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The problem of separating rotations from internal motions in systems such as macroscopic flexible
bodies, atoms, molecules, nuclei, and solar systems is an old one, with many applications in physics,
chemistry, and engineering. A new element, however, which has not been appreciated until fairly
recently, is the existence of certain gauge fields on the reduced configuration space for such systems.
These (non-Abelian) gauge fields arise in the ‘‘falling cat’’ problem, in which changes in shape induce
changes in external orientation; but they also have a dynamical significance, and enter as gauge
potentials in the Lagrangian or Hamiltonian describing the internal or reduced dynamics. Physically
these gauge fields represent Coriolis effects. This review concentrates on the case of nonrelativistic,
n-body systems not subject to external torques, and develops the gauge theory of rotations and
internal motions in detail. Both classical and quantum treatments are given. The gauge theory is
developed from the standpoint of classical, coordinate-based tensor analysis; more abstract
mathematical notation is generally not used, although the basic geometrical ideas of fiber-bundle
theory are developed as needed. Certain old results, such as the Wilson-Howard-Watson Hamiltonian
of molecular physics, are examined from a gauge-theoretical standpoint; and several new results are
presented, including field equations of the Kaluza-Klein type satisfied by the gauge fields, and
geometrical interpretations of the Eckart frame.
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I. INTRODUCTION

Systems of n particles such as isolated atoms, mol-
ecules, nuclei, and solar systems possess 3n degrees of
freedom, of which three can be eliminated on the basis
of translational invariance, and two more on the basis of
rotational invariance. Although the rotation group is
three-dimensional, it allows only the elimination of two
degrees of freedom, due to its non-Abelian character.
An exception to these rules is the special case of vanish-
ing total angular momentum when n>3, in which case
rotational invariance allows the elimination of three de-
grees of freedom. Another exception is the case n52,
which is the elementary case of central force motion.
These rules hold in both classical and quantum mechan-
ics. After the allowed number of degrees of freedom
have been eliminated, we are left with a reduced system
representing the intrinsic or internal dynamics of the
original system; in addition, it is possible to specify
methods for reconstructing the original dynamics from
the reduced dynamics.

For example, a three-body system such as the earth-
moon-sun system or the helium atom possesses nine de-
213/69(1)/213(63)/$19.45 © 1997 The American Physical Society
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grees of freedom, of which five can be eliminated in the
case of nonvanishing angular momentum (L Þ 0), leav-
ing a reduced system of four degrees of freedom. The
remaining four degrees of freedom are heterogeneous:
three describe the evolution of the ‘‘shape’’ of the three-
body system, i.e., the shape of the triangle formed by the
three bodies, and the fourth describes the evolution of
the angular momentum vector in a body frame, much as
in rigid-body theory. But if L50, then the angular mo-
mentum degree of freedom drops out, and we are left
with only three shape degrees of freedom. The situation
for other numbers of particles (n>3) is similar.

In this review we shall be concerned with nonrelativ-
istic systems of the kinetic-plus-potential type. Our cen-
tral problem will be to carry out the explicit elimination
of those degrees of freedom which can be eliminated on
the basis of translational and rotational invariance, and
to reveal the structure possessed by the reduced system.
This problem is an old one, with a history that dates
back at least to the eighteenth century, but a relatively
new element, due to Guichardet (1984), Tachibana and
Iwai (1986), Iwai (1987a, 1987b, 1987c), and Shapere
and Wilczek (1989a, 1989b), is the realization that cer-
tain gauge fields play an important role in the reduction
process and in the description of the reduced dynamics.
Physically, the gauge fields in question represent Corio-
lis forces, and the associated gauge conventions and
gauge transformations are connected with the definition
and redefinition of body frames. The notion that the in-
ternal dynamics of n-body systems is a gauge theory is a
new one in the applied literature of physics, chemistry,
and engineering, and it has wide-ranging implications
for the understanding of such systems.

The history of this problem goes back at least to
Lagrange and Jacobi, who found a coordinate transfor-
mation, ‘‘the elimination of the nodes,’’ which eliminates
the ignorable degrees of freedom in n-body gravita-
tional systems. This work is described by Whittaker
(1960), who gives references to the early literature. A
more modern treatment of the elimination of the nodes
has been presented by Deprit (1983), who uses a se-
quence of canonical transformations.

After the invention of quantum mechanics, n-body
problems in atomic, molecular, and nuclear physics, es-
pecially the problem of molecular vibrations and rota-
tions, gave new impetus to the study of the elimination
of ignorable degrees of freedom in systems with rota-
tional invariance. Molecules are n-body systems with
several special features, including the adiabatic separa-
tion of rotational and vibrational time scales, the fact
that n may not be small, and the fact that the interac-
tions between the atoms are not truly described by po-
tential energies because the atoms are composite par-
ticles (that is, molecular theory is part of the Born-
Oppenheimer approximation scheme). These and other
special demands of the problem of molecular vibrations,
such as the requirement due to Casimir (1931) that the
Coriolis coupling terms in the Hamiltonian be as small
as possible, led Eckart (1935) to formulate the ‘‘Eckart
frame,’’ which is a particular convention for the assign-
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ment of body frames as a field over the shape space of a
molecule. A vast amount of literature on molecular
theory has since that time been constructed around Eck-
art’s conventions; these conventions have been reviewed
and reappraised by Louck and Galbraith (1976),
Biedenharn and Louck (1981), and Ezra (1982).

When the amplitude of vibrations is large, or when
the very concept of vibrations is not appropriate (as in
problems in celestial mechanics or atomic physics),
other techniques are called for. The large literature on
the separation of rotations and internal motions in
three-body atomic and molecular problems falls into this
area. Many of the papers on the three-body problem
differ from one another in the conventions adopted for
body frame, assigned as a field over shape space. In ad-
dition, there are different choices made for coordinates
on shape space. Papers in this area include those of Breit
(1930), Smith (1960, 1962), Bhatia and Temkin (1964),
Dragt (1965), Zickendraht (1965), Meyer and Günthard
(1968), De Celles and Darling (1969), Pickett (1972),
Mead and Truhlar (1979), Johnson (1980, 1983a, 1983b),
Tennyson and Sutcliffe (1982), Sutcliffe and Tennyson
(1986, 1991), and Pack and Parker (1987). There are
many others we could mention.

Of course, the role of symmetry and ignorable coor-
dinates in classical mechanics is a subject found in all
textbooks. A notable example is the book by Sudarshan
and Mukunda (1974), which deals with the differential
geometry of group manifolds and phase space in coordi-
nate language. Beginning in the 1970s, certain mathema-
ticians, including Smale, Marsden, and Weinstein, began
to apply geometric methods to the problem of reducing
classical Hamiltonian systems with continuous symme-
tries, of which the n-body problem with rotational sym-
metry is a special case. This work is laid out in detail and
anterior references are given in the book by Abraham
and Marsden (1978). The theory of ‘‘reduction’’ as
worked out by these authors is a geometrical one, in
which the differential geometry of group manifolds is
coupled with that of Hamiltonian phase space (symplec-
tic manifolds), and the natural geometrical structures in-
volved in constructing the reduced phase space and the
reduced Hamiltonian are identified. For example, it
turns out that the reduced phase space is a certain quo-
tient space of a certain subspace of the original phase
space.

The reduction theory of Abraham and Marsden is
general, and makes few assumptions other than the ex-
istence of a continuous symmetry group which leaves
the Hamiltonian invariant and which acts on phase
space by means of canonical transformations. On the
other hand, in the case of the n-body systems that are of
interest in this review, the symmetry groups (transla-
tions and rotations) act on configuration space. This ac-
tion can be lifted into phase space, but it is more natural
and physically immediate to think of these groups as
acting primarily on configuration space. This fact alone
imposes on configuration space the structure of a princi-
pal fiber bundle (for n>3), which in turn is endowed
with a connection by the kinetic energy, regarded as a
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metric on configuration space. Thus, as classical Hamil-
tonian systems with symmetry go, there are several spe-
cial features of the n-body system with translational and
rotational invariance, including the bundle structure of
configuration space and the existence of a gauge poten-
tial on the reduced configuration space (or ‘‘shape
space’’). Not all of these features of n-body dynamics
were explicitly acknowledged in the early work on re-
duction theory, although it seems that by the early 1980s
certain mathematicians such as Kummer (1981) had rec-
ognized the importance of gauge fields in the n-body
problem.

On the other hand, it is possible to ‘‘discover’’ these
gauge fields and the associated bundle structure from
simple kinematical arguments based in configuration
space, without starting with the more general and more
abstract phase-space theory and specializing it. Further-
more, these gauge fields have a simple physical interpre-
tation, which can be understood in terms of elementary
notions of conservation of angular momentum and the
rotations generated by deformable bodies with changing
shapes. This was the approach taken by Guichardet
(1984), who dealt with the kinematics of deformable
bodies such as molecules and falling cats. The same dis-
covery was made independently by Shapere and Wilczek
(1989a, 1989b), evidently as a by-product of their more
substantial work on the gauge theory of the locomotion
of objects such as microorganisms in a viscosity-
dominated medium (Shapere and Wilczek, 1987, 1989c,
1989d).

What is particularly remarkable about these develop-
ments is the manner in which the entire structure of
nontrivial connections on non-Abelian fiber bundles
emerges from elementary mechanical considerations.
This is much as in the various examples of ‘‘Berry’s
phase’’ (Berry, 1984; Shapere and Wilczek, 1989a;
Zwanziger, Koenig, and Pines, 1990; Mead, 1992), in
which fiber bundles with connections are found in vari-
ous applications. Nevertheless, the gauge theory of
n-body systems with rotational symmetry is an espe-
cially rich example.

The investigations begun by Guichardet were taken
up and extended to cover dynamical considerations, in
both classical and quantum mechanics, by Tachibana
and Iwai (1986) and Iwai (1987a, 1987b, 1987c). It is this
tradition that we follow in this review, mainly because of
its mathematical simplicity, and we shall not have much
to say about the more general phase-space theory of
Abraham and Marsden. Nevertheless, the latter theory
is essential for more sophisticated applications and for a
deeper understanding of n-body systems.

A similar story could be told about quantum systems
with symmetry. Of course, the application of group
theory in quantum mechanics is a standard subject, in
which a symmetry group allows one to block-diagonalize
a Hamiltonian. But the standard theory makes little or
no distinction between symmetry groups that can be
viewed as acting on configuration space, and those that
cannot, nor does it acknowledge the gauge fields that
arise on the reduced configuration space in n-body sys-
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tems. In fact, there is a close parallel between classical
and quantum n-body systems in this regard, so that
those who are interested only in quantum applications
are advised to study the corresponding classical systems
as well. This is the philosophy adopted in this review,
which deals with both classical and quantum applica-
tions.

In recent years, the gauge theory of classical dynami-
cal systems with rotational symmetry has continued to
attract the attention of mathematicians, who have been
especially interested in problems of control, bifurca-
tions, stability, and phases. An informal overview of this
work has been given by Enos (1992), while a deeper
presentation, including a discussion of many new prob-
lems, is contained in the book by Marsden (1992). Mont-
gomery (1991, 1993) has dealt especially with issues of
control. A newer basic reference, covering the theory of
reduction from a more up-to-date standpoint than Abra-
ham and Marsden (1978) is Marsden and Ratiu (1994).
A conference has recently been held on the falling cat
and related problems, and one can get a sense of the
current status of mathematical investigations in this area
by examining the proceedings (Enos, 1993).

The falling cat is an attractive problem to keep in
mind in our later discussion of the gauge theory of sys-
tems with rotational symmetry. This problem is the fol-
lowing. Everyone knows that if a cat is released upside
down with zero angular momentum, it nevertheless
manages to land on its feet. Since the cat cannot gener-
ate external torques by scratching the air, how does it
manage to turn itself over? Obviously the answer must
depend on the fact that the cat is a flexible body, since
for a rigid body we would have L5Mv (L is the angular
momentum, M is the moment of inertia tensor, and v is
the angular velocity), so that L50 would imply v50. In
fact, the cat, which begins with its feet pointing up and
ends with them on the ground, manages to bring about a
180° rotation of its orientation relative to an inertial
frame by twisting and contorting its body. Although the
shape of the cat, i.e., the positions of the different parts
of its body relative to one another, is approximately the
same at the initial and final times, nevertheless at inter-
mediate times the cat has deformed its shape in various
ways. One can view this process geometrically by saying
that the cat has traced out a cycle or closed loop in its
‘‘shape space.’’

There is a long literature on the falling cat and related
problems. Only recently has the role of gauge fields
been appreciated in such problems, but the earlier litera-
ture does deal with the basic physics and specific appli-
cations. An elementary discussion of the physics of som-
ersaulting and twisting, with photographs of actual cats
and diagrams of human bodies, has been given by Froh-
lich (1980); at a more sophisticated level, Kane and
Scher (1969) developed specific mechanical models to
represent falling cats and compared their predictions
with observations of real cats, taken in part from photo-
graphs which are reproduced in their article. These au-
thors also surveyed some earlier literature, in which
cruder models had been studied. At a similar level,
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Frohlich (1979) studied the physics of springboard
divers, trampolinists, gymnasts, and astronauts, and
made an effort to provide realistic models for them.
More recently, Montgomery (1993) has returned to the
model of Kane and Scher (1969) and provided a detailed
analysis of it from a gauge-theoretical standpoint.

The purpose of this review is to fill the gap between
the modern, more mathematical literature on gauge
theories and geometric methods in general and the
older, more applied literature on the n-body problem in
physical applications. The more mathematical literature
has the shortcoming that it does not take into account
the many practical considerations that arise in physical
applications, nor does it give due regard to the language,
tradition, and points of view which have developed over
the years in such applications. For example, it seems that
no one has heretofore given a proper geometrical inter-
pretation of the Eckart frame, which is commonly used
in studies of small-amplitude vibrations of flexible sys-
tems. On the other hand, the applied literature has the
drawback that it does not make use of natural and
proper mathematical tools for understanding and for
performing calculations in the n-body problem, which
are essentially those of differential geometry and topol-
ogy. To a certain extent, one can get by without these
mathematical tools, especially in specialized contexts,
such as that of the three-body problem or the problem
of small-amplitude vibrations. But modern applications
are moving into more complicated areas, in which the
need for the new methods is more critical. For example,
it is now becoming feasible to perform computer calcu-
lations on the quantum four-body problem, for which it
is necessary to think with some clarity in terms of
higher-dimensional, abstract spaces. Even for simpler
problems, current practice often has the appearance of
black magic to those outside the field, since the funda-
mental structure and organization of the subject are not
made clear in the traditional treatments in textbooks
and review articles.

A second and related purpose concerns the interplay
between analytical and geometrical methods in physical
problems such as the n-body problem. The traditional
methods of mathematical physics (differential equations,
group theory, etc.) have been analytical, but in recent
times geometrical methods have been assuming a
greater importance. The power and depth of geometri-
cal methods were first appreciated in such fields as rela-
tivity theory and particle physics, but more recently they
have been discovered to be relevant in other areas as
well. (This is the significance of the phenomenon of
‘‘Berry’s phase,’’ which has already had quite an impact
on atomic and molecular physics in contexts quite dis-
tinct from those covered in this review.) At their sim-
plest level, geometrical methods do not necessarily in-
volve any specifically geometrical picture, but rather
invoke the analytical methods of tensor analysis to de-
scribe essentially geometrical realities. For example, in
the n-body problem, the fact that a choice of a body
frame is an arbitrary convention upon which no physical
results can depend leads to a systematic investigation of
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how various quantities transform under a redefinition of
body frame (a gauge transformation, in the language of
this review), and to a systematic search for methods of
constructing gauge-invariant and therefore physically
meaningful quantities. In spite of the venerable history
of the n-body problem, this perspective and program of
investigation are entirely new, at least in the applied lit-
erature.

At a deeper level, specifically geometrical notions be-
come important. The following are some of the geo-
metrical constructions pertaining to the n-body problem
which are discussed in this review: the foliation of con-
figuration space into fibers or orbits under the action of
rotations (essentially a geometrical interpretation of ori-
entational and internal coordinates); the notion of hori-
zontal and vertical subspaces and their role in the block
diagonalization of the kinetic energy; the gauge poten-
tial, parallel transport, holonomy, and their role in the
generation of rotations by changes in shape; the geo-
metrical representation of a convention for a body
frame in terms of a section of the fiber bundle; the clear
distinction between changes in shape coordinates and
changes in body frame; the description of the Eckart
frame in terms of a section that is a Euclidean vector
subspace of configuration space; the introduction of co-
variant derivatives and their use in both the classical
equations of motion and the commutation relations for
quantum operators; and the nontriviality of the connec-
tion, and its implication for the impossibility of trans-
forming away the Coriolis couplings in the Hamiltonian.
All these notions are almost entirely new in the applied
literature on the n-body problem.

The mathematical background required for this re-
view is basic differential geometry, at the level of Wein-
berg (1972) or track 1 of Misner, Thorne, and Wheeler
(1973). We use the notation of classical tensor analysis
in a coordinate-based approach as much as possible, al-
though the discussion gradually becomes more geo-
metrical as we proceed. We assume no background in
fiber-bundle theory or gauge theories, and we develop
the necessary tools as needed. Those who are familiar
with gauge theories, either in field-theoretic applications
or in a purely mathematical context, will be able to skip
certain parts of this article but will probably find the
specific application at hand to be interesting and reveal-
ing. Those who are not familiar with gauge theories will
find the examples worked out in this article to be useful,
since it illustrates most of the features which occur in
any application, and since many of the mathematics
books on fiber bundles and gauge theories are short on
concrete examples. This article is based on a series of
lectures given at the University of Chicago in 1994; it is
pedagogical, and is mainly intended for applications in
engineering and atomic, molecular, and nuclear physics.

The outline of this article is as follows. We begin in
Sec. II with some planar mechanical models, which illus-
trate the gauge potential and concepts such as shape
space in the context of an SO(2) (Abelian) gauge
theory. In Sec. III, we move on to the gauge kinematics
of the n-body problem in three dimensions, first from a
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coordinate-based point of view, as is traditional in the
applied literature, and then from the standpoint of fiber-
bundle theory. In this section we develop several basic
concepts, such as the curvature form or Coriolis tensor,
and the notions of holonomy and of gauge invariance
and covariance. We illustrate these concepts with ex-
plicit calculations for the three-body problem. In Sec.
IV, we transform the classical n-body Lagrangian and
Hamiltonian to shape and orientational coordinates and
discuss how the gauge potential enters into the results.
We also discuss the classical equations of motion. In the
process of carrrying out these calculations, we introduce
the metric tensor on shape space and notions of covari-
ant derivatives. We also transform the quantum Hamil-
tonian in Sec. IV, deriving in effect the Wilson-Watson-
Howard Hamiltonian in a general gauge and system of
shape coordinates. The reduced Hamiltonian incorpo-
rates the gauge potential, and is written in manifestly
gauge-invariant (or covariant) form, unlike the usual ex-
pressions for this Hamiltonian. In Sec. V we present
various miscellaneous results, including a set of field
equations or identities satisfied by the various fields over
shape space. There are several different classes of such
field equations; one class consists of equations of the
Kaluza-Klein type. We also discuss the Eckart conven-
tions from a geometrical point of view. It is in Sec. V
that most of our new results are reported. Finally, we
present some conclusions in Sec. VI, as well as indica-
tions for future lines of investigation. We conclude with
a series of appendices.

II. MODELS OF DEFORMABLE BODIES

In this section we present some simple models of de-
formable bodies to explain the physics of shape and ori-
entational changes in such bodies. These models also
provide an introduction to the gauge theory of deform-
able bodies, including the gauge potential, gauge trans-
formations, the concept of shape space, and other no-
tions.

Later, in Sec. III, we shall be interested in n bodies
moving without constraints in three-dimensional space,
but the models we deal with in this section are simpler in
several respects. First, these models are two dimen-
sional, in which the motion is confined to the x-y plane.
Second, in these models one point of the deformable
body will be fixed in an inertial frame, as if it were at-
tached to a mass M much larger than any other mass in
the system. We do this to freeze out the translational
degrees of freedom, in order to concentrate on the more
interesting rotational degrees of freedom. Finally, we
shall constrain our masses in various ways by means of
rigid rods.

In these two-dimensional models the rotations consid-
ered belong to the Abelian group SO(2). Abelian gauge
theories are simpler in several respects than non-
Abelian ones, such as the SO(3) gauge theory belonging
to deformable bodies moving in three-dimensional
space. For example, in an Abelian gauge theory, the in-
tegrals of the gauge potential along closed contours,
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which in the present examples represent changes in ori-
entation, can be transformed via Stokes’ theorem into
surface integrals. This cannot be done in the case of non-
Abelian gauge theories.

A. Example: System of two rods

Our first example is an object consisting of two mass-
less, rigid rods connected at one end in a joint or hinge,
as illustrated in Fig. 1. The rods are of equal length R
and have equal masses m attached to their free ends.
The joint is pinned to the origin of an inertial frame, and
the whole system is constrained to move in the x-y
plane. The subscripts s on the x- and y-axis labels in the
figure are a reminder that the frame is a ‘‘space’’ or
inertial frame. We imagine that muscles or motors or
other agents act at the joint to change the shape of the
V-shaped assembly of rods by opening or closing the
angle a ; our only requirement is that these agents gen-
erate no external torques, so that the total angular mo-
mentum of the system is conserved (for example, fric-
tional forces could be involved). This system is perhaps
the simplest flexible body one can think of and serves as
a simple model for a part of the cat’s body.

The configuration of the two masses in Fig. 1 is speci-
fied by two angles, of which a , the opening angle of the
V-shaped assembly, can be regarded as a shape coordi-
nate, and u , the angle between the space x axis and rod
1, can be regarded as an orientational coordinate. We
regard two configurations as having the same shape if a
rigid proper rotation of the whole system will take one
into another; here we consider only rotations in the
plane. Note that rigid rotations change u while leaving
the shape coordinate a fixed. Furthermore, we consider
the two masses to be distinguishable, so that shape a is
distinct from shape 2p2a (they cannot be mapped into
one another by a rotation in the plane). This means that
a takes on all values between 0 and 2p , and shape space
itself is a circle on which a is a coordinate.

FIG. 1. A simple model of a flexible body consisting of two
identical massless rods with equal masses m attached to their
free ends, which are connected in a joint or hinge at their other
ends. The hinge is pinned to the origin of an inertial frame.
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The angular momentum of the system (z component
only, since we are working in a plane) is

Lsz5m~xs1ẏ s12ys1ẋ s1!1m~xs2ẏ s22ys2ẋ s2!, (2.1)

where (xs1 ,ys1) and (xs2 ,ys2) are the rectangular coor-
dinates of the two masses and where we attach s sub-
scripts to various quantities to emphasize that they are
measured with respect to the space or inertial frame.
(See Appendix A for a summary of conventions.) Think-
ing of the falling cat, we set Lsz50 and multiply through
by dt , to obtain the vanishing of a certain differential
form,

xs1dys12ys1dxs11xs2dys22ys2dxs250, (2.2)

which implies constraints connecting the positions of the
two masses and their infinitesimal increments under con-
ditions of zero angular momentum.

It is convenient to transform Eq. (2.2) from the rect-
angular coordinates of the two masses to the shape and
orientational coordinates a and u . The transformation
equations are

xs15Rcosu , xs25Rcos~u1a!,

ys15Rsinu , ys25Rsin~u1a!, (2.3)

which, when substituted into Eq. (2.2), yield

du52 1
2 da . (2.4)

This equation shows how a change in shape, represented
by da and carried out under conditions of vanishing an-
gular momentum, results in a change in orientation, rep-
resented by du . The physics is very simple, for as the
angle a in Fig. 1 opens or closes while Lsz50, the bisec-
tor of this angle remains constant, so half of the incre-
ment in a is taken up by rod 1, rotating clockwise, and
half by rod 2, rotating counterclockwise.

But this model is too simple to explain how the cat
can change its orientation by carrying its shape through
a cycle, for if the V-shaped assembly of rods opens and
closes, returning to its original shape, then the constancy
of the bisector implies that u will be the same at the end
of the cycle as it was at the beginning. (Here we assume
that the hinge does not turn through a complete rota-
tion, i.e., that the closed path in shape space has a net
winding number of zero around the circle.) The reason
u is the same after such a cycle of shape changes is that
the right-hand side of Eq. (2.4) is a closed (locally exact)
differential form, so that Eq. (2.4) can be integrated to
give u52 1

2a1const. Since u is a function of a , if a goes
through a closed cycle, then so does u , and there is no
net change in orientation. To generate changes in orien-
tation from cycles in shape space, it is necessary to in-
voke a more complicated model.

Before leaving this model, however, we use it to make
another point. It is convenient to regard the angle u as
the angle of a rotation which maps the space axes into a
set of body axes. These body axes are labeled xb , yb in
Fig. 2, with the body x axis lying along rod 1. But obvi-
ously there is nothing special about rod 1; we could just
as well have defined a different set of body axes, such as
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the primed axes xb8 , yb8 in the figure, which have the
body x axis lying along rod 2. In this case the rotation
connecting space with body axes is specified by a differ-
ent angle u8, which is related to u by

u85u1a . (2.5)

We shall henceforth regard a convention for attaching
a body frame to a flexible body as a gauge convention,
and we shall regard a change in conventions as a gauge
transformation. Thus Eq. (2.5) specifies a gauge transfor-
mation in this simple model. Since physical results can-
not depend on an arbitrary convention, all physical re-
sults must be gauge invariant, although intermediate
quantities useful in calculations need not be. Therefore
we begin a program of examining the various quantities
of our theory, to see how they transform under gauge
transformations. For example, in our simple model, we
see that the shape coordinate a is gauge invariant, since
it does not depend on a convention for body frames. But
the orientational coordinate u is gauge dependent, as
illustrated by Eq. (2.5).

B. Example: System of three rods

Next we examine a model in which shape space is two
dimensional, which will allow us to see how cycles in
shape give rise to changes in orientation. To this end, we
add another massless rod to our system, as illustrated in
Fig. 3. The three rods in the figure are all of equal length
R and have equal masses m attached as shown. The
system is still pinned to the origin of an inertial frame at
one joint, but there is now a second joint where rod 2
connects with rod 3. The orientational coordinate is u as
before, but there are now two shape coordinates, a and
b . The two-dimensional shape space can now be thought
of as the square in the a-b plane, 0<a , b,2p , as
shown in Fig. 4; more properly, since 2p increments in
either a or b yield the same shape, the opposite sides of
the square are identified, and shape space is a two-torus.

As before we study the angular momentum,

Lsz5m(
i51

3

~xsiẏsi2ysiẋsi!, (2.6)

FIG. 2. The orientational angle u , which can be thought of as
the angle of the rotation connecting the space axes with a set
of body axes. Alternative choices of body axes, indicated by a
prime, are thought of as alternative gauge conventions.
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and we transform the condition Lsz50 from rectangular
to shape and orientational coordinates. For the third
mass we have

xs35Rcos~u1a!1Rcos~u1a1b!,

ys35Rsin~u1a!1Rsin~u1a1b!, (2.7)

which is to be appended to Eqs. (2.3). Now the condition
Lsz50 is equivalent to the vanishing of a certain differ-
ential form,

~412cosb!du1~312cosb!da1~11cosb!db50,
(2.8)

which we can solve for du to find

du52~Aada1Abdb!, (2.9)

where

Aa5
312cosb
412cosb

, Ab5
11cosb

412cosb
. (2.10)

FIG. 3. A system of three rods yielding a two-dimensional
shape space and illustrating how net changes of orientation
result from cycles of deformation, i.e., closed loops in shape
space.

FIG. 4. Shape space for the three-rod system. Shape space can
be thought of as a 2p square in the a-b plane, or as a two-
torus on which a , b are coordinates. A sequence of shape
deformations is represented by a path in shape space.
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We regard (Aa ,Ab) as two components of a vector po-
tential, or gauge potential, considered as a field over
shape space. The physical meaning of the gauge poten-
tial is given by Eq. (2.9): it specifies the linear mapping
from infinitesimal changes in shape (da ,db) to infini-
tesimal changes in orientation (du) under conditions of
vanishing angular momentum. It is an accident of the
example we are using that the components (Aa ,Ab) de-
pend on only the one shape coordinate b ; more gener-
ally, the components of the gauge potential will depend
on all the shape coordinates.

The effects of finite changes in shape can be obtained
by integrating Eq. (2.9). Suppose that the shape of the
three-rod system is carried from an initial shape
(a0 ,b0) to some final shape (a1 ,b1) along a path or
history in shape space specified by functions
„a(t),b(t)…, as illustrated in Fig. 4. Then the net change
in orientation is given by

Du52E ~Aada1Abdb!, (2.11)

where the integral is carried along the path in question.
Notice that the resulting angle Du is independent of the
rate of traversal of the path, i.e., of its time parametri-
zation. Thus one says that Du is ‘‘geometrical’’; it is an
example of a ‘‘geometrical phase’’ (Berry, 1984; Shapere
and Wilczek, 1989a; Mead, 1992; Zwanziger, Koenig,
and Pines, 1990). Note in addition that Du is indepen-
dent of the nature of the forces that bring about the
deformation of the flexible body, so long as they gener-
ate no external torques.

If the path is closed, as illustrated in Fig. 5, then the
net change Du in orientation can be transformed by
Stokes’ theorem into an integral over the enclosed area:

Du52 R ~Aada1Abdb!52E
area

Bdadb , (2.12)

where B is the two-dimensional curl of the gauge poten-
tial (Aa ,Ab),

FIG. 5. Net change in orientation if the path in shape space is
closed and contractible. The net change can be transformed via
Stokes’ theorem into an integral of the Coriolis tensor over the
enclosed area.
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B5
]Ab

]a
2

]Aa

]b
5

sinb

2~21cosb!2 . (2.13)

The quantity B is the field tensor or curvature form for
the example under consideration. These are generic
terms, applicable to any gauge theory; but we shall also
call B the Coriolis tensor, since, as we shall see, it is
responsible for Coriolis forces in the reduced description
of the n-body problem. In the present example, the Co-
riolis tensor B has only one component, but in other
examples it is a multicomponent object.

In order to apply Stokes’ theorem to a cycle in shape
space as we have done, the closed path must be the
boundary of some two-dimensional region, as is the path
illustrated in Fig. 5. On a torus, a curve is a boundary if
and only if it is contractable to a point, so for this ex-
ample, Stokes’ theorem can be used whenever the
closed curve is contractable. But not all closed curves
are contractable; for example, the path that consists of a
2p rotation in b while a is held fixed does not surround
a region on the torus, nor can it be contracted to a point.
Such topologically nontrivial paths are important in cer-
tain applications and lead to some interesting mathemat-
ics. In this section, however, we shall restrict attention to

FIG. 6. The shape and orientation of the three-rod system on
being taken around the square circuit in shape space shown in
Fig. 7, moving from left to right and top to bottom. The labels
a , b , c , and d correspond to the four corners of the square. In
the final picture, the system has returned to the original shape,
but the orientation has rotated by 27.5°.
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curves that are contractable.
To make the gauge potential and curvature form

more vivid, we now consider a concrete example. We
work with the three-rod system shown in Fig. 3, which
we imagine is initially in the configuration given by
a5b50, as illustrated in the first (upper left) picture in
Fig. 6. In this configuration, the link O1 (O is the origin)
lies on top of link O2, which as before is attached to link
23. We take this configuration through the sequence of
shape changes, (a ,b)5(0,0)→(p/2,0)→(p/2,p/2)
→(0,p/2)→(0,0), which brings the system back to the
original shape. The path in shape space is the small
square of side p/2 illustrated in Fig. 7. The four corners
of the square are labeled a , b , c , and d , which corre-
spond to the labels of the five pictures in Fig. 6; these
pictures illustrate the shape and orientation of the sys-
tem as the shape is carried around the path in shape
space. We assume as always that the changes in shape
are effected by agents that conserve angular momentum.

In the first leg, a→b , the angle a opens to p/2, but the
angle b is fixed at 0, so the arm O23 remains straight.
Because the moment of inertia of the arm O23 is five
times that of the arm O1, the opening angle of p/2 is
split in a 5:1 ratio by the two arms. As a result, at point
b in shape space the angle u is 275°. Equivalently, ac-
cording to Eq. (2.11) we have

Du52E
0

p/2
Aada52

5p

12
5275°, (2.14)

since cosb51. On the second leg, b→c , the angle b
opens to p/2, while a is held fixed at p/2. To conserve
angular momentum, the arm O1 rotates backwards by
the amount

Du52E
0

p/2
Abdb52

p

4
1

p

6A3
5227.7°. (2.15)

On the third leg, c→d , the angle a closes again, causing
arm O1 to rotate forward by

Du52E
p/2

0
Aada5

3p

8
567.5°, (2.16)

FIG. 7. A square circuit in shape space for the three-rod sys-
tem whose shape and orientation are illustrated in Fig. 6.
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since cosb50 on this leg. Finally, in the last leg, d→a ,
arm O23 straightens out again and arm O1 rotates for-
ward by

Du52E
p/2

0
Abdb527.7°. (2.17)

Adding these up, we find a total rotation Du of 27.5°,
which is clear in the final picture of Fig. 6. Equivalently,
we can compute this angle from the curvature form,

Du52E
0

p/2
daE

0

p/2
db

sinb

2~21cosb!2 527.5°. (2.18)

Next we consider the effect of gauge transformations
in the three-rod system. Again, the orientational coordi-
nate u is the angle of the rotation mapping the space
frame to a body frame; thus the body xb axis lies along
rod 1 in Fig. 3, and the body yb axis is perpendicular to
it (body axes are not shown in the figure). A new body
frame (xb8 ,yb8) can be specified in many ways; in general,
the angle c specifying the rotation that takes the old
(unprimed) body frame into the new (primed) body
frame is allowed to be a function of the shape coordi-
nates, c5c(a ,b). For example, if we place the xb8 axis,
say, parallel to the third rod, or bisecting the angle b , we
shall see the necessity of allowing c to depend on both
a and b . Thus the orientational coordinate transforms
according to

u85u1c~a ,b!, (2.19)

which is a generalization of Eq. (2.5). The fact that c is
allowed to be a function of shape coordinates is what
qualifies the gauge transformations as ‘‘local’’ and gives
the theory most of its interesting structure.

To find the transformation law for the gauge potential
(Aa ,Ab) itself under a gauge transformation, we com-
bine Eqs. (2.19) and (2.9) to obtain

Aa85Aa2
]c

]a
, Ab85Ab2

]c

]b
. (2.20)

Thus the old and new gauge potentials differ by the
shape-space gradient of the angle c . But the Coriolis
tensor B is gauge invariant,

B85B , (2.21)

since the curl of the gradient vanishes.
When a flexible body changes it orientation by de-

forming its shape, we naturally want to know by how
much the orientation has rotated. But the answer is not
gauge invariant unless the curve in shape space repre-
senting the history of deformations is closed. For if the
curve is open, as in Fig. 4, then from Eqs. (2.11) and
(2.20) we find the transformation law,

Du85Du1c12c0 , (2.22)

where c0 and c1 are the values of c at the end points of
the curve. Thus Du is gauge dependent for an open
curve. But if the end points should coincide, so that
c05c1, then we have Du85Du , and Du is gauge invari-
ant. For closed curves that bound a region, the same
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conclusion follows by integrating the invariant Coriolis
tensor B5B8 over the enclosed area, as in Eq. (2.12).

Thus it makes no sense to ask, ‘‘How much has the
system rotated?’’ when the system is carried along an
open path in shape space, because the answer depends
on our convention for body frames. This question only
makes sense for closed paths. The trouble with open
paths is that the body frames that are attached to the
system at the (different) initial and final shapes can be
redefined independently of one another under a gauge
transformation, and therefore the rotation of one frame
relative to the other (which, as seen from the space
frame at the two times, is what the angle Du represents)
must be gauge dependent. On the other hand, for closed
paths the initial and final points in shape space coincide,
so although there is still the possibility of redefining the
body frames under a gauge transformation, this redefi-
nition will cancel out in the computation of the overall
rotation of the system. This theme will recur several
times throughout this review.

III. GAUGE KINEMATICS OF THE n-BODY PROBLEM

In this section we develop the gauge kinematics of
deformable bodies in three dimensions. We treat the
body in question as an assemblage of n point masses,
upon which neither net external forces nor external
torques act. (This applies to the falling cat, if viewed in a
frame which itself is falling under gravity.) We restrict
ourselves to kinematical considerations in this section
because these are sufficient for the introduction of the
gauge potential and the explanation of its physical and
geometrical meaning. Dynamical considerations will be
taken up in Sec. IV.

We begin by eliminating the translational degrees of
freedom from our problem. This step involves the intro-
duction of Jacobi coordinates and a discussion of de-
mocracy transformations (also known as kinematic rota-
tions), both standard topics. Next we define shape
coordinates and shape space and discuss the cases n53
and n54 in particular. Next we discuss orientational co-
ordinates and introduce the notion of a convention for a
body frame as a gauge convention. We also present
some examples of specific gauges and discuss gauge
transformations. Up to this point, the discussion is
mostly analytical and mostly traditional, with a geo-
metrical flavor. In the following step, however, we
present the geometrical picture of configuration space as
a fiber bundle, in which the fibers are the orbits under
the action of ordinary rotations, shape space is the quo-
tient space, and gauge conventions are sections of the
bundle. We also discuss practical methods for specifying
a gauge, as well as such notions as the triviality of the
bundle (which implies the possibility of avoiding singu-
larities) and the singularities that result when the bundle
is nontrivial. Next we discuss the gauge potential and
give its meaning in terms of the rotations generated by
changes in shape under conditions of vanishing angular
momentum. The rotation itself is represented in terms of
a path-ordered product. Next we discuss the issues of
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gauge invariance and covariance, we explore how vari-
ous quantities of the theory transform under gauge
transformations, and we specify rules for constructing
gauge-invariant quantities. Finally, we introduce the Co-
riolis tensor, we describe its geometrical meaning in
terms of transport around small loops in shape space,
and we demonstrate its gauge covariance. The latter fact
is important in the demonstration of the impossibility of
transforming away the Coriolis terms in the Hamil-
tonian.

A. The translational degrees of freedom

The translational degrees of freedom are something of
a hindrance in developing the gauge theory of deform-
able bodies, and it would be easier to explain the latter if
they were gotten rid of, say, by pinning one of the
masses to an inertial frame. This was the approach taken
in Sec. II, and it was also used in a recent paper on the
n-body problem (Littlejohn, 1994). This approach is re-
alistic for systems such as helium, taken in the approxi-
mation of infinite nuclear mass. But in many other sys-
tems the translational degrees of freedom cannot be
ignored, so we must deal with them properly. After we
have done this, we will move on to the rotational de-
grees of freedom and the associated gauge theory.

We consider n particles of masses ma and positions
rsa , with a51, . . . ,n , moving in three-dimensional
space. The symbols rsa represent the components of the
position vectors relative to a space or inertial frame, as
indicated by the s subscript (see Appendix A for con-
ventions). The system has 3n degrees of freedom, and
configuration space is the 3n-dimensional space R3n.
The total kinetic energy of the system is

K tot5
1
2 (

a51

n

mau ṙsau25
1
2 (

a ,b51

n

Kab~ ṙsa• ṙsb!, (3.1)

where Kab is the n3n mass tensor, defined by

Kab5madab (3.2)

(no sum on a ; see Appendix A).
To separate out the translation degrees of

freedom, we introduce a linear transformation
of the configuration-space coordinates, (rs1 , . . . ,rsn)
→(ss1 , . . . ,ss ,n21 ,Rs),

ssa5 (
b51

n

Tabrsb , a51, . . . ,n21, (3.3)

Rs5
1
M (

a51

n

marsa , (3.4)

where M5(a51
n ma is the total mass, where Rs is the

center-of-mass position, and where T (with components
Tab ; see Appendix A) is the transformation matrix
whose first n21 rows are indicated in Eq. (3.3), and
whose nth row specifies the center of mass,

Tna5
ma

M
. (3.5)
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Furthermore, we require the vectors ssa to be transla-
tionally invariant, i.e., invariant under rsa→rsa1ks for
any fixed vector ks , so that

(
b51

n

Tab50, a51, . . . ,n21. (3.6)

These conditions guarantee the separation of the trans-
lational degrees of freedom, and imply a condition on
the inverse matrix,

~T21!an51. (3.7)

When we write the coordinates in the form
(rs1 , . . . ,rs2) or (ss1 , . . . ,ss ,n21 ,Rs), etc., we do not
mean to imply that they must be arranged in a single
row or column. Indeed, for some purposes it is desirable
to arrange the coordinates in a n33 matrix, as many
authors have done. Obviously, the change is trivial.

Relations (3.5) and (3.6) block-diagonalize the mass
tensor in the new coordinates, so that the total kinetic
energy has the form

K tot5
1
2 (

a ,b51

n21

K̃ ab~ ṡsa• ṡsb!1
M

2
uṘsu2, (3.8)

where K̃ ab is the upper (n21)3(n21) block of the
transformed mass tensor K, corresponding to coordi-
nates (ss1 , . . . ,ss ,n21). To compute K̃ ab in practice, it is
easiest to transform the inverse of the mass tensor,
which is needed anyway in a Hamiltonian formulation,
and then to invert it if necessary. The off-diagonal ele-
ments of K̃ ab (or its inverse) are the ‘‘mass polariza-
tion’’ terms.

In some applications it is desirable to use vectors ssa
with a direct physical meaning, such as the interparticle
separations. In such cases, the kinetic energy will con-
tain mass polarization terms. For our purposes, how-
ever, it is better to work with coordinates that diagonal-
ize the kinetic energy, such as Jacobi coordinates. The
usual way to define Jacobi coordinates is to organize the
particles into a hierarchy of clusters, in which each clus-
ter consists of one or more particles and where each
Jacobi vector joins the centers of mass of two clusters,
thereby creating a larger cluster. Thus there is a discrete
set of choices of Jacobi vectors, based on different clus-
terings. As is well known in scattering theory (e.g.,
Schatz and Kuppermann, 1976; Pack, 1994), different
choices of Jacobi coordinates are appropriate for differ-
ent entrance or exit channels in a scattering process, in
which the locally bound subsystems in the asymptotic
state define the clusters. It can be shown that in Jacobi
coordinates, so defined, the tensor K̃ ab is diagonal with
the reduced masses of the clusters joined by the corre-
sponding Jacobi vectors appearing on the diagonal. This
fact is proven by Aquilanti and Cavalli (1986). A further
advantage of Jacobi coordinates is that it is easy to write
down the inverse transformation matrix T21 by inspec-
tion of a diagram of the Jacobi vectors, since the center
of mass of the new cluster created by a given Jacobi
vector ssa lies on that vector itself. Jacobi
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coordinates are discussed more fully by Delves (1960),
Smirnov and Shitikova (1977), and Aquilanti and Cav-
alli (1986).

In this paper we shall use one system of Jacobi coor-
dinates through all our examples of the three-body
problem. This system is defined by

S ss1

ss2

Rs

D 5S 11 0 21

2
m1

m11m3
1 2

m3

m11m3

m1

M

m2

M

m3

M

D S rs1

rs2

rs3

D .

(3.9)

These vectors are illustrated in Fig. 8. In these coordi-
nates, K̃ ab5madab , where the reduced masses ma are
given by

1
m1

5
1

m1
1

1
m3

,
1

m2
5

1
m11m3

1
1

m2
. (3.10)

The inverse of the T matrix defined by Eq. (3.9) is given
by

S rs1

rs2

rs3

D 5S m3

m11m3
2

m2

M
1

0
m11m3

M
1

2
m1

m11m3
2

m2

M
1

D S ss1

ss2

Rs

D . (3.11)

For most of the remainder of this paper, we shall use
‘‘mass-weighted’’ Jacobi coordinates $rsa%, defined by

rsa5Amassa , a51, . . . ,n21, (3.12)

which cause the tensor K̃ ab to become the identity ma-
trix. [We note that many authors prefer to divide Eq.
(3.12) by the square root of some reference mass, to
retain the dimensions of distance for the mass-weighted
Jacobi vectors.] Mass-weighted coordinates are conve-
nient because the masses, which are the only parameters
in the kinetic energy, drop out of all subsequent analysis
of the kinetic energy. (On the other hand, they cause
mass dependencies to pop up in the potential energy.)
For example, in mass-weighted coordinates, the gauge
potential Am , which will be of interest to us below, is
parameter free and depends only on the number of par-
ticles n . It is a universal field, for example, for all three-
body problems. Mass-weighted coordinates also simplify
the expression of certain conditions of physical signifi-
cance; for example, in mass-weighted coordinates for the
three-body problem, the condition ensuring that the mo-
ment of inertia tensor is degenerate in the plane of the
triangle formed by the three bodies is that the vectors
rs1 and rs2 have equal magnitudes and be perpendicu-
lar.

A drawback of mass-weighted Jacobi vectors is that
they are not easy to visualize (and in any case, they de-
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pend on the choice of the clustering of particles). A bet-
ter set of vectors for visualization purposes is the posi-
tions of the particles relative to the center of mass,
which we denote by csa ,

csa5rsa2Rs . (3.13)

On the other hand, the n21 vectors $rsa% are indepen-
dent, whereas the n vectors $csa% are constrained by

(
a51

n

macsa50. (3.14)

The two sets of vectors are related by

csa5 (
b51

n21

~T21!ab

rsb

Amb

, (3.15)

where the last column of T21 is not used.
For large or variable n , the vectors $rsa% are not con-

venient for explicit calculations, since explicit expres-
sions for Tab are not simple nor do they treat the par-
ticles democratically. For this reason, standard
treatments of molecular vibrations (e.g., Wilson, Decius,
and Cross, 1955) bypass the vectors $rsa% and work in-
stead with $csa%. In the following we present expressions
for the kinetic energy and angular momentum in terms
of both sets of vectors, and later we shall do the same for
future quantities of interest.

Under the coordinate transformation
(rs1 , . . . ,rsn)→(rs1 , . . . ,rs ,n21 ,Rs) the kinetic energy
and angular momentum of the center of mass, KCM and
Ls

CM , respectively, separate from the total kinetic energy
and angular momentum,

K tot5KCM1K , Ls
tot5Ls

CM1Ls , (3.16)

where Ls
tot5(a51

n marsa3 ṙsa and where

KCM5
M

2
uṘsu2, Ls

CM5MRs3Ṙs . (3.17)

What remains is the kinetic energy K and angular mo-
mentum Ls about the center of mass, both of which can
be written in terms of either $rsa% or $csa%:

K5
1
2 (

a51

n21

uṙsau25
1
2 (

a51

n

mau ċsau2, (3.18)

Ls5 (
a51

n21

rsa3ṙsa5 (
a51

n

macsa3 ċsa . (3.19)

We shall henceforth ignore the kinetic energy and angu-
lar momentum of the center of mass and refer to K and
Ls as simply ‘‘the kinetic energy’’ and ‘‘the angular mo-
mentum,’’ respectively.

The original configuration space, upon which
(rs1 , . . . ,rsn) are coordinates, is the space R3n. But after
the separation of the translational degrees of freedom,
we are left with a ‘‘translation-reduced configuration
space,’’ upon which (rs1 , . . . ,rs ,n21) are coordinates.
This is the space R3n23. In the following we shall gener-
ally refer to the translation-reduced configuration space
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R3n23 as simply ‘‘configuration space,’’ contrasting it if
necessary with the ‘‘original configuration space,’’ R3n.

The kinetic energy (3.18) specifies a Euclidean metric
on the (translation-reduced) configuration space in the
Jacobi coordinates $rsa%. Linear transformations of the
3n23 components of the Jacobi vectors that preserve
the Euclidean form of this metric belong to the group
O(3n23), which is the grand symmetry group of the
kinetic energy. This group is not usually the symmetry
group of the potential energy, unless the potential en-
ergy should vanish, and therefore it is not usually the
symmetry group of the Hamiltonian as a whole. Never-
theless, there is considerable interest in organizing states
according to the irreducible representations of
O(3n23), i.e., effectively using free-particle solutions
as a basis for treating the whole Hamiltonian. The sub-
ject of hyperspherical coordinates is connected with this
point of view (Smith, 1960, 1962; Macek, 1968; Smirnov
and Shitikova, 1977; Johnson, 1980, 1983a, 1983b; Fano,
1981; Aquilanti, Cavalli, and Grossi, 1986; Pack and
Parker, 1987).

The symmetry group of the whole Hamiltonian (ki-
netic plus potential) is the ordinary rotation group
O(3), which we shall usually break up into SO(3) and
parity. The action of rotations and parity on configura-
tion space is given by

rsa8 5Qrsa , (3.20)

rsa8 5Prsa52rsa , (3.21)

where QPSO(3) and where P is the parity operator.
The rotation group SO(3) or O(3) is a subgroup of the
grand symmetry group of the kinetic energy,
O(3n23).

Another group of importance is a continuous group
that interpolates between all the discrete choices of Ja-
cobi coordinates. Any two choices of mass-weighted Ja-
cobi vectors, say, $rsa% and $rsa8 %, based on different
clusterings of particles, are related by some linear trans-
formation of the form

rsa8 5 (
b51

n21

Dabrsb , (3.22)

where D (with components Dab) is an (n21)3(n21)
matrix. But since all choices of mass-weighted Jacobi
vectors lead to the same Euclidean form (3.18) of the
kinetic energy, D must be orthogonal, i.e., an element of
the group O(n21). We call this group ‘‘the democracy
group,’’ because it is of use in constructing quantities
that are invariant under permutations of particle labels
(Smith, 1962; Dragt, 1965; Lev́y-Leblond and Lévy-
Nahas, 1965; Whitten and Smith, 1968; Louck and Gal-
braith, 1972; del Aguila, 1980; Aquilanti, Cavalli, and
Grossi, 1986). In the literature, the ‘‘democracy transfor-
mations’’ (3.22) are often referred to as ‘‘kinematic ro-
tations’’ (Smith, 1959) and are usually viewed in the pas-
sive sense, as we have done in introducing them above.
That is, the matrix D is thought of as connecting two
coordinate systems, so that $rsa% and $rsa8 % are two dis-
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tinct coordinate representations of the same physical
state. Henceforth in this paper, however, we shall usu-
ally think of democracy transformations in an active
sense; in this point of view, we establish one system of
mass-weighted Jacobi coordinates $rsa% once and for all,
based on an arbitrary clustering of the particles, and
then we regard the democracy transformations as map-
ping old configurations into new ones. We shall usually
restrict the democracy group to the proper orthogonal
matrices in SO(n21). This involves little loss of gener-
ality, since by changing the sign of one of the Jacobi
vectors, if necessary, it is always possible to make
detD511.

Certain choices of coordinates $rsa% which can be
reached by democracy transformations treat the par-
ticles in a more symmetrical manner than do any of the
discrete set of Jacobi coordinates. These include the
Radau coordinates, as well as variations on them due to
Smith, which are discussed by Aquilanti and Cavalli
(1986). Furthermore, in a practical problem, one must
pay attention to which choices of Jacobi or other coor-
dinates cause the potential energy to take on the sim-
plest form. Since the potential energy is usually a func-
tion of the interparticle distances, one will be interested
in the expressions for the distances in terms of the coor-
dinates $rsa%. These issues are discussed by Aquilanti
and Cavalli (1986) and by Aquilanti, Cavalli, and Grossi
(1990).

Democracy transformations (i.e., kinematic rotations)
suggest themselves naturally in the analysis of n-body
problems and have been used by many different authors
for various purposes over the years. Nevertheless, the
democracy group is a symmetry group only of the ki-
netic energy, not of the potential energy, in general, and
we have asked ourselves what its real significance is. The
following considerations seem to be relevant to this
question.

First, as noted above, the eigenfunctions of the kinetic
energy alone (the hyperspherical harmonics) are useful
as a basis set in quantum calculations. They also lead to
various pseudo-adiabatic approximations, in which the
hyperradius is treated as a ‘‘slow’’ variable and the hy-
perangles are treated by matrix methods (Fano, 1981;
Aquilanti, Cavalli, and Sevryuk, 1994). In another ap-
proach, involving discrete approximations to the hyper-
spherical harmonics, one can set up a basis in which the
potential energy is diagonal and the kinetic energy ma-
trix is sparse and analytically computable (Aquilanti and
Grossi, 1985; Aquilanti, Cavalli, and Grossi, 1991; Aqui-
lanti, Cavalli, and de Fazio, 1995).

In this paper, however, we are interested in another
point of view, a geometrical one, which follows from the
fact that the rotation group O(3) is the exact symmetry
group of the whole Hamiltonian. Because of this exact
symmetry, the dynamics of the n-body problem can be
reformulated in terms of ‘‘shape space’’ (defined below)
and various fields defined upon it. This formulation in
terms of shape space is the principal subject of this re-
view. The question then arises, how is the grand symme-
try group of the kinetic energy, O(3n23), expressed in
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shape-space language? That is, the group O(3n23) acts
on the (translation reduced) configuration space, not on
shape space. Can it be, in effect, projected down onto
shape space, and what is the resulting symmetry group?
The answer is that only those transformations in
O(3n23) which commute with SO(3) rotations can be
regarded as having an action on shape space, because
the shape produced by such a transformation is indepen-
dent of the orientation of the configuration that is acted
upon.

As it turns out, the subgroup of O(3n23) that com-
mutes with all rotations in SO(3) is just the democracy
group, O(n21). We shall prove a related statement,
which applies to the connected groups SO(3n23) and
SO(n21). To begin, let us represent an element of
SO(3n23) by a (3n23)3(3n23) matrix A, which we
partition into an (n21)3(n21) array of 333 matrices
Aab . Then the action of this element of SO(3n23) on a
point of configuration space can be represented by

S r18

A

rn218
D 5S A11 A12 ••• A1,n21

A21 A22 ••• A2,n21

A A � A

An21,1 An21,2 ••• An21,n21

D
3S r1

A

rn21
D . (3.23)

Similarly, the action of QPSO(3) on a configuration, as
indicated by Eq. (3.20), can be represented by a
(3n23)3(3n23) block-diagonal matrix,

S r18

A

rn218
D 5S Q 0 ••• 0

0 Q ••• 0

A A � A

0 0 ••• Q
D S r1

A

rn21
D . (3.24)

The two matrices in Eqs. (3.23) and (3.24) commute if
and only if @Aab ,Q#50 for all a , b . But this holds for all
QPSO(3) if and only if Aab5DabI, where I is the
333 identity matrix, as follows from Schur’s lemma and
the fact that the fundamental representation of SO(3) is
irreducible. Here Dab is a scalar for each value of a ,
b ; the Dab can be arranged in an (n21)3(n21) ma-
trix which is an element of SO(n21). Then Eq. (3.23) is
equivalent to the democracy transformation (3.22), and
we see that the democracy group is indeed the largest
subgroup of SO(3n23) that commutes with all rota-
tions.

Notice that this proof would not work for the
n-body problem in a plane, because the fundamental
representation of SO(2) is reducible. For the planar
problem, the largest subgroup of SO(2n22) that com-
mutes with all rotations in SO(2) is U(n21) [or
SU(n21), modulo minor details], which is larger than
the democracy group, SO(n21). This fact is responsible
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for many of the special features of the planar n-body
problem, such as the simple forms of the hyperspherical
harmonics in that case. We shall report on these aspects
of the planar n-body problem in the future; we simply
note here the important work of Iwai (1986, 1987b) on
the planar problem.

Since in this review we are concentrating on the three-
dimensional problem, we can say that the (connected)
democracy group SO(n21) is the subgroup of the (con-
nected) grand symmetry group of the kinetic energy,
SO(3n23), which survives projection onto shape space.
Therefore the various tensor fields on shape space,
which will be introduced below, are invariant under de-
mocracy transformations (in an appropriate differential-
geometric sense), and the democracy group plays an im-
portant role in understanding the symmetries of these
fields (the moment-of-inertia tensor, the gauge poten-
tial, the Coriolis tensor, and the metric tensor).

B. Shape coordinates in the n-body problem

It requires 3n26 coordinates to specify the shape of
an n-body system, at least when n>3, because three
degrees of freedom are taken up by the center of mass
Rs and three more by the Euler angles specifying the
orientation. The special case n52 will be dealt with
separately later (this is ordinary central force motion,
which does not follow the patterns established at larger
values of n). We shall denote the shape coordinates gen-
erally by qm, m51, . . . ,3n26, using a contravariant (up-
per) index. As in Sec. II, we regard two configurations
specified by either $rsa% and $rsa8 % or $csa% and $csa8 % as
having the same shape if they can be mapped into one
another by some (now three-dimensional) proper rota-
tion, i.e., if there exists a proper rotation matrix Q such
that either of the conditions,

rsa5Qrsa8 , a51, . . . ,n21, (3.25)

csa5Qcsa8 , a51, . . . ,n , (3.26)

holds. By Eq. (3.15), these conditions are equivalent.
This definition does not always coincide with the usual
meaning of the English word ‘‘shape,’’ such as when two
configurations are mapped into one another by reflec-
tions or other improper rotations, or by scaling opera-
tions, but it is the definition we will use. Furthermore,
for the sake of this definition, we regard the particles as
distinguishable.

Some people we have talked to prefer to include the
improper rotations in the definition of ‘‘shape.’’ Cer-
tainly the potential-energy functions in most problems
are invariant under both proper and improper rotations,
so if all one wants to do is to label configurations at
which the potential could differ, then one does not need
to distinguish configurations related by parity. On the
other hand, one can define anything one wants to, and
we prefer to define ‘‘shape’’ with respect to the proper
rotations only. One of our reasons is that, for n>4, the
configurations related by proper plus improper rotations
are typically not connected in configuration space,
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whereas those related by proper rotations are. Since the
entire program we are presenting in this review is geo-
metrical, it seems best to respect notions of continuity.
In any case, one can conceive of interactions (e.g., the
weak ones) that are not invariant under parity, and even
for ordinary potentials there is no harm in our defini-
tion.

In general, shape coordinates are any 3n26 indepen-
dent functions on configuration space,

qm5qm~rs1 , . . . ,rs ,n21!, (3.27)

that are invariant under proper rotations, i.e., that sat-
isfy

qm~rs1 , . . . ,rs ,n21!5qm~Qrs1 , . . . ,Qrs ,n21! (3.28)

for all rotations QPSO(3). Examples of such functions
are the Jacobi dot products rsa•rsb and triple products
rsa•(rsb3rsg); in fact, shape coordinates qm can always
be expressed as some function of the Jacobi dot and
triple products. (But, in general, they cannot be ex-
pressed as functions of the Jacobi dot products alone,
since these cannot distinguish proper from improper ro-
tations.) Alternatively, the qm are any 3n26 indepen-
dent functions on the original configuration space
(rs1 , . . . ,rsn) that are invariant under both translations
and rotations. Relations (3.27) are not invertible be-
cause there are 3n23 components of the rsa , but only
3n26 of the qm.

An interesting question is how to construct shape co-
ordinates in the general n-body problem, preferably in
an elegant and symmetrical way. Certainly one answer is
given by the Eckart coordinates, discussed more fully
below; and the question has also been dealt with by
Keating and Mead (1985), who used the theory of the
permutation group to construct shape coordinates for
the four-body problem. But there is more that can be
said about this question, which we have addressed in a
recent publication (Littlejohn and Reinsch, 1995).

In the case of the three-body problem, however, many
systems of shape coordinates are known and have been
used in practice. One is the set (a ,b ,c), the lengths of

FIG. 8. An example of Jacobi coordinates for the three-body
problem. Each vector except the last joins one particle to the
center of mass of a cluster of others.
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the sides of the triangle formed by the three bodies.
Closely related to these are the Hylleraas coordinates
(s ,t ,u), used in the classic variational calculations on
helium. The three-body problem is special in that shape
coordinates, such as (a ,b ,c), can be chosen to be func-
tions only of the Jacobi dot products rsa•rsb (with no
triple products), because the planar shapes that occur in
the three-body problem are always invariant under par-
ity.

Another set of coordinates for the three-body prob-
lem is (r1 ,r2 ,f), defined in terms of Jacobi coordinates
$rsa% by

r15urs1u, r25urs2u, rs1•rs25r1r2cosf , (3.29)

so that f is the angle between rs1 and rs2. The angle
f is restricted to the range 0<f<p because angles out-
side this range give shapes that are already represented
by angles within this range. Coordinates (r1 ,r2 ,f) have
been used by Tennyson and Sutcliffe (1982).

Another set of coordinates for the three-body prob-
lem treats the kinetic energy in a particularly symmetri-
cal way. These coordinates have been used by many au-
thors (Smith, 1962; Dragt, 1965; Mead and Truhlar,
1979; Pack and Parker, 1987; Iwai, 1987b; Mead, 1992),
and they seem to have been rediscovered several times.
We denote these coordinates by (w1 ,w2 ,w3) or
(w ,x ,c), and define them in terms of (r1 ,r2 ,f) by

w15wcosxcosc5r1
22r2

2 ,

w25wcosxsinc52~rs1•rs2!52r1r2cosf , (3.30)

w35wsinx52urs13rs2u52r1r2sinf .

Coordinates (w ,x ,c) are spherical coordinates in
(w1 ,w2 ,w3) space, as is evident from the identities,

w5r1
21r2

2 , (3.31)

w25w1
21w2

21w3
2 . (3.32)

Note that x is the latitude, not the colatitude. The coor-
dinate w is the square of the ‘‘hyperradius’’ (Smith,
1960), and coordinate w3 is proportional to the area of
the parallelogram spanned by the Jacobi vectors, and
therefore also to the area of the triangle formed by the
three bodies. Coordinates w1 and w2 range from 2` to
1` , but w3 is strictly non-negative, in accordance with
the absolute-value signs and the allowed range of f . A
useful relation connecting these coordinates is

tanx5tanfsinc , (3.33)

which geometrically means that f is the azimuthal angle
about the w1 axis in w space, as illustrated in Fig. 9. In
view of this fact and the relations,

r1
25 1

2 ~w1w1!, r2
25 1

2 ~w2w1!, (3.34)

we see that coordinates (r1
2 ,r2

2 ,f) are essentially confo-
cal parabolic coordinates in w-space, referred to the
w1 axis.

In the case of the four-body problem, the six interpar-
ticle distances do not form a proper set of shape coordi-
nates because they cannot in general distinguish two
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configurations related by a reflection. There are various
ways to resolve this difficulty (Keating and Mead, 1985;
Littlejohn and Reinsch, 1995), and to find four-body
shape coordinates analogous to the three-body coordi-
nates $wi% introduced above. For n.4, the interparticle
distances are not even independent, since there must be
3n26 shape coordinates and the number of interpar-
ticle distances is n(n21)/2.

We now turn to shape space, which is the space of all
possible shapes, upon which the qm are coordinates.
Shape space for n>3 is a manifold of dimensionality
3n26, with a boundary in the case n53 and without
boundaries for n>4.

In the three-body problem, it is easy to visualize shape
space in the coordinates qm5(a ,b ,c) (Mead and
Truhlar, 1979). The distances (a ,b ,c) are necessarily
non-negative and also satisfy the triangle inequalities,
a<b1c , b<a1c , c<a1b . As a result, shape space can
be identified with a subset of (a ,b ,c) space (i.e., R3) that
has the form of a three-sided pyramid of infinite height
with its apex at the origin and its three edges lying in the
three coordinate planes, running at 45° relative to the
two axes in each of the planes. This pyramid is illus-
trated in Fig. 10. It has four subsets, which can be iden-
tified and ranked in order of increasing singularity. First,
there is the interior of the pyramid, which is comprised
of triangles of nonzero area. Next, there are the faces of
the pyramid (excluding the edges), which represent col-
linear configurations (collapsed triangles of zero area),
in which the three particles are spatially separated.
Third, there are the edges, indicated by dotted lines in
the figure, which represent two-body collisions. Finally,
there is the vertex, which represents the three-body col-
lision.

In a different coordinate system, the region of coordi-
nate space representing shape space will be a continuous
deformation of the pyramid seen in the (a ,b ,c) coordi-
nates. For example, in the coordinates (a2,b2,c2), shape
space is a circular cone instead of a three-sided pyramid

FIG. 9. The angle f , which is the azimuthal angle in w space
about the w1 axis. Coordinates (r1

2 ,r2
2 ,f) are confocal para-

bolic coordinates in w space, referred to the w1 axis.
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
(Mead and Truhlar, 1979). For another example, in the
(w1 ,w2 ,w3) coordinates given by Eq. (3.30), shape
space is the half-space w3>0 (Iwai, 1987b), with the col-
linear configurations occupying the plane w350, the
two-body collisions lying on three half-lines in this plane
radiating out from the origin, and the three-body colli-
sion lying at the origin itself. Thus the transformation
from (a ,b ,c) coordinates to (w1 ,w2 ,w3) coordinates
flattens out the faces of the pyramid and makes them lie
in (and fill up) the plane w350. One of the half-lines
representing two-body collisions is the negative w1 axis,
which consists of collisions between bodies 1 and 3, as-
suming we use the mass-weighted Jacobi coordinates in-
troduced in Eq. (3.9). The other two radial half-lines,
representing the cases in which the ordering of the col-
linear bodies is permuted, lie at angles in the plane
w350 which depend on the masses.

These angles and the mass dependencies can be
changed by an SO(2) democracy transformation of the
type

S rs18

rs28
D 5S cosa 2sina

sina cosa D S rs1

rs2
D , (3.35)

under which the w coordinates transform according to

S w18

w28
D 5S cos2a 2sin2a

sin2a cos2a D S w1

w2
D , (3.36)

or simply c85c12a . Thus the SO(2) democracy rota-
tion (3.35) is equivalent to a rotation (by twice the
angle) about the w3 axis. Such a rotation leaves the
boundary of shape space (the plane w350) invariant.

FIG. 10. Shape space for three-body problem—a three-sided
pyramid of infinite height, whose vertex is at the origin and
whose edges are the dotted lines. Coordinates (a ,b ,c) are the
sides of the triangle. The dotted lines lie in the coordinate
planes and run at 45° to the axes defining those planes. Inte-
rior points of the pyramid are triangles of nonzero area; the
faces are collapsed triangles of zero area in which no two par-
ticles coincide; the edges are two-particle collisions; and the
vertex is the three-particle collision. The heavy triangle is a
slice through the pyramid; points inside the heavy triangle rep-
resent shapes of constant perimeter (a1b1c5const).
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An obvious strategy in setting up shape coordinates
(for any number of particles) is to use the angles speci-
fying a democracy transformation as shape coordinates.
This idea has been developed by Zickendraht (1967,
1969, 1971), Aquilanti, Cavalli, and Grossi (1986), and
Littlejohn and Reinsch (1995). In effect, one is foliating
shape space under democracy transformations and using
democracy-group elements to parametrize the democ-
racy orbits.

Shape space has several interesting subsets. One of
these is the set of collinear shapes, upon which the
moment-of-inertia tensor is singular. In the three-body
problem, the collinear shapes occur on the plane
w350, i.e., at the boundary of shape space. Another
interesting subset is that upon which the moment of in-
ertia tensor is degenerate, since at such shapes the prin-
cipal axis frame is not unique. In the three-body prob-
lem, this degeneracy subset consists of the union of the
plane w350 with the half-line w15w250, w3>0 (the
w3 axis).

In the four-body problem, shape space can be identi-
fied with R6 and has no boundaries (Narasimhan and
Ramadas, 1979). In a separate publication (Littlejohn
and Reinsch, 1995), we have discussed coordinates that
provide a one-to-one mapping from shape space to
points of R6. In these coordinates, a five-dimensional hy-
perplane R5 consisting of planar shapes divides R6 into
two pieces. Shapes not on the hyperplane represent tet-
rahedra of nonzero volume. One can also identify useful
subsets of shape space, such as the three-dimensional
submanifold of collinear shapes or the four-dimensional
submanifold upon which the moment-of-inertia tensor is
degenerate. Many of the important properties of shape
space for the four-body problem were apparently first
worked out by Zickendraht (1969), from a nongeometri-
cal standpoint.

In the special case of the two-body problem, i.e., or-
dinary central force motion, there is one shape coordi-
nate that can be taken to be r , the distance between the
two bodies. Thus the rule of 3n26 shape coordinates
does not apply in this case. Shape space itself is the half-
line r>0, the space upon which the ordinary radial
Schrödinger equation lives. The point r50 is a singular
point in many respects; for example, if the angular mo-
mentum is nonzero, the centrifugal potential L2/2mr2

diverges at r50 and tends to prevent particles from
reaching the origin. Analogs of these features for higher
values of n occur at the collinear shapes.

C. Orientational coordinates and gauge transformations

Orientational coordinates are some choice of Euler
angles or other coordinates on the rotation group mani-
fold, specifying the rotation that maps the space frame
into the body frame. Thus orientational coordinates are
only defined relative to a convention for body frames,
which as we have indicated in Sec. II is considered to be
a choice of gauge. Such a convention is established by
specifying, for each shape, the positions of the n par-
ticles relative to the body frame. These positions can be
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specified by giving either the n vectors $ca% or the
n21 vectors $ra% as functions of the shape coordinates
qm; of course, the vectors $ca% must satisfy the constraint
(3.14). We shall normally work with the Jacobi vectors
and think of the functions,

ra5ra~qm!, a51, . . . ,n21, (3.37)

as the specification of a body frame or a gauge conven-
tion. Here we introduce the important convention that
any vector appearing without the s subscript is referred
to the body frame; see Appendix A. Relations (3.37) are
not invertible, because there are 3n23 components in
$ra%, but only 3n26 shape coordinates. In particular,
they are not the inverse of the relations
qm5qm(rs1 , . . . ,rs ,n21), which define the shape coordi-
nates.

For example, in the three-body problem, a gauge con-
vention can be established by decreeing that, in the body
frame, vector r1 lies on the x axis and vector r2 lies in
the x-y plane with r2y>0, as illustrated in Fig. 11. The
condition r2y>0 ensures that there is only one body
frame for each shape, since if we allowed r2y,0 we
would obtain a shape already represented by r2y.0.
This gauge convention does not treat the vectors
(r1 ,r2) symmetrically, but it is simple and leads to easy
subsequent calculations. We shall call this ‘‘xxy gauge,’’
because r1 has only an x coordinate and r2 has only x
and y coordinates. In xxy gauge, the functions in Eq.
(3.37) are

r15r1~1,0,0 !,

r25r2~cosf ,sinf ,0 !, (3.38)

where we use coordinates qm5(r1 ,r2 ,f). A closely re-
lated gauge (‘‘zzx gauge’’) has been used by Tennyson
and Sutcliffe (1982).

Another obvious choice of gauge (for any number of
particles) is the principal-axis frame. Later we shall say
more about ‘‘principal-axis gauge,’’ which has been used
by many authors, especially in three-body calculations.
In addition, the Eckart conventions, to be discussed
later, involve a definite choice of gauge (the Eckart
frame, or ‘‘Eckart gauge’’) for any number of particles.

FIG. 11. xxy gauge. We obtain ‘‘xxy gauge’’ for the three-
body problem by decreeing that vector r1 lies on the body x
axis, and vector r2 in the body x-y plane.
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Another example is the gauge used by Bhatia and
Temkin (1964). In this gauge, one of the coordinate axes
is the angle bisector of the directions of r1 and r2. This
gauge is useful when considering parity and exchange.
The original works of Hylleraas and of Breit (1930) con-
tain a definition of a choice of gauge for the helium
problem. Pickett (1972) has considered several choices
of gauge, and the transformations connecting them
(gauge transformations), in problems of molecular vi-
brations.

A choice of gauge specifies a reference orientation for
each shape, namely, the orientation in which the body
frame coincides with the space frame. In the reference
orientation, the body and space positions of the particles
are equal, so that csa5ca and rsa5ra . Given the refer-
ence orientation and some actual orientation of the
same shape, there is some rotation (unique for noncol-
linear shapes) which maps the reference into the actual
orientation, carrying the space frame into the body
frame. We specify this rotation by a proper rotation ma-
trix R, so that

csa5Rca , a51, . . . ,n , (3.39)

rsa5Rra , a51, . . . ,n21. (3.40)

(See Appendix A for the choice of R instead of R21 in
this formula.)

We shall regard Eq. (3.40) as the specification of a
coordinate transformation from (rs1 , . . . ,rs ,n21) to ori-
entational and shape coordinates (u i,qm), which we em-
phasize by writing

rsa5R~u i!ra~qm!, a51, . . . ,n21. (3.41)

Here u i, i51,2,3, are some set of Euler angles upon
which the rotation matrix R depends, and ra5ra(qm)
are the functions that specify the gauge conven-
tion. Combined with the earlier transformation
(rs1 , . . . ,rsn)→(rs1 , . . . ,rs ,n21 ,Rs) which introduced
the center-of-mass position Rs , Eq. (3.41) gives us an
overall transformation of the form (rs1 , . . . ,rsn)
→(Rs ,u i,qm). This transformation achieves a separation
of the three center-of-mass degrees of freedom from the
remaining degrees of freedom, in the sense of classical
Hamiltonian mechanics, but it does not, as we shall see,
separate all three rotational degrees of freedom (only
two rotational degrees of freedom are separated).

The transformation (3.41) is a proper coordinate
transformation only if it is invertible, i.e., if the Euler
angles u i are uniquely determined by a given reference
and actual orientation. This will be the case if the par-
ticles are noncollinear, since any two noncollinear con-
figurations of the same shape are related by a unique
rotation. However, for collinear shapes the rotation is
not unique, since a rotation about the line of collinearity
has no effect. Therefore the coordinate transformation
specified by Eq. (3.41) is singular at the collinear con-
figurations (in the sense that the Euler angles are not
unique). For n53, the collinear configurations are at the
boundaries of shape space, whereas for n>4 they are in
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the interior of shape space, which has no boundary. For
n52, all configurations are collinear and Eq. (3.41) does
not apply.

Next we consider changes in body-frame convention,
i.e., gauge transformations, which are specified by some
shape-dependent, proper rotation S5S(qm)PSO(3)
that maps an old body frame into a new one. Under a
redefinition of body frames, the body-referred vectors
such as ca change their components due to the change of
frame to which they are referred,

ca5S~qm!ca8 , (3.42)

where primes indicate the components in the new gauge.
(See Appendix A for the choice of S instead of S21 in
this formula.) Likewise, the matrix R representing the
rotation that maps the space frame into the body frame
changes according to

R5R8ST, (3.43)

which is the generalization of Eq. (2.19) to three dimen-
sions. These transformation laws imply

csa5Rca5R8ca8 , a51, . . . ,n , (3.44)

rsa5Rra5R8ra8 , a51, . . . ,n21, (3.45)

so that the space-referred vectors csa or rsa are gauge
invariant (i.e., their components are gauge invariant), as
they must be since the determination of these compo-
nents does not involve body-frame conventions.

In most of the traditional atomic and molecular litera-
ture, it is the custom to commit oneself at the beginning
of a calculation to a specific choice of shape coordinates
and a specific convention for body frame. Often it is not
clearly stated that these two choices are distinct and in-
dependent of one another. For example, the Eckart con-
ventions provide a gauge convention (the Eckart frame)
as well as a coordinate system on shape space (essen-
tially normal-mode coordinates for small vibrations). In
our presentation we emphasize the independence of
these two choices and we develop the transformation
properties of various quantities under both changes of
convention.

D. The fiber-bundle formulation of shape and orientation

For some time now (Lubkin, 1963; Wu and Yang,
1975) it has been recognized that the mathematical
theory of fiber bundles is natural for the description of
gauge theories. There are currently a number of books
and review articles available (e.g., Eguchi, Gilkey, and
Hanson, 1980; Nash and Sen, 1983; Göckeler and
Schücker, 1987; Nakahara, 1990; Visconti, 1992) which
explain the mathematics of fiber bundles in some detail,
including physical applications (usually to particle
theory). Nevertheless, it is a substantial investment to
master this material, and many of the essential geometri-
cal ideas can be understood without the official abstract
formalism. In this spirit, we shall now present some of
the basic geometrical constructions associated with the
fiber-bundle structure induced on configuration space by
the action of rotations.
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We begin by considering the (3n23)-dimensional
configuration space, as illustrated schematically in Fig.
12, upon which the Jacobi vectors rsa are coordinates.
We let P be some specific configuration, and we con-
sider the set of configurations $QPuQPSO(3)%, which
are generated by letting all proper rotations Q act on
P . These configurations are all those with the same
shape as P , and they form a surface in configuration
space passing through P . This surface is represented
schematically by a line in Fig. 12, but in fact its dimen-
sionality is either 0, 2, or 3. This surface is the orbit of
the point P under the action of the rotation group (in
the mathematical sense of the word ‘‘orbit,’’ not to be
confused with particle trajectories in mechanics). If the
configuration P is noncollinear, then the orbit is a copy
of the three-dimensional rotation group SO(3) itself,
since any two noncollinear configurations, such as P and
P8 in the figure, are related by a unique rotation. Thus,
for noncollinear configurations, the points of the orbit
can be placed in one-to-one correspondence with rota-
tions, and rotations or their Euler angles can be used as
coordinates along the orbit. For collinear shapes that are
not collapsed to a point, the orbit is two-dimensional
and is a copy of the two-sphere S2, since rotations can
only change the direction in which the linear shape is
pointing. Finally, for configurations in which all particles
coincide at a single point (an n-body collision), the orbit
is just the point P itself, since QP5P for all Q; in this
case the orbit is zero-dimensional.

For n>3, the collinear configurations form a set of
measure zero. If we exclude these, then the remainder of
the (3n23)-dimensional configuration space is divided
up or foliated into a (3n26)-parameter family of three-

FIG. 12. The (3n23)-dimensional translation-reduced con-
figuration space for the n-body problem, is represented sche-
matically by several axes. A typical configuration is P , on
which the rotation group SO(3) acts, producing the orbit indi-
cated schematically by the line passing through P . Actually,
the orbit has either zero, two, or three dimensions (usually
three, for n>3). P8 is another configuration on the orbit pass-
ing through P . The surface S is a (3n26)-dimensional surface
of reference orientations, specifying a gauge convention.
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
dimensional orbits, each of which is a copy of SO(3).
Shape space is the family itself, i.e., it is the quotient
space R3n23/SO(3), the space in which a single point
represents a whole orbit in R3n23, i.e., an equivalence
class of configurations of the same shape. Shape space is,
properly speaking, not a subset of configuration space,
although it can be identified with various subsets (sub-
manifolds) in a nonunique way. The construction of
shape space as a quotient space has previously been con-
sidered by Mezey (1987, 1993).

In the special case n52, all shapes are collinear and
the orbits are concentric spheres surrounding the origin,
since rotations cause the vector rs1 (there is only one) to
sweep out the surface of a sphere while holding r fixed.
In this case we have a sphere bundle over shape space
instead of an SO(3) bundle, and the foliation is worth a
picture (Fig. 13) because a realistic drawing can be
made. Because the spheres are two-dimensional instead
of three-dimensional, the count of shape coordinates in
the two-body problem is 3n25, i.e., 1, instead of
3n26.

Returning to the case n>3, if we exclude the collinear
configurations, then the orbit structure imposed on con-
figuration space by rotations qualifies this space as a
principal fiber bundle, in which shape space is the base
space, the structure group is SO(3), and the fibers are the
orbits. Of course, the collinear configurations are not
excluded on physical grounds, since collinear configura-
tions can and do occur; rather, it is a matter of identify-
ing a standard mathematical construction. We shall
henceforth often refer to the orbits as fibers, partly to
avoid confusion with the usual physical meaning of the
word ‘‘orbit,’’ although properly speaking only the or-
bits of noncollinear configurations are fibers.

The fiber-bundle picture also provides a geometrical
interpretation for a choice of gauge. To see how, we
refer to Fig. 12 and declare that configuration P specifies
the reference orientation for the shape represented by

FIG. 13. Orbits for the two-body problem, shown as concentric
spheres about the origin of the (translation-reduced) configu-
ration space, which is R3. Shape space is the radial halfline,
r>0.
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the fiber passing through P . Thus a body frame is de-
fined at P to be identical to the space frame, and at
other points P8 on the same fiber the body frame is
defined by demanding that the rotation that maps P into
P8 also map the space frame into the body frame. Hav-
ing done this for one fiber, we extend the definition of
the reference orientation to neighboring fibers, proceed-
ing in a continuous way until all fibers (at least in some
neighborhood) have been covered. In this way, a
(3n26)-dimensional surface S of reference orientations
is swept out, and body frames are defined for all noncol-
linear configurations. The surface S is known as a section
of the fiber bundle, because of the way it cuts through
the fibers. Thus the section S is a geometrical represen-
tation of a gauge convention. Any other gauge conven-
tion is specified by the choice of a different section; sec-
tions can be chosen in many ways, but they should cut
transversally to the fibers, i.e., be nowhere tangent to the
fibers, so that small changes in shape do not lead to large
changes in the reference orientation. We do not require
the section S to be perpendicular to the fibers; indeed, it
turns out that it is impossible to choose a section that is
everywhere perpendicular to the fibers. This is an issue
that arises in the establishment of the Eckart conven-
tions, and we shall have more to say about it later.

There are two ways of specifying a surface such as S in
practice. One is to write down a set of 3n26 functions
of the form ra(qm), which are the same functions intro-
duced in Eq. (3.37), whereupon the section S is the
graph of these functions in configuration space, i.e., it is
the surface rsa5ra(qm). Notice that by setting space
components equal to body components we are specify-
ing the reference orientation. These functions specify a
mapping from the (3n26)-dimensional space of coordi-
nates qm to configuration space, so that the qm serve as
coordinates on the section S. The only conditions im-
posed on the functions ra(qm) are that they be indepen-
dent and that the surface S be transverse to the fibers;
these are mild conditions, so that most functions
ra(qm) written down at random would work in prin-
ciple. The specification of the functions ra(qm) estab-
lishes both a gauge convention and a coordinate system
on shape space, although afterwards either of these can
be changed independently at will.

A complementary way to specify the (3n26)-
dimensional section S in the (3n23)-dimensional con-
figuration space is to specify three constraints on the
coordinates $rsa%, i.e., three functions of the form

Fi~rs1 , . . . ,rs ,n21!50, i51,2,3. (3.46)

These functions should be independent and yield a sur-
face S that is transverse to the fibers; again, these are
mild conditions. The specification of such a set of con-
straints establishes a gauge convention but not a system
of shape coordinates; in practice some additional choice
has to be made for the latter. An example of such a set
of constraints are the equations defining the Eckart
gauge (Eckart, 1935; Louck, 1976; Louck and Galbraith,
1976; Biedenharn and Louck, 1981); these are
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(
a51

n21

rsa3r0sa5 (
a51

n

macsa3c0sa50, (3.47)

where the 0 subscript refers to some equilibrium con-
figuration of a molecule, i.e., some orientation of an
equilibrium shape (we assume there is only one). The
many equilibrium configurations of the molecule are re-
lated by rotations (they lie on an ‘‘equilibrium fiber’’),
and the choice of one of them to use in Eq. (3.47) is
equivalent to the choice of a body frame for the equilib-
rium shape. Once this is done, Eq. (3.47) determines the
body frames for all other shapes. Notice that Eckart
gauge specifies a section S by means of linear constraints
on the coordinates $rsa%; the section S is actually a
(3n26)-dimensional vector subspace of the (trans-
lation-reduced) configuration space.

The section S (by any convention) can be loosely
identified with shape space itself, and thus shape space
can be loosely identified with a submanifold of configu-
ration space. It is easy to see this, since the qm are coor-
dinates on shape space and since the equations
rsa5ra(qm) also allow the qm to be taken as coordinates
on S. The geometry of this association is that a point of
shape space represents a fiber, and a fiber presumably
intersects the section at a single point. But the identifi-
cation is only loose, because it may not be possible to
define a smooth section that intersects all the fibers (see
below) and because the section in any case is not unique,
but rather may be pushed ‘‘up’’ and ‘‘down’’ along the
fibers by means of a gauge transformation. Thus any
feature that derives from identifying shape space with a
submanifold of configuration space will not be gauge in-
variant. Many of the non-gauge-invariant features of the
Eckart conventions arise in this way.

A standard question in fiber-bundle theory is whether
it is possible to choose a section that cuts through all the
fibers and that is smooth (free of singularities) every-
where. If so (in the case of a principal fiber bundle), the
bundle is said to be trivial. In the present example, the
issue is whether it is possible to choose a convention for
body frame that is smooth over all of shape space. For
the sake of this discussion, we exclude the collinear con-
figurations, so that shape space is an open set. (We can
worry later about what happens as we approach a col-
linear configuration.) Then it turns out that, for n53, it
is possible to choose such a smooth convention for body
frame, so that the bundle is trivial (Iwai, 1987b); this
follows from the contractability of shape space. Our
xxy gauge given by Eq. (3.38) is an explicit example of a
smooth gauge convention for the three-body problem.
For n>4, globally smooth sections no longer exist, and
the bundle is nontrivial. Even for the three-body prob-
lem, however, we may wish to choose a gauge that is not
globally smooth. An example is the principal-axis gauge,
as we shall see later.

The relevance of singularities in the convention for
body frame is that they lead to singularities in the gauge
potential Am , which appears in a classical canonical
Hamiltonian description of the reduced dynamics, as
well as in the Schrödinger equation. These singularities
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are mathematically of the same form as monopole
strings (Wu and Yang, 1975; Sakurai, 1985), and on this
analogy we shall call them ‘‘string singularities.’’ String
singularities force the wave function on shape space to
be represented in overlapping patches, with different
patches belonging to different gauges. For example, in
the four-body problem, the Schrödinger wave function
on shape space cannot be defined in a globally smooth
manner (at least for nonzero values of angular momen-
tum). String singularities are less of a problem in classi-
cal mechanics; although they appear in the canonical
Hamiltonian, they do not appear in the classical equa-
tions of motion. They can even be removed from the
Hamiltonian by the use of noncanonical variables. We
shall say more about these issues later.

The fiber-bundle picture also provides a geometrical
interpretation of gauge transformations. If a choice of
gauge is a choice of a section S, as illustrated in Fig. 14,
then a change of gauge is the selection of a new section
S8. For example, as illustrated in the figure, we may de-
cide that instead of configuration P as the reference for
its fiber we may prefer configuration P8. Then the rota-
tion S is that which maps P into P8, i.e., it represents the
‘‘distance’’ (really a rotation) along the fiber between
the old and new sections. This ‘‘distance’’ can differ
from one fiber to the next, i.e., S is a function of qm.

Finally, the fiber-bundle picture illuminates the useful
concept of a ‘‘democratic gauge.’’ In a democratic
gauge, the components of the eigenvectors of the
moment-of-inertia tensor in the body frame are demo-
cratic invariants, i.e., they take on the same values at any
two shapes related by a democracy transformation. For
example, in the three-body problem, a democratic gauge
is one in which the body-referred eigenvectors of the
moment-of-inertia tensor are azimuthally symmetric
about the w3 axis, as indicated by Eq. (3.36). The
principal-axis gauge is an example of a democratic
gauge, since the eigenvectors in the principal-axis frame
are just the unit vectors (1,0,0), etc., which have con-
stant components. On the other hand, xxy gauge is not

FIG. 14. A gauge transformation viewed geometrically as the
replacement of one section S by another S8. One can imagine
pushing the old section ‘‘up’’ along the fibers to create the new
section.
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democratic. It turns out that the geometrical meaning of
a democratic gauge is that it is one in which the section
S is invariant under the democracy group, i.e., the trans-
formations (3.22) map points of S into other such points.
Democratic gauges are especially important for the case
n>4, and we shall have more to say about them in fu-
ture publications.

E. The gauge potential in the n-body problem

The gauge potential emerges when we express the an-
gular momentum about the center of mass in terms of
shape and orientational coordinates. In this calculation
we can work with either the vector $ra% or the vector
$ca%; we choose $ra% and present alternatives in the
$ca% form to key expressions below.

We begin by defining the r-space velocities vsa5ṙsa ,
which we express in terms of shape and orientation by
differentiating Eq. (3.41) with respect to time. We ob-
tain

vsa5ṙsa5Ṙra1R
]ra

]qmq̇m. (3.48)

Referring these velocities to the body frame, we have

va5RTvsa5Vra1
]ra

]qmq̇m5v3ra1
]ra

]qmq̇m, (3.49)

where V is the antisymmetric matrix,

V5RTṘ52ṘTR, (3.50)

and where we associate V with the vector v according to
the notation explained in Appendix B,

V↔v, (3.51)

so that Vra5v3ra .
Here v is the angular velocity vector referred to the

body frame (the angular velocity referred to the space
frame is vs). The angular velocity is defined as the in-
stantaneous rate of rotation of the body frame with re-
spect to the space frame; this is the usual definition in
the physics, chemistry, and engineering literature, but it
is at variance with the definition used in several recent
mathematical works on the n-body problem, including
those of Iwai, 1986, 1987b; Tachibana and Iwai, 1986;
Lin and Marsden, 1992; and Marsden, 1992. These au-
thors prefer to define the angular velocity by
v5M21L, so that v and the angular momentum L sat-
isfy the rigid-body relation; this definition has consider-
able appeal due to features of fiber-bundle theory. (It is
the angular velocity of the parallel-translated frame with
respect to the space frame; see Appendix D.) This defi-
nition of the angular velocity is also used by Jellinek and
Li, 1989, in a context described in Sec. V.F. However,
we shall stick to the definition given by Eqs. (3.50) and
(3.51).

Now we refer the angular momentum about the cen-
ter of mass to the body frame and express it in terms of
shape and orientational coordinates. We have
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L5RTLs5RT (
a51

n21

rsa3vsa

5 (
a51

n21

ra3va

5 (
a51

n21

ra~v3ra!1ra3
]ra

]qmq̇m, (3.52)

where we use Eqs. (3.19) and (3.49). Into this we intro-
duce the usual moment-of-inertia tensor M,

Mij5Mij~q !5 (
a51

n21

~ urau2d ij2rairaj!

5 (
a51

n

ma@ ucau2d ij2caicaj# , (3.53)

and another quantity (De Celles and Darling, 1969),

am5am~q !5 (
a51

n21

ra3
]ra

]qm 5 (
a51

n

maca3
]ca

]qm , (3.54)

so that the angular momentum becomes

L5Mv1amq̇m. (3.55)

Both M5M(q) and am5am(q) are fields over shape
space. The field am can be thought of as a collection of
3n26 3-vectors, indexed by m .

More useful than am is the gauge potential Am , de-
fined by

Am5Am~q !5M21am . (3.56)

It is also thought of as a collection of 3n26 3-vectors, or
as a tensorlike field over shape space with 3(3n26)
components Am

i . In terms of Am the angular momentum
takes on an especially useful form,

L5M~v1Amq̇m!. (3.57)

The two terms on the right-hand side of this equation
are sometimes thought of as the rotational and internal
(or vibrational) contributions to the angular momentum;
but, as we shall see, this decomposition is not gauge in-
variant.

To see the physical and geometrical meaning of the
gauge potential, we think of the falling cat and set
L50, so that

v52Amq̇m. (3.58)

Then we write the angular velocity in terms of its mag-
nitude and direction, v5vn̂, and multiply through by
dt to obtain

n̂da52Amdqm, (3.59)

where da5vdt . Thus the gauge potential Am provides
the mapping between an infinitesimal change in shape
dqm and the corresponding infinitesimal rotation, repre-
sented in terms of its axis n̂ and infinitesimal angle da ,
under conditions of vanishing angular momentum. This
is a clear generalization of Eq. (2.9), the main difference
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being that infinitesimal rotations in three dimensions are
specified by a vector that can be referred to any frame.
In the present formulation, all the vectors, v, n̂, and
Am , are referred to the body frame (hence the absence
of the subscript s).

For finite times, the infinitesimal rotations specified by
Eq. (3.59) compound upon one another to generate a
finite rotation. Of course, the axis changes in general as
a function of time, so the elementary rotations do not
commute. To find R(t) for finite times, we suppose
v(t) is known so that V(t) is also known. Then Eq.
(3.50) gives

Ṙ5RV~ t !, (3.60)

a system of nine coupled, linear differential equations
for the components of R with time-dependent coeffi-
cients. The solution can be written as a time-ordered
product,

R~ t !5R0TexpF E
t0

t1
V~ t8!dt8G , (3.61)

where T represents the time ordering. Mathematically,
this is just another notation for the solution of Eq.
(3.60), but it is supposed to suggest the composition of
the infinitesimal rotations mentioned above. Of course,
Eq. (3.60) can also be expressed in terms of Euler angles
(whereupon it becomes nonlinear and rather unattrac-
tive), or Cayley-Klein parameters, etc.

Equations (3.60) and (3.61) apply to any problem in
which v(t) is given, e.g., rigid-body mechanics, and
merely determine the rotation connecting two frames,
regardless of the context. But when v(t) is generated by
the falling cat with vanishing angular momentum, then
Eq. (3.58) applies, which we rewrite in the form

V52Amq̇m, (3.62)

where

Am↔Am . (3.63)

Here we use sans serif A to indicate the antisymmetric
matrix Am , in contrast to the vector Am (in boldface).
Substituting Eq. (3.62) into Eq. (3.61), we obtain a path-
ordered product,

R~ t !5R0PexpF2E
q0

q1
AmdqmG , (3.64)

where now the integral is taken along the path qm(t) in
shape space, with q(t0)5q0 and q(t1)5q1. Again, this
is just notation, but it suggests correctly that the rotation
R(t) is independent of the rate of traversal of the path,
i.e., that R(t) is ‘‘geometrical.’’ This is the same conclu-
sion we reached for our planar models in Sec. II, here
generalized to non-Abelian rotations. Alternatively, we
can write Eq. (3.60) in the form

dR52RAmdqm, (3.65)

in which the time parameter has dropped out. The geo-
metrical meaning of the gauge potential Am was appar-
ently first appreciated by Guichardet (1984) and later
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independently by Shapere and Wilczek (1989b), whose
presentation is similar to ours.

To define the ‘‘net rotation’’ of a deformable body
during some time interval, we imagine some vector k
that is fixed in the body frame (e.g., it could be one of
the unit vectors defining the body frame). Thus its body
components are constant in time. But the space compo-
nents ks are time dependent, since ks(t)5R(t)k. If we
now consider ks at some initial and final times,
ks05R0k and ks15R1k, then it is logical to define the net
rotation between the two given times in terms of the
operator that maps ks0 into ks1, for any choice of k.
Since ks15R1R0

Tks0, we take the matrix representing this
operator in the space frame as R1R0

T . This matrix is the
analog of the angle Du introduced in Eq. (2.11).

Next we consider the behavior of the net rotation un-
der gauge transformations. Letting the two times be t0
and t1, corresponding to shapes q0 and q1, then by Eq.
(3.43) we have

R1R0
T5R18S1

TS0R08
T , (3.66)

where S05S(q0), S15S(q1). If q0 Þ q1 (an open curve
in shape space), then R1R0

T Þ R18R08
T and the net rotation

is gauge dependent; but if q05q1 (a closed curve), then
the S matrices drop out and the net rotation is gauge
invariant. This is the same conclusion reached for our
planar models in Sec. II, and the reason is the same: for
an open curve, the two frames at the two times are at-
tached to different shapes and can be redefined indepen-
dently of one another under a gauge transformation, but
for closed curves there is only one shape and the frame
redefinition drops out of the computation.

F. Gauge invariance and gauge covariance

We now begin a systematic program to examine how
the various quantities of the theory transform under
gauge transformations. First we note that the shape co-
ordinates qm, their time derivatives q̇m, accelerations
q̈m, etc., are all gauge invariant, because their definitions
do not depend on a body frame. Likewise, the space
components of any vector that has a meaning indepen-
dent of body frame, such as rsa , rsa , csa , Ls , and their
time derivatives, are all gauge invariant. Orientational
coordinates u i or R(u i) are gauge dependent, as indi-
cated by Eq. (3.43).

If any of the vectors whose space components are
gauge invariant are transformed to the body frame, then
naturally the new (body) components will be gauge de-
pendent, because a redefinition of body frame will
change the frame to which they are referred. But the
transformation law is just that expected when we change
the basis to which a vector is referred, namely,

ca5Sca8 , ra5Sra8 , va5Sva8 , L5SL8, (3.67)

etc. Similarly, the moment-of-inertia tensor transforms
under a gauge transformation exactly as a second-rank
tensor should under change of basis, namely,

M5SM8ST, (3.68)
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as follows from the definition (3.53). The inverse
moment-of-inertia tensor M21 transforms similarly.
Thus, although it is not customary to refer the moment-
of-inertia tensor to the space frame, we would obtain
gauge-invariant components if we did so. We shall refer
to quantities that transform as in Eqs. (3.67) or (3.68),
with one copy of the S matrix for each index i ,j , etc., as
gauge covariant.

But not everything is gauge covariant. On transform-
ing the body angular velocity, we find

v↔V5RTṘ5SR8T~Ṙ8ST1R8ṠT!5S~V81ṠTS!ST,
(3.69)

where we use R5R8ST and V85R8TṘ8. Next we note

that ṠTS is antisymmetric and we follow the pattern of
relations between v and V to write

ṠTS52STṠ52ST
]S

]qmq̇m52Gmq̇m, (3.70)

where the antisymmetric matrix Gm can be associated
with a vector gm ,

Gm5ST
]S

]qm ↔gm . (3.71)

Then the transformation law takes the form

V5S~V82Gmq̇m!ST, (3.72)

or, if we convert back to vectors,

v5S~v82gmq̇m!, (3.73)

where we use Eq. (B5). Thus the angular velocity v is
not gauge covariant, due to the second term on the right
in Eq. (3.73).

The geometrical reason for this more complicated
transformation law is the following. The angular velocity
represents the relation between the space and body
frames at two times t and t1dt . But since the shape can
change during the infinitesimal time increment dt , the
body frames attached to the two shapes can be redefined
independently of one another under a gauge transforma-
tion. Thus v is not gauge covariant. Nor for that matter
is the space-referred vector vs gauge invariant; it does
not represent a vector in a geometrical sense that has
any meaning independent of conventions for body
frame, so even its space components are gauge depen-
dent.

If the angular velocity is not gauge covariant, then by
Eq. (3.58) the gauge potential Am cannot be either. In-
deed, appealing directly to the definition (3.56), we find
the transformation law

Am5S~Am8 1gm!. (3.74)

On the other hand, the vector v1Amq̇m is gauge cova-
riant, as follows from Eq. (3.57), since both L and M are
gauge covariant. Thus we see that the decomposition of
L into the two terms seen in Eq. (3.57) is gauge depen-
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dent, even though it is tempting to think of them as the
‘‘rotational’’ and ‘‘internal’’ contributions to the angular
momentum.

In tensor analysis it is traditional not to consider an
object a tensor just because it has indices, but to require
in addition certain transformation laws under coordinate
transformations. In particular, a true tensor is multilin-
ear in its indices, transforming by one copy of the Jaco-
bian matrix or its inverse for each index, depending on
whether the index is contravariant or covariant. Not all
the objects of interest in tensor analysis are true tensors
by this definition.

The various quantities of our theory have two kinds of
indices, Latin ones i ,j ,k , etc., which we shall call R indi-
ces, and Greek ones m ,n , etc., which we shall call q in-
dices. Gauge transformations involve only the R indices,
whereas coordinate transformations on shape space in-
volve only the q indices. Regarding the R indices, it is
not necessary to distinguish contravariant and covariant
indices, because our transformation matrices S are al-
ways orthogonal. But it is necessary to distinguish those
objects which transform multilinearly in the R indices,
i.e., with one copy of the S matrix for each index, from
objects that have more complicated transformation laws.
We have called the former kind of object ‘‘gauge cova-
riant;’’ we shall also call them ‘‘true R tensors.’’ The
word tensor includes both scalars and vectors, so in par-
ticular, a true R scalar is an object without R indices that
is invariant under gauge transformations. All the quan-
tities in our theory that are independent of convention
must be true R scalars. So far we have determined that
qm, q̇m, etc., are true R scalars; ca , ra , L, etc. are true
R vectors; M, M21 are true R tensors of second rank; but
v and Am are not true R tensors (of any rank).

Similar considerations apply to the q indices. We shall
pay less attention to these because the rules and trans-
formation laws for the q indices under coordinate trans-
formations in shape space are exactly as in ordinary ten-
sor analysis. For example, the quantity q̇m transforms as
a contravariant vector,

q̇m5
]qm

]q8nq̇8n, (3.75)

under the change of coordinates qm→q8n. Thus q̇m is a
true R scalar and a true q-contravariant vector. Simi-
larly, the gauge potential, although not a true R vector,
is a true q-covariant vector,

Am5
]q8n

]qm An8 , (3.76)

where now the prime refers to the new components of
Am after the coordinate transformation.

There are several advantages of true R tensors. First,
as we have noted, true R tensors have gauge-invariant
components when referred to the space frame; we may
therefore think of them as having an absolute geometri-
cal meaning. Second, true R tensors can be contracted to
form true R scalars, which are gauge invariant. Thus, for
example, the quantity (1/2)L•M21

•L is a true R scalar,
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whereas (1/2)v•M•v is not. [In rigid-body theory, these
would be equal to each other and to the kinetic energy
of rotation; but here they are unequal and have different
transformation laws. Altogether, (1/2)L•M21

•L is a
more fundamental quantity.]

A third property of true R tensors is that if they van-
ish in one gauge, they vanish in all gauges. For example,
the statement L50 is gauge invariant. The same is not
true for v50, for by a gauge transformation it is pos-
sible to make v take on any desired value (zero or non-
zero) at a given instant in time. One can even do this
along an entire curve segment qm(t) in shape space, so
long as the curve does not cross itself. For example, by
establishing a gauge that just happens to make the body
frames turn at the right rate as the motion proceeds
along a given curve qm(t), one can make v50. How-
ever, the scheme will fail if the curve crosses itself, for
then the curve returns to a shape in which the body
frame was already defined to make v50 on an earlier
part of itself.

Similarly, it is possible to make Am vanish at a single
point of shape space by means of a gauge transforma-
tion, or even along a curve that does not intersect itself.
Indeed, one of the objects of the Eckart conventions is
to make Am50 at the equilibrium configuration of a
molecule. In this way, the ‘‘Coriolis terms’’ in the La-
grangian or Hamiltonian are first order in the small dis-
placements from equilibrium (Casimir, 1931; Eckart,
1935; Wilson, Decius, and Cross, 1955), since Am devi-
ates linearly from zero in the small displacement. This
convention has about the same significance as one that
causes the phase of the wave function for a charged par-
ticle in a magnetic field to take on some particular value
at a specified spatial point; such conventions may be
convenient, but in neither case do they have any physi-
cal significance.

G. The curvature form or Coriolis tensor

Now we introduce the curvature form or Coriolis ten-
sor Bmn by considering small cycles in shape space under
conditions of vanishing angular momentum. For our pla-
nar models in Sec. II, we introduced the curvature form
by means of Stokes’ theorem, but in the three-
dimensional, non-Abelian gauge theory Stokes’ theorem
cannot be used. Thus it is not possible to transform path-
ordered integrals such as (3.64) into integrals over some
enclosed region, at least if the region is finite. But for
infinitesimal regions, something like an infinitesimal ver-
sion of Stokes’ theorem can be applied, and it leads to
the curvature form. The following construction is stan-
dard in gauge theories; only the physical and geometri-
cal meaning of the quantities involved differs from other
gauge theories.

We begin by considering an infinitesimal parallelo-
gram in shape space, spanned by infinitesimal vectors
jm and hm, as illustrated in Fig. 15. The quantities jm and
hm are regarded as infinitesimal increments in the coor-
dinates qm, so that the parallelogram closes exactly (to
all orders of infinitesimals). We imagine going around
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this infinitesimal parallelogram under conditions of van-
ishing angular momentum, starting at point q0

m and pro-
ceeding to q1

m , q2
m , q3

m , and back to the starting point,
and we wish to compute the rotation generated. We let
the values of the orientation, specified by R, be
R0 , . . . ,R4 as we go around the parallelogram; although
qm returns to its starting value, R does not; R4 Þ R0, since
in general some net rotation is generated.

For the first leg q0→q1 we parametrize the curve by

qm~ t !5q0
m1tjm, (3.77)

so that q(0)5q0 and q(1)5q1. Since the rotation gen-
erated does not depend on the time parametrization, we
can use any parametrization we like. We solve Eq. (3.60)
by expanding in a Taylor series in time and set t51 to
obtain R15R(1). We have

R~ t !5R~0 !1tṘ~0 !1
t2

2
R̈~0 !1••• ,

R15R01Ṙ01
1
2

R̈01••• , (3.78)

where we carry things only through second order be-
cause that is where the first nonvanishing effect is found.
To obtain R and its derivatives at t50 we combine Eqs.
(3.60) and (3.62) and differentiate,

Ṙ52RAmq̇m,

R̈52ṘAmq̇m2RAm ,nq̇mq̇n2RAmq̈m, (3.79)

where we use comma notation for derivatives (see Ap-
pendix A). But by Eq. (3.77) we have q̇m5jm and
q̈m50, so

Ṙ52RAmjm,

R̈5R~AnAm2Am ,n!jmjn, (3.80)

where we have used the first equation to eliminate Ṙ in
the second. Substituting these into Eq. (3.78) gives us an
equation for the rotation produced along leg q0→q1.

Equations valid for leg q1→q2 are obtained from
those for leg q0→q1 by changing subscripts 0→1,
1→2, and jm→hm; equations for the next leg are ob-
tained by subsequently changing subscripts 1→2, 2→3,
and hm→2jm, etc. Summarizing these, we have

FIG. 15. An infinitesimal parallelogram in shape space.
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R15R0@ I2A0mjm1 1
2 ~A0nA0m2A0m ,n!jmjn1•••#5R0F0 ,

R25R1@ I2A1mhm1 1
2 ~A1nA1m2A1m ,n!hmhn1•••#5R1F1 ,

R35R2@ I1A2mjm1 1
2 ~A2nA2m2A2m ,n!jmjn1•••#5R2F2 ,

R45R3@ I1A3mhm1 1
2 ~A3nA3m2A3m ,n!hmhn1•••#5R3F3 ,

(3.81)

where the symbols Fi are abbreviations for the matrices
in the square brackets and where the numeric subscripts,
e.g., the 3 in A3m , indicate the point, e.g., q3

m , at which
the quantity in question is evaluated. Combining these,
we have for the net rotation generated on going around
the whole loop,

R4R0
T5R0~F0F1F2F3!R0

T . (3.82)

To compute the product of the Fi , it is convenient
first to have all the fields appearing in the Fi evaluated at
a common point, say, q0. Expanding everything about
q0, we have

A1m5Am~q01j!5A0m1A0m ,njn1••• ,

A2m5Am~q01j1h!5A0m1A0m ,n~jn1hn!1••• ,

A3m5Am~q01h!5A0m1A0m ,nhn1••• . (3.83)

Then the expressions for the Fi become

F05I2Amjm1 1
2 ~AnAm2Am ,n!jmjn1••• ,

F15I2Amhm2Am ,nhmjn1 1
2 ~AnAm2Am ,n!hmhn1••• ,

F25I1Amjm1Am ,njmhn1 1
2 ~AnAm1Am ,n!jmjn1••• ,

F35I1Amhm1 1
2 ~AnAm1Am ,n!hmhn1••• , (3.84)

where now we omit the numeric subscripts on the fields
Am , it being understood that everything is evaluated at
q0.

When we multiply these together, carrying the prod-
uct out to second order and being careful about the or-
der of noncommuting matrices, and substitute into Eq.
(3.82), we find

R4R0
215R0~ I2Bmnjmhn1••• !R0

T , (3.85)

where

Bmn5
]An

]qm 2
]Am

]qn 2@Am ,An# . (3.86)

Here the square brackets indicate the matrix commu-
tator. The field Bmn is the matrix version of the curvature
form or Coriolis tensor. Since the matrix Bmn (for fixed
values of mn) is antisymmetric, it can be converted into
the vector version of the curvature form,

Bmn↔Bmn5
]An

]qm 2
]Am

]qn 2Am3An , (3.87)

where we use Eq. (B6). In either form, the Coriolis ten-
sor is antisymmetric in the indices m ,n ,
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Bmn52Bnm , Bmn52Bnm . (3.88)

To see the geometrical meaning of the Coriolis tensor,
we note that R4R0

T is an infinitesimal rotation which we
can write in axis-angle form. We denote the axis, re-
ferred to the space frame, by n̂s and the angle by da ,
and, as before, we write k for a vector fixed in the body
frame, with space components ks05R0k at the beginning
of the excursion around the parallelogram and
ks45R4k at the end. Then we have

ks45~R4R0
21!ks05ks01dan̂s3ks0

5~ I1daNs!ks05R0~ I1daN!R0
Tks0 ,

(3.89)

where n̂s↔Ns5R0NR0
T , n̂s5R0n̂, n̂↔N, so that (n̂s ,Ns)

and (n̂,N) are, respectively, the space and body versions
of the axis of rotation, in both vector and antisymmetric
matrix form. Comparing Eq. (3.89) with Eq. (3.85), we
see that (with a conventional minus sign) Bmnjmhn and
Bmnjmhn are, respectively, the matrix and vector ver-
sions of the infinitesimal rotation generated by going
around the parallelogram under conditions of vanishing
angular momentum, represented in axis-angle form and
referred to the body frame. That is, we have

n̂da52Bmnjmhn. (3.90)

We chose a minus sign in the definition of Bmn in Eq.
(3.86) in order to make a minus sign come out here, so
that this equation would look like Eq. (3.59).

Equations (3.59) and (3.90) have a similar structure,
but there is an important difference: the rotation gener-
ated by the open infinitesimal line segment dqm in Eq.
(3.59) is gauge dependent, while the rotation generated
by the closed infinitesimal parallelogram spanned by
jm,hm in Eq. (3.90) is gauge invariant. This means that if
the axis of the rotation in Eq. (3.90) is referred to the
space frame, it is gauge invariant, whereas if referred to
the body frame, as in Eq. (3.90), it is gauge covariant.
Therefore the Coriolis tensor Bmn , unlike the gauge po-
tential Am , is a true R vector.

The gauge covariance of Bmn is an important fact
which can be verified directly by subjecting the defini-
tion to a gauge transformation. To do this it is easier to
work with the matrix version, as in Eq. (3.86). We use
the transformation law for the gauge potential, Eq.
(3.74), which in matrix form is

Am5S~Am8 1Gm!ST5SAm8 ST1
]S

]qmST, (3.91)

which we substitute into Eq. (3.86). Eighteen terms re-
sult, of which fourteen cancel, leaving us with

Bmn5SS ]An8

]qm 2
]Am8

]qn 2Am8 An81An8Am8 DST5SBmn8 ST,

(3.92)

or simply

Bmn5SBmn8 . (3.93)
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
The gauge covariance of the Coriolis tensor has sev-
eral important consequences. Unlike the gauge potential
Am , Bmn cannot be made to vanish at a point of shape
space by means of a gauge transformation unless it is
already zero there, which in fact never happens. For ex-
ample, at the equilibrium shape of a molecule, Bmn has a
nonzero value that can be referred to various body
frames but that otherwise cannot be changed. Another
consequence of the gauge covariance of Bmn is that it is
impossible to choose a convention for body frame that
will cause Am to vanish over a finite region of shape
space. If this were possible, then the ‘‘Coriolis coupling’’
terms in the molecular Hamiltonian would vanish and
there would be a separation of rotational and vibrational
degrees of freedom at lowest order in the Born-
Oppenheimer ordering parameter. Therefore the possi-
bility of finding a convention to make Am vanish in a
finite neighborhood of the equilibrium position was con-
sidered in early studies by Eckart (1935). Eckart did not
think it was possible to transform away Am , but he was
not sure and did not supply a proof. This same doubt has
persisted into more recent reviews of the subject (Sut-
cliffe, 1980). But it is easy to put it to rest. If there were
a gauge for which Am were zero over a finite region,
then we would have Bmn50 over that same region, a
gauge-invariant result. But in fact Bmn Þ 0, as we find by
a direct calculation, which can be carried out in any
gauge (see below); therefore making Am50 over a finite
region is impossible.

H. Examples of fields and gauges
in the three-body problem

In the case of the three-body problem, it is easy to
compute some of the fields we have defined. These can
be put into different forms, depending on the choice of
gauge convention and shape coordinates. Three-body
problems are common in the literature and much is
known about them, although gauge transformations are
seldom contemplated. There are many special features
of the three-body problem, some of which we point out
here, which limit its utility for illustrating general prop-
erties of n-body systems. On the other hand, not only
does the computational effort increase for n.3, but also
a proper treatment of the fields on shape space for
n>4 requires due attention to the democracy group and
other considerations. Therefore we shall restrict our ex-
amples here to the three-body problem and present cal-
culations for n.3 in future publications.

We begin with the xxy gauge defined by Eq. (3.38)
and use coordinates (r1 ,r2 ,f). Since the triangle
formed by the three bodies lies in the body xy plane, the
moment-of-inertia tensor block diagonalizes,

Mij5S r2
2sin2f 2r2

2sinfcosf 0

2r2
2sinfcosf r1

21r2
2cos2f 0

0 0 r1
21r2

2
D .

(3.94)

Because the figure is planar, the two moments of inertia
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in the plane add up to the third moment of inertia, i.e.,
the trace of the upper 232 block is equal to the compo-
nent M33 .

It is now a short calculation to find the gauge potential
in the xxy gauge and (r1 ,r2 ,f) coordinates, working
from the definition (3.54) and (3.56). The result is

Ar1
50, Ar2

50, Af5
r2

2

r1
21r2

2 ẑ, (3.95)

where ẑ is the unit vector in the body frame. Instead of
listing the components of Am , it is more compact and
convenient to use a differential form,

Amdqm5
r2

2

r1
21r2

2 df ẑ. (3.96)

From the gauge potential we easily compute the Coriolis
tensor, using Eq. (3.87); the cross product cancels. Be-
cause of the antisymmetry, we only have to list the com-
ponents of Bmn for which m,n ; these are

Br1f52
2r1r2

2

~r1
21r2

2!2 ẑ, Br2f51
2r1

2r2

~r1
21r2

2!2 ẑ, (3.97)

or, in terms of the associated differential form,

(
m,n

Bmndqm`dqn

5
2r1r2

~r1
21r2

2!2
~r1dr2`df2r2dr1`df!ẑ. (3.98)

The most striking aspect of these results is that the
gauge potential and curvature form have only a z com-
ponent. This is related to the elementary fact (Whit-
taker, 1960) that three-body motion is planar when
L50, so all rotations generated by shape deformations
under conditions of vanishing angular momentum must
take place in the plane of the triangle formed by the
three bodies. [The holonomy group for the three-body
problem is SO(2).] This special form of Am means that
the cross-product term in the definition of Bmn , the char-
acteristic of non-Abelian gauge theories, vanishes (in
gauges that place the three particles in a constant plane
in the body frame, such as xxy gauge). Thus the gauge
theory of the three-body problem is pseudo-Abelian, in
a sense. For example, the different matrices Am in the
path-ordered product (3.64) commute at different q
points, the path-ordering operator P can be dropped,
and Stokes’ theorem can be applied. One can also think
in terms of the ‘‘field lines’’ of Bmn as in ordinary elec-
tromagnetic theory, since effectively Am and Bmn be-
come scalars in their R indices, having only a z compo-
nent. These are all special features of the three-body
problem that do not generalize to higher values of n . On
the other hand, three-body motion for L Þ 0 does not
take place in a constant plane as viewed from the space
frame, and the time-ordered integration in Eq. (3.61)
will involve noncommuting matrices.

Obviously the gauge fields Am and Bm are singular
when r15r250, i.e., at the three-body collision, located
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at the vertex of the pyramid in Fig. 10. What is less
obvious is that in a certain sense the gauge potential
Am has a singularity when r150, regardless of the value
of r2, as will be explained momentarily. In fact, the Co-
riolis tensor Bmn has the form of a Dirac monopole, with
field lines radiating out from the three-body collision,
and the singularity in Am just referred to is a monopole
string. This monopole was apparently first discovered by
Iwai (1987a) in his treatment of the planar three-body
problem (some details are different in the planar case).
We shall call it the ‘‘Iwai monopole.’’

To see the Iwai monopole more explicitly, it helps to
transform to the (w1 ,w2 ,w3) coordinates, defined in
Eq. (3.30). We stay in the xxy gauge. The moment-of-
inertia tensor has no q indices and does not change, but
Am transforms as a covariant vector, as in Eq. (3.76). We
find

Amdqm5
w2dw32w3dw2

2w~w1w1!
ẑ. (3.99)

From this we easily find the Coriolis tensor, which we
present in the form

1
2

Bmndqm`dqn5e ijk

wi

4w3
dwj`dwkẑ. (3.100)

The Coriolis tensor has the form of a monopole at the
origin of shape space, as we shall now explain by anal-
ogy with the ordinary Dirac monopole.

To compare the Iwai monopole with an ordinary
Dirac monopole, it is necessary first to be careful of no-
tation, since the index i in the components Ai , Bi of the
magnetic vector potential A and magnetic field B in or-
dinary space are analogous to the q indices on the gauge
potential Am and curvature form Bmn . The boldface on
the latter symbols represents the R indices, which have
no analog in the case of ordinary magnetic fields and
vector potentials. Thus the boldface has a different
meaning in the two cases.

The magnetic field of a Dirac monopole in ordinary
three-dimensional space is

B5k
r
r3 , (3.101)

where k is the strength of the monopole. A vector po-
tential that places the string on the negative z axis is

A5k
12cosu

rsinu
f̂5k

x ŷ2y x̂
r~r1z !

, (3.102)

where (r ,u ,f) are ordinary spherical coordinates.
Although the f component of the vector potential, in
the sense of f̂•A, diverges on the negative z axis, the
covariant f component, defined by A•dr5Ardr
1Audu1Afdf , does not, for we have

Af5k~12cosu!. (3.103)

Instead, what is singular on the z axis is the differential
form df , since f is not defined there and its gradient
has no direction. On the positive z axis, the factor
12cosu cancels out the singularity in df , but on the
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negative z axis it remains. Similarly, the (covariant)
components of the gauge potential Am in Eq. (3.95) are
not themselves singular when r150, r2 Þ 0, but the dif-
ferential form Amdqm in Eq. (3.96) is, due to the singu-
larity of df (now with a different meaning for f). This
is why the monopole string is difficult to see in the co-
ordinates (r1 ,r2 ,f).

The string of the Dirac vector potential A in Eq.
(3.102) can be rotated to place it in any direction we
like. In particular, to place it on the negative x axis, we
simply permute indices xyz in Eq. (3.102), to obtain

A5k
y ẑ2z ŷ
r~r1x !

. (3.104)

On comparing this with Eq. (3.99), we see that the
gauge potential represented there does indeed have a
string singularity on the negative w1 axis and that the
strength of the monopole is k51/2. As for the magnetic
field of the Dirac monopole, we write it in terms of its
dual tensor,

Bij5e ijkBk5ke ijk

xk

r3
, (3.105)

in which form the comparison with the curvature form
Bmn in Eq. (3.100) is immediate.

In the case of the Dirac monopole, the vector B de-
fines the field lines radiating out from the monopole,
whereas the dual tensor ( i,jBijdxi ` dxj represents k
times the element of solid angle dV . Thus the total flux
emanating from the monopole is 4pk . In the case of the
Iwai monopole, the differential form (3.100) represents
the element of ‘‘angle flux’’ emanating from the mono-
pole (the angle representing rotations about the z axis);
the total angle flux is p , since k51/2 and since only the
region w3>0 (one hemisphere) is physical. A triangle
deforming its shape by running around the edge of the
solid triangle in Fig. 10 encircles all of this flux and ro-
tates by an angle p , as elementary considerations will
show. On the other hand, if we want to view the Iwai
monopole in terms of field lines, we need to construct a
contravariant vector field on shape space, say, Bm, which
is dual to the tensor (two-form) Bmn . This requires the
use of a metric on shape space, i.e.,

Bm5
1

2Ag
emnsBns , (3.106)

where g is the determinant of the covariant metric ten-
sor. Shape space has such a metric tensor (see below),
but it is non-Euclidean. Fortunately for the symmetry of
this problem, the metric is invariant under rotations in
w space, because otherwise the vector field Bm would
not be rotationally symmetric. As it is, g turns out to be
a function only of the radial coordinate w , and the radial
field lines present exactly the same picture as in the case
of a Dirac monopole, although the space is non-
Euclidean and we must use the right coordinates to see
the field lines as straight. Several special features of the
three-body problem and the w coordinates make this
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picture of the Iwai monopole possible. The construction
of field lines works only for the three-body problem, in
which shape space is three-dimensional and the gauge
field is pseudo-Abelian; for larger values of n , the Cori-
olis tensor cannot be transformed into a vector field as
in Eq. (3.106).

The Coriolis tensor Bmn is invariant under three-
dimensional rotations in (w1 ,w2 ,w3) space, as is evident
from Eq. (3.100), but the gauge potential Am of Eq.
(3.99) is invariant only under rotations about the w1
axis. It is to be expected that the potential whould have
less symmetry than the field itself, but for some purposes
it would be more convenient if the gauge potential were
invariant under rotations about the w3 axis instead,
since such rotations do not carry the physical region
w3>0 into the nonphysical region w3,0. In addition,
we recall that rotations about the w3 axis belong to the
democracy group [see Eq. (3.36)].

It turns out that the gauge transformation to move the
string onto the w3 axis can be ‘‘discovered’’ by consid-
ering the principal-axis gauge. Principal-axis gauge is
very popular in the literature; here we follow the nota-
tion of Smith (1962), Dragt (1965), and Iwai (1987b).
The transformation from xxy gauge to principal-axis
gauge is merely that which diagonalizes the moment-of-
inertia tensor (3.94), and the diagonalizing matrix
S5S(qm) is that which appears in the formulas for
gauge transformations such as (3.42), (3.68), etc. The
calculation is conveniently carried out in the coordinates
(w ,x ,c) defined in Eq. (3.30). We shall not display the
diagonalizing matrix S (containing the eigenvectors of
M), but the eigenvalues of M are

I15wsin2
x

2
, I25wcos2

x

2
, I35w . (3.107)

On transforming the vectors ra(qm) to the new body
frame, we find

r15AwS cos
x

2
cos

c

2
,2sin

x

2
sin

c

2
,0D ,

r25AwS cos
x

2
sin

c

2
,sin

x

2
cos

c

2
,0D . (3.108)

The appearance of the angle c/2 in these formulas indi-
cates a branch cut in shape space, say, along the half-
plane c5p . The gauge is not continuous along the cut
and has branch points on the w3 axis. Finally, the gauge
potential in principal-axis gauge can be computed either
directly from the definition (3.56) in the new gauge or by
carrying out the gauge transformation according to Eq.
(3.74). We find

Amdqm5
w3

2w~w1
21w2

2!
~w2dw12w1dw2!ẑ. (3.109)

The Coriolis tensor does not change under the transfor-
mation to principal-axis gauge because the gauge trans-
formation merely rotates the body axes in the body xy
plane, and Bmn has only a z component. Thus Eq.
(3.100) is valid in any gauge that leaves the three par-
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ticles in the body xy plane (as if Bmn were an R scalar,
another reflection of the pseudo-Abelian nature of the
three-body gauge fields).

Equation (3.109) reveals a string singularity on the
w3 axis, but it is on both the positive and negative sides.
The meaning of this is more clear in the spherical
(w ,x ,c) coordinates, where we find

Amdqm52 1
2 sinxdc ẑ. (3.110)

Thus it is as if in the case of the Dirac monopole we
were to use the vector potential

A52k
cosu
rsinu

f̂, A•dr52kcosudf . (3.111)

The geometrical meaning of this string singularity is
interesting. The w3 axis is where the mass-weighted vec-
tors r1 and r2 are of equal magnitude and perpendicu-
lar, which is exactly the condition that the moment-of-
inertia tensor be degenerate in the body xy plane. But
when the moment-of-inertia tensor is degenerate, the
principal-axis frame is not uniquely defined, nor does it
approach a unique value as we approach a given point
on the w3 axis from different directions in shape space.
Thus the functions ra(qm) are singular at the degenerate
shapes; the singularity has the form of a branch point, as
noted previously, and it produces a corresponding singu-
larity in the gauge potential.

The string singularity on the w3 axis and the branch
cut in the functions ra(qm) on the half-plane c5p in
the principal-axis gauge also have interesting analogs in
Born-Oppenheimer theory, in which one deals with an
electronic Hamiltonian that is parametrized by the
nuclear coordinates (Mead and Truhlar, 1979; Mead,
1992). If the electronic Hamiltonian is represented with
respect to some fixed electronic basis, then it can be seen
as a field of Hermitian matrices over nuclear configura-
tion space and is analogous to the moment-of-inertia
tensor in the present problem, a real, symmetric matrix
field over shape space. In both cases, the eigenvectors of
the field of matrices cannot be defined in a continuous
manner as one goes around the codimension 2 manifold
of degeneracies, but rather the two eigenvectors corre-
sponding to the degenerate subspace change sign. In
Born-Oppenheimer theory, this gives rise to a p phase
shift of the electronic wave function (‘‘Berry’s phase’’),
and in the present case, it gives rise to an inversion of
the axes of the principal-axis frame in the plane of the
triangle. This inversion is sometimes called the ‘‘Eckart
paradox’’ (Pack and Parker, 1987), and it causes some
authors, e.g., Johnson (1983b), to use a ‘‘coordinate sys-
tem’’ on shape space that goes around the line of degen-
eracy twice, by doubling the range of the angle c . Actu-
ally, it would be clearer to use a proper, single-valued
coordinate system on shape space but to view the gauge
as double valued, which geometrically would mean a
section S that cuts each fiber at two points.

Curvature forms with the form of monopole fields are
common in examples of Berry’s phase (e.g., Berry, 1984)
and are usually due to some rotational symmetry of the
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problem. In the case of the three-body problem, there is
such a rotational symmetry in shape space. It is due to
the fact that the holonomy group for the three-body
problem in three-dimensional space is SO(2), just like
the planar three-body problem. In the planar n-body
problem there are symmetry groups of the kinetic en-
ergy in shape space larger than the democracy group.

The string singularity in the physical region of shape
space which occurs in principal-axis gauge causes the
Schrödinger wave function to become singular on the
string, even though there is nothing singular about the
physics at such shapes. As a result, principal-axis gauge
has definite drawbacks for certain applications, at least
for nonzero angular momentum. A gauge such as xxy
gauge, which places the string singularity at the bound-
ary of shape space, might be better, but better still
would be a gauge that removes it to the nonphysical
region w3,0.

In fact, it is easy to perform a further gauge transfor-
mation on principal-axis gauge to eliminate the singular-
ity from the positive half of the w3 axis. It is as if, in the
case of the Dirac monopole, we were to add the gradient
of kf to the vector potential (3.111) to produce the vec-
tor potential (3.102); in the language of our SO(3) gauge
fields, we wish to perform a gauge transformation speci-
fied by a rotation matrix S that rotates about the body
z axis by an angle of 2c/2. When we have done this, the
vectors ra(qm) have the form

r15Aw

2 S cos
x8

2
1sin

x8

2
cosc ,sin

x8

2
sinc ,0 D ,

r25Aw

2 S sin
x8

2
sinc ,cos

x8

2
2sin

x8

2
cosc ,0D , (3.112)

where x85p/22x . We see that the branch cut has dis-
appeared, as evidenced by the absence of the half-angles
c/2. In addition, the string singularity has been removed
from the positive w3 axis, as indicated by the new gauge
potential,

Amdqm5
1
2

~12sinx!dc ẑ5
w1dw22w2dw1

2w~w1w3!
ẑ. (3.113)

The string singularity now lies on the negative w3 axis,
outside the physical region. Of course, the moment of
inertia tensor is no longer diagonal in this gauge (a price
we may wish to pay), but it has the interesting form

M5S r2
2 2r1•r2 0

2r1•r2 r1
2 0

0 0 r1
21r2

2
D . (3.114)

We shall call the gauge represented by Eqs. (3.112),
(3.113), and (3.114) ‘‘north regular gauge,’’ because it is
well behaved over the northern hemisphere (w3.0) of
w space, becoming singular only at the south pole. As
noted by Pack (1995), this gauge is also an Eckart gauge,
in which the equilibrium position as in Eq. (3.47) is
r0s15(1,0,0), r0s25(0,1,0).
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IV. GAUGE DYNAMICS OF THE n-BODY PROBLEM

Up to this point we have considered shape deforma-
tions or histories in shape space qm(t) that could have
been generated by any means, e.g., by the willful actions
of a falling cat. Henceforth, however, we shall assume
that they are generated by the time evolution of the
n-body system itself. It turns out that the gauge fields,
whose kinematical significance was explained in Sec. III,
have a dynamical significance as well, i.e., the field Am

enters into the Lagrangian and the Hamiltonian (both
classical and quantum) for the dynamics on shape space,
and the field Bmn enters into the classical equations of
motion and the quantum commutation relations.

To show how this comes about, we first transform the
Lagrangian for an n-body system to orientational and
shape coordinates and put it into manifestly gauge-
invariant form. This involves a discussion of ‘‘horizon-
tal’’ and ‘‘vertical’’ velocities in the fiber bundle and the
notion of holonomy, and it results in a decomposition of
the kinetic energy into a vertical, or purely rotational,
part and a horizontal, or zero-angular-momentum, part.
The kinetic energy is block diagonalized at this stage,
and the classical Lagrangian is in its most convenient
form. We then make a digression, to discuss the notions
of left and right group actions and the invariance of the
horiztonal-vertical decomposition under the left group
action. Next we discuss a certain pseudo-metric, which is
not gauge invariant but which is common in the molecu-
lar physics literature, as well as the true, gauge-invariant
metric on shape space. We supply the geometrical mean-
ing of the true metric (in terms of projecting the kinetic-
energy metric down onto shape space in a geometrically
natural way). It turns out that the true metric is non-
Euclidean. We also give various explicit forms for this
metric in the three-body problem. Next we work out the
classical equations of motion and examine their conse-
quences. This involves the use of anholonomic frames,
in particular, the frame of left-invariant vector fields on
the rotation-group manifold. We find that the equations
of motion are naturally expressed in terms of covariant
derivatives. We also develop the classical Hamiltonian
formulation of the equations of motion. We first write
the Hamiltonian in manifestly gauge-invariant form and
then contrast that with the form common in the molecu-
lar physics literature, in which the gauge invariance is
effectively hidden. Finally, we transform the quantum
Hamiltonian to shape and orientational coordinates and
obtain the reduced or internal Schrödinger equation. In
this discussion, we display a novel form for the ‘‘Watso-
nian’’ term (arising from nonclassical commutators in
the kinetic energy). We also show how the quantum
Hamiltonian and wave function transform under gauge
transformations.

A. The classical Lagrangian and the metric tensor
on shape space

The Lagrangian for the n-body system in the original
coordinates $rsa% is
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L5
1
2 (

a51

n

mau ṙsau22V~rs1 , . . . ,rsn!, (4.1)

where the potential energy V is assumed to be invariant
under translations and rotations. On transforming this to
coordinates (rs1 , . . . ,rs ,n21 ,Rs) and dropping the ki-
netic energy of the center of mass (3.17), we find that the
Lagrangian becomes

L5
1
2 (

a51

n21

uṙsau22V~rs1 , . . . ,rs ,n21!. (4.2)

Finally, when the Lagrangian is transformed to shape
and orientational coordinates, the potential energy be-
comes simply a function of shape, V5V(qm), whereas
by Eq. (3.49) the kinetic energy in Eq. (3.2) (physically,
the kinetic energy about the center of mass) becomes

K5
1
2 (

a51

n21

uṙau2

5
1
2 (

a51

n21 F uv3rau212v•S ra3
]ra

]qmD q̇m

1S ]ra

]qm •
]ra

]qnD q̇mq̇nG . (4.3)

We write this in the form

K5 1
2 ~v•M•v!1~v•M•Am!q̇m1 1

2 hmnq̇mq̇n, (4.4)

where hmn is a new field over shape space, defined by

hmn5hmn~q !5 (
a51

n21
]ra

]qm •
]ra

]qn 5 (
a51

n

ma

]ca

]qm •
]ca

]qn .

(4.5)

The field hmn looks like a metric tensor on shape space,
but it is not the true metric, as we shall see.

Of course the kinetic energy K , the sum of the three
terms on the right-hand side of Eq. (4.4), is gauge invari-
ant, although none of the three terms is individually.
This is clear in the case of the first and second terms,
since neither v nor Am is a true R vector, so their con-
tractions with the true R tensor M are not true R scalars.
The final term in Eq. (4.4) is not gauge-invariant either,
for although hmn appears to be an R scalar (it has no R
indices), it is not a true R scalar. To show this, we sub-
ject the definition (4.5) to a gauge transformation, using
Eqs. (3.67), (3.68), and (3.71). We find

hmn5hmn8 1gm•M8•An81gn•M8•Am8 1Am8 •M8•An8 .
(4.6)

On the other hand, hmn is a true covariant, symmetric
q tensor in the indices m ,n . Although it has been tradi-
tional (Wilson and Howard, 1936) to call the first term
of Eq. (4.4) the rotational energy, the third the vibra-
tional energy, and the second the coupling between ro-
tation and vibration, this terminology has no gauge-
invariant meaning and we shall not use it.

Because of the lack of gauge invariance of its constitu-
ent terms, the kinetic energy K in Eq. (4.4) is not in
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satisfactory form. Indeed, if we use this form of the ki-
netic energy in the Lagrangian and compute the equa-
tions of motion, we find complicated expressions for the
accelerations q̈m, quantities which we know to be gauge
invariant. The expressions that result are by no means
manifestly gauge invariant. Therefore before tackling
the equations of motion we shall put K itself into mani-
festly gauge-invariant form.

We begin by writing uv& for a (3n23)-dimensional
velocity vector in configuration space, using a Dirac no-
tation for linear algebra on such vectors (i.e., tangent
vectors to configuration space). Thus, in the $rsa% coor-
dinates, we write

uv&5~ ṙs1 , . . . ,ṙs ,n21!, (4.7)

whereas in orientational and shape coordinates we
would have uv&5( u̇ i,q̇m). Actually, for the construction
of the Lagrangian it is more convenient to work with the
components of the body angular velocity v than the
time derivatives of the Euler angles u̇ i, so we write in-
stead

uv&5~v,q̇m!. (4.8)

In this form, the system velocity uv& is represented with
respect to an anholonomic frame in configuration space
(actually in the tangent bundle). We shall say more
about this later, but for now we shall refer to the form
(4.8) as the velocity with respect to the ‘‘angular velocity
and shape basis.’’

We use the kinetic energy to define the scalar product
of velocity vectors, so that in $rsa% coordinates we have

^vuv&52K5 (
a51

n21

uṙsau2. (4.9)

To express the scalar product in terms of the angular
velocity and shape basis, we use Eq. (4.4) and write
^vuv& in matrix form,

^vuv&52K5~vT q̇m!S M MAn

Am
TM hmn

D S v

q̇nD , (4.10)

where the (3n23)3(3n23) matrix shown is parti-
tioned according to 3n23531(3n26) and where the
T indicates the transpose (see Appendix A). More gen-
erally, we shall write the components of uv&, with respect
to any basis, as va, where a51, . . . ,3n23 (see Appendix
A), and we shall write the scalar product in the form

^vuv&5Gabvavb, (4.11)

so that Gab is the metric tensor on configuration space in
the given basis. Then in the $rsa% coordinates we have
Gab5dab , the form of a manifestly Euclidean metric,
and we see that the matrix in Eq. (4.10) is the compo-
nent matrix Gab with respect to the angular velocity and
shape basis.

If the system velocity uv& in the angular velocity and
shape basis has the form (v,0), i.e., with q̇m50, then we
shall call it ‘‘purely rotational,’’ an obvious terminology,
since the shape is not changing. We note that the condi-
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tion q̇m50 is gauge invariant, so this terminology has a
gauge-invariant meaning. In the fiber-bundle picture,
purely rotational velocity vectors are tangent to the fi-
bers, as illustrated in Fig. 16. In fiber-bundle language,
such vectors are also called vertical, because of the sug-
gestion made by such figures. The vector space of verti-
cal vectors is three dimensional, the same as the fibers
themselves.

One might suppose that we should call a system ve-
locity vector of the form uv&5(0,q̇m), i.e., with v50,
‘‘purely internal’’ or ‘‘purely vibrational.’’ But the con-
dition v50 is not gauge invariant, so such terminology
has no meaning independent of conventions, and we will
not use it.

But there is a notion complementary to ‘‘purely rota-
tional.’’ We define a system velocity uv&5(v,q̇m) to be
horizontal if it is perpendicular to all vertical velocity
vectors, in the sense of the scalar product (4.10). That is,
suppose uvv&5(vv ,0) is a vertical velocity vector, let
uvh&5(vh ,q̇h

m), and suppose ^vvuvh&50 for all vv . Then
by Eq. (4.10) we have

^vvuvh&5~vv
T 0! S M MAn

Am
TM hmn

D S vh

q̇h
n D

5vv•M•~vh1Anq̇h
n !5vv•Lh , (4.12)

where Lh is the angular momentum associated with sys-
tem velocity uvh&. But if this vanishes for all vv , we have
Lh50, so we see that a system velocity is horizontal if
and only if the associated angular momentum vanishes.
Thus the geometrical significance in the fiber-bundle pic-

FIG. 16. Velocity vectors. A vertical velocity vector uvv& is one
that is tangent to the fiber (F in the figure); it represents mo-
tion that is purely rotational. A horizontal velocity vector
uvh& is orthogonal to every vertical vector in the metric im-
posed by the kinetic energy. Such a vector represents physi-
cally a motion of vanishing angular momentum. An arbitrary
velocity uv& can be represented uniquely as a linear combina-
tion of a vertical and a horizontal velocity vector.
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ture of motions of vanishing angular momentum, which
have played such a large role in our development so far
of the gauge theory of the n-body problem, is that the
corresponding velocities are perpendicular to the fibers.
The vector space of horizontal velocity vectors is
(3n26) dimensional, since the conditions L50 impose
three constraints on the 3n23 velocity components, or
since the space of horizontal motions is perpendicular to
the three-dimensional space of vertical motions.

We have considered several examples of motions of
vanishing angular momentum, such as the falling cat. It
is interesting that such a motion, if viewed in the fiber
bundle as in Fig. 17, is everywhere perpendicular to the
fibers, and yet if it returns to its original shape, there
appears a displacement along the original fiber. That is,
the trajectory may be closed in shape space, but in con-
figuration space it does not close, as illustrated in the
figure, but rather it carries the original configuration P
to a final one P8 on the same fiber. The rotation taking
P into P8 is the net rotation of the system, also referred
to as the holonomy, which the cat uses to turn itself
over. The existence of this effect in n-body systems such
as molecules was first noted by Guichardet (1984).

The failure of purely horizontal curves to close in the
fiber bundle, i.e., in configuration space, even after clos-
ing in shape space, is related to the fact that there do not
exist surfaces in configuration space of dimensionality
3n26 which are everywhere perpendicular to the fibers.
For if such a surface did exist, every closed curve lying in
it would represent a closed cycle in shape space of zero
angular momentum, which would generate no net rota-
tion. But we know such rotations do occur, as evidenced
by the falling cat. Furthermore, if such a surface were

FIG. 17. A motion taking place with zero angular momentum,
represented as a trajectory in the configuration space which is
everywhere horizontal, i.e., perpendicular to the fibers. Never-
theless, when the motion returns to its original fiber F , there is
a shift or holonomy along the fiber which has taken place, i.e.,
a rotation transforming the original configuration P into the
final one P8.
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interpreted as the section S of the fiber bundle specify-
ing a gauge convention, then we would find Am50 in the
region of shape space over which the surface S was de-
fined. This follows because a trajectory lying in S satis-

fies Ṙ50 or v50, and a horizontal trajectory satisfies
L50; the two are consistent for all possible trajectories
lying in S only if Am50. But we know that it is impos-
sible to choose a gauge to make Am50 over a finite
region. It is possible to make Am vanish at a point, which
means geometrically that S is orthogonal to the fibers at
that point; this is what the Eckart conventions do at the
equilibrium shape of a molecule.

Some authors (Guichardet, 1984) have referred to a
horizontal velocity vector as ‘‘purely vibrational.’’ We
do not feel this terminology is justified, since any physi-
cal picture associated with these words will suggest

Ṙ50, i.e., v50, a condition that is not gauge invariant.
In any case, the physics of horizontal motion is the van-
ishing of angular momentum. Therefore we confine our-
selves to ‘‘horizontal’’ or ‘‘vanishing angular momen-
tum’’ to describe such vectors.

An arbitrary system velocity is neither horizontal nor
vertical, but can be represented as a unique linear com-
bination of horizontal and vertical velocities, as illus-
trated in Fig. 16. For if we write uv&5uvv&1uvh&, or

~v,q̇m!5~vv ,q̇v
m!1~vh ,q̇h

m!, (4.13)

then the vertical condition on uvv& implies q̇v
m50, and

the horizontal condition on uvh& implies vh1Anq̇h
n50.

From these we find the explicit form of the decomposi-
tion,

~v,q̇m!5~v1Anq̇n,0 !1~2Anq̇n,q̇m!, (4.14)

where the first term is vertical and the second horizon-
tal.

Now the kinetic energy about the center of mass can
be written

K5 1
2 ^vuv&5 1

2 ^vvuvv&1 1
2 ^vhuvh& , (4.15)

with no cross terms, since ^vvuvh&50. By Eq. (4.10), the
vertical contribution is

Kv5 1
2 ~v1Amq̇m!•M•~v1Anq̇n!, (4.16)

and the horizontal contribution is

Kh5 1
2 gmnq̇mq̇n, (4.17)

where gmn is a new metric on shape space (De Celles
and Darling, 1969), defined by

gmn5hmn2Am•M•An . (4.18)

The vertical and horizontal contributions to the ki-
netic energy are individually gauge invariant. As for the
vertical contribution, this is obvious because v1Amq̇m is
a true R vector, or by noting the equivalent formula,

Kv5 1
2 L•M21

•L. (4.19)

As for the horizontal contribution, its gauge invariance
follows by combining the transformation law for hmn ,
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Eq. (4.6), with that of Am•M•An . The six correction
terms all cancel, and we are left with

gmn5gmn8 . (4.20)

Thus the metric gmn is a true R scalar, and is to be inter-
preted as the true metric on shape space. (It is also a
true, symmetric, covariant q tensor.) Altogether, we can
now write the Lagrangian in manifestly gauge-invariant
form,

L5 1
2 ~v1Amq̇m!•M•~v1Anq̇n!

1 1
2 gmnq̇mq̇n2V~q !. (4.21)

This is the most useful form of the Lagrangian. We shall
return to it after two digressions one on the mathematics
of connections and one on the metrics hmn and gmn .

B. Left and right actions and the connection

We shall now use the fiber bundle in the n-body prob-
lem to illustrate certain general features of principal fi-
ber bundles, including the left and right group actions
and the geometrical meaning of a connection. In stan-
dard mathematical theory, a fiber bundle is a differen-
tiable manifold upon which a group acts, which also has
several other properties. In the case of a principal fiber
bundle, the group acts freely, so that the orbits of the
group action (the fibers) are diffeomorphic to the group
itself, i.e., they are effectively copies of the group. In the
n-body problem (if we assume n>3 and exclude the
collinear configurations), configuration space is a princi-
pal fiber bundle, and of course the group in question is
SO(3).

A group action (on any space) can either be from the
right or from the left. In the case of a principal fiber
bundle, both kinds of actions can be defined, but only
one can be defined independently of a choice of section
or gauge, which is effectively a choice of an origin or
reference in each of the fibers. This is the group action
referred to in the preceding paragraph. In most math-
ematics books on fiber-bundle theory, it is customary to
say that the group action that can be defined indepen-
dently of any section is a right action. Insofar as the
mathematics is concerned, this is purely a matter of con-
vention, and one could just as well develop equivalent
mathematics by insisting that the group action from the
left is the one defined independently of any section. But
in a specific physical problem, the nature of the two
group actions is determined by the physics. In the
n-body problem, for example, it turns out that the group
action that is defined independently of any section is a
left action, opposite the usual custom in mathematics.
Therefore, when comparing the present discussion of
the n-body problem to typical mathematics texts, it is
usually necessary to reverse the words ‘‘right’’ and
‘‘left.’’ In any case, the group action that is defined in-
dependently of any section (right in the case of most
mathematics texts and left in the case of the n-body
problem) is defined in a gauge-independent manner. We
shall call it the ‘‘gauge-invariant action.’’
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In the case of the n-body problem, the gauge-
invariant left action of SO(3) on configuration space is
physically just the rigid rotation of the n-body system
about the center of mass, which has already been illus-
trated in Eq. (3.20). To state this action in a slightly
different way, we let QPSO(3) be a proper rotation and
define its action by

~rs1 , . . . ,rs ,n21!°~Qrs1 , . . . ,Qrs ,n21!. (4.22)

This is a left action, because the action of Q1 followed by
that of Q2 is equivalent to the action of Q2Q1. The defi-
nition (4.22) works with the space components of the
Jacobi vectors and is therefore independent of any sec-
tion or gauge convention (a definition of a body frame,
in our case). If, however, a body-frame convention is
chosen, we can just as well represent a point of configu-
ration space by (R,qm), where R is a function of the
Euler angles u i. Then a statement equivalent to Eq.
(4.22) is

~R,qm!°~QR,qm!. (4.23)

If a convention for body frame is chosen, we can also
define a right action of SO(3) on the bundle by

~R,qm!°~RQ,qm!, (4.24)

for QPSO(3). This is a right action, because the action
of Q1 followed by the action of Q2 is equivalent to the
action of Q1Q2. The definition of this action depends on
a choice of gauge and cannot be expressed purely in
terms of space components. This right action is obvi-
ously closely related to a gauge transformation, as
shown by Eq. (3.43), but the interpretations are some-
what different: in a gauge transformation, we change the
definition of the reference point on each fiber, which can
be thought of as a (passive) coordinate transformation
on the fibers, whereas we think of the right action in Eq.
(4.24) as taking place in an active sense, so that an old
configuration is mapped into a new one, with the gauge
convention or body frame held fixed.

In a principal fiber bundle, one can always define the
‘‘vertical’’ subspace of the tangent space at any point of
the fiber bundle as consisting of those vectors which are
tangent to the fiber passing through the given point. The
dimensionality of the vertical subspace is the same as the
group itself, and often useful basis vectors in this sub-
space are the infinitesimal generators of left or right
group actions. We shall make extensive use of these ba-
sis vectors below.

However, the fiber bundle may or may not have a
definition of ‘‘horizontal’’ subspaces. If horizontal sub-
spaces are defined, they are subspaces in the tangent
spaces which are required to be transverse to the vertical
subspaces and complementary to them in dimensional-
ity. If the fiber bundle is endowed with a metric, as is the
fiber bundle in the n-body problem, one will often de-
fine the horizontal subspaces as those perpendicular to
the vertical subspaces, as we have done. If, in addition,
the definition of horizontal subspaces is invariant under
the gauge-invariant action of the group (the right action
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in most mathematics books, but the left action in our
problem), then the horizontal subspaces are said to con-
stitute a ‘‘connection.’’

We shall now illustrate what is meant by the invari-
ance of the definition of the horizontal subspaces under
the gauge-invariant group action by the example of the
n-body problem. The essential geometry is illustrated in
Fig. 18. In the figure, F is a fiber passing through con-
figuration P . The subspace of horizontal vectors at point
P is illustrated schematically by a plane, and uv& is a
horizontal velocity vector in this subspace. A proper ro-
tation Q has a left action on P as shown by Eq. (4.22),
which we imagine maps P into configuration P8, and
velocity uv& at P into velocity uv8& at P8. If it should
happen that uv8& is horizontal for all horizontal choices
of uv&, then the left action of the group carries horizontal
subspaces into other horizontal subspaces, and we can
say that the definition of the horizontal subspaces is in-
variant under the left action of the group.

In fact, this is the case for the n-body problem. To
show this, let us imagine that velocity uv& is the velocity
of a trajectory rsa5rsa(t) passing through P at some
time, so that uv& is represented by the quantities $ṙsa%, as
in Eq. (4.7). Then since uv& is horizontal we have

(
a

rsa3ṙsa50. (4.25)

The velocity uv8& is the velocity of the rotated trajectory
rsa8 (t)5Qrsa(t) at the same instant in time, so that P8
has coordinates $Qrsa%, and uv8& is represented by the

FIG. 18. Horizontal subspaces in the fiber bundle of the
n-body problem. The horizontal subspaces constitute a con-
nection because they are invariant under the left action of the
group. A trajectory passing through configuration P on fiber
F with horizontal velocity uv& is mapped by left rotations into
another trajectory whose velocity uv8& is also horizontal. Physi-
cally, motions of vanishing angular momentum are mapped by
rotations into other motions of vanishing angular momentum.
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quantities $Qṙsa%. Then the angular momentum of the
rotated trajectory is given by

(
a

~Qrsa!3~Qṙsa!5Q(
a

rsa3ṙsa50, (4.26)

so that uv8& is also horizontal.
Thus, in the n-body problem, the invariance of the

horizontal subspaces under the left action of the group is
simply due to the fact that the angular momentum of a
rotated trajectory is just the rotated angular momentum,
so that, in particular, trajectories of vanishing angular
momentum are mapped into other trajectories of vanish-
ing angular momentum.

The geometrical significance of the connection is that
it allows a given vector to be projected into its horizon-
tal and vertical components. Furthermore, this decom-
position is invariant under the group action.

C. Discussion of the pseudo-metric hmn

and true metric gmn

The geometrical significance of the pseudo-metric
hmn is that it is the restriction of the Euclidean metric
Gab on the (3n23)-dimensional configuration space,
defined in Eq. (4.11), to the (3n26)-dimensional sec-
tion S, regarded as a submanifold of configuration space.
Since the section can be bent and moved in many ways
by gauge transformations, the pseudo-metric hmn also
changes and is not gauge-invariant. From a gauge-
theoretical standpoint, one should pay no attention to
hmn , but it figures prominently in the traditional litera-
ture on molecular vibrations. Indeed, one of the effects
of the Eckart conventions is to choose a section S and
shape coordinates qm such that hmn5dmn , which might
seem to imply that shape space is Euclidean. Actually,
this form of hmn tells us nothing about the intrinsic met-
rical geometry of shape space, but only something about
that of the section S. Under the Eckart gauge, the ge-
ometry of S is indeed Euclidean, for the Eckart conven-
tions specify a section S which is a vector subspace of
configuration space. Naturally, a flat subspace of a Eu-
clidean space is itself Euclidean, and linear coordinates
qm can be chosen on it to make the metric have the form
hmn5dmn . The Eckart conventions are primarily useful
for small-amplitude vibrations about the equilibrium po-
sition; since the conventions specify Am50 at this posi-
tion, by Eq. (4.18) we also have hmn5gmn there, and for
small-amplitude vibrations the two metrics differ only by
quantities that are second order in the vibrational am-
plitude.

The geometrical significance of the true metric gmn is
that it is the projection of the metric Gab on configura-
tion space onto shape space in accordance with the quo-
tient operation R3n23/SO(3). The projection process is
carried out in an essentially unique, geometrically
‘‘natural’’ way, which guarantees that the projected met-
ric is gauge invariant. The projection process relies on
the fact that the original metric Gab is invariant under
rotations.
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The following is a simplified statement of the essential
ideas in the projection process. Let uṽ & be a velocity
vector on shape space, in which the tilde distinguishes
velocities on shape space (with 3n26 components) from
velocities uv& on configuration space (with 3n23 com-
ponents). Thus we can associate uṽ & with components
q̇m. We wish to define a scalar product ^ṽ 1uṽ 2& of shape-
space velocities in terms of the original scalar product
^v1uv2& of configuration-space velocities. A given vector
uṽ & on shape space can be thought of as taking us from
one fiber F with coordinates qm to a neighboring fiber
F8 with coordinates qm1dqm in time dt , as illustrated in
Fig. 19. But the vector uṽ & does not uniquely determine
the vector uv& on configuration space, because an arbi-
trary vertical vector can be added to the latter and it will
still connect the two fibers F and F8 (and therefore
project onto the given uṽ &). For example, vectors uv1&
and uv2& in the figure both project onto uṽ &. In fact, the
only gauge-invariant way to associate a vector on con-
figuration space with a given vector uṽ &5q̇m on shape
space is to use the horizontal vector uvh& connecting the
two fibers, which by Eq. (4.14) is uvh&5(2Amq̇m,q̇m) in
the angular velocity and shape basis. Then we can define
the metric gmn on shape space by

^ṽ 1uṽ 2&5gmnq̇1
mq̇2

n5^v1huv2h&5Gabv1h
a v2h

b . (4.27)

This leads directly to the definition (4.18). The fact that
the components of gmn , according to this definition, are
independent of orientation R and depend only on shape
is due to the invariance of Gab under rotations. Equiva-
lently, the scalar product turns out to be independent of
the base point of the vectors uv&, marked by R in Fig. 19,
due to the rotational invariance of Gab .

Another point of view concerning the projection of
the metric onto shape space centers on the contravariant

FIG. 19. The geometrical sense in which the shape-space met-
ric gmn is the projection of the configuration-space metric
Gab . The vector uṽ & in shape space joins two nearby points,
corresponding to two nearby fibers F and F8 in configuration
space. Associated with uṽ & on shape space is the unique hori-
zontal vector uvh& on configuration space, in terms of which the
scalar product of vectors on shape space is defined.
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versions of the tensors, Gab and gmn, and is based on the
fact that contravariant tensors are projected in a natural
way under the quotient operation. In terms of the com-
ponent matrices, this means that if the contravariant
metric tensor Gab on configuration space is expressed in
orientational and shape coordinates (u i,qm), then the
(3n26)3(3n26) block corresponding to the q’s is just
the contravariant metric gmn on shape space.

To prove this, we shall first express the covariant ten-
sor Gab in the coordinates (u i,qm). It is not necessary to
do this, but it makes the following presentation less ab-
stract. The tensor Gab is displayed in the angular veloc-
ity and shape basis in Eq. (4.10); effectively, we must
express the kinetic energy in terms of ( u̇ i,q̇m) instead of
(v,q̇m). The relation between v and u̇ i is a linear one of
the form

v i5L j
~ i !u̇ j, (4.28)

where the coefficients L j
(i) are functions of the Euler

angles u i and where the notation is explained more fully
in Appendix C. We shall also write this in matrix form,

v5Lu̇, (4.29)

u̇5Xv, (4.30)

where X is the matrix inverse to L,

X5L21. (4.31)

Relations of the form (4.28) are familiar from rigid-body
theory, and an example of Eq. (4.28) for a particular
choice of Euler angles is displayed in Eq. (B8). Our
policy, however, will be to avoid explicit conventions for
Euler angles as much as possible and to use instead the
general properties of the coefficients L j

(i) . In particular,
we note that the linear relation between v and u̇ i fol-
lows from

v↔V5RTṘ5RT
]R

]u j
u̇ j, (4.32)

so that

L j
~ i !52

1
2

e ikl Rmk

]Rml

]u j , (4.33)

]Rij

]uk 5e jl mRil Lk
~m ! . (4.34)

It is now easy to write Gab in the coordinate basis
(u i,qm); it is

Gab5S LTML LTMAn

Am
TML hmn

D . (4.35)

We invert this to find the contravariant metric tensor in
the coordinate basis (u i,qm); it is

Gab5S XM̃21XT 2XAsgsn

2gmsAs
TXT gmn D , (4.36)

where M̃ is a ‘‘modified’’ moment of inertia tensor, de-
fined by
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M̃215M211AmgmnAn
T . (4.37)

Here we use dyadic notation, in which the juxtaposition
of the two vectors Am and An

T is the tensor with i ,j com-
ponents Am

i An
j , as explained in Appendix A. To check

Eq. (4.36), we may directly multiply matrices and show
that GacGcb5da

b .
The lower (3n26)3(3n26) block of Gab is gmn, as

claimed, and this fact gives us an alternative way of com-
puting gmn or gmn . For if we write out the transforma-
tion law of the contravariant tensor Gab under the coor-
dinate transformation $rsa%→(u i,qm), noting that
Gab5dab in the coordinates $rsa%, then we find

gmn5 (
a51

n21
]qm

]rsa
•

]qn

]rsa
. (4.38)

Once we have found gmn by this equation, gmn follows by
matrix inversion. This is often easier in practice than
using Eq. (4.18). Equation (4.38) makes it obvious that
gmn and hence gmn is gauge invariant, since it is the space
components rsa which appear.

Let us now consider examples of the metric and
pseudo-metric in various coordinate systems for the
three-body problem. First, in coordinates (r1 ,r2 ,f), a
direct application of Eqs. (4.5) and (4.38) gives

hmn5S 1 0 0

0 1 0

0 0 r2
2
D . (4.39)

Here we use the xxy gauge. (It is necessary to specify
this, since hmn is not gauge invariant.) We now apply
Eqs. (4.18), (3.94), and (3.96) to obtain

gmn5S 1 0 0

0 1 0

0 0
r1

2r2
2

r1
21r2

2

D . (4.40)

A more compact way of writing this is in terms of the
‘‘arc length’’ in shape space,

ds25gmndqmdqn5dr1
21dr2

21
r1

2r2
2

r1
21r2

2
df2. (4.41)

We see that the metric is diagonal in the (r1 ,r2 ,f) co-
ordinates. This fact simplifies the Lagrangian and
Hamiltonian (both classical and quantum).

There are several other coordinate systems for the
three-body problem which yield a diagonal metric, but
the one that produces the greatest overall symmetry is
the (w1 ,w2 ,w3) system of coordinates. To find the met-
ric in these coordinates, we can transform gmn as a cova-
riant tensor, starting with Eq. (4.40), or, what is easier,
work with Eqs. (4.38) and (3.30). This quickly yields

gmn5S 4w 0 0

0 4w 0

0 0 4w
D (4.42)
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or

ds25gmndqmdqn

5
1

4w
~dw1

21dw2
21dw3

2!

5
1

4w
~dw21w2dx21w2cos2xdc2!. (4.43)

These expressions in the coordinates (w1 ,w2 ,w3) make
it obvious that the metric is conformally flat, i.e., propor-
tional to a Euclidean metric (Iwai, 1987b). This is an-
other special property of the three-body problem; the
metric for n54 is not conformally flat, as one can prove
by computing the Weyl tensor (Eguchi, Gilkey, and
Hanson, 1980; Nakahara, 1990).

What is more remarkable than the conformal flatness
of the metric is the fact that it is invariant under SO(3)
rotations in shape space, i.e., ordinary orthogonal trans-
formations applied to the shape coordinates
(w1 ,w2 ,w3). That is, not only is the metric tensor pro-
portional to the identity matrix, but also the factor of
proportionality (namely, 1/4w) is rotationally invariant.
It was to be expected that the metric would be invariant
under democracy transformations; as indicated by Eq.
(3.36), these are SO(2) rotations about the w3 axis. But
we see that gmn is also invariant with respect to rotations
about the w1 and w2 axes. Of course, unlike the democ-
racy rotations about the w3 axis, the latter rotations
carry parts of the physical region w3>0 into the non-
physical region w3,0, but the SO(3) symmetry still ex-
ists in a local sense. As noted earlier, the Coriolis tensor
Bmn is symmetric under the same SO(3) group.

We have been able to show, in a calculation we shall
present elsewhere, that in the four-body problem the
metric gmn has no larger symmetry group than the de-
mocracy group. Thus the existence of a symmetry group
of the metric in the three-body problem that is larger
than the democracy group is another special feature of
the three-body problem.

The true metric gmn on shape space is non-Euclidean.
To prove this in the general case, we must show that the
Riemann tensor does not vanish, or even that the Rie-
mann scalar does not vanish. In fact, as shown by Eq.
(4.61), the Riemann scalar R can be written in terms of
the Coriolis tensor and the moment-of-inertia tensor,

R5 3
4 Bmn

•M•Bmn , (4.44)

which is a nonvanishing quantity. (Here we raise indices
on Bmn with the metric gmn.) For example, in the three-
body problem, we find

R5
6
w

. (4.45)

The non-Euclidean nature of shape space is an intrin-
sic feature of this space and is not a matter that can be
defined away, due to the gauge invariance of gmn and the
coordinate invariance of conditions such as (4.45). Thus
even simple questions regarding dynamics on shape
space will quickly lead into the standard machinery of
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non-Euclidean geometry. For example, Christoffel sym-
bols arise in the equations of motion for free particles
and the Riemann tensor in equations of deviation of two
nearby classical trajectories. Similarly, quantum me-
chanics on shape space has many of the features of
quantum mechanics on curved space-time.

D. Derivation of the classical equations of motion

There are two issues that arise in computing the clas-
sical equations of motion from the Lagrangian (4.21)
which are not altogether elementary. One is the fact that
the components of the angular velocity v cannot be
written as the time derivatives of any coordinates on the
rotation-group manifold, i.e., they are anholonomic ve-
locity components. These components can be expressed
in terms of the Euler angles and their time derivatives,
but since the explicit use of Euler angles is unattractive,
this is to be avoided. Instead, we shall work with an
anholonomic or vielbein formalism insofar as the orien-
tational variables are concerned. The second issue is the
appearance of covariant derivatives in the equations of
motion, which are necessary to put those equations into
manifestly gauge-invariant form.

As far as the shape degrees of freedom are concerned,
the Lagrangian of Eq. (4.21) is a proper function of gen-
eralized coordinates qm and their time derivatives q̇m,
but the orientational degrees of freedom are expressed
through the medium of the angular velocity v. The re-
lation between the angular velocity and the u̇ i was given
in Eqs. (4.28)–(4.33). We shall write the components of
the matrix X as X(j)

i (row i , column j), so that

X ~k !
i L j

~k !5d j
i , Lk

~ i !X ~ j !
k 5d j

i . (4.46)

The reason for this notation, as explained more fully in
Appendix C, is that we regard X(j)

i as a set of three
contravariant vector fields on the group manifold SO(3),
labeled by j , whose components are indexed by i ; the
parentheses around j are a reminder that this index la-
bels the vector fields and is not a component index. We
think of these vector fields as constituting a vielbein
(perhaps we should say ‘‘dreibein,’’ since there are three
of them), so that the components of the angular velocity
v i are seen as the anholonomic components of the rota-
tional velocity with respect to this vielbein. The use of
vielbeins or anholonomic frames in Lagrangian and
Hamiltonian mechanics is explained in Appendix C; we
shall call freely on the formulas of that Appendix, mak-
ing the notational changes xm→u i, L̄→L , etc. In par-
ticular, L j

(i) are regarded as the components of a set of
three covectors, members of the basis of covectors L(i)

are dual to the vielbein X(j) , and the notation va of
Appendix C for the anholonomic components of the ve-
locity is identified here with v i.

In a recent paper, Lukka (1995) has simplified earlier
methods of deriving the molecular rovibrational Hamil-
tonian, in part by eliminating all explicit references to
Euler angles. It seems to us that this must be equivalent
to working with the geometrical properties of the viel-
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bein X(j) , such as the property that these vector fields
are left invariant on the group manifold and represent
through the Lie bracket the Lie algebra of the group.

According to Eq. (C17), the anholonomic components
of the momenta conjugate to v i are given by ]L/]v i,
which we recognize as the components of the body an-
gular momentum,

L5
]L

]v
5M~v1Amq̇m!. (4.47)

Thus the notation pa of Appendix C is here identified
with Li . We also have

Li5X ~ i !
j pj , pi5L i

~ j !Lj , (4.48)

the analog of Eq. (C4), where pi is the momentum con-
jugate to the Euler angle u i.

The momenta conjugate to the shape coordinates are

pm5
]L

]q̇m
5gmnq̇n1L•Am . (4.49)

The momenta pm are gauge dependent, because of the
term L•Am on the right; this is analogous to the gauge
dependence of p5mv1(e/c)A in ordinary electromag-
netic theory. The quantity pm2L•Am , however, is gauge
invariant. Our original sign convention for Am , and the
minus sign appearing in Eq. (3.58), were chosen because
of this electromagnetic analogy.

In order to find the equations of motion, we must ap-
ply Eq. (C19), the anholonomic version of the Euler-
Lagrange equations. But these involve the structure con-
stants cjk

i associated with the vielbein X(j)
i , which we

must compute first. To do this we first compute the ex-
terior derivatives of the dual basis covectors L(i) and
then use Eq. (C13). The components of these exterior
derivatives are

dL jk
~ i !5Lk ,j

~ i ! 2L j ,k
~ i ! . (4.50)

But by Eq. (4.28) we have

]v i

]u̇k
5Lk

~ i ! ,
]2v i

]u̇k]u j
5Lk ,j

~ i ! . (4.51)

Therefore the right-hand side of Eq. (4.50) is the ith
component of the vector,

]2v

]u̇k]u j
2

]2v

]u̇ j]uk
↔

]2V

]u̇k]u j
2

]2V

]u̇ j]uk
. (4.52)

But in view of Eq. (4.32), we have

]V

]u̇k
5RTR,k52R,k

T R,
]2V

]u̇k]u j
5R,j

TR,k1RTR,kj ,

(4.53)

so that

]2V

]u̇k]u j
2

]2V

]u̇ j]uk
5R,j

TRRTR,k2R,k
T RRTR,j

5F ]V

]u̇k
,
]V

]u̇ jG↔ ]v

]u̇k
3

]v

]u̇ j
, (4.54)
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where the square bracket is the matrix commutator. But
by Eq. (4.51), the ith component of this final vector is

dL jk
~ i !5e il mLk

~ l !L j
~m ! . (4.55)

Therefore dL(i)(X(r) ,X(s))52e irs , or,

cjk
i 5e ijk . (4.56)

The nonvanishing of this result proves incidentally that
the angular velocity components v i cannot be written as
the time derivatives of any coordinates on the rotation-
group manifold, i.e., the vielbein X(j)

i is genuinely an-
holonomic.

The simplicity of the result (4.56) is a reflection of the
fundamental geometrical significance of the vector fields
constituting the vielbein X(j)

i , which we have ignored in
this calculation. These vector fields are left-invariant
vector fields on the group manifold, whose commutation
relations under the Lie bracket reproduce the structure
constants of the Lie algebra of the group itself. The sig-
nificance of the left invariance, rather than right invari-
ance, is that we worked with the body components of
the angular velocity, rather than the space components.

The space components of the angular velocity give
rise to a distinct vielbein on the group manifold SO(3),
the vielbein of right-invariant vector fields. To define the
space or right-invariant version of the dual basis we
write

vs
i 5Lsj

~ i !u̇ j, (4.57)

so that

Lsj
~ i !5RikL j

~k ! , (4.58)

and we define the vielbein itself by Xs(j)
i Lsk

(j)5dk
i . The

calculation of the structure constants for the new viel-
bein proceeds as above and yields

~cs! jk
i 52e ijk , (4.59)

with a minus sign relative to the body, or left-invariant,
vielbein.

The two vielbeins we have introduced and their dual
bases of covectors can be written in the standard nota-
tion of differential geometry, in which a vector field is
represented as a differential operator and a covector
field as a differential form. For the left-invariant fields,
the relations are

X ~ i !5X ~ i !
j ]

]u i , L~ i !5L j
~ i !du j, (4.60)

and for the right-invariant fields they are

Xs~ i !5Xs~ i !
j ]

]u i , Ls
~ i !5Lsj

~ i !du j. (4.61)

The two classes of vector fields (left- and right-invariant)
can be viewed either as vector fields on the group mani-
fold or as vector fields on the fiber bundle. For if we
choose a section, then the Euler angles u i or associated
rotation matrices R5R(u i) serve as coordinates on each
of the fibers and also provide a one-to-one mapping be-
tween the rotation-group manifold and each of the fi-
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bers. This mapping allows vector fields on the rotation-
group manifold to be mapped into vector fields on the
fibers. Since this can be done for each fiber individually,
the result is a set of vector fields on the bundle. These
vector fields are vertical, i.e., their qm components van-
ish, and their u j components are given by X(i)

j or
Xs(i)

j . The right-invariant vector fields on the fiber
bundle, constructed in this manner, are in fact indepen-
dent of the choice of section (they are gauge invariant),
but the left-invariant fields do depend on the choice of
section.

It also happens that the right-invariant vector fields
are the infinitesimal generators of the left group action,
as in Eq. (4.23), and the left-invariant fields are the in-
finitesimal generators of the right action, as in Eq.
(4.24). For example, if the matrix Q in Eq. (4.22) is in-
finitesimal, having the form, say,

Q5I1dfNs , (4.62)

for some antisymmetric matrix Ns↔ns and some infini-
tesimal angle df , then the infinitesimal motions gener-
ated by Eq. (4.22) or (4.23) trace out the right-invariant
vector field nsiXs(i) . This is an infinitesimal ‘‘space’’ ro-
tation, in which the Jacobi vectors are mapped according
to

rsa°rsa1dfns3rsa . (4.63)

Similarly, if the matrix Q in Eq. (4.24) has the form

Q5I1dfN, (4.64)

for some antisymmetric matrix N↔n and some infini-
tesimal angle df , then the infinitesimal motions gener-
ated by Eq. (4.24) trace out the left-invariant vector field
niX(i) . This is an infinitesimal ‘‘body’’ rotation (viewed
here in an active sense, not as a gauge transformation),
in which the space components of the Jacobi vectors
transform according to

rsa5Rra°R~ I1dfN!ra5R~ra1dfn3ra!. (4.65)

[This equation should be interpreted properly. We are
adopting here an active point of view, in which right, or
body, rotations map old configurations into new ones.
These rotations map a point on a given fiber into an-
other point on the same fiber; thus the qm coordinates of
the point do not change. Only R changes, as indicated by
Eq. (4.24). Furthermore, the gauge convention is consid-
ered to be held fixed. Therefore the body components of
the Jacobi vectors ra are the same at the old and new
points, since these are functions only of qm. Although
Eq. (4.65) looks like the mapping

ra°ra1dfn3ra , (4.66)

in fact the quantities $ra% do not change. On the other
hand, if we were to perform an infinitesimal gauge trans-
formation, it would be possible to make the body Jacobi
vectors change as in Eq. (4.66). If at the same time we
were to adjust the space Jacobi vectors $rsa% so that R
remained fixed, then the changes in the space Jacobi
vectors would be exactly the same as indicated by Eq.
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(4.65). This would give us a passive interpretation of Eq.
(4.65), which, however, we shall not adopt in this re-
view.]

We now proceed to apply Eq. (C19), obtaining the
equations of motion. We trust there will be no confusion
between the Lagrangian L and the angular momentum
L or its components Li . For the orientational variables,
we have

L̇i5X ~ i !
j ]L

]u j 2cij
kv jLk (4.67)

or, since the Lagrangian does not depend on the Euler
angles,

L̇52v3L. (4.68)

This of course is an elementary result, which merely ex-
presses the constancy of the space components of the
angular momentum, L̇s50. It is true both for rigid bod-
ies and for deformable ones, as long as angular momen-
tum is conserved. On the other hand, for rigid bodies it
is possible to use the relation L5Mv to eliminate either
L or v from Eq. (4.68), to obtain an autonomous system
of equations (Euler’s equations for a torque-free rigid
body). This cannot be done in the case of deformable
bodies, because the relation (3.57) between L and v in-
volves the shape coordinates. Thus, for deformable bod-
ies, Eq. (4.68) is not autonomous, but is coupled to the
evolution of the shape variables. In either case, we have
the conservation law

duLu2

dt
50, (4.69)

so that the motion of the body angular momentum vec-
tor can be viewed as taking place on the surface of a
sphere uLu25const in body angular momentum space. In
the case of rigid bodies, this motion usually follows
closed orbits, but for deformable bodies the orbits will
not close due to the coupling to the shape degrees of
freedom. The body angular momentum sphere is a two-
dimensional surface, but counts for only a single degree
of freedom, since it is a phase space, not a configuration
space.

Since v is not gauge covariant, it is desirable to use
Eq. (3.57) to eliminate v from Eq. (4.68). We write the
result in a notation to be explained momentarily,

DL
Dt

5L̇2Am3Lq̇m52~M21L!3L. (4.70)

Because of the term Am3Lq̇m, we see that L̇ is not
gauge covariant. This may be surprising, since L itself is
gauge covariant. The reason is that, in computing L̇, we
are taking a limit of the form

lim
e→0

1
e

@L~ t1e!2L~ t !# , (4.71)

so that L is evaluated at two distinct times. But L stands
for the body components of the angular momentum, and
during the time interval between t and t1e the shape
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will have changed by some amount dqm. The two vec-
tors L in the limit are referred to two distinct body
frames, which can be changed independently of one an-
other under a gauge transformation. Therefore L̇ is not
a true R vector. On the other hand, if we subtract the
term Am3Lq̇m, then the result is gauge covariant, as we
see from the right-hand side of Eq. (4.70). We note that
M21L is essentially the vertical component of the system
velocity, as indicated by Eqs. (3.57) and (4.14). The sub-
tracted term is a correction, which accounts for the
changing body frame and converts the noncovariant vec-
tor L̇ into a covariant result. We write DL/Dt for the
result, where D/Dt stands for the covariant time deriva-
tive.

As for the shape coordinates, the Euler-Lagrange
equations in the usual sense can be applied, since the
Lagrangian is a proper function of (qm,q̇m). A special
case of interest is that of a system of free particles of
vanishing angular momentum (V50, L50); in this case
the Lagrangian is that of a free particle on a non-
Euclidean manifold with metric gmn , L5(1/2)gmnq̇mq̇n,
so that the equations of motion are simply those of a
geodesic,

Dq̇m

Dt
5q̈m1Gst

m q̇sq̇t50, (4.72)

where the Christoffel symbols are the usual ones,

Gst
m 5

1
2

gmn~gns ,t1gnt ,s2gst ,n!, (4.73)

and where we again use the notation D/Dt for the co-
variant time derivative. In this case the covariant time
derivative is the usual one in the differential geometry of
Riemannian manifolds, i.e., it indicates covariance with
respect to arbitrary coordinate transformations on shape
space.

Now we deal with the general case. We apply the
Euler-Lagrange equations, ṗm5]L/]qm, and we collect
the geodesic terms on the left and everything else on the
right. We find

gmn

Dq̇n

Dt
52L̇•Am1L•~An ,m2Am ,n!q̇n

1 1
2 L•M21~M,m!M21

•L2V ,m , (4.74)

after eliminating v in favor of L. But by Eq. (4.70), the
first term on the right-hand side becomes

2L̇•Am52L•~Am3An!q̇n1L•@Am3~M21L!# .
(4.75)

The final term of this expression in turn becomes

L•@Am3~M21L!#5L•AmM21
•L5 1

2 L•@Am ,M21#•L,
(4.76)

where Am↔Am and where we use the antisymmetry of
Am to express the result as a commutator. Finally, shift-
ing a derivative from M to M21, we have
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gmn

Dq̇n

Dt
5gmn~ q̈n1Gst

n q̇sq̇t!

5L•Bmnq̇n2 1
2 L•~M21! ;m•L2V ,m , (4.77)

where

M;m
215M,m

212@Am ,M21# . (4.78)

The notation M;m
21 represents the covariant derivative

of the inverse moment-of-inertia tensor. Although M21

is a true R tensor, the ordinary derivative M,m
21 is not,

since shape derivatives involve a limit of the form

lim
e→0

1
e

@M21~qm1ejm!2M21~qm!#5jm
]M21

]qm , (4.79)

where jm is some fixed vector, so that M21 (i.e., its com-
ponents) are evaluated with respect to two distinct body
frames attached to two distinct shapes. Since these
frames can be redefined independently under a gauge
transformation, the quantity M,m

21 is not a true R tensor.
This is the same theme as in the computation of L̇ in Eq.
(4.71), except that here we are discussing the partial de-
rivative with respect to qm of a field M21(q) over shape
space, and there we were discussing the time derivative
of a quantity L(t) defined only along an orbit. We can
also see the noncovariance of M,m

21 directly, by differen-
tiating M215SM821ST to obtain

M,m
215S~M,m8

211@Gm ,M21# !ST. (4.80)

But if we add the correction term 2@Am ,M21# , then all
terms involving Gm cancel and we are left with

M,m
212@Am ,M21#5S~M,m8

212@Am8 ,M821# !ST (4.81)

or simply M;m
215SM;m8

21ST.
Covariant derivatives arise wherever ordinary deriva-

tives arise, if it is desired to express the results in cova-
riant form. For example, perturbation expansions (such
as multipole expansions, etc.) typically generate deriva-
tives of fields, and one can develop versions of covariant
perturbation theory. We have relegated further discus-
sion of covariant derivatives to Appendix D.

E. Discussion of the classical equations of motion

Equations (4.70) and (4.77) are the reduced classical
equations of motion, i.e., the equations that result after
all possible translational and rotational degrees of free-
dom have been separated. Since there are 3n26 shape
degrees of freedom in Eq. (4.77) and one angular mo-
mentum degree of freedom in Eq. (4.70), the reduced
system has overall 3n25 degrees of freedom. Three
more (translational) degrees of freedom are contained
in the center of mass motion, R̈s50, and two more in
the orientational motion. The two remaining orienta-
tional degrees of freedom are represented by four first-
order differential equations; one of these is
duLu2/dt50, and the other three are contained in

Ṙ5V(t)R (which can be regarded as three equations for
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the three Euler angles). The reduced system is decou-
pled from the translational and orientational degrees of
freedom; once the reduced system is solved, so that qm

and L become known functions of time, the orienta-
tional equations can then be solved as a time-dependent
system. In the reduced system, the 3n26 shape degrees
of freedom are coupled to the one angular momentum
degree of freedom, and rotational invariance alone will
not allow any further separation of these 3n25 degrees
of freedom. In the case of molecules, however, a further
adiabatic separation of the 3n26 shape degrees of free-
dom from the one angular momentum degree of free-
dom is possible due to the ordering of time scales which
make up the Born-Oppenheimer approximation. Of
course, this further separation is only approximate.

In the special case L50, the angular momentum
sphere shrinks to a point and the angular momentum
degree of freedom becomes vacuous, so that Eqs. (4.77)
become autonomous in the shape coordinates. In this
case, the reduced system has only 3n26 degrees of free-
dom. As noted earlier, if we have both L50 and V50
(free particles), then the reduced motion is a geodesic
on shape space.

Equation (4.77) is the generalization of the radial
equation in ordinary central force motion (the two-body
problem) to the case n>3. Although the analogies are
not perfect, it is useful to note that in the two-body
problem the one-dimensional shape space has coordi-
nate q5r , and the moment of inertia is mr2. Further-
more, as on all one-dimensional manifolds, the metric is
Euclidean, gmn5g115m5const., and antisymmetric ten-
sors vanish, Bmn50. With this in mind, we can compare
Eq. (4.77) to the two-body radial equation

mr̈52
d

dr F L2

2mr2 1V~r !G . (4.82)

We see that in the case n>3 the quantity
(1/2)L•M21

•L, the covariant derivative of which ap-
pears in the shape equations of motion, is the generali-
zation of the centrifugal potential L2/2mr2 in the case
n52. We shall call this quantity the centrifugal potential
in all cases; we note that it is otherwise the vertical com-
ponent of the kinetic energy.

The term L•Bmnq̇n in Eq. (4.77) represents the Cori-
olis forces on the system, since this term is first order in
the velocities. This term obviously resembles the relativ-
isitic electromagnetic 4-force on a charged particle,
eFmnẋn, with e replaced by L and Fmn by Bmn . In this
analogy, the scalar charge e has become the vector L
because ordinary electromagnetic fields are Abelian
gauge fields, whereas ours here are non-Abelian. A
closer analogy is given by Wong’s equations (Wong,
1970), the classical equations of motion of a particle in a
Yang-Mills field, in which the analog of L is the vector
of isotopic spin. In Wong’s equations, the evolution of
the isotopic spin vector is governed by a separate equa-
tion, analogous to our equation for L̇. Wong’s equations,
however, assume a space-time background that is flat;
the presence of the non-Euclidean metric in our prob-
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lem makes our equations of motion more analogous to
those of a particle moving in a combined gravitational
and Yang-Mills field in general relativity. The resem-
blance of the Coriolis term in the equations of motion
(4.77) to the electromagnetic force on a charged particle
is reminiscent of Larmor’s theorem, in which the effects
of a magnetic field on a charged particle are mimicked
by a rotating frame; indeed, the present formalism can
be thought of as a non-Abelian generalization of Larm-
or’s theorem.

In the case of the three-body problem, we have seen
that the Coriolis tensor Bmn has the form of a monopole.
As is well known, a classical charged particle moving in
the field of an ordinary Dirac monopole spirals toward
the monopole on a conical surface and then, in general,
reflects at some minimum radius and spirals back out.
But in our problem, such motion can never be seen in
pure form, because there is no way to switch off the
centrifugal potential. In addition, shape space is non-
Euclidean, and the gauge fields are non-Abelian.

In the two-body problem, particles with LÞ0 cannot
reach the origin r50, at least when the true potential
V(r) is less singular than the centrifugal potential, as we
shall assume throughout the following discussion. Simi-
lar effects occur in the three-body problem, due to the
fact that the centrifugal potential (1/2)L•M21

•L is posi-
tive definite and the fact that L can change its direction
but not its magnitude. For example, as we approach the
three-body collision in shape space, all three eigenvalues
of M approach zero, as shown explicitly by Eq. (3.107),
and the centrifugal potential grows without bound.
Therefore, by conservation of energy, there is a lower
bound on how close we can come in shape space to a
three-body collision when L Þ 0. For example, in the
case of free particles, it is easy to show that

w>
L2

2E
, (4.83)

where w is the three-body shape coordinate and E is the
total energy of the system. These facts can be easily gen-
eralized to the case n.3.

When L Þ 0, the centrifugal potential also tends to re-
pel the system away from collinear configurations, at
which one of the eigenvalues of M, say I3, goes to zero.
By analogy, if we shoot bullets at the broadside of a
barn, a two-dimensional surface in three-dimensional
space, then there is a set of finite measure (codimension
0) in the space of initial conditions giving trajectories
that will hit the barn (we can imagine standing in one
place, but varying the initial direction and speed of the
bullets). But if we stand at one position q0

m in the shape
space of the three-body problem and vary q̇0

m , trying to
hit the wall of collinear configurations, a two-
dimensional surface bounding the three-dimensional
shape space, then we find that most trajectories do not
reach the wall, but reflect before hitting it. In this game
we must of course specify the initial angular momentum
L0, which we assume is fixed at some nonzero value.
Then the subset of initial conditions that do hit the wall
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is two-dimensional in the three-dimensional space of ini-
tial conditions (it has codimension 1). The trajectories
that do hit the wall must evolve in such a way that L3,
the component of L in the direction of collinearity, van-
ishes precisely at the moment collinearity is achieved.
These facts have implications for the behavior of the
quantum wave function in the neighborhood of collinear
configurations.

The equations of motion, Eqs. (4.70) and (4.77), can
also be used to obtain the conditions for relative equi-
libria. A relative equilibrium is defined as a motion for
which q̇m50, so that the shape is not changing and the
system is moving as if it were a rigid body. A well-
known example is the equilateral triangle Lagrange so-
lution in the three-body gravitational problem.

If q̇m50, then by Eq. (4.77) we have
1
2 L•M;m

21
•L1V ,m50, (4.84)

which usually cannot be satisfied unless L5const, as we
shall assume. But by Eq. (4.70) this in turn implies
L3M21L50, or

M21L5
1
I

L, (4.85)

where I is an eigenvalue of M, corresponding, say, to
eigenvector e. Thus L5Le, and Eq. (4.84) becomes

1
2 L2~e•M;m

21
•e!1V ,m50 (4.86)

or simply

]

]qm F L2

2I~q !
1V~q !G50. (4.87)

Here we have used a covariant version of ‘‘Feynman’s
theorem,’’ i.e., we have written M21e5(1/I)e, so that by
the Leibnitz rule for covariant derivatives (see Appen-
dix D) we have

M;m
21e1M21e;m5S 1

I D
,m

e1
1
I

e;m , (4.88)

from which follows

e•M;m
21

•e5S 1
I D

,m

. (4.89)

Equation (4.87) is the condition for a relative equilib-
rium. Clearly the locations of relative equilibria in shape
space are parametrized by the value of L2. The issue of
the stability of the equilibria is a more complicated mat-
ter; in recent years considerable attention has been de-
voted to the stability and bifurcation of relative equilib-
ria (Smale, 1971; Palmore, 1973; Marsden, 1992).

F. The classical Hamiltonian

It is now straightforward to obtain the classical Hamil-
tonian, except that we must again use an anholonomic
basis for the orientational degrees of freedom if we wish
to work with the angular momentum L instead of the
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momenta pi conjugate to the Euler angles u i. Therefore
we invoke Eq. (C20) and change notation appropriately,
to obtain

H5v•L1pmq̇m2L~v,qm,q̇m!, (4.90)

where we have omitted the term Ps•Ṙs corresponding to
the translational degrees of freedom, and where we must
use Eqs. (4.47) and (4.49) to eliminate v and q̇m in favor
of L and pm . Actually, it is easier to note that the
Hamiltonian is simply the energy of the system, K1V ;
the use of anholonomic frames does not change this fact.
The vertical component of the kinetic energy was given
in Eq. (4.16) and is just the centrifugal potential,
whereas the horizontal component (4.17) is easily ex-
pressed in terms of momenta by inverting Eq. (4.49),

q̇m5gmn~pn2L•An!. (4.91)

Altogether, the classical Hamiltonian is

H5 1
2 L•M21

•L1 1
2 gmn~pm2L•Am!~pn2L•An!

1V~q !. (4.92)

In this form, H is manifestly gauge invariant.
Another form of this Hamiltonian, in which the gauge

invariance is effectively hidden, is popular in the mo-
lecular physics literature. This alternative form is ob-
tained by using the gauge-dependent pseudo-metric
hmn and its inverse hmn instead of gmn and gmn, and by
completing the square of the kinetic energy, regarded as
a quadratic polynomial in L. The quadratic coefficient
(the matrix contracted with LiLj) in the kinetic energy
is M̃21, defined by Eq. (4.37). An equivalent definition
of M̃ is

M̃5M2M~AmhmnAn
T!M5M2amhmnan

T , (4.93)

as we show by multiplying the right-hand side of Eq.
(4.93) by that of Eq. (4.37) and using Eq. (4.18). Unlike
the true moment-of-inertia tensor, the modified tensor
M̃ is not gauge covariant. This tensor is prominent in the
literature on molecular vibrations, as it appears explic-
itly in the Wilson-Howard-Watson Hamiltonian; never-
theless, we are not aware of any physical interpretation
of the correction term in Eq. (4.37) or (4.93). Of course,
if such an interpretation exists, it must be tied to the
specific gauge conventions used. It is possible, however,
to provide a geometrical interpretation of this tensor,
and its lack of gauge covariance; we shall do this in Sec.
V.

To incorporate the terms linear in L in the Hamil-
tonian, we use the identity

M̃Amgmn5MAmhmn5amhmn, (4.94)

as easily follows from Eqs. (4.93) and (4.18), and we
define

K5amhmnpn , (4.95)

so that the cross terms are of the form 2L•M̃21
•K. Un-

der the Eckart conventions, the vector K is referred to
as ‘‘the angular momentum of vibration’’ (Wilson and
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Howard, 1936), although since K is not gauge covariant,
this terminology is tied to the specific gauge convention.
Finally, for the constant term in the Hamiltonian we use
the identity

gmn5hmn1hms~as•M̃21
•at!htn, (4.96)

which is easily proved with Eqs. (4.37) and (4.18). Alto-
gether, the Hamiltonian becomes

H5 1
2 ~L2K!•M̃21

•~L2K!1 1
2 hmnpmpn1V~q !.

(4.97)

There are several more identities connecting M, M̃,
gmn, and hmn which are useful in translating the tradi-
tional molecular physics literature into manifestly
gauge-invariant form. One of these is

hmn5gmn2gms~As•M̃•At!gtn. (4.98)

Another useful identity is

~detM!~detgmn!5~detM̃!~dethmn!. (4.99)

To prove this identity, we use Eq. (4.115) and another
factorization of the metric tensor,

Gab8 5S LT LTakhks

0 dm
s D S M̃ 0

0 hst
D S L 0

htlalL dn
t D ,

(4.100)
where the conventions regarding indices are the same as
those in Eq. (4.115). It is necessary to use Eq. (4.93) in
deriving Eq. (4.100). Taking determinants yields Eq.
(4.99). The matrix that appears in the middle on the
right-hand side of Eq. (4.100) is the metric with respect
to the vielbein of vectors parallel and perpendicular to
the gauge surface, to be discussed in Sec. V.

We return now to the Hamiltonian in the manifestly
gauge-invariant form (4.92). The phase-space coordi-
nates are (u i,L,qm,pm), of which qm,pm are ordinary ca-
nonical variables. But the vector L contains the compo-
nents of the orientational momentum with respect to the
anholonomic frame of left-invariant covector fields L(i)

(the dual basis) on the rotation-group manifold, so the
orientational coordinates are noncanonical and satisfy
nonstandard Poisson bracket relations. According to
Eqs. (C22) and (4.56), these are

$u i,u j%50, $u i,Lj%5X ~ j !
i ,

(4.101)
$Li ,Lj%52e ijkLk .

Of these the final one is noteworthy because of the mi-
nus sign, which is due to the fact that the Li are the body
components of the angular momentum.

The Poisson brackets involving the space components
of the angular momentum are also of interest and can be
derived by using Ls5RL, Eqs. (4.101) and (4.34) and the
chain rule property of the Poisson bracket. The results
are

$Lsi ,Lj%50, $Lsi ,Lsj%5e ijkLsk . (4.102)

The second of these can also be derived by retracing the
derivation of $Li ,Lj%, but using the right-invariant viel-
bein and the space version of the structure constants
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(4.59). Of course the same result is obtained by using the
original definition of the angular momentum, Eq. (3.19),
and the canonical Poisson bracket in the original vari-
ables $rsa% (this is the standard calculation of the angu-
lar momentum Poisson bracket relations in elementary
mechanics). The same Poisson brackets then hold in any
other coordinate system, since the Poisson bracket does
not change under coordinate transformations.

As noted previously, the space components of the an-
gular momentum are the generators of rotations acting
from the left, i.e., of the symmetry operation R°QR,
where QPSO(3). This symmetry operation leaves the
Lagrangian invariant, so that Ls is conserved. The body
components of angular momentum are the generators of
rotations acting from the right, i.e., R°RQ. Such rota-
tions do not leave the Lagrangian invariant, so L is not
conserved. But since left and right rotations commute
with one another, the Poisson bracket $Lsi ,Lj% vanishes.

Given the Poisson brackets (4.101), we can write
down the Poisson bracket of any two functions f and
g , expressed in terms of the phase-space coordinates
(u i,L,qm,pm). It is

$f ,g%5X ~ j !
i S ]f

]u i

]g

]Lj
2

]f

]Lj

]g

]u iD2L•S ]f

]L
3

]g

]LD
1S ]f

]qm

]g

]pm
2

]f

]pm

]g

]qmD . (4.103)

It is straightforward to use these Poisson brackets to
compute the equations of motion, as in Eqs. (C27) and
(C26); the results are of course the same as those we
derived from the Lagrangian.

We are already using noncanonical variables to avoid
the unpleasantness of Euler angles. A somewhat more
convenient set of noncanonical variables is obtained if
we replace the canonical but gauge-dependent shape
momentum pm by the covariant shape velocity,

vm5pm2L•Am , (4.104)

which is gauge invariant. Now the phase-space coordi-
nates are (u i,L,qm,vm), which are noncanonical in both
the orientational and shape variables. Of the Poisson
brackets of these coordinates among themselves, the
ones involving vm are the following:

$u i,vm%52X ~ j !
i Am

j , $L,vm%5Am3L,
(4.105)

$qm,vn%5dn
m , $vm ,vn%5L•Bmn .

In these coordinates, the Hamiltonian is simply

H5 1
2 L•M21

•L1 1
2 gmnvmvn1V~q !. (4.106)

These coordinates are closely tied to an anholonomic
frame of horizontal and vertical vector fields in the fiber
bundle and in a certain sense are the most ‘‘natural.’’

G. Transforming the Schrödinger equation

Now that we have succeeded in transforming the clas-
sical Lagrangian and Hamiltonian to shape and orienta-
tional coordinates and in eliminating those five degrees
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of freedom which can be eliminated, we turn to the
analogous problem in quantum mechanics. We carry out
the quantum transformation in two steps; in this section
we transform the Schrödinger equation to shape and ori-
entational coordinates, and in the next we separate out
the orientational degrees of freedom to obtain the re-
duced Schrödinger equation.

We write C(rs1 , . . . ,rsn) for the wave function of the
n-particle system in the lab coordinates, and we assume
the Schrödinger equation is

2 (
a51

n
\2

2ma
¹sa

2 C1V~rs1 , . . . ,rsn!C5E totC , (4.107)

where ¹sa5]/]rsa and where V is invariant under trans-
lations and rotations. This is, of course, only a model.
For example, if the system is an atom, we neglect spin-
orbit and other relativistic effects; if it is a molecule or
an atom-molecule system, then V is a Born-
Oppenheimer potential, and we neglect surface crossing
and other nonadiabatic effects, as well as the fact that
the Hamiltonian should incorporate another gauge po-
tential, the one associated with the adiabatic transport of
electronic wave functions (Mead and Truhlar, 1979;
Mead, 1992). The interaction between that gauge poten-
tial and the one that is the subject of this paper is a
largely unexplored area.

We separate the translational degrees of freedom by
writing

C~rs1 , . . . ,rsn!

5S M3

Pama
3 D 21/4

F~Rs!F~rs1 , . . . ,rs ,n21!, (4.108)

where the $rsa% are mass-weighted Jacobi coordinates
and the mass factors in the transformation are chosen so
that the normalization integral has the form,

E uCu2d3rs1 . . . d3rsn

5E uFu2d3RsE uFu2d3rs1 . . . d3rs ,n21 . (4.109)

In Eq. (4.108) the mass factor is the inverse square root
of the Jacobian of the transformation,
(rs1 , . . . ,rsn)→(rs1 , . . . ,rs ,n21 ,Rs), obtained from the
transformation properties of the metric tensor according
to a method explained momentarily. The Schrödinger
equation on the (translation-reduced) configuration
space is

2
\2

2 (
a51

n21

¹rsa
2 F1V~rs1 , . . . ,rs ,n21!F5EF , (4.110)

where ¹rsa5]/]rsa and where E is the internal energy,
the translational energy having been separated out ac-
cording to E tot5E1Ec.m..

To transform the Schrödinger equation to shape and
orientational coordinates, we shall write
xa5(rs1 , . . . ,rs ,n21) and x8a5(u i,qm) for the old and
new coordinates, respectively, where a51, . . . ,3n23.
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Quite generally, when transforming from one system of
coordinates to another, the wave function may be trans-
formed either as a scalar or as a half-density (in which
case the new wave function is the square root of the
Jacobian times the old wave function). We begin by
transforming the wave function to the new coordinates
as a scalar, writing

F~rs1 , . . . ,rs ,n21!5f~u i,qm!, (4.111)

where the new symbol f merely indicates the new vari-
ables upon which the wave function depends.

The Jacobian connecting the old and new coordinates
is

J5Udet
]xa

]x8b U5Udet
]~rs1 , . . . ,rs ,n21!

]~u i,qm!
U. (4.112)

It is conveniently calculated in terms of the old and new
metric tensors, Gab and Gab8 respectively, defined in
terms of the kinetic energy by

2K5Gabẋaẋb5Gab8 ẋ8aẋ8b, (4.113)

which implies the transformation law for covariant ten-
sors,

Gab8 5
]xc

]x8a Gcd

]xd

]x8b . (4.114)

On taking the determinant of both sides of this equation
and noting that Gab5dab , we have G5det(Gab)51
and G85det(Gab8 )5J2. Therefore we may compute G8
in order to find J .

But Gab8 is given in Eq. (4.35) (where it was called
simply Gab). To find its determinant, we factor the ma-
trix according to

Gab8 5S LT 0

Am dm
s D S M 0

0 gst
D S L An

0 dn
t D , (4.115)

where the Greek indices combine according to the row-
column pattern (ms)(st)(tn)5(mn). Thus we have

G85~detL!2D , (4.116)

where

D5~detM!~detgmn!5~detM̃!~dethmn!, (4.117)

according to Eq. (4.99). The symbol D stands for ‘‘de-
terminants.’’ Finally, we have

J5udetLuD1/2. (4.118)

The Jacobian has factored into the product of a function
only of the Euler angles, udetLu, and a function only of
the shape coordinates, D1/2.

The identity (4.115) is equivalent to transforming the
metric tensor from the coordinate basis (u i,qm) to a
frame of horizontal and vertical vector fields. These vec-
tor fields constitute an anholonomic frame on the
(3n23)-dimensional configuration space, i.e., the fiber
bundle, and are not to be confused with the three-
dimensional anholonomic frame of vector fields X(j)

i on
the rotation group introduced earlier. As we see, the
metric tensor is block diagonalized in this frame, which
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simply means that the horizontal vectors are orthogonal
to the vertical vectors. This block diagonalization is of
course the same we achieved earlier when we block di-
agonalized the kinetic energy in the classical Lagrang-
ian, as in Eq. (4.21). Many of the calculations of this
paper achieve their most elegant and simple form when
expressed in terms of this frame of horizontal and verti-
cal vector fields, and we shall use this frame later in a
calculation of the Riemann tensor on the fiber bundle.
We have also used it previously in an implicit way when
we introduced the noncanonical variables (L,vm) into
the classical Hamiltonian (4.106), since these variables
are effectively the components of the momentum of the
system with respect to the basis of forms dual to the
horizontal and vertical vector fields.

We can now transform the normalization integral. We
note first that the combination udetLud3u is the (unnor-
malized) Haar measure on the rotation-group manifold.
One way to see this is to resort to the explicit Euler-
angle conventions discussed in Appendix B (the only
occasion in this paper where we need explicit Euler-
angle conventions), and to use Eq. (B9) to write

udetLud3u5sinbdadbdg , (4.119)

which we recognize as the Haar measure in the Euler
angles u5(a ,b ,g). Alternatively, we can write
l i5L j

(i)du j for the left-invariant differential forms on
the rotation-group manifold [denoted L(i) in Eq. (4.60)],
so that the invariant volume element is

l1`l2`l35~detL!da`db`dg . (4.120)

In any case, it is important to note that udetLud3u is
actually independent of Euler-angle conventions. Finally
we normalize the Haar measure and define

dR5
udetLud3u

8p2 5
sinbdadbdg

8p2 , (4.121)

and we introduce a new wave function c by

c~u i,qm!5~8p2!1/2D1/4f~u i,qm!, (4.122)

so that

E uFu2d3rs1 . . . d3rs ,n21

5E S)
m

dqmD E dRuc~u i,qm!u2. (4.123)

Effectively, we have transformed the wave function as a
scalar in the orientational coordinates, but as a half-
density in the shape coordinates. Many authors prefer to
transform the wave function as a scalar also in the shape
coordinates.

Before proceeding with the transformation of the
Schrödinger equation, we consider the transformation of
the angular momentum operators. The angular momen-
tum about the center of mass, referred to the space
frame, is represented by the operator

Ls52i\ (
a51

n21

rsa3
]

]rsa
. (4.124)
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As for the body angular momentum, it turns out that the
definition we want is

L5RTLs . (4.125)

This is the same as the classical definition of the body
angular momentum, but since the operator Ls does not
commute with a function of u i such as R, this formula
(and the operator ordering indicated) must be justified.
To this end, let us consider a definite quantum state rep-
resented by a wave function F(rs1 , . . . ,rs ,n21)
5f(u i,qm), and let us imagine a point moving in con-
figuration space and sampling the values of F5f . We
know that angular momentum generates rotations which
classically are motions along the fibers (i.e., they are
purely vertical motions), so for the sake of the following
argument we shall require that the motion of the point
be purely vertical. We shall write its velocity either as
(vs1 , . . . ,vs ,n21) or as (v,0) (the latter with respect to
the angular velocity and shape basis), where vsa5ṙsa as
in Eq. (3.48) and where we set q̇m50 since the motion is
vertical. Then by Eq. (3.49) we have

vsa5R~v3ra!5~Rv!3rsa . (4.126)

Next we compute the rate of change of F as seen by
the moving point. We have

dF

dt
5 (

a51

n21

vsa•
]F

]rsa

5~Rv!• (
a51

n21

rsa3
]F

]rsa

5
i

\
~Rv!•LsF5

i

\
v•LF , (4.127)

where we use Eq. (4.125). On the other hand, since
F5f , we also have

dF

dt
5

df

dt
5 u̇ j

]f

]u j 5v iX ~ i !
j ]f

]u j , (4.128)

which is consistent with Eq. (4.127) for all v if and only
if

Li5X ~ i !
j pj , (4.129)

where

pj52i\
]

]u j . (4.130)

Of course, Eq. (4.129) is exactly the classical formula
(4.48), but here the coefficients X(i)

j , which depend on
u i, do not commute with pi . Altogether, we see that
with the operator ordering indicated, both formulas
(4.125) and (4.129) are reasonable in both the classical
and the quantum domain. Finally, given Eq. (4.129), it is
easy to calculate the commutator of the body compo-
nents of angular momentum; the algebra is essentially
the same as in the computation of the classical Poisson
bracket in Eq. (4.101), and it leads to

@Li ,Lj#52i\e ijkLk , (4.131)
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with the same minus sign as in the classical formula.
Because of the noncommutativity of the factors in Eq.

(4.129), it is not obvious that the body angular momen-
tum is a vector of Hermitian operators. To show that it
is, we consider two wave functions c1 and c2, and define

^c1uc2&5E d3uudetLuc1* c2 , (4.132)

where for simplicity we suppress the q integrations
which have no effect on the following calculation. Next
we consider the scalar product ^c1uLic2&, which we
transform by integration by parts. We have

^c1uLic2&5E d3uudetLuc1* S 2i\X ~ i !
j ]c2

]u j D
5E d3u~1i\!

]

]u j ~ udetLuX ~ i !
j c1* !c2 ,

(4.133)

where the boundary terms can be shown to vanish. Then
the Hermiticity of Li follows from the identity,

]

]u j @ udetLuX ~ i !
j #50, (4.134)

so that

^c1uLic2&5E d3uudetLuS 2i\X ~ i !
j ]c1

]u j D *
c2

5^Lic1uc2&. (4.135)

A similar calculation will show that the operator pi de-
fined in Eq. (4.130) is not Hermitian.

To prove the useful identity (4.134) it is permissable
to drop the absolute value signs, since the sign of detL is
constant over the rotation group (the invariant volume
measure cannot change sign). Then we expand the de-
rivatives to obtain

]

]u j @~detL!X ~ i !
j #5~detL!~X ~ l !

k Lk ,j
~ l !X ~ i !

j 1X ~ i !,j
j ! (4.136)

5~detL!@dL~ l !~X ~ i ! ,X ~ l !!

1X ~ l !
k X ~ i !

j L j ,k
~ l !1X ~ i !,j

j # . (4.137)

But of the three terms on the right, the first is
2cil

l 52e l il 50 and the second is 2X(l ),k
k X(i)

j L j
(l )

52X(i),k
k which cancels the third. Thus the identity is

proven.
Now we return to the Schrödinger equation (4.110)

and write the kinetic energy in terms of the covariant
expression for the Laplace-Beltrami operator, which has
been used in calculations of this sort since at least the
time of Podolsky (1928). This is

(
a51

n21

¹rsa
2 F5

1

AG

]

]xa SAGGab
]F

]xbD
5

1

AG8

]

]x8a SAG8G8ab
]f

]x8bD . (4.138)
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Next we use Eqs. (4.116) and (4.122) and multiply the
Schrödinger equation through by (8p2)1/2D1/4 to obtain

2
\2

2
1

udetLuD1/4

]

]x8a F udetLuD1/2G8ab
]

]x8b ~D21/4c!G
1Vc5Ec . (4.139)

The contravariant metric tensor G8ab that appears here
was displayed in Eq. (4.36), where it was called simply
Gab.

The kinetic-energy expression in Eq. (4.139) consists
of four blocks, which can be simplified by means of the
identity (4.134), the definition (4.129), and the definition

pm52i\
]

]qm . (4.140)

In this process, due attention must be paid to the non-
commutativity of the various factors; since Am , M, and
gmn depend only on qm, they commute with each other
and with L, but not with pm . The following equations
summarize the results:

RR block5 1
2 @L•M21

•L1~L•Am!gmn~L•An!#c ,
(4.141)

qR block52 1
2 ~L•Am!gmnpnc

2
i\

8
D ,n

D
~L•Am!gmnc , (4.142)

Rq block52 1
2 pmgmn~L•An!c

1
i\

8
D ,m

D
~L•An!gmnc , (4.143)

qq block5 1
2 pmgmnpnc1V2c , (4.144)

where in the final expression we set

V25
\2

2
D21/4

]

]qm S gmn
]D1/4

]qn D . (4.145)

Altogether, the Schrödinger equation is Hc5Ec ,
where

H5 1
2 L•M21

•L1 1
2 ~pm2L•Am!gmn~pn2L•An!

1V2~q !1V~q !. (4.146)

Except for the ordering of operators and the term V2,
this Hamiltonian is the same as the classical expression
(4.92).

The term V2 arises from nonclassical commutators, as
evidenced by the \2 coefficient. Although it is written as
if it were a potential energy, it belongs physically to the
horizontal kinetic energy. It is somewhat troublesome to
calculate this term in practice, because (unlike the true
potential V) it does not transform as a scalar under
changes of coordinates on shape space. (If it did, it
would be possible to compute it in one coordinate sys-
tem once and for all and then to transform it as a scalar.)
This term is, however, gauge invariant. A number of
different ways to write V2 are discussed by Essén (1978).
Here we shall report on a new decomposition of this
term, namely,
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V25
\2

2
@~detM!1/4# ;m

;m

~detM!1/4 1
\2

2
g21/4

]

]qm S gmn
]g1/4

]qn D ,

(4.147)

where g5detgmn . The first term in this expression, in-
volving the covariant Laplacian of (detM)1/4, is a scalar,
while the second term, although not a scalar, depends
only on gmn and is independent of M. (Both terms are
gauge invariant.) Therefore the first term, at least, is
easy to transform from one system of shape coordinates
to another. We shall provide a proof of this decomposi-
tion in future publications. The term V2 is considered
again in Sec. V, when we discuss the Eckart conventions.

H. Reducing the Schrödinger equation

Now we reduce the Schrödinger equation, i.e., we
separate out the dependence on the Euler angles. The
resulting reduced Schrödinger equation involves the
3n26 shape degrees of freedom, represented by differ-
ential operators in the shape coordinates qm, plus one-
body angular momentum degree of freedom, repre-
sented by finite-dimensional matrices for the body
angular momentum operators. Correspondingly, the re-
duced wave function is a (2l 11)-component spinor,
which is a function of qm. In addition, we shall explicitly
demonstrate the gauge covariance of the reduced wave
function and reduced Hamiltonian. This calculation calls
on the standard theory of angular momentum in quan-
tum mechanics, in which we think primarily in terms of
active transformations and follow the conventions of
Messiah (1966). Hirschfelder and Wigner (1935) treated
this problem for a specific choice of gauge and shape
space-coordinates.

If QPSO(3), then we denote the corresponding ac-
tive rotation operator acting on wave functions by
R(Q), so that

„R~Q!F…~rs1 , . . . ,rs ,n21!

5F~Q21rs1 , . . . ,Q21rs ,n21!. (4.148)

On transforming to shape and orientational coordinates,
this becomes

„R~Q!c…~R,qm!5c~Q21R,qm!, (4.149)

since rsa5Rra and since ra does not change under ac-
tive rotations of the system (the body frame is rotated
along with the body).

We denote an eigenfunction of L2 and Lsz corre-
sponding to quantum numbers l ,m by F l m , f l m , or
c l m . We assume that for fixed l the wave functions
corresponding to different m are related by raising and
lowering operators and standard phase conventions, so
that

„R~Q!c l m…~R,qm!5 (
k52l

1l

c l k~R,qm!Dkm
l ~Q!,

(4.150)

where Dkm
l (Q) is the standard (2l 11)3(2l 11) irre-

ducible matrix representative of QPSO(3). Thus, by
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combining Eqs. (4.149) and (4.150), we can express the
c l m (for m52l , . . . ,1l ) at one point on a fiber in
terms of the c l m at any other point. In particular, we
can express the c l m at some orientation R in terms of
the c l m at the identity (the reference orientation).
Therefore we define

xk
l ~qm!5

1

A2l 11
c l k~ I,qm!, (4.151)

so that

c l m~R,qm!5A2l 11 (
k52l

1l

xk
l ~qm!Dmk

l ~R!* .

(4.152)

The wave function xk
l (qm) is a (2l 11)-component

spinor, which it is tempting to think of as the ‘‘wave
function on shape space.’’ But actually xk

l (qm) is only
the wave function on the section S; in truth there is no
wave function on shape space, i.e., no gauge-invariant
way to define such a function. Since xk

l (qm) is defined
on S, it is gauge dependent. The only exception to these
statements occurs for s waves (l 50), for which the
wave function x l is gauge invariant and can be thought
of as living on shape space.

The normalization of xk
l (qm) is obtained as follows:

E S)
a

d3rsaD uF~rs1 , . . . ,rs ,n21!u2

5E S) dqmD dRuc l m~R,qm!u2

5 (
k52l

1l E S) dqmD uxk
l ~qm!u2, (4.153)

where we have used Eq. (4.152) and the orthogonality
theorem,

E dRDkm
l ~R!* Dk8m8

l 8 ~R!5
d l l 8dmm8dkk8

2l 11
. (4.154)

Next, we need the action of the body angular momen-
tum on xk

l . To obtain the action of the space angular
momentum on xk

l , we denote the rotation matrix repre-
senting a rotation by angle u about the ith coordinate
axis by Qi(u), and the corresponding rotation operator
by Ri(u). Then we have

~Lsic l m!~R,qm!5i\
d

du Uu50„Ri~u!c l m…~R,qm!

5i\
d

du U
u50

c l m„Qi~u!21R,qm
…

5i\
d

du Uu50A2l 11

3(
k

xk
l ~qm!Dmk

l
„Qi~u!21R…*
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5i\
d

du U
u50

A2l 11 (
k ,k8

xk
l ~qm!

33Dk8m
l

„Qi~u!…Dk8k
l

~R!*

5A2l 11 (
k ,k8

xk
l ~qm!

3~Li!k8mDk8k
l

~R!* , (4.155)

where we use Eqs. (4.149) and (4.152) and where Li is
the standard (2l 11)3(2l 11) irreducible matrix rep-
resentative of the i component of the angular momen-
tum operator, so that D l

„Qi(u)…5exp(2iuLi /\). Fi-
nally, we use Eq. (4.125) and the adjoint transformation
property of the angular momentum matrices,

RjiLj5D l ~R!LiD
l ~R!†, (4.156)

to transform Eq. (4.155) from the space to the body an-
gular momentum, finding

~Lic l m!~R,qm!5A2l 11 (
k ,k8

xk8
l

~qm!

3~Li!k8kDmk
l ~R!* . (4.157)

Thus, under the mapping c l m°Lic l m , we have

xk
l ~qm!°~Lixk

l !~qm!5(
k8

~Li!k8kxk8
l

~qm!. (4.158)

In other words, xk
l (qm), regarded as a column spinor,

transforms by multiplication by the transpose of Li . (We
could equally well regard it as a row spinor, transform-
ing by right multiplication by Li .)

Therefore when we substitute Eq. (4.152) into the
Schrödinger equation, multiply through by Dmk8

l (R),
and integrate over R, we find Hx l 5Ex l , where x l is
the column spinor and where H is exactly as in Eq.
(4.146) except that the body angular momentum opera-
tors Li are reinterpreted as the transposed matrices
Li

T . Because of the transpose, these matrices satisfy the
commutation relations (4.131) (with the minus sign).

The wave function xk
l (qm) is gauge dependent, for if

we write c l m , c l m8 , xk
l , xk8

l , etc., for the old and new
wave functions under the gauge transformation
R5R8ST, then we have

c l m~R,qm!5c l m8 ~R8,qm!5c l m8 ~RS,qm!, (4.159)

where the first equality indicates what we mean by the
transformed wave function. But this implies

xk
l ~qm!5

1

A2l 11
c l k~ I,qm!5

1

A2l 11
c l k8 ~S,qm!,

(4.160)

or, by Eq. (4.152),

xk
l ~qm!5(

k1

xk1
8l ~qm!Dkk1

l ~S!* . (4.161)

We abbreviate this by writing
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x l 5D l ~S21!Tx8l , (4.162)

where we think of x l and x8l as column spinors.
The Hamiltonian (4.146), with Li interpreted as Li

T , is
a (2l 11)3(2l 11) matrix of operators. It is not gauge
invariant, but rather has the transformation property

HD l ~S21!T5D l ~S21!TH8, (4.163)

where H8 is the same as H but with Am and M replaced
by Am8 and M8, the new fields under the gauge transfor-
mation specified by S(q) as in Eqs. (3.68) and (3.74).
Therefore, if Hx l 5Ex l , then H8x8l 5Ex8l , and the
Schrödinger equation is gauge covariant in this sense. In
this transformation we do not replace Li5Li

T by any
primed versions of themselves, as we did in the classical
transformation (3.67), because here the symbols
Li5Li

T stand for constant matrices, nor do we introduce
primed versions of the operators pm , which continue to
represent 2i\]/]qm. (We recall that in the classical
Hamiltonian, the canonical momenta pm were gauge de-
pendent.)

To prove Eq. (4.163), we must pull the matrix
D l (S21)T to the left past the matrices Li5Li

T and the
operators pm52i\]/]qm, with which it does not com-
mute. To do this, we use the relations

Li
TD l ~S21!T5SijD

l ~S21!TLj
T (4.164)

and

D l ~S!TpmD l ~S21!T5gm•L1pm , (4.165)

where gm is defined in Eq. (3.71) and where L is the
vector of transposed matrices Li

T . These imply

~pm2L•Am!D l ~S21!T5D l ~S21!T~pm2L•Am8 !
(4.166)

and

~L•M21
•L!D l ~S21!T5D l ~S21!T~L•M821

•L!,
(4.167)

from which Eq. (4.163) follows immediately.
To prove Eq. (4.164), we note that it is simply a trans-

posed version of the adjoint transformation law (4.156).
As for Eq. (4.165), we let jm be an arbitrary vector and
consider the operator jm]/]qm acting on D l (S). We
have

jm
]D l ~S!

]qm 5 lim
e→0

1
e

@D l $S~q1ej!%2D l
„S~q !…#

5 lim
e→0

1
e

@D l ~S1ejmS,m!2D l ~S!#

5 lim
e→0

1
e

D l ~S!@D l ~ I1ejmGm!2I#

52
i

\
D l ~S!jmgm

k Lk . (4.168)

In this equation, I is the 333 identity and I is the
(2l 11)3(2l 11) identity matrix. But since jm is arbi-
trary, we can drop it from both sides of this equation
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and then take the Hermitian conjugate and then the
transpose of both sides to obtain Eq. (3.165).

V. MISCELLANEOUS RESULTS

In this section we present several miscellaneous re-
sults that did not fit into the presentation as developed
so far. We begin with the Bianchi identities and other
field equations satisfied by the Coriolis tensor. We
present a collection of identities that are important for
expressing various quantities of physical interest in
terms of shape and orientational coordinates and their
conjugate momenta. Then we present a collection of
identities involving the Jacobian of the coordinate trans-
formation (rs1 , . . . ,rs ,n21)→(u i,qm). Following this,
we present a collection of formulas related to the hori-
zontal and vertical projection operators. We derive a set
of further identities by methods borrowed from the lit-
erature on Kaluza-Klein theories, in which the basic idea
is to express trivial tensor identities valid on the
(translation-reduced) configuration space in terms of
fields on shape space. These identities amount to various
field equations satisfied by M, Bmn , and gmn . Finally, we
present some comments on the Eckart conventions and
on the geometrical meaning of the modified moment-of-
inertia tensor M̃, which is ubiquitous in the literature
based on the Eckart conventions.

A. Bianchi identities and other field equations satisfied
by Bmn

The Bianchi identity for the Riemann tensor is a stan-
dard subject, which is summarized in Appendix E. The
Coriolis curvature tensor also satisfies a Bianchi identity,
namely,

B[mn ;s]50, (5.1)

where the square brackets in the subscript indicate com-
plete antisymmetrization, as explained by Eq. (A3). This
Bianchi identity is the non-Abelian analog of the Max-
well equation ¹•B50, and it says, in a sense, that the
Coriolis tensor has no magnetic sources, at least in re-
gions of shape space where the tensor itself and its de-
rivatives are defined. Of course, in the three-body prob-
lem, we know that there is a magnetic source (i.e., the
Iwai monopole) at the three-body collision, but Eq. (5.1)
is singular there. In the general case (arbitrary n), Bmn is
defined and differentiable at all noncollinear shapes, and
Eq. (5.1) is valid at such points. The identity (5.1) is
proved by directly expanding out the covariant deriva-
tives, as in Eq. (D10), whereupon all the terms involving
Christoffel symbols vanish. One then uses Eq. (3.87)
connecting Bmn and Am , whereupon all terms cancel.
This is a standard calculation in gauge theories.

The Bianchi identity for the Coriolis tensor can be
regarded as a field equation satisfied by that tensor. This
is a natural point of view, in spite of the fact that the
n-body problem is not a field theory, and the fields that
occur in it are not dynamical variables. Because the
gauge theory of the n-body problem is non-Abelian, the
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field equations satisfied by Bmn are more like Yang-Mills
field equations than Maxwell’s equations, although by
analogy we can use language borrowed from ordinary
electromagnetic theory. It is in this sense that we say
that Bmn has no magnetic sources (except possibly at
collinear configurations).

Similarly, we might ask whether Bmn has any electric
sources, i.e., whether the current Jm in the Yang-Mills
field equation Bmn

;n5Jm is nonzero. This question is mo-
tivated by the three-body problem, in which the analogy
with the Dirac monopole makes it clear that the Coriolis
field produced by the Iwai monopole has no electric
sources (in the electromagnetic analogy, the field is curl-
free). In fact, we have been able to show for any value of
n that such ‘‘electric currents’’ vanish, i.e., that

Bmn
;n50. (5.2)

We shall present the proof of this fact in future publica-
tions.

B. A new class of identities

In Sec. IV we succeeded in transforming the classical
Hamiltonian from Jacobi coordinates $rsa% to shape and
orientational coordinates (u i,qm). Properly speaking,
this was not just a point transformation on configuration
space, but rather a coordinate transformation on phase
space involving both the coordinates and their conjugate
momenta. We also introduced various noncanonical co-
ordinate systems on phase space; these are not only
more natural than canonical coordinates but also easier
to use. Similarly, in transforming the quantum Hamil-
tonian, we introduced operators (the body angular mo-
menta) that satisfy nontrivial commutation relations.
Such operators are analogous to classical noncanonical
coordinates.

It is of interest to transform other observables besides
the Hamiltonian into a shape and orientational repre-
sentation. Examples include the kinetic energy or angu-
lar momentum of various subsystems of the n-particle
system or the various commuting observables that are
used in constructing hyperspherical harmonics. Democ-
racy transformations play an important role in this pro-
cess; democratic invariants such as the Hamiltonian are
easier to transform than other quantities. Although we
shall not report on such calculations in this paper, we
will present various identities we discovered in the pro-
cess of carrying out these calculations, because we feel
they are of fundamental importance in understanding
the gauge theory of the n-body problem.

We begin with a simple but useful formula,

(
a51

n21

ra3ra ;m50, (5.3)

which involves the covariant derivatives of the vectors
ra(qm) that specify the gauge. This formula is interest-
ing because it is equivalent to the definition of the gauge
potential (3.56). That is, suppose we know that we have
a covariant derivative that satisfies all the properties laid
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out in Appendix D, but we do not know the definition of
Am . Then the demand that Eq. (5.3) be valid is equiva-
lent to the definition (3.56). To see this, we simply ex-
pand out the left-hand side of Eq. (5.3) to find

(
a

ra3ra ,m2(
a

ra3~Am3ra!5am2MAm . (5.4)

Thus the vanishing of this quantity is equivalent to the
definition of Am . Any formula involving covariant de-
rivatives that can be proved by expressing the covariant
derivatives in terms of ordinary derivatives plus correc-
tion terms and then appealing to the definition of Am
can also be proved by using only Eq. (5.3). The latter
approach is preferable because it involves only covariant
derivatives at every step.

Equation (5.3) has some interesting consequences.
Taking the covariant derivative of this equation, we
have

(
a

ra ;n3ra ;m1(
a

ra3ra ;mn , (5.5)

which we antisymmetrize in m ,n , using Eq. (D13), to
find

MBmn52(
a

ra ;m3ra ;n . (5.6)

This is a simple identity, which proves useful in many
applications.

Another consequence of Eq. (5.3) is that the antisym-
metric part of the tensor (ara ^ ra ;m

T vanishes, i.e., this
tensor is symmetric. We express this result in terms of
the ‘‘moment tensor’’ K, defined by

K5 (
a51

n21

ra ^ ra
T , (5.7)

whose covariant derivative satisfies

1
2

K;m5(
a

ra ;m ^ ra
T5(

a
ra ^ ra ;m

T . (5.8)

The moment tensor is related to the moment-of-inertia
tensor by

M5~TrK!I2K. (5.9)

Another interesting and useful identity is

gmn5(
a

ra ;m•ra ;n . (5.10)

This is easily proved directly from the definition (4.18)
by eliminating the ordinary derivatives in hmn in favor of
covariant derivatives.

Further identities can be derived from Eq. (5.10).
Taking the covariant derivative of this equation, we
have

gmn ;s505(
a

~ra ;m•ra ;ns1ra ;ms•ra ;n!. (5.11)

To analyze this, we define Tmns5(ara ;m•ra ;ns , so that
Eq. (5.11) is equivalent to
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Tmns1Tnms50, (5.12)

i.e., Tmns is antisymmetric in the first and second indices.
On the other hand, we have

Tmns2Tmsn5(
a

ra ;m•ra ;[ns]5Bns•(
a

ra3ra ;m50,

(5.13)

on account of Eqs. (D13) and (5.3). Therefore Tmns is
symmetric in the second and third indices. These sym-
metries are consistent only if Tmns vanishes, i.e.,

(
a

ra ;m•ra ;sn50. (5.14)

This is a relatively strong statement due to the large
number (three) of free indices. By taking further cova-
riant derivatives it is possible to obtain identities involv-
ing the Riemann tensor.

C. Jacobian identities

We turn now to a class of identities involving
the Jacobian of the coordinate transformation,
(rs1 , . . . ,rs ,n21)→(u i,qm). There are both forward and
inverse Jacobians. We obtain the components of the for-
ward Jacobian by differentiating Eq. (3.41):

]rsa

]u i 5
]R

]u ira , (5.15)

]rsa

]qm 5R
]ra

]qm . (5.16)

Here we are thinking of the functions ra(qm) as
‘‘known,’’ due to some choice of gauge, although this is
not a necessary point of view. Of these, Eq. (5.15) can be
transformed with the help of Eq. (4.34) into

]rsaj

]u i 5Rjkekl mL i
~ l !ram , (5.17)

or

]rsa

]u i 5RS ]v

]u̇ i
3raD , (5.18)

where we use Eq. (4.51).
The components of the inverse Jacobian are ]u i/]rsa

and ]qm/]rsa . Since the forward and inverse Jacobians
are inverse matrices, we have

]rsa

]u i ^ S ]u i

]rsb
D T

1
]rsa

]qm ^ S ]qm

]rsb
D T

5Idab , (5.19)

and

(
a

]u i

]rsa
•

]rsa

]u j 5d ij , (5.20)

(
a

]u i

]rsa
•

]rsa

]qm 50, (5.21)
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(
a

]qm

]rsa
•

]rsa

]u i 50, (5.22)

(
a

]qm

]rsa
•

]rsa

]qn 5dn
m . (5.23)

From these we can solve for the components of the in-
verse Jacobian in terms of the components of the for-
ward Jacobian.

Before doing this, however, we comment on the vec-
tors ra(qm), which are 3n23 functions of 3n26 vari-
ables. These functions are not invertible, and it would
seem that there is no meaning to the derivatives
]qm/]ra , unlike the derivatives ]qm/]rsa , which are
part of the inverse Jacobian. But, in fact, the derivatives
]qm/]ra can be given meaning, since the qm, being rota-
tionally invariant, are functions of the Jacobi dot prod-
ucts and triple products, which can be expressed in
terms either of the space or of the body components of
the Jacobi vectors:

rsa•rsb5ra•rb , (5.24)

rsa•~rsb3rsg!5ra•~rb3rg!. (5.25)

Therefore the qm can be expressed as functions of the
body vectors $ra%, and we have

]qm

]ra
5RT

]qm

]rsa
. (5.26)

With this understanding, we can rewrite Eqs. (5.22)
and (5.23) as

(
a

]qm

]ra
•RT

]rsa

]u i 50, (5.27)

(
a

]qm

]ra
•

]ra

]qn 5dn
m , (5.28)

where we use Eq. (5.16).
Now we can present useful forms for the elements of

the inverse Jacobian. First we have the identity

]qm

]ra
5gmnra ;n . (5.29)

To prove this, it suffices to show that with this substitu-
tion Eqs. (5.27) and (5.28) are satisfied, since the inverse
of a matrix is unique. As for Eq. (5.27), we have

(
a

gmnra ;n•RT
]rsa

]u i 5gmn
]v

]u̇ i
•(

a
ra3ra ;n50,

(5.30)

where we use Eq. (5.18) in the first equality and (5.3) in
the second. As for Eq. (5.28), we have

(
a

gmsra ;s•ra ,n5gmsS (
a

ra ;s•ra ;n1An•(
a

ra3ra ;sD
5gmsgsn5dn

m , (5.31)

where we use Eqs. (5.3) and (5.10) in the second equal-
ity.
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A useful form for the other part of the inverse Jaco-
bian, ]u i/]rsa , is obtained as follows. First we substitute
Eqs. (5.18) and (5.29) into Eq. (5.19), writing the result
in the form

RS ]v

]u̇ i
3raD ^ S ]u i

]rsb
D T

5Idab2~Rra ,m! ^ ~gmnrb ;n
T RT!. (5.32)

Next we multiply this by RT on the left and by R on the
right to clear most of the R’s, and then we cross on the
left with ra and sum on a . Swapping a ,b , we have

M
]v

]u̇ i
^ S ]u i

]rsa
D T

R5Pa2am ^ ~gmnra ;n
T !, (5.33)

where

Pa↔ra . (5.34)

Finally, multiplying by M21, we have

]v

]u̇ i
^ S ]u i

]rsa
D T

R5M21Pa2Am ^ ~gmnra ;n
T ! (5.35)

or, on reverting to index notation and juggling indices,

Lk
~ i !Rl j

]uk

]rsal

5~M21! ikekl jral 2Am
i gmnraj ;n . (5.36)

This is easily solved for ]uk/]rsal , but is generally more
useful in the form given.

D. Horizontal and vertical projectors

Equation (5.14) shows the decomposition of an arbi-
trary system velocity, represented in the angular velocity
and shape basis, into horizontal and vertical compo-
nents. One can easily construct from this equation the
components of the horizontal and vertical projection op-
erators, call them Ph and Pv , with respect to the same
basis.

These projection operators take on interesting forms
in the basis in which a system velocity uv& is represented
by (v1 , . . . ,vn21), where va5RTvsa5RTṙsa . We shall
call this the ‘‘body-frame basis.’’ The body-frame basis is
an anholonomic frame in the tangent spaces over con-
figuration space in which the scalar product has the
simple form

^v8uv&5(
a

va8•va . (5.37)

A convenient basis for the three-dimensional sub-
space of vertical velocities consists of the vectors ul i&,
defined in the body-frame basis by

ul i&5~ei3r1 , . . . ,ei3rn21!, (5.38)

where ei is the ith unit vector, i.e., the vector with com-
ponents (ei) j5d ij . The vectors ul i& are the same as the
vectors X(i) introduced in Eq. (4.60), if the latter are
interpreted as vector fields on the fiber bundle rather
than on the rotation-group manifold. They are, however,
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represented here in the body-frame basis, rather than
the coordinate basis (u i,qm), as in Eq. (4.60). To estab-
lish this connection in detail, we return to Eq. (4.65) and
let df5dt , to represent a body rotation about axis n of
unit angular velocity. This implies vsa5R(n3ra), or,
with n5ei , va5ei3ra .

The vectors ul i& have the property that if uv& is a sys-
tem velocity, then

^l iuv&5ei•(
a

ra3va5Li , (5.39)

so that a velocity uv& is horizontal if and only if L50
(which we knew already). The vectors ul i& are not or-
thonormal, but satisfy

^l iul j&5(
a

~ei3ra!•~ej3ra!5Mij . (5.40)

Now we develop an expression for the vertical projec-
tor. We write an arbitrary system velocity in the form

uv&5v iul i&1uvh&, (5.41)

where uvh& is the horizontal projection of uv&. But ac-
cording to Eq. (5.40), the vertical components are given
by v i5(M21) ij^l juv& , so that

Pv5ul i&~M21! ij^l ju. (5.42)

We note incidentally that v i5v i, a fact that has been
expressed previously in various forms. Another notation
for Pv is the following. If uv8&5Pvuv&, with
uv&5(v1 , . . . ,vn21) and uv8&5(v18 , . . . ,vn218 ), then we
write

va85(
b

Pab
v vb , (5.43)

where Pab
v is a set of 333 tensors, indexed by a ,b .

Then Eq. (5.42) is equivalent to

Pab
v 5Pa

TM21Pb , (5.44)

where again Pa↔ra .
It is of interest to verify the expected properties of

Pv in the form (5.44). First, Pv is idempotent,
(Pv)25Pv , or

(
g

Pag
v Pgb

v 5Pab
v , (5.45)

as follows from Eq. (5.44) and the identity,

M5(
a

PaPa
T5(

a
Pa

TPa . (5.46)

Next, it annihilates any horizontal vector, for if we use
Eq. (5.44) in Eq. (5.43) we find

va85(
b

Pa
TM21Pbvb5Pa

TM21L, (5.47)

which vanishes if L50. Finally, it has no effect on the
vertical basis ul i&, since

(
b

Pa
TM21Pb~ei3rb!52ra3~M21Mei!5ei3ra .

(5.48)
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As for the horizontal projector Ph , it has an interest-
ing form in the same notation introduced in Eq. (5.43),
namely,

Pab
h 5gmnra ;m ^ rb ;n

T . (5.49)

To prove this result, we first note that Ph is idempotent,
as follows from an application of Eq. (5.10). Next, it
follows from Eq. (5.3) that Ph annihilates any vertical
velocity vector, i.e., Phul i&50. Finally, to show that
Ph has no effect on a horizontal velocity vector, we
write an arbitrary velocity va in the form

va5~M21L!3ra1ra ;sq̇s, (5.50)

as follows from Eqs. (3.49) and (3.57), so that if
uv8&5Phuv&, then

va85(
b

Pab
h vb5ra ;mq̇m5va2~M21L!3ra , (5.51)

where we use Eqs. (5.3) and (5.10) in the second equal-
ity. Therefore, if L50 (a horizontal vector), then
Phuv&5uv&.

Since the horizontal and vertical spaces are orthogo-
nal and complementary, we must have Ph1Pv5I , or

Pab
h 1Pab

v 5gmnra ;m ^ rb ;n
T 1Pa

TM21Pb5dabI. (5.52)

A direct proof of this property follows by using Eqs.
(5.29) and (5.36) to transform the metric tensor
Gab5dab in the coordinates (rs1 , . . . ,rs ,n21) to the co-
ordinates (u i,qm), whereupon it has the form indicated
in Eq. (4.35). This calculation is sufficiently long that we
will not repeat it here.

E. Field equations of the Kaluza-Klein type

A glance at the definitions of the fields M, Am , and
gmn , Eqs. (3.53), (3.56), and (4.18), respectively, suggests
that there must be identities or field equations connect-
ing these quantities. Indeed, a number of such identities
can be constructed by methods that are well known in
the literature on Kaluza-Klein theories (Cho, 1975; Co-
quereaux, 1988). These identities are not at all trivial in
appearance or easy to verify directly from the definitions
of M, Am , and gmn . We remark that in Kaluza-Klein
theories the idea is to show how complicated field equa-
tions on space-time, such as the coupled Einstein-Yang-
Mills equations, are manifestations of simpler field equa-
tions on a higher-dimensional space, which is a principal
fiber bundle over space-time. In our problem, the analog
of space-time is shape space, but the philosophy is some-
what different; instead of taking complicated equations
on a base space and simplifying them by going to a
larger space, we are starting with the larger space (the
translation-reduced configuration space, which has the
structure of a principal fiber bundle), and reducing the
dimensionality, at the expense of dealing with a more
complex (or at least richer) structure to the equations of
motion.

We begin with the (translation-reduced) configuration
space, upon which some coordinates xa are imposed and
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upon which the metric tensor, connection components,
and Riemann tensor are g̃ ab , G̃bc

a , and R̃ a
bcd , respec-

tively. We use tildes to denote these fields on configura-
tion space and to contrast them with the analogous fields
gmn , Gst

m , and Rm
nst on shape space. Of course, configu-

ration space is the Euclidean manifold R3n23, so
R̃ a

bcd50. (We have previously written Gab for what we
are now calling g̃ ab .) Furthermore, if Euclidean coordi-
nates are chosen, i.e., xa5(rs1 , . . . ,rs ,n21), then
g̃ ab5dab and G̃bc

a 50. Our strategy will be to express the
vanishing of the Riemann tensor on configuration space
in terms of a shape and orientational representation,
whereupon a number of identities result.

We shall express tensors on configuration space, not
in a coordinate basis, but rather in an anholonomic basis
of horizontal and vertical vector fields. Appendix E sum-
marizes the computation of the Riemann tensor in an
anholonomic frame; we shall call on the formulas of that
Appendix freely, making the notational changes m ,n ,
etc., →a ,b , etc. We shall not place overbars on the an-
holonomic indices, but it is to be understood that all
quantities g̃ ab , G̃bc

a , R̃ a
bcd , etc., are taken with respect

to the anholonomic frame. Furthermore, the comma no-
tation applied to the quantities g̃ ab , G̃bc

a , etc., will be
interpreted as in Eq. (E10). When we break up compo-
nents into vertical and horizontal parts, we shall write,
for example, a5(i ,m), b5(j ,n), etc., corresponding to
3n23531(3n26). For example, g̃ mn refers to the
components of the metric with respect to the anholo-
nomic horizontal basis vectors em , en and is conceptually
distinct from gmn , the components of the metric on
shape space with respect to the coordinate basis qm. (As
it turns out, however, g̃ mn5gmn .)

We shall denote the basis vectors on configuration
space by ea or (ei ,em), where ei are the vertical vectors
and em the horizontal. These vectors are defined by

ei5X ~ i !
j ]

]u j , (5.53)

em5
]

]qm 2Am
i e i , (5.54)

where we follow the standard practice in differential ge-
ometry of representing vector fields by the associated
differential operators. (The contravariant components in
coordinate basis xa are the coefficients of the operators
]/]xa.) The vertical vector fields ei are identical to the
fields ul i& introduced earlier. The horizontal vectors em
are the horizontal projections of the coordinate basis
vectors ]/]qm; the latter are tangent to the section S
(since varying one of the qm while holding all other vari-
ables fixed, including the u i, means moving along the
section S) and are not generally horizontal themselves.

We denote the dual basis of forms by sa or (s i,sm).
These are given by

s i5L j
~ i !du j1Am

i dqm, (5.55)

sm5dqm, (5.56)
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so that sa(eb)5db
a . The matrix transforming the coor-

dinate basis of forms (du i,dqm) to the anholonomic ba-
sis (s i,sm) is the same as that displayed in Eq. (4.115),
which confirms our earlier statement that the block-
diagonalized metric seen in that equation (the center
matrix on the right-hand side) is the component matrix
of the metric with respect to the anholonomic basis of
horizontal and vertical vector fields. In present language,
this means that

g̃ ij5Mij , g̃ mn5gmn , g̃ in5 g̃ mj50,

g̃ ij5~M21! ij , g̃ mn5gmn, g̃ in5gmj50. (5.57)

The computation of the structure constants of the an-
holonomic frame is straightforward. First we have
@ei ,ej#5e ijkek , in accordance with the calculation lead-
ing to Eq. (4.56). From this we easily find
@ei ,em#52e ijkAm

j ek and @em ,en#52Bmn
i e i . Therefore

the structure constants are

cij
k 5e ijk , cim

k 52cmi
k 52e ijkAm

j 5~Am!ki ,

cmn
k 52Bmn

k , cab
m 50. (5.58)

Next we compute the connection components accord-
ing to Eq. (E13). The following facts simplify this calcu-
lation. First, the components g̃ ab are independent of u i,
so g̃ ab ,i50; second, g̃ ab is block diagonal, as indicated by
Eq. (5.57); and third, cab

m 50. The connection compo-
nents are

G̃ ij
k 5~M21!kl F l ij , G̃ ij

m52 1
2 gmnMij ;n52 1

2 Mij
;m,

G̃ in
k 5 1

2 ~M21!kl M l i ;n2~An!ki , G̃ in
m 52 1

2 MikBkm
n ,

G̃ nj
k 5 1

2 ~M21!kl M l j ;n , G̃ nj
m 52 1

2 MjkBkm
n ,

G̃mn
k 5 1

2 Bmn
k , G̃mn

s 5Gmn
s , (5.59)

where we define

Fijk5 1
2 ~Mjl e l ik1Mkl e l ij1Mil e l kj!52Fjik .

(5.60)
Finally, we compute the components of the Riemann

tensor according to Eq. (E16). We present these in their
completely covariant forms, which are most symmetri-
cal:

05R̃ ijkl 5~M21!mn~Fmil Fnjk2FmikFnjl !

2emkl Fijm1 1
4 ~Mil ;mMjk

;m

2Mik ;mMjl
;m!,

05R̃ ijnk5Fijk ;n1 1
2 @~M;nM21! jl F l ik

2~M;nM21! il F l jk#1 1
4 @Mik ;l~MBl

n! j

2Mjk ;l~MBl
n! i# ,

05R̃ injt5 1
4 ~M;tM

21M;n! ij2
1
2 ~M;nt! ij

1 1
4 ~MBlt! i~MBl

n! j1
1
2 Bnt

k Fikj , (5.61)

05R̃ ijst5 1
4 ~M;tM

21M;s! ij2
1
4 ~M;sM21M;t! ij

1 1
2 e ijl ~MBst! l 1 1

4 @~MBlt! i~MBl
s! j

2~MBls! i~MBl
t! j# ,
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05R̃ inst5 1
2 ~MBst! i ;n2 1

4 ~M;sBtn! i2
1
4 ~M;tBns! i ,

05R̃ mnst5Rmnst2 1
2 Bmn•M•Bst2 1

4 Bms•M•Bnt

1 1
4 Bmt•M•Bns .

In these equations, for example, M;n is the covariant de-
rivative of the tensor M, which has components Mij ;n .
The last of these equations allows the Riemann tensor
on shape space, Rmnst , to be expressed in terms of the
moment-of-inertia tensor and the Coriolis tensor; this is
very convenient computationally. The resulting expres-
sion can easily be contracted to obtain the Ricci tensor,

Rmn5 3
4 Bms•M•Bn

s, (5.62)

from which follows Eq. (4.44).

F. Comments on the Eckart conventions

We now present some comments on the Eckart con-
ventions, which are a standard subject in the theory of
molecular vibrations (Eckart, 1935; Wilson, Decius, and
Cross, 1955; Louck and Galbraith, 1976; Biedenharn and
Louck, 1981; Ezra, 1982). The new element in the fol-
lowing discussion is the geometrical interpretation of the
Eckart frame and its properties in terms of a section of
the fiber bundle.

The Eckart conventions consist of a choice of body
frame and a choice of coordinate system on shape space.
Eckart’s original motivation for his conventions is attrib-
uted to Casimir (1931), who supposed that it should be
possible to choose a frame to make the ‘‘Coriolis cou-
pling terms,’’ the terms linear in L in the Hamiltonian
(4.92) or (4.97), of the same order as the terms quadratic
in L, at least when the amplitude of vibrational motion is
small. These terms are not gauge invariant, but it is con-
venient in certain non-gauge-invariant perturbation
schemes to make them as small as possible. Since these
terms all involve the product L•Am , Casimir’s condition
is satisfied if the frame is chosen so that Am vanishes at
the equilibrium shape of the molecule. As we have
noted previously, this condition is geometrically equiva-
lent to the demand that the section S of the fiber bundle
be perpendicular to the equilibrium fiber, i.e., that it be
purely horizontal at the equilibrium shape. This is a lo-
cal condition on the choice of body frame, and there are
many gauges that satisfy it, but Eckart’s (1935) actual
choice of frame was, in fact, a global construction.

The conditions specifying the section S and hence the
Eckart frame were given in Eq. (3.47); as noted, these
constitute a set of linear constraints on the vectors rsa ,
so the Eckart section is a (3n26)-dimensional vector
subspace of the configuration space. The Eckart section
is illustrated schematically in Fig. 20. In the figure, F0 is
the equilibrium fiber, and Q05$ra0% is an arbitrarily
chosen reference orientation on that fiber. (Some au-
thors choose the reference orientation to be the one in
which the principal axis frame for the equilibrium shape
coincides with the space frame, but this is not neces-
sary.) We do not distinguish between rsa0 and ra0 since
the configuration in question is a reference, for which
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space and body frames coincide. As indicated schemati-
cally in the figure, the equilibrium fiber is orthogonal to
the Eckart section S at the configuration Q0; but other
fibers such as F1 are not orthogonal to the section at
their point of intersection, Q1 in the figure.

Given an arbitrary configuration Q5$rsa%, it is of in-
terest to know the rotation matrix R that connects it
with the corresponding reference configuration, say,
Q15$rsa1%5$ra1%, since this rotation in effect defines
the body frame for the given configuration. Such con-
figurations Q and Q1 are illustrated lying on fiber F1 in
Fig. 20. Since these configurations are related by
rsa5Rra1 and since $ra1% satisfies Eq. (3.47), we have

(
a

~RTrsa!3ra050 (5.63)

or

FTR5RTF, (5.64)

where

F5(
a

rsa ^ ra0
T . (5.65)

The columns of F have been called the ‘‘Eckart vectors’’
by Louck and Galbraith (1976).

The matrix F is regarded as a function of the configu-
ration $rsa%. It is a symmetric non-negative definite ma-
trix at the equilibrium configuration, rsa5ra0, at which
point the rank of F is equal to the dimensionality of the
equilibrium configuration itself. Thus F is a singular ma-
trix at the equilibrium configuration only if that configu-
ration is linear or planar. In the following discussion, we
shall assume that the equilibrium configuration is three-
dimensional, so that F is positive definite there; the case
of planar equilibria can be handled with some simple
modifications to the formalism, but the Eckart frame is

FIG. 20. The Eckart section S, which is a (3n26)-dimensional
vector subspace of configuration space. The equilibrium fiber
is F0, which is orthogonal to the section at reference configu-
ration Q0. Fiber F1 is another fiber, representing a shape dis-
placed from equilibrium.
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not defined for collinear equilibria.
Since by our assumptions F is nonsingular at the equi-

librium, by continuity it will be nonsingular in some
neighborhood of the equilibrium. Then, according to the
polar decomposition theorem, F (at any point in the
neighborhood) can be factored uniquely into the prod-
uct F5RT, where T is positive definite symmetric and
R is orthogonal. Since F itself is positive definite sym-
metric at the equilibrium and since the polar decompo-
sition is unique, we have R5I at the equilibrium, i.e.,
R is a proper orthogonal matrix at the equilibrium.
Therefore, by continuity, R is a proper orthogonal ma-
trix at all points in the neighborhood where F is nonsin-
gular.

In fact, R is the matrix that rotates the space frame to
body frame, i.e., it is the same R that appears in Eq.
(5.64). This follows because T is the unique positive-
definite square root of FTF, so that R5FT21. Therefore
T5RTF is symmetric and Eq. (5.64) is satisfied. The ma-
trix R provides the usual definition of the Eckart frame.

A different definition of the ‘‘Eckart frame’’ has re-
cently been given by Iwai (1987a, 1987b, 1987c, 1992)
and by Tachibana and Iwai (1986). In our language,
what these authors call the Eckart frame is the parallel-
transported frame, which we discuss in Appendix D.
This frame is not defined as a field over shape space, but
only as a function of time (or other parameter) along a
curve qm(t) in shape space. We believe, however, that
this definition of the Eckart frame is at variance with the
original definition of Eckart (1935), which is used
throughout the literature on molecular vibrations. We
believe that a correct geometrical interpretation of Eck-
art’s original definition is given in terms of sections of
the fiber bundle, as we have described above, so that the
Eckart frame is defined as a field over shape space. On
the other hand, the parallel-transported frame, by what-
ever name, is geometrically compelling and useful in
practice. For example, it has been discovered and used
by Jellinek and Li (1989, 1990) in their recent work on
rotations of atomic clusters.

We turn now to Eckart’s definition of shape coordi-
nates. The geometry underlying this definition is very
simple. Since Eckart’s section S is a (3n26)-dimen-
sional vector subspace of configuration space, which it-
self is a Euclidean space, it is possible to choose 3n26
Euclidean coordinates qm on the section, with an origin
conveniently selected so that qm50 at the equilibrium.
These coordinates can then be interpreted as shape co-
ordinates, due to the one-to-one mapping between
points of shape space and points of the section, although
as discussed earlier the metric gmn on shape space is not
the same as the metric hmn on the section. In fact, in
Euclidean section coordinates, we have hmn5hmn

5dmn , a condition that simplifies somewhat the molecu-
lar Hamiltonian in the form (4.97). Of course, such Eu-
clidean section coordinates are not unique, but are sub-
ject to orthogonal transformations in the 3n26
variables qm; by some choice of such a transformation,
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the quadratic term in the expansion of the potential en-
ergy about the equilibrium position can be diagonalized,
so that

V~q !5V~0 !1
1
2(m vm

2 ~qm!21O„~qm!3
…. (5.66)

When this is done, the qm are normal-mode coordinates
for small-amplitude vibrations, and the vm are the fre-
quencies. In many common molecules, these frequencies
are degenerate.

In such (Eckart) coordinates, the equation of the sec-
tion has the form

rsa5ra~qm!5ra01Famqm, (5.67)

where the coefficients Fam5]ra /]qm are constants.
Thus, in Eckart coordinates, there is a linear relation-
ship between the lab coordinates of reference configura-
tions and the shape coordinates, although this is not true
for other configurations (since the construction of R as a
function of $rsa%, given above, involves nonlinearities).
The relation (5.67) causes the field am to be linear in
qm and the moment of inertia tensor M to be quadratic
in qm; these facts simplify a number of computations.
Given a model for the equilibrium shape of a molecule
and a knowledge of the potential energy in a neighbor-
hood of the equilibrium, it is straightforward to compute
the constants Fam ; methods for doing this are described
by Wilson, Decius, and Cross (1955).

Although the Eckart frame and coordinates are, in
principle, not restricted to small-amplitude vibrations, it
seems that they lose many of their advantages when am-
plitudes are not small (De Celles and Darling, 1969).
This fact diminishes somewhat the interest in an exami-
nation of the global properties of the Eckart frame and
coordinates, about which much could be said. When the
molecular potential energy is stiff only in certain direc-
tions in shape space, but nearly flat in others, as often
happens, a modification of the Eckart conventions due
to Sayvetz is often used (Sayvetz, 1939; Ezra, 1982).

We now discuss the effect of the Eckart conventions
on the form of the Hamiltonian. We speak first of the
classical Hamiltonian. We have previously derived a
manifestly gauge-invariant version of this Hamiltonian,
Eq. (4.92), which by rearranging terms we converted
into an alternate form (4.97). This rearrangement was
valid in any gauge and coordinates, although there is
some simplification in the Eckart gauge and coordinates
due to the relation hmn5hmn5dmn .

We have also derived an expression for the quantum
Hamiltonian, (4.146), which is valid in any gauge and
any coordinates on shape space. However, if we attempt
to rearrange this definition in a manner similar to the
classical rearrangement leading to Eq. (4.97), we find
that there are several new terms that arise due to non-
classical commutators. But if Eckart gauge and coordi-
nates are used, many of these extra terms disappear, and
we are left with

H5 1
2 ~L2K!•M̃21

•~L2K!1 1
2 pmpm1V2~q !1V~q !.

(5.68)
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In this expression, M̃ is defined exactly as in the classical
formulas, Eq. (4.37) or (4.93), and the definition of the
quantum operator K also follows the classical formula
(4.95), with hmn5dmn . Because of the special features of
the Eckart conventions, the terms in Eq. (4.95) com-
mute, and ordering is not an issue.

Finally, the gauge-invariant V2 term in Eq. (5.68) is
defined, as before, by Eq. (4.145), but is here to be spe-
cialized to the Eckart coordinates. In a nontrivial calcu-
lation by Watson (1968), this term was shown to un-
dergo a remarkable simplification in the Eckart
coordinates and gauge, with the final result being

V252
\2

8
TrM̃21. (5.69)

Watson’s result is much simpler than his derivation,
which suggests that a simpler derivation must exist. A
different derivation of Eq. (5.69) has been given by
Louck (1976), but it is also nontrivial.

Using geometric reasoning, we have been able to find
a simpler derivation of Watson’s result. We shall report
on the details of this calculation in future publications,
and only comment here on the basic ideas. Although, as
noted earlier, V2 does not transform as a scalar under
general changes of coordinates on shape space, never-
theless it is easy to see that it does transform as a scalar
under linear (possibly inhomogeneous) changes of coor-
dinates. For example, if one restricts consideration to
gauge surfaces that are vector subspaces of configuration
space upon which linear coordinates are used (we call
these ‘‘linear conventions’’), then V2 can be viewed as a
scalar on this surface. Furthermore, the surface itself is
specified by any three linearly independent vectors or-
thogonal to the surface (or the forms that annihilate the
surface). Therefore the value of V2 must be expressible
in terms of the fiber determining a point on the surface,
and the orthogonal vectors. Following these ideas leads
to a considerable simplification of Watson’s derivation.
It turns out that not all linear conventions lead to as
great a simplification as in Watson’s expression; the Eck-
art linear conventions are special and lead to even
greater simplification.

G. Geometrical meaning of the tensor M̃

We shall now provide a geometrical interpretation of
the tensor M̃, which is defined by Eq. (4.37) or (4.93).
We feel this is important, in view of the frequency with
which this tensor occurs in the molecular physics litera-
ture, in spite of its lack of gauge covariance. Although
most applications of M̃ employ the Eckart conventions,
in the following we shall make no assumptions about
gauge or shape coordinates. In the following we some-
times drop the Dirac brackets when writing vectors,
without distinction; for example, vectors ei and uei& are
the same.

The basic result is

M̃ ij5^f iuf j&, (5.70)
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in which f i , i51,2,3, are the vectors obtained by project-
ing the vectors ei , defined in Eq. (5.53), onto the three-
dimensional space perpendicular to the gauge surface
S. Since the gauge surface in general is not perpendicu-
lar to the fibers, the space perpendicular to the gauge
surface is not the same as the space of vertical vectors
(which the ei span). The general situation is illustrated
in Fig. 21, in which the fiber F passing through a point
P on the gauge surface S is not orthogonal to the sur-
face. Obviously the space perpendicular to the gauge
surface has no gauge-invariant meaning, which explains
the lack of gauge covariance of M̃.

To prove Eq. (5.70), we first introduce projectors P i
and P' parallel and perpendicular to the gauge surface,
respectively. We obtain an expression for P i as follows.
First we note that the vectors fm , defined by

fm5
]

]qm 5em1Am
i e i , (5.71)

are parallel to the gauge surface. On computing the sca-
lar products of these vectors and using ^eiuej&5Mij ,
^eiuem&50, and ^emuen&5gmn , we find

^fmufn&5gmn1Am
i MijAn

j 5hmn , (5.72)

in accordance with Eq. (4.18). Therefore if we decom-
pose an arbitary velocity vector uv& into its components
perpendicular and parallel to the gauge surface,

uv&5uv'&1vmufm&, (5.73)

then we find vm5hmn^fnuv& or

P i5ufm&hmn^fnu. (5.74)

The perpendicular projector is then defined by
P'512P i .

Next, defining uf i& as the perpendicular projections of
uei&, we have

uf i&5P'uei&5uei&2ufm&hmnain , (5.75)

where we use Eqs. (5.74) and the scalar product,

FIG. 21. Illustration of vectors uei& and uf i&. The fiber shown
passes through the gauge surface S at configuration P and is
not orthogonal to the surface. Vectors uei& span the space of
vertical vectors, which are tangent to the fiber. Vectors uf i& are
the projections of uei& onto the normal to the surface. The
tensor M̃ contains the scalar products ^f iuf j&.
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^fmuei&5aim , (5.76)

as follows from Eq. (5.71). Finally, we have

^f iuf j&5^eiuP'P'uej&5Mij2aimhmnajn5M̃ ij , (5.77)

where we use Eq. (4.93) and the fact that P' is idempo-
tent. This proves Eq. (5.70).

VI. CONCLUSIONS

We have attempted to do several things in this review.
First, since most of the fundamental developments in the
gauge theory of deformable, rotating systems have been
carried out by mathematicians and particle physicists,
that is, people who have not worked on applied prob-
lems in the relevant areas, we felt it was important to
master the applied literature and to assess the impact of
the new ideas. This literature is vast, of course, so we
narrowed our focus to the atomic and molecular fields,
with lesser emphasis on nuclear physics. We mostly ne-
glected classical fields such as celestial mechanics.
Within this body of literature we found that the geo-
metrical and specifically gauge-theoretical point of view
is indeed new and that it provides a new perspective
from which to judge both old and new problems within
the theory, as well as the historically accepted solutions
to old problems. For example, we found that the stan-
dard Wilson-Howard-Watson Hamiltonian of molecular
physics is written in a form that almost maximally dis-
guises the geometrical meaning of the various contribu-
tions to the energy, mainly because of the gauge-specific
features of the Eckart conventions. For another ex-
ample, we found that the old question of whether it is
possible to transform away the Coriolis coupling terms
in the Hamiltonian reduces to the question of the van-
ishing of the curvature form (which does not vanish, so it
is impossible to transform away the Coriolis coupling).
We also found that the geometrical perspective simpli-
fies some of the standard theory. For example, the deri-
vation of Watson’s expression for the extra term in the
quantum Hamiltonian, what we call V2 in Eq. (4.147), is
notoriously difficult, and we were able to simplify it.

Second, we attempted to assimilate the more math-
ematical developments in this field from a physicist’s
perspective and to express them in a physicist’s lan-
guage. For example, while it is true that the reduction
theory of Marsden, Weinstein, and others is quite gen-
eral, it nevertheless expresses the reduced Hamiltonian
in terms of such concepts as pullbacks, quotient spaces,
etc., whereas coordinate-based expressions would also
be useful for applications. In the case of the n-body
problem, we believe the reduced Hamiltonian in the co-
ordinate form shown by Eq. (4.92) or the reduced equa-
tions of motion in the form of Eq. (4.77) are new. These
are of course straightforward but necessary develop-
ments.

Third, the gauge-theoretical notation and point of
view suggest a number of issues, which we tried to ad-
dress. For example, we found that simply the use of co-
variant derivatives led to a number of identities satisfied
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by the various fields on shape space, among which are
Eqs. (5.3), (5.6), (5.10), (5.14), and (5.29). We believe all
these identities are new; in most cases, we have found
their proper geometrical interpretation (not given in this
review). Also, the Kaluza-Klein identities are fairly ob-
vious from a gauge-theoretical point of view, and we
have found them useful for various purposes (especially
the one giving the Riemann tensor on shape space in
terms of other fields).

Fourth, we found and worked on a number of new
questions relating to n-body dynamics. These problems
are only mentioned in passing in this review, but this
review forms the background necessary to develop their
solutions. The following is a list of some of these ques-
tions, which we shall discuss more fully in future publi-
cations. First, as mentioned above, we have developed a
simplified derivation of Watson’s expression for V2 and
a generalization of such terms. Second, we have found a
new form for the kinetic-energy operator for the four-
body problem [partially anticipated by Zickendraht
(1969)], in which shape space is fibrated by the democ-
racy group. Thus, shape space itself becomes a principal
fiber bundle (apart from exceptional points), for which,
as it turns out, the curvature vanishes and the base space
is Euclidean. This work was part of a larger study of
gauge fields introduced by particle democracy. Third, we
have shown that the Coriolis tensor satisfies a set of
Yang-Mills field equations with no sources, except for
singularities of the monopole type. This question was
naturally motivated by Iwai’s discovery that the Coriolis
field has a monopole form for the three-body problem.
Fourth, we have found the explicit relation between
Smith’s hyperspherical harmonics and the standard
spherical harmonics for charged-particle motion in a
monopole field (they are essentially identical). Fifth, we
have studied symmetries of the metric in the n-body
problem; this project was motivated by the observation
that in the three-body problem the metric has a higher
symmetry group than the democracy group [SO(3) in-
stead of SO(2)]. We showed that no higher symmetry
exists for n.3. As a part of this work, we have investi-
gated the possibility of diagonalizing the metric for
n54. Sixth, we have investigated the interaction be-
tween the adiabatic gauge potential of Mead and
Truhlar and Berry and the Coriolis gauge potential of
this paper. This same subject has recently been investi-
gated by Tachibana (private communication).

Finally, we should like to raise some other possibili-
ties. Since all physical results must be gauge invariant, it
should be possible to develop gauge-invariant perturba-
tion theory. This would certainly be a new perspective
on problems of rovibrational coupling. The gauge-
theoretical point of view is also relevant to reaction-path
theory and would be a new perspective there as well.
Problems in molecular physics involving internal rotors
or other subsystems with well separated time scales lead
to new kinds of adiabatic processes, which should prop-
erly be described in terms of appropriate gauge groups.
We hope to develop some of these ideas in the future.
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APPENDIX A: CONVENTIONS AND NOTATION

In this paper, 3-vectors are represented in boldface,
e.g., rsa , L, or v, although for vectors of other dimen-
sionality the practice varies. A boldfaced symbol does
not stand for the vector in an abstract or geometrical
sense, but rather for the collection of components of the
abstract vector with respect to some frame. Vectors re-
ferred to the space or inertial frame are indicated with a
subscript s , as in rsa or Ls ; the absence of a subscript s
indicates the body frame, as in ra or L. Components
themselves are indicated in italics, e.g., Li or Lsi .

We represent 333 matrices or tensors in sans serif,
e.g., M or I5 identity, and their components in italics,
e.g., Mij . Where the distinction is relevant, such tensors
have a subscript s when referred to the space frame and
are written without this subscript when referred to the
body frame. The practice varies for matrices or tensors
of other sizes, which are sometimes represented in terms
of their components, e.g., Gab , gmn , or Dab , and some-
times in sans serif, e.g., D.

We denote the complete contraction of two 3-vectors
with a 333 matrix, either with dots or with a transpose
notation for vectors. For example, L•M21

•L is the same
as LTM21L.

The juxtaposition of two 3-vectors is dyadic notation
for a 333 tensor; for example, AmAn

T is the tensor with
i ,j components Am

i An
j . Sometimes we insert a tensor

product symbol ^ to make this more clear, as in
ra ^ ra ;m

T .
Greek indices a , b , etc., at the beginning of the alpha-

bet refer to masses or reduced masses and run from 1 to
n (for vectors like rsa) or from 1 to n21 (for vectors
like rsa); there is no summation implied on these mass
indices. For all other types of indices, a repeated index is
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summed over, although sometimes an explicit summa-
tion sign is provided for clarity.

Greek indices m , n , etc., in the middle of the alphabet
refer to shape coordinates and run from 1 to 3n26.
These indices are always positioned as superscripts or
subscripts to indicate contravariant or covariant trans-
formation laws, respectively, under changes of shape co-
ordinates, and indices are raised and lowered with the
shape-space metric gmn .

Latin indices i , j , etc., in the middle of the alphabet
run from 1 to 3, and refer to the components of Carte-
sian vectors in three-dimensional space, such as rai . The
superscript or subscript position of such indices is not
significant, since only orthogonal transformations on R3

are of interest. The same Latin indices are used for the
components of vectors and tensors involving angular
quantities, such as v, L, M, or Am . In such cases the
basis with respect to which the components are referred
is really a basis in the Lie algebra of the rotation group
SO(3) or its dual, rather than a Cartesian basis in the
single-particle configuration space R3. This distinction is
not large from a notational standpoint, but for angular
vectors and tensors we do, in fact, usually place indices
in contravariant or covariant positions to indicate the
distinction between the Lie algebra and its dual, treating
the moment-of-inertia tensor as a metric. However,
since we consider only orthogonal transformations on
such indices, the superscript or subscript position of the
indices can be safely ignored.

Latin indices a , b , etc., at the beginning of the alpha-
bet run from 1 to 3n23 and are used to index coordi-
nates on the (translation-reduced) configuration space.
The contravariant or covariant position of such indices is
always respected, and indices are raised and lowered
with the metric Gab .

In this paper, we generally view rotation operators, in
a coordinatefree sense, in an active manner, as for ex-
ample the operator that maps the reference orientation
of a system of particles into some actual orientation. In
the process, we imagine an old frame (such as the space
frame) being actively rotated into a new frame (such as
the body frame). When we represent the rotation opera-
tor by a matrix, we use the matrix elements of the op-
erator with respect to the old frame. This convention
gives formulas such as Eq. (3.39), in which the body
components of a vector are mapped by the rotation ma-
trix into the space components (in the opposite order
suggested by the action of the operators). By this con-
vention two successive rotations, number 1 first and
number 2 second, produce the rotation matrix R2R1.
Similar conventions apply when we perform a gauge
transformation, in which an old body frame is mapped
by some rotation operator into a new body frame; thus,
in Eq. (3.42), the matrix S contains the components of
the rotation operator with respect to the old body frame.

We use comma notation for derivatives, e.g.,

Am ,n5
]Am

]qn , (A1)
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and semicolons for covariant derivatives, as illustrated in
Eq. (4.78) and as discussed in Appendix D. The comma
notation is generalized in the case of anholonomic
frames, as explained in Appendix E.

We use square brackets in subscripts to indicate com-
plete antisymmetrization. For example, if Tmn is a (hy-
pothetical) second-rank tensor, then

T [mn]5Tmn2Tnm . (A2)

Similarly, if Tmns is a third-rank tensor, then T [mns] is
the tensor obtained by summing over all 3! permuta-
tions of indices, weighting by the parity of the permuta-
tions. Thus, in the common case in which Tmns is anti-
symmetric in two indices, say, m ,n , the equation
T [mns]50 is equivalent to

Tmns1Tnsm1Tsmn50. (A3)

APPENDIX B: FORMULAS AND NOTATION REGARDING
THE ROTATION GROUP SO(3)

The Lie algebra of SO(3) consists of 333 antisym-
metric matrices, which can be placed in one-to-one cor-
respondence with 3-vectors. If V is any such vector (in
boldface), the associated matrix V (in sans serif) is de-
fined by

Vk5V3k, (B1)

for an arbitrary vector k. Equivalently, we have

Vi52 1
2 e ijkVjk , Vij52e ijkVk (B2)

or

V5S V1

V2

V3

D , V5S 0 2V3 V2

V3 0 2V1

2V2 V1 0
D . (B3)

We denote this association by writing

V↔V. (B4)

This association transforms under rotations according
to

QV↔QVQT, (B5)

where Q is any proper rotation matrix. Another useful
property is that if we have two antisymmetric matrices
V and W corresponding to vectors V and W, respec-
tively, then

@V,W#↔V3W. (B6)

In this paper we avoid the explicit use of Euler angles
as much as possible, but if an explicit convention is
called for, we write

R5Rz~a!Ry~b!Rz~g!, (B7)

where the Euler angles are (a ,b ,g), where all rotations
are interpreted in an active sense, and where the sub-
scripts indicate an axis, e.g., Rz(a) is a rotation about
the z axis by an angle of a . With these conventions, the
relation between the body components of the angular
velocity and the Euler angles themselves is given by
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S v1

v2

v3

D 5S 2sinbcosg sing 0

sinbsing cosg 0

cosb 0 1
D S ȧ

ḃ

ġ
D . (B8)

The components of the matrix shown are the quantities
L(i)

j defined in Eq. (4.33), with i labeling the rows, j the
columns. We note that

detL52sinb , (B9)

which gives us a quantity closely related to the Haar
measure on the group.

APPENDIX C: LAGRANGIAN AND HAMILTONIAN
MECHANICS IN ANHOLONOMIC FRAMES

Consider a configuration space of dimensionality n ,
on which coordinates xm are imposed. Let L(xm, ẋm) be
a Lagrangian.

The velocity ẋm is a contravariant vector, defined at
each point along a trajectory. We suppose we are given a
set of n contravariant vector fields (X(1)

m , . . . ,X(n)
m ),

which are linearly independent at each point in some
region of interest. These vector fields constitute a viel-
bein or anholonomic frame. The parentheses around the
lower index of X(a)

m are a reminder that this index labels
the vector fields and is not a component index. The up-
per index is the usual contravariant index. Since the
members of the vielbein are linearly independent, an ar-
bitrary contravariant vector, such as ẋm, can be repre-
sented as a linear combination of them,

ẋm5vaX ~a!
m , (C1)

where the va are the expansion coefficients and where
the fields X(a)

m are evaluated at the point where ẋm is
measured. The va are the components of the velocity
with respect to the vielbein, i.e., they are the anholo-
nomic components of the velocity.

We solve Eq. (C1) for va,

va5Lm
~a!ẋm, (C2)

where Lm
(a) forms a matrix in (am) that is inverse to

X(a)
m

Lm
~a!X ~b!

m 5db
a , X ~a!

m Ln
~a!5dn

m . (C3)

We regard Lm
(a) as constituting a set of n linearly

independent covariant vector (covector) fields,
(Lm

(1) , . . . ,Lm
(n)), in terms of which an arbitrary covector

can be expanded. These fields constitute the dual basis
(dual to the vielbein). For example, the canonical mo-
mentum pm5]L/] ẋm is a covector, and we write

pm5paLm
~a! , (C4)

where the expansion coefficients pa are regarded as the
anholonomic components of the momentum or compo-
nents with respect to the dual basis.

Under a coordinate transformation, the velocity ẋm

transforms as a contravariant vector,
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ẋm5
]xm

]x8n ẋ8n, (C5)

as do the elements of the vielbein,

X ~a!
m 5

]xm

]x8nX ~a!8n . (C6)

These are consistent with Eq. (C1) only if the va do not
change. This is correct: the components va are associ-
ated with the vielbein itself, not with any coordinate sys-
tem.

On the other hand, there may exist a coordinate sys-
tem, say x8m, for which X(a)8m 5da

m , so that va5 ẋ8a. In
this case, the vielbein is said to be a coordinate basis. In
a given coordinate system it may not be obvious whether
a given vielbein is a coordinate basis, i.e., whether a co-
ordinate transformation xm→x8m exists such that
X(a)8m 5da

m . According to a basic theorem of differential
geometry, however, the vielbein is a coordinate basis if
and only if the Lie brackets among themselves of the
vector fields constituting the vielbein vanish, i.e.,

@X ~a! ,X ~b!#50, (C7)

for a ,b51, . . . ,n . The Lie bracket of any two contra-
variant vector fields Xm and Ym is another such vector
field, defined by

@X ,Y#m5Xn
]Ym

]xn 2Yn
]Xm

]xn . (C8)

Whether or not the Lie brackets among themselves of
the members of the vielbein vanish, they are certainly
contravariant vector fields and as such can be repre-
sented as linear combinations of the members of the
vielbein. That is, we can write

@X ~a! ,X ~b!#5cab
g X ~g! . (C9)

The expansion coefficients cab
g are the structure con-

stants associated with the vielbein. They are not really
constants and in general are functions of position xm.

Certain differential geometric notation is useful for
subsequent developments. We let Xm and Ym be contra-
variant vector fields, Am be a covariant vector field, and
Bmn be a covariant tensor field. We regard Am as an
operator that acts on contravariant vector fields, and
Bmn as an operator that acts on pairs of such vector
fields, defined by

A~X !5AmXm, B~X ,Y !5BmnXmYn. (C10)

In particular, for the members of a vielbein and its dual
basis, we have

L~a!~X ~b!!5db
a . (C11)

We also write dA for the exterior derivative of Am , a
second-rank, antisymmetric, covariant tensor defined by

~dA !mn5
]An

]xm 2
]Am

]xn . (C12)

The d in dA does not indicate anything infinitesimal.
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With this notation, we have the following useful iden-
tity concerning a vielbein and its dual basis:

dL~a!~X ~b! ,X ~g!!52L~a!~@X ~b! ,X ~g!# !52cbg
a .

(C13)

The proof is straightforward; we write out the left-hand
side in components and use the derivatives of Eqs. (C3)
to shift derivatives from the L(a) to the X(a) :

dL~a!~X ~b! ,X ~g!!5~Ln ,m
~a! 2Lm ,n

~a! !X ~b!
m X ~g!

n

52Ln
~a!X ~b!

m X ~g!,m
n

1Lm
~a!X ~b!,n

m X ~g!
n

52L~a!~@X ~b! ,X ~g!# !

52cbg
s L~a!~X ~s!!52cbg

a . (C14)

We now transform the Lagrangian from the
coordinate-based velocity components ẋm to the vielbein
components va,

L~xm, ẋm!5L̄ ~xm,va!, (C15)

where we put an overbar on L̄ to indicate the new inde-
pendent variables. Our object is to express the Euler-
Lagrange equations purely in terms of the vielbein quan-
tities va, pa , without reference to the coordinate-based
quantities ẋm, pm . First we note that

pm5
]L

] ẋm
5

]L̄

]va

]va

] ẋm
5Lm

~a!
]L̄

]va . (C16)

But by Eq. (C4), this implies

pa5
]L̄

]va . (C17)

Next, to obtain the Euler-Lagrange equations in vielbein
form, we differentiate Eq. (C4) and use the usual Euler-
Lagrange equations,

ṗm5ṗaLm
~a!1paLm ,n

~a! ẋn

5
]L

]xm 5
]L̄

]xm 1
]L̄

]va

]va

]xm 5
]L̄

]xm 1paLn ,m
~a! ẋn. (C18)

In this we use Eq. (C1) to eliminate ẋn in favor of vb, we
multiply through by X(g)

m to solve for ṗa , and we use
Eqs. (C12) and (C13) to write the result in terms of the
structure constants. Finally, juggling indices, we have

ṗa5X ~a!
m ]L̄

]xm 2cab
g vbpg . (C19)

These, combined with Eq. (C17), are the anholonomic
versions of the Euler-Lagrange equations. The first term
on the right-hand side of Eq. (C19) is just the covector
]L̄ /]xm, expressed in terms of the dual basis, but the
second term, containing the structure constants, has no
analog in a coordinate basis.

Now we convert Hamiltonian mechanics to an anholo-
nomic basis. We first express the definition of the Hamil-
tonian in terms of the vielbein quantities va, pa ,
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H5pmẋm2L~xm, ẋm!5pava2L̄ ~xm,va!, (C20)

and then we think of the Hamiltonian as a function of
(xm,pa) instead of the usual (xm,pm). The Hamiltonian
is the same as the usual one, but is expressed in terms of
the noncanonical variables (xm,pa). Therefore Hamil-
ton’s equations in the usual sense cannot be used.

Instead, we must work with Poisson brackets. The
Poisson bracket is the usual one,

$f ,g%5
]f

]xm

]g

]pm
2

]f

]pm

]g

]xm , (C21)

but we must express everything in terms of (xm,pa). For
example, for the Poisson brackets of the coordinates
among themselves, we find

$xm,xn%50, $xm,pa%5X~a!
m , $pa ,pb%52cab

g pg ,
(C22)

where the final bracket requires a short calculation.
Given these, the Poisson bracket of any two functions
can be expressed purely in terms of the coordinates
(xm,pa). We simply use the chain rule property of Pois-
son brackets, so that

$f ,g%5
]f

]xm $xm,xn%
]g

]xn 1
]f

]xm $xm,pa%
]g

]pa

1
]f

]pa
$pa ,xm%

]g

]xm 1
]f

]pa
$pa ,pb%

]g

]pb

(C23)

or

$f ,g%5X ~a!
m S ]f

]xm

]g

]pa
2

]f

]pa

]g

]xmD2cab
g pg

]f

]pa

]g

]pb
.

(C24)
In particular, we can put Hamilton’s equations into Pois-
son bracket form, ẋm5$xm,H%, ṗa5$pa ,H%, or

ẋm5X ~a!
m ]H

]pa
, (C25)

ṗa52X ~a!
m ]H

]xm 2cab
g pg

]H

]pb
. (C26)

The first of these can be transformed to the vielbein ba-
sis, whereupon it becomes

va5
]H

]pa
. (C27)

APPENDIX D: COVARIANT DERIVATIVES

In this Appendix we explain the geometrical meaning
of covariant derivatives of tensors with R indices, and
then we give rules for forming covariant derivatives in
general. We assume a familiarity with covariant deriva-
tives in the differential geometry of Riemannian mani-
folds, and we only emphasize the properties that are
new from the standpoint of this background.

Covariant derivatives of tensors or tensor fields with
R indices are illustrated in Eqs. (4.70) and (4.78). The
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geometrical meaning of such covariant derivatives is
based on the notion of a parallel-transported body
frame, which can be explained as follows. Suppose we
have a motion qm(t) taking place in shape space with
L50, and suppose body frames are defined as a field
over shape space in the usual manner. Then by Eq.
(3.58) we have v52Amq̇m. But since v is not gauge
invariant, we ask whether it can be transformed away by
a redefinition of body frames. We make this redefinition,
not as a field over shape space, but only as a function of
time along the given orbit qm(t). Therefore the orthogo-
nal matrix S which maps the old body frame to the new
one is a function only of t , not (as elsewhere in the pa-
per) of qm. Instead of Eq. (3.72) we have

V5SV8ST1SṠT, or, since V52Amq̇m and V850, we

obtain Ṡ5(Amq̇m)S. The solution is a path-ordered ex-
ponential,

S~ t !5FPexpE
q0

q~ t !
AmdqmGS0 . (D1)

Although this equation does define the required S as a
function of t along the given orbit, it cannot be used to
define S as a field over shape space [say, by regarding
the end point q(t) as a variable, with curves joining it to
some fixed initial point q0], because the path-ordered
exponential is path dependent. The new body frame, re-
lated to the old one along the curve by S(t), is the
parallel-transported body frame. We may wish to choose
S05I, so that the parallel-transported frame and the
original frame are identical at the initial point.

As explained below, Eq. (4.71), the ordinary time de-
rivative of a vector such as L, is not gauge covariant,
because L(t01dt) and L(t0) are referred to two differ-
ent body frames at points q0

m and q0
m1dqm. But if we

refer the angular momentum at time t01dt to the body
frame that is parallel transported from qm to qm1dqm,
then the limit gives a gauge-covariant result. That is, we
solve Eq. (D1) over an infinitesimal segment with
S05S(t0)5I at q0

m , so that

S~ t01dt !5I1Amdqm. (D2)

Then, using a prime to denote components with respect
to the new (parallel-transported) frame, as in Eq. (3.67),
we have

L8~ t1dt !5S~ t1dt !TL~ t1dt !

5L~ t !1dtS dL
dt

2AmLD . (D3)

Finally, the covariant time derivative is defined by

DL
Dt

5
L8~ t1dt !2L~ t !

dt
5

dL
dt

2Am3L. (D4)

Similarly, we can modify the directional derivative of a
tensor field over shape space, such as in Eq. (4.79), by
evaluating the field at the displaced point with respect to
the parallel-transported frame. This produces a direc-
tional covariant derivative; for example, Eq. (4.79) be-
comes
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lim
e→0

1
e

@M821~qm1ejm!2M21~qm!#5jmM;m
21 , (D5)

where again the prime indicates components with re-
spect to the parallel-transported frame.

These considerations suffice to define the covariant
derivative in general and lead to the following rules.
First, if a tensor field over shape space has only q indices
(no R indices), then the covariant derivative is formed in
the usual way in Riemannian geometry, with one correc-
tion term involving the Christoffel symbols for each q
index. If a tensor field over shape space has only R in-
dices (no q indices), then the covariant derivative is
equal to the ordinary derivative plus one correction
term, involving Am or Am , for each R index. An example
will show the pattern. If Fijk is a (hypothetical) third-
rank true R tensor over shape space, then

Fijk ;m5Fijk ,m2Amil F l jk2Amjl Fil k2Amkl Fijl ,
(D6)

where Amij are the components of the antisymmetric ma-
trix Am . It does not matter whether the R indices are
upper or lower (contravariant or covariant), since our
gauge transformations are always represented by or-
thogonal transformations.

For example, the covariant derivative of an object
with no indices (a true scalar) has no correction terms
and is identical to the ordinary derivative. Thus, the gra-
dient of the potential seen in the equations of motion
(4.77) is a covariant derivative, V ,m5V ;m . Next, in the
case of a vector field over shape space, say X5X(q), we
have Xi ;m5Xi ,m2AmijXj or

X;m5X,m2Am3X. (D7)

In the case of a second-rank tensor field, say, F5F(q),
we have

Fij ;m5Fij ,m2AmikFkj2AmjkFik , (D8)

or

F;m5F,m2@Am ,F# . (D9)

We discovered a special case of this formula, with
F5M21, in deriving the equations of motion, but the
same formula applies to any second-rank tensor field
(the symmetry of M21 does not matter).

If a tensor field has both R indices and q indices, then
the covariant derivative has one correction term with
Am for each R index and one with Gst

m for each q index.
For example, the covariant derivative of the Coriolis
tensor is

Bmn ;s5Bmn ,s2As3Bmn2Gsm
t Btn2Gsn

t Bmt . (D10)

If a tensor is defined not as a field over shape space,
but only as a function of time along an orbit qm(t), then
the covariant time derivative D/Dt is equal to the ordi-
nary time derivative plus one correction term in Am for
each R index and one in Gst

m for each q index, in which
the lower index on Am or one of the lower indices on
Gst

m is contracted with q̇m. These rules are illustrated by
Eqs. (4.70) and (4.72).



273R. G. Littlejohn and M. Reinsch: Gauge fields . . . in the n-body problem
The covariant derivative of a tensor product or con-
traction obeys the Leibnitz rule. For example,

~MijBmn
j ! ;s5Mij ;sBmn

j 1MijBmn ;s
j . (D11)

In particular, since the covariant derivative of the metric
tensor gmn vanishes, the formation of covariant deriva-
tives commutes with the raising and lowering of indices.

Further rules are the following. The covariant deriva-
tive of the identity tensor vanishes, I;m50, as does the
covariant derivative of the Levi-Civita tensor, e ijk ;m50.
The covariant derivative commutes with the operator
↔ , so that if V↔V, then

V;m↔V;m . (D12)

Multiple covariant derivatives do not commute, but
their commutator involves the Coriolis curvature tensor
or the Riemann curvature tensor. For example, let X be
a vector field (one R index), T be a second-rank tensor
field (two R indices), and Ym a tensor with one R index
and one covariant q index. Then we have

X;[mn]5Bmn3X, (D13)

T;[mn]5@Bmn ,T# , (D14)

Ym ;[ns]5Bns3Ym1Rt
mnsYt , (D15)

where the Rt
mns is the Riemann tensor, defined in Eq.

(E1).

APPENDIX E: THE RIEMANN TENSOR

In this appendix we summarize our conventions for
the Riemann tensor and we present the principal equa-
tions satisfied by it. We do this first in a coordinate basis
and then in an anholonomic basis. In all of this we fol-
low the conventions of Misner, Thorne, and Wheeler
(1973), although in this paper we are interested in met-
rics that are positive definite, and those authors are in-
terested in the indefinite metric of relativity theory.

We begin with some Riemannian manifold with met-
ric gmn upon which coordinates xm are imposed. In the
applications of interest to this paper, the manifold could
be either the (translation-reduced) configuration space
or shape space. The Christoffel symbols are defined as in
Eq. (4.73); in terms of them, the Riemann tensor is de-
fined by

Rm
nst5Gtn ,s

m 2Gsn ,t
m 1Gsk

m Gtn
k 2Gtk

m Gsn
k . (E1)

The Riemann tensor satisfies the symmetry relations

Rmnst5Rstmn , (E2)

Rmnst52Rnmst52Rmnts51Rnmts , (E3)

Rm[nst]50. (E4)

Finally, it satisfies the Bianchi identity,

Rmn[st ;k]50. (E5)

The Ricci tensor is defined by

Rmn5Rs
msn5Rnm , (E6)
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and the curvature scalar by

R5Rm
m . (E7)

All of the above formulas refer to the coordinate basis
xm. We also need equivalents of these formulas in an
anholonomic basis. We let the anholonomic basis of vec-
tor fields be e m̄ with coordinate basis components e m̄

n ,
where anholonomic indices are indicated by an overbar
(the analog of the parenthesized indices used elsewhere
in the paper). Thus the structure constants are defined
by

@e m̄ ,e n̄#5c m̄n̄
t̄ e t̄ . (E8)

The dual basis of covectors or forms is sm̄ with coordi-
nate basis components sn

m̄ so that

sm̄~e n̄ !5dn
m . (E9)

We extend the comma notation to anholonomic indices
to indicate the action of the basis vectors, regarded as
differential operators. For example, we set

S ,m̄5e m̄S5e m̄
n ]S

]xn . (E10)

The components of the connection (anholonomic
equivalents of the Christoffel symbols) are defined by

¹m̄e n̄5Gn̄m̄
t̄ e t̄ , (E11)

where ¹X is the directional covariant derivative along
vector field X , and where ¹m̄ is the directional covariant
derivative along basis vector e m̄ . An equivalent formula
is

¹m̄st̄52Gn̄m̄
t̄ sn̄. (E12)

From these one can express the components of the con-
nection in terms of the anholonomic components of the
metric and the structure constants; the result is

Gn̄m̄
t̄ 5 1

2 g t̄ k̄~g k̄ n̄ ,m̄1g k̄m̄ , n̄2g m̄n̄ ,k̄1g n̄ l̄c k̄m̄
l̄ 1g m̄l̄c k̄ n̄

l̄

1g k̄l̄c m̄n̄
l̄ !. (E13)

We note that in an anholonomic basis G is not necessar-
ily symmetric in the lower two indices.

The covariant components of vectors and covectors
are given by

X m̄
; n̄5X m̄

, n̄1Gt̄n̄
m̄ X t̄, (E14)

A m̄ ; n̄5A m̄ , n̄2Gm̄n̄
t̄ A t̄ , (E15)

which make the rules for tensors of other ranks clear.
These are the same formulas as in a coordinate basis,
except for the care which must be exercised in the posi-
tioning of the lower two indices of G .

Finally, the Riemann tensor itself is given by

R m̄
n̄s̄ t̄5Gn̄t̄ ,s̄

m̄ 2Gn̄s̄ , t̄
m̄ 1Gk̄s̄

m̄ Gn̄t̄
k̄ 2Gk̄t̄

m̄ Gn̄s̄
k̄ 2c s̄ t̄

k̄ Gn̄k̄
m̄ ,

(E16)

which differs from the coordinate basis formula (E1) by
the presence of the final term and the care that must be
exercised in the positioning of the lower two indices of
G .
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Math. Phys. 6, 1571.
Lin, F. J., and J. E. Marsden, 1992, J. Math. Phys. 33, 1281.
Littlejohn, Robert G., 1994, in Coherent States: Past, Present

and Future, edited by John Klauder (World Scientific, Sin-
gapore, 1994), pp. 279–300.

Littlejohn, Robert G., and Matthias Reinsch, 1995, Phys. Rev.
A 52, 2035.

Louck, James D., 1976, J. Mol. Spec. 61, 107.
Louck, James D., and Harold W. Galbraith, 1972, Rev. Mod.

Phys. 44, 540.
Louck, James D., and Harold W. Galbraith, 1976, Rev. Mod.

Phys. 48, 69.
Lubkin, E., 1963, Ann. Phys. (N.Y.) 23, 233.
Lukka, Tuomas J., 1995, J. Chem. Phys. 102, 3945.
Macek, J., 1968, J. Phys. B 1, 831.
Marsden, Jerrold E., 1992, Lectures on Mechanics, London

Mathematical Society Lecture Note Series No. 174 (Cam-
bridge University Press, Cambridge, England).

Marsden, Jerrold E., and Tudor S. Ratiu, 1994, Introduction to
Mechanics and Symmetry (Springer, New York).

Mead, C. Alden, 1992, Rev. Mod. Phys. 64, 51.
Mead, C. Alden, and Donald G. Truhlar, 1979, J. Chem. Phys.

70, 2284.
Messiah, Albert, 1966, Quantum Mechanics (North-Holland,

Amsterdam).
Meyer, R., and Hs. H. Günthard, 1968, J. Chem. Phys. 49,

1510.
Mezey, Paul G., 1987, Potential Energy Hypersurfaces

(Elsevier, Amsterdam).
Mezey, Paul G., 1993, Shape in Chemistry (VCH Publishers,

New York).
Misner, Charles W., Kip S. Thorne, and John Archibald

Wheeler, 1973, Gravitation (Freeman, San Francisco).
Montgomery, R., 1991, in The Geometry of Hamiltonian Sys-

tems, edited by Tudor Ratiu (Springer, New York), p. 403.
Montgomery, Richard, 1993, in Dynamics and Control of Me-

chanical Systems, edited by Michael J. Enos (American Math-
ematical Society, Providence, RI), p. 193.

Nakahara, Mikio, 1990, Geometry, Topology, and Physics
(Hilger, New York).

Narasimhan, M. S., and T. R. Ramadas, 1979, Commun. Math.
Phys. 67, 121.

Nash, Charles, and Siddhartha Sen, 1983, Topology and Geom-
etry for Physicists (Academic, New York).

Pack, Russell T., 1994, Advances in Molecular Vibrations and
Collision Dynamics 2A, 111.

Pack, Russell T., 1995, private communication.
Pack, Russell T., and Gregory A. Parker, 1987, J. Chem. Phys.

87, 3888.
Palmore, Julian I., 1973, Bull. Am. Math. Soc. 79, 904.
Pickett, Herbert M., 1972, J. Chem. Phys. 56, 1715.



275R. G. Littlejohn and M. Reinsch: Gauge fields . . . in the n-body problem
Podolsky, Boris, 1928, Phys. Rev. 32, 812.
Sakurai, J. J., 1985, Modern Quantum Mechanics (Benjamin/

Cummings, Menlo Park, CA).
Sayvetz, A., 1939, J. Chem. Phys. 7, 383.
Schatz, George C., and Aron Kuppermann, 1976, J. Chem.

Phys. 65, 4642.
Shapere, Alfred, and Frank Wilczek, 1987, Phys. Rev. Lett. 58,

2051.
Shapere, Alfred, and Frank Wilczek, 1989a, Editors, Geomet-

ric Phases in Physics (World Scientific, Singapore).
Shapere, Alfred, and Frank Wilczek, 1989b, Am. J. Phys. 57,

514.
Shapere, Alfred, and Frank Wilczek, 1989c, J. Fluid Mech. 198,

557.
Shapere, Alfred, and Frank Wilczek, 1989d, J. Fluid Mech.

198, 587.
Smale, S., 1971, in Manifolds - Amsterdam 1970, Lecture Notes

in Mathematics No. 197, edited by Nicolaas H. Kuiper
(Springer, Berlin), p. 194.

Smirnov, Yu. F., and K. V. Shitikova, 1977, Sov. J. Part. Nucl.
8, 344.

Smith, Felix T., 1959, J. Chem. Phys. 31, 1352.
Smith, Felix T., 1960, Phys. Rev. 120, 1058.
Smith, Felix T., 1962, J. Math. Phys. 3, 735.
Sudarshan, E. C. G., and N. Mukunda, 1974, Classical Dynam-

ics: A Modern Perspective (Wiley, New York).
Sutcliffe, B. T., 1980, in Quantum Dynamics of Molecules, ed-

ited by R. G. Wooley (Plenum, New York), p. 1.
Sutcliffe, Brian T., and Jonathan Tennyson, 1986, Mol. Phys.

58, 1053.
Rev. Mod. Phys., Vol. 69, No. 1, January 1997
Sutcliffe, Brian T., and Jonathan Tennyson, 1991, Int. J.
Quant. Chem. 39, 183.

Tachibana, Akitomo, and Toshihiro Iwai, 1986, Phys. Rev. A
33, 2262.

Tennyson, Jonathan, and Brian T. Sutcliffe, 1982, J. Chem.
Phys. 77, 4061.

Visconti, A., 1992, Introductory Differential Geometry for
Physicists (World Scientific, Singapore).

Watson, James K. G., 1968, Mol. Phys. 15, 479.
Weinberg, Steven, 1972, Gravitation and Cosmology: Prin-

ciples and Applications of the General Theory of Relativity
(Wiley, New York).

Whittaker, E. T., 1960, A Treatise on the Analytical Dynamics
of Particles and Rigid Bodies (Cambridge University, Cam-
bridge, England).

Whitten, R. C., and F. T. Smith, 1968, J. Math. Phys. 9, 1103.
Wilson, E. Bright Jr., J. C. Decius, and Paul C. Cross, 1955,

Molecular Vibrations: The Theory of Infrared and Raman Vi-
brational Spectra (McGraw-Hill, New York).

Wilson, E. Bright Jr., and J. B. Howard, 1936, J. Chem. Phys. 4,
260.

Wong, S. K., 1970, Nuovo Cimento 65, 689.
Wu, T. T., and C. N. Yang, 1975, Phys. Rev. D 12, 3845.
Zickendraht, W., 1965, Ann. Phys. (N.Y.) 35, 18.
Zickendraht, W., 1967, Phys. Rev. 159, 1448.
Zickendraht, W., 1969, J. Math. Phys. 10, 30.
Zickendraht, W., 1971, J. Math. Phys. 12, 1663.
Zwanziger, Josef W., Marianne Koenig, and Alexander Pines,

1990, Annu. Rev. Phys. Chem. 41, 601.


