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Relativistic Chaos is Coordinate Invariant
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The noninvariance of Lyapunov exponents in general relativity has led to the conclusion that chaos
depends on the choice of the space-time coordinates. Strikingly, we uncover the transformation laws of
Lyapunov exponents under general space-time transformations and we find that chaos, as characterized
by positive Lyapunov exponents, is coordinate invariant. As a result, the previous conclusion regarding
the noninvariance of chaos in cosmology, a major claim about chaos in general relativity, necessarily
involves the violation of hypotheses required for a proper definition of the Lyapunov exponents.
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Chaotic properties of dynamical systems with a repa-
rametrizable time coordinate are important in physical
theories without an absolute time, such as general rela-
tivity. The study of chaos in general relativity has fol-
lowed two main lines. One considers the geodesic motion
of test particles in a given gravitational field [1]. The other
investigates the time evolution of the gravitational field
itself [2,3], which is relevant in cosmology. While the
former case has been studied with standard methods of
the dynamical systems theory, an adequate characteriza-
tion of chaos in the latter is currently an open problem.
The difficulty comes from the dependence of the shear
between nearby trajectories on their time parametriza-
tion. Accordingly, dynamical properties, such as mixing
and initial-condition sensitivity, may depend on the time
parametrization.

In classical physics, the study of dynamical systems
concerns differential equations of the form

dx/dt = F(x), (D

where 7 is a uniquely defined parameter that usually
represents the time. Although a general definition of chaos
is missing, it is widely accepted that it regards the dy-
namics of bounded orbits and that a chaotic system must
present sensitive dependence on initial conditions [4].
Chaos can then be quantified in terms of Lyapunov ex-
ponents [5] insofar as the following conditions are sat-
isfied: (i) the system is autonomous; (ii) the relevant part
of the phase space is bounded; (iii) the invariant measure
is normalizable; (iv) the domain of the time parameter is
infinite. Such a characterization is convenient because it is
invariant under space diffeomorphisms of the form y =
Ps(x). As a result, chaos is a property of the physical
system and does not depend on the coordinates used to
describe the system.

In general relativity, the nonexistence of an absolute
time parameter forces us to consider Eq. (1) under space-
time diffeomorphisms: y = (X, 1), d7 = A(x, f)dt. A
conceptual problem then arises because of the depen-
dence of classical indicators of chaos, such as Lyapunov
exponents and entropies, on the choice of the time
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parameter. This problem has attracted a great deal of
attention since it was first identified in the mixmaster
cosmological model [6], whose largest Lyapunov expo-
nent was shown to be positive or zero for different choices
of the coordinates [7]. In particular, numerous methods
based on invariant curvature [8], symbolic dynamics [9],
Painlevé analysis [10], and fractals [11,12] have been
proposed toward an invariant characterization of chaos
in cosmology. The problem, however, goes beyond rela-
tivistic cosmology since it has been argued that the same
kind of noninvariance can be observed in a system as
simple as the harmonic oscillator if time reparame-
trizations are allowed [13]. Moreover, it has been exhib-
ited examples of systems whose nonmixing dynamics
can be converted into a mixing one through a time
reparametrization [14]. These results have led to the tacit
assumption that chaos itself depends on the space-time
coordinates. In general relativity, this noninvariance
would imply that chaos is a property of the coordinate
system rather than a property of the physical system (see
Ref. [3], and references therein).

In this Letter, we investigate the transformation laws of
Lyapunov exponents under space-time reparametrizations
that preserve conditions (i)—(iv). To be specific, we con-
sider a Euclidean phase space (not to be confused with the
pseudo-Riemannian spacetime), where the relevant in-
variant measure is the natural measure. Our principal
result is that Lyapunov exponents transform according to

F=hi/),  (i=1...,N), 2)
where 0 < (), < oo is the time average of A = d7/dt over
typical trajectories and N is the phase-space dimension
[15]. The values of the Lyapunov exponents are, of course,
noninvariant because a simple reparametrization such as
(x, 1) = (x, at) transforms the exponents A’ into h'/a.
However, the signs of the Lyapunov exponents are in-
variant. In particular, if & > 0 is the largest Lyapunov
exponent, the reparametrization only changes the charac-
teristic time scale 7 = 1/h for the manifestation of the
chaotic behavior. The striking implication of our findings
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is that chaos, as characterized by positive Lyapunov ex-
ponents, is coordinate independent. As we show, the
vanishing of Lyapunov exponents in the mixmaster cos-
mology, as well as in other examples previously consid-
ered in the literature, is due to the violation of at least one
of the conditions (i)—(iv) above, which are required for
the Lyapunov exponents to be meaningful indicators of
initial-condition sensitivity and, hence, chaos. For in-
stance, it has been frequently claimed that the exponen-
tial divergence of initially close trajectories that separate
as Ox(t) = 8xexp(hr) can be removed with a logarith-
mic reparametrization of the time [16]. The suggested
transformation is defined as ¢ = In7, so that 8x(7) =
dx,7". This reparametrization is then interpreted as
converting a positive Lyapunov exponent into a zero
Lyapunov exponent, and the inverse of this transforma-
tion has been used to support the claim that integrable
systems can have positive Lyapunov exponents [13]. The
problem with this argument is that, if the original system
is autonomous, the reparametrized system is necessarily
nonautonomous. Alternatively, if we increase the dimen-
sion of the phase space in order to eliminate the explicit
dependence on time, the orbits become unbounded. In any
case, Lyapunov exponents are not valid indicators of
chaos. We show that a similar problem, although more
subtle, is present in the mixmaster cosmological model.

The Lyapunov exponents of an invariant set of the
phase space of system (1) are defined as

p—tim ™0 G )
1—o f |TI;()|
where dni(1)/dr = DF(x(1)) - mi(2), (4)

x(0) is a typical initial condition, and M, = ni(0) are
tangent vectors at x(0). We assume that F is a continu-
ously differentiable function of x and system (1) has N
independent Lyapunov exponents. Behind definition (3)
and (4) are the hypotheses (i)—(iv), namely that, with
respect to (x, 7), the function F does not depend explicitly
on ¢, the dynamics is well defined for ¢ in the interval
[0, ), and the invariant set is bounded and has finite
natural measure [17]. Otherwise, positive Lyapunov ex-
ponent is not a well-defined criterion for chaos. To ensure
that system (1) remains autonomous after the coordinate
transformation (x, r) — (y, 7), we consider that, when
functions A or ¥ depend explicitly on ¢, the coordinates
x and y are redefined to incorporate ¢ as an additional
dimension in the phase space [18]. As a result, the
coordinate transformation is always reduced to a time-
independent transformation of the following form:

y = b(x), dr = A(x)dt, &)

where A is a strictly positive, continuously differentiable
function, and s is a diffeomorphism. This is the general
class of transformations for which integrability is coor-
dinate invariant [19] in the sense that, if {I}, I,, ...} are
independent integrals of motion with respect to the co-
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ordinates (x, f), then {I; o ™', I, o 6!, ...} are indepen-
dent integrals of motion with respect to (y, 7).
Transformation (5) is composed of a time reparamet-
rization followed by a space diffeomorphism. It is well
known that the Lyapunov exponents are invariant under
space diffeomorphisms [4]. Without loss of generality, we
consider only transformations of the time parameter
(x, 1) — (x, 7), where d7 = A(x)dt. All the orbits of the
phase space are invariant under this kind of transforma-
tion as the velocity field of the reparametrized flow is
parallel to the original one: dx/dT = A~ !'(x)F(x). The
Lyapunov exponents, however, may be different because
Egs. (3) and (4) become
1
hi = lim llnhlrlT#)l,
nTO'

T—00 T

(6)

and dni(7)/dr = D[AT'F](x(7) - mi(n), (D)

respectively. Incidentally, mixing, which is a property
most often observed in chaotic systems, is not invariant
under transformation (5) since it has been shown that an
adequate time reparametrization of a nonchaotic irratio-
nal flow on a 3-torus is mixing [14].

For the same initial conditions, the defining relations
of hi and h! present two different factors. The first,
associated with the time average of A, comes from the
difference between the two time parametrizations along
the same orbit and is factored out when Eq. (6) is written
as

1 ]
pi = i L]
%l

(A) =0t

where Mi(1) = ni(7(1)), 7(t) = [{ A(x(1)) dt, and (A), =
lim,—o 4 [4 A(x(1)) dt. Condition 0 < (A), < oo is a basic
requirement for the natural measure to be well defined
[17]. The second factor, due to the gradient of A, is
associated with the difference between the surfaces of
simultaneous time for each parametrization and is sepa-
rated out when M’ in Eq. (7) is parametrized in terms of ¢
rather than 7:

®)

d%’,t(t) = DF(x(1)) - 0i.(1) — [F - VI InAJx () - mi2).
(€))

The last term in this equation implies that the time
evolution of vector mi(¢) in Eq. (8) is in general different
from that of vector mi(f) in Eq. (3). But the relevant
question is: How large is this difference?

Here we show that the difference is subexponential, in
the sense that mi(¢) and M (f) grow or shrink with the
same exponential rate. This implies

1 it 1 it
1im71n|“7i( I _ limflnlntl(. iy (10)

im0t gl et gl

which in turn implies our main result (2).
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First we analyze periodic orbits, which form the most
fundamental building blocks of chaotic sets [20]. On a
periodic orbit x*, it is convenient to adopt the explicit
notation ni(x*(7), #) and ni(x*(¢), 7) for the solutions of
the variational Eqs. (4) and (9), respectively. If x* is a
fixed point, we trivially have mi(x*(¢), 1) = ni(x*(?), 1)
because the last term in Eq. (9) is zero. Now consider
that x* is a periodic orbit with least period T > 0 with
respect to t, so that x*(z + T) = x*(¢). Let hi(x*) denote
the local Lyapunov exponents for Eq. (3) on x*, and
oi(x*) = exp[hi(x*)] denote the corresponding local
Lyapunov numbers, where i=1,..., N. One of the
Lyapunov numbers, say o, is 1 because the bounded
function dx*/dt is a solution of Eq. (4), rendering zero
to the corresponding Lyapunov exponent. The same is
true for any parametrization. To study the other
Lyapunov numbers, let 77 be the hyperplane orthogonal
to F(x*(0)) at x*(0), and M:U C 7 — 7 be the first return
map on this hyperplane, defined in a neighborhood U of
x*(0). This map does not depend on the time parametri-
zation of the continuous flow, being exactly the same for
both the original and reparametrized flow. It follows from
standard results in Floquet theory [21] that the local
Lyapunov numbers o,(x*(0)) of this map, defined as
the magnitude of the eigenvalues of the Jacobian matrix
of M at x*(0), are the power T of the first N — 1 local
Lyapunov numbers of the flow, i.e., o,(x*(0)) = oi(x*)"
fori =1,..., N — 1. Geometrically, the local Lyapunov
numbers of M can be defined as of,(x*(0)) =
explhi,(x*)T], where hi,(x*) is defined through Eq. (3)
with mi(x*(¢), 1) replaced with its orthogonal compo-
nent to F(x*(z)). From the identity &},(x*) = hi(x*) then
follows hi,(x*) = lim,_, +In[|Mi(x*(2), H/|Imi(x*(0), 0)]].
The same is true for mi(x*(¢),7), so that, if
h! denotes the limit in Eq. (8), then hi,(x*) = hi(x*)
and i, (x") = lim,_, L In[ i (x*(2), 0)l/In(x*0), 0)[].
From these, it follows that Eq. (10) holds on periodic
orbits.

But the same must be valid in general because the
Lyapunov exponents of typical orbits are weighted aver-
ages over the local Lyapunov exponents of all periodic
orbits in the respective ergodic component. The weight is
the fraction of time spent by a typical orbit near the
corresponding periodic orbit and is uniquely determined
by the largest local Lyapunov exponent (assumed to be
positive). The smaller this Lyapunov exponent, the longer
it takes for the orbit to move away from that neighbor-
hood. In other words, the largest local Lyapunov expo-
nents define a natural measure, over which all the
Lyapunov exponents are computed. Since hi(x*) =
hi(x*), both the measure and the local exponents are the
same for hi and Al. Therefore Al = hi on typical orbits,
and this is equivalent to Eq. (10).

We now show that similar arguments can be extended
directly to typical orbits. Equation (4) can be written
as a map M[ni(t)] = qi(t + 8t), where ni(t + 6t) =
ni(t) + 8tDF(x(t)) - mi(z). For the natural measure to be
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normalizable, F(x(7)) and V|F(x(¢))| must not grow ex-
ponentially and F(x(¢)) must not shrink exponentially
along typical orbits. Since dx/dt is a solution of Eq. (4),
the component P(ni) of i parallel to the flow remains
parallel in each iteration, and the Lyapunov exponent in
this direction is zero. The orthogonal component Q(n) of
! is mapped into two parts, one parallel and the other
orthogonal to the flow. The parallel part is PMQ[qi(1)] =
81F - VI In|F[](x(¢)) - Q[ni(r)], where neither F(x(r))
nor VIn|F(x(7))| grows exponentially with ¢. If Al <0
(hi > 0), each of the projections P(ni) and Q(ni) must
shrink at least (grow at most) as exp(hit). But Q(n’)
cannot shrink faster (grow slower) than P(n’) because
otherwise the contribution of the orthogonal part to
Eq. (3) would be negligible, resulting in 2! = 0, which
violates the hypothesis that hi # 0. Therefore, Q(ni) ~
exp(hit) for both 2! < 0 and hl > 0. A similar relation is
valid for mi(¢) because A~ 'dx/dt is a solution of Eq. (9).
We then compare the solutions of Eq. (9) with those of
Eq. (4) for identical initial conditions. The term involving
matrix —[F - VI InA](x(#)) is parallel to the flow and does
not affect the orthogonal part in Eq. (9). The term that
contributes to the orthogonal component, DF(x(r)), is the
same as that in Eq. (4). Therefore, Q[0i(1)] = O[n.i(1)],
which again leads to Eq. (10).

An important implication of our findings is that posi-
tive Lyapunov exponents are necessarily mapped into
positive Lyapunov exponents under time reparametriza-
tions. This implies that the previous examples of non-
invariant chaos in cosmology are based on the violation of
hypotheses required for an interpretable computation of
the Lyapunov exponents. Consider, for example, the mix-
master cosmological model [6], which is believed to
describe generic cosmological singularities, and whose
relevant hypotheses can be discussed explicitly. In the
asymptotic limit (close to the big bang), the essential
features of the continuous dynamics are represented
in the Farey map, F(u) =u—1 if u =1 and F(u) =
u~!'—1 if u<1, whose Lyapunov exponent is zero.
This result is claimed to be in conflict with the corre-
sponding result for the first return map on [0, 1] (Gauss
map), G(v) = 1/v —[1/v], where [1/v] is the integer
part of 1/v, whose Lyapunov exponent is positive [2]: & =
m2/61n2. The problem here is that, different from the
first return map, the orbits of map F are typically un-
bounded. Map F can be compactified for w = (u + 1)1,
by defining H:[0, 1] — [0, 1], Hw) = w/(1 —w) if w =
1/2, and H(w) = (1 — w)/w if w > 1/2. The Lyapunov
exponent is still zero. The problem now is that the in-
variant density, p(w) = 1/w, is not normalizable and
all contributions to the Lyapunov exponent come from
points that are arbitrarily close to w = 0. Similar prob-
lems are present in the continuous dynamics since in
the usual coordinates the model is either nonautono-
mous or noncompact [6]. In addition, because the dy-
namics is limited by a cosmological singularity, the
domain of frequently used time parameters, such as the
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cosmological time and the volume of the universe, is
necessarily finite.

From the above, it appears that autonomous equations,
bounded motions, and normalizable measure are proper-
ties mutually incompatible in the mixmaster dynamics
when all the orbits are taken into account. We observe,
however, that there are invariant bounded subsets of orbits
in map F as well as invariant subsets with normalizable
measure in map H which do have positive Lyapunov
exponents. For example, map H has a nontrivial set of
invariant orbits embedded in the interval [a, (1 + )],
for every o € (0, 1/3], which has normalizable measure.
The invariant set is composed of all the orbits that never
leave this interval and as such contains a countable num-
ber of periodic orbits and an uncountable number of
nonperiodic orbits. The Lyapunov exponent of the invari-
ant set, as computed along typical nonperiodic orbits,
satisfies & = 21In(1 + «). Since map H corresponds to
the asymptotic behavior of one parametrization of the
continuous mixmaster model, an invariant set of map H
must correspond to an invariant set of the asymptotic
dynamics for this particular parametrization, which
therefore satisfies conditions (i)—(iv) and has a positive
Lyapunov exponent. It follows then from our main result
(2) that these asymptotically invariant sets must have
positive Lyapunov exponents for any space-time repara-
metrization of the continuous dynamics that preserves
these conditions on them. These invariant sets are there-
fore chaotic with respect to any coordinate system for
which the Lyapunov exponents can be properly computed.
In this sense, one can meaningfully say that the mix-
master cosmology exhibits coordinate independent cha-
otic behavior close to the big bang.

In summary, we have uncovered the transformation
laws of the Lyapunov exponents for flows under space-
time reparametrizations. Strikingly, systems exhibiting
exponential separation of nearby orbits with respect to
one choice of the time parameter will display exponential
divergence with respect to any other time parameter that
preserves conditions (i)—(iv). This implies that chaos is
invariant under time reparametrizations, which is in
sharp contrast with previous results in relativistic cosmol-
ogy, where the apparent noninvariance of chaos has
been the subject of an intensive debate. Our findings
thus shed new light on the conceptual problem of chaos
in cosmology [22].
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