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Abstract

We develop the thermodynamic formalism for a large class of maps of the interval with
indifferent fixed points. For such systems the formalism yields one-dimensional systems
with many-body infinite range interactions for which the thermodynamics is well defined
but Gibbs states are not. (Piecewise linear systems of this kind yield the soluble, in a
sense, Fisher models.)

We prove that such systems exhibit phase transitions, the order of which depends on
the behaviour at the indifferent fixed points. We obtain the critical exponent describing
the singularity of the pressure and analyse the decay of correlations of the equilibrium
states at all temperatures.

Our technique relies on establishing and exploiting a relation between the transfer op-
erators of the original map and its suitable (expanding) induced version. The technique
allows one also to obtain a version of the Bowen-Ruelle formula for the Hausdorff dimen-
sion of repellers for maps with indifferent fixed points, and to generalize Fisher results to

some non-soluble models.
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The Thermodynamic Formalism [25, 28] proved to be a powerful tool in the ergodic theory
of hyperbolic and, in particular, expanding maps [26]. A central role is here played by the
transfer (or Ruelle-Perron-Frobenius) operator. The fact that the map is expanding allows
one to express thermodynamic and statistical characteristics of the system (free energy, equi-
librium states, ...) in terms of the transfer operator, and results in regularity properties of
both. In particular, one obtains a Statistical Mechanics system with a fast decaying interac-
tion and, correspondingly, a transfer operator with compactness properties, which allows for
quite a complete analysis of such systems. As a consequence, one has fast convergence to the
thermodynamic limit and smoothness of thermodynamic functions (no phase transitions).

These regularity properties disappear when one passes to non-hyperbolic maps, as has
been demonstrated convincingly in recent works, mostly by theoretical physicists. Numerical
analysis and calculations in some soluble models exhibit both singularities and slow conver-
gence to the thermodynamic limit [8, 9, 13]. Some insights have been gained into the origin
of the singularities, in particular by relating the phase transitions to that of Fisher Models
[20, 29, 32, 33], see the closing remarks here. We note, however, that in natural approxima-
tions of the systems by Fisher Models the discarded parts of the interactions are not small
in any obvious sense, having, in particular, infinite “energy norm?”.

On the other hand, in a number of mathematical works, the method of inducing, and
its variants, has been used to investigate absolutely continuous invariant measures for non-
hyperbolic maps of the interval [1, 5, 18, 23].

Apart from a remark of Walters [31] on a relation between pressures of a soluble system
and its induced version, we are aware of no work relating thermodynamics and transfer oper-
ators of a system and its induced version. The aim of this letter is to establish such a relation
and to show that it yields quite a complete version of the Thermodynamic Formalism for al-
most expanding maps (defined below), with a good insight into the nature of singularities in
such systems; this relation can be considered as a version of the Renormalization Group idea.
The same inducing method allows us to obtain results on singularities in the spectrum of the
transfer operator for some unimodal maps, confirming, in particular, results and conjectures
of [4, 20]. However, in the unimodal case the thermodynamic significance of the results has
yet to clarified.

To simplify the exposition, we restrict our attention to almost expanding maps of the



interval I = [0, 1], which are defined below. Later, we indicate what changes have to be made
to treat more general almost expanding maps and some other non-hyperbolic systems.

We consider a piecewise monotone transformation f of the interval I = [0, 1]; there exists
a finite partition of I into intervals I, I1, ..., Ik, such that for each interval I;, f extends to
a function f; on its closure, I;, with Holder-continuous derivative f;’. We denote by F; the
map inverse to f;.

[ is almost expanding if |f'| is larger than 1 in the interior of each I; (it may be equal to
1 at the end points of the intervals).

In order to keep the formulas simple, we restrict ourselves to a partition into two intervals
Iy = [0,a] and I} = [a,1] and we suppose that fy and f; are onto I. Furthermore, we now
assume that f has an indifferent fixed point at 0, and that |f’| is larger than some Ag > 1 on
F~1(I1). A typical f in this class is the Farey map [11], where a = 1/2, fo = /(1 — z) and
fi=(@Q —xz)/z (see Fig. 1).

For real 3, the transfer operator Lg associated with the transformation f is defined by

2) = o(y)
L@ = 2. Tp)p )

with natural convention at the end points of the interval. Lz acts on suitable Banach spaces
of functions on I [25].

If f is expanding then there exists a unique equilibrium state, which is also a Gibbs state,
and the pressure P(log|f’|) is analytic in 8. Moreover, the pressure is given by the logarithm
of the largest eigenvalue of L3 in the space of continuous functions on I [31] or in the space
of functions with bounded variation on I [3]. For some non-expanding transformations f
inducing will be used to obtain an expanding induced system, and results in the induced
system will be related to the original one. This allows us to prove below existence of phase
transitions for almost expanding maps with indifferent fixed points, analyse corresponding
singularities of thermodynamic functions and clustering properties of equilibrium states.

For a partition into two intervals, the transfer operator Lg reads
Ls® = Log® + L15®, where Lig® = |F/|’® o F; = L5(x:D) , (2)

and y; is the characteristic function of I;, 1 = 0, 1.



To define an appropriate induced transformation [6], let J be a subinterval of I, and let

Jn, be the set of points which return to J after exactly n iterations;
Jo={zecJ|fegJ,....f"lugJ ffreJ}. (3)
Defining n(x) = n for x € J,, the first return or induced map g is defined by

gz = f"@)g . 4)

For an almost expanding map of the interval, the induced transformation is defined up
to a countable set of points. In our case, only the point x = 1 doesn’t return to J.
Furthermore, define the modified (by the parameter z) transfer operator Mg, for the

induced ma,
b Zn(y)

yigy=x
Now induce on J = I;. Then the sets J,, are the intervals

Jn = FIR™ (), (6)

and g maps each J,, monotonically onto J. Denoting by G, : J — J,, the inverse of g|z,, we
have

Gn=FF" ;. (7)

Fig. 1 illustrates the inducing for the Farey map. The induced map is shown in the upper
right corner.
Due to our assumptions, g is expanding, i. e.,
sup sup |G,/ (z)| < 1. (8)
n>1 zeJ
The modified transfer operator Mg, takes the form
o
Mg, ¥ =Y "G,/ )P TG, , (9)
n=1

which for the Farey system is

Mo 0 i (1+(n—1)w) . (10)

—{—n:v 1+ nx

We note that because of the bound (8) the series in (9) is pointwise convergent for any

bounded ¥ and for |z| < 1.



We now reinterprete the last expression for Mg, as follows. By (7), Fi Fy" ! extends G,

to all of I. Moreover, F, and therefore also FyFy™ !, maps I into J. Hence, defining for U,
B and z as in (9)

MG, = iz"|(F1F0”_1)’\f3\IfoF1F0"_1, (11)

n=1
we obtain that M} U extends Mg, ¥ to I. Moreover, the action of the operator M7} _is also
Bz B ’ p Bz

well defined for functions on I.

To relate L5 and Mg,, we note that
Lop™ 1L1pT = |[(FR"™ VP T o FF 1 (12)

here the operator product is defined on functions on I, but also holds when restricted to
functions on J. By (7) and (12),
)
MO =" 2"Log"  L1pT (13)
n=1
which is equal to (1 — 2Lgg) '2L13V for |z| smaller than the radius of convergence of this
power series. This radius is equal to r(Log), the spectral radius of Log. In our case, r(Log) = 1,
due to the fact that f is almost expanding and that f'(0) = 1. Because |G,,(0)| = 1, M;z\ll
is in general unbounded for z = 1, exhibiting a singularity at zero.
Now, (13) yields the desired operator relations between Lg and Mg,. For any function
®onl
(1= 2Log)(1 = M) = (1 — 2L5)® (14)

and, for any function ¥ on J, one has
(1= 2La) M}, U = 2L15(1 — Mg,) ¥ . (15)

We will discuss now, how in suitable Banach spaces of functions these identities relate
the spectrum of Lg outside the disk of radius r(Log) to the spectrum of Mg,; the spectrum
of Lz inside this disk is considered later.

Let @ be an eigenfunction of Lg with eigenvalue 27! > 1. Then ® is an eigenfunction of
M;z with eigenvalue 1, and hence, the restriction ¥ of ® to J is an eigenfunction of Mg,
with eigenvalue 1. Also, if 27! is in the resolvent set of Lg then 1 is in the resolvent set of

Mg?z and, hence, of Mg,.



Now, let ¥ be an eigenfunction of Mg, with eigenvalue 1. Then the extension ® = MEZ\I/
of ¥ to I is an eigenfunction of Lg with eigenvalue 27!, provided that the extension ® is in
the domain of Lg. Also, if 1 is in the resolvent set of Mg, then 27! is in the resolvent set of
Lg.

At the radius of convergence, i. e., for |z| = r(Log), the extension ® = Mg;z\I! of an
eigenvector of Mg, may not be in the domain of Lg. Nonetheless, the expansion (13) yields
information about the singularities which the extension ® exhibits.

The operator Mg, is well defined for z €]0,1] and 8 > 1/2, and has the following positivity
and monotonicity properties. For bounded functions ®, ¥ we write ® < ¥ if &(z) < U(x)
for any z € J. Then for any ¥ > 0

Mg, ¥ >0 (16)

and

’_ z
MU <N P M, W, Mg, 0 < Mg (17)

for 8 > ' and z < 2/; here )\ is the Lh.s. of the inequality (8).

We will discuss now the spectral properties of Mg, and the existence of phase transitions
in the particularly simple case of a piecewise analytic f; following [24, 22] we let the operators
act on the Banach space of functions analytic in a suitable (complex) neighborhood of .J. The
induced map g is expanding, and therefore Mg, maps functions analytic in a neighborhood
of J into functions that are analytic in a larger neighborhood. Due to this property, Mg, is
a compact (in fact trace-class) operator.

Now consider 1 > z > 0. Then the operator Mg, is not only positive but also 1-bounded,

i.e., for a nonzero ¥ > 0 there exist n, a1, and oy such that
a1l < (Mﬂz)n‘lj < agl, (18)

(the upper bound is trivial). Thus, there exists a unique (up to a factor) positive eigenvector
Vg, of Mg,, the corresponding eigenvalue Amax(Mp,) is simple, and all other eigenvalues
are strictly smaller in modulus [21, 22]. This yields also a spectral gap for Mg,.

Denoting by A the Lebesque measure, one has

A(M;,1) = A(D) (19)



for any W; this is standard in the theory of the transfer operator. Combining this with the
inequalities (17) and the fact that, obviously, Amax(Mpg,) = 0 as z — 0 one obtains that for
any [ < 1 there is unique z(3) < 1 such that

Amax(-/vlﬂz(,/j)) =1, (20)

that z(f3) is a strictly increasing function of § with z(8) 1 as § 1. Moreover, by
standard perturbation theory of simple eigenvalues ([19], Chapter VII, Thm. 1.9), 5 — z(5)
is analytic.

Since, as we show below, P() = —logz(8)* for 8 < 1, this argument accounts for the
graph of Fig. 2 on the interval [0, 1]. Farthermore, since P(3) > 0 and P(f) is a decreasing
function of 8, P(B) = 0 for 8 > 1, and therefore 8 = 1 is a point of a phase transition.

To identify P(3) with —log 2(8) for 3 € [0,1] we note first that by (18),

alcrelg \Ifﬂz(ﬂ)(l') >0.

Therefore ®g := M;z( ﬂ)\IJ B2(8) is a strictly positive continuous function on I which by (15) is
an eigenfunction of Lz with eigenvalue 1/z(5). Moreover, applying to the normalized version
L of Lg,

Lo(z) = 2(8)®p(z) " (Ls(DpD)) (2) ,

Theorem 2.1 of [30], we obtain that

P(B) = —log 2(B) - (21)

This concludes our analysis of the piecewise analytic case.

We turn now to the more general case of maps f for which f’ is merely Holder continuous,
and indicate how inducing and the recent results of [3] and [27] yield additional information
on the spectrum of Lz and the clustering properties of equilibrium states.

We let the operators Lg and Mg, act on the Banach spaces BV (I) and BV (J) of functions
of bounded variation on the intervals I and J, respectively. Then, using the fact that g is
expanding we obtain that for z €]0,1[ and 8 < 1 the spectrum of Mg, is as indicated on

Fig. 3a: Mg, is quasi-compact, its spectral radius is a simple eigenvalue, Amax(Mpg,), with a

*Here and in what follows we write P(83) in place of P(8log|f’|)-



positive Holder continuous eigenfunction Ug,, the essential spectral radius of Mg, ress(Mg;)
is strictly smaller than Amax(Mpg,), and the rest of the spectrum of Mg, consists of isolated
eigenvalues of a finite multiplicity of modulus strictly smaller than Ayax(Mg,). Furthermore,
using the inequalities (17) one shows as before that there is a unique solution z(8) to (20),
and that z() has the monotonicity and analyticity properties stated after (20).

Using now (14) and (15) we show that Lg acting on BV (I) is also quasi-compact, that
ress(L5) = 1, that 2(8) ! is a simple eigenvalue of L3, equal to its spectral radius, with the
corresponding eigenfunction Mgz( ,3)\11 2(8) strictly positive and Holder-continuous, and that,
as in the case of Mg,, the rest of the spectrum of Lz consists of isolated eigenvalues of a
finite multiplicity of modulus strictly smaller than z(3) ! (Fig. 3b). In particular, we obtain
that £ has a spectral gap whenever 8 < 1, and since z(8) /1 as # 1, this spectral gap
goes to zero as f 1. Also, since P(f) is equal to the spectral radius of L3 in general,
[3], we obtain again that (21) holds, extending to the present context results well known for
expanding maps.

We discuss now the behavior at the critical point z = 1. This depends on the asymptotic

form of f near the indifferent fixed point 0. Assume a power law in the form:
f(z) =z + cz®(1 + r(z)) (22)

with exponent Z > 1, some constant ¢ > 0,with r(z) = O(z¢) as x — 0, for some £ > 0, and
with r'(z) monotone in a neighborhood of 0 (for instance, 7’ analytic at 0).

Then we have the asymptotic expression

uniformly in n for £ — 0, where
g(z) = (z7C7Y 4 a)~Y/C)
is the fixed point of the renormalization transformation
Tog(z) = ag?(z/a), a=2YCE1

for the intermittency boundary condition



[17]. (The exponent Z mustn’t be confused with the parameter z = A ~! used earlier.)

From this we obtain the asymptotic expansion near the phase transition point:

e The system exhibits a first order phase transition for 1 <z < 2:
P(B) =const- (1 —8)+o(1-7). (23)
e For Z = 2, the case of the Farey map,
—P(B)log P(B8) =const - (1 — ) +o(1 — f) . (24)

e Forz > 2

P(B) =const- (1 —B)* 1 4+o((1 -p)*1). (25)

Our results agree with those of [11] and [29, 32].

We turn now to the Statistical Mechanics of the system, i. e., to a description of its
equilibrium states [25]. We again use inducing in combination with the variational principle
and standard results of the thermodynamic formalism [25, 30]. We obtain among other results
description of equilibrium states and their clustering properties:

For 8 < 1 there is a unique equilibrium state. Though not a Gibbs state, this state has
exponential decay of correlations, with the correlation length diverging as 8 approaches 1.
For 8 > 1 there is again unique, and (-independent, equilibrium state, dy, concentrated at
the point {0}.

The situation at f = 1 and the order of the phase transition depend on the exponent Z:

— for Z < 2 one has two extremal equilibrium states, one, p obtained as a limit as § " 1
of the unique equilibrium states; the other is the §; mentioned above. We also obtain that
although the phase transition is of a first order, p has polynomially decaying corelations.

— for Z > 2 one has unique equilibrium states, namely dy. The order of the phase transition
is as described above. By general thermodynamic formalism, the limit as 8 * 1 of the unique
equilibrium states is equal to dj.

In addition, there unique, up to a factor, invariant measure which is absolutely continuous
with respect to the Lebesque measure; however, unlike in the case of Z < 2 this measure is

infinite.



We mention now further extensions of the formalism, and results it yields. Some of these

will be treated in a longer paper in preparation.

e One can define the modified transfer operator (5) in a much more general setting, when
I and J are not necessarily intervals, or subsets of the real line. Abusing somewhat the
notation, Mg, can be written in terms of Lg and the sets J,, of (3):

00
Mpo¥ =3 2" L5" (x1,9)
n=1

where x s, is the characteristic function of .J,,. Defining
Eog@ = £5(XJC¢) and £1g<I) = Eﬁ(XJ(I)) y

we again obtain that Mgrz, given by (13), extends Mg, and that the relations (14) and
(15) hold.

e The present results extend, almost verbatim, to a situation when f has more than two

branches; a slight variation of the formalism works for periodic indifferent points.
e Most of the results depend on the expanding nature of the induced map g, not of f.

e A natural modification of the formalism extends it to the case of one-dimensional re-
pellers, or, “cookie cutters” [4], with indifferent fixed points. In particular, one obtains
a version of the Bowen-Ruelle formula, which now says that the Hausdorff dimension
of the corresponding Julia set is given by 8 at which the phase transition occurs. (In
the situation of the present paper this S, is 1, corresponding to the fact that the Julia
set consists of all the interval.) When these results were described at seminars at THES
and the Tel-Aviv University we were informed by E. Cowley and Jon Aaronson about
similar results (on Hausdorff dimension, not on the transfer operators) of [10] for some

Julia sets.

e The Fisher models [14] are soluble in the sense that their induced version have only
one-point interactions. Our formulation allows one to generalize these results to a
large class of models that are no longer soluble in this sense, with induced versions
having interaction of an infinite range, as is the case with statistical mechanics systems

arising from smooth maps of the interval. The modified transfer operator Mg, can be



considered as an operator version of the grand canonical ensemble. For Fisher models,
Mg, reduces to multiplication with the grand partition function of a single cluster as

used in [32].
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Figure Captions

Figure 1:

Figure 2:

Figure 3:

The Farey map f with the induced map g in the upper right corner. fy and f; are the
branches of f on Iy and I;. The dashed lines show the extension of branches of the

induced map to the whole interval.
The -dependence of the largest eigenvalue A of the transfer operator.

The structure and the connection between the spectra of the modified transfer operator

M) (a) and the transfer operator L (b) for g < 1.
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