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Abshact. W e  prove the existence of 'canton of all incommensurate rotation vectors, 
far symplectic maps of arbitrary dimension near enough to any nan-degenerate 
anti-integrable limit, and derive an asymptotic form for them. Cantari are invariant 
Cantor sets which can be thought of as remnants of KAM tori. 
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1. Introduction 

KAM theory establishes the remarkable fact that for Hamiltonian systems close 
enough to a non-degenerate integrable one, all the invariant ton of the integrable 
system with sufficiently incommensurate winding ratio persist, just slightly deformed 
(see [l, 35,131 for reviews). A similar result also holds for symplectic maps, the 
discrete time analogue of Hamiltonian system. 

A key question is what happens to these invariant tori when the perturbation 
away from the integrable case is large. 

In the case of area-preserving twist maps, Aubry-Mather theory provides a very 
satisfying answer [7,30] (see [9] for a review). For every w E iw there is a special set 
M, defined as the set of points whose orbits have rotation number o, are recurrent, 
and have minimal action. For o irrational, M, is either a circle or a Cantor set, 
named 'cantorus' by Percival [36]. Recall that a Cantor set is a topological space that 
is compact, totally disconnected and has no isolated points. M, satisfies continuity 
properties with respect to variations in the map and in o [31]. Whenever there is a 
rotational (i.e. bomotopically non-trivial) invariant circle of rotation number w, 
then it is M,. Examples are easily constructed for which all the circles become 
cantori on sufficient perturbation from integrable (e.g. [32]). So the fate of an 
invariant circle is to form a dense set of gaps and become a cantorus. The transition 
between the two shows remarkable scaling properties, and a renormalization theory 
has been proposed to explain it (e.g. [23, 2.41). 

Extension of Aubry-Mather theory to higher dimensions appears to be difficult. 
Under suitable conditions, there are periodic orbits of all rational rotation vectors 
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[18]. There are results about the set of rotation vectors for orbits of minimal action 
[lo, 331; however, a result of Hedlund shows that in general one cannot hope to 
obtain minimizing orbits for all rotation vectors [20]. Bernstein and Katok [ll] show 
that, for symplectic maps close enough to integrable, the minimizing periodic orbits 
satisfy some regularity properties which are sufficient to  ensure the existence of a 
limiting orbit as the rotation vector approaches any limit. However, they cannot 
prove anything about the rotation vectors of the limiting orbits. 

It is simple to make examples of multi-degree of freedom symplectic maps with 
analogues of cantori. Simply take the product of several area-preserving maps with 
cantori. Furthermore, if the chosen cantori are hyperbolic, then the product 
cantorus persists under C’-small couplings (by structural stability of hyperbolic sets, 
e.g. [40]). It is somewhat exceptional, however, for a system to be close to a product 
of decoupled maps. 

in a previous paper [IS], we approached the problem from a limit complemen- 
tary to integrable systems. This has now been named the anti-integrable limit by 
Aubry. We found explict analogues of cantori for a class of multidimensional 
generalizations of the ‘sawtooth map’ [2, 36, 3, 41, and used hyperbolicity to prove 
the existence of similar invariant sets for some smooth systems. 

In this paper, we apply ideas about the anti-integrable limit, appearing in (6, 5 ,  
411 for the case of one degree of freedom, to deduce much stronger results. We 
study symplectic maps with a generating function (the definition is recalled in section 
2) of the form 

with 
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h(x,  x ’ )  = V ( x )  + U @ ’ )  + ET@, x ’ )  

h(x +mi x ‘  + m)  = h(xj  x ’ )  

x ,  x ‘  E Rd (1) 

(2) vm E bd 
and where E # 0 is small. We assume, V ,  U and T are C2. Without loss of generality 
(by the coordinate change Y = y + DU(x),  X = x ,  cf. (5)), we take U of (I) to be 
zero. 

blB 

We say a symplectic map is close to the anti-integrable limit (3) if it has a generating 
function which is Cz-close to (3). 

We establish the existence of higher-dimensional analogues of cantori of all 
incommensurate rotation vectors for all symplectic maps close enough to a 
non-degenerate anti-integrable limit. Our argument is one of continuation, and can 
be seen as an analogue of KAM theory (though it is much simpler than KAM theory). 
We call it anti-uolu theory. This is not to be confused with converse KAM theory, 
criteria for non-existence of invariant tori [32, 29, 28, 251 which, though related, is 
different. 

The idea of continuing from a fully chaotic (Anosov) limit was tried by Percival, 
Vivaldi and others [38, 37, 121. The idea of [6, 5, 411, continuation from a singular 

The plan of our paper is as follows. First we recall the variational formulation of 
symplectic maps (section 2). Next we discuss the anti-integrable limit and the main 
continuation theorem (section 3). From this we prove the existence of cantori for 
symplectic maps near enough t o  a non-degenerate anti-integrable limit (section 4). 
In section 5, we calculate cantori explicitly for all generic multidimensional sawtooth 

The anti-integrable limit of (I)  is the case E = 0. 

h(x ,  x ’ )  = V ( x )  + U(X’).  (3) 

! i d ,  is mere f.Si!fS!. 
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mappings. This allows us to deduce the asymptotic form of canton in the 
anti-integrable limit for general symplectic maps (section 6). We close with a short 
discussion (section 7). 

2. Generating functions 

A function h :  Rd x Rd -+ R is said to generate the symplectic map F: (x ,  y )  ++ ( x ' ,  y )  
on Rd x Rd,  if 

y' = Dzh(x, x ' )  (4) 

y = -D,h(x, x ' )  (5) 

and (5) defines a diffeomorphism (x ,  x ' )  ( x ,  y )  of Rd x Rd.  Here D,, Dz refer to 
the derivatives with respect to the first and second arguments, respectively (which 
are themselves vectors). There are various conditions which guarantee that h 
generates a map F (e .g .  [18,21, 281); one such condition is that Dlzh is uniformly 
definite. Furthermore, (1) generates a map provided E # 0 and the map (x,  x ' )  - 
(x ,  - D I T ( x , x ' ) )  is a diffeomorphism of R'". If h satisfies the integer translation 
invariance property of (2) ,  then F induces an exact symplectic map f on Ud x Utd, 
where T =  R/Z (the real numbers modulo integer translations) is the circle. 

In the integrable limit, coordinates can be chosen so that h depends only on 
(x' - x ) .  In the anti-integrable limit, h has no joint dependence on x and x ' ;  this 
corresponds to E = O  for (1). 

'lbe orbits of F (with their time iabeiiing) correspond to the sequences x E (R'"iZ 
for which the action 

- 

0-1  

W,,,(x) = h(x', P I )  ( 6 )  

is st.!ionary with respect !O variations in x fixing the end-points xm, .Y (fer 

,=m 

x E (It")'; we use a superscript to indicate the time index in Z and a subscript for 
the dimension index in (1, . . . d } ) .  Orbits of fcorrespond to the equivalence classes 
of sequences under the action of Zd+' given by 

x ++ T~,, , (X),  (r ,  m )  E Z! x Zd Tr,,,(x)' = x'+' + m. (7) 

There is a naturai homeomorphism from the set of sequences to the set of orbits, 
when h generates a map. We endow the space of sequences, (W")', with the 
product topology, i.e. if y , x ( k ) ~ ( [ W ~ ) ' ,  V ~ E Z + ,  we say x ( k ) + y ,  as k - m  if 
x(k)'-+y' as k - t - ,  Vr EZ.  

The set of stationary states in (R")'/Z" (with the quotient of the subset of the 
product topology) is denoted by 9. 

defined by 
(5 )  (.f p;j Srom 2" io 8" x R", 

E ( x )  = ( x " ~  Y") y o =  -D,h(x", x ' ) .  (8) 

a homeoniovhism 

The action off on Ud x R d  is equivaent to the shift U on Y U(*)' = x'+l, 
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3. The anti-integrable limit 

The anti-integrable limit is singular in that h does not generate a map. Nonetheless, 
from the variational point of view it is perfectly well behaved. For the anti- 
integrable system, the stationary sequences are precisely those for which x' is a 
critical point of V,  for all f E Z. We denote the set of critical points of V by E, and 
the set of sequences x : Z+ E by Z. 
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Choosing a norm 1.1 on R", for x E (Rd)' we define 

b(x)  = sup , E L  lDzT(x'-', x ' )  + DlT(X', .'+')I. (9) 

We will restrict attention to those sequences for which b is finite. We let Z B  c z 
denote the set of sequences in Z with b(x )  G B. It is invariant under the action of 
P+'. 

Now let us suppose that the critical points of V are non-degenerate (i.e. 
detD2V # O  at each of them), as is generically the case. Then each x E X  is a 
non-degenerate critical point of the action. It follows that (cf [6, 5, 411 for the case 
d = 1): 

Theorem 1. Given 5 > 0, there is an E ~ ( B )  > 0 such that all stationary states of X B  
persist for E < and remain non-degenerate. 

Proof. The equation for a stationary state is 
&h(x'-', x ' )  + D,h(x', x'i-1) = 0 

x = x ( 0 )  + 2. 

F ( z )  = EG(2) 

vt E z. 
Let B ER, and x(0)  E&. Let z be the deviation of a state x from x ( 0 ) :  

Then (10) can he written as 

2 E (R")" 

where 
F(r)' = DV(x') 
G(z)' = -&T(x'-', x') - DIT(x', P1). 

Let $8 he the Banach space of bounded sequences z E (R")' with the norm 

llzll =sup 12'1. 
,EZ 

By the hypotheses on ZB,  F and G map a neighbourhood of 0 in 93 into 93, and they 
are differentiable. The operator D'V(x(0)') is invertible and its inverse is bounded 
uniformly, since non-degeneracy of the critical points of V:Ud+R and compact- 
ness of T" implies there are only finitely many of them. Thus DF(0) is invertible 
with hounded inverse. Hence by the implicit function theorem (e.g. [39]) it follows 
that for E small enough (depending only on V, T and B), there is a unique 
continuous solution Z ( E )  of (12) with r(0) = 0, and hence a unique continuation X ( E )  

of x ( 0 )  as a stationary state. Furthermore X ( E )  is non-degenerate. 

We denote the mapping x(O)tfx(~)  by @. 
In contrast to  KAM theory, it is straightforward to obtain explicit estimates of &U 
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in theorem 1. For example, suppose that Vf E Z, JDzV(x')-'l S a-' on Ix' - x(0)'I G 
6 ,  so IIDF-'II sa-' on llzll s 6. Also suppose that IIDGII S @ on l lzll S 6, and that 
IIG(O)JI < B .  Then x(0)  can be continued, non-degenerately, with 

(16) 
dz 
de 
-= ( D F -  EDG)-'G(z) 

as long as (DF - eDG) remains invertible. Now under the conditions 

IIZII 6 E < alp (17) 

we have the following two estimates: 

I I G ( ~ ) l l ~ B + B l l ~ l l  
(I(DF - EDG)-'JJ C (a - 

So long as conditions (17) hold then 

This is easily integrated to give 

a6 &seO=- 
B + p 6  

and so x(0) can be continued, and remains non-degenerate, for at least this range of 

Theorem 1 has many consequences. Our aim in the present paper is to find 
E.  

analogues of cantori. In order to do this, we need the following. 

Theorem 2. The f-invariant set C, c Ud X I W d  obtained for E < E~ by continuation 
from a compact subset C c &lZd is homeomorphic to C. 

Proof. From the implicit function theorem, the mappings 

E -x'( E )  x(0) E c t E Z  

are uniformly continuous. Hence the mapping @: C+ 9, with the product topology 
on both sides, is continuous. It is 1-1 because the stationary states remain 
non-degenerate and hence cannot collide. The inverse of a continuous bijection 
from a compact set is continuous. Hence is a homeomorphism from C to its 
image. Since, when E # 0, the map g from 9 to Td X R d  is a homeomorphism, the 
composition gQ is a homeomorphism of C onto its image C,. 

As an example of application of this proposition, we deduce a significant result 
for maps f with generating function of the form 

E 
h(x, x ' )  = V ( x )  + - (x '  - X)TT(X' - x )  

2 
V ( x  + m )  = V ( x )  VmEZd (24) 
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where T is a non-degenerate symmetric matrix (e.g. d = l :  the standard map 
[16,19]; d = 2: the Froeschle map [17]). Such maps commute with the group 
generated by 

and can therefore be regarded as maps on p. Choose B large enough so that the 
graph of the allowed transitions between successive pairs of critical points for 
>Gy"G,LC~J 111 ' B  ,,a> p""LL1"C b " L ' " p J .  "C LllG J C L  U, "C'IUC"*C" cuLLGDp",,",,,g 

to an irreducible component of Z B  with positive entropy. The set X ' / Z Z d  is then 
compact, and forms a Cantor set, in the quotient of the product topology. 

Corollary. The invariant set obtained from Z' for f, regarded as a map on U=, is a 
Cantor set. 

Remark. All compact invariant sets obtained by theorm 1 are uniformly hyperbolic. 
This follows from a general result of [8], namely that uniform hyperbolicity for 
symplectic twist maps is equivalent to boundedness of IIDzW-'IJ. 
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( x , x ' ) + + ( x + m , x ' + n )  Vm, n E Zd  (25) 

Î .̂. ̂ ^^^^ :" v I...- -,.":+:.,a -..t-_..., 1 a* P' I.- +I.̂ "-* ?.c "o^..n-^n" ---- .."--..A:- - 
b C L  ,5 

4. Remnants of KAM tori 

Theorem 2 can be used to  prove existence of all sorts of orbits near the 
anti-integrable limit (cf [5]). Our interest here is to use it to find remnants of the 
KAM tori from the integrable limit. 

A KAM torus for a symplectic map f : U d X  R d + U d X R d  with a generating 
function h corresponds to a set of stationary sequences of the form 

xf = x(e + W t )  e E R d  (26) 
with y' defined by the homeomorphism g of ( 8 ) ,  and X : R d + R d  a continuous 
function such that 

X ( e  + m )  = X ( B )  + m  Vm E Zd (27) 
- _ _ I  _. - md 7x7- - -#I  ,.. :t- --.-*:-- o . ~ - s - ~  - -A F .._- &... Y.L. .  "-.."I--..  a,," w c M . ""G La,, LllG "GC,", w L l J  IU'U'I",' "CLLV, a,," L U G  LUIICLI", .  2% L U G  rrrvrruyr 

function. 
We define a remnant torus for f to be any invariant set specified in the same way 

except that X is not required to be continuous. We include in the remnant all the 
sequences which are limit points of the above sequences. So there may be more than 
one specification of X. 

recalled in section 1). This generalizes the notion of the cantorus for d = 1, though it 
includes many sets other than the minimizing set, cf [34]. The anti-integrable limit 
does not correspond to a map, so the definition of a cantorus does not apply 
directly. But we extend it to include any set of stationary states of the form (26).  
(27) forming a Cantor set in 9'. 

Theorem 3. For B large enough, X B  contains cantori of all incommensurate rotation 
vectors. 

Proof. Choose a critical point e E E, and choose a fundamental domain for the 
action of Zd such that e lies in its interior. Then simply take X ( 0 )  = [e], the map 

$?re say 2 :nr.=ant tGFns is 2 ca,%:c;a if it i. a CaxtGr ret (!he drfinitiGn wzs 
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from R d  to the copy of e in the same fundamental domain as 8. Ambiguites in what 
to do with points on the boundary of a fundamental domain are taken care of by the 
inclusion of all limit sequences in the remnant. Then b ( X ( 8 ) )  is bounded; take B to 
be an upper bound. After taking the quotient by Zd, the resulting set is a Cantor 
set: it is compact because it is closed and bounded, it is totally disconnected because 
only points of the lattice e + Zd are used, and it has no isolated points because the 
rotation vector is chosen to be incommensurate. 

Note that the chosen critical point e does not have to be a minimum, not even a 
local one. This proof can clearly be generalized to give many other cantori arising 
from using more than one critical point. 

Theorem 4 (anti-Kahi theorem). If V has a non-degenerate critical point e, then all 
systems near the anti-integrable limit h(x, x ' )  = V ( x )  possess canton of all incom- 
mensurate rotation vectors. 

Proof. From theorems 1, 2 and 3 

By the remark at the end of theorem 3, all these cantori are uniformly 
hyperbolic. 

Note that the same method also gives interesting sets for w commensurate, 
which are also Cantor sets unless w is rational, when they are just periodic orbits. 

We will derive an asymptotic form for these cantori, by finding them explictly for 
a piecewise linear map whose generating function agrees with that of the original 
system to quadratic order around the critical point. 

5. Explicit canton for sawtooth maps 

We compute these cantori explicitly for a class of piecewise linear maps. These are a 
generalization of the d = 1 sawtooth mapping for which explicit cantori were found 
[2, 36, 3, 41. A subclass was treated in [15]. 

Let { x )  denote the reduction of x E R d  to some fundamental domain K for the 
action of Zd by integer translations, such that 0 is in the interior of K. Define [XI to 
be the mapping from x to the point of Zd in the same copy of the fundamental 
domain. The sawtooth maps are defined by the generating function 

~ ( x , x ' ) = - ( x ' - x ) ~ T ( x '  2 - x ) +  : { x } ' Q { x )  (28) 

denotes transpose. The 

E 

with T and Q non-degenerate symmetric matrices, where 
resulting difference equations are 

E T ( X ' + ~ - & ' + X ' - ~ ) =  Q(x'}. (29) 

E(X'+' - 2r' i- X'-') = A { X ' }  (30) 

Since Tis non-degenerate, it is invertible, and this reduces to 

where A = T-'Q. 
If A is diagonal then the components of the above equation decouple and they 

can be treated as independent ZD sawtooth maps. In general, however, the equations 
cannot be decoupled. 
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Let qi be the eigenvalues of A, which may be complex, but are never zero 
because Q is non-degenerate, and suppose A has diagonal Jordan normal form. 
Then there exists an invertible matrix B which diagonalizes A, i.e. A = B-'DB, with 
D = diag[q,, . , . 4. Let pi be the root with modulus greater than 1 of 

p - ( 2 +  qJE) + p-1 = 0. (31) 
Note that since qi # 0, and the product of the roots is 1, this exists for E small 
enough. Indeed 

Pi - qilE as E - O .  

ai = (1 + 4 ~ / q , ) - ' ~  

Let 

and for n E Z, let 

6. = diag[~~,p;~"']. 

Choose a fundamental domain K' with 0 in the interior, not necessarily equal to K,  
and define functions (,}' and [.I' analogously. 

Theorem 5. For E small enough the following function defines a remnant torus of 
rotation vector w :  

X(0) = 0 -  B-%.B(O+nw}' .  (35) 
nrz 

Note that B-'b,B is real even if there are complex eigenvalues, because it is 
equal to its complex conjugate. 

Proof. We look for a solution of the form X(e) = f3 + w(0). We first derive the 
solution under the assumptions that [X(e)] = [e]' and the image of X has no points 
on the discontinuity set of (}, and then verify these assumptions. 

Under the assumptions above, 

{x(e)} =x(e) - [x(e)] = o + w(e) - [e]' = {e)' + q(e) .  (36) 

E ( V @  + w )  - 2 v w  + w - U)) =.we) '  + w)). (37) 

v(e)= 2 a n ( 8 + n w } ' .  (38) 

& ( a , _ , - k ,  +a .+ l )=Aa ,  n 20 (39) 

Therefore w must satisfy 

Make the ansatz 

"=-- 

This is a solution if and only if 

E ( a - , - 2 a , + a , ) = A ( l + a 0 ) .  (40) 

Define b. = -Ba,,B-'. Then the components of b. satisfy independent recurrence 
relations. The solution which decays as n+ fm is given by 

b. = diag[a;p;'"']. (41) 

It remains to show that the assumptions are satisfied for E small enough. Now X 
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is differentiable in the sense of distributions, with derivative DX = 0 at all points 0 
for which for all n E E, 8 + n o  is not a point of discontinuity of {)', and a jump of 
magnitude -B-'b,Bu when 8 + nw crosses from one fundamental domain to a 
translate by U. 

so for e + K' 

because 1b.l S C(&/q)I' for some C, q. Also 

(X(0)l S 11 sup {e)' = O ( E )  
a e r  

(43) 

Hence for E small enough, the assumptions are satisfied. 

eigenvalues. Figure 1 shows a variety of examples with complex eigenvalues. 

Notes 
(i) In the case d = 1 if one chooses the fundamental domains to be K = K' = 

[-4, 41, then the solution (35) is valid for all E.  Numerical evaluation of (35) for 
some cases with d = 2; however, shows that it is not always correct for the natural 
generalization K = K' = [-4, $Id, d > 1. Nonetheless, we conjecture that given T 
and Q of (28), there always exist fundamental domains K, K' such that (35) is valid. 

(ii) It would probably he a straightforward extension of the analysis to also 
derive explicit cantori for sawtooth maps for which A has non-diagonal Jordan 
normal form. 

. A n  ..- eramnle -, .-... r.- nf -. wrh I--.. II - r n n t n n ~  with ...... - A = 2 ~ 1 s  show= i= [ !5!,  where -4 hrd re.! 

6. Form of cantori near the anti-integrable limit 

Since the cantori of the multidimensional sawtooth maps avoid the discontinuities 
for E small enough, we can smooth out the discontinuities without making any 
difference to the cantori, thus obtaining C" examples with explicit cantori. 

More importantly, given any symplectic map near a non-degenerate anti- 
integrable limit, we can derive an asymptotic form for these cantori, by approximat- 
ing the generating function by its quadratic part at the critical point e. 

Without loss of generality, the Taylor expansion of T about e begins with a 
quadratic form in (x' -x). This is because constants make no difference, and terms 
in x ,  x ' ,  xz, x'* can be absorbed into V by change of variable. Then the quadratic 
part of h, truncated to a fundamental domain containing e in its interior, is the 
generating function for a sawtooth map. The cantori of the sawtooth are contained 
within B(E) of the critical point. Higher-order terms in T and V move points by 
O($) (implicit function theorem estimates). Hence the cantori for the full system 
are within a relative distance O(&) of those for the corresponding sawtooth map. 
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. .  :. . 

1 

Figure 1. Configuration space projections of cantori for some four-dimensional saw- 
tooth maps: (LI) and ( b )  have w = ( ( f i -  1)/2, l/fi) while (c )  and ( d )  have 
w = (z-', z-'), where z i s  the real root of r3 -  r - 1. The matrices A far ( a )  and (c) are 

and for ( b )  and ( d )  are 

1.085 2.086 1.321 -1.188 
A = ( -  0.521 2.915 ) (0.297 0.679)' 

For all four cases the eigenvalues are q = 1 f i / Z .  

7. Discussion 

We have proved that all symplectic maps close enough to a non-degenerate 
anti-integrable limit possess analogues of canton for all incommensurate rotation 
vectors, and found their asymptotic form. 
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Some questions remain: 
(i) Do these cantori continue to the KAM tori of the integrable limit? Are there 

intermediate stages in which there is a remnant torus which is a locally a Cantor set 
cross a manifold, or a Sierpinski gasket? Numerical results are unclear [15]. 

(ii) Are our cantori composed of orbits of minimal action (if we take e to be the 
global minimum of V ,  and T to he convex)? 

(iii) Can we deduce something about transport (cf [26, 271) for multi-degree of 
freedom symplectic maps by approximation by sawtooth maps (cf. [14])? 

It will be interesting to pursue this line of research. 
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