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The proto-Lorenz system
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A quotient of the Lorenz dynamical system is constructed. This “proto-Lorenz” system has the Lorenz system as a double
covering, and the double covering explains the two-eared nature of the strange attractor for the Lorenz system. Arbitrary coverings
of the proto-Lorenz system are possible, leading to n-eared strange attractors.

1. The Lorenz equations and their order two symmetry

Fix parameters o, r, and b. The system of ODEs given by
X=0y—0ax, y=rx—y—xz, Z=xy—bz (1.1)

is the Lorenz system, introduced by Lorenz in ref. [1]. It is useful to think of this system as a vector field on
X =R3, with coordinates (x, y, z).

The order two symmetry in the Lorenz system is the symmetry about the z-axis. Specifically, the Lorenz
system is invariant under the involution s sending (x, y, z) to (—x, —, z). Note that two points (x,, y1, z;)
and (x,, ¥,, z,) are in the same orbit of this involution s if and only if z; =2, and (xy, ¥;) = £ (X3, y2).

2. The orbit space of the involution

Let Y =R?, with coordinates (, v, z). Define a map n: XY by #n(x, y, z) = (x2—y?, 2xy, z) or, equivalently,
by setting

u=x?—y?, v=2xy, z=z. (2.1)

Theorem 2.2.
(1) The map n: X—Y is onto.
(2) The map x is a quotient map for the involution. In other words,
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(X, Vi, 2y ) =m(X3, V2, 22) <= zy=zand (X, v) =T (x5, 1)

and a subset of Y is open if and only if its inverse image in X is open. Thus the space Y is an orbit space for
the involution on X, and its natural topology (as R>) is the identification topology for the map 7.

(3) Away from the z-axis, 7 is a local diffeomorphism: the Jacobian of n is non-singular at any (x, y, =)
with (x, y)# (0, 0).

Proof. Fix a triple (u, v, z) in Y =R>. Suppose first that v#0; then any pre-image (x, v, z) of (&, v, ) under
m must have x and y non-zero, so that y=v/2x. Solving the quadratic equation x?—y?*=y, we find that
4x*—dux?—1?=0, so that x>= 1 (u £ /u?+v?). Since v#0, ./u?+v? is strictly larger than u in absolute value;
thus the only solution to this equation is x>=1 (u+./u?+v?). This has exactly two non-zero solutions x, and
X,, With x,= —x,; the equation for y then gives the two corresponding solutions y; =¢/2x, and v,=v/2Xx,, so
that also y,= —y,.

Suppose now that v=0; this forces either x or y to be zero, and which one is determined by the sign of u:
if u>0 then y=0 and x= i\/;, and if u<0 then x=0 and y= iﬁ.

These computations prove both the first statement, and the stated criterion for when n(x,, ¥, =)=
(x>, Va2, Z2). To see that 7 is a quotient map, it suffices to check that =z is an open map, that is, it takes open
sets 1o open sets (see ref. [2], section 2.11). Note that 7 can be thought of as the product of a self-map of R?
with the identity (on the third coordinate); since a product of open maps is open, and the identity is certainly
an open map, it suffices to show that this map on R? (sending (x, v) to (x>—y?, 2xy)) is open. Using complex
coordinates z=x+1y, this is simply the map sending z to z2; since any analytic map is open, we are done.

To check the third statement, simply compute the Jacobian of # at a point (x, v, z): we obtain the matrix

2x =2y O
2y 2x 0
0 0 1

which has non-zero determinant away from the locus x=y=0. i

3. The proto-Lorenz system on the orbit space

Away from the z-axes, there is a 1-1 correspondence between vector fields on the orbit space Y and vector
fields on X which are invariant under the involution. Since the Lorenz system (1.1) on X is invariant under
the involution, it descends to a vector field ¥ on the quotient Y, at least away from the z-axes. l.e., if we denote
by U the vector field on X, then the map = satisfies zs=n and therefore the induced vector field ¥=Dnr(U)
on Y given by £ (n(x))=Dn(x)U(x) is well-defined. Our next task is to write down this vector field ¢ on
Y.

It is useful to note that any quadratic monomial in x and y can be written in terms of the variables v and
v. To see this, let N denote the norm of the (u, v)-vector, N=:;uz+v2 =x2+12 Then

x?’={(u+N), xy=1iv, yi=3i(~u+N).

For the vector field ¢ on Y, we have

u=2xx—-2yp=2x(gy—ox) =2v(rx—y—xz)= —20x>+2y*+2(g—r)xy+2xyz
=—0(u+N)—u+N+(o—r)v+uvz,

p=2px+2xp=2y(oy—0ox) +2x(rx—y—xz)=2rx2+20p%=2(o+ 1 )xy—2x2z
=r(u+N)+o(—u+N)—(c+1)v—(u+N)z.
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Re-writing this a bit we see that the descended vector field . on the orbit space Y can be written as
U=(—o—1)u+(oc—=r)v+(l—=0)N+uvz, v=(r—0)u—(o+1)v+(r+o)N—uz—Nz,
z=4v—bz. (3.1)

We call this descended vector field % the proto-Lorenz system on Y =R>. Note that although the map = is ra-
mified along the z-axis in X, so that there is no a priori knowledge about .# on the image of the z-axis (which
is the z-axis again on Y), the proto-Lorenz system . is in fact a continuous vector field on all of Y. It is not,
however, differentiable, because of the presence of the norm N in the formulae; it is differentiable away from
the z-axis, of course.

4. The dynamics of the proto-Lorenz system &

Figures 1 and 2 show phase space projections of the original Lorenz and the proto-Lorenz at r=28.0; 0=10.0;
b=2%, within the strange attractor regime. The two flows are related by the transformation

u=x2—y?, v=2xy, z=z,

taking the dynamics of the original Lorenz (x, y, z) to the proto-Lorenz (u, v, z).

The original Lorenz has a well studied bifurcation sequence leading to the strange attractor at r=28 (see,
for example, refs. [3,4]). For 6=10.0; =% and r< 1 the origin is a hyperbolic sink and the only attractor. At
r=1 the origin becomes unstable in one direction and simultaneously two new attracting fixed points are born:
a pitchfork bifurcation. The origin is a saddle point with a one-dimensional unstable manifold for all 7> 1. At
r=24.74 the new two fixed points undergo a subcritical Hopf bifurcation: two unstable periodic orbits absorb
the two stable fixed points which then become unstable themselves. Lorenz [ 1] has shown that a closed simply
connected region D containing the origin can be found such that the vector field is everywhere directed inward
on the boundary. For r>24.74 there are no attracting fixed points, but because of the previous statement the
motion must remain bounded. Where do the trajectories go? The answer is seen in the numerical integration
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Fig. 1. The original Lorenz system, at r=28.0; 0=10.0; b=4. Fig. 2. The proto-Lorenz system, at r=28.0; 6=10.0; b=5.
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in fig. 2. This strange invariant set is shown to come into existence with a homoclinic bifurcation at r~ 13.96,
but while the symmetric pair of fixed points remain attracting this is not seen in simulations, with the exception
that if 24.06 <r<24.74, the strange attractor is stable and co-exists with the stable fixed points.

In the proto-Lorenz system some of the above analysis cannot be performed directly because the vector field
is not differentiable at the origin. But we can argue that under the transformation above fixed points must map
to fixed points, periodic orbits to periodic orbits. By similar arguments we can show that the stability of each
will be preserved. Hence the entire bifurcation sequence of the Lorenz is reproduced in the proto-Lorenz, ex-
cept that the symmetry pair of fixed points/pair of periodic orbits, are mapped to one fixed point/periodic
orbit. This fixed point of the proto-Lorenz system is easily calculated to be at

u=0, v=2b(r-1), z=r—1

away from the z-axis. The pitchfork bifurcation of the Lorenz becomes a transcritical bifurcation of the proto-
Lorenz. This is to be expected; even in two dimensions the image of a pitchfork bifurcation (with equation
r=u?, say; u is the magnitude of the fixed point) under the quotient of the involution (sending u— — ) is a
transcritical bifurcation (with corresponding equation r=d, d=u? is the quotient map).

We can also argue that the strange invariant set formed by the homoclinic bifurcation at r~13.96 in the
Lorenz system is preserved under the transformation to the proto-Lorenz. Indeed, since the strange invariant
set is a subset of the “eventual image” M., ¢,(D) of the closed simply connected region D mentioned above
(where ¢, denotes the flow) and since the quotient map n sends trajectories to trajectoriews and maps any
compact set to a compact set, the “eventual image™ of the corresponding region in the proto-Lorenz space is
exactly the image of this “eventual image” in the original Lorenz system. Since the map x is a 2-1 map, the
“strangeness” of the invariant set in the Lorenz system is therefore preserved in the proto-Lorenz: the existence
of a dense orbit, the sensitive dependence of trajectories on initial conditions, etc. are all phenomena which
are reproduced for the invariant set in the proto-Lorenz. Figure 2 exhibits a phase space projection of the proto-
Lorenz which illustrates some of the dynamical features of the strange invariant set. The reader will no doubt
observe the qualitative similarity to the Rossler attractor [5]; trajectories which start on the inside of the at-
tractor wind around with increasing radius, and then are folded up and over back to the inside of the attractor.

Further numerical evidence of the relationship between the two attractors is seen in the return maps for the
two systems.

800.0)
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n+1 \‘

150.0
150.0 n 800.0

Fig. 3. The return map for the proto-Lorenz: successive v-values
when u crosses zero ( V,) from negative to posiive.
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Figure 3 is successive v-values when u crosses zero from negative to positive. This is the return map in v
across the line =0 for positive z. The map of successive maxima in z for the Lorenz is a return map across
a similar vertical line in each lobe. Since no differentiation is made between the left and right lobe the map
performs the same 2— 1 identification across the axis of symmetry as the transformation to the proto-Lorenz.
The maps therefore have the same form.

A common method for reducing the complexity of analyzing the dynamics of the strange attractor in the
Lorenz system is to consider the two-symbol sequence generated by successive left/right loops around either
lobe. This sequence encodes which of the two lobes of the Lorenz system a trajectory is traversing through.
The phenomenon of switching lobes is explained rather cleanly by examining the dynamics in the proto-Lorenz
system. Away from the z-axes, the map n from the Lorenz space to the proto-Lorenz space is a covering map
of degree 2, and above any small enough open set in the proto-Lorenz space there lies two identical open sets
in the Lorenz space. These represent, locally at least, the two sheets of the covering space. Although these sheets
are not globally well defined, it is possible to speak of changing sheets, by moving along a path in the Lorenz
space from one point to the corresponding other point under the involution which is then on the other sheet.

If y is such a path in the Lorenz space from a point p to its corresponding point 7(p) under the involution
7 sending (X, y, z) to (—x, —J, z), then n(y) is a closed path, or loop, in the proto-Lorenz space starting and
ending at n(p). Moreover such a loop will wind around the z-axis an odd number of times; its class in the
homotopy group of R*-z-axis (which is an infinite cyclic group) will be an odd class. (See ref. [2] for details
on covering spaces. )

Conversely, any loop in the proto-Lorenz space which winds around the z-axis an odd number of times will
lift to a path in the Lorenz space which changes sheets. Thus, given a trajectory T, in the proto-Lorenz space,
it will lift to a trajectory T, in the Lorenz space, and T, changes sheets whenever T, winds around the z-axis.

Relative to the attractor for the proto-Lorenz system, the z-axis pierces the attractor exactly at the point where
the trajectories are folded up and over onto the main body of the attractor. Therefore trajectories wind around
the z-axis exactly when they are folded up and over in the proto-Lorenz system. Thus trajectories in the original
Lorenz system switch lobes (or sheets) exactly when the image trajectory in the proto-Lorenz is folded up and
over.
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Fig. 4. (a) Solution with initial conditions near the unstable manifold of the origin in the proto-Lorenz system, with r=10.0. (b) Solution
with initial conditions near the unstable manifold of the origin in the proto-Lorenz system, with r=20.0.
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The evidence for the homoclinic bifurcation at r=13.96 in the Lorenz system is the switching of the basin
of attraction of the left (right) fixed point from the left half space (right half space) to the right half space
(left half space). This then translates to whether the unstable manifold of the origin crosses the z-axis as it
spirals into the fixed point in the proto-Lorenz. As a numerical illustration of this fact, figs. 4a and 4b show
the behavior of a trajectory started near the oriogin of the proto-Lorenz at r=13.96.

As will be seen in the following sections, a transformation to any number of lobes in the strange attractor
is possible. We specifically document 1, 2 (the original Lorenz), 3 and 4 lobe systems. One might be led to
conclude that an N-symbol sequence is necessary to describe the dynamics of an N-lobed attractor. However,
because of the nature of the transformation, passing from one lobe to another can only occur in a cyclic order.
Thus the N symbols are reduced back to 2: 1 or 0, for instance, if the trajectory changes to the next lobe or
makes another loop around the same fixed point.

With the dynamics so reduced to a discrete system of two symbols on the N lobes we can construct a measure
of the information stored by the system (after ref. [6]). This is an invariant quantity that tends to zero when
the past and future state of the system are statistically independent and diverges in the case of pure deter-
minism. Using this measure one can show that while the dynamics governing the lobe switching are chaotic
and hence imply a loss of initial state information, as NV increases the amount of information that the N-lobe
Lorenz can store increases like log NV (the entropy of a set of N equipartitioned symbols) (see refs. [6,7]). The
N-lobe Lorenz attractor then becomes increasingly more deterministic with increasing N, while locally the sys-
tem still displays sensitive dependence on initial conditions.

5. Covers %, of the proto-Lorenz system

Recall that the orbit space Y carrying the proto-Lorenz system .¢ is simply the space R®, with coordinates
(u, v, z). It is convenient to view the (u, v)-factor R? as the space C of complex numbers. (The point (u, 1)
corresponds to the complex number w=u+iv.)

Fornz1,let Y, be a copy of R*=C X R, with three real coordinates (i,, v,, ). or one complex and one real
coordinate (w,, z), where as above w,=u, +iu,. Identify the coordinates «, and v, on Y, with the coordinates
u and v respectively on the orbit space Y, effectively identifying Y, with Y in the obvious way. Denote by
Y. the complement of the z-axis in Y,,.

For each n> 1, let y, be the nth-power map from C to itself, crossed with the identity on R; we view the map
¥, @S a map

l/'yn: YHHYZYI .
with the formula
Pa(Way 2)= (W2, 2) . OF w=w =w).

Note that y, maps the z-axis of Y,, onto the z-axis of Y, and maps the complement Y}, of the z-axis onto the
complement Y'. Since the nth-power map is a local diffeomorphism away from the origin, this map y,, is a local
diffeomorphism away from the z-axis; i.e., y, is a local diffeomorphism on Y}, mapping it to Y.

Hence any vector field on Y' will lift to a unique vector field on Y. Since the proto-Lorenz system ¢ on
Y can be restricted to Y, it can be lifted to a vector field ., on Y.. We call these vector fields covers of the
proto-Lorenz system .¢.

Our next task will be to write down these covers .%, of the proto-Lorenz system. Since by definition, the map
y, sends %, on Y to ¥ on Y', the chain rule gives the equation

(Dyn) LW, 2) =L (ya(Wy, 2)) =L(W], 2) (5.1)
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where Dy, is the 3 X 3 real Jacobian for the map y,. (Here we are writing the vector fields in column notation,
50 that both %,(w,, z) and £( w2 z) are columns in R3.) We need to simply solve this equation for %,(w,, z).

Since the map 7y, is described most easily using complex numbers, but the proto-Lorenz system’s description
(3.1) is not, it is useful to be able to transfer easily between the two with some notation. For a complex number
c=a+ib, define A(c) to be the 2 X2 real matrix

(%)
b a)’
and define A, (¢) to be the first column of A(c):

A(a+ib)=(z _Z), A.(a+ib)=(g).

The function A is a ring homomorphism of C into the ring of 2 X2 real matrices.
The Jacobian (Dy, ) of y, can now be written as

0

A(nwi~")
(Dyn) (W, 2) = 0
00 1

Since A is a ring homomorphism, we see that the inverse of this Jacobian is

1 0

_A 1-n
(Dy)~ O, 2y =| ) g
00 1

Therefore, solving (5.1), we have the formula

1 0
_A 1—n
Liwn = 1) o) pwn, 2y, (5.2)
00 1

where the proto-Lorenz system is written in column vector form,

(—o—1Du+(o—r+z)v+(1—0)N
Lu+iv, z)=| (r—o—2)u—(oc+1)v+ (r+o—z)N |,
lv—bz

with N=/u%+v? as above.
For computational purposes it is useful to recall that for a complex number ¢, ¢! == (¢)"~"'/|c|*"~2 Thus

1
A(w, ") = W,,—_;A( (W) .

In addition, note that N=/u?+0v?=|w|=|w,|"= (u2+v2)"? in the variabies of the cover Y,
By the construction of the proto-Lorenz system, the following is tautology.

Theorem 5.3. The double cover %, of the proto-Lorenz system is the original Lorenz system.

6. The triple cover .%; of the proto-Lorenz system
The covers of the proto-Lorenz system each have the well-known strange attractor, with an interesting fea-
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ture: the attractor of the nth cover %, has » “ears”. This generalizes the two-eared attractor of the original
Lorenz system. In this section we will illustrate this by writing the equations of the triple cover % and pre-
senting some numerical simulations of trajectories for this system.

The variables on Y; are u3, v; and z, which we will rename p, ¢, and z respectively for convenience. Therefore
wy=p+iq; since w3 = (p>=3pg?)+i(3p3g—q?), the equations for the map y; are then

u=p>-3pq*, v=3p’q—q>, ==.

The inverse of the Jacobian matrix for y; is

;li.(.Q.zﬂ.z_) %m
: 0 (P*+49*)  (p°+4%)’
A((w3)?) irq i(p*—q*)
Dy;) " '(ws, z) =] 3{ws|? 0 e :
(Dy;)~'(ws, 2) ] 3|0 . , (p2+q2)2 (P2 +¢%)?

0 0 1

The proto-Lorenz system at the image (u=p*—3pq?, v=3p°q—q>, z) of (p, ¢, 2) is

(—o—1)(P*-3pg*)+ (o—r+2)(3p’q—¢*) + (1 —0)N

(r—o—z)(p’=3pg*) — (o+ 1) (3p*q—q*) + (r+o—2)N |,

y(3p*q—q*) bz
with N=/u?+v?*=(p2+42)>?=M?>, where we are writing M=\/b§+q5. By (5.2), the product of these ma-
trices is the expression for
p

H(p. g, 2)=

(ST~

10.0 o 6.0

P
{
120/ i S 6.0 - o o
10.0 . 10.0 6.0 B 6.0
Fig. 5. The triple cover of the proto-Lorenz system, with r=28.0: Fig. 6. The quartic cover of the proto-Lorenz system, with r=28.0:
pversus q. 1 versus s.
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After some computation we obtain the formula for the triple cover % as
p=4[—(6+1)p+(o—r+z)ql+[(1-0)(p*—q*)+2(r+0—-2)pq]/3M ,
4=4[(r—0-2)p—(0+1)q1+[2(0—-1)pg+(r+o—2)(p*-q*)1/3M,

z=4(3p%q—q*)—bz. (6.1)

Figure 5 shows a projection of the triple-cover system in the chaotic regime, r=28.

7. The quartic cover % of the proto-Lorenz system

In this section we will write down the equations for the vector field of the system .%,, which is a 4-to-1 cov-
ering of the proto-Lorenz system .%,. However it is more pleasant to think of .%, as a double cover of the original
Lorenz system .%. This is possible, since the (complex) coordinate w, on the ambient space Y, satisfies
wi=w2=w,, so that in fact w,=w3. Indeed, for any m and n, if m divides n there is a natural map from Y,
to Y,, whose composition with y,, is exactly »,,.

Thus the coordinate w, stands in the same relation to w, as w, does to w,. This simplifies the computation
somewhat, and if we set s=u, and t=v, we obtain the equations

§=[—as*+ (20+r—z)s%+ (6-2)st2— (r—2z)*]/2(s*+1?) ,
I=[(r=2)s*+(0—=2)s%+ (=20—~r+z)st2—ot3]/2(s2+1?) , z=253t—2st3~bz

for the system %,
Figure 6 shows a projection of the quartic-cover system in the chaotic regime, r=28.
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