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The Lagrangian density for the regularized-long-wave equation (also known as the BBM equation) is presented. Using the 
trial function technique, ordinary differential equations that describe the time dependence of the position of the peaks, 
amplitudes, and widths for the collision of two solitary waves are obtained. These equations are analyzed in the Born and 
“equal-width” approximations and compared with numerical results obtained by direct integration utilizing the split-step fast 
Fourier-transform method. The computations show that collisions are inelastic and that production of solitary waves may 
occur 

1. Introduction 

The regularized-long-wave (RLW) equation was 
first obtained by Peregrine [l] to describe the 
development of an undular bore; i.e, a smooth 
solitary wave that is observed to propagate in 
shallow water channels. Since then, the RLW 
equation has been used as a one-dimensional model 
for drift waves in plasmas [2]. It is also ap- 
propriate to describe Rossby waves in geophysics. 

Benjamin et al. [3] proposed the RLW equation 
as a numerically superior modification of the 
Korteweg-deVries (KdV) equation. This superior- 
ity arises because, unlike the KdV equation, the 
dispersion relation associated with the linearized 
RLW equation yields a frequency that is bounded 
for large wavenumbers. (It has been noted [4] that 
this numerical advantage is obtained at the ex- 
pense of precision in the asymptotics.) In spite of 
this numerical advantage, the RLW equation is 
not integrable by the inverse scattering transform, 
and inelasticity has been observed in computations 
of solitary wave collisions [2, 51. Also, it is known 
to possess only a finite number of polynomial 
conservation laws [6, 71. 

*Also Department of Physics, 

In this paper we present detailed analyses of the 
scattering of solitary waves of the RLW equation. 
Since the RLW equation is not integrable, we do 
not have exact methods at our disposal. Instead, 
we must develop approximate analytical tech- 
niques and numerical methods. 

Our approximate analytical techniques are based 
on the field Lagrangian, from which the RLW 
equation is obtained by variation. The Lagrangian 
approach provides a natural basis for interpreta- 
tion and analysis. For example, straightforward 
application of Noether’s theorem (in section 2) 
yields the conserved quantities that correspond to 
the mass, momentum, and energy of the field. 
Insertion of the solitary wave solution into the 
Lagrangian (in section 3) allows us to assign mass, 
momentum, and energy to solitary waves. As in 
Hamiltonian mechanics, the solitary wave speed is 
given by the derivative of the energy with respect 
to momentum. Knowledge of these invariants also 
provides rigorous information concerning the out- 
come of collisions of solitary waves. 

For a detailed analysis of solitary-wave colli- 
sions, we use a trial function or Rayleigh-Ritz 
method [8] (in section 4). The simplest trial func- 
tion corresponds to a sum of two solitary-wave 
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solutions, where all of the parameters describing 
the solitary waves are allowed to vary in time. 
Variation of the Lagrangian with respect to these 
parameters yields six first-order ordinary differen- 
tial equations that describe the collision. 

if any, are due to the use of the asymptotic solitary 
wave solutions as trial functions for the RLW 
equation, or to some more basic assumption of the 
trial function method. 

As expected, this perturbation technique de- 
scribes the collision only when the actual solution 
has a form not too different from the trial func- 
tion. Some improvement might be obtained by 
allowing the parameters to depend slowly on space 
or adding more variational parameters. As we will 
see below however, when the trial function method 
fails, it fails catastrophically, and this could hardly 
be remedied by the addition of a slow spatial 
modulation. 

To check our analytic results, we numerically 
integrate the partial differential equations in sec- 
tion 6. The trial function method, when applied to 
collisions of solitary waves moving in the same 
direction, is in excellent agreement with the com- 
pletely numerical solution. Unfortunately, accu- 
rate results are not obtained for collisions of 
oppositely-directed solitary waves. 

The ordinary differential equations describing 
the collision can be solved using the Born ap- 
proximation of particle scattering theory. Unfor- 
tunately the agreement of this approximate 
solution with subsequent numerical calculations is 
not good, even when the relative speeds are large, 
where good agreement is obtained in ordinary 
classical particle scattering. The reason can be 
traced to the nature of the interaction potential. 
For ordinary particle collisions, the potential is 
fixed, and so it becomes relatively less important 
as the center of mass energy is increased. In con- 
trast, the interaction potential for solitary waves 
increases with increasing speed. Hence, there is no 
regime in which the interaction potential is rela- 
tively small. 

Part of this inaccuracy is due to the gross inelas- 
ticity observed in low to medium energy collisions. 
The numerical solutions show that for a certain 
region of the parameter space of scattering, two 
additional solitary waves can be produced in the 
collision. It is interesting that the Born approxima- 
tion predicts a peak in the phase shift in this 
region of parameter space. 

However, even when the energies are large but 
oppositely directed, in which case the collisions are 
nearly elastic, the trial function method does not 
give accurate predictions for the outcome of the 
scattering. We therefore conclude that the trial 
function introduced in section 4 provides an inad- 
equate representation of the colliding solitary 
waves. Thus, more complicated trial functions are 
needed to describe the interaction of forward and 
backward solitary waves. 

This limitation of the Born approximation 
motivates us to develop an alternate, high-energy 
approximation based on the use of the high-energy 
asymptotic formulas for the solitary-wave parame- 
ters. For example, the width of the solitary wave 
asymptotes to a constant in the high-energy limit, 
This approximation allows us to solve our set of 
differential equations by quadratures. 

2. Field Lagrangian 

The RLW equation is [2] 

Further, this approximation motivates us to de- for a field +(x, t). In the fluid problem $I is related 
rive (in section 5) an equation for which the high- to the negative of the vertical displacement of the 
energy solitary wave relations of the RLW water surface, while in the plasma application C#I is 
equation are rigorously valid at all energies. With the electrostatic potential. A variational form is 
this equation, we can compare three separate solu- obtained by analogy with the KdV equation by 
tions to determine whether observed inaccuracies, representing 9 in terms of a “potential”, $; i.e., 
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$ = 4,. The action is written as a functional of 4, 

A[#1 =I.= dtL[J/, #,I 

=,Lm / O” dt dxzEP(#,, 1Clr, G,,, Ir/,& (2) 
-CG --m 

where the Lagrangian density is 

Variation of eq. (2) yields 

from which solutions to the RLW equation are 
seen to be extremal functions for eq. (2). 

Constants of the motion may be obtained from 
the Lagrangian by straightforward application of 
Noether’s theorem [8]. Form invariance of the 
Lagrangian for a shift of rc/, L($, I/J,) = L(J, + 
E, $,), shows that the mass, 

(4 

is an invariant of the motion. Similarly, form 
invariance of the Lagrangian with respect to space 
and time translation, shows that the momentum, 

3. Solitary waves 

The RLW equation is known to have solitary 
wave solutions of the form 

&w>=~s(A,kx-0) 
=A(t)sech’{k(t)[x-8(t)]}. (7) 

The relation between the constants A, k and the 
speed, 8, is easily obtained by direct substitution 
of eq. (7) into eq. (1). As an introductory example 
of the trial function method, we demonstrate how 
this solution follows from insertion of & into the 
Lagrangian and variation with respect to general 
functional dependences of A, k, and 8 on time. 
Insertion of eq. (7) into eq. (2) and performing the 
spatial integrations yields 

which gives the equations of motion 

B(=$-$)+(-$+$$)=o. 
4A+16Ak + -4A 

-1 i- 3k 15 3k 

(8) 

(94 

(9b) 

(9c) 

These equations can be used to derive unique 
relations among the soliton parameters, 

12k2 A _ 

4k2-1’ 

c=&=(l-4k2)-‘, (11) 
and energy 

+~-L)=fjdx(+2-++3). (6) 
f 

are invariants, respectively. These are the only 
polynomial constants of the motion [6, 71. 

where A, k and c are constant. 
Eqs. (10) and (11) can be solved to find the 

solitary wave amplitude and width in terms of its 
speed, 

k = +(I - c-1)1/2, (12a) 

A = 3(1 - c). (12b) 
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kz 

Fig. 1. The function k2(c) as given by eq. (13). Bounded 
solutions of RLW have k2 > 0. 

Fig. 1 displays the relation of eq. (12a). Two 
branches are observed. For c > 1, A is negative. 
These solitary waves resemble the single soliton 
solution to the KdV equation (particularly when c 
is slightly larger than unity). It is this branch that 
models the undular bore (note that A is the nega- 
tive of the fluid displacement). The other branch 
occurs for c < 0, for which A is positive. This 
branch is not applicable to the surface waves but is 
relevant in plasma physics (see ref. 2). For 0 < c < 
1, k is imaginary, hence the solutions are un- 
bounded (and undesirable). 

Substitution of eq. (7) into the expressions in 
eqs. (4)-(6) for mass, momentum, and energy yields 

2A2 
P-B(cp,)=~ 

2A2 
H=C(q+)=x 

(13b) 

(134 

In fig. 2 we plot these invariants as functions of 
the solitary wave speed. Observe the momentum 
threshold necessary for the existence of solutions 
with negative speed. 

Comparing eqs. (13) and (8), we obtain 

L(A,k$)=bP-H. (14) L(P,d)=dP-H(P), (15) 

60 

I I 

I 1 

-1.0 0 1.0 2.0 3.0 
C 

Fig. 2. Mass, momentum, and energy of the solitary wave 
solution to RLW from eq. (14). 

If we assume from the outset the relationship eq. 
(10) between k and A, then eq. (14) becomes 
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which is clearly seen to be the variational principle 
that produces Hamilton’s equations with 0 canoni- 
cally conjugate to P. In this case 8 is ignorable. 
Note that the derivative of the energy with respect 
to the momentum gives the speed of the solitary 
wave. 

4. Solitary wave collisions 

To analyze solitary wave collisions with the trial 
function method, we must choose a suitable trial 
function. The trial function must reduce to the 
linear superposition of separated solitary waves at 
large positive and negative times, yet it must allow 
the solitary waves to interact when they are close. 
The linear superposition of the two solitary waves, 

with 

Gi=+~(Aj>ki,x-e~)> 07) 

satisfies these criteria. This form can only work 
when the collision is nearly elastic, since it ignores 
production of radiation or solitons. We will see 
that this is valid in some parameter regimes, but 
fails in others. 

Substitution of eq. (16) into eq. (2) yields 

L=L,(A,,k,,8,)+L,(A,,k2,82) 

+L&+, k,, A,, k,,O, - @2; 

&42,k,~2,4,4)~ 

where 

08) 

L,=p$,- Hi, (19) 

P, =~[~,I> cm 
Hi(Pi,ki)E&‘[Gr]* (21) 

It no longer follows that the individual momenta 
and energies are conserved. However, the interac- 
tion Lagrangian, L,,, is a function of the dif- 
ference between 8i and r9, (by translational 

90 - 

x 

Fig. 3. Trajectories of the peaks of two solitary waves for 
RLW. For several units of time the peak corresponding to cz 
vanishes. This collision is nearly elastic. 

invariance) and vanishes as (19, - f?,( -+ 00. Thus, in 
this limit, the solitary waves obey the free equa- 
tions of motion. The only effect of the collision is a 
phase shift, AO,, which represents the difference 
between the actual 8 and its free value 

(22) 

An example of the trajectories of the solitary wave 
peaks for an actual collision and resulting phase 
shifts (see section 5) are shown on fig. 3. 

The phase shifts may be calculated by solving 
the equations of motion resulting from eq. (18). As 
these are complicated, we resort to approximation. 

4.1. Born approximation 

If we eliminate Ai in lieu of p, in eq. (18) then 
the equations of motion take the form 

a% a=%2 d a&2 (j-__=__ - 

apI ah +& ap1 3 

6 d G2 
&=ae,--- 

dt ad, ’ 

d ah a4 _ ah 
ak, ak, dt aic, ’ 

(23) 

and similarly for i = 2. The phase shift is obtained 
by integrating over the deviation due to the inter- 
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action term, 

(24) 

To lowest order, assuming the interaction is small, 
eq. (24) is evaluated by integrating along unper- 
turbed trajectories, 

-40+(c1-c2)tlr (25) 

where f310 is the peak position at t = 0. Changing 
variables, eq. (25) becomes 

(26) 
The interaction Lagrangian is 

L,, = - /_mm dx (@i&l + @ix&r 

+ @1$2 - f+,& - M+,). (27) 

With eq. (27) we see that the form of the double 
integral in eq. (26) is particularly easy to evaluate. 
For example, consider the evaluation of the second 
term, 

Upon interchanging the order of integration, we 
find that this term vanishes. Similarly, the first 
term vanishes. Integration of the remaining terms 
gives 

&A, AlA, - L,,dy=4kk-- k,k, (A, + Az)* t28) 
1 2 

Using eq. (28) in eq. (26), we obtain by implicit 
differentiation 

Af3, = 
A,(6 - A, - 2A,) 

2A,(c, - c2)k2(l + 4k;/5) ’ 
(29) 

The formula for A0, is obtained by interchanging 
1 and 2. 

In spite of the simplicity of the Born approxi- 
mation, one cannot rely on it too heavily. The 
reason is the breakdown of the approximation 
made in using the unperturbed trajectories. During 
the interaction, the velocity of the first solution 
varies from its noninteracting value by a quantity 
of order AC, = Ae,/At, where At = (k;’ + 

k;‘)/lc, - c21 is th e interaction time. The Born 

approximation requires AC, +z ci, or 

4(Cl - c2) 

q(k,‘+ k;l) 
-K 1. 

A similar condition for the second soliton is ob- 
tained by interchanging indices, 1 ti 2. Use of eq. 
(29) reduces this inequality to 

A2(6-A2-4) 

2A,c,(l+ k,/k,)(l + 4k;/5) -=K ‘* 

This condition and its companion obtained by 
interchanging the indices are marginally satisfied 
in some regimes, but well-satisfied nowhere. Thus, 
we can expect at most only qualitative agreement 
between the Born approximation and numerically 
obtained results. 

4.2. Large amplitude approximation 

The Born approximation fails over much of the 
collision parameter space, because the predicted 
phase shifts are large and the trajectories strongly 
perturbed. However, direct calculation of the 
trajectories is difficult due to the complicated form 
of the interaction potential in the Lagrangian. This 
potential can be greatly simplified by considering 
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collisions of large amplitude (velocity) solitary 
waves for which the widths, from eq. (12a), are 
nearly equal. As seen in fig. 1, when k = 4 f E, 
(E << 1) the speed is large and negative (positive). 

To utilize this approximation, we set k, = l/2 + 
3/4a, with ((1~1 B 1 and enforce the A(k) relation- 
ship, eq. (10). The amplitude is given by A, = a, + 
O(1) and the leading order terms in L will be 
0( u,‘). 

Due to the widths of the two solitary waves 
being almost equal, the Lagrangian can be ob- 
tained in terms of a single integral 

Z(y) = (” sech2z tanh(z -y)dz 

(30) 

where y = (19, - ZI,)/2. Scaling L by a factor of 
8/5, we obtain from eqs. (18) and (27) 

iL= jy j%(t)-H(z), (31) 
i=l 

where 

(32) 

H(Z) = (2/3)~~(~~ + u2)J'(y) 

-(2/9)(~: +a:); (33) 

J(y)=& -4+-$ Z(y). 
( I 

For reference, we note that J is an odd function 
with asymptotes J( f co) = T 5/4, and J(y) = -y 

+ 4y3/21 - 4y5/105 + 0( y’). 
The Lagrangian has been written in standard 

form so that the equations of motion become 

aH 
P-i==, (35) 

where D is the antisymmetric two-form. To solve 
eq. (35), we must invert 52, obtaining the compo- 
nents of the cosymplectic form J= 0-l. This re- 
quires nondegenerate 9. The determinant is 

det 0 = 16u2u2F2 12 ) 

F= 1 + JJ” - J’2. 
(36) 

The function F has asymptotes F( * co) = 1 and 
F(y) = 40y4/147 + 0(y6). Thus, we see that det 
D vanishes only at y = 0. 

Since s1 is a closed, nondegenerate two-form, it 
is possible (Darboux’s theorem) to transform the 
equations of motion into canonical form with H 

being the Hamiltonian. This system then has two 
degrees of freedom. Furthermore, the system is 
completely integrable, since mass and momentum 
as well as energy are conserved. These conserved 
quantities may be obtained by evaluating eqs. 
(5)-(7) with the trial function, giving 

m = +(a, + u2) = aJQ#Q + $21, 
p = u; + u; - 2u,u,.Z’= (5/8)9[& + +2], (37) 

h = (5/8)+#~ + $21 +O(a2>. 

While canonical coordinates do not appear espe- 
cially useful, it is convenient to transform to coor- 
dinates that include the conserved quantities m 

and p. Thus, we define z = (y, m, R, p) with y = 
(e, - 8,)/2 and R = (0, + 0,)/2. The cosymp- 
lectic form transforms as 
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and becomes 

ala2F 

X 

0 (al-a,): -f 0 

-(a, -a,): 0 rnz 0 

J 
G 2 -m- 4 0 -a,a,F 

0 0 a,a,F 0 

where G = 1 + J’, and the Hamiltonian is 

h(.T)=$m3-+mp. 

(38) 

(39) 

The equations of motion t = j* (13/z/Z,) are, be- 
sides ti=p=O, 

p = _ i y (Gm2 - ayay)1’2 

and 

(41) 

where ara? = (4m2 -p)/2 is the product of the 
amplitudes when 1 y 1 = co. Note that eq. (40) is an 
autonomous first-order differential equation. 
Hence, its solution can be written in terms of 
integrals. 

These equations predict quite different evolution 
depending on the sign of ayay. For aya? > 0, 
there is a distance of closest approach, yti, such 
that G( yti) = aTaT/m2 where the square root in 
eq. (40) vanishes. In the neighborhood of this 
minimum y -y,, a (t - tc)2, where t, is the colli- 
sion time. These collisions are “exchange” colli- 
sions: since j( - co) = -j(cc), the solitary waves 
exchange identities at y&. 

By contrast, when a?ay < 0, the square root in 
eq. (40) is always nonzero and y continues to 
decrease. Near y = 0 we can expand the functions 

G and F to obtain 

j= -$h(-aqa;“)‘/‘+O(y), 

which has the solution y a It, - till2 where, as 
before, t, is the collision time. In these collisions, 
the solitary waves maintain their identities. 

Anticipating the results of the numerical experi- 
ments, we remark that agreement between the trial 
function equations and the actual partial differen- 
tial equation is expected to be better for the ex- 
change collisions since the relative forces are 
smaller when y > y,,,,. 

5. The equal width equation 

The results of the previous section involve two 
approximations: that due to the trial function 
method and the simplifications made in order to 
handle the interaction Lagrangian. In the second 
such simplification, the large amplitude approxi- 
mation, terms of order a,’ were neglected. Hence, 
it is clear that eqs. (40) and (41) could be obtained 
if from the outset we began with the Lagrangian 
density 

z= *( 3#1- 1cI,#, - +X&X,). (42) 

Eqs. (40) and (41) involve only the trial function 
approximation, for the equation obtained by vari- 
ation using eq. (42). 

The equation thus obtained is 

& - +cX, - $$ = 0. (43) 

The equation might be called the equal-width 
equation (EWE) since it possesses solitary wave 
solutions of the form of eq. (7), but with 

k=+, A= -3~. (44) 

Note that there exist solutions for all values of c, 
even in the range 0 -C c < 1. 

Like the RLW equation, the EWE possesses 
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only three polynomial conservation laws [6]. These 
may be obtained by realizing that the EWE trans- 
forms into the RLW under 

+EWE++RLW - 1. (45) 

Transforming the three RLW constants by the 
inverse of eq. (45) yields the three independent 
EWE constants 

Jdk=+Jm +,t)dx, 
--cc 

9’=+Jffi (+*+$;)dx, 
-Cc 

b= -1”: (+3/6)dx. 
--x 

We observe in section 6 that the numerical 
solutions of the EWE do not possess a radiation 
field component. This may be related to the fact 
that the Fourier transform of the linearized EWE 
is equivalent to ~(1 + k2) = 0 and does not pro- 
vide any relation between frequency and wave- 
number. Furthermore, the solutions of the EWE 
cannot be simply obtained from those of the RLW 
equation through eq. (45), since the boundary con- 
ditions in the two cases are different. 

6. Numerical computations 

Numerical solution of the EWE and RLW equa- 
tion is accomplished by a split-step fast Fourier- 
transform method [lo]. The linear dispersion is 
solved exactly in Fourier space and the nonlinear 
terms are advanced by the Lax-Wendorff scheme 
[ll]. Typical computations use 211 grid points and 
a time step of 0.002. Accuracy has been checked 
by doubling the number of grid points and halving 
the time step. Except in the few cases noted below, 
this makes no observable change. 

The primary error in this algorithm is a slow 
secular drift of the solitary wave speed (and ampli- 
tude). In computations involving a single solitary 
wave, the speed changes by about one percent over 

At = 40. This secularity has an important effect on 
phase shift computations. 

The phase shifts resulting from a collision are 
computed from eq. (22). Recall that the variable 
e,(t) is the position of the peak of the solitary 
wave. In order to account for the secular change in 
the speed, we add a constant acceleration term to 
eq. (22). This effectively replaces the speed by its 
average; thus 

A@,=d,(t)-$[c,(t)+ci(0)]t-0,(O), t>t,, 

(46) 

which t, is the collision time. 
Another difficulty in the computation of phase 

shifts arises from the intrinsic inelasticity of the 
collisions. In a typical collision, some of the 
momentum is lost to radiation. (We use momen- 
tum as a measure of inelasticity because it is 
positive definite.) Thus, the out-going velocities 
differ from in-going ones. The use of eq. (46) 
effectively assumes that this radiation is lost at a 
constant rate. In any case, we estimate the error in 
d13 as that being due to the change in speed. 

6.1. RL W collisions 

We will consider two types of collisions: be- 
tween two positive velocity or KdV branch solitary 
waves and between one positive and one negative 
velocity solitary wave. Most previous studies [5, 
121 considered only the first case. Such collisions 
are nearly elastic and even led researchers to pos- 
tulate the integrability of the RLW equation. Non- 
integrability was first observed by Abdullov et al. 
[5] in a collision with ci = 1.5 and c2 = 3.0 where 
radiation with an amplitude of about 0.3% of the 
solitary wave is produced. Subsequently a careful 
numerical study by Bona et al. [5] confirmed the 
radiation production showing that it seems to peak 
when the smaller solitary wave has about half the 
amplitude of the larger. Bona et al. observed that 
the smaller solitary wave loses amplitude while the 
larger gains amplitude. We have observed the same 
phenomena, though we use about a factor of seven 
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fewer grid points making an accurate calculation 
of this small inelasticity impossible. 

More dramatic inelasticity is observed in head- 
on collisions of RLW solitary waves. Creation of 
solitary waves in pairs was observed by Santarelli 
[13], and confirmed by Courtenay Lewis and Tjon 

1141. 
In fig. 4, we display the (c,, cz) phase space of 

two solitary wave collisions for the RLW equation. 
Since this diagram is symmetric under c2 e cl, we 
need only consider the region above the dashed 

line, ct = cz. The speckled region, where both 
speeds are nearly equal to one, is well approxi- 
mated by the KdV equation. Here the collision is 
nearly elastic. In fact, for all of our computations 
with both speeds positive, the inelasticity is dif- 
ficult to detect. 

Computations with cz < 0, where four solitary 
waves emerge from the initial two, are indicated 
by the symbol “ + ” on fig. 4. An example of such 
a collision is shown in fig. 5. The four solitary 
pulses, as well as a localized pulse of radiation, are 
evident at t = 40. The trajectories of the peaks are 
shown in fig. 6, and labelled with the measured 
speeds. In all cases, the produced solitary waves 
come in positive-negative pairs, in this case with 
c = 1.32 and -0.37. The shaded region in fig. 6 
represents the zone occupied by the radiation. The 
edges of this zone propagate at roughly the maxi- 

Fig. 4. Collision phase space for RLW. Speeds 0 < c < 1 are 
omitted from the graph. Computations are marked by circles 
when only two solitary waves and radiation are emitted. The 
plus represents cases for which four solitary waves and radia- 
tion are emitted. 

mum and minimum linear group velocities. 
Courtenay Lewis and Tjon [14] have observed 
cases where more than one pair is produced, and 
even where both initial solitary waves are de- 
stroyed. 

Collisions of positive and negative pulses are 
characterized by the appearance of sharp gradi- 
ents. For the example of fig. 5, the wavenumber 
spectrum at the most violent point (t = 9.6) peaks 
at k = 2.3 with a full width of 3.5; modes with 
k > 14 have amplitudes less than three percent of 
the peak. The integrator keeps modes with k I 55 
and hence, has no problem resolving this collision. 

The shaded region in fig. 4 labelled “4s” is a 
sketch of the phase space for which production of 
four solitary waves is observed. If we assume that 
the emergent solitary waves must come in 
positive-negative pairs, then conservation of 
momentum allows an estimate of the lower 
boundary of the 4s region: the total initial 
momentum must be great enough to accommodate 
the production of two negative speed solitary 
waves. Since there is a momentum threshold for 
c < 0 we have 

P(cl) +P(cZ) > 2P,,= 28. 

The actual threshold seems to be about twice this 
value (one should, in addition, consider the other 
two conservation laws). 

The region labelled “3s” in fig. 4 is the region 
for which three solitary waves may be emitted. 
This region is obtained from the conservation laws, 
requiring that the energy, momentum and mass of 
the three out-going solitary waves equal that of the 
two in-going waves. These three equations have 
nontrivial solutions for the three velocities (i.e., 
not replicating the incident speeds) only when one 
of the initial velocities is in the region - 0.096 < c2 
< 0, the bifurcation point occurring at aP/&, = 
0. The third solitary wave must have positive speed. 

Several computations in the “3s” region have 
not conclusively demonstrated the creation of the 
third solitary wave. A clear tendency for the crea- 
tion of a small negative amplitude pulse is seen; 
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Fig. 5. RLW collision with c1 = 2.5 and c2 = - 1.5 showing 
four solitary waves and radiation in the final state. 

however, a considerable amount of radiation is 
also generated. Computations with solitary waves 
of very small negative speeds are difficult, since the 
width goes to zero with c. 

0 40 60 80 
x 

Fig. 6. Trajectories of the peaks for the collision of fig. 5 

Finally, the phase shift calculations of section 4 
are compared with numerical computations in fig. 
7. Here, the points represent the numerical values 
of Ad computed according to eq. (46) for c1 = 1.5 
as a function of c2. The error bars are obtained 
by using either the initial or final speeds in the 
computation of A& thus giving some measure of 
the inelasticity. A better indication is the upper 
graph which shows a plot of the momentum lost 
by the solitary waves (and hence gained by the 
radiation) during the collision [14]. Errors in the 
computation give AP = 3%. A large peak in AP 

near c2 = -0.8 corresponds also to a peak in both 
the phase shifts. From fig. 4, it is seen that this 
phase shift peak corresponds to being near the 4s 
production threshoId. Thus, the phase shift peak is 
a kind of resonance effect where two new solitary 
waves are almost created. An example of a colli- 
sion in this region is shown in fig. 8. 

The curves in fig. 7 are computed using the trial 
function techniques of section 4. For c2 < 0, the 
displayed curves are given by eq. (29) from the 
Born approximation. These curves at most qualita- 
tively follow the computed points. It is interesting, 
however, that the Born approximation for A& 
shows a peak at c2 = -0.8, in agreement with the 
computations. For cZ > 0, the Born approximation 
values for A@ are too large to fit on the graph. As 
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20 4.0 

Fig. 7. RLW phase shifts and inelasticity as a function of c2 
for c1 = 1.5, AB, is represented by circles and solid curves, and 
AI?, by triangles and dashed curves. The curves for c2 < 0 are 
from eq. (29), while for c2 > 0 we use eq. (40)-(41). 

discussed, the failure of the Born approximation is 
due to the relatively large perturbations in the 
trajectories. The interaction Lagrangian is not 
small, as assumed in the approximation. 

The curves shown in fig. 7 (for c2 > 0) are 
computed using the large amplitude approxima- 
tion of section 4.2. The agreement is quantitative. 
This will be discussed further in the next subsec- 
tion. 

6.2. EWE collisions 

The large amplitude trial function approxima- 
tion should work best for the EWE, since here the 
single solitary wave is exact. Fig. 9 shows the 
phase shifts computed for the EWE collisions as 
compared with eqs. (40) and (41). The agreement 
is very good for c2 > 0 and extremely poor for 
cZ -C 0. Note that the phase shift goes to infinity 
logarithmically near cZ = ci. 

As noted, collisions with ala2 > 0 are exchange 
collisions, with the solitary distance always larger 
than yti. An example is shown in fig. 10. Here, 
the points are from the numerical experiment and 
the curves are trajectories obtained from eqs. (40) 
and (41). Though the comparison is difficult near 

1”““““’ t=o.o 

t, ,/ I1 ” 

0 20 x 40 60 

Fig. 8. RLW collision with c1 = 1.5 and c2 = -0.5 showing 
large amount of radiation. 

the center of the collision because of distortion of 
the waveforms, the phase shift obtained is nearly 
exact. 

When u1u2 < 0, the collision is much more vio- 
lent, as exemplified by the large distortions of 
waveforms in figs. 5 and 8. The trial function 
equations attempt to mimic this by having y -+ 0, 
but apparently eq. (17) is not general enough. In 
fig. 11 we see that the trial function trajectories 
only poorly approximate the actual solution. In 
particular, the sign of the phase shift is incorrect. 

The EWE phase shift exhibits a resonance near 
c2 = - ci = - 1.5. This collision is unusual in that 
cp(x, c) = -+(x, -c) for the EWE and, hence, the 
total mass and energy are zero. Indeed, in this 
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Fig. 9. Phase shifts for EWE with ci = 1.5. Circles and solid 

lines represent de,, while triangles and dashed lines represent 

de,. The curves are obtained from eqs. (40) and (41). 
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collision it is possible that six or more solitary 
waves are created. The computation shows that a 
narrow spike is formed at the collision center and 
two trains of solitary waves are emitted. Each 
successive solitary wave has smaller amplitude. At 
t - I, = 50, there are six peaks which are still not 
separated enough to determine their asymptotic 
velocities, and it appears that more solitary waves 
will be created. 
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