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Three-dimensional finite-amplitude solutions in 
plane Couette flow : bifurcation from infinity 
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Finite-amplitude solutions of plane Couette flow are discovered. They take a steady 
three-dimensional form. The solutions are obtained numerically by extending the 
bifurcation problem of a circular Couette system between co-rotating cylinders with 
a narrow gap to the case with zero average rotation rate. 

1. Introduction 
One of the classical problems of hydrodynamic stability is that of plane Couette flow 
(PCF). Although PCF is the simplest form of incompressible viscous shear motion 
(see figure l) ,  the question of its stability has been most difficult to answer. All linear 
stability analyses of PCF indicate that the flow is stable with respect to arbitrary 
infinitesimal perturbations at any Reynolds number (Drazin & Reid 1981 ; Craik 
1985). Therefore, the transition from laminar flow with a linear velocity profile to 
finite-amplitude solutions, if they exist, must be abrupt. The loss of stability at 
higher Reynolds numbers in PCF has been observed experimentally by Reichardt 
(1959), although experimentation to realize the flow appropriately is also a difficult 
task because of the presence of moving boundaries. So far, the lack of finite- 
amplitude solutions has left the problem theoretically unsolved. 

The paper starts in $2 with a brief description of how finite-amplitude solutions in 
PCF are obtained by following three-dimensional solution branches which bifurcate 
from the Taylor vortex flow. (Detailed accounts on the bifurcation problem of the 
circular Couette system are found in Nagata 1986, 1988.) Some nonlinear 
characterization of those new solutions is presented in $3) followed by a short 
discussion in $4. 

2. Flows between co-rotating cylinders 

narrow gap (see figure 2) is governed by 
The motion of a viscous incompressible fluid between co-rotating cylinders with a 

v4d, 4 = na, A, $ + ( -RX+ V )  a, v2d, +a:,( -R%+ V )  ay A, 4 

v2d, $ = - sza, A, # + ( -EX + V )  a, A ,  + - a,( - - R ~  + V )  a, A ,  9 
+;.v x v x [ic.Vu']+a,V2A2q5, (1) 

-~.VX[~'.VZ~]+~J,+ (2) 

t Present address : Department of Mathematics, University College London, Gower Street, 
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FIGURE 1 .  Plane Couette flow. 

circular Couette system with co-rotating cylinders and Taylor vortices. The 
cylinders are measured in a frame of reference rotating with the angular velocity 
deals with the narrow-gap limit without curvature. 

and a, V-aL!V = ~,~,$ca;,$+a,$r,, (3) 

where A ,  = a;,+a,z, 
and the bar denotes a yz-average (Nagata 1986, 1988). The Reynolds number R 
measures the strength of the shear across the cylinders while the other non- 
dimensional parameter 52 represents the Coriolis effect. They are defined by 

R = (Qi-52,) ( R t - R f ) / 2 ~ ,  52 = (Si+52,) (R,-Ri)'/v, 

where sZi and SZ, are the angular velocities of the inner and the outer cylinders with 
radii Ri and R,, respectively, and v denotes the kinematic viscosity. The scalars 9 and 
$ are the poloidal and toroidal parts, respectively, of a solenoidal velocity 
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disturbance &, whereas g denotes the modification of the mean flow from the circular 
Couette flow solution V = -Rx. Thus, the total velocity u is given by 

u = ( -Ex + V ) j +  v x (V x iq5) + v x $, (4) 

where the unit vectors ;and; correspond to the x-direction across the fluid layer and 
the streamwise direction y, respectively. The prescribed no-slip boundary conditions 
at  x = k i  are 

" 
@ = az@ = + = v =  0. ( 5 )  

Assuming infinite extent in the axial direction z, we first seek an axisymmetric 
finite-amplitude solution of the form 

m n  

1=1 n=-m 

W 

V = C ck sin 2knx, 
k = l  

where fi and g1 are the sets of orthogonal functions satisfying (5) (see Chandrasekhar 
1961). The solution, called Taylor vortex flow (TVF), is steady with respect to a 
frame of reference rotating with the angular velocity 52 and is known to bifurcate 
supercritically from the circular Couette flow when the Taylor number 

exceeds 1708 (=  T,). The critical wavenumber yc is 3.117. 
Having obtained TVF solutions by a Galerkin method and a Newton-Raphson 

method for the truncated system of nonlinear algebraic equations for a,,, bln and ck 
which are derived from (1)-(3), stability analysis is performed by superimposing 
general three-dimensional perturbations on the TVF solutions. The perturbations q5 
and $ have the same periodicity as that of TVF in the axial direction with additional 
exponential dependences on y, z and t : 

1=1 n=-m 

w w  

1=1 n=--oc 

After orthogonalizing the perturbation equations which are also derived from (1)-(3), 
the resulting eigenvalue problem with v as the growth rate is solved numerically by 
a matrix inversion method. The same truncation level Z+ In1 < N T  and Ic < NT as that 
used for obtaining TVF solutions is employed. 

Ihe stability diagram for a wide range ofR and 52, and comparisons with available 
experimental observations (Andereck, Dickman & Swinney 1983) and Andereck, Liu 

r '  
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FIGURE 3. The stability diagram of Taylor vortex flow. The onsets of oscillatory instabilities and 
monotone instabilities are shown by a dashed curve and a solid curve, respectively. Open circles 
indicate the onset of wavy vortex flows observed experimentally by Andereck et al. (1986). The 
Taylor vortex flows exists above the neutral curve T = T,. The Taylor number T is respectively 
positive or negative in the region above or below the Rayleigh line R = a. 

& Swinney 1986) can be found in Nagata (1986, 1988). Here, we are only interested 
in the rcgion where SZ is small, since the equations which govern PCF are recovered 
mathematically by simply reducing SZ to zero in (1)-(3). It is found that TVF first 
becomes unstable with respect to perturbations with d + 0 and b = 0 as 52 is 
decreased from, say, 52 = 200, provided R > 130 (see figure 3). The instability is 
oscillatory, Im(a) #= 0, or monotone, Im(a)  = 0, depending on whether R > 550 or 
R < 550. The onset of the oscillatory instability is in good agreement with that of the 
wavy vortex flows (WVF) observed in the experiment by Andereck et al. (1986). 
Typical graphs of Re (B) are plotted against 52 for fixed values of R = 600 and 
d = 0.6 in figure 4, For R less than 550, the whole graph of Re (B) in figure 4 is shifted 
downwards, leaving the branching point B, where the complex eigenvalues turn into 
two real eigenvalues beneath the line of zero growth rate. Hence, the Hopf 
bifurcation (the onset, of oscillatory instability) at 52 = Q, does not occur any more 
and the simple bijurcution (the onset of monotone instability) at Q = Q, is now 
associated with a point on the upper real eigenvalue branch instead of the lower one 
as is seen in figure 4. A t  smaller 52 ( =  Q,), which is still slightly larger than 52, 
corresponding to T,  in (7),  there is another simple bifurcation point, at which a 
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FIGURE 4. The growth rate Re (cr) against 52 for the wavy vortex flows: d = 0.6, b = 0.0, y = 3.1 17. 
The solid line and the dashed line indicate the real and complex eigenvalues g, respectively. The 
oscillatory mode of instability sets in a t  52 = 52, whereas the monotone mode grows between 
52 = 52, and 52 = 52, in the linear theory. Also shown in the figure by a dotted curve is the growth 
rate of axisymmetric perturbations with d = 0 and b = 3.117, superimposed on the circular Couette 
flow y = 0. TVF exists for D > 52,. R = 600. 

steady three-dimensional finite-amplitude solution is expected to bifurcate with an 
azimuthal wavenumber p = d : 

w w  m 

# = x x x almnei(m8U+nYz) f&), (9a) 
Z-1 m--m n--w 

In  fact, steady three-dimensional solutions do bifurcate from both simple bifurcation 
points. For the simple bifurcation point at larger 52 (= Q2), the solution bifurcates 
supercritically, while the bifurcation is subcritical at 52 = 52,. It is found that some 
supercritical solutions reach the line i2 = 0 before joining with the subcritical 
solution when R = 600. The solutions ‘behave themselves ’ in general with decreasing 
orders of amplitude for higher harmonics. I n  order to see the evidence of numerical 
convergence, the values of the torque 

7 = -- (-Rx+V)/R 
dx 
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FIGURE 5. The torque 7 of non-axisymmetric flows with ,8 = 1.6 and y = 3.0 a t  R = 600 as a 
function of 52 for various truncation levels. The dashed curve shows the torque of TVF with 
p = 0, and y = 3.0 for which 52, x 2.9. 
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FIGURE 6. Steady three-dimensional finite-amplitude solutions of PCF for various truncation 
levels. The momentum transport T of undisturbed laminar flows V = -Rx is given by 7 = 1. 

on the cylinder a t  x = +$ are compared in figure 5 for various truncation levels 

I+ lml+ In1 < NT, k < N;.. (11) 

In figure 3, it seems that C? goes to zero faster on t'he curve WVF than on the curve 
T = T, as R +a. Therefore, one would think that three-dimensional perturbations 
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FIGURE I, The modification of the mean flow -Rx+ of the upper solution branch : 
p = 1.6, y = 3.0 and R = 600. (NT,WT) = (13 , l l ) .  

might be directly responsible for instability of the circular Couette flow since the 
Squire theorem is not applicable to the rotating system. However, numerical 
calculations up to R - 20000 indicate that SZ, is always slightly greater than SZ, so 
that the circular Couette flow becomes unstable only with respect to two-dimensional 
perturbations. 

3. Plane Couette flow 
Figure 6 provides steady three-dimensional finite-amplitude solutions of PCF 

(52 = 0), which have been detected by Galerkin and Newton-Raphson methods a t  
Reynolds numbers up to 1200 for different truncation levels (11) .  The wavenumbers 
in the streamwise and spanwise direction are set to p = 1.6 and y = 3.0, respectively, 
since these wavenumbers ere optimal for the truncation level (NT,NT) = (10,8). 
Again, the numerical convergence is checked in terms of r in the figure. The quantity 
7 could be called the momentum transport in the case of SZ = 0 rather than the 
torque. It is quite certain that the finite-amplitude solutions appear abruptly a t  a 
Reynolds number around R = 500. 

Calculations for truncation levels up to (NT, NT) = (1 1,9), were carried out on the 
IBM 3081 a t  University of Cambridge. For (NT,NT) = (11,9), which exploits the 
maximum capacity available on the IBM 3081, the total number of the coefficients 
almn, blmn andoc, is 344 and one iteration uses 4 min in CPU. Starting from reasonably 
well-guessed initial values, it takes about 5 iterations to  obtain a solution. 

Calculations were also performed on the CRAY a t  the University of London 
for (NT,iVT) = (12,lO) and (13 , l l ) .  The total number of the coefficients is 589 for 
(NT,NT) = (13 , l l )  and one iteration uses 3 min 40 s in CPU. Again, it takes about 5 
iterations to obtain a solution. 

The modification of the mean flow in figure 7 indicates the effective momentum 
transport 7 at the plates x = +-+. The most striking feature among other nonlinear 
aspects of the solutions can be seen in the fluctuation of the dominant velocity 
components which are parallel to the plates. From figure 8 one can recognize regions 
of strong streamwise currents near each plate. Away from the plates, they become 
narrower and begin to meander in the spanwise direction z,  so that on the midplane 
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a t  x = 0, where the mean flow -Rxf  vanishes, the flow is characterized by out-of- 
phase sinusoidal currents flowing in the alternating direction. These currents 
maintain their identity further across the midplane. 

Only the case of R = 600 on the upper branch is chosen for the demonstration of 
nonlinear aspects of the solutions in figure 7 and 8, simply because of its good 
numerical convergence near the turning point a t  R x 500. It is very plausible that 
the subcritical lower branch is unstable. 

4. Discussion 
Since no solutions can bifurcate from the laminar plane Couette flow owing to the 

lack of a degenerate fixed point, either the lower and the upper solution branches 
meet again a t  some higher R producing isola or both branches continue to be 
separated for any finite R. The latter case is an example of a bifurcation from infinity 
(Rosenblat & Davis 1978). The idea of a bifurcation from infinity in PCF was 
suggested by Cowley & Smith (1985), who examined a mixed problem of PCF and 
plane Poiseuille flow although their problem was two-dimensional and they were not 
able to obtain pure PCF solutions. 

In $2, we saw that the Hopf bifurcation occurs on TVF for R > 550. The periodic 
solution bifurcating from 0 = 0, may be connected to some point on the steady 
solution branches, where the solutions may become unstable and undergo further 
bifurcations when R is increased. The inflectional mean flow shown in figure 7 could 
give rise to  instabilities of the newly found solutions. The discovery of the finite- 
amplitude solutions in PCF will certainly provide a step to understanding the 
stability of PCF, especially by examining the existence of a three-dimensionally 
sustained equilibrium, which was speculated by Orszag & Kells ' (1980) in their 
numerical experiments on PCF. 

More detailed descriptions on the nonlinear property of the new solution and its 
stability will be discussed in the near future. 

This research was supported by the SERC. 
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