re � ��� at z � 	. The time t is

measured in units of the periodic length divided by the number of frames T � 
�.

At Re � ��	 two new orbits bifurcate followed by new orbits at Re � �
�, �

�
, �
�,

�
���, ���, ����
 and �����. They lie in the area where the turbulent motion takes place.

The observed periodic orbits are images of the self sustaining process supposed by Waleffe

et al. [42, 105, 106]. Figure 7.13 shows the flow field of an orbit from the lower branch of the

first period-� orbit at a Reynolds number of Re � ��� with period T � 
�. The series show

the streamwise velocity at z � �	� and the flow within this plane. There is a localized region

with high streamwise velocity that moves along the streamwise direction. This streak starts

to vanish at t � �
�
T and regenerates till t � �



T , where two elongates streaks are formed.

These streaks split into two localized streaks and close the cycle.

Period-� orbits

The first period-� orbits have been observed at Reynolds numbers above ��� (Fig. 7.14).

At Re � ����� the first pair of period-� orbits arise through a saddle node bifurcation. An

additional pair of orbits bifurcates at Re � ������. This pair is connected by a period

doubling bifurcation of the first pair at Re � ������. Two pairs, which are not connected to
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Figure 7.14: EP � �y� � y�� of period-� orbit for different Reynolds number. The thin lines

corresponds to the period-� orbits shown in figure 7.12.

these orbits, bifurcate at Re � �

��� and Re � �

��
.

There are two different types of period-� orbits: The first type corresponds to a period-� orbit

with two components oscillating with a different frequency in a way that both compensate

each other. Therefore, the time trace of y� suggests only a period-� behavior. The first pair

of orbits and the two pairs bifurcating at Re � �

��� and Re � �

��
 are of this type.

The second type corresponds to an oscillation with two different frequencies. This type

bifurcates through a period doubling bifurcation of the first pair at Re � ������.

7.5 Approximative global averaging – application of the periodic orbit

theory

Since the bifurcation of the periodic orbits coincides with the birth of the turbulent state

they are supposed to form the skeleton of this turbulent state. The properties of the chaotic

motion can be approximately determined by investigating the properties of these unstable

periodic orbits. Time averages can be replaced by global averages which can be expressed

in terms of weighted sums over the periodic orbits of the system [29, 30, 39]. After a short

introduction to this procedure, I focus on the escape rate and the leading Lyapunov exponent

of this repellor.
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7.5.1 Averaging using periodic orbits

The propagation of a distribution ��t�x� starting with an initial distribution ��t��y� can be

calculated by the Frobenius-Peron operator:

��t�x� �

Z
V

dy �
�
x� f t�y�

�
��t��y� � (7.17)

where f t�y� is the flow of the investigated system and Lt � � �x� f t�y�� is the Kernel of

the evolution operator. In case of a chaotic repellor, where the normalized density � is not

conserved, the fraction ��t� which did not leave at a given time t equals

��t� �

Z
V

dx

Z
V

dy �
�
x� f t�y�

�
��t��y� � (7.18)

The leading eigenvalue of Lt dominates the time evolution of �. By evaluating its trace

trLt �

Z
V

dx�
�
x� f t�x�

�
� (7.19)

it is possible to calculate these eigenvalues. To calculate the contribution of a periodic orbit

with a period n and a periodic time Tp on this trace, trLnTp
p , one chooses a coordinate system

where xk refers to the direction parallel to the trajectory of the periodic orbit at a specific time

and x� refers to the plane perpendicular to xk [49].

trLnTp
p �

Z
dx�dxk�k

�
x� fnTp�x�

�
��
�
x� fnTp�x�

�
�

�k and �� are delta functions on xk, x� subspaces. The evaluation of the perpendicular part

gives Z
dx���

�
x� fnTp�x�

�
�

�		det��� Jnp�
		 � (7.20)

where 1 is the unity and Jnp the Monodromie matrix of the period n-orbit.

To evaluate the parallel part, one changes the variable of integration to xk �j f�x� j t� and

gets

Z
�k
�
x� fnTp�x�

�
dxk�p�nT� x� � Tp

�X
n��

��t� nTp� � (7.21)

For the trace trLnTp
p one yields

trLnTp
p �

�X
r��

��t� r Tp�Tp		det��� Jrp�
		 �
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r is the repetition of this specific orbit. In general one has to sum over all orbits. In such

cases the trace equals

trLt �
X
p

�X
r��

��t� r Tp�Tp		det��� Jrp�
		 � (7.22)

To calculate the average of an observable � eq. (7.22) is multiplied with e�
t

and a Laplace

transformation of trL is performed to replace the time dependence of this property,

trL�s� �

Z �

�

ds es ttrLte�p

�

Z �

�

ds es t
X
p

RX
r��

��t� r Tp�Tp		det��� Jrp�
		e�p (7.23)

�
X
p

RX
r��

��t� r Tp�Tp		det��� Jrp�
		e�p�s r Tp

�
d

d s
F �s� �� �

(7.24)

where F �s� �� is the Fredholm determinant:

F ��� s� � exp



�
X
p

�X
r��

er��p�sTp�

rjdet ��� Jrp
� j
�

� (7.25)

The average of � can be calculated by

h�i � �
d
d�

F
d
d s

F
j����s�s� � (7.26)

where s� equals the first zero of F �s� ��, which corresponds to the leading eigenvalue of Lt.



94 7 Transition to turbulence in a low dimensional model

Expanding F �s� �� up to terms of second order in z yields:

F �s� �� � exp



�
X
p

�X
r��

er��p�sTp�

rjdet ��� Jrp
� j
�

� ��

�
BBBBBBB�

X
p

period �

e��p�sTp�

jdet ��� Jp� j

�
CCCCCCCA

�
�

�

�
BBBBBBB�

X
p

period �

e��p�sTp�

jdet ��� Jp� j

�
CCCCCCCA

�

�

�
BBBBBBB�
�

X
p

period �

�
e��p�sTp�

jdet ��� Jp� j �
X
p

period �

e���p�sTp�

�jdet ��� J�p
� j

�
CCCCCCCA

�O��� �

(7.27)

The terms of second order in z consist of the weighted sum over all period-� orbits and period

� repetitions of the period-� orbits and the square of the sum over all period-� orbits. Cutting

this expansion and disregarding orbits of higher order implies that the weighted sum of the

period orbits of higher order are compensated by the powers of the period-� and period-�

orbits. In the next chapter the above expansion will be used to calculate some properties of

the repellor.

7.5.2 Escape rate and the leading Lyapunov exponent

The escape rate of the chaotic repellor  corresponds to the negative value of the leading

eigenvalue of the evolution operator Lt which equals to the first zero of F �s�� ��. Since there

are two different repellors one would expect a change in the escape rate at Re � ��	. Since

the first repellor lies in areas of the phase space far away from the dynamical observed region

the escape rate is supposed to be significantly larger than at Re � ��	. Fig. 7.15 shows the

calculated escape rate  and the escape rate for an approximation of eq. (7.26) of first order,

�. These calculation show that there are still quantitative changes in the escape rate but

the qualitative results correspond to the lifetime measurements and the investigations of the

period-� orbits. The expected singularities caused by the bifurcation of new periodic orbits

are not visible, since they are strongly localized (see for example Fig. 7.11) and lie between

the calculated values of Re.

After a sudden decrease from Re � ��	 up to ��� the escape rate increases. Between ��	

and ��	 the escape rate is rather large which is in accordance to the lifetime measurements.
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Figure 7.15: Escape rate  and leading Lyapunov exponent � of the �-model. These values

have been approximated by the weight sum of the unstable periodic orbits. The expected

singularities caused by the bifurcation of new periodic orbits are not visible, since they are

strongly localized and lie between the calculated values of Re.

At these Reynolds numbers the first period-� orbit performs additional saddle node bifurca-

tions but these new periodic orbits increase the escape rate. The bifurcation of the additional

periodic orbit at Re � ��	 decreases the escape rate again but the additional orbits bifurcat-

ing from this orbit do not change the escape rate any further. It is the first period-� orbit at

Re � ����� which reduces the escape rate drastically.

The leading Lyapunov exponent is a global measure for the divergence of trajectories. It

also entered Fig. 7.15. Above Re � ��	 it shows a slight increase and a sudden decrease

at Re � ��	. Above ��	 the leading Lyapunov exponent is larger than the escape rate and

increases for larger Reynolds numbers. Hence, an ensemble of perturbations spreads faster

than it leaves the repellor.

7.6 Conclusions

The �-model reduced model shows a transition to turbulence which is caused by the forma-

tion of a chaotic repellor. This repellor is not formed by stationary states and heteroclinic

connections or homoclinic orbits between them. The stationary states bifurcate at Reynolds

numbers where the repellor is already established. Contrary to the plane Couette flow it is
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formed by periodic orbits.

There are two different repellors: one dominating the flow at Reynolds numbers between

��� and �		 and a second one at Reynolds numbers above ��
. The first one consists of a

saddle node pair of period-� orbits. The saddle of this pair undergoes additional saddle node

bifurcations at Re � ������ ����
� �����, and �	� and allows a nonlinear transient dynamics

at very low Reynolds numbers. However, this dynamics takes place in regions of the phase

space where no chaotic dynamics is observed at higher Reynolds numbers.

The origin in the difference between the transition to turbulence in plane Couette flow and the

transition in this model, presumably, have their origin in the different boundary conditions.

The �-model has stress-free boundary conditions, while the plane Couette flow has no-slip

boundary conditions. However, it is not clear how this difference changes the mechanism of

the formation of the repellor.
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Und wenn auch durch den Nebel

nicht viel zu erkennen ist,

hat man doch irgendwie das Gefühl,

in die richtige Richtung zu blicken.

Vladimir Nabokov

The transition to turbulence in plane Couette flow comes along with the formation of a new

structure in phase space. Finite perturbations which do not show a linear transient behavior

relax to this structure independent of their nature. Their dynamics on this structure is chaotic

and their lifetimes depend very sensitively on the shape of the perturbation, its amplitude

and the Reynolds number. Therefore, no distinct border between decaying and transitional

perturbations exists and the transitional Reynolds number should be defined in a statistical

sense. One can define it as the Reynolds number where more than half of the imposed

perturbations live longer than the observation time. For an oberservation time of about ����

time units the resulting transitional Reynolds number is ���� ��. However, by performing

annealing experiments, where the Reynolds number is slowly decreased, one can follow

turbulent states down to an annealing Reynolds number of about Reanneal � ���.

The origin of this phase space structure are presumably heteroclinic connecting flows be-

tween the stationary states, which are born in saddle-node and pitchfork bifurcations at

Reynolds numbers above Re � ���. These stationary states consist of streamwise streaks

and streamwise vortices. One can distinguish these stationary states by their streak topology.

The basic topologies are the S- and the I-streaks. The S-streaks consist of long streaks and

show a wavy modulation along the streamwise direction while the I-streaks show only a

slight streamwise modulation. I-streaks are always staggered and localized along the span-

wise direction. Additional streak topologies are possible: the streaks can split into two

streaks and unify again. Such streaks are referred to �-streaks; a pair of two streaks can

also unify and split again forming an H-streak.

The node of the first pair of stationary states found by Nagata [68, 69] and Busse and Clever

[27], the �-branch, undergoes a stable Hopf bifurcation at Re � ���. This bifurcation

generates a stable limit cycle in the vicinity of the �-node for Reynolds numbers between
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Re � ��� and ���. Additional stable Hopf bifurcations at Re � ��� and Re � �		 destabi-

lize this limit cycle and support the formation of an unstable torus. Perturbations starting in

the vicinity of the �-node approaching this torus show long transient lifetimes. The statisti-

cal properties of these long living states are different from the properties of turbulent states.

Furthermore, the basin of attraction of this torus is rather small.

The �-node is not responsible for the transition to turbulence of finite perturbations which

are not starting in the vicinity of the �-node. It seems to be the growing network of hetero-

cline connections and homocline orbits of additional, linearly unstable stationary states. At

a Reynolds number of about Re � ��� a couple of heteroclinic connecting flows between

these states exist. But these connecting flows are not able to generate a closed flow between

different states. At Re � ��� connecting flows from different states to states showing homo-

cline flows are observed. Hence, long living states are possible, which follows the network

of heteroclinic connecting flows to end up at an unstable homoclinic orbit. From this orbit

the perturbations falls off and decays on the laminar state. This network of heteroclinic con-

necting and homoclinic flows grows for increasing Reynolds numbers. It starts to form at

Re � ��
 where a first pitchfork bifurcation occurs.

Investigation of a low dimensional model of a linearly stable shear flow shows, that station-

ary states and their heteroclinic connecting flows are not the only phase space structures

which support the buildup of a turbulent state. In this model unstable periodic orbits are the

responsible phase space structures. These orbits are born in saddle-node bifurcations and

form a chaotic repellor, which is responsible for the transition to turbulence in this model.

These two different examples for the transition to turbulence in a linearly stable shear flow

show that it is connected with a global change in the phase space. This change can have

its origin in the formation of stationary states or periodic orbits or both. Their heteroclinic

connecting flow build up the turbulent state. So far, there is no theory which is able to

predict whether unstable periodic orbits or stationary states are the responsible phase space

structures. And it is an open question if the observed chaotic repellor becomes an attractor

or not.

Former investigations on the transition to turbulence focused on a local investigation of the

phase space. By studying the stability of the laminar profile one neglects the global changes

of the phase space. Investigation of the non normal amplification of disturbances already

suggests that a linear stability analysis might not be sufficient to predict the transition to

turbulence. The results of this work show that an evaluation of the phase space structure

holds the key for the transition to turbulence. Unfortunately, the investigation of the structure

of the phase space is a very difficult task. Its like studying the exposition displayed on the

title of this work. It is not clear which exhibits are valuable, which are of historical interests,
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and which are totally useless.

But these investigations leads to new questions: For example, it is known that in Blasius

boundary layer or plane Poiseuille flow two kinds of transition occur. The bypass transition,

which is similar to the transition to turbulence in the plane Couette flow, and the transition

via Tollmien-Schlichting waves, i.e. growing eigensolutions of the Orr-Sommerfeld equation

[35, 61, 73]. The turbulent flows generated by these two different mechanisms differ. While

streamwise streaks and vortices can be observed in bypass transition, lambda vortices domi-

nate the turbulent state. In these flow geometries two different attracting strange sets occupy

the phase space. It is an open question whether these two sets combine or not.

Little is known about the formation of the turbulent state in other flow systems. So far one

is not able to identify the responsible phase space structure by investigation of the laminar

flow and the boundary conditions. However, if one is able to characterize these responsible

structures new methods for flow control are possible. Methods which are more sophisticated

because they do not only focus on the damping of amplifying structures but also on cutting

the routes to turbulence. Therefore, further investigations on the formation of the turbulent

states in different flow geometries seem to be of great practical interest.
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Wenn das einzige Werkzeug,

das du hast ein Hammer ist,

dann neigst du dazu,

jeden Problem als Nagel anzusehen.

Abraham Maslow

The presented results were based on numerical investigations of the Navier-Stokes equation.

Since I did not use a standard method, I will introduce the basic concept of the applied

numerical method. I will compare this method with other ones and will give some examples

of its usefulness.

A.1 Imposing constraints in spectral methods

Consider a one dimensional time dependent partial differential equation

�

�t
f �x� t� � F �f �x� t�� � (A.1)

with a flow F acting on a real valued function f �x� t� which is an element of some Hilbert

spaceH and preserves some additional constraints G �f �x� t��. Assume that these constraints

are homogenous and time independent. They can be described in the following form:

�i� t � Gi �f �x� t�� � � � (A.2)

This can be a spatial localized restriction like the Dirichlet or Neumann boundary condi-

tions, where G����f� equals the value of the function f or its derivative at the boundary, or a

delocalize restriction (See section A.2.3).

Taking a complete set of orthonormal functions f�i �x�g equations (A.1) and (A.2) can be

expressed in terms of �i �x�,

f �x� t� �
�X
i��

h�i �x� j f �x� t�i�i �x� � (A.3)
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where h� j �i being the inner product of the set of orthonormal functions with a weight

function w�x�:

hf j gi �
Z

dx f�x�g�x�w�x� � (A.4)

This results into an infinite system of ordinary differential equations for the spectral coeffi-

cients ci�t� �� h�i �x� j f �x� t�i:

�i � �

� t
ci�t� �

�X
j��

h�j �x� j F �f �x� t��i � (A.5)

If the basis satisfy all constraints, i.e.

�j� i � Gi ��j �x�� � � (A.6)

this method is called Galerkin-method [19, 45, 52, 75, 77].

If f�i �x�g violates the boundary condition problems arise. A couple of techniques have

been established to deal with these problems. One famous example is the spectral � -method

[19, 45, 75–79], where the finite basis is expanded to D additional functions one for each

constraint:

f �x� t� �
NX
i��

ci �t��i �x� �
DX
j��

�j �t��N�j �x� � (A.7)

In section A.1.1 and section A.2 this technique is introduced and compared with the La-

grangian formalism of the first and second kind.

Other methods solve the boundary conditions at distinct points in physical space [18, 19, 45,

82]. They are only able to handle geometric constraints, to solve other types like incom-

pressibility one has to use different methods.

A.1.1 Solving constraints

Expanding f in f�g gives an infinite system of ordinary differential equations for the spectral

coefficients c � fc�� c�� ���g (A.5). One also obtains a spectral formulation of the restrictions

(A.2) on ci,

�i � Gi �c�t�� � � � (A.8)

In a finite expansion of order N these equations can be interpreted in the following way:

Without equation (A.8), equation (A.5) describes the evolution of a vector c�t� being element

of MN . M may be the real- or complex-space and N denotes the number of applied base
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functions. For simplicity M refers to the real space. If there are D constraints the allowed

space is a sub manifold of MN of dimension N �D.

There are two obvious ways to solve (A.8) and (A.5) simultaneously if �i �x� violates the

constraints. One can either apply an additional force acting on the right hand side of (A.5)

and force it to solve the constraints or map the whole system of equations onto the sub

manifold MN�D. The latter corresponds to the Lagrange formalism of the �nd kind, but

there is no obvious way to obtain the mapping between MN and MN�D from (A.5).

If one is able to formulate the problem applying additional forces, which corresponds to

the Lagrange formalism of the �st kind, one has the advantage to obtain this mapping. In

the following, I first introduce this method, and show how to make the step from Lagrange

formalism of the �st to the �nd kind.

Application of the Lagrange formalism of the �st kind

Equation (A.8) describes a hyper surface. For each i the N -dimensional gradient

�grad Gi �c�t���j �
�

�cj
Gi �c�t�� (A.9)

of this equation is a vector perpendicular to each curve solving equation (A.5) and to each

allowed time derivative �
� t
c�t�. This gradient plays the role of a boundary force. These

boundary forces act on the time derivative and modify the evolution equation (A.5) by D

additional terms:

�i � �

� t
ci�t� � 	F�c�t�� �

DX
k��

�k �grad Gk �c�t��� � (A.10)

The yet unknown coefficients �i, the Lagrangian parameters, are calculated by multiplying

(A.10) with each grad Gj �c�t��. This yields

NX
i��

�grad Gj �c�t���i
�

� t
ci�t� �

NX
i��

�grad Gj �c�t���i

�
	F�c�t��

�
i

�
NX
i��

DX
k��

�k �grad Gj �c�t���i �grad Gk �c�t���i �

(A.11)

which is a system of equations linear in �. After solving equation (A.11) one obtains the

desired values of �k and is able to apply the needed corrections to 	F�c�t��.
The Lagrange formalism of the first kind simulates the influence of the physical constraints

which leads to the mathematical formulation of the evolution equation. Its application is

rather simple: One has to project the equations of motion and the boundary conditions down



104 Appendix A Numerical methods

to some finite set of basis functions, calculate the boundary forces and extend the evolution

equation. However, since the application of boundary forces reduces the degrees of free-

dom the Jacobian of the resulting equation of motion is singular. Applying the Lagrange

formalism of the �nd kind avoids this problem.

Application of the Lagrange formalism of the �nd kind

The boundary forces derived via the Lagrange formalism of the �st kind act like a projector

P�st on the state and the equations of motion. By applying the projector P�st on an arbitrary

state c the resulting state cp fulfills the boundary conditions. P�st looks like

P�st � ��
DX
i��

F��j�i �grad Gi �c�t��� �grad Gi �c�t���
T
� (A.12)

where 1 is the identity, �grad Gi �c�t���
T the transposed vector of the ith boundary force and

Fj�i is the metric of the boundary forces, i.e.

Fj�i �
NX
k��

�grad Gj �c�t���
T

k
�grad Gi �c�t���k � (A.13)

cp�t� is an element of the span of all states solving the constraints. On elements of this

span P�st acts like an identity operator. On the span of all states violating the constraints the

projector acts like the null operator. One can calculate a base of the span of all allowed states

by calculating the eigenvectors of P�st . P�st has the eigenvalues � and �, the corresponding

eigenvectors of the latter are the desired vectors. Instead of solving the eigenvector problem,

I use the singular value decomposition which splits P�st into its nullity and identity [83].

After calculating the span of all allowed states one is able to formulate the whole dynamics

on this reduced sub manifold. This procedure is known as the Lagrangian formalism of

the �nd kind and it corresponds to a Galerkin approach. The Jacobian of the equations of

motion is no longer singular and the derivation is quite simple: one applies the Lagrange

formalism of the �st kind, calculates the projector P�st , and then applies the singular value

decomposition calculating the nullity and the identity of this projector.

� -method

The � -method is another method to solve the constraints. In this method the finite N di-

mensional approximation c�t� gets D additional coefficients, the so-called � -modes (A.7)

[19, 45, 76, 78, 79]. The values of the � -modes are set by the D equations describing the

boundary conditions. This technique is only suitable if there are linear constraints, because
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there is no unique solution for setting the � -modes in the nonlinear case. If gj�i equals the jth

component of the ith solution vector of the boundary condition, the � -projector P� equals

P� �

�
BBBBBBBBBBBBBB�

�

�
�
�

�

g��i � � � gN�i��

� � � � �
g��D � � � gN�D��

�
CCCCCCCCCCCCCCA

� (A.14)

By calculating the identity of P� one can generate a Galerkin-� -method in the same way as

it was introduced in case of P�st .

In practice, one does not need to apply the projector P� on the state. One can also solve the

linear systems of equation resulting from setting the expansion of f�t� (A.7) into the spectral

formulation of the constraints (A.6).

The formulation of the � -method is simple. After formulating the boundary conditions one

solves the linear system of equations. These � -modes apply the necessary modifications.

Unfortunately, this method gives less accurate solutions than the Lagrange methods. This

will be shown in the following.

A.1.2 Convergence of the Lagrangian formalism of the �st kind in respect to � -methods

So far, the set of base functions f�i �x�g has not been specified. Solutions of the sin-

gular Sturm-Liouville problem are the preferred type, namely Legendre- and Chebyshev-

polynomials [19, 45]. If the approximated function is sufficiently smooth both series expan-

sions converge faster than algebraically[45].

This convergence refers to the accuracy of approximating a smooth function without any

constraints. To solve the constraints � -methods and the boundary forces changes the spectral

coefficients. Assuming that the boundary forces are orthonormal, one gets upper bounds

for the amplitude of this correction, with G and H being the projection operator for � - and



106 Appendix A Numerical methods

Lagrange method:vuuth
DX
j��

�j �t��N�j �x� j
DX
i��

�i �t��N�i �x�i �

vuut DX
j��

� �j

�
p
�� j �� � k�k � kGck

� kGk kck
�

p
N �Dmax

i�j
Gi�jkck (A.15)

andvuuth
DX
i��

�igrad Gi �c�t�� j
DX
i��

�igrad Gi �c�t��i �

vuut DX
i��

��i

�
p
�� j �� � k�k

� k
DX
i��

grad Gic�t�k

� kHc�t�k � kHk kc�t�k
� kHk kc�t�k
�

p
N �Dmax

i�j
Hi�jkck � (A.16)

with kxk �
PD

i�� x
�
i . The boundary forces are normalized, hence maxi�jHi�j � �. This is

not the case for maxi�j Gi�j. The corrections of the � -method are higher than the one obtained

by applying the Lagrangian method of the first kind. This can cause problems especially if

maxi�j Gi�j grows with the number of applied polynomials which is the case for Neumann

boundary conditions.

A.1.3 Conservation laws and boundary forces

The application of the Lagrangian method is straight forward: After selecting a set of base

functions f�i �x�g one calculates the evolution equation for the dynamics of the spectral

coefficients ci �t� and calculates the boundary forces. In this procedure two different kinds

of inner products have been used: The inner weighted product of the f�i �x�g, h� j �i, and the

Euclidean inner product �� j ��.
One would prefer to have a method which does not affect the existing conservation laws of

the equation of motions and which conserves the symmetric properties. It is important that

the application of projections does not affect the energy balance of the approximation since

this causes an instability due to time integration. The term energy does not necessarily refers
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to the energy in the physical sense. It refers to a quadratic inner product of the state namely

E �t� �

Z
fn �x� t� fn

�

�x� t� dx �� ffn �x� t� j fn �x� t�g � (A.17)

with an arbitrary real number n. For n � �, the energy in the physical sense, the time

derivative of E equals

d

d t
E �t� � �

�
f �x� t� j d

d t
f �x� t� �t�

�
� (A.18)

Applying the Lagrangian formalism of the first kind one can split this inner product into two

terms:

d

d t
E �t� � �

�
f �x� t� j d

d t
f �x� t� �t�

�

�
�

�

�
f �x� t� j d

d t
	f �x� t� �t�

�
� �

	
f �x� t� j

DX
i��

�i grad Gi �x�



�

The first term equals the change in energy balance of the reduced system. The second term

equals the change of the energy due to the applied forces. In case of an infinite set of base-

functions the supposed error in the energy balance vanishes. In case of a finite set the projec-

tion of the applied forces onto the state with respect to f� j �g corresponds to the change in

energy. If the forces are orthogonal due to this inner product even the finite set conserves the

energy hence the only error applied is an error due to the finite resolution. This is only the

case if the inner products f� j �g and h� j �i are equal. Disregarding this effect may produce

wrong solutions, although the solutions fulfill the boundary conditions.

A.2 Examples

In order to illustrate the Lagrangian formalism of the first kind and compare it to � -methods

some simple examples are given. Some of the above problems are illustrated and investi-

gated.

A.2.1 The heat transfer equation

Consider the heat transfer equation

�

� t
f �x� t� � �

��

�x�
f �x� t� � (A.19)

with Dirichlet boundary conditions:

f �x � ��� t� � � � (A.20)
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Expanding f �x� t� with normalized Chebyshev- or Legendre-polynomials and disregarding

the boundary conditions one gets the following two evolution equations for the spectral-

modes ci�t�

Chebyshev:
�

� t
ci�t� �

�

	i Ti���

NX
j � i � �

i � j odd

j
�
j� � i�

�
Tj��� cj (A.21)

Legendre:
�

� t
ci�t� � �

�
i� �

�

�
Li���

NX
j � i� �

i � j even

�j �j � ��� i �i� ��� Tj��� cj �

(A.22)

with 	� � � and 	n�� � �.

The spectral formulation of the boundary conditions equals

� �
NX
i��

�����i���ci Ti��� �

	i��

for Chebyshev polynomials and

� �
NX
i��

�����i���ci Li���

for normalized Legendre polynomials. The solution of this problem via the � -method is

shown in [19, 23, 45, 82]. Here, I focus on the application of the Lagrange formalism of the

first kind:

In both cases the boundary forces are

F�
i �

	
� i odd
Ti���
�i��

orLi��� i even

F�
i �

	
Ti���
�i��

orLi��� i odd

� i even

(A.23)

F��� are orthogonal, one just has to normalize these two forces.

The eigenvalues of this operator are given by �i � i���

�
. Table A.1 shows the absolute error of

the first seven eigenvalues for different kinds of spectral methods. � -method and Chebyshev-

Lagrange show less accurate results than the Legendre-Lagrange formalism since the first

two methods violate the energy conservation. The error of Chebyshev-Lagrange is up to 
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� Chebyshev

Lagrange

Legendre

Lagrange

Chebyshev-

�

Legendre-�

��

�
��� ����� �
� ����	 ��� ����� ��� �����


� �� ����� ��� ����	 ��� ���
 ��� ���


���

�
��� ���
 ��� ����� ��� ���	 �� ����

� 
� ��� ���� ��� ���� ��� ���� ��� ����

����

�
��� ���	 ��� ���� ��� �� ����

� 
� ��� ���� ��� ���	 ��� ���
����

�
��� ���� �
� ���� 
�� ���

Table A.1: Absolute error of the numerical solution of the heat-transfer equation (A.19)

with Dirichlet boundary conditions. These calculations were done with Maple using ��

polynomial and an accuracy of �� digits.

orders higher than the error done by Legendre-Lagrange even though both polynomials have

the same good rate of convergence.

A.2.2 The vorticity equation

Another example is the vorticity equation:

���

�x��t
f �x� t� � �

��

�x�
f �x� t� � (A.24)

where f solves Dirichlet and Neumann boundary conditions:

f �x � ��� t� � �

� x
f �x � ��� t� � � (A.25)

There are two additional forces beside the two boundary forces from the former study (A.23):

Legendre � F	��
i �

NX
q��

�� �q � �� � ��
NX

p � q � �

p� q odd

Lp���� �i�p (A.26)

Chebyshev � F	��
i �

NX
q��

�

	q��

NX
p � q � �

p� q odd

pTp�����i�p � (A.27)

F 	�� refers to the left and the right boundary condition and �i�j is the Kronecker delta.

The eigenvalue spectrum of the � -approximation has positive eigenvalues which makes this

representation numerically unstable for time integration [45]. This is also the case if one
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� Legendre

Lagrange

Chebyshev

Lagrange


� ��
� ����

� 
� ����� �����

� 
� ������ ����

�� 
� ����� �
���

�
 
� ����� �����

�� 
� �� ����

Table A.2: Absolute error of the numerical solution of the vorticity-equation equation (A.24).

These calculations were done with Maple using �� polynomials and an accuracy of �� dig-

its. Positive eigenvalues exists in the case of Chebyshev-Lagrange. This make the time

integration of these approximations unstable.

applies Chebyshev-Lagrange. Application of the Legendre-Lagrange-procedure yield a nu-

merical stable solution. If one is only interested in the eigenvalue spectrum, both methods

can be applied. Since the boundary conditions imply a high velocity gradient near the bound-

ary Chebyshev polynomials show a better convergence this effect compensates the error done

by the violation of energy conservation.

A.2.3 Linearized Navier-Stokes equation in the case of shear flow geometry

Linear stability analysis of a plane shear flow U� base on the investigation of the linearized

Navier-Stokes-equation

�

� t
u � � �U� � grad � u� �u � grad � U� � grad p�Re���u �

(A.28)

where u is an infinitesimal disturbance of the laminar shear flow [20, 35, 61]. I investigate

the simple case of an incompressible shear flow between two infinite plates with periodic

boundary conditions in span- and streamwise direction and no-slip boundary condition in

the wall normal direction, i.e.:

uz��� � � (A.29)

and

div u � � � (A.30)

The no-slip boundary condition and its corresponding forces are the same as in A.2.1. u is

expanded in streamwise and spanwise direction by one Fourier mode with the wave vector
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Figure A.1: Spectra of the eigenvalues of the linear operator L in the case of plane Couette

flow (left) at Re � ��� and plane Poiseuille flow (right) at Re � 
���. The former has no

eigenvalue with positive real part, the latter has one, bifurcating at Re � 
�����.

� in streamwise and  in spanwise direction. For Legendre-Lagrange the boundary force for

N polynomials applying equation (A.30) are:

F n
p �

��
��

i � , p � N

i  ,N � p � �N

���n� �� � �� Lp���
Ln���

� �N � p � �N

� (A.31)

F n
p is the pth-component of the nth boundary force.

The right hand side of equation (A.28) is a linear operator. The analysis of its eigenspec-

trum gives information on the stability of the investigated flow. Two examples are the plane

Poiseuille flow, with U� � �� � z��ex, and the plane Couette flow, with U� � zex. The

former flow becomes linear unstable at Re � 
����� [35, 61], while the latter is stable for all

Reynolds numbers [93]. Note that in the case of plane Poiseuille flow, the Reynolds number

is based on the full gap width and the full speed, hence the Reynolds number is four times

larger than the Reynolds number used in plane Couette flow.

In figure A.1 the spectra of eigenvalues for both systems are shown. The instability of the

plane Poiseuille flow and the stability of the plane Couette flow can be proven. Both spectra

have been calculated with �� Legendre polynomials.

A.3 Conclusions

In this appendix the application of Lagrangian method of the �st and �nd for solving partial

differential equations with constraints have been introduced. This method is rather simple
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and the results are even better than the � -method. Combining the Lagrangian method with

an Legendre expansion gives an energy conserving spectral approximation of the equations

of motion with an high rate of convergence. Due to the simple application of these approxi-

mation, Lagrangian method of the �st kind should be the first attempt to formulate a spectral

representation of a boundary value problem if a suitable Galerkin approach is not obvious.



Appendix B Spectral representation of the investigated

symmetries

The investigation of stationary states in plane Couette flow (chapter 5) focused on members

of the two symmetry group NBC and I. The reduction of the equations of motion to members

of these group leads to relationships between the spectral coefficients. In this chapter, these

relationships are given.

The spectral representation of the flow field and the application of the boundary condition

has been shown in chapter A.2.3. In this chapter, I use an extended version of the form

ux�y�z�x� �
X
n�p

�
�ax�y�z � i�bx�y�z

�
n�p

e
�� i

�
nx
Lx

x�
ny

Ly
y
�
Lp�z� �

Here,
�
�aj � i�bj

�
equals the complex spectral coefficient �uj, j � x� y� z. Note that the reality

of u gives an additional constraint:
�
�ax�y�z � i�bx�y�z

�
n�p

�
�
�ax�y�z � i�bx�y�z

�
�n�p

.

B.1 P symmetry

R �

�
B�

u

v

w

�
CA �x� y� z� �

�
B�
�u

�v

�w

�
CA ��x��y��z�

ai
k�p � � p even

bi
k�p � � p odd
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B.2 �R symmetry

�R

�
B�

u

v

w

�
CA �x� y � Ly��� z� �

�
B�

u

�v

w

�
CA �x��y � Ly��� z�

ax�znx�ny�p
� ��	�ny ax�znx��ny�p

bx�znx�ny�p
� ��	�ny ax�znx��ny�p

aynx�ny�p � ��	�ny�� aynx��ny�p

bynx�ny�p � ��	�ny�� bynx��ny�p

B.3 W symmetry

W �

�
B�

u

v

w

�
CA �x� y� z� �

�
B�

u

�v

w

�
CA �x� Lx����y� z�

ax�znx�ny�p
� ��	�nx ax�z

�nx�ny�p

bx�znx�ny�p
� ��	�nx�� bx�z

�nx�ny�p

aynx�ny�p � ��	�nx�� ay
�nx�ny�p

bynx�ny�p � ��	�nx by
�nx�ny�p

B.4 V symmetry

V �

�
B�

u

v

w

�
CA �x� y� z� �

�
B�
�u

v

�w

�
CA ��x� y � Ly����z�

ax�znx�ny�p
� ��	�ny���p ax�z

�nx�ny�p

bx�znx�ny�p
� ��	�ny���p bx�z

�nx�ny�p

aynx�ny�p � ��	�ny�p ay
�nx�ny�p

bynx�ny�p � ��	�ny�p by
�nx�ny�p
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The following substitutions are being used:

S� �

r
L� � �

L�

S� �
p
� � ��

S� �

r
L� � �

L�

L �
p
�� � ��

The parameters � and � determ the box lengths in spanwise (�) and streamwise (�) direc-

tions.

d

d t
x� � �

�x�x�

S� L
� �

�x�x�

S�
�

�
��

�x�

S� L
� ��

� x�

L�S� S�

�
x�

��
�x�x	

S� L
� � x�

d

d t
x� � �� � x� � �

�x�x�

S�
�

�
��

� x�

L�S� S�
� ��

�x�

S� L

�
x� � ��

� x�x	

S� L

d

d t
x� �

��
��

���

�L�	��� S�
� �

��

�L�	��� S�

�
x� �

�
��

� ��

L�
� �

��

L�

�
x	

�
x�

�

��
�

���

�L�	��� S�
� �

��

�L�	��� S�

�
x� �

�
��

��

L�
� �

� ��

L�

�
x	

�
x�

�

�
���

��

�� �L�	��� S�
� ��

���

�� �L�	��� S�

�
x� �

�
���

� ��

��L�
� ��

��

��L�

�
x	

�

��
���

� ��

S� �L�	��� S�
� �

��

S� �L�	��� S�

�
x� �

�
��

��

S� L�
� �

���

S� L�

�
x�

�
x�

�� L�x�
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d

d t
x� �

�x�x�

S�
� 


� x�x�

S�
�

�
�

��

�L�	��� S�
� �

�

S� L
� �

���

�L�	��� S�

�
x�x�

�

�
�

� x�

L�S� S�
�

�
�

�

S� L
� �

���

�L�	��� S�
� �

��

�L�	��� S�

�
x�

�
x�

�

�
��

��

�L�	��� S�
� �

�

S� L
� �

���

�L�	��� S�

�
x�x	 � �

�x�

��S�
� �

�
��� � �

�
x�

d

d t
x� �

�
�

�

L�S� S�
�

�

S� S�
� �

���

L�S� S�
� �

��

L�S� S�

�
x�x�

�

�
�

�

S� S�
� �

���

L�S� S�
� �

��

L�S� S�
�

�

L�S� S�

�
x�x� � �

���x�x�

�L�	��� S�

�

��
�

L�S� S�
� �

���

L�S� S�
�

�

S� S�
� �

��

L�S� S�

�
x� � �

���x�

�L�	��� S�

�
x�

�

��
��

L� �L� � �	 S�
�

L��

�L� � �	 S�
�

�

�L� � �	S�
�

���

�L� � �	S�

�
��

�L� � �	S�
�

���

L� �L� � �	S�

�
x� � �

�
L� � �

��
x�

�

�
��

� ��

LS� S�
� �

� ��

�L�	��� S� S�

�
x�x	

�

�

�

� ��

��L�S� S�
� �

�

��L�S� S�
� �

�

��S� S�
� 
�

��

��L�S� S�

�
x�

d

d t
x	 �

��
� ��

L�
�

��

L�

�
x� �

�
�

���

�L�	��� S�
�

�

S� L
� �

��

�L�	��� S�

�
x�

�

�
� ��
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�
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�
x�

�
x� �
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�

���
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� �
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�
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�

�
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�
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x�
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��
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��L�
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� �
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�
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�
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�

�
�
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�
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�

��

�L�	��� S� S�

�
x�x�

�

�
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�

��S� L
� ��

���

�� �L�	��� S�
� ��
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�� �L�	��� S�
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�

�
�
���

��L�
� �
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��L�
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�
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S� L�
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d
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x� �
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Appendix D Bifurcation of stationary states in plane Couette

flow

In this appendix the solution branches of the observed stationary states of the NBC and the

I symmetry group are displayed for Reynolds number between ��� and ���. Each symbol

corresponds to a found solution. These symbols are connected to sketch the solution branch.

E is the energy density of the perturbation, expressed in terms of the energy of the laminar

flow field E�

E �
�

�V E�

Z
u � u� dV � (D.1)

S the shear rate of the full flow field u �U�

S �
�

A

Z
�

� z
�u� z� jz�� dA � (D.2)
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D.1 Stationary states in the NBC group
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D.2 Stationary states in the I group
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Appendix E Stationary states in plane Couette flow

In this appendix the stationary states are classified by the symmetries of u�, � and hui. The

group A�B� C�D consists of members of the NBC symmetry group. The E �F �G of the

member of the I group. The investigated symmetries are the translation of the streaks along

the streamwise and/or the spanwise direction and the reflection along the x or z axis.

T�x��y �

�
u

v

�
�x� y� �

�
u

v

�
�x ��x� y ��y� (E.1)

Ry �

�
u

v

�
�x� y� �

�
u

�v

�
�x��y� (E.2)

Rz �

�
B�

u

v

w

�
CA �x� y� �

�
B�

u

v

�w

�
CA �x� y��z� (E.3)

The number of streaks and streak layers gives an additional characteristic:�
m � number of streaks

n � number of streak layers

�
(E.4)
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Matthias Lange war eine tatkräftige Unterstützung beim Aufbau und der Betreuung des PC-

Netzwerkes, und Wolfgang Braun, der Matthias Erbe angetreten hat trug einen großen Teil

der Last, die mit diesem Netzwerk verbunden ist. Peter Pollner danke ich für viele Anregun-

gen zur Fredholm-Determinante.

Der wichtigsten Person gilt es am Schluß zu danken: Meiner Frau Karin. Sie verstand es,

die blank liegenden Nerven abzudecken, zerteilte meine Sorgen und stützte mich. So blieb
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flows. In: PARISI, J. (Hrsg.) ; MÜLLER, S.C. (Hrsg.) ; ZIMMERMANN, W. (Hrsg.):

A perspective look at nonlinear media in physics, chemistry and biology. Springer,

Berlin, 1998, S. 327–338

[38] ECKHARDT, B. ; MERSMANN, A.: Transition to turbulence in a shear flows. In:

Phys. Rev. E 60 (1999), S. 509–517

[39] ECKHARDT, B. ; OTT, G.: Periodic orbit analysis of the Lorenz attractor. In: Z. Phys.

B 95 (1994), S. 259–266



154 BIBLIOGRAPHY

[40] ELLINGSEN, T. ; GJEVIK, B. ; PALM, E.: On the non-linear stability of plane Couette

flow. In: J. Fluid Mech. 40 (1970), S. 97–112

[41] F.WALEFFE ; KIM, J.: How streamwise rolls and streaks self-sustain in a shear flow.

In: PANTON, R. (Hrsg.): Self-sustaining mechanisms of wall-bounded turbulence.

Computational mechanics publications, 1997

[42] F.WALEFFE ; KIM, J. ; HAMILTON, M.: On the origin of streaks in tubulent shear

flows. In: DURST, F. (Hrsg.) ; FRIEDRICH, R. (Hrsg.) ; LAUNDER, B.E. (Hrsg.) ;

SCHMIDT, F.W. (Hrsg.) ; SCHUMANN, U. (Hrsg.) ; WHITELAW, J.H. (Hrsg.): Tur-

bulent shear flows 8: selected papers from the eighth International Symposium on

turbulent shear flows, Munich, Germany, Sep. 9-11, 1991. Springer-Verlag, Berlin,

1993, S. 37–49

[43] GEBHARDT, T. ; GROSSMANN, S.: Chaos transition despite linear stability. In: Phys.

Rev. E 50 (1994), S. 3705–3711

[44] GOLDSTEIN, H.: Classical Mechanics. London : Addison-Wesley, 1980

[45] GOTTLIEB, D. ; ORZAG, S. A.: Numerical Analysis of Spectral Methods: Theory and

Applications. Philadelphia : Society for Industrial and Applied Mathematics, 1977

[46] GROSSMANN, S.: Wie entsteht eigentlich Turbulenz. In: Phys. Bl. 51 (1995), S.

641–646

[47] GROSSMANN, S.: The onset of shear flow turbulence. In: to appear in Rev. of modern

phys. (1999)

[48] GUCKENHEIMER, J. ; HOLMES, P.: Nonlinear Oscillations, dynamical systems and

bifurcations of vector fields. New York : Springer, 1983

[49] GUTZWILLER, M.C.: Chaos in Classical and Quantum Mechanics. New York :

Springer, 1990

[50] HAMILTON, J. M. ; KIM, J. ; WALEFFE, F.: Regeneration mechanisms of near-wall

turbulence structures. In: J. Fluid Mech. 287 (1995), S. 317–348

[51] HENNINGSON, D.S. ; LUNDBLADH, A. ; JOHANSSON, A.V.: A mechanism for

bypass transition from localized disturbances in wall boundard shear flows. In: J.

Fluid Mech. 250 (1993), S. 169

[52] HIGGINS, R. W.: From the equations of motion to spectral models. In: SHIRER, H.N.

(Hrsg.): Nonlinear hydrodynamic modelling: a mathematical introduction. Springer-

Verlag, 1987



BIBLIOGRAPHY 155
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Insel Verlag, 1983

[61] LIN, C. C.: The theory of hydrodynamic stability. Cambridge : Cambridge University

Press, (1955)

[62] LUNDBLADH, A. ; JOHANSSON, A. V.: Direct simulation of turbulent spots in plane

Couette flow. In: J. Fluid Mech. 229 (1991), S. 499–516
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