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Bayes and Frequentism: a particle physicist’s perspective

Louis Lyons*

Particle Physics, Blackett Lab., Imperial College, London, UK

(Received 29 October 2012; final version received 4 December 2012)

In almost every scientific field, an experiment involves collecting data and then analysing it. The analysis stage will
often consist in trying to extract some physical parameter and estimating its uncertainty; this is known as Parameter
Determination. An example would be the determination of the mass of the top quark, from data collected from high
energy proton–proton collisions. A different aim is to choose between two possible hypotheses. For example, are data
on the recession speed s of distant galaxies proportional to their distance d, or do they fit better to a model where the
expansion of the Universe is accelerating? There are two fundamental approaches to such statistical analyses – Bayesian
and Frequentist. This article discusses the way they differ in their approach to probability, and then goes on to consider
how this affects the way they deal with Parameter Determination and Hypothesis Testing. The examples are taken from
everyday life and from Particle Physics.
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1. Introduction

There are two fundamental approaches to statistical analy-
sis, Bayesianism and Frequentism. The Bayesian approach
dates back to Reverend Thomas Bayes (Figure 1), whose
paper was publishes posthumously in 1763. The Polish
statistician Jerzey Neyman (Figure 1) played a crucial role
in the development of frequentist statistics. In the past
there have been vigorous discussions about the relative
merits of these two methods.

In this article, the fundamental differences between
these two approaches will be explained, and illustrated
with examples from Physics and from everyday life. We
consider them in situations where we are trying to mea-
sure a parameter (e.g. the mass of the top quark), or are
testing hypotheses (e.g. do we have evidence for the
existence of the Higgs boson?).

1.1. Why the fuss?

Given that there are these fundamentally different ways of
analysing data, how is it possible that many scientists
spend a lifetime measuring all sorts of physical
parameters, without being aware of the sharp differences
of philosophy between the Bayesian and Frequentist
approaches? The answer is that in the simplest of problems
the two methods (and others too, like v2 or maximum like-
lihood) can give the identical answer, that the probability
that a parameter l lies in the range ll to lu is, say, 68%.

By the ‘simplest of problems’, we mean that the measured
value m is Gaussian distributed about the true value l with
known variance r2, and that l can in principle have any
value from minus infinity to plus infinity.

However, in many practical problems in Particle Phys-
ics, these conditions are not satisfied. The parameter may
be restricted in range (masses cannot be negative), and the
data distribution may not be Gaussian (counting experi-
ments often follow the Poisson distribution). So there is
ample opportunity for the results of Bayesian and Frequ-
entist analyses to differ. The two types of statisticians
have often had strong criticisms of each other’s approach.

1.2. Probability

The differences between the Bayesians and frequentists
start with their interpretation of ‘probability’. Underpin-
ning both of these is the mathematical approach, which
is largely due to Russian mathematicians such as Kolma-
gorov. It is based on axioms (e.g. probability is a number
in the range 0 to 1; the sum of the probabilities for
something to occur and for it not to occur is 1; etc.).
This is very important for manipulating probabilities, but
provides little physical intuition about the concept.

For frequentists, the probability p of ‘something’ is
defined in terms of a large number N of essentially iden-
tical, independent trials: if the specified ‘something’ hap-
pens in s of these trials, p is defined as the limit of the
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ratio s=N , as N tends to infinity. Thus the probability of
the sum of the numbers on two rolled dice adding up to
10 can be determined in this way to be 1/12.

Bayesians attack this definition, as it requires a large
number of ‘essentially identical’ trials. They claim that
to determine whether the trials are indeed ‘essentially
indentical’ requires the concept of probability, and hence
the definition is circular.

Given that a repeated series of trials is required,
frequentists are unable to assign probabilities to single
events. Thus, with regard to whether it was raining in
Manchester yesterday, there is no way of creating a large
number of ‘yesterdays’ in order to determine the proba-
bility. Frequentists would say that, even though they
might not know, in actual fact it either was raining or it
wasn’t, and so this is not a matter for assigning a proba-
bility. And the same remains true even if we replace
‘Manchester’ by ‘the Sahara Desert’.

Another example would be the unwillingness of a
frequentist to assign a probability to the statement that
‘the first astronaut to set foot on Mars will return to
Earth alive’. This does not mean it is an uninteresting
question, especially if you have been chosen to be on
the first manned-mission to Mars, but then, don’t ask a
frequentist to assess the probability.

A different type of example involves physical con-
stants. Frequentists will also not assign probabilities to
statements involving the numerical values of physical
parameters, e.g. does dark matter constitute more than
25% of the the critical density for our Universe? This
again is a situation which cannot be checked by repli-
cated tests. And again, it is either true or false, and not
suitable for frequentist probabilities. A similar argument
applies to statements about theories: a frequentist will
not allow probability assignments as to whether the
Higgs boson exists.

Bayesians have a very different approach. For them,
probability is a personal assessment of how likely they

think something is to be true. It depends on their own
judgement and/or previous knowledge about the situa-
tion, and can hence vary from person to person. Thus if
I toss a coin, and ask you what is the probability of the
result being heads, you are likely to say 50%. But maybe
I cheated and looked at the coin, and saw that it was
tails, so for me the probability of heads is 0%. Or maybe
I just gave it a quick glance, and think (but I am not cer-
tain) that it was tails, so I assign a probability of 20% to
heads.

Because Bayesians have this personal view of proba-
bility, they would be prepared to give numerical esti-
mates for ‘one-off’ situations (e.g. who gets this year’s
Nobel Prize?), for parameter values (e.g. fraction of dark
matter), or concerning theories (e.g. existence of Higgs
boson). Again, these numerical assessments could vary
from person to person.

It sounds as if this is very personal and not condu-
cive to numerical estimates. But Bayesians’ assessment
of probability should be consistent with the ‘fair bet’
concept. If a Bayesian believes that a certain statement
has a 10% probability of being true, they should be
prepared to offer odds of 9 to 1 (or 1 to 9) to

Personal Probabilities

This is a story that I originally heard from the
Nobel Prize winner Frank Wilczek in a slightly
different context, but it illustrates the way that for
Bayesians the assessment of probability can differ
from person to person.

A shy postdoc is attending a workshop on the
topic of ‘Extra Dimensions’. Each evening, after
an intensive day’s work, he goes to the local bar,
sits next to an empty chair and orders two glasses
of wine, one for himself and the other for the
empty chair. By the third evening, the barman’s
curiosity cannot be controlled and he asks the
postdoc why he always orders the extra glass of
wine. ‘I work on the theory of extra dimensions’,
explains the postdoc, ‘and it is possible that there
are beautiful girls out there in 12 dimensions, and
perhaps by quantum mechanical tunnelling they
might appear in our three-dimensional world, and
perhaps one of them might materialise on this
empty chair, and I would be the first person
talking to her, and then she might go out with
me’. ‘Yes’, says the barman, ‘but there are three
very attractive real girls sitting over there on the
other side of this bar. Why don’t you go and ask
them if they would go out with you?’ ‘There’s no
point’, replies the postdoc, ‘that would be very
unlikely’.

Figure 1. The Reverend Bayes (left), whose paper on his
theorem was published posthumously in 1763; and Jerzy
Neyman, a Polish statistician who played a crucial role in the
development of the frequentist approach.
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someone who is prepared to bet with them on this
being true (or false, respectively). With a poor assess-
ment of the probability, they would be in danger of
losing money.

2. Likelihoods, Bayes theorem and priors

We now have a relevant digression into considering
likelihood functions, and then introduce Bayes Theo-
rem and Priors, essential ingredients of the Bayesian
approach.

2.1. Likelihoods

The likelihood approach is a very powerful one for
parameter determination, and is also very much involved
in Bayesian and Frequentist methods for this. Likelihood
ratios are also used for checking which of two theories
provides a better description of the data.

The likelihood function is best illustrated by a simple
example. Imagine we are performing a counting experi-
ment for some fairly rare process. For example. we may
be interested in the flux l of cosmic ray showers with
energies above 1020 electron volts. We have a large
detector of known area, and find n0 high energy showers
(e.g. 2) when running the detector for one year. We want
to make a statement about the value of the actual flux l
and its uncertainty.

Assuming these cosmic rays are falling on Earth at a
constant rate, and are independent of each other, if the
true rate is l, the conditional probability P(njl) of
obtaining n counts is given by the Poisson distribution
as

P(njl) ¼ e�lln=n!: (1)

Then the likelihood is defined by replacing n in the
above formula by the observed value n0, i.e.

L(ljn0) ¼ e�lln0=n0! (2)

This likelihood is regarded as a function of l, for
the fixed data value n0. (For example, if we observe
two events, the likelihood is l2 e�l=2.) It is the
probability of observing the data, for different choices
of l. Then the likelihood estimate of a parameter l is
that which maximises the likelihood, i.e. it is the value
of l which maximises the probability of observing the
actual data n0. (In our case, not surprisingly the likeli-
hood estimate of l is simply n0 .) Values of l for which
the likelihood is small are regarded as excluded, and the
uncertainty on l is related to the width of the likelihood
distribution.

It is really important not to confuse the Poisson prob-
ability P(njl) with the likelihood function L(ljn0), even
though Equations (1) and (2) bear a remarkable similar-
ity.1 The distinction should be easy in this case: P(njl)
is a function of the discrete variable n at fixed l, while
L(ljn0) is a function of the continuous variable l at
fixed n0 (see Figure 2). Furthermore, P(njl) are real
probabilities, while the likelihood L(ljn0) cannot be
interpreted as a probability density (it does not transform
as expected for a probability density if the parameter is
chosen, for example, as 1=l rather than l).

2.2. Bayes theorem

If we consider two ‘events’ A and B (in the statistical
sense), we can write the probability P(A and B) of them
both happening as

A Poisson puzzle?

According to the Poisson distribution, if the
expected number of observations in a specified
time is l, the probabilities P(1jl) and P(2jl) are

P(1jl) ¼ le�l; P(2jl) ¼ l2e�l=2:

For small l, these are approximately l and
l2=2, respectively. Given the fact that the proba-
bility for observing one rare event in the time
interval is l, why is the probability for observing
two independent events equal to l2=2, rather than
simply l2, as perhaps expected from Equation (4)?

μ

n

1  2 3 4

Figure 2. Illustration of the difference between the probability
density distribution for the integer variable n and the likelihood
function for the continuous parameter μ, for the Poisson
distribution (see Equations (1) and (2)). They involve the same
function of n and μ, but it is evaluated at fixed μ for the pdf,
but at fixed n for the likelihood.
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P(A and B) ¼ P(AjB) P(B); ð3Þ

where P(AjB) is the conditional probability of A happen-
ing, given the fact that B has occurred. An example
could be where we select a random day from last year,
and A is whether it was snowy in Oslo, and B that it
was a December day. Then Bayes Theorem says that the
probability of choosing a snowy December day is equal
to the probability of it being snowy in December, multi-
plied by 31/365 (the probability of a random day being
in December). If the probability of A occurring does not
depend on whether B has done so, Equation (3) reduces
to the better-known result that

P(A and B) ¼ P(A) P(B);

for independent A and B:
(4)

Because P(A and B) is symmetric in A and B,

P(A and B) ¼ P(AjB) P(B) ¼ P(BjA) P(A): (5)

Then Bayes Theorem is derived from the second equality
above:

P(AjB) ¼ P(BjA) P(A)=P(B); (6)

i.e. it relates P(AjB) to P(BjA). (See Section 2.4 for
examples where these are obviously not equal.)

It should be stressed that Bayes Theorem itself is not
controversial, and frequentists are willing to make use of
it, provided the various probabilities are genuine frequen-
tist ones. The controversy begins when Bayesians
replace A by a theoretical parameter (and B is the
observed data). The theorem then states that

P( paramjdata) / P(datajparam)� P( param); (7)

where P(datajparam) is just the likelihood function;
P(param) is the Bayesian prior density, and expresses
what was known about the parameter before our
measurement; and P(paramjdata) is the Bayesian
posterior probability density for the parameter, and con-
tains the information about the parameter obtained by
combining the prior information with that from our mea-
surement.

The frequentist objection to this is that the prior and
the posterior both refer to parameter values; while this is
allowed for Bayesians, it is strictly forbidden in the
frequentist approach. In addition to this, complications
are caused by the need to choose a probability density
for the prior.

2.3. Bayesian priors

In order to obtain the Bayesian posterior probability dis-
tribution from the likelihood function, the latter needs to
be multiplied by the Bayesian prior. There are several
flavours of Bayesians, who have different motivations
for their choice of prior. In this article, we will concen-
trate on evidence-based priors. So if in our Poisson
example of Section 2.1, there was a previous measure-
ment of l which gave the result 5� 1, the prior might
be chosen as a Gaussian in l, centred on 5 with standard
deviation 1 (and probably truncated at zero). Then the
posterior, assuming two observed counts, would be

P(ljn0 ¼ 2) / (l2 e�l=2)� (e�(l�5)2=2=(2p)1=2); (8)

where the first factor on the right is the likelihood
L(ljn0 ¼ 2), and the second is the prior p(l) .

This is all very well when previous data on l exists.
But what if our measurement is ground-breaking, and
essentially nothing is previously known about l? How
do we now choose the prior p(l)? The ‘obvious’ answer
is to choose a prior that is independent of l (but zero for
unphysical negative l), so as not to favour any particular
value of l. However, do we really believe, as implied by
the constant prior, that l is as likely to be in the range
10500 to 10500 þ 0:5, as in 0.1 to 0.6?

Another problem is that if we are trying to use a flat
prior to express our ignorance about a parameter, it is
not clear why we should choose one functional form for
the parameter rather than another. For example, if we are
aiming to provide a very precise measurement of the
mass m of the tau neutrino, should we parametrise our
ignorance of its mass by a flat prior in m, m2, ln (m),
etc.? Basically priors may be not bad for parametrising
prior knowledge, but are not so good for prior igno-
rance.

Conditional probability

Conditional Probability P(AjB) is the
probability of A, given the fact that B has happened.
For example, the probability of obtaining a 4 on the
throw of a dice is 1/6; but if we accept only even
results, the conditional probability for a 4, given
that the number is even, is 1/3.

Bayesian Posteriors

Jim Berger says that he and his wife
have professions that are similar, but with a
small difference. He is a Bayesian Statistician
and she is a fitness trainer. The similarity is that
they both aim to optimise posteriors, but while
he wants to maximise them, she aims to
minimise posteriors.

4 L. Lyons



2.4. P(AjB)–P(BjA)
Bayes Theorem relates the conditional probabilities
P(AjB) and P(BjA). People often confuse these two prob-
abilities, and may erroneously think they are the same.
Thus journalists or even Laboratory Spokespersons may
incorrectly say that there is a 99.9% probability that
some particle exists, rather than the correct statement that
under the null hypothesis that it does not, the data are
very unlikely.

A convincing example of their difference is pro-
vided by a database containing just two pieces of infor-
mation about everyone on Earth: their sex and whether
or not they are pregnant. We extract a random person
from the database, who turns out to be female. Given
that the person is female, the chance of being pregnant
is about 3%. We then extract another random person,
who turns out to be pregnant. Given the fact that the
person is pregnant, the probability that they are female
is 100%. i.e.

P( pregnant j female) � P( female j pregnant): (9)

Similarly, if you select a card randomly from a deck
of 52, the probability of it being an ace, if it happens to
be a spade, is 1/13; however, the probability of a spade,
given that it is an ace, is 1/4.

2.5. A Bayesian example

Imagine that you, a Bayesian, are betting on the results
of coin flips. Each time you bet ‘Heads’, and for the first
five flips it comes down ‘Tails’. Given that the probabil-
ity of being wrong five times is 3%, should you suspect
it is not a fair coin?

We regard this as a parameter-estimation problem,
and want to see whether the probability pH of ‘Heads’ is
consistent with 0.5. The data (no heads in five spins)
enables us to calculate the likelihood function, but in
order to extract the posterior probability as a function of
pH, we must multiply the likelihood by a prior p(pH).
Now if the person betting against us is a complete stran-
ger, we might assign a constant value for pH in the range
0 to 1; then the posterior is such that pH ¼ 0:5 looks
unlikely. On the other hand, if it is our local village
priest, we are so convinced that he is honest, we use a
delta function at pH ¼ 0:5, and then even if the coin con-
tinues to fall down ‘Tails’, we will still believe that it is
fair. Thus our conclusion depends very much on which
prior we choose.

Given the freedom to select one’s prior, it seems as
if Bayesian intervals for a parameter can be very depen-
dent on this choice. But in some cases, the ‘data over-
whelms the prior’, and the result becomes very
insensitive to the choice of prior. For example, the mass

of the intermediate vector boson (Z0) was measured at
the LEP (Large Electron Positron) Collider at CERN.
The result was that the likelihood function was essen-
tially a Gaussian at 91,188MeV c�2, with a width of
2MeV c�2. A Bayesian now has to multiply this by the
prior probability density for the Z0 mass. However, any
reasonable choice of prior will vary very little over the
range of a few parts in 105, and so in this case the pos-
terior is essentially independent of the prior.

3. Parameter determination: Bayesian approach

We illustrate the Bayesian approach using a simple
example of the determination of the lifetime of some
radioactive material. The probability density p for a
decay at time t is given by

p(tjs) ¼ (1=s)e�t=s; (10)

where s is the lifetime we want to estimate. We can
estimate s from a set of observed decays at times ti. To
simplify the problem we assume we have only one decay
at time t1 (which will not give us a very accurate
estimate of s).

The likelihood is

L(s) ¼ (1=s)e�t1=s; (11)

and we have to multiply this by our choice of prior for
s, to obtain the posterior p(sjt1) / L(s) p(s). As usual,
there is a choice for p(s) of an evidence-based prior
derived from a previous measurement (in which case our
posterior and the resulting range for s will be based not
only on our measurement, but also on the previous one),
ignorance, theoretical motivation, etc. Because in many
cases the choice of prior is not unique, Bayesian analy-
ses are supposed to present results for several plausible
priors, so as to investigate the sensitivity of the result to
the choice of prior.

Once the posterior is available, several options are
available for determining a range of preferred s values at
some chosen probability level c, i.e.

Z su

sl

p(sjt1) ds ¼ c: (12)

Possibilities include:

• A central range from sl to su could be obtained
by having probabilities of (1� c)=2 below the
range, and (1� c)=2 above it.

• The upper limit sUL is obtained by setting the
limits of integration in Equation (12) from zero
to sUL.

Contemporary Physics 5



• In a similar manner, a lower limit sLL is
obtained, using integration limits sLL and infin-
ity.

• The shortest posterior range in s containing
probability c is also popular, but does not corre-
spond to the shortest range in the decay rate
1=s, or for other reparametrisations of the vari-
able of interest.

4. Parameter determination: Frequentist approach

We now consider the Frequentist approach for the same
problem as in the previous section.

The Neyman construction is used to show on a plot
of the parameter s versus the data t the likely values of t
for each s (see Figure 3(a)). This is achieved by using
p(tjs) of Equation (10) for a given s to select a region of
t such that the integral of p(tjs) over this range of t is,
say, 68%.2 By repeating this procedure for all s, we
obtain the ‘confidence band’. In our example, the edges
of the band are defined by the straight lines t ¼ 0:17s
and t ¼ 1:8s. Finally we use the actual observed value t1
to read off the range of s values (sl to su, which are
t1=1:8 and t1=0:17, respectively) for which t1 is a likely
observation. For larger values of s, t1 is too small to be
likely, and similarly for smaller s, t1 is too large.

In a more plausible scenario where the data consisted
of a set of observed decay times ti, the data statistic
could be the mean of the ti. Then the confidence band
would be narrower than in the figure, and the range of
acceptable s values would be shorter.

An important feature of this construction is that it
does not require a prior distribution for s, thus avoiding
the possible ambiguity that that would have introduced.

Another point to note is that the Frequentist approach
does not claim that the range sl to su is probable. Nor
does it make any statement about different values within
this range. It is merely that this is the range of s values
for which the observed data is likely (at the chosen con-
fidence level).

Figure 3(b) shows a more interesting example. An
experiment aims to measure the temperature T of the
fusion reactor at the centre of the sun, by using a
month’s running of a solar neutrino detector to estimate
the neutrino flux / from the sun. Assuming we know all
about fusion processes and convection in the sun, the
properties of neutrinos, the performance of our detectors,
etc., we can construct at each T a region in / such that
there is a 68% probability the experimental result would
lie in it. Then we use the actual measured flux /obs to
determine the accepted range for T.

4.1. Coverage

For repetitions of an experiment using a particular statis-
tical analysis to determine a range for the parameter of
interest, where the data sets differ from each other just
by statistical fluctuations, the coverage is the fraction of
the parameter’s intervals that contain the true value of
the parameter. This can be determined from Monte Carlo
simulation, or in some simple cases analytically.
Coverage is a property of the statistical technique that is
used to construct the intervals, and does not apply to a
single measurement.

Techniques for which the coverage is equal to the
nominal value (e.g. 68%) for all values of the parameter
are said to have exact coverage. If the coverage drops
below the nominal value, the method is said to under-
cover. Frequentists regard this as bad: if the actual cover-

t = .17τ

τ

τu

t = 1.8τ

τl

t1 t

(a)
T

øobs

ø

Tu

Tl

(b)

Figure 3. The Neyman construction. (a) For the exponential parameter τ, the central confidence band between the lines t = 0.17τ and
t= 1.8τ gives the likely values (at the 68% level) of t for each τ. Then a vertical line at the observed t1 intersects the edges of the
confidence band at τl and τu, and these define the frequentist range for τ. (b) Here the theory parameter is the temperature T at the
centre of the sun, and the data / is the measured flux of solar neutrinos, both in arbitrary units. A measurement of the flux /obs
determines a range of temperatures (Tl to Tu) at the sun’s centre.
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age for determining the parameter is only 30% rather
than the nominal 68%, just quoting the range for the
parameter as determined by that method is likely to
mislead a reader into believing that your result is more
accurate than it really is. Over-coverage does not have
this problem, but it suggests that maybe the confidence
intervals produced by that method are more conservative
(i.e. wider) than they need be.

A particularly important property of the Neyman
construction is that the confidence intervals for the
parameter have the property of not undercovering. This
property is not guaranteed for other techniques (e.g.
Bayesian, v2, maximum likelihood, method of moments).

Figure 4 shows the coverage C for the following sit-
uation. An experiment is performed to determine the rate
l of some Poisson counting experiment, and n counts
are observed. The statistical procedure chosen for deter-
mining a 68% range for l is the likelihood method with
the �( ln L) ¼ 0:5 rule to define the ends of the range. In
envisaged repetitions of the experiment, n will vary
according to a Poisson distribution with mean l0. Then
C(l0) is the fraction of the resulting ranges for l which
include l0. The likelihood method does not have the
frequentist guarantee of coverage, and indeed large
under- and over-coverage occur, especially at low l [1].

5. Parameter determination: common issues

Here we discuss some issues that are common to both
Frequentist and Bayesian approaches.

5.1. Parameters with limited range

Very often a physical parameter has meaning only over a
limited range. For example, the square of the mass of
the neutrino (m2

m) produced in nuclear beta decay cannot
be negative, the branching ratio for some particular
decay mode of an elementary particle must be between
zero and one, etc. Bayesians can incorporate this infor-
mation by setting the prior for the parameter to zero in
the non-physical region. This ensures that the best esti-
mate of a parameter or an upper limit for it are guaran-
teed to be physical. In contrast, a frequentist upper limit
could well turn out to be unphysical, or the range for m2

m

could be empty (i.e. there was no physical value of m2
m

for which the data was likely); in general Particle Physi-
cists are unhappy with such a situation.

For many years, experiments estimating m2
m had ‘like-

lihood functions’ that maximised at negative values.
Upper limits for m2

m were then usually derived by Bayes-
ian methods.

5.2. Interpretation of lu P l P ll

Both Bayesian and Frequentist methods of parameter
determination end up with a statement of the form
lu P l P ll at some probability level, but their inter-
pretations are very different.

For frequentists, the parameter l is unknown, but it
does have a true value and, as discussed earlier, it is not
suitable for probability statements. So the probability
refers to the range ll to lu. If the experiment were to be
repeated many times, a series of ranges for l would be
obtained, and the probability refers to what fraction of
these ranges contain the true value; this is just the cover-
age mentioned earlier. Thus frequentists regard the ends
of the range as random variables.

For Bayesians, lu and ll have been determined by the
experimental analysis, and are considered fixed; Baye-
sians do not want to be involved in deciding what would
have happened in hypothetical repetitions of the experi-
ment. But they are prepared to treat the unknown physical
constant as if it were a random variable, and for them the

Figure 4. Coverage C for Poisson parameter intervals, as
determined by the D(ln(L)) = 0.5 rule. Repeated trials (all
using the same Poisson parameter μ) yield different values
of the observation n, each resulting in a range μl to μu for
μ; then C is the fraction of trials that give ranges which
include the value of μ chosen for the trials. The coverage C
varies with μ, and has discontinuities because the data n can
take on only discrete integer values. For large μ, C seems to
approach the expected 0.68.

Table 1. Interpretations of ‘lu � l � l1 at 68% confidence level’.

Bayes Frequentist

What is fixed? μu , μl μ
What is variable? μ μu , μl
What does 68% prob

apply to?
Single measurement: percentage of μ’s
posterior in range

Set of measurements: percentage of ranges μl → μu
that contain μ
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probability refers to the fraction of the Bayesian posterior
probability density for l within the quoted range (see
Table 1).

5.3. Dealing with systematics

Very often, in trying to estimate a parameter, some other
quantity involved in the analysis is not known exactly,
and this can affect the deduced range for the parameter
of interest. For example, in the original Reines and
Cowan experiment [2] to discover the electron neutrino,
a detector sensitive to neutrinos interacting in it was built
close to a powerful nuclear reactor. However, there were
also background processes which mimic the interactions
of the reactor neutrinos. Then the observed number of
counts n is likely to be Poisson distributed with mean
bþ s:

P(n) ¼ e�(bþs) (bþ s)n=n! ; (13)

where b is the expected background, and s is the signal
rate. If b is precisely known, s is the only unknown
parameter, and can be determined essentially as
described earlier. But if there is some uncertainty in the
expected value of b, this results in a systematic uncer-
tainty in the answer. Statisticians refer to b as a nuisance
parameter.

Bayesians tend to treat all parameters (i.e. those of
physical interest and nuisance parameters) in a similar
manner. Thus, assuming that the background b has been
estimated in a subsidiary counting experiment as m0

while the result of the main measurement of sþ b was
n0, they would start by writing the likelihood for s
and b as

L(s; bjn0;m0) ¼ (e�(sþb) (sþ b)n0=n0!)� (e�b bm0=m0!):

(14)

Next this is multiplied by the chosen prior p(s; b) for
s and b, to give the posterior probability p(s; b) for the
parameter of interest s and the nuisance parameter for
the background b. Then this is integrated (or ‘margina-
lised’) over b to give the probability density just for the
parameter of interest:

p(s) ¼
Z

p(s; b) db: (15)

Finally the required parameter range is extracted
from p(s), e.g. a central 68% range.

In contrast, frequentists start from the probability
density p(n;mjs; b) for observing any n and m as

p(n;mjs; b) ¼ (e�(sþb) (sþ b)n=n!))� (e�b bm=m!): (16)

The fully frequentist method consists in performing a
Neyman construction to produce a confidence belt for

likely data (n;m) as a function of the parameters (s; b).
In analogy with the simpler problems discussed earlier,
the actual data (n0;m0) is then used to read off the
region in parameter space (s; b) for which the data is
likely. If a range just for s is desired, it could be taken
as the extrema of the (s; b) region, although this will
give rise to overcoverage.

There are also various approximate methods, which
are simpler than the full Neyman construction and which
tend to produce less overcoverage (but for which the
frequentist guarantee of coverage no longer applies). An
example is the profile likelihood approach, in which the
probability p(n;mjs; b) is replaced by pprof (n;mjs; bbest(s)),
where bbest(s) is the value of b which maximises the prob-
ability for that value of s; because bbest(s) is a function of
s, the profiled probability depends on the single parameter
s, which simplifies the problem.

Reference [3] contains a longer discussion of system-
atics, while Demortier [4] deals with ways of incorporat-
ing systematics in both parameter determination and
hypothesis testing.

Profile likelihood

In many situations, the probability of observing
a particular set of data d depends not only on a
parameter of physical interest u (e.g. the mass of
the Higgs boson), but also on some other
so-called nuisance parameters m (e.g. a scale factor
for correcting jet energies as measured in the
detector). Then the likelihood L(/; mjd) is a func-
tion of both sets of parameters / and m. In order
to draw conclusions about /, it is often helpful to
consider the profile likelihood Lprof (/; mmax(/)jd),
where for each value of /, the nuisance parame-
ters are chosen to maximise the full likelihood
L(/; mjd), i.e. mmax varies with /. However, Lprof
now is a function just of / but not of the nuisance
parameters m, thereby simplifying the problem of
making inferences about the parameter of interest
/, at the cost of losing some of the properties of
the likelihood function.

Rather than maximising L with respect to m,
Bayesian methods tend to marginalise, i.e.
integrate the likelihood with respect to m, usually
after using priors for m to convert L into a poster-
ior probability distribution for /.

For the case where L is a multi-dimensional
Gaussian distribution such as
L / expf�ða/2 þ 2b/m þ cm2Þg;
marginalisation over m or profiling with respect to it
will give the same functional form for the
modified likelihoods.
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6. Hypothesis testing

Possibly more interesting than Parameter Determination
is Hypothesis Testing. Here the issue is to decide which
of two (or more) competing theories provides a better fit
to some data. For example, was data collected at the
Large Hadron Collider at CERN in the first half of 2012
more consistent with what is known as the Standard
Model (SM) of Particle Physics without anything new,
or with the production of the Higgs boson in addition to
the known SM processes? (See Figure 5.)

In Particle Physics, for reasons to be explained
below, it is much more common to use a Frequentist
method to decide. In other fields, Bayesian approaches
tend to be favoured. We discuss Bayesian methods
briefly in Section 7.

6.1. Frequentist approach

The first task is to choose some data statistic t which
will help distinguish between the hypotheses. In the sim-
ple case of a counting experiment, where the data con-
sists just of the number of accumulated counts n0 for a
given amount of running time, it could simply be n0.
Then in most cases new physics would manifest itself in
a larger number of counts when the expected rate is
sþ b, than if there were just background; here s and b
are the expected signal and background rates,
respectively.

In more complicated cases, the data could consist of
one or more histograms or multi-dimensional distribu-
tions. Then usually t is chosen as a likelihood ratio for
the data, assuming the two hypotheses:

t ¼ L1(H1jd)=L0(H0jd); (17)

where L1 is the likelihood for H1 (the hypothesis of sig-
nal + background), given the data, while L0 is for the
background only hypothesis H0, given the same data.
When the hypotheses are completely specified without
any free parameters, they are known as ‘simple hypothe-
ses’ and the above formulation is satisfactory. Then the
Neyman–Pearson lemma [5] says that if we choose H0

based on the likelihood ratio being below some suitably
defined cut-off, this will guarantee that we will achieve
the lowest rate for ‘Errors of the Second Kind’ (i.e.
incorrectly selecting H0 when H1 is true), for a given
rate for ‘Errors of the First Kind’ (i.e. rejecting H0 when
it is true).

If, however, one or more of the hypotheses involves
free parameters (‘composite hypotheses’), the Neyman–
Pearson lemma does not apply. Nevertheless a form of
the likelihood ratio, such as the ratio of profile likeli-
hoods, is often used as a method that may well be nearly
optimal.

6.2. p-values

For the null hypothesis H0, the expected distribution of
our test statistic t is f0(t). Then for a given observed
value tobs, the p-value is the fractional area in the tail of
f0(t) for t greater than or equal to tobs. For definiteness
we consider the single-sided upper tail (assuming that
the alternative hypothesis yields larger values of t), but
lower or two-sided tails could be appropriate in other
cases.

A small p-value means that the data are not very
consistent with the hypothesis. Apart from the possibility
that the cause of the discrepancy is new physics, it could
be due to an unlikely statistical fluctuation, an incorrect
implementation of the hypothesis being tested, an inaccu-
rate allowance for detector effects, etc.

As more and more data are acquired, it is possible
that a small (and perhaps not physically significant) devi-
ation from the tested null hypothesis could result in the
p0 becoming small as the data become sensitive to the
small deviation. For example, a set of particle decays
may be expected to have an exponential decay, but there
might be a small background characterised by decays at
very short times, and which is not allowed for in the
analysis. A small amount of data might be insensitive to
this background, whereas a large amount of data might
give a very small p-value for a test of exponential decay,

Figure 5. The observed distribution in the CMS experiment
for the effective mass mγγ of pairs of γs produced in high
energy proton–proton collisions at CERN’s LHC. If the Higgs
boson exists and decays to a pair of γs, it could result in a
peak centred on the mass of the Higgs. Otherwise, the expected
distribution is expected to be smooth. In the main plot, the
events are weighted according to their quality; the inset shows
unweighted events. The apparent peak around 125GeV is part
of the evidence for the existence of a new particle, whose
properties seem consistent with those expected for a Higgs
boson.
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even though the background is fairly insignificant. With
enough data, we may be able to include physically moti-
vated corrections to our naive H0. The possibility of a
statistically significant but physically unimportant devia-
tion has been mentioned by Cox [6].

It is extremely important to realise that a p-value is
the probability of observing data like that observed or
more extreme, assuming the hypothesis is correct. It is
not the probability of the hypothesis being true, given
the data. These are not the same – see Section 2.4.

Many of the negative comments about p-values are
based on the ease of misinterpreting them. Thus it is
possible to find statements that of all experiments quot-
ing p-values below 5%, and which thus reject H0, many
more than 5% are wrong (i.e. H0 is actually true). In
fact, the expected fraction of these experiments for which
H0 is true depends on other factors, and could take on
any value between zero and unity, without invalidating
the p-value calculation.

6.3. p-values for two hypotheses

With two hypotheses H0 and H1, we can define a
p-value for each of them. We adopt the convention that
H1 results in larger values for the statistic t than does
H0. Then p0 is defined as the upper tail of f0(t), the
probability density function ( pdf ) for observing a mea-
sured value t when H0 is true. It is conventional to
define p1 by the area in the lower tail of f1(t) (i.e.
towards the H0 distribution) – see Figure 6(b), which
shows the probability densities for obtaining a value t of
a data statistic, for hypotheses H0 and H1. For a specific
value tobs, the p-values p0 and p1 correspond to the tail
areas above tobs for the H0 pdf , and below tobs for H1,
respectively.3 Then tcrit is the critical value of t such that
its p0 value is equal to a pre-set level a for rejecting the
null hypothesis.

The p1-value when t ¼ tcrit is denoted by b, and the
power of the test is 1� b. The power is the probability
that we successfully reject the null hypothesis,
assuming that the alternative is true. We expect the power
to increase as the signal strength in H1 becomes stronger,
and the pdf s for H0 and H1 become more separated.

Depending on the separation of the two pdf s and on
the value of the data statistic t, several situations are
now possible (see Table 2):

• p1 is small, but p0 acceptable. Then we accept
H0 and reject H1, i.e. we exclude the alternative
hypothesis.

• p0 is very small, and p1 acceptable. Then we
accept H1 and reject H0. This corresponds to
claiming a discovery.

• Both p0 and p1 are acceptable. The data are
compatible with both hypotheses, and we are
unable to choose between them.

• Both p0 and p1 are small. The choice of decision
is not obvious, but basically both hypotheses
should be rejected.

t
t0

tt0 t1

H0                                                             H1

H0                             H1

p1 p0

tt0

Exclusion   No decision   Discovery

tcrit

(a) (b)

(c)

Figure 6. Expected distributions for a statistic t for
H0 = background only (solid curves) and for H1 = background
plus signal (dashed curves). In (a), the signal strength is very
weak, and it is impossible to choose between H0 and H1. As
shown in (b), which is for moderate signal strength, p0 is the
probability according to H0 of t being equal to or larger than
the observed t0. To claim a discovery, p0 should be smaller
than some pre-set level α, usually taken to correspond to 5σ;
tcrit is the minimum value of t for this to be so. Similarly p1 is
the probability according to H1 for t � t0. The exclusion
region corresponds to t0 in the 5% lower tail of H1. In (b)
there is an intermediate ‘No decision’ region. In (c) the sig-
nal strength is so large that there is no ambiguity in choos-
ing between the hypotheses. In order to protect against a
downward fluctuation in a situation like (a) resulting in an
exclusion of H1 when the curves are essentially identical,
CLs is defined as p1/(1� p0).

5r discovery, 95% exclusion

Searches for new phenomena in Particle Physics
typically choose the ‘Standard Model’ as the null
hypothesis H0, and a specific form of New Phys-
ics as H1. The exclusion level for H1 is usually
set at 5%, whereas that for rejecting H0 (and per-
haps claiming the discovery of New Physics) is
usually ‘5r’, i.e. p0 6 3� 10�7.

Some (not very convincing) reasons for the
stringent criterion for rejecting H0 include:
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Figure 7(a) illustrates the (p0; p1) plot for defining
various decision regions.

6.4. p-values or likelihoods?

Rather than calculating p-values for the various hypothe-
ses, we could use their likelihoods L0 and L1. While
p-values use tail areas beyond the observed statistic, the
likelihood is simply the height of the pdf at tobs. We
return to likelihood ratios in Section 7.

As mentioned in Section 6.1, the Neyman–Pearson
lemma provides the best way of choosing between two
simple hypotheses, but even when one or both hypothe-
ses contain free parameters, the likelihood ratio may well
be a suitable statistic for summarising the data and for
helping choose between the hypotheses. In general, it
will be necessary to generate the expected distributions
of the likelihood ratio according to the hypotheses H0

and H1, in order to make some deduction based on the
observed likelihood ratio; for composite hypotheses there
are of course the complications caused by the nuisance
parameters. The decision process may well be based on
the p-values p0 and p1 for the two hypotheses (see
Figure 7). In that case, the procedure can be regarded as

either a likelihood ratio approach, with the p-values sim-
ply providing a calibration for the value of the likelihood
ratio; or as a p-value method, with the likelihood ratio
merely being a convenient statistic.

6.5. Look elsewhere effect

If you are playing cards, and in your hand of 13 cards you
observe that you have four queens, you might think that
that is very unusual. Indeed the probability of a random
set of 13 cards containing four queens is 0.0026. However,
since you decided that ‘four queens’ was unusual only
after you looked at your cards, you might have been
equally surprised by four kings; or four jacks; or ace, two,
three, four of the same suit; etc. Taking these into account,
the probability of a surprising hand of cards similar to
what we had is going to be a fair bit larger than 0.0026.

A similar effect explains why a seemingly improba-
ble event in our everyday life (e.g. a chance meeting
with someone we had been thinking about recently) may
in fact be much more likely, if we have not decided at
the beginning of the day that this specific event would
be a real coincidence if it happened.

Often in High Energy Physics, we are looking for
some new phenomenon. Thus we may be searching for a
new particle, whose mass is not pre-defined, in a histo-
gram such as that of Figure 5. When we observe an
enhancement, we can calculate the p-value (the chance
of observing a statistical fluctuation at least as big as the
one in our data, assuming that no such particle in fact
exists), at the observed mass. But this of course underes-
timates the chance of having a fluctuation anywhere in
our mass distribution, which we might mistakenly
ascribe to a new particle. We thus need to calculate the
probability of observing an effect at least as impressive
as ours, anywhere in our mass distribution. In Particle
Physics, this dilution of the significance is known as the
Look Elsewhere Effect (LEE).

Similar considerations are relevant for searches in
other fields. Thus claims for discoveries of gravitational
waves would need to calculate the chance of a statistical
fluctuation mimicking the observed effect not only at the
observed time, frequency and signal structure, but any-
where in the whole dynamic range of these variables for
which a real signal is possible.

Of course, specifying where exactly ‘Elsewhere’ is, is
fraught with ambiguities. Thus for the above example of

Table 2. Choosing between two hypotheses, based on p0 and p1.

p0 p1 Result If H0 true If H1 true

Very small O.K. Discovery Error of 1st kind Correct choice
O.K. Small Exclude H1 Correct choice Error of 2nd kind
O.K. O.K. Make no choice Loss of efficiency Loss of efficiency
Very small Small ? ? ?

• The past history of false discovery claims
at 3r and 4r levels.

• The possibility that systematic effects
have been underestimated.

• The Look Elsewhere Effect (see Sec-
tion 6.5).

• Subliminal Bayesian reasoning that the
Standard Model is intrinsically more
likely to be true than some specific specu-
lation about New Physics.

• The embarrassment of having to withdraw
a spectacular but incorrect claim of dis-
covering New Physics.

In contrast, incorrect exclusion of New Physics
is not regarded as so dramatic, and so the weaker
criterion of 5% is used. As Glen Cowan has
remarked, ‘If you are looking for your car keys
and are 95% sure they are not in the kitchen, it’s a
good idea to start looking somewhere else’ [7].
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searching for a new particle, Figure 5 is relevant for the
possibility of it decaying to two photons, but other decay
modes could be possible, and hence could be relevant to
the LEE. Similarly, maybe the particle we are considering
cannot be produced enough at high masses for us to have
the chance of detecting it, so the whole mass range is not
relevant for the LEE. The conclusion is that when p-val-
ues are corrected for the LEE, it is important to specify
exactly what has been taken into account.

6.6. CLs

The CLs method [8,9] was introduced in the LEP experi-
ments at CERN in searches for new particles. When evi-
dence for such a particle is not found, the traditional
Frequentist approach is to exclude its production if p1 is
smaller than some pre-set level c, which in Particle Phys-
ics is typically set at 5%. However, there is then a 5%
probability that H1 could be excluded, even if the experi-
ment was such that the H0 and H1 pdf s lay on top of
each other, i.e. there was no sensitivity to the production
of the new phenomenon. To protect against this, the deci-
sion to exclude H1 is based on p1=(1� p0), known as
CLs.

4 It is thus the ratio of the left hand tails of the pdf s

for H1 and H0. Figure 7(a) shows a (p0; p1) region for
which H1 is excluded by CLs. The fact that it is clearly
smaller than for the standard frequentist exclusion region
is the price one has to pay for the protection it provides
against excluding H1 when an experiment has no sensi-
tivity to it. We regard it as conservative frequentist.

It is interesting that the CLs exclusion line in
Figure 7(a) for the case of two Gaussians is identical to that
obtained by a Bayesian procedure for determining the upper
limit on l1 when the latter is restricted to positive values, and
with a uniform prior for l1. In a similar manner, the standard
frequentist procedure agrees with the Bayesian upper limit
when the restriction of l1 being positive is removed.

In principle, similar protection against discovery
claims when the experiment has no sensitivity could be
employed, but it is deemed not to be necessary because
of the different levels used for discovery and for exclu-
sion of H1 (typically 3� 10�7 and 0.05, respectively).

6.7. When neither H0 or H1 is true

It may well be that neither H0 nor H1 is true. With no more
information available, it is of course impossible to say
what we expect for the distribution of our test statistic t.

Figure 7. Plots of p0 against p1 for comparing a data statistic t with two hypotheses H0 and H1, whose expected pdfs for t are
assumed to be two Gaussians of peak separation Dl, and of equal width σ (see Figure 6). (a) For a pair of pdfs with a given sep-
aration, the allowed values of (p0, p1) lie on a curve or straight line (shown solid in the diagram). As the separation Dl
increases, the curves approach the p0 and p1 axes. Rejection of H0 is for p0 less than, say, 3� 10�7; here it is shown as 0.05
for ease of visualisation. Similarly exclusion of H1 is shown as p1 < 0.1. Thus the (p0, p1) square is divided into four regions:
the largest rectangle is when there is no decision, the long one above the p0-axis is for exclusion of H1, the high one beside
the p1-axis is for rejection of H0, and the smallest rectangle is when the data lie between the two pdfs. For Dl= 3.33, there are
no values of (p0, p1) in the ‘no decision’ region. In the CLs procedure, rejection of H1 is when the statistic t is such that (p0,
p1) lies below the diagonal dotted straight line. (b) Contours of constant likelihood ratio r= L0/L1 for Gaussian pdfs. The upper
right region is inaccessible; the diagonal line from (0,1) to (1,0) corresponds to the pdfs lying on top of each other, i.e. no sen-
sitivity. The diagonal through the origin is when tobs is mid-way between the two pdfs. With larger separation of the Gaussian
pdfs and for constant p0 the likelihood ratio increases.
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On the plot of Figure 7(a), our data may fall in the small
rectangle next to the origin.

It is certainly not true that a small value for p0
implies that H1 is correct, although for small enough p0,
ruling out H0 is a possibility.

7. Bayesian methods

The Bayesian approach is more naturally suited to making
statements about what we believe about two (or more)
hypotheses in the light of our data. This contrasts with
Goodness of Fit, which involves considering other possi-
ble data outcomes, but focuses on just one hypothesis.

All Bayesian methods involve the likelihood func-
tion, possibly modified to take into account nuisance
parameters. For Hypothesis Testing, some form of a ratio
of (modified) likelihoods is usually involved. For
simple hypotheses, this is just L0(H0)=L1(H1), where
Li(Hi) ¼ p(xjHi), the probability (density) for observing
data x for the hypothesis Hi. The issue is going to be
how nuisance parameters5 m are dealt with for non-sim-
ple hypotheses. For the likelihood approach (as opposed
to the Bayesian one, which also requires priors), it is
usual to profile them, i.e. the profile likelihood is
Li(Hijmbest), where mbest is the set of parameters which
maximise L. In Particle Physics, the profile likelihood
approach is a popular method for incorporating systemat-
ics in parameter determination problems.

The complications of applying Bayesian methods to
model selection in practice are due to the choices for
appropriate priors. This is particularly so for those
parameters which occur in the alternative hypothesis H1

but not in the null H0.
Loredo [10] and Trotta [11] have provided reviews

of the application of Bayesian techniques in Astrophysics
and Cosmology, where their use is more common than
in Particle Physics.

7.1. Bayesian posterior probabilities

When there are no nuisance parameters involved, the
ratio of the posterior probabilities for Hi is
ppost(H0jx)=ppost(H1jx), where

ppost(Hijx) / Li(Hi) pi; (18)

and pi is the assigned prior probability for hypothesis i.
For example, the hypothesis of there being a Higgs
boson of mass 110GeV might well be assigned a small
prior, in view of the exclusion limits from LEP.

With nuisance parameters, the posterior probabilities
become

ppost(Hijx) /
Z

Li(Hijm) pi(m) pi dm; (19)

where pi is the prior probability for hypothesis i and
pi(m) is the joint prior for its nuisance parameters, i.e. we
now have integrated over the nuisance parameters. This
contrasts with the likelihood method, where maximisa-
tion with respect to them is more usual. Even with pi(m)
being a constant, integration and maximisation can select
different regions of parameter space. An example of this
would be a likelihood function that has a large narrow
spike at small m, and a broad but lower enhancement at
large m.

In relation to all Bayesian methods, it is to be
emphasised that the choice of a constant prior, especially
for multi-dimensional m, is by no means obvious (com-
pare Section 2.3). Very often, there are several possible
choices of variable for the nuisance parameters, with
none of them being obviously more natural or appropri-
ate that the others. Thus a point in two-dimensional
space could be written as Cartesian (x; y) or polar (r; h);
constant priors in the two sets of variables are different.
Similarly in fitting data by a straight line y ¼ aþ b x,
using a seemingly innocuous flat prior for b ¼ tan h
results in angles h in the range 0� to 89� have the same
prior probability as those in the range 89� to 89:5�.

It should be realised that the results for Hypothesis
Testing are more sensitive to the choice of prior than in
parameter determination. Thus in parameter determina-
tion, sometimes a prior is used which is constant over a
wide range of m, and zero outside it. The resulting range
for the parameter, as deduced from its posterior, may
well be insensitive to the range used, provided it
includes the region where the likelihood L(m) is signifi-
cant. For comparing hypotheses, however, there can be
parameters which occur in one hypothesis but not the
other. (An example of this is where H1 corresponds to a
smooth background plus a peak, while H0 is just smooth
background.) The widths of such priors affect their nor-
malisation, and hence also the Bayes factor (see next
section) directly.

On the other hand, in searches for a new particle of
unknown mass, the Bayesian probability for the particle
existing will depend on the range of the prior used for
the particle’s mass – the wider the range, the lower the
normalisation and hence the lower the probability.6

At least qualitatively, this resembles the effect of the
LEE in the Frequentist approach, where the significance
of a peak in a mass spectrum is diluted if the search
extends over a wide mass range (see Section 6.5).

7.2. Bayes factor

For each hypothesis we define Ri ¼ ppost=p, where ppost
and p are respectively the posterior and prior probabili-
ties for hypothesis i. Thus R is just the ratio of posterior
and prior probabilities. Then the Bayes factor for the two

Contemporary Physics 13



hypotheses H0 and H1 is B01 ¼ R0=R1. If the two
hypotheses are both simple, then this is just the likeli-
hood ratio. If either is composite, the relevant integrals
are required for ppost. A small value of B01 favours H1.

Demortier [12] has drawn attention to the fact that it
can be useful to calculate the minimum Bayes factor
[13]. This is defined as above, but with the extra nui-
sance parameters of H1 set at values that minimise B01,
i.e. they are as favourable as possible for H1. If even this
value of B01 suggests that H1 is not to be preferred, then
it is a waste of time to investigate further since any
choice of priors for the extra parameters cannot make
B01 smaller.

7.3. Other Bayesian methods

The Bayesian approach can be used in conjunction with
Decision Theory, in order to provide a procedure for
choosing between two hypotheses. In addition to any pri-
ors, a cost function has to be defined, which assigns a
numerical ‘cost’ for each combination of the true hypoth-
esis (H0 or H1), and the possible decisions – see Table 3.
The decision procedure is designed to minimise the
expected cost, as determined by the cost function and
the expected distribution of posterior probabilities for H0

and H1.
Because of the problems of assigning realistic costs,

and the use of priors in determining the posteriors for
the hypotheses, there is little or no usage of this
approach in Particle Physics searches for New Physics.

Other Bayesian methods such as AIC, BIC, ...
(Akaike Information Criterion, Bayesian Information Cri-
terion, ...) aim to provide approximations to the Bayes
factor, but which are easier to calculate. Given the pow-
erful computational facilities available nowadays, these
methods are likely to decrease in general usage. Again
there is little or no experience of using them in Particle
Physics applications.

7.4. Why p is not equal to the likelihood ratio

There is sometimes discussion of why a likelihood ratio
approach (or the Bayes factor, if there are nuisance
parameters) can give a very different numerical answer
to a p-value calculation. A reason some agreement might
be expected is that they are both addressing the question
of whether there is evidence in the data for new physics.

In fact they measure very different things. Thus p0
simply measures the consistency with the null hypothe-
sis, without any regard to the degree of agreement with
the alternative, while the likelihood ratio takes the alter-
native into account. There is thus no reason to expect
them to bear any particular relationship to each other.
This can be illustrated by contour plots of constant val-
ues of the likelihood ratio r ¼ L0=L1 on a p0 versus p1
plot (see Figure 7(b)). The figure is constructed by
assuming that the pdf s for the two hypotheses H0 and
H1 are given by Gaussian distributions, both of unit
width. Then at constant p0, it is seen that the likelihood
ratio can take a range of values, corresponding to the

Table 3. Cost function. Typically the cost A assigned to a false discovery claim would be larger than B, the cost for a failure to
discover. There is zero cost for making a correct decision.

H0 true H1 true

Accept H0 Correct choice. Cost = 0 Failure to discover. Cost =B
Reject H0 False discovery claim. Cost =A Correct choice. Cost = 0

Table 4. Comparison of Bayes and Frequentist approaches.

Bayes Frequentist

Basis of method Bayes theorem → posterior probability
distribution

Uses pdf for data, for fixed parameter values

Meaning of probability Degree of belief Frequentist definition
Probability for parameters Yes No, no, no
Needs prior Yes No
Choice of interval Central, upper limit, shortest, … Choice of ordering rule
Data used Only the data you have Also other possible data
Needs ensemble of possible

experiments
No Yes (but often not explicit)

Obeys the likelihood principle Yes No
Unphysical/empty ranges possible? Excluded by prior Can occur
Final statement Posterior prob dist Param values for which data is likely
Do param ranges cover? Regarded as unimportant Built in
Include systematics Integrate over prior Extend dimensionality of frequentist

construction
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Gaussians having different separations. Thus with the
Gaussian for H0’s pdf centred at zero, a measured value
of 5.0 yields a p0-value of 3� 10�7, regardless of the
position of the H1 Gaussian. Such a small p-value is
usually taken as sufficient to reject H0. As the centre of
the H1 Gaussian starts at l1 ¼ 0, the two Gaussian pdf s
are identical, and r ¼ 1. With increasing l1, p0 of course
remains constant, but r at first decreases to a minimum
when l1 ¼ 5, but then increases through unity when
l1 ¼ 10 (i.e. the data is midway between the pdf peaks),
and then keeps on rising with further increases of the
separation of the pdf s. At that stage, the data are more
in agreement with H0 than with H1, despite the small
value of p0.

8. Conclusion

We have seen how Bayesians and frequentists differ fun-
damentally in the way they consider probability. This
then affects the way they approach the topics of parame-
ter determination, and of choosing between two hypothe-
ses. Table 4 provides a summary of the differences
between the two approaches.

A cynic’s view of the two techniques is provided by
the quotation:

Bayesians address the question everyone is interested in
by using assumptions no-one believes, while Frequentists
use impeccable logic to deal with an issue of no interest
to anyone.

However, it is not necessary to be so negative, and
for physics analyses at the CERN’s LHC, the aim is, at
least for determining parameters and setting upper limits
in searches for various new phenomena, to use both
approaches; similar answers would strengthen confidence
in the results, while differences suggest the need to
understand them in terms of the somewhat different
questions that the two approaches are asking.

It thus seems that the old war between the two meth-
odologies is subsiding, and that they can hopefully live
together in fruitful cooperation.
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Notes
1. The ‘!’ symbol in Equations (1) and (2) not only expresses

surprise (‘Wow! These equations look very similar), but it
also denotes the factorial.

2. This definition does not provide a unique range. The one we
show has a probability of 16% on either side of the selected

region, which is then known as a central interval. An alter-
native would be to have the whole of the 32% on the left
hand side of the confidence interval; this would be useful for
producing upper limits on s.

3. If t is a discrete variable, such as a number of events, then
‘above’ is replaced by ‘greater than or equal to’, and corre-
spondingly for ‘below’.

4. This stands for ‘confidence level of signal’, but it is a poor
notation, as CLs is in fact a ratio of p-values, which is itself
not even a p-value, let alone a confidence level.

5. For the purpose of model comparison, any parameters are
considered as nuisance parameters, even if they are physi-
cally meaningful, e.g. the parameters of a straight line fit,
the mass of the Higgs boson, etc.

6. This is an example of Occam’s Razor, whereby a simpler
hypothesis may be favoured over a more complex one.
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