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A quotientof the Lorenzdynamicalsystemis constructed.This“proto-Lorenz” systemhas theLorenz systemas a double
covering,andthedoublecoveringexplainsthetwo-earednatureof thestrangeattractorfor theLorenzsystem.Arbitrarycoverings
oftheproto-Lorenzsystemarepossible,leadingto n-earedstrangeattractors.

1. TheLorenz equationsand their order two symmetry

Fix parametersa, r, and b. The systemof ODEsgiven by

i=oy—crx, 3’=rx—y—xz, ~=xy—bz (1.1)

is the Lorenzsystem,introducedby Lorenz in ref. [1]. It is useful to think of this systemasa vectorfield on
X=l~3,with coordinates(x, y, z).

The ordertwo symmetryin the Lorenz systemis the symmetryaboutthe z-axis.Specifically, the Lorenz
systemis invariantunderthe involution ssending(x, y, z) to (—x, —y, z). Notethat two points (x

1,y~,z1)
and(x2, Y2, z2) are in the sameorbit of this involution s if andonly if z1 =z2 and (x1, J’i) = ±(x2, y2).

2. Theorbit spaceof the involution

Let Y=R
3, with coordinates(u, v, z).Definea mapn: X—~Yby ir(x, y, z) = (x2—y2,2xy, z) or,equivalently,

by setting

u=x2—y2, v=2xy, z=z. (2.1)

Theorem2.2.
(1) The map ir: X—~Yis onto.
(2) The map jr is a quotientmap for the involution. In otherwords,
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it(x1,y1,z1)=ir(x2,v2,z2)

and a subsetof Y is openif andonly if its inverseimagein X is open.Thus the spaceY is an orbit spacefor
the involution on X, andits naturaltopology (asER

3) is the identificationtopology for the map it.

(3) Away from the z-axis, it is a local diffeomorphism: the Jacobianof it is non-singularat any (x, v, z)
with (x, v)~(0,0).

Proof Fix a triple (u, i’, z) in Y=P3. Supposefirst that v~0;then anypre-image(x, y, z) of (u, v, z) under
it must havex and y non-zero,so that y=v/2x. Solving the_quadraticequationx2—v2=u, we find that
4x4—4ux2—v2= 0, sothat x2= ~(u ±~/~72). Sincev~0, .,Ju2+ v2 is strictly largerthanu in absolutevalue;
thusthe only solution to this equationis x2 = ~(u + V/~2). This hasexactlytwo non-zerosolutionsx

1 and
x2, with x2= —x1 the equationfor v then gives the two correspondingsolutionsYi =z’/2x1 andy2=v/2x2,so
that also .v2= —v1.

Supposenow that v=0; this forceseitherx or v to be zero, andwhich one is determinedby the signof U:

if u>0 then y=0 andx= ±~/i~,and if u<0 thenx=0 andy= ~
Thesecomputationsprove both the first statement,and the statedcriterion for when it(x1, Yi~ )=

it(x2, .v2, z~).To seethat it is a quotientmap,it sufficesto checkthat it is an openmap,that is, it takesopen
setsto opensets (seeref. [2], section2.11). Notethat it can be thoughtofasthe productofaself-mapof ER

2
with theidentity (on the third coordinate);sincea productof openmapsis open,and theidentity is certainly
anopenmap,it sufficestoshow that this map on P2 (sending(x, y) to (x2—y2,2xv)) isopen.Usingcomplex
coordinatesz=x+iy, this is simply the mapsendingz to :2; sinceany analyticmap is open,we are done.

To checkthe third statement,simply computethe Jacobianof it at a point (x, v. z); we obtain the matrix

/2x —2v 0

12y 2x 0
\~O 0 1

which hasnon-zerodeterminantaway from the locus x=y= 0. ~

3. The proto-Lorenzsystemon the orbit space

Away from the z-axes,thereis a 1—1 correspondencebetweenvector fields on theorbit spaceY andvector
fields on X which are invariantunder theinvolution. Since the Lorenz system(1.1) on X is invariantunder
theinvolution, it descendsto a vectorfield .~°on thequotientY, atleastawayfrom the:-axes.I.e., if we denote
by U the vectorfield on X, thenthe map it satisfiesits=it and thereforethe inducedvectorfield .~°=Dit(U)
on Y given by ~°(it(x))=Dit(x)U(x) is well-defined.Ournext task is to write down this vectorfield .~on
Y.

It is useful to note that anyquadraticmonomialin x andy can be written in termsof thevariablesu and
v. To seethis, let N denotethe norm of the (u, v)-vector, pT\,/~ 2v2+t’2 Then

x2=~(u+N), xy=~v. v2=1(—u+N)

For the vectorfield .~ on Y, we have

i~=2xi—2yj~’=2x(av—ax)—2y(rx—y—xz)=—2ax2+2y2+2(a—r)xv+2xv~

= —cr(u+N)—u+N+(a—r)v+vz,

i~=2y~+2xj)=2y(czv—ax)+2x(rx—y—xz)=2rx2+2ay2—2(c+1 )xy—2x2z

=r(u+N)+cz( — u+N)— (a+ 1 )v— (u+N)z.
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Re-writing this a bit we seethat thedescendedvectorfield .r~°on the orbit spaceY canbe written as

ü= (—a—l)u+ (a—r)v+ (1 —a)N+vz, v= (r—a)u—(a+ l)v+ (r+a)N—uz—Nz,

~=~v—bz. (3.1)

We call this descended vector field .~f theproto-Lorenzsystemon Y 1R3. Note thatalthoughthe map it is ra-
mified alongthe z-axisin X, so that thereis no a priori knowledgeabout2’ on the imageof thez-axis (which
is the z-axisagain on Y), the proto-Lorenzsystem2’ is in facta continuousvectorfield on all of Y. It is not,
however,differentiable,becauseof the presenceof the norm N in the formulae; it is differentiable away from
the z-axis, of course.

4. The dynamics of the proto-Lorenz system 2’

Figures1 and2 showphasespaceprojectionsoftheoriginalLorenzandtheproto-Lorenzat r= 28.0;a= 10.0;
b = ~, within the strange attractor regime. The two flows are related by the transformation

u—x2—y2, v=2xy, z=z,

taking the dynamicsof the original Lorenz (x, y, z) to the proto-Lorenz(u, v, z).
The original Lorenz hasa well studiedbifurcationsequenceleadingto the strangeattractorat r= 28 (see,

for example,refs. [3,4]). For a= 10.0; b=~and r< 1 the origin is a hyperbolic sink and the only attractor. At
r= 1 theorigin becomesunstablein onedirectionandsimultaneouslytwo newattractingfixed pointsareborn:
a pitchforkbifurcation. The origin is a saddlepoint witha one-dimensionalunstablemanifoldfor all r> 1. At
r~24.74the newtwo fixed pointsundergoa subcriticalHopfbifurcation: two unstableperiodicorbits absorb
thetwo stablefixed pointswhich thenbecomeunstablethemselves.Lorenz [1] hasshownthata closedsimply
connectedregionD containingtheorigin canbefoundsuchthat thevectorfield is everywheredirectedinward
on the boundary.Forr> 24.74thereare no attractingfixed points,butbecauseof the previousstatementthe
motion mustremainbounded.Wheredo the trajectoriesgo? Theansweris seenin the numericalintegration

50.0 50(1

0.0 (1.0_______________________________________________________________________________________

— 25.1) 25.1) —300.1) 1000.0

Fig. 1. Theoriginal Lorenzsystem,atr=28.0;a=10.0; b= ~. Fig. 2. The proto-Lorenzsystem,atr=28.0;a=10.0; b= ~.
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in fig. 2. This strange invariant set is shown to come into existencewith a homoclinicbifurcationat r~ 13.96,
but while thesymmetricpairof fixed points remain attracting this is not seen in simulations, with the exception
that if 24.06<r< 24.74, the strangeattractoris stableandco-existswith the stablefixed points.

In the proto-Lorenzsystemsomeof theaboveanalysiscannotbeperformeddirectlybecausethe vectorfield
is notdifferentiableat theorigin. But wecanarguethatunderthetransformationabovefixed pointsmustmap
to fixed points,periodicorbits to periodicorbits. By similarargumentswe canshow that the stability of each
will be preserved.Hencethe entirebifurcationsequenceof the Lorenz is reproducedin the proto-Lorenz,ex-
cept that the symmetrypair of fixed points/pairof periodicorbits, are mappedto one fixed point/periodic
orbit. This fixed point of the proto-Lorenzsystemis easily calculatedto be at

u=0, v=2b(r—l), z=r—1

awayfrom the z-axis.Thepitchforkbifurcationof the Lorenzbecomesa transcriticalbifurcationof theproto-
Lorenz.This is to be expected;evenin two dimensionsthe imageof a pitchfork bifurcation (with equation
r= ~ 2 say; it is the magnitudeof the fixed point) underthequotientof the involution (sendingu—* — ~i) is a
transcriticalbifurcation (with correspondingequationr=d; d_—1i

2is the quotientmap).
We canalso arguethat the strangeinvariant set formedby the homoclinic bifurcation at r~13.96 in the

Lorenzsystemis preservedunderthe transformationto the proto-Lorenz.Indeed,sincethe strangeinvariant
set is a subsetof the “eventualimage” fl~ Ø~( D) of the closedsimply connectedregionD mentionedabove
(where Ø~denotesthe flow) andsincethe quotientmap it sendstrajectoriesto trajectoriewsandmaps any
compactset to a compactset,the “eventualimage” of the correspondingregion in the proto-Lorenzspaceis
exactlythe imageof this “eventualimage” in the original Lorenz system.Sincethe map it is a 2—1 map,the
“strangeness”of theinvariant setin theLorenzsystemis thereforepreservedin theproto-Lorenz:theexistence
of a denseorbit, the sensitivedependenceof trajectorieson initial conditions,etc. are all phenomenawhich
arereproducedfor theinvariantsetin theproto-Lorenz.Figure 2 exhibitsaphasespaceprojectionof theproto-
Lorenzwhich illustratessomeof the dynamicalfeaturesof the strangeinvariant set.The readerwill no doubt
observethe qualitativesimilarity to the Rösslerattractor [5]; trajectorieswhich start on theinside of theat-
tractorwind aroundwith increasingradius,and thenarefolded up andoverbackto theinsideof theattractor.

Further numericalevidenceof the relationshipbetweenthe two attractorsis seenin thereturnmapsfor the
two systems.

/

~ f 1 ~ //

ISO.))L
r —. Fig. 3. The return map for the proto-Lorenz: successivev-valuesI n ~00 0 when u crosseszero (V,,) from negativeto posiive.
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Figure 3 is successivev-valueswhen u crosses zero from negativeto positive. This is the return map in v
acrossthe line u = 0 for positivez. The map of successivemaximain z for the Lorenz is a returnmap across
a similar vertical line in eachlobe.Sinceno differentiation is madebetweenthe left andright lobe the map
performsthe same2—~1 identificationacrossthe axisof symmetryas thetransformationto theproto-Lorenz.
The mapsthereforehavethe sameform.

A commonmethodfor reducingthe complexity of analyzingthe dynamicsof the strangeattractorin the
Lorenzsystemis to considerthe two-symbolsequencegeneratedby successiveleft/right loopsaroundeither
lobe. Thissequenceencodeswhich of the two lobes of the Lorenz systema trajectoryis traversingthrough.
Thephenomenonof switchinglobesis explainedrathercleanlyby examiningthedynamicsin theproto-Lorenz
system. Away from the z-axes, the map it from the Lorenz space to the proto-Lorenz space is a coveringmap
of degree2, andaboveanysmallenoughopenset in the proto-Lorenzspacetherelies two identicalopensets
in theLorenzspace.Theserepresent,locally at least,thetwo sheetsof thecoveringspace.Althoughthesesheets
arenot globallywell defined,it is possibleto speakof changingsheets,by movingalonga pathin the Lorenz
spacefrom onepoint to the correspondingotherpoint underthe involution which is then on the othersheet.

If y is sucha path in the Lorenz spacefrom a pointp to its correspondingpoint t(p) underthe involution
r sending(x, y,z) to (—x, —y, z), then ir(y) is a closed path, or loop, in the proto-Lorenz space starting and
endingat ir(p). Moreoversucha loop will wind aroundthe z-axisan odd numberof times; its class in the
homotopygroup of P3-z-axis (whichis an infinite cyclic group) will bean odd class.(Seeref. [21 for details
on coveringspaces.)

Conversely,anyloop in the proto-Lorenzspacewhich windsaroundthez-axisan oddnumberof timeswill
lift to a pathin the Lorenz spacewhich changessheets.Thus,given a trajectoryT

1 in the proto-Lorenzspace,
it will lift to a trajectoryT2 in the Lorenz space,andT2 changessheetswheneverT1 windsaroundthe z-axis.

Relativeto the attractorfor theproto-Lorenzsystem,thez-axispiercestheattractorexactlyat thepointwhere
thetrajectoriesare foldedup andoverontothe mainbodyof theattractor.Thereforetrajectorieswind around
thez-axisexactlywhentheyarefoldedup andoverin the proto-Lorenzsystem.Thustrajectoriesin theoriginal
Lorenzsystemswitch lobes (or sheets)exactlywhenthe imagetrajectoryin the proto-Lorenzis folded up and
over.

20.0 40.0
a b

. / .

H___ ___

0,1) __ 0.0 ___
I 00.0 p 200.0 ... 100.0 (i()0.()

Fig.4. (a) Solutionwith initial conditionsneartheunstablemanifoldoftheorigin in theproto-Lorenzsystem,with r= 10.0. (b) Solution
with initial conditionsneartheunstablemanifoldof theorigin in theproto-Lorenzsystem,with r= 20.0.
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The evidencefor the homoclinicbifurcationat r= 13.96 in the Lorenz systemis the switchingof the basin
of attractionof the left (right) fixed point from the left half space (right half space)to the right half space
(left half space).This then translatesto whetherthe unstablemanifold of the origin crossesthe z-axisas it
spirals into the fixed point in the proto-Lorenz.As a numericalillustration of this fact, figs. 4a and4b show
the behaviorof a trajectorystartednear theoriogin of the proto-Lorenzat r= 13.96.

As will be seenin the following sections,a transformationto any numberof lobes in the strangeattractor
is possible.We specificallydocument1, 2 (the original Lorenz), 3 and 4 lobe systems.One might be led to
concludethat an N-symbol sequenceis necessaryto describethe dynamicsof an N-lobedattractor.However,
becauseof the natureof the transformation,passingfrom one lobe to anothercanonly occur in a cyclic order.
Thus the N symbolsare reducedbackto 2: 1 or 0, for instance,if the trajectorychangesto the next lobe or
makesanotherloop aroundthe samefixed point.

With thedynamicssoreducedto a discretesystemof two symbolsontheN lobeswe canconstructa measure
of theinformation storedby the system(after ref. [6]). This is an invariantquantitythat tendsto zero when
the past andfuturestateof the systemare statistically independentanddivergesin the caseof puredeter-
minism. Using this measureonecan show that while the dynamicsgoverningthe lobe switchingare chaotic
andhenceimply a loss of initial state information,as N increasesthe amountof informationthat the N-lobe
Lorenzcanstoreincreaseslike logN (theentropyofa setofNequipartitionedsymbols)(seerefs. [6,71). The
N-lobeLorenzattractorthenbecomesincreasinglymoredeterministicwith increasingN, while locally the sys-
tem still displayssensitivedependenceon initial conditions.

5. Covers2,’, of the proto-Lorenzsystem

Recall that the orbit spaceY carrying the proto-Lorenzsystem.~/ is simply the spaceER3, with coordinates
(u, v, z). It is convenientto view the (u, v)-factorP2 as the spaceC of complexnumbers.(Thepoint (u, i’)

correspondsto the complexnumberw= u+ it.)
Forn>~1, let Y,, be a copy of P3=CxP, with threerealcoordinates(un, t’~,.-), or onecomplexandonereal

coordinate(wa, z), where as above‘~v~=u~+ii’,,.Identify thecoordinatestt~and t’
1 on Y1 with the coordinates

u and v respectivelyon the orbit spaceY, effectively identifying Y1 with Y in the obviousway. Denoteby
Y~thecomplementof the z-axisin Y,,.

For eachn~1, let y,, be thenth-powermap from C to itself, crossedwith the identity on ER: we view themap
~‘,, as a map

;‘,,: Y,,~Y=Y1

with the formula

y~(w,,,z)=(w~, :) , or w=w1 =w~

Note that y,, maps the z-axis of Y,, onto the z-axis of Y, and maps the complement Y~of the .-axis onto the
complementY’. Since the nth-power map is a local diffeomorphism away from the origin, this map y~is a local
diffeomorphismaway from the z-axis; i.e., y,, is a local diffeomorphism on Y~,mappingit to Y’.

Henceany vectorfield on Y’ will lift to a uniquevectorfield on Y~.Since the proto-Lorenzsystem.~Ion

Y can be restrictedto Y’, it canbe lifted to a vectorfield 2’~,on Y~,.We call thesevectorfields coversof the
proto-Lorenzsystem2’.

Our next task will be to write down thesecovers~ of theproto-Lorenzsystem.Sinceby definition, themap
y,, sends.9~,on Y,’, to 9’ on Y

1, thechain rulegives the equation

(Dy~)~(w~,z)=2’(y~(w~,z) ) =9’(w~,z), (5.1)
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whereDy~is the 3 x 3 realJacobianfor themap y,~.(Herewe arewriting the vectorfields in column notation,
sothatboth ~ z) and2’( w~z) arecolumnsin P3.)We needto simply solvethis equationfor ~ z).

Since the map y,, is described most easily using complex numbers, but the proto-Lorenz system’s description
(3.1) is not, it is useful to be able to transfer easily between the two with some notation.Fora complexnumber
c=a+ib, defineA(c) to bethe 2x2 realmatrix

(a —b

a

and define A
1(c) to be the first column of A(c):

A(a+ib)=( ‘?), Ai(a+ib)=(~).

The function A is a ring homomorphismof C into thering of 2x 2 real matrices.
The Jacobian (Dy~) of y,, cannow bewritten as

(A(nw”’) 0
(Dy~)(w~,z)=( 0

\ 00 1

SinceA is a ring homomorphism,we seethat the inverseof this Jacobianis

0
(Dy~Y’(w~,z)=(n 0

\ 00 1

Therefore,solving (5.1), we havethe formula

(!A(wl-n) 0\
n ‘~ 0 J2’(w~,z), (5.2)

\ 0 0 11

wherethe proto-Lorenzsystemis written in column vectorform,

((—a— l)u+(a—r+z)v+(l —a)N

2’(u+iv, z)=( (r—a—z)u—(a+l)v+(r+a—z)N
~v—bz

with N=~,/U2+v2as above.
For computationalpurposesit is usefulto recall that for a complexnumberc, c~’= (~)~~/IcI

2”2.Thus

A(w~)= ~ A( (~~)n_1)•

In addition,note that~ in the variablesof the cover Y~.
By the constructionof the proto-Lorenzsystem,the following is tautology.

Theorem5.3. The double cover 2’2 of the proto-Lorenz system is the original Lorenz system.

6. The triple cover 2~of the proto-Lorenzsystem

The coversof the proto-Lorenzsystemeachhavethewell-known strangeattractor,with an interestingfea-
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ture: the attractorof the nth cover .2~hasn “ears”. Thisgeneralizesthe two-earedattractorof the original
Lorenz system.In this sectionwe will illustratethis by writing the equationsof the triple cover ~ andpre-

sentingsomenumericalsimulationsof trajectoriesfor this system.
ThevariablesonY3 areu3, v3 andz, which we will renamep, q, andz respectivelyfor convenience.Therefore

w3=p+iq; sincew~(p
3—3pq2)+i(3p2q—q3),the equationsfor themap ~3 arethen

u=p3—3pq2, v=3p2q—q3, z=z.

Theinverseof the Jacobianmatrix for y~is

/i;(p2—q2) ~pq
2+ 2)2 ( 2+ 2)2

(D~
3)(w3,z)=(3Iw3~4~3~ ‘(p

2q2)

The proto-Lorenzsystemat the image (u=p3—3pq2,v=3p2q—q3,z) of (p, q, ~) is

((—a—l)(p3—3pq2)+(cx—r+z)(3p2q—q3)+(l—a)N

(r—a—z)(p3—3pq2)—(a+l)(3p2q—q3)+(r+a—z)N

~(3p2q—q3)—hz

with N=1u2+v2 = (p2+q2)312=M3,where we arewriting M=,.Jp2+q2. By (5.2), theproductof thesema-
trices is theexpressionfor

(p

11) 1’) - . . (il)

________________ 0.))____________

1))) II))) A))

Fig. 5. The triple coverof theproto-Lorenz system,with r= 28.0: Fig. 6. Thequarticcoveroftheproto-Lorenzsystem,with r=28.O:
p versusq. I versuss.
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After somecomputationwe obtain the formulafor the triple cover .~ as

~= ~[— (a+ l)p+(a—r+z)q]+ [(1 —a)(p2—q2)+2(r+a—z)pq]/3M,

~[(r—a—z)p— (a+ I )q] + [2(a— 1 )pq+ (r+a—z)(p2—q2)]/3M,

i=~(3p2q—q3)—bz. (6.1)

Figure 5 showsa projectionof the triple-coversystemin the chaoticregime, r=28.

7. The quarticcover .9’,,~of the proto-Lorenz system

In this sectionwe will write downtheequationsfor the vectorfield of the system2~,which is a 4-to-1 cov-
eringof theproto-Lorenzsystem2’s. Howeverit ismorepleasantto think of 2’~asa doublecoveroftheoriginal
Lorenz system .2’~.This is possible,since the (complex) coordinatew

4 on the ambientspaceY4 satisfies
w~= w~= w1, so that in fact w2=w~.Indeed,for any m andn, if m dividesn thereis a naturalmap from Y,~
to Ym whosecompositionwith y~is exactlyy,~.

Thus the coordinatew4 standsin the samerelationto w2 as w2 doesto w1. This simplifies the computation
somewhat,andif we set s= u4 and t = v~we obtain the equations

.i= [—as
3+(2a+r—z)s2t+(a—2)st2—(r—z)t3]/2(s2+t2)

t= [(r—z)s3+ (a—2)s2t+(—2cr—r+z)st2—at3]/2(s2+t2), ~=2s3t—2st3—bz

for the system2~.

Figure 6 showsa projectionof the quartic-coversystemin the chaoticregime,r= 28.
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