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Steady solutions of the Kuramoto-Sivashinsky equation are studied. These solutions are defined on the whole x line and 
propagate with a constant speed c z in time. For large c 2 it is shown that the solution is unique and has a conical form. For 
small c 2 there is a periodic solution and an infinite set of quasi-periodic solutions as asserted by Moser's twist map theorem. 
Numerical computations for intermediate values of c 2 suggest that below c 2 = 1.6 for every speed there is a continuum of odd 
quasi-periodic solutions or a Cantor set of chaotic solutions wrapped by infinite sequences of conic solutions. 
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1. I n t r o d u c t i o n  

The Kuramoto-Sivashinsky equation 

u,+ vau+ v2u+XlxTul2=O, u=u(x,t) 
(1.1) 

has attracted for the last decade a considerable 
attention [1-12]. It was originally derived by 
Kuramoto and Tsuzuld [1] in the context of a 
reaction diffusion system, and by Sivashinsky [5] 
in the context of flame front propagation, In the 
later case u(x, t) represents the perturbation of a 
plane flame front which propagates in a fuel- 
oxygen mixture. Numerical experiments [2, 3, 6] 
have shown that eq. (1.1) when solved on a suffi- 
ciently large interval - l < x < l with periodic 
boundary conditions tends to a turbulent state as 
t --, oo. The solution u(x, t) has the form 

u ( x , t )  = - 4 t  + o(x, t), (1.2) 

where c0 2 ~ 1.2 is a universal constant independent 
of the initial condition, while the mean value of 
v(x, t) is close to zero. For a fixed t the function 
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v(x, t) although irregular has an appearance of a 
quasi-periodic wave with a characteristic wave 
length 1 o = 2~r/%, w0 = v~-/2. Note that the 
frequency % is maximally amplified by the linear 
terms in (1.1). Formula (1.2) suggests that one 
should look for steady solutions of (1.1) 

u(x, t) = -c2t  + o(x). (1.3) 

Clearly o(x)  satisfies the O.D.E. 

da---~u + --dZv =c 2 - l[d°~2 (1.4) 
dx 4 dx 2 2 ~ dx J 

or a third order equation for the derivative y = 
do /dx  

d3y d y  = c2 1 2 -oo<x<+oo .  (1.5) 

The main objective of this work is to study the set 
of bounded solutions of (1.5) and its dependence 
on the parameter c. 

For  large c we shall show that eq. (1.5) has a 
unique (up to translation) bounded solution. This 
solution y(x)  is an odd function of x, tends to the 
limits limx_. ±~ y(x) = q:c~- and vanishes only 
at x = 0. The integral v(x) = f0~y(r)dr has thus a 
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conical form with a single maximum at x = 0 and 
slopes + v~c  as x ~ q: oo. The above function 
o ( x )  has a following physical interpretation. A 
slight modification of (1.1), 

u,+ ~74u+ ~72u+ ½1~7ul2= c 2, (1.6) 

is a model equation (due to Sivashinsky) for a 
conical flame front with a slope c ~ -  on a Bunsen 
burner. Clearly, the above o ( x )  represents a sta- 
t ionary flame on a Bunsen burner. 

For  small c eq. (1.5) has a periodic solution Yp~r 
with frequency to depending on c. It turns out that 
the Poinear6 map associated with the periodic 
solution is measure preserving and satisfies for 
small c the conditions of Moser's twist map theo- 
rem [14]. As a result, the flow defined by (1.5) 
possesses an infinite set of coelecial invariant tori 
surrounding the periodic orbit. The boundaries of 
the tori are closures of quasi-periodic orbits. We 
show that the integrals of these quasi-periodic 
solutions are quasi-periodic too. This results in an 
infinite set of quasi-periodic solutions of (1.4). 

The periodic solution Yper as well as to and c 
could be expanded in power series with respect to 
an auxiliary parameter e. The numerical compu- 
tation of these series reveals that the periodic 
solution exists up to Cm~ x -- 1.26606. The complete 
to, c curve is displayed on fig. 1. The part PoP2Q of 
the graph corresponds to the domain where the 
analytic expansion is valid. The portion QPhP8 was 
calculated using a difference approximation to 
(1.5). The branch P4P[Pff represents a non-odd 
periodic solution bifurcating from the point P4. 
This branch could be continued until the limit 
point  w = 0, c---0.86 which corresponds to an 
"obl ique" soliton (see figs. 4c-4e). The periodic 
orbits are parabolic at the points Pi, P/, and elliptic 
and hyperbolic at the segments indicated by letters 
e and h respectively. In the elliptic regions the 
Moser 's twist map theorem applies so that there 
are infinitely many invariant tori. 

A central difference approximation of (1.5) was 
used in order to compute the bounded odd solu- 
t ions for intermediate values of c. The results 
suggest that for c > c 1 -- 1.3 there is only one such 
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Fig. 1. The to-c curve for the periodic solution. The branch 
P4P~P~ corresponds to the non-odd periodic solution. 

solution. In the interval Cm~ x < c _< c 1, there is a 
decreas ing sequence of bifurcat ion points 
c 1,c a , . . . , c  n-~cma ~. At c = c ,  a new solution 
y , ( x )  is " b o r n "  which splits into two solutions as 
c decreases. The function y , (x )  tends to the criti- 
cal points +_ cv~ as x--* -T-oo and has n zeros in 
the half line x > 0. Thus the integral o , ( x ) =  
fo~y,('r)d'r would correspond to a Bunsen flame 
with n + 1 maxima. At c = Cma x the above solu- 
tions tend to the periodic one as n ~ oo. Fol 
c < c,,~x the set of odd bounded solutions (of th~ 
scheme) is quite complicated. The basic form o! 
the solutions is determined by the periodic orbits 
In the elliptic domains there are invariant tor 
while in the hyperbolic domains there exists ; 
Cantor- type set of chaotic solutions which "float'  
around the periodic ones. On the other hand fo 
all values of c below Cm~ x (at least up to c = 0.2 
there exist infinite sequences of odd asymptoti 
solutions (i.e. connecting the critical points). Thes 
sequences of "Bunsen flame" type solutions lie i: 
the "holes"  of the Cantor set and approximate th 
above chaotic solutions. 

2. Topological properties of the set of 
bounded solutions 

First we shall prove that for any closed interv~ 
c ~ [0, c,] the sets of all bounded solutions of (1.' 
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are uniformly bounded. Rewrite (1.5) as a first 
order system 

d P t 2 
dx  = f ( Y '  c) = (Y2, Y3, c2 --1'2- ~Yl ), 

Y=(Yl ,  Y2, Y3)" (2.1) 

At that point it is worthwhile to consider a more 
general situation of a system 

d y  
= / ( Y ) '  - oo < x < ( 2 . 2 )  

w h e r e  y = ( y m  . . . . .  y t N ) ) ~  R N, f =  
( fo)  . . . . .  f tN))~  RlV and f ( y )  is a smooth vector 
function, say f ~  CI(WV). Assume that 

f ( y ) = h ( y ) + g ( y ) ,  (2.3) 

where h(y) is a "pseudo-homogeneous" leading 
part of f (y) .  Namely, there exists a positive real 
vector s = (s 1, s2 , . . . ,  s) and real scalar r such that 

p'p-*h(p*y) = h(y)  (2.4) 

and 

prp--,g(p,y) ..., 0 as p ~ 0, 

uniformly for [y[ < 1. (2.5) 

Here 

OSy = ( OS~ yO), pSNy(N)), 

prp-s h = (prp-hh(t) . . . . .  Orp-SNhtN) ) 
(2.6) 

and similarly in (2.5). 
Assume that the leading system 

d y  
dx  = h ( y )  (2.7) 

does not have bounded solution for - oo < x < 
but y = 0. 

Proof. Assume to the contrary that there exists a 
sequence of bounded solutions y~(x) such that 
SUPxlY~(x)l ~ oo. Introduce the norm IIYlI-- 
E~_ t [y (o1 ~/~,. Without loss we may assume that 

Ily~(0)ll = P~ ~ oo and supJly~(xll/& <- 2. 
X 

(2.8) 

Change the variables z = O;'y, ~ = O;rx. Then the 
function z~(~) satisfies the equations 

d z  n 
d~ =¢P"(z")=h(z")+P~P~sg(P~z")' (2.9) 

while 

[Iz,(0)[I---1 and supl lz , (~) l l~2.  (2.10) 

Clearly, in the bounded set Ilzll< 2 the term 
Oro-Sg(#Sz) tends uniformly to 0 as 0 ~ oo. Since 
[Iz,(~)[I and Ildz,(~)/d~ll are uniformly bounded, 
there exists a subsequence of zn(~ ) which con- 
verges uniformly on any finite interval to a 
bounded solution z(~) of the equation d z / d ~ =  
h(z). In view of (2.10) IIz(0)ll--1 which con- 
tradicts our assumption about the system (2.7). 

Lemma 2.1 obviously applies to system (2.1) 
with h ( ~ ) =  (Y2, Y3, - -X2y2), s = (1 ,4 /3 ,5 /3)  and 
r = - 1 / 3 .  The system d y / d x  =h(.p)  is equiv- 
alent to the single equation y " = - ½y2 for y = 
Yt- One can easily show that the last equation does 
not have bounded solutions. Although the func- 
tion f in (2.1) depends on a parameter c, it is clear 
that in a compact domain of y and c variables, 
the function g(fi) = (0, 0, c 2 -Y2) satisfies the con- 
dition of (2.5). 

For  c >> 1 change in (1.5) the variables 

z=y/(cf2), ~=x(cv~) 1/3. (2.11) 

Eq. (1.5) then becomes 

Lemma 2.1. Under the above assumptions the set 
of bounded solutions of (2.2) is uniformly bounded 
in the maximum norm. 

d3z dz  1 
+ = ( 1  - << 1 

( 2 . 1 2 )  
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or as a system 

d~ 
d--~ "~(Z2 'Z3 '~ (1 - -7"?) - -eT"2) '  = 

( 2 . 1 3 )  

Again, as in system (2.1), the set of the bounded 
solutions of (2.13) for e in a compact interval 
e E [0, e,] is uniformly bounded. 

Our next step is to show that the Conley index 
of the set of all bounded solutions of (2.1) is zero. 
Let us recall briefly (for details see [17]) some 
properties of this index. 

a) Conley's index is a homotopy type of a 
pointed topological space. 

b) For each isolated invariant set of a flow there 
is a corresponding index. 

c) The index of a disjoint union of isolated 
invariant sets of a flow is a sum of their indices 
(i.e., the homotopy type of the wedge of the corre- 
sponding pointed topological spaces). 

d) The index of an isolated invariant set does 
not change under a homotopy of the flow (pro- 
vided the invariant set remains isolated under the 
homotopy). 

e) The index of a hyperbolic critical point or of 
a hyperbolic periodic orbit is non-zero. 

The flow in (2.1) could be extended by a two 
parameter homotopy 

dy 
d x  = ( t -  - 

[0,11 (2.14) 

to 

d y  - c  2 
dx  = (Y2' Y3, - ~Ya z)- 

The last system does not have bounded solutions 
(see [17], p. 12). Denote by I( t ,  s) the set of all 
bounded solutions of (2.2). Again as in (2.1) I(t ,  s) 
is uniformly bounded (and thus isolated) for t and 
s as in (2.14). Since the index of I ( - c  2, 0) = ~ is 
zero, so is the index of l ( t ,  s). Note that for t > 0 
system (2.14) has two critical points YL = (2V~, 0, 0) 
.and Ya = --YL, which are both hyperbolic. Thus 
we have proved 

Theorem 2.1. Critical points or hyperbolic peri- 
odic orbits may not be isolated components of the 
set of bounded solutions of (2.14) for t > 0. 

Now we consider eq. (1.5) for large c or equiv- 
alently (2.13) for small e > 0. For e = 0 system 
(2.13) was firstly studied in [18] (see also [19] and 
[17]). Clearly it has a non-trivial bounded solution. 
Since there is Liapunov function L ( ~ ) =  z2z 3 - 
z l / 2  + z~/6,  the above solution connects the criti- 
cal points. Recently McCord [20] has shown that 
there is only one non-trivial bounded solution. 
Hence the solution is odd, i.e. z = Zl(X ) is an odd 
function. Moreover, Zl(X ) vanishes only at 0 and 
dza /dx (O ) < 0. It is then easy to show that the two 
dimensional stable manifold Mst(ZR) of the criti- 
cal point ~R = (--1,0,0) and the unstable two- 
dimensional manifold Mu(~L) of the critical point 
~L = --~a intersect transversally along the above 
bounded solution. We claim that the same results 
hold also for small e 4: 0. Namely, 

Theorem 2.2. There exists a constant e 0 > 0 such 
that for all [el < e0 system (2.13) has one and onl) 
one (up to translation) bounded solution ~(x; e) 
This solution connects the critical points ~L and 
za, Zl(X; e) is an odd function of x and vanishe., 
only at x = 0. 

Proof. The transversality implies that for small , 
system (2.13) has a bounded solution ~(x; e) whir  
is close to ~(x; 0) and connects the critical points 
Moreover we may assume that ~(0; e) = 0 and tha 
Y(x; e) 4:0 for x 4: 0. In order to prove uniquenes 
suppose by contrary that there is a sequence e, 
and corresponding non-trivial bounded solutio~ 
ft ,(x) and ~ ' (x )  of (2.13) so that ~" is not a shil 
of ~n. Since the above solutions are uniforml 
bounded, without loss we may assume that bot 
sequences £, and ~" converge uniformly on finil 
intervals to the solution ~(x; 0). As it follows fro~ 
lemma 2.2 below, fo r sufficiently large n the soh 
tions ~, and ~" connect the critical points ~L a~ 
~a and thus the corresponding unstable and stab 
manifolds intersect along two close trajectori~ 
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This, however, contradicts the transversality of the 
intersection for e = 0. Thus it remains to prove 

Lemma 2.2. Let ~ , (x)  be a sequence of bounded 
solutions of system (2.13). Suppose that ~ ( x )  
converges uniformly on bounded intervals to 

~(x; 0) as e = e, ~ 0. Then for sufficiently large n, 

lim~ ~ _~  ~ ( x )  = ~L = (1,0,0), lim~ _,~ ~ ( x )  = 

~R = ( - -  1 ,0 ,0 ) .  

Proof. First observe that for any neighborhood 
UR of ~R which is disjoint with ZL there exist 

e o > 0 and a neighborhood Ul{ c Up. of zv. such 
that for lel < e o any bounded solution of (2.13) 
which belongs to U~ for some x = x o will stay in 

U R for x > x o. Indeed, otherwise there exists se- 
quence e,--* 0 and corresponding sequence of 

bounded  solutions [ , ( x )  so that ~ , ( x 0 ) ~  R, 
~ ( x n )  ~ U R for some x ,  > x o and ~ , (x )  ~ U R for 
x o <_ x < x , .  By uniform boundedness of ~ ( x )  we 
may  assume that [ . (x~)  converges to ~, ~ R 3 \  U R. 
Clearly ~, belongs to the bounded trajectory 
~(x; 0). Note  that x~ -~ o¢ since otherwise ~, would 

be connected with ~R in backward direction by 
~(x; 0). Now,  leaving ~, by the trajectory 2(x; 0) 
in backward direction we should reach in a finite 

t ime T a small neighborhood U L of zL- By con- 
tinuity, for large n also ~,(x~ - T)  ~ U L. However 
x~ - T > x o for large n and therefore ~ ( x ~  - T )  

U~. Hence a contradiction. Now, for sufficiently 
small UR and e any solution of (2.13) which stays 
in U R in forward time will tend to ~a. We choose a 
corresponding U~ and a small e0, and similarly for 

the point 2L- Select T such that ~ ( - T ;  0 ) ~  U[ 
and 2 ( T ; 0 ) ~  U~. Then for sufficiently large n, 
2,( - T )  and ~n(T) belong to the above neighbor- 
hoods and thus ~ connects the critical points. 

Q.E.D. 

We conclude this section with the following 
observation: 

Lemma 2.3. Let .~(x) be a bounded solution of 
(2.1) such that y ( x )  has no limit as x ~ + oo(x 

- o o ) .  Then + t o ( - o o )  is an accumulation point 
of  the zeros of yl(x) .  

Proof. Indeed, otherwise y l ( x )  is of a constant 
sign for x greater than some x 0. The function 
L(f~) =y2 + y2 + y2y 2 _ 2c2y2 is then a Liapunov 

function of (2.1) for x > x 0 since d L ( ~ ) / d x  = 
2yly~,  and therefore ~ (x )  has a limit at + to. 

3. Periodic and quasi-periodic solutions for c << 1. 

Consider eq. (1.5) for 0 < c << 1. As in [9] we are 
looking for periodic solutions with frequency ~ = 
1 + 0(c) .  It  is convenient to rescale the variables 

so that the period is independent of c. Introduce 

= WX, 7. = y / / w  3. (3.1) 

Then 

_ _  z 2 d3z dz  = e2 _ __ (3.2) 
d ~  3 + )k-~---~ 2 ' 

where 

e = c / w  3, X = w  - 2 = l + t ~ ( e ) .  (3.3) 

Periodic solution of (3.2) with period 2~r could be 

found by means of a power expansion in e 

Zper = ~ Z.(tZ)e n, ~= 1 + ~ Xne". (3.4)  
n = l  n = l  

Substitution of (3.4) into (3.2) gives 

z['" + z{ = 0, z ; "  + z~ = 1 - XlZ ~ -- 2? / /2 ,  (3.5) 

z ; " '+  z~= - h x z  ~ - h a z ~ - z l z  2, etc. 

Thus z I = b i t  -t- all  sin ~ + b u cos ~. Shifting ~ one 
may  always assume that b l l  --- 0. In order to avoid 
resonance in the equation for z 2 one should as- 
sume that hi = 0, bi t  a l l  ----- 0 and b2o/2 + a21/4 = 
1. Here  there are two possibilities. If a u - -0  then 
b i t  = 5: v ~  and we recover the stationary solution 
z - - 5 : e v ~ .  If  b i t - - 0 ,  then a x l =  5:2 and as it 
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follows from consequent equations, equation i~(z,/~, e )=  0 could be solved as 

z , ( ~ )  = ~ a,k sin kS, (3.6) 
k = l  

so t h a t  Z p e r ( ~ )  is an odd function. The solutions 
with a n = + 2 an a n = - 2 are related by the shift 

--, ~ + ~r. Let us select aal = - 2  so that for small 
e > 0, z'(0) < 0. The first two terms of the expan- 
sion are 

Zpe r = - 2esin ( - {e 2 sin2( + 0 ( t 3 ) ,  

)t = 1 + e2/12 + O(e4). 
(3.7) 

Pz-=~= ~ a ,  s i n , ~ +  ~ b ,  c o s n ~ = f ( b 0 ,  a l , t ,  
n = 2  n = 2  

= f ~ ( b  0, a , ,  ~) +fb(b0,  aa, / t ) ,  (3.11) 

where f~ represents the first sum in 2 and fb the 
second one. Note that b0, a x and /, enter F only 
through quadratic terms. Therefore 

d f ( 0 )  = 0. (3.12) 

Next, the m a p / ~  vanishes for all constant z = b o. 
Therefore 

Actually all X2,+1 = 0 and a,k = 0 if n - k is odd. 
The expansion in (3.4) could be justified rigorously 
using the LiapunowShmidt  reduction. Namely, a 
periodic solution of (3.2) with period 2~r may be 
expanded as 

zp¢~(~) = b o + a 1 sin 

+ a, s inn~+ b, cos n( . 
n ~ 2  

(3.8) 

(Shifting ~ if necessary we may assume that there 
is no cos ~ in the expansion.) Let H be the Hilbert 
space of functions as in (3.8) with scalar product 
(u,  v) = fo2"(u '"~'" + u6)dx and H 1 = L2[0,21r ]. 
We consider the mapping 

F : ( z , / x , e ) ~ z ' " + ( l + l x ) z ' - e  2 + z 2 / 2  (3.9) 

as a mapping from H (9 C (9 C into H v Clearly F 
is differentiable and even analytic. Denote b y / f  c 

H 1 and /-)1 c H I the subspaces spanned by sin n(, 
cos n~, n ~ 2 and let P: H ~ / 4 ,  PI: H1 ~/~1 be 
the corresponding orthogonal projectors. Consider 
the map 

F = P l o F :  H ~ C ( g C ~ / ) I .  (3.10) 

Note  that the differential dF(0) at zero when 
restricted to the subspace /-) is an isomorphism. 
Thus the implicit map theorem applies and the 

f (bo,O,  #) = 0. (3.13) 

Finally, F(z(~),  p.t, ~) = F ( - z ( - ~ ) ,  IX, e), and 
hence for b0 = 0 

fh(O, a l , /z)  -- O. (3.141 

In view of (3.13) and (3.14) and the analyticity of .  

f~( bo, al, ~ ) = a l f ' (  bo, a 1, p.t ), 

fb( bo, al, I~ ) = a~bof~( bo, al, bt ), 
(3.15 

where the maps fd and fh' are analytic. By (3.12 
also 

f ' ( 0 )  -- 0. (3.16 

Now consider the remaining equations ( I  - P1)°~ 
= 0. They are 

oo 

pa I - l ~ a.an+l ~ ~.. b,,bn+l=O (3.1~ 
n = l  n = 2  

for cos ~ component,  

OQ 

--boal-- I ~.. ( a , + l - a , - 1 ) b , = O  (3.11 
n=2 

for sin ~ component  and 

2 - e 2 + ¼  E a , + ¼  b~+ 1 2 _  ~b o - 0 (3.1! 
n = l  n = 2  

for the constant component. 
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If a 1 = 0, by (3.13) and (3.19) we obtain the 
trivial solution z = eV~-. Now let aa be small and 
different from 0. We will show that b o = 0. Indeed, 
otherwise divide (3.18) by boa l. Then 

' ' b = 0 ,  1 + ~a 1 an+ 1 - a n _  1 
I . n - 2  

(3.20) 

where a~ = a,,/a 1, b~, = bo/alb o. In view of (3.15) 
the expression in the brackets in (3.20) is an ana- 
lytic function of a 1, b 0 and ix. However, a~ is 
small and thus (3.20) is impossible. It then follows 
from (3.14) that all b, = 0. Then from (3.17) we 
recover 

IX = ½a 1 ~ a',,a'+1 = alf~(al,  ix), (3.21) 
n = l  

where f~ is an analytic function. By the implicit 
function theorem (3.21) could be solved for #: 

IX = a l % ( a l ) .  (3.22) 

Finally, eq. (3.19) is used to compute a 1, 

(3.23) 

Since by (3.16) E,_2(a,)~ , 2= O(a~) we get for 
small e 

a 1 = + 2 e  + 0 ( a  3) (3.24) 

and then by (3.22) and (3.11) recover z and 3  ̀= 1 
+ IX as analytic functions of e. 

Using a computer, we have calculated the first 
100 terms of the expansion in (3.4). The radius of 
convergence is 

[el < R - -  3.558. 

By (3.3) one can also reconstruct the values of to 
and c corresponding to e. The to, c curve is shown 
on fig. 1. The maximal c =  cm~,~ 1.266 corre- 
sponds to to = 0.84. The frequency too = v~-/2, as 
mentioned in the Introduction, is maximally 

amplified by the linear terms in (1.1). The corre- 
sponding value of C2 = 1.17 in the graph is close to 
the mean propagation velocity c02 -- 1.2 of a turbu- 
lent flame as calculated by the numerical experi- 
ment in [6]. The portion of the to, c curve on fig. 1 
extending from Po through P1, P2, P3 to Q corre- 
sponds to the above domain of convergence [eJ < 
R. For  e close to R one cannot rely any more on 
computations based on 100 terms of the expansion 
in (3.4). To circumvent this difficulty, we ap- 
proximate (1.5) by a difference scheme in (4.1) and 
compute instead the periodic solutions of the 
scheme. The entire graph on fig. 1 is actually based 
on such computation with a step size Ax in (4.1) 
being l / N  where l = l ( c )  is the period of the 
solution and N = 120 is the number of grid points 
in the period. The periodic solution is found by 
following the fixed point of a corresponding 
Poincar6 map, while the fixed points are computed 
using Newton's method. One should note that an 
expansion as in (3.4) exists also for the periodic 
solution of the difference scheme. We found that 
for N =  120 the periodic solutions for the dif- 
ference and differential equation in the domain 
PoQ differ by less than 0.5%. The points Pi, P/ on 
the graph are parabolic points, i.e. the eigenvaiues 
of the Jacobian of the Poincar6 map at these 
points are 3 ` 1 = 3 ` 2 = - 1  or 3`1=3`2=1-  At 
P1, P2,Ps,P6,Ps',Pg the eigenvalues are 3`x=3`2 = 
- 1 while at P3, P4, P~ and P~ they are 3,1 = 3  ̀2 = 1. 
In all cases the Jacobian has a single eigenvector. 
At Pv the periodic solution coincides as a double 
loop with the one at P1 and follows (as a double 
loop) the branch P1P0 until the endpoint Ps! Thus, 
for the same values of e the frequency to at the 
branch PvP8 is half the one at the branch P1P0. In 
the neighborhood of P4 we were surprised to find 
another fixed point of the Poincar6 map corre- 
sponding to non-odd periodic solution. This solu- 
tion branches out at P4 and continues through the 
points P~,P[,P~,P~. By symmetricity, - y ( - x )  
would be another non-odd solution. The values of 
to and c at the parabolic points appear on table I. 
Our  computations show that the variable e = c/to 3 
grows monotonically as one moves along the to, c 
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Table I 
The values of c and w at the parabolic points  

Parab. points  P1 P2 P3 P4 P5 P6 P7 P~ P[ P~ P~ 

c 0.3195 1.2660 1.2664 0.5982 0.5796 0.3407 0.3195 0.606 0.9165 0.917 0.8365 
w 0.9961 0.8424 0.8372 0.5548 0.5502 0.5012 0.4981 0.554 0.479 0.477 0.393 

Eigenvalues - 1 - 1 I 1 - I - I 1 - 1 - 1 1 1 

curve from Po towards Q and reaches its maximum 
at the point Q. Another experimental observation 
is that the coefficients h ,  of the expansion in (3.4) 
are positive. Hence at Q, e equals the radius of 
convergence R and d h / d e  is infinite there. We 
need the above arguments since a direct computa- 
tion of the singular point of h(e) using, a reason- 
able number of terms in (3.4) is too inaccurate. 

Our next goal is to study the Poincar6 map 
associated with the periodic solution Zpe r in (3.7). 
Change in (3.2) the variable 

z ---." z / e  (3.25) 

and rewrite the corresponding equation as a sys- 
tem 

d~ 
d--'-~ = f ( z '  e) = ( z ' ,  z " ,  e - e z2 /2  - X( e )z ' ) ,  

Z =  (Z  Z ' ,  , z" ) .  (3.26) 

The plane z " =  0 intersects the periodic trajectory 
zper at least at two points ~o = (0, z~r(0),0) and 
zl = (0, Z~r(~r),0 ). (We use the old notation zp~ 
for the rescaled Zp~r/e ). Denote by R 2 the plane 
z ' =  0, by D 2 c  R 2 a small disk centered at ~0 
and by ~ :  D 2 ~  R 2 the corresponding Poincar6 
map. Observe that the flow in (3.26) is volume 
preserving since div f(~, e) = 0. Hence the map 
preserves the measure (e - ez2 /2  - ~ ( e ) z ' ) d z  dz ' .  

r < As far as Zp~(0) 0 this measure is positive in a 
neighborhood of Zo. For small e, z ~ ( 0 ) =  - 2  + 
O(e) < 0. Our computations show that z~¢~(0) re- 
mains negative along the whole curve on fig. 1. 
Besides the volume preservation, the flow in (3.26) 
is invariant under the change of variables 
(z, z', z")  ---, ( - z ,  z', - z"),  ~ ~ -~ .  As a result 

satisfies the identity 

j ~  = ~ -  1j, (3.27) 

where J = j - l :  R 2 ~ R 2 maps the pair (z, z ' )  into 
( - z ,  z'). Consider the differential d~(~0)  of the 
map ~ at 2o. Clearly, 

I d e t d ~ ( ~ 0 )  I = 1. (3.28) 

In order to compute d~(~0)  one should solve the 
linearized equation 

z " + • ( e ) z ' =  -eZperZ. (3.29) 

Expand 

z = z 1 + ez 2 + d~(e2 ). (3.30' 

Then, 

Z l ' " + z { = 0 ,  z f f ' + z ~ = 2 s i n ~ . z , ,  (3.31 

so that 

z = a ~ ( 1 -  e,  s i n , )  + a 2 ( s i n ,  + e, + e ~ )  

cos 2~ \ 
+ a 3 ( c o s ~ + e ~ ] + O ( e 2 ) .  (3.37 

Now we impose conditions on a 3 and ~ = 2rr + 
so that 

"(0) = O, 

z;~,(2~r + z~)  + z"(27r + z~)  = 0(A~2). (3.3: 

Thus 

a3 = - - 2 a l e  + ~ ( e 2 )  (3.3 
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and 

A~ = - z"(2~r ) / (  Zp'/ (2~r ) + z ' " (2~r ) )=  O(e2). 

(3.35) 

The transformation d~(~0) is defined by 

d ~ ( e o ) :  (z(O), z'(O)) 

(z(2~r) + A{z~r(0 ), z'(2~r) + A{ z;'[(0)). 

(3.36) 

An easy computation shows that 

d.~(~o) = / +  2,re( 01 1) + 0(e2). (3.37) 

For small 6 the eigenvalues of d~(~o)  are 

h L 2 = e  +-'"°<~), ao(e)=2~re+d)(e2),  (3.38) 

i.e. they are complex conjugate and on the unit 
circle. Thus for small e the periodic solution is 
elliptic. This domain of ellipticity extends until the 
point P1 (see fig. 1). The other elliptic domains are 
P2P3, P4Ps, PrP7 and P7P8 (the last one coincides 
with PoPD. At the bifurcating branch of the non- 
odd periodic solution the elliptic domains are P4P~ 
and PIP4. In the elliptic regions one would expect 
the existence of nested invariant tori surrounding 
the periodic orbit. In order to prove it rigorously, 
one should verify the conditions of Moser's twist 
map theorem (e.g. see [13], pp. 225-228). First 
recall that the map ~ depends analytically on z 
and z' in a small neighborhood D E and preserves 
the positive measure ( 6 - ~ ( 6 ) z ' - 6 z 2 / 2 ) d z d z  '. 
Next we should compute the Birkhoff normal form 
of ~ (see [13], pp. 158-159). For small 6 this 
could be done analytically. Change the variables 

~Z=Z,  ~Zt=Zt--Z;er(O). (3.39) 

In the new variables the Poincar6 map ~ depends 
analytically on 8z, 8z' and ~ in a neighborhood of 
0. Our computations (see the appendix) show that 

~ (  8z, 8z'; e) = d~ (Sz ,  8z'; e) 

+d2~(Sz ,  8z'; e) + O(e2), (3.40) 

i.e. the higher differentials with respect to 8z and 
8z' are of order 0(62), and 

d ~ (  Sz, 8z'; e) 

= [ / + 2 ~ r e ( O  1 1)+O(e2)](fizZ,), (3.41) 

d2,~(Sz, 82'; e) 

j 

Then a quadratic change of variables (see the 
appendix) 

(3.42) 

1 8z = ~ ( . -  ~) + ¢(6), 
(3.43) 

8 z ' =  { (u  + f i ) -  ~6(u 2 -  6ufi + ~2) + O(e) 

brings ~ to the form 

~ :  (U, U) ~ (Ul, Ux), ul = ei 'u + ez¢(lul4), 
(3.44) 

where 

O~ = 0/0(6  ) + O/1(6) UU , 0/0(6 ) = 2q7"6 + 0 ( 6 2 ) ,  

3rr ( 3 . 4 5 )  
Oil(E) ~- -- - ~ - E + ¢ ( E 2 ) .  

Thus for small ~ > 0 

al(e  ) • 0  and nao(e )*O(mod2~r) ,  

for 1 <n_< 4, (3.46) 

and the conditions of the twist map theorem have 
been verified. The result implied by the theorem is 
as follows: 

There exist numbers r o > 0 and e o > 0 such that 
for any e ~ (0, %) and any o~ ~ (a0(e), ao(e ) + 
al(e)r  2) satisfying infinitely many inequalities 

[ ~o P I > flq-" (3.47) q - 

with some positioe fl, • and all integers q > 0, p, 
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there exists an invariant curve S of ~ of the form 

S: 8z=Sz(op) ,  3z '=dz ' (ep) ,  z " = O ,  q ~  R. 

(3.48) 

The functions 8z(~p) and ~z'(~p) are periodic with 
period 2rr and depend analytically on % The curve 
in (3.48) is a perturbation of order re of a circle 

8z = - r  sinqo, 8z' = rcosq~, 

r=[-~-( 1-~]'/~2~r17 ]] (3.49) 

and the map induced by D ~ on the curve is 

¢o --, + 0,. (3.5o) 

The solutions of (3.26) which originate at the 
curve (3.48) form a two-dimensional torus ~Y" and 
for - oo < ~ < oo each trajectory on the torus is 
everywhere dense in 27". We shall show that the 
above solutions are quasi-periodic functions of ~. 
Let .A/" be a small tubular neighborhood of the 
periodic solution ~ ( ~ ;  17). One can parametrize 
~V" in the longitudinal direction by a parameter 

~ [0, 2 ~r ] so that 
a) e i# is an analytic function of ~ V "  and 

17 ~ [ - 17 0 ,  17o]; 

b) # = - 0  (mod 2~r) at the section z ' - - 0  in a 
neighborhood of z0; 

C) ~('~'per(~; 17)) = ~ ~ [0,2~r]. 
To do this, one could for example define a reper 

el(,~; 17) = d£pe~(~; 17)/d~, 

e2(~; 17) = d2~p~(~; 17)/d( ~, e 3 = e~ X e~. 

For small 17 these vectors are independent. If ~(0) 
is a unit vector normal to the plane z " =  0 and 
fi(O) = ~,ai(17)ei(O; 17), define 

17)= 17). 

Now let ~ satisfy (c) and be constant along the 
sections 

Then for small [171 and ~A/', 0 is defined uniquely 
and satisfies the above conditions. Now we intro- 
duce on 3 -  global analytic coordinates (% #), qo 
[0,2~r], #~[0 ,2~r ]  such that the trajectories of 
(3.26) on 9-  are described by 

tin = % + (~o/2w)va(mod2w).  (3.51) 

Along a trajectory, parameters ~ and # are related 
by the equation 

d~ 17), drp d---~ = g(O,  ¢p; ~-~ = to/2~r, (3.52) 

where g(O, % 17) is analytic in ~, ¢p and 17 and 
periodic in ~, ~0 with period 2~r. In view of the 
conditions in (3.47), ~ could be written as 

~ =  fl0# + h0(v~), (3.53) 

where /30 = (2~r)-2f02~f02"g(v~, % 17) dO drp and 
ho(#  ) is a quasi-periodic function of the class 
Q(1, ~0/2~r) (see [13], pp. 258-264). Note that for 
small ,A/" and 17, g(O, cp; 17)--1 and d ~ / d #  is 
bounded away from 0. Thus the inverse function is 

= flol~ + hl(~ ), (3.54) 

where hl(~ ) is quasi-periodic and belongs to the 
class Q(flo 1, flo ko/2 ~r). Since ~ is a periodic func- 
tion of % #, the trajectory ~(~) is a quasi-periodic 
function of ~ of the class Q(flo 1, flol~/2~r). 

Finally we will show that the integral 

"r=0 
(3.55) 

is quasi-periodic too.Consider the invariant curve 
in (3.48). We may assume that 8z(0)= 0. As il 
follows from (3.27), the curve 

( -  (3.561 

is also invariant under ~ .  By uniqueness ~z(no~ 
= - S z ( - n t o )  and 8z '(nt0)= 8 z ' ( - m o )  for all J 

Z. Hence 

(Zr--,~per(~; E ) ) ' n (~ ;  17)~-~0. ~Z(qO)= --~Z(--Cp), ~Z' ( lp) '~-~Zt ( - -~) .  (3.57 
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Let ,~(~) be a trajectory of (3.26) which originates 
(when ~ = 0) at the point (~z(qg), 6z'(q0), z" = O) 
and let ~'(q~) be the value of ~ as the trajectory 
reaches the point (8z(q~ + to), 8z'(q~ + to), z"  = 0). 
Denote g(ep)= f~<~)z(~)d~. Clearly, g(q~) is an 
analytic function of tp with period 2~r. Observe 
that ( - z ( - ~ ) ,  z ' ( - ~ ) , - z " ( - ~ ) )  is a trajectory 
of (3.26) which connects the points ( 8 z ( - q o -  
to), 8z'(-q~ - to), z " =  0) and (Sz(-q~), 6z'(-~p), 
z"  = 0) as ~ changes from - T ( ~ )  to 0. Hence 

g ( - ~ o - w )  = f o  - z ( - ~ ) d ~ =  -g(~o),  
-,r(~o) 

and consequently 

fo2~g(qo) dep = O. (3.58) 

As a result of (3.58) and (3.47) the sums 

N 

E g(~P + nto) (3.59) 
n ~ 0  

are uniformly bounded. This implies that the aver- 
age 

lim z(,r) d'r = O. (3.60) 

Hence w(~) is a quasi-periodic function of the 
class Q(flo 1, flolw/2rr). Recall that the function 
w(~) is proportional to v(x) in (1.3). Thus, we 
have proved the existence of slowly propagating 
quasi-periodic flame fronts (in Sivashinsky's 
model). These waves have the basic frequency of 
order 1, and a modulation with an incommensura- 
ble frequency of order w/2~r. 

Moser's twist map theorem tells us that the 
relative measure of the invariant tori in ,/~ tends 
to 1 as ,W" shrinks to the periodic orbit. The 
domains bounded by each pair of (eoelecial) tori is 
invariant under the flow. Besides the quasi-peri- 
odic solutions there is also an infinite set of peri- 
odic solutions which is everywhere dense in , ~ .  
The frequency w of periodic solutions (which is a 

rational number) lies in the range (ao(e), ao(e ) + 
a~(e)r~). It is quite possible that for some periodic 
solutions the average in (3.60) is non-zero and the 
corresponding integral in (3.55) has a non-zero 
slope. 

4. Numerical experiments 

In order to gather more information about the 
set of bounded solutions of (1.5), especially for 
intermediate values of c, we have approximated 
(1.5) by a difference equation and solved it on a 
computer. The difference scheme employed was 

(Yj+3 - 3Yj÷2 + 3Yj+I -Y j ) /Ax3  

+ ( yj+ 2 - Yj+ x) /Ax = c2 -  ~( Y?+ 2 + Y?~ x), 

j ~ Z, (4.1) 

where yj is the value of the grid function at 
xj =jAx.  The scheme in (4.1) maintains the sym- 
metry of the equation in (1.5) in the sense that it is 
invariant under the transformation 

j + - j ,  y + - y .  (4.2) 

We have investigated mainly the odd solutions of 
(4.1), i.e. those which satisfy the initial conditions 

Y0 = 0 ,  Y l = - Y - 1  = A x ' s ,  (4.3) 

where s is a parameter. The values of yj, j > 2 are 
then calculated by (4.1) until lyjl exceed a certain 
large number Ym~. Denote by xm~(s) the point 
xj = j A x  where for the first time lyjl -Ymax" Recall 
that for c E [0, Co] all bounded solutions of (1.5) 
lay in a strip [y[ < Ym~ where Ym= depends only 
on c 0. The same is true for eq. (4.1). Thus for 
bounded solutions Xm~,(s ) = oo. It was a surpris- 
ing empirical observation that with a few excep- 
tions all local maxima of Xma~(S) have been 
infinite. Hence a sequence s~ < s 2 < s 3 with non- 
monotone Xm=(Si) would imply that for some 
s ~ Is 1, s3] the corresponding solution is bounded. 
Of course one cannot be sure that there is only one 
bounded solution. Hence the interval was subdi- 
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vided into, say, 100 subintervals, and if no ad- 
ditional maxima appeared, it was assumed that 

there is only one bounded solution. Then a Golden 
Section method for a univalent function was em- 
ployed in order to converge to above s. As sug- 
gested by the theory in sections 2 and 3, only 

solutions connecting the critical points were iso- 
lated. Since these solutions are asymptotically un- 

stable, in order to reach Xm~ x ~ 100 the double 
precision on CDC (i.e. 30 decimal digits) was 

required. We set Ymax = 10, AX ~ 0.05 and consid- 
ered c in the interval [0,4]. The results are as 
follows. For  c > c 1 -- 1.283 problem (4.1), (4.3) has 
a single bounded solution. This solution corre- 
sponds to s < 0, vanishes only at j = 0 and tends 
to the critical points. We followed this solution 
until c = 0.2. As c decreased, the above solution 
did not change its shape, i.e. vanished only at 
j = 0, until we reached c- -0 .3 .  Then additional 
zero point  evolved which split in two as c de- 
creased below 0.3. At c = 0.2 our solution was 
almost  unseparable from an invariant tori. At c = 

c~ = 1.283 a bifurcation occurs. A new bounded 
solution y)X) with a slope s 1 > 0 is born. This 
solution has exactly one zero for j > 0 (i.e. one 
change of sign) and connects the critical points. 
For  c < c~, y)l) splits into two similar solutions 

y)l) and yj-1) with slopes s 1 and s_ v At c = c z ~" 
1.274 a second bifurcation occurs where another 
solution y)2) with a slope s 2 < 0 is formed. For 
c < C2, #2) splits into yj2) and y)-2) with slopes 
s2, s 2 < 0 .  Both y)Z) and y)-2) have exactly 2 
zeros in the domain j < 0. As c decreases, at 

c = e 3 -- 1.2679 and c = c 4 --- 1.2673 solutions y)3) 
and y)4) are formed with correspondingly 3 and 4 
zeros in the half line j < 0. On the other hand eq. 
(4.1) like (1.5) has periodic solution. Namely, for 
A x ( 0 ) =  2,r/N, N integer, there exist analytic 
functions Ax = Ax (e), c = c(e) and periodic grid 
func t ion  yfper)(e), j ~ l with y(per)(e) =y}+P%)(e) 

which satisfy (4.1). We have computed, the above 
functions for N = 120. The graph of c(e) versus 
the discrete frequency ~o(e)= 2~r/(NAx (e)) is al- 
most  the same as for the periodic solution of (1.5). 
In particular, the maximal value C~x of c(e) is 

1.2664 instead of 1.2662 for the differential prob- 

lem. Our computat ions at c --- Cm~ x with the corre- 
sponding Ax = Ax (e) --- 0.0625 show that the set 
of odd bounded solutions of (4.1) consists of two 

sequences (y ) " )}  and ( y ) - " ) } ,  n = 0 , 1 , 2 , . . .  with 
slopes s ,  and s n and a periodic solution yj(r~o. 

The functions y)n) and y ) - " )  have n zeros (i.e. 
changes of sign) in the domain j > 0, and tend to 

the critical points +Cma~'v~-. The slope s ,  is 
positive for n odd and negative for n even. The 
sequences s2, and sz,+a, n >  0 are decreasing, 

S2n,  S2n_ 1 are increasing. The limits Sev = 

l im S2n = l im s _ 2 ,  and  Sod = l im s2,+1 = 
lim s_2 ,_  a are the slopes of the periodic solution 
y(per) corresponding to Cm~ x at j = 0 and at j = 
N/2.  The functions y)2,) thus tend to yjpeo while 
y)2,+1) tend to ySP+~/2 . The above statement is 

indeed a conjecture which is based on actual com- 

putat ion of yS-+") for Inl < 2 0  and x i < 8 0 - 9 0 .  
On an interval 0 < x < 80-90 we observe about 
20-25 local extrema of the function y)"). Note 

that the condition Xm~x(S)> 90 sometimes de- 
termines s up to 25 significant digits! Based on the 
above results we also conjecture that there is 
sequence of bifurcation points c, which tend, 
monotonical ly to Cm~ ,. At e = c, the solution y~" 
is born  and splits into y)") and y}-")  as c de  
creases beyond c,. On fig. 2 the solutions y~0) 
#1), # - , ) ,  # 3 ) a n d  # p e r ) a t  C=Cm~ x are dis 

played. We followed y i(°) until c = 0.2 and y j -2  
and y)-4) until c = 0.3 (see figs. 10 and 11). Th, 
solution yj-4)  disappeared somewhere betweel 
c = 0.3 and c --- 0.295 while yj-2) disappeared be 

tween c --- 0.295 and c = 0.293. We conjecture tha 
each solution y)") exists until some c~. At c = 
c~, yJ") becomes a limit of a sequence of bounde, 
oscillating solutions and disappears for c < c~. 

As c decreases beyond Cm~ x -- 1.26644, there is 
sudden change in the set of bounded solution. Tlz 
periodic solution splits into two. The elliptic one: 
surrounded by a thin invariant torus. As c d l  
creases f rom c ~  to c -- 1.26603 at the parabol  
point  Pz (fig- 1), the thickness of the maximal tort 
measured by  the slope s first increases from 0 1 
2 x 10-3 and then decreases back to 0. By the~ 
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Fig .  2(a)  c = Cma x --- 1.266,  a s y m p t o t i c  s o l u t i o n s  yt0) ,  y O ) ,  y ( - 1 )  a n d  y O )  (b)  c = Cmax, c u r v e s  1, 2, 3 r e p r e s e n t  the  B u n s e n  f l ames  

c o r r e s p o n d i n g  to  t he  so lu t i ons  y(0),  y O ) ,  y(3). (c) c = Cmax, c u r v e s  1 a n d  2 c o r r e s p o n d  to the  so lu t i ons  Y p e r  a n d  y(3). 

rem 2.1 the hyperbolic periodic solution may not 
be isolated f rom other bounded solutions. Denote 
by  I the set of slopes s corresponding to the 
bounded odd solutions of (4.1). At c = 1.2663 (i.e. 
between the points P3 and P2) the set I is as 
follows. First, I splits into two parts I 1 and I2, 
where I 1 is concentrated near s = -3 .0275 and I 2 
near  s = 1.36. These are approximately the slopes 
of  periodic solutions at ~ = 0 and ~ = rr. The lower 

bound of 11 is s o = - 3 . 1 5 6 7 ,  the upper bound is 
s 2 - - - 3 . 0 1 1 1 .  These slopes correspond to solu- 
tions y(0) and y(2) above. The slopes s of odd 
solutions which lie in the invariant torus form 

two intervals ,/1 c 11 and J2 c 12, where .]1 -- 
[ -  3.0266, - 3.0247]. The set I x \ I n t ( J x )  consists 
of  a Cantor  type set K 1 and a discrete set D 1. The 

solutions corresponding to s ~ K 1 are oscillating 
and presumably  nonquasiperiodic (we computed 
about  20 oscillations). The solutions corresponding 
to s ~ D 1 are asymptotic (i.e. connect the critical 
points) and are isolated. The set of the limit points 
of D 1 is exactly K 1. Thus, all oscillating (odd) 
solutions f rom K 1 are limits of asymptotic solu- 
tion with increasing numbers of zero. The set 12 
has a similar structure. Of course our claim is a 
conjecture based on numerical experiments. We 
are scanning a certain interval of slopes s with an 
increment  As and are looking for local maxima of 
Xmax(S ). Suppose they a r e s  1, s2 , . . . ,  s, .  If  As  is 
sufficiently small we usually did not " jump  over" 
such maxima.  Then for each s i the neighborhood 
(s  i - As ,  s i + A s )  is scanned with smaller As1,  say 



102 D. Michelson / Steady solutions of the Kurarnoto-Sivashinsky equation 

As 1 = A s / 4 0 0 .  If no additional maxima were 
found, we concluded that there is a unique max- 
ima in the above interval which corresponds to an 
asymptotic solution. Additional scannings and 
convergence to the maximum always supported 
this conclusion. If, however, new maxima were 
found, their distributions on a smaller scale re- 
peated the distribution of s 1, s2 , . . . ,  s,. 

The picture described above does not change 
qualitatively until the invariant torus disappears as 
c reaches the point I72. For values of c between P2 
and P4 both odd periodic solutions are hyperbolic. 
Here the set I consists of a Cantor type set K and 
a discrete set D of isolated asymptotic solutions. 
In general we did not investigate the non-odd 
bounded solution. However, the presence of non- 
odd periodic solutions of the branch PsP#P~ 
considerably effects the shape of odd bounded 
solutions. For  c between P# and P~, i.e. 0.83645 < 
c < 0.91695 the picture is the most interesting. On 
fig. 3 one can see the projections of 4 periodic 
orbits on the y, y '  plane for c = 0.85. The reflec- 
tion y ~ - y ,  y '  ~ y '  would provide two more 
non-odd periodic solutions. On figs. 5a-5d we 
have displayed a typical odd bounded solution for 
c = 0.85 (x > 0). The corresponding flame front 
v (x )  on fig. 5d looks completely chaotic. Indeed, 
numerical experiments with the P.D.E. (1.1) in [6] 
resulted in flame fronts of the above type. More- 
over a closer look on fig. 5a reveals that the 
trajectory follows closely the periodic orbits for 
the same value of c. Indeed, three loops around 

the critical point y = - ~ = 1.2, y '  = 0 are very 
close to the periodic solutions 3 and 4 on fig. 3 and 
to the one on fig. 4d (corresponding to the point 

Pff). The large cycle lies near the odd periodic 
solution # 1 on fig. 3 and four loops around the 
right critical point follow closely the reflected non- 
odd period solutions. From fig. 5c one can under- 
stand the order in which the loops are followed. 
The small oscillations near - 1  correspond to the 
left centered loops, the one near 1 -  to the fight 
centered ones and the simple wave at 88 < x < 95 
corresponds to the large symmetric cycle. On fig. 
6a we observe another odd bounded solution for 

2-- 

l 

-2" 

O" 

y' 

-I- 

- 3  , ~ , , i , i , , i , , , ~ i ~ t , , i t , , , i 

-3 -2 -I 0 ~ 2 

Y 

Fig. 3. Periodic solutions at c=0.85: 1-odd solution (right 
branch of the ~ -c  curve), 2-odd solution (left branch), 3-non- 
symmetric solution (right branch), 4-nonsymmetric solution 
(left branch). 

c = 0.8. Observe that the PJP~ curve on fig. 1 
crosses the level c = 0.8 only once. Hence there is 
only one non-odd period solution and its reflec- 
tion, and as a result the trajectory is more trivial. 
The odd period solution # 1  is replaced here by 
# 2 .  On fig. 6b an odd asymptotic solution (for 
x > 0) is displayed. This solution is almost undis- 
tinguishable from the one on fig. 6a (their initial 
slopes differ by 3 x 10-14!) until it starts to spiral 
around the critical point. As we already men- 
tioned, in the hyperbolic domains there is a Cantor 
type set of slopes corresponding to odd oscillating 
bounded" solutions. These bounded solutions fol- 
low different combinations of the few periodic 
orbits. In order to understand which combination., 
are possible one should study the Poincar6 map # 
acting in the plane y " =  0. The periodic orbit., 
correspond to the fixed points of ~ .  In the hyper. 
bolic case, there are one dimensional stable an( 
unstable manifolds originating at these points. Ap 
parently these manifolds intersect at heterocliniq 
or homoclinic points. In the last case it is wel 
known (e.g. see [15]) that there exists an invarian 
Cantor  set in the plane y "  = 0 so that ~ acts on i 
as a Bernoulli shift. 

We mentioned in the introduction that th 
branch P4P~ on fig. 1 actually continues beyon 
the point P~ and terminates as ~ ~ 0 and c -  
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Fig. 4(a) Soliton for c = i n f C  s ~-0.835.(b) Soliton for c=0.848.  (c) Soliton for c =  sup Cs =0.86. (d) Non-symmetric periodic 
solution at the point  P~(c = 0.866). (e) The flame fronts 1, 2, 3, 4 correspond to figs. 4c, 4a, 4d, 4b. 
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Fig. 5a. One odd "chaotic" solution for.c = 0.85 (only the part 
of trajectory for x >_ 0 is shown). 

Fig. 5b. The same trajectory as in fig. 5a projected on the y'y" 
plane. 
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Fig. 5c. The same as in fig. 5a in the x, y plane. Fig. 5d. Flame front v(x) corresponding to fig. 5a. 

---0.86 at the "sol i ton"  displayed on fig. 4c (the 
n a m e  " so l i ton"  is used because y(x)  tends to the 

same limit cx/2- as x ~ _+ o0). No te  that  the eigen- 

values hi,  h2 of  the Jacobian d ~  at the periodic 
orbi t  tend at the same time to oo and 0. Because of  

it we could  no t  reach beyond  the point  P~. One 
should  ment ion  here an impor tant  work of 

Tzve lodub  [8] which only recently came to our 
at tent ion.  Us ing  an entirely different method he 
ob ta ined  the periodic solution for the port ions P0Q 

and  P4P~ of  fig. 1 (i.e. without  the QP7 part)  and 
fol lowed the PaP~ branch until o~ = 0.06. He  also 

found  the soli ton on fig. 4c. It  turns out  that  this i: 
no t  the only  soliton-like solution. There are ii 

effect two countable  sets of values c ' ~  Csc  
[0.835,0.86] and c ~ C~' c [0.48,0.50] for whic] 
soli tons exist! The curve in fig. 4a corresponds t, 

c = inf Cs = 0.835, the one of fig. 4b to c = 0.84 

and  on  fig. 4c to c = sup C s = 0.86. The respectiv 
obl ique flame fronts are shown on fig. 4e. On  fig. 
the two solitons for c = inf C;  -- 0.4845 and c : 
sup C~' -- 0.49227 are displayed. Of  course a refl~ 
t ion with respect  to the y = 0 axis produces anoth, 
sol i ton which tends to the right critical point.  L, 
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Fig .  6a .  O n e  o s c i l a t i n g  s o l u t i o n  f o r  c = 0 .8 .  
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F i g .  6b .  A n  o d d  a s y m p t o t i c  s o l u t i o n  ( t h e  h a l f  c o r r e s p o n d i n g  

t o  x _ > 0 )  f o r  c = 0 . 8 .  
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F i g .  7a .  c ~ 0 . 5 9 ;  T o r r o i d a l  s o l u t i o n  i n  t h e  e l l i p t i c  r e g i o n  P4Ps.  

us explain in detail how these solitons are found. 
Each soliton which leaves the left critical point, 
leaves it by the one-dimensional unstable mani- 
fold. Locally this manifold is given by a con- 
verging power series. Using this series for the 
difference scheme (4.l) we compute a triple 
(Yj, Yj+I, Y j + 2 )  of points on the unstable manifold 
and then continue with the scheme (4.1). Let 
xm~,(c ) be the first point x where [y(x)[ >Ym~" 
As with the odd solutions we are looking for local 
maxima of the function Xm~(C). It turned out 
again that these maxima are infinite, i.e. corre- 

t "  

0"  

- 2 . 0  
, , , , i , , , , i , , , , i , , , , I , , , , I , , ~ ]  

- i . 5  -~ .0  - 0 .8  0.0 0.5 t.O 
¥ .  

F i g .  7b .  T h e  s a m e  a s  i n  fig. 7 a  b u t  in  t he  y'y" p l a n e .  

spond to bounded solutions. Apparently, the re- 
spective set of values of c is a Cantor set K s, while 
Cs consists of the boundary points of the "holes" 
of K s i.e. C s is the boundary of the complement of 
K s. For c ~ K s \ C  s the one dimensional unstable 
manifold wanders in the space around the basic 
patterns as on figs. 4a-c or fig. 8 and never reaches 
back the critical point. 

In the elliptic domains P4P5 and PrP7 the left 
branch periodic solution is surrounded by in- 
variant toil. Two such toil are shown on fig. 7a, b 
and fig. 9a, b. As we pass through the point 
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Fig. 8. Two solitons: 1) for c = i n f C / - 0 . 4 8 4 5 ;  2) for c =  
sup C" = 0.4982. 
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Fig. 9a. c = 0.33; Torroidal solution in the elliptic region P6Pv. Fig. 9b. The same as in fig. 9a. 

P7 = P1 the maximal torus becomes more and more 
thick so that for small c it looks as an egg with a 
narrow hole running from one critical point to 
another  (see fig. 13a, b). One can easily prove that 
the diameter of the set of bounded solutions tends 
to zero as c ~ 0 so that at c = 0 the only bounded 
solution is y-~ 0. An interesting phenomena is 
displayed on figs. 12a-d. For the same c = 0.15 
the solution on fig. 12c, d covers densely a torus 
while the one on fig. 12a, b concentrates in a 
spiral. It is known [16] that in a vicinity of a fixed 
elliptic point a measure-preserving map P in a 
generic situation has homoclinic points which cor- 

respond to hyperbolic periodic points of the map 
The center of the spiral on fig. 12a, b is apparentl,. 
such a periodic solution while the spiral has seem 
ingly a Cantor  type cross-section caused by 
presence of a homoclinic point. 

At last we should mention the work of Rossle 
[10]. In particular, Rossler computed some traje( 
tories of the system 

5 c = - y - z ,  p = x ,  ~ = a ( y - y 2 ) - b z .  

For b = 0 this system is equivalent to (1.5) wil 
c = a /v~ .  On fig. 9. in [10] two trajectories of th 
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Fig. 10a. c = 0.3; Three odd asymptotic solutions: 1) y(O); 2) 
y(-2); 3) y ( 4 )  
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system are displayed. In the first one c ~-0.1414 
and the trajectory lies on a torus. In the second 
one c = 0.2828 and the trajectory after several 
spirals escapes to infinity. Rossler observes that 
the invariant tori disappear at a---0.454 i.e. c 
0.321. This indeed agrees with our results. 

Appendix 

Here we compute the Poincar6 map ~(/Jz, 8z'; e) 
in (3.40) up to order O(e 2) and the Birkhoff nor- 
mal form in (3.45). 

First we solve the equation 

5. Conclusion 

z " + • (e ) z '  = e(1 - z : / 2 ) ,  )~(e) = 1 = O(e:)  

(7.1) 

Our analytical and numerical study has shown 
that the set of steady solutions of the Kuramoto-  
Sivashinsky equation is surprisingly complex. 
There are conic solutions which correspond to the 
Bunsen flames, oblique solitons and waves as well 
as horizontal periodic, quasi-periodic and chaotic 
solutions corresponding to a disturbed plane 
flames. For a high propagation velocity only a 
single conical solution exists, while for a lower one 
all the above types of solutions do appear. Our 
numerical study was devoted mainly to the odd 
solutions. Certainly, more computations are in 
place in order to understand the structure of the 
set of all steady solutions and its dependence on 
the propagation velocity c 2. However, a more im- 
portant problem is the connection between the 
time dependent solutions of (1.1) or (1.6) and the 
above steady solutions. It was thought previously 
that the turbulence in the Kuramoto-Sivashinsky 
equation is primarily of a non-stationary origin 
and is caused by a competition of a few spatial 
nodes. In view of the above results it is plausible 
that the set of steady solutions is an attractor for 
the time dependent problem. Note that for the 
(experimental) propagation velocity c 2 --1.2 of a 
turbulent flame, both periodic orbits of (1.5) are 
hyperbolic and there is plenty of spatial chaos in 
the set of bounded solutions of (1.5). Thus the 
turbulence in (1.1) may be attributed to the above 
"s teady" chaos. For large c numerical compu- 
tations suggest that solutions of (1.6) (with proper 
boundary conditions) tend to the unique conic 
solution of (1.4). Since the conic solutions are 
isolated also for small c, it would be interesting to 
check whether they are locally stable. 

in a neighborhood of the periodic solution 

E 
zpe r = - 2 s i n ~ -  g s in2~+ 0(e2).  

Expand z as z = zpe~ + z o + ez 1 + 0(e2). Then 

Zo" + z~ = 0, Zo = al + a2 sin ~ + a 3 cos 

z["  + z~ = 2 sin ~. z o - z2 /2 .  

Thus 

( 1  / 
zl = - a l ~ s i n ~ +  a2 ~+ g sin2~ 

+ 

a3 
+ T cos2~ 

- alaz~ sin ~ - ala3~ cos 

a2a3 1 ( a 2 - a ~ )  c o s 2 ~ -  sin2~ 
12 12 " 

(7.2) 

(7.3) 

For  the Poincar6 map we should impose 

z"(o)  = o 

and 

(7.4) 

z" (~o)  = 0, where ~0 = 2~r + A~. (7.5) 

Then 9 a maps (z(0), z'(O)) into (Z(~o), z'(~o) ). By 
(7.4). 

a 3 = e ( - 2 a l  + a l a 2 -  a---~)+O(e2). (7.6) 
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while by (7.5) and (7.4) brings ~ to the Birkhoff normal  form 

A~ = - z"(2rr ) l z  " (2~r) 

= 0 ( e 2 ) / ( 2 -  a 2+ 0 ( ~ ) ) =  O(e2). 

Thus  

Z(~o) - z (0)  = z(Z~r) - z(0)  + d~(e 2) 

= 2 ~ r e ( a 2 - a 2 / 2 - a Z / 4 ) + ( 9 ( e  2) 

and 

(7.7) 

u 1 = Xu ei,,~(~)ua +~20(lu13), 
31r 

~ ( ~ )  = - -6-~ + ~ ( ~ ) .  

(7.12) 

Wi th  a cubic correction to u of order e one can 
reduce the remainder  in (7.12) to ezO([ul4 ). 
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