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BIFURCATIONS OF RELATIVE EQUILIBRIA*

MARTIN KRUPA

Abstract. This paper discusses the dynamics and bifurcation theory of equivariant dynamical systems
near relative equilibria, that is, group orbits invariant under the flow of an equivariant vector field. The
theory developed here applies, in particular, to secondary steady-state bifurcations from invariant equilibria.
Let F be a compact group of symmetries of R and let x0 be in R n. Suppose that f is a smooth F-equivariant
vector field and E the isotropy group of x0. It is shown that there exists a E-equivariant vector field fN,
defined on the space normal to X at x0, and that the local asymptotic dynamics off are closely related to
the local asymptotic dynamics of fN. Next those bifurcations of X are studied which occur when an
eigenvalue of (dfrv)x crosses the imaginary axis. Properties of the vector field f imply that branches of
equilibria and periodic orbits offN correspond to trajectories off which are dense in tori. Field [Equivariant
dynamical systems, Trans. Amer. Math. Soc., 259 (1980), pp. 185-205] found bounds on the dimensions of
these tori. Some of his results are extended. This theory is applied to the following specific problems:

(1) Bifurcations of systems with 0(2) symmetry.
(2) Bifurcations of steady-state solutions of the Kuramoto-Sivashinsky equation.
(3) Secondary bifurcations in the planar B6nard problem.
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Introduction. In this work we discuss the dynamics and bifurcation theory of
equivariant dynamical systems near group orbits invariant under the action of the flow.
Such group orbits are called relative equilibria. The simplest example of a relative
equilibrium is a group orbit of equilibria. A group orbit of equilibria can be character-
ized as a relative equilibrium on which the flow is trivial. The symmetry groups we
consider are compact and have positive dimension, so, in particular, they must contain
a subgroup isomorphic to SO(2). For such groups the flow trajectories on the relative
equilibria can be nontrivial. A well-known example of such nontrivial trajectories on
relative equilibria are rotating waves, that is, solutions given by x(t)= O(t)Xo, where
O(t) parametrizes SO(2).

A special case of a relative equilibrium is an invariant equilibrium, that is, an
equilibrium invariant under all the symmetries of the system. Such equilibria often
arise in applications, and their bifurcations have been extensively studied. Often
bifurcations of invariant equilibria are characterized by symmetry breaking; that is,
the invariant equilibrium bifurcates to branches of equilibria no longer invariant under
the action of the symmetry group. In other words, nontrivial relative equilibria often
occur as a result of bifurcations of invariant equilibria. In this context bifurcations of
relative equilibria correspond to secondary bifurcations from an invariant equilibrium.

Let X be a group orbit of equilibria of an equivariant vector field f. If X has
positive dimensions, then the conditions determining whenf can undergo a bifurcation
near X are quite different than in the case of an invariant equilibrium. In particular,
no element of X can be hyperbolic, since the directions along the group orbit must
be neutrally stable. More precisely, for any x X the tangent space TxX is contained
in the kernel of the derivative (df)x. It follows that X will be normally hyperbolic if
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(df)x has no purely imaginary eigenvalues and the algebraic multiplicity of zero as
an eigenvalue of (df)x equals the dimension of TX. A bifurcation of X will occur if
(df), has an eigenvalue on the imaginary axis whose (generalized) eigenvector is not
contained in the tangent space of X.

An interesting phenomenon has been observed in examples of bifurcations of
relative equilibria" an orbit of equilibria can lose stability by having an eigenvalue
passing through zero and bifurcate to a group orbit consisting of nontrivial flow
trajectories. The flow on the new relative equilibria is a slow drift given by the action
of a curve of group elements. Several authors, who studied bifurcations of relative
equilibria, found that the resulting dynamics could be described in terms of dynamics
related to standard bifurcations modulated by a drift along the group orbit. The
following articles focused on bifurcations of relative equilibria where this feature has
been observed. Chossat [1986] has shown that the bifurcation of standing waves in
the problem of degenerate Hopfbifurcation with 0(2) symmetry leads to quasi-periodic
motion on a group invariant two-dimensional torus. Iooss [1986] has shown that a
Hopf-Hopf mode interaction in the Taylor-Couette problem (O(2) SO(2) symmetry)
leads to a three-frequency flow. Danglemayr [1986] has found a rotating wave in the
problem of steady-state mode interaction with 0(2) symmetry. Chossat and Golubitsky
1988] have studied a related problem of Hopf bifurcation of a group orbit of standing
waves and have discovered that this bifurcation leads to a three-frequency motion,
with one of the frequencies given by the drift along the orbit. In their paper Chossat
and Golubitsky have formulated the following theorem: the flow near a relative
equilibrium can be decomposed into the flow in the direction along the orbit and the
flow in the direction normal to the orbit. The precise statement and the proof of this
theorem is the starting point of this work.

Section 1 of the paper contains some background information on Lie group theory.
The remaining part of the paper is divided into two parts. The first part, 2-5, is
devoted to the theoretical aspects of the problem. The second part, 6-8, focuses on
specific group actions and specific dynamical systems and is designed to show the
application of the ideas developed in the first part. The reader more interested in the
second part of the paper will only need to know the definitions and the statements of
theorems contained in the first part. The following is a brief description of the topics
discussed in each of the sections.

In 2 we give a precise description ofhow the previously mentioned decomposition
of the vector field can be accomplished. We show that near relative equilibria the
vector field can be written as a sum of equivariant components: one tangent to the
group orbits and the other normal to the original orbit X (Theorem 2.1). As a
consequence of this decomposition each bounded solution near a relative equilibrium
is contained in the group orbit of a solution of the normal vector field fN (Theorem
2.2). In the remainder of 2 we show that the asymptotic dynamics of f can be
determined by the asymptotic dynamics of the normal vector field modulo drifts along
the orbit. Some results of 2, including an alternative proof of Theorem 2.1, can be
found in Vanderbauwhede, Krupa, and Golubitsky [1989].

The results of 2 imply that bifurcations of f can be analyzed in two steps. The
first step is to describe bifurcations of the normal vector field fN and the second step
is to find the corresponding drifts along group orbits. Let x be in X. In 3 we argue
that generic bifurcations of fN can be described as bifurcations of a generic Z-
equivariant vector field, where Z is the isotropy subgroup of x.

Suppose that f describes a family of vector fields, rather than a single vector field.
In 4 we study bifurcations of relative equilibria occurring when an eigenvalue of
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(dfN)x passes through zero. We analyze the case when a relative equilibrium X
bifurcates to another relative equilibrium Y. Let y Y, let E be the isotropy subgroup
of y and N(E) the normalizer of E. Field [1980] proves a theorem stating that the
flow on Y is given by a linear flow on a torus whose dimension is bounded by, and
generically equal to, rank (N(E)/E) (rank (N(E)/E) equals the dimension of a maximal
torus in N(E)/E). The main theorem of 4 (Theorem 4.1’) states that there exists a
generic set of perturbations of f whose elements have the following property: for all
except countably many values of the parameter the dimension of the flow on Y is
maximal.

In 5 we study Hopf bifurcations of relative equilibria, that is, bifurcations
occurring when an eigenvalue of (dfN)x passes through a nonzero point on the
imaginary axis. We apply the standard Hopf bifurcation theorems to find periodic
solutions of the normal component fn. Let Y be a periodic orbit of fn and let E be
the isotropy subgroup of the elements of Y. Field [1980] shows that the corresponding
trajectories of f are dense in tori whose dimension is bounded by rank (N(E)/E)+ 1.
Let be the group consisting of all the symmetries that leave Y invariant. In Theorem
5.1 we derive a new bound, given by rank (N(E)/E)+ 1 and show that this bound is
attained for a generic vector field. Next, in Theorem 5.2, we consider a family of vector
fields f, such that fn has a Hopf bifurcation and show that there exists a generic set
of perturbations of f whose elements are such that for all except countably many
values of the parameter the dimension of the flow on the manifolds F Y is maximal.

In 6 we present a classification of generic secondary steady-state and Hopf
bifurcations with symmetry group 0(2). In this context bifurcations of the normal
vector field correspond to steady-state and Hopf bifurcations with Ok symmetry. Using
the results of 3 and 4 we determine for which bifurcations of the vector field fn the
bifurcating solutions of the full vector field f generically have nontrivial drift along
group orbits.

In 7 we analyze bifurcations of the zero solution of the Kuramoto-Shivashinsky
equation, which has 0(2) symmetry. We summarize the results of a computer-assisted
study done by Kevrekedis, Nicolaenco, and Scovel 1988] and compare their numerical
results with the predictions of 0(2) bifurcations, as described in 6.

In 8 we classify the possible generic steady-state bifurcations in the planar B6nard
problem. The generic primary bifurcations in the B6nard problem are to two types of
equilibria: hexagons (with symmetry D6) and rolls (with symmetry O(2)0)Z2). We
consider secondary steady-state bifurcations of hexagons and rolls and show that the
resulting trajectories are either equilibria or rotating waves.

1. Preliminaries. Let F be a compact Lie group. We consider a smooth linear
action of F on R n. With no loss of generality we can assume that this action is orthogonal
and hence identify F with a subgroup of O(n) (see Bredon [1972, I, 3.5]). Let X be
a compact and F-invariant submanifold of R n. For x X let N be the set of vectors
normal to X. Note that N is a vector subspace of R n, since it passes through zero.
Let N(X) be the bundle with base space X and fibers N; N(X) is called the normal
bundle of X. The bundle N(X) is smooth (see Guillemin and Pollack [1974, p. 71]).
The action of F on N(X) is defined by the formula y(x, v) (yx, yv). To see that this
action is well defined observe that the orthogonality of the action of F implies that
yN, N,x. Let/3 N(X) R" be defined as/3((x, u)) x + u. It is easy to see that the
map /3 is F-equivariant and a local diffeomorphism. It follows that an invariant
neighborhood of X in R" can be identified, via the map/3, with a neighborhood of
the zero section in N(X). For x X let N {(x, v): v N}. Note that N c N(X)
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and the image of Nx under fl is in Nx. Given a F-equivariant vector field f" R" - Rlet fl*f be defined by *f(y)=[d(y]-lf((y)), y N(X). The map fl*f is called
the pullback of f to N(X). Let x R" and X Fx. It follows that studying local
dynamics off near x is equivalent to studying the dynamics of its pullback to N(X).

For x R" (or N(X)) let

;x {F: rx= x}
be the isotropy subgroup of x.

The homogeneous space F/Z is not, in general, a group, but it has the structure
of a smooth manifold and the quotient map r:y- yZ is a surjection (see Bredon
[1972, p. 302]). The map yEx- ,/x is a ditteomorphism between F/Ex and the orbit
Fx of x (see Bredon [1972; VI, 1.2]). Fix x R" and let Z Ex. Suppose that there
exists a neighborhood U of eE in F/; and a map r: U-* F such that rr(u)= u for
all u e U. The map r is called a local cross section of r (for a more general definition
see Bredon [1972, p. 39]). We now construct a local cross section of r. Let A be a
submanifold of F transverse to Z at e with e e E and dim E + dim A dim F. Note that
a neighborhood /] of e in A is diffeomorphic to a neighborhood of eE in F/E and
this diffeomorphism is given by r U. Let r-(r] )-1. Clearly, the map r is a local
cross section of r.

Let tr be a cross section of r defined on a neighborhood U of eZ in F/E. A
simple argument shows that the map b :or(U) x N,- R" defined as b(u, y) r(u)y
is a local diffeomorphism. Let N, be a disc of radius e around x and let e be chosen
so that b" tr(U) x N, is a diffeomorphism. Let V FN,. 0rthogonality of the action
implies that N and N, are E-invariant. Let X Fx. We chose e so that the set V
is equivariantly diffeomorphic to a neighborhood of the zero section in N(X). Observe
that if y N then it is clear that Eyc Ex. Hence if y N, then y C x" We have the
following proposition.

PROPOSITION 1.1. Every smooth and Ex-equivariant vector field g" N- R has a

unique smooth and F-equivariant extension f: V - R.
Proof. We define f by requiring that f(yy)= yg(y) for ,/e F, y N2. To see that

f is well defined let YlY Y2Y, Y N, ),, ),: F. Then ),-l),:y y, so y-ly2 Ey c 5;
and g(y]-ly2y) g(y), implying Ylg(Y) Y:g(Y). Hence f is well defined.

Let U, r, and th be as defined prior to the statement of Proposition 1.1. Let
&(U). Then fl th id x h d-. It follows that f is smooth on /). Smoothness

of f on V follows from equivariance and smoothness of the action.

2. Dynamics near relative equilibria. Let F be a Lie subgroup of O(n) acting
orthogonally on R and let f: R" - R be a C smooth F-equivariant vector field. Fix
x0 in R" and let X denote the group orbit of Xo. We say that the set X is a relative
equilibrium of f if X is invariant under the flow of f. The subject of this work is to
study bifurcations of relative equilibria. In this section we develop a systematic way
of analyzing dynamics near a relative equilibrium X. We first describe our results,
deferring the proofs to the end of the section.

We begin by defining the concepts of a tangent vector field and a normal vector
field. Let g:R R. We say that g is a tangent vector field if g(u) is tangent to the
group orbit of x for all x in R". For x in X let Nx be the space of vectors normal to
X at x. We say that g is a normal vector field if for every x in X the space N, is
invariant under the flow of g. Note that a normal vector field does not have to be
normal to group orbits other than X.

This section contains two main theorems. The first theorem states that near the
group orbit X the vector field f can be written as a sum of a smooth F-equivariant
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normal vector field fN and a smooth F-equivariant tangent vector field f-. We refer to
this theorem as the decomposition theorem. The second theorem states that near X
the dynamics off can be described as dynamics offN modulated by drifts along group
orbits.

The decomposition theorem is a consequence of a technical lemma. The lemma
states that near X there exists a smooth, F-invariant bundle K whose fibers are tangent
to group orbits and whose restriction to X is the tangent bundle of X. Before stating
the lemma we discuss the concept of the normal bundle of X. We observe that a
F-invariant neighborhood of X can be identified with a neighborhood of the zero
section in the normal bundle of X. We conclude that the dynamics of f can be
understood in terms of the dynamics of the pullback off to the normal bundle. In the
proof of the decomposition theorem we identify f with its pullback to the normal
bundle.

Following the proof of the decomposition theorem we discuss the most important
implications of the two main theorems. We remark that F-equivariance of fu implies
that the dynamics offu is completely determined by its dynamics on the invariant set

Nxo. We also describe a way of finding a global center manifold near a relative
equilibrium X. When X is an orbit of equilibria we show that the global center manifold
is the union of local center manifolds constructed for each normal space Nx.

Next we discuss a method of explicit computation of fu. We present the general
form of "coordinates along group orbits" and "in the direction normal to the orbit."
Such coordinates have been used to study specific examples of bifurcations of relative
equilibria.

We begin by assuming that X Fxo is the group orbit of Xo, but not necessarily
a relative equilibrium of f The following theorem is the first of the two main results
of this section.

THEOREM 2.1. There exists a F-invariant neighborhood U of X in R", a smooth
and F-equivariant normal vectorfieldfu, and a smooth and F-equivariant tangent vector

field fT such that

f(u) =f-(u)+fN(u)

for all u in U.
Let g denote the restriction of fN to the space Nxo. Let U be the neighborhood

defined in Theorem 2.1 and suppose that u(t) is a trajectory off contained in U for
all t-> 0. We now state the second of the two main theorems of this section.

THEOREM 2.2. There exists a smooth curve ofgroup elements y( t) and a trajectory
y( t) of the vector field g such that y( t)y( t) u( t) for all >-_ O.

Let rI. N(X)- X be the bundle projection, that is, H((x, v))= x. The following
lemma is the main technical result necessary to prove Theorem 2.1.

LEMMA 2.3. There exists a smooth F-invariant subbundle K of TN(X) such that

for all y N(X)
(i) gy c TyFy
(ii) Ky O) Nn(y)-- R".
Note that we cannot define Ky as TyFy since the dimension of group orbits may

increase near Xo (the fact that it cannot decrease is a consequence of the inclusion
,,y c rI(y) for y Nny>). In fact, proving Lemma 2.3 is the main technical difficulty of
this section. We defer the proof to the end of the section. The proof of Theorem 2.2
is also deferred, since it relies on the proof of Lemma 2.3. The proof of Theorem 2.1
is a simple consequence of Lemma 2.3. In the proof we assume that f is a vector field
on N(X); that is, f" N(X) TN(X).
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Proofof Theorem 2.1. Suppose y N(X). Let P: TN(X) - TN(X) be defined by
P(y, v)= Pyv, where Py is a projection with ker Py Ky and Im Py Nri(y). The map P
is smooth since the spaces ker Py and Im Py vary smoothly with y. Equivariance of P
follows from invariance of K and equivariance of H. Let fN(Y)= P(Y, f(Y)), fr(Y)=
f(y)-fN(y). As required fu is a normal vector field, fr is a tangent vector field, and
they are both smooth and F-equivariant.

We now discuss some implications of the two main theorems. Recall that orthogon-
ality of the action implies that Nxo is Exo-invariant. Let g be the vector field defined
following the statement of Theorem 2.1; that is, g is the restriction offN to the space
Nxo. Since fu is F-equivariant it follows that g is Exo-equivariant. Let k codim X.
Note that dim Nxo k. It follows that in order to understand the dynamics of f near
X we need to carry out two steps:

(a) Analyze the dynamics of the k-dimensional Exo-equivariant vector field g.
(b) Find the drift along group orbits 3’(t).
Suppose that X is a relative equilibrium; in this case every x in X is an equilibrium

of fN. In particular, the point Xo is an equilibrium of g. Let m be a positive integer.
The equivariant center manifold theorem (cf. Ruelle [1973, Thm. 1.2]) implies that
near Xo the vector field g has a C smooth Exo-invariant center manifold. Let Mxo
denote such a center manifold. Let M FMxo. The smoothness of the action and

:xo-invariance of Mxo together imply that M is C smooth. Theorem 2.2 also implies
that all trajectories off contained in a sufficiently small neighborhood of X approach
M as time goes to infinity. We say that M is the center manifold of the relative
equilibrium X for the vector field f

When X consists of equilibria it is natural to ask whether the global center manifold
M is a local center manifold for every element of X. We answer this question in
the affirmative by verifying that for all x in X the tangent space to M at x equals the
center subspace of (df)x. Let E be the restriction of the tangent bundle of M to the
relative equilibrium X. The bundle E is called the center bundle of X. We have
the following proposition.

PROPOSITION 2.4. Let x be in X. The fiber of the center bundle E at x is the center

subspace of df)x.
Proof We first prove that TxX is contained in ker (df)x. Any vector u TxX can

be written as (d/ds)y(s)x[=o. We use the chain rule and the fact that f(y(s)x)=O
to obtain

(df)xu=(df)x
d

y(s)xls=o =-sf(Y(s)x)[s=o=O.
Hence zero is an eigenvalue of (df)x with multiplicity greater than or equal dim X.
Let v Nx. Theorem 2.1 implies that df)xv dfN )xV + dfr)xV. We show that dfN )xV
Nx and (dfr)xve TxX. This implies that (df)x can be written in the form:

(dfN)x/"

The proposition follows from equation (2.1), since (2.1) implies that all nonzero
eigenvalues of (df)x are also eigenvalues of (dfN)x.

We now prove that (2.1) is valid. The vector field fN is F-equivariant and
fN(X) 0. The argument presented at the beginning of this proof implies that TxX c
ker (dfN)x. Since f--fN +fr it follows that TxX ker (dfr)x. Recall from the proof of
Theorem 2.1 that fN(y) Pyf(y), where Py is a projection with ker (Py)= TyFy and
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Im (Py)= Nn(y). Hence by the chain rule

(2.2) (dfN)x (dyPyf(X))x + Px(df)x.

But f(x) 0, so

(2.3) (dfN)x Px(df).
It follows that (dfr)(Nx)C TX and (dfu)x(N)c Nx. Equation (2.1) now follows.

In many applications a bifurcation of a group orbit of equilibria X occurs when
(df)xo maps a vector v e N to ToX. The vector v then becomes a generalized nullvector
of (df)o. We have the following proposition.

PROPOSITION 2.5. The vector v is a null vector of (dfu)o.

Proof Proposition 2.5 follows from identity (2.3).
In applications we need to explicitly compute the vector field fu. This can be

done by changing variables to coordinates in the normal space Nxo and a complementary
set of coordinates "along group orbits." Such coordinates have been used by Chossat
[1986], Iooss [1986], Danglemayr [1986], and others to study bifurcations of relative
equilibria. In the form presented here they were suggested by Chossat and can be
found in Moutrane [1988]. In our presentation we assume that f is a vector field on
the normal bundle N(X); that is, f: N(X) TN(X). For a Lie group A, let (A)
denote the Lie algebra of A. Let exp:(F)-F be the exponential mapping. Let
V c W(F) be the orthogonal complement of (Exo) in (F) (the space V will be
defined more precisely in the proof of Lemma 2.3). Let O: V x Nxo- N(X) be given
by 0(:, y)= (exp )(y). The linear map (d0)(O,o) is an isomorphism, and hence 0 is a
local diffeomorphism. Let h 0% Note that for every y N(X) the fiber of the tangent
bundle TyN(X) can be written as TyN(X)= V Nn(y). The vector field h is defined
on V x No and has the following property.

PROPOSITION 2.6. If h is written in the form h (hi, h2), with hi V and h2
then h2(O, y)=fu(y) for all y Nxo.

The proof of Proposition 2.6 relies on the proof of Lemma 2.3 and therefore will
be given at the end of the section.

Proof of Lemma 2.3. Let (F) denote the Lie algebra of F and let exp: oY(F)- F
be the exponential mapping. We begin by recalling two concepts related to the Lie
algebra (F). The action of (F) on N(X) is defined by

dy - (exp t)y[,=o for sc (F), y N(X).

The adjoint action of F on (F) is defined by

d
Ad, S r(exp t)r-’l t----0 for ,/e F, e (F).

Note that

(2.4) %Cy=AdrsCyy for ,F, sc(F), yN(X).

Recall that k codim X. We prove that finding the bundle K is equivalent to finding
a bundle E over N(X) whose fibers are k-dimensional subspaces of L(F) having the
following property:

(2.5) E,vy Adv Ey for y F.

Suppose that the bundle E has been found. Then we define the fiber Ky of the bundle
K as the set of all images of y under the action of elements of Ey; that is,

Ky {y e ly}.
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If v Ky then (2.4) implies that yv Kvy. Hence K is F-invariant. We now prove that
K is a smooth bundle. For y N(X) let y :F- N(X) be defined by y(y) yy, 3’ F.
For : (F) we have

y= dy(e).
It follows that Ky- dty(e)Ey. Smoothness of K now follows from smoothness of E
and from smooth dependence of y on y. The definition of the action of (F) implies
that the fibers Ky are tangent to group orbits.

It remains to prove the existence of the bundle E. Suppose ((,)) is an inner product
on (F) invariant with respect to the adjoint action. Such an inner product always
exists for a finite-dimensional action of a compact Lie group (see, for example,
Golubitsky, Stewart, and Schaeffer [1988, Prop. XI, 1.3]). Let V be the orthogonal
complement of ?(Exo) taken with respect to ((, >); that is, V-(Exo)+/-. Let E be the
bundle over N(X) with Ey Adv V, y yNo. To see that E is well defined suppose
that yy-y2Y, Y No. From the properties of the normal bundle it follows that
3"17; Eo. It follows that Adv,v, V V or Adv, V Adv2 V, implying that Ev,y Ev2y.
Also Ey is defined for all y N(X) since N(X)= vr 3’No. Equation (2.4) is auto-
matically satisfied for the fibers of E.

For smoothness of E let U be a neighborhood of eEx in F/E and let or: U- F
be a local cross section of zr. Let b U x Nxo N(X) be given as b(u, y) cr(u)(xo, y).
The map b is a local diffeomorphism near (eEo, 0). It follows that the map :U x

Nxo x V- E given by XF(u, y, :) (tr(u)y, Ad(u) ) is a local bundle diffeomorphism.
This shows smoothness of E near (x0,.0), To show smoothness near (yXo, 0) we use
the map y and the relation (2.4).

Proof of Theorem 2.2. Suppose u(0)--Uo. Let 3’0 be the element of F such that
Uo 3’oNo. Let Yo 3’Uo and let y(t) be the integral curve of fN with y(0)= Yo- Let
denote differentiation with respect to t. To prove the theorem we need to find a curve

y(t) with 3/(0)= 3’0 and such that

(2.6) (3"(t)y(t))" -f(3’(t)y(t)).

The idea of the proof is to reduce (2.6) to an initial value problem on F. We observe
that the left-hand side of (2.6) can be written as

d
d--- 3"( + s)y( t)l :o/ 3’( t)3)(t).

By assumption y(t)=fN(y(t)). It follows that (2.6) can be rewritten as

d
(2.7) ss 3’(t + s)y(t)] s=o 3’(t)fr(y(t)).

Let V be the subspace of (F) defined in the proof of Lemma 2.3. It follows
from the proof of Lemma 2.3 and from the construction of the vector field f- that
there exists a curve (t) of elements of V such that f(y(t))= (t)y(t). Equation (2.7)
can now be rewritten as

d
(2.8) d--- 3"(t + s)y( t)[ s=o 3’( t)( t)y(t).

Consider the initial value problem"

(2.9) 3’(t)(t), 3’(0) 3’0.

By standard theory of ordinary differential equations, (2.9) has a unique solution 3"(t).
It is clear that if 3’(t) is a solution of (2.9) then 3"(t)y(t) satisfies (2.8). The theorem
now follows.
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ProofofProposition 2.6. Let y Nxo. The proof of Lemma 2.3 and the construction

offT imply that there exists a unique :o V such that fT(y) d/dt (exp to)ylt=o. Note
(dO) (o.y)(:o, 0) implyingthat d/dt (exp tsCo)yl,=o

(2.10a)

Also 0[)Q,o= id. Hence

(2.lOb)

(dO)(o.y)(o, 0)=f(y).

(d0)(o.y)(0, fN(Y))=fN(Y).

Combining (2.10a) and (2.10b) we obtain (dO)(o,y)(o, fN(y))=fu(y)+f.(y)=f(y).
Also since y N we have O*f(y)=(d0) -1(O,y)f(Y). Hence h2(0, y)=f(y).

3. Bifurcations of the normal vector field. Let F" R" R - R" be a family of vector
fields and assume that F(Xo) ToX; that is, X is a relative equilibrium. The results
of 2 imply that the dynamics of F can be described as follows: the trajectory of F
with initial condition Yo is contained in the group orbit of the trajectory of Fu with
the same initial condition. We will utilize this property of the dynamics and divide
the bifurcation analysis into two steps. The first step will be to analyze bifurcations
of the normal vector field. Then, given a bifurcating solution of the normal vector
field, say y(t), we will study the dynamics of F on the set Y {3’y(t): 3’ F, R}.
Note that Y is F-invariant and, by Theorem 2.2, it is invariant under the flow of F.
This program will be carried out for two kinds of trajectories of Fu--equilibria and
periodic orbits.

In this section we discuss the first part of the bifurcation analysis, that is, bifurca-
tions of the normal vector field. Suppose that dim No= k. We prove that generic
bifurcations of FN can be described in terms of generic bifurcations of Eo-equivariant
vector fields on Rk. More specifically, we show that a property generic in the class of
smooth, Zxo-equivariant vector fields on Rk is also generic in the class of normal vector
fields on Nxo. Let G(., A) be the restriction of the vector field Fu(., A) to Nxo. Let
g= G(., 0). Suppose that (dg), has an eigenvalue on the imaginary axis and let E
be the center subspace of (dg),o. Suppose that G has a steady-state bifurcation; that
is, (dg), has a zero eigenvalue. Then we have the following proposition.

PROPOSITION 3.1. Generically the space E equals the nullspace of (dg), and the
action of ’,o on E is irreducible.

Proposition 3.1 follows from Proposition 1.1 and standard results in equivariant
bifurcation theory (see, for example, Golubitsky, Stewart, and Schaeffer 1988, Prop.
XII, 3.4]).

Suppose that W is a subspace of R k. We say that the action of ,,o on W is
F-simple if it is irreducible but not absolutely irreducible or if there exists a space V
such that W V V and the action of Exo on V is absolutely irreducible.

Suppose now that G has a Hopf bifurcation; that is, (dg)xo has a purely imaginary
eigenvalue ito. The following proposition gives a characterization of the space E.

PROPOSITION 3.2. Generically the space E is the generalized eigenspace of ito for
(dg),, and the action of ’o on E is F-simple.

Proposition 3.2 follows from Proposition 1.1 and standard results in bifurcation
theory (see, for example, Golubitsky, Stewart, and Schaetter [1988, Prop. XVI, 1.4]).

A center manifold reduction coupled with a change of coordinates allows us to
reduce the original bifurcation problem for G to a bifurcation problem posed on E x R.
We divide the analysis into two cases:

(i) The action of Zxo on E is trivial.
(ii) The action of o on E is nontrivial.
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Case (i) is much simpler and can be analyzed simultaneously for all groups F. In
particular no symmetry breaking takes place. The following proposition summarizes
the bifurcation analysis for this case.

PROPOSITION 3.3. Suppose that the action of 2;,o on E is trivial. If (dg)xo has a
zero eigenvalue, then generically G has a limit point bifurcation. If dg),o has a purely
imaginary eigenvalue ion, then generically iw is a simple eigenvalue of (dg),o and G has
a Hopf bifurcation to a unique periodic solution.

The proof of Proposition 3.3 follows from standard results in bifurcation theory.
In the remainder of this work, unless otherwise stated, we will assume that the action
of 2;o on E is nontrivial.

Let y--y(A) be a branch of equilibria of G and Y Y(A) a branch of periodic
orbits of G. Let 2; be the isotropy subgroup of y and E y the group of symmetries
mapping Y into itself. In 4 and 5 we show that the trajectories of F on Fy are
dense in tori whose dimension is bounded by rank (N(Y)/2;) (the dimension of a
maximal torus in N(2;)/2;) and the trajectories on F Y are dense in tori whose dimension
is bounded by rank (N(2;y)/Ey)+ 1. Generically these tori are of maximal dimension.
In the context of Proposition 3.3, this maximal dimension equals rank (N(Zo)/Exo)
for trajectories on Fy and rank (N(:,o)/:xo)+ 1 for trajectories on F Y.

4. Steady-state bifurcations. Let Xo be in R" and let X Fxo. Suppose that F R
R -> R is a smooth family of equivariant vector fields and X is a relative equilibrium
of F for all values of A. Theorem 2.1 guarantees that F can be decomposed as
F FN + F-, where FN is a family of normal vector fields and FT is a family of tangent
vector fields. Let G(., A) denote the restriction of Fu(., A) to the normal space No.
Note that Xo is an equilibrium of G for all values of A. We call Xo the trivial equilibrium
of G. We say that the family F has a steady-state bifurcation near X, if there exists a
branch of nontrivial equilibria of G emanating from Xo. Note that such a bifurcation
will generically occur if (dG)<o,O has a zero eigenvalue and the action of the isotropy
subgroup 2;o on the center subspace of (dG)<o,O) is nontrivial.

Suppose that F has a steady-state bifurcation. Let y(A), 0 -< A < Ao, be a bifurcating
branch of nontrivial equilibria of G. We assume that all the equilibria y(A) have the
same isotropy subgroup 2;. We also assume that the map A - y(A) is smooth on the
open interval (0, Ao). Let Y(A) denote the group orbits of the equilibria y(A). Theorem
2.2 guarantees that the sets Y(A) are invariant under the flow of F. The goal of this
section is to analyze that flow of F on the sets Y(A).

Let z(e, t) be the trajectory of F with initial condition y(A). Equivariance of F
implies that each trajectory on Y(e) is given as yz(A, t), for some yF. Hence, to
understand the dynamics on Y it suffices to analyze the structure of z(A, t). Let
denote the normalizer of 2;. Our analysis is based on the following observations:

(a) The trajectory z(A, t) is contained in N(2;)y(A).
(b) There exists an integer k => 0 such that z(A, t) can be described as k-frequency

drift along the group orbit Y. More precisely, there exists a k-torus ql-c F such that
z(e, t) is dense in q]-y.

Field [1980, Prop. B1] has proved that the number of independent frequencies of
the drift is bounded by the dimension of a maximal torus in N(2;)/2;. The result of
Field can be easily deduced from properties (a) and (b).

We now state the main result of this section.
THEOREM 4.1. For a genericfamily F the dimension ofthe drift along the orbit Y(A

equals the dimension ofa maximal torus in N(2;)/2; for all except countably many values
of A.
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Theorem 4.1 is an extension of Proposition B1 in Field [1980]. Dancer [1980]
also obtained results relevant to the problem discussed in this section. Suppose that f
is a smooth F-equivariant vector field and y is an equilibrium off Let Z be the isotropy
subgroup of y. In the proposition on p. 88 Dancer proved that if dim N(Z)> dim Z
then generically all equilibria of f which are sufficiently near y lie in the group orbit
of y. Property (b) is a generalization of this result.

In the latter part of this section we state a more precise version of Theorem 4.1.
In order to do this we need to review some concepts and results from Lie group
theory.

Before we can prove Theorem 4.1 we need to analyze the flow on a relative
equilibrium of a single vector field f Let Y be a relative equilibrium off and suppose
that Z is the isotropy subgroup of some y Y. We prove that a trajectory on Y is dense
in a k-dimensional torus and that generically k equals the dimension of a maximal
torus in N(E)/Y.

In Proposition 4.6 we prove an important technical result stating that the set of
all images of a point y in R under a smooth F-equivariant map is Fix (Ey). This result
is stated without proof in Lemma A of Field [1980].

Proposition 4.10, which is stated following the proof of Theorem 4.1’ describes
what happens when the drift fails to be of maximal dimension. The proposition asserts
that for a generic family the dimension of the drift can only decrease by 1. Field
[1988] proves that if the dimension of a maximal torus in N(Z)/Z equals 1, then for
a generic family F the set Y(A) contains no equilibria. This result does not follow
from Theorem 4.1.

In order to state a more precise version of Theorem 4.1 we need to review the
concepts of maximal tori and rank of a Lie group. Let A be a Lie group. We say that
a Lie subgroup ql- of A is a torus if qF is compact, Abelian, and connected. A torus is
called maximal if it is not properly contained in any other torus. The following is the
main result on maximal tori.

THEOREM 4.2. In a Lie group A any two maximal tori are conjugate, and every
element of A is contained in a maximal torus.

The proof of Theorem 4.2 can be found in Br6cker and tom Dieck [1985, Thm.
(1.6), p. 159].

Theorem 4.2 implies that all maximal tori are ofthe same dimension. The dimension
of maximal tori in A is called the rank of A.

Let rank A and let : &g(A). We say that generates a maximal torus in A if
the set {exp tsc: t R} is dense in a torus of dimension I. We have the following
proposition.

PROPOSITION 4.3. The set of (A) which generates a maximal torus is residual
(an intersection of open and dense sets).

Proof Let ql- be a maximal torus in A. We identify ql- with RI/z and (ql-) with
R (see Bracket and tom Dieck [1985, Cot. I, eq. (3.7)]). Let

P"= {: (ql-): : (1, :2,""", SOl) and Y mj 0}

and let

E’ [_J Ad Pm.

Since the group A is compact, it follows that the image of (A) under the exponential
mapping is the connected component of the identity in A (see Br/Scker and tom Dieck
1985, Thm. IV, eq. (2.2)]). Hence, by Theorem 4.2, each sr (A) has the form Ad :,
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: (-). Since exp Ad tr exp o"-1 it follows that " generates a maximal torus if
and only if does. Also : generates a maximal torus if it is in the complement of the
sets E for all m Z1. The sets E" are nowhere dense (see the proof of Theorem 4.1’),
so the complement of their union is a residual set.

Throughout we assume the following conditions on the family of vector fields F:

(S 1) The orbit X is a trivial relative equilibrium of F. In other words, Fc(A, Xo) 0
for all values of h.

($2) There exists ho> 0 and a branch of relative equilibria of F, parametrized as
y(h), 0<h <ho. The mapping h y(h) is smooth on (0, ho). The points y(h)
have isotropy E.

Let C(R"x R, R") denote the space of smooth families of equivariant tangent
vector fields on R". For a family F satisfying ($1) and ($2) let Y(A)= Fy(h). We now
state Theorem 4.1 more precisely.

THEOREM 4.1’. Suppose that afamily ofvectorfields Fsatisfies (S1) and ($2). Then
(i) Trajectories on the manifolds Y(A) are dense in tori of dimension bounded by

rank (N(E)/Z).
(ii) There exists a residual set c C(R x R, R) such thatfor every H there

exists a countable set Io C (0, ho) such that for every h (0, ho)\Io trajectories of F+ H
on the manifolds Y(A) are dense in tori of dimension equal to rank (N(,)/E).

Note that Theorem 4.1’ is more general than Theorem 4.1" we assume that y(h)
is a branch of relative equilibria of F rather than a branch of equilibria of F. This
assumption does not increase the complexity of the proof.

Before proving Theorem 4.1’ we analyze the following simpler situation. Suppose
that g" R" - R" is a F-equivariant vector field with the following properties"

(VS1) The orbit X is a relative equilibrium of g.
(VS2) There exists Yo R", Yo X such that Y Fyo is a relative equilibrium of g.

The problem of finding the dynamics on Y has been solved by Field [1980]. Here
we briefly present his results. We start with the following proposition.

PROPOSITION 4.4. Suppose that g(Yo)= v. Let (F) be such that Yo Y. Then
y(t) exp (t)yo is the integral curve of g with y(O)= Yo.

Proof.
d

y(’) - exp t:)yol

d
exp (r:) exp ((t-

d
exp rsc) ss exp (s:)Yol =o.

By definition (d/ds) exp (s:)yol=o :yo. Hence

y(r) exp (rsc):yo exp (r)g(yo)

g(exp (r:)yo)= g(y(z)).

For h" R" - R" let Ilhl[--supxO [h(x)l. The following theorem gives a complete
description of dynamics on relative equilibria of a vector field g.

THEOREM 4.5 (Field [1980, Prop. B1]). Suppose that g" R" -. R" is an equivariant
vector field satisfying (VS1) and (VS2) and let , be the isotropy subgroup of Yo. Then
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(i) Every flow trajectory contained in Y has the form z(t)=exp (t)y, for some

: ?(N(Z)).
(ii) The dimension of the toms --cl (exp (t:)yo: R) is less than or equal to

rank (N(Z)/Z).
(iii) For every e 0 there exists a vector field h, such that h e, Y is a relative

equilibrium of h, and the dimension of the closure of trajectories of g + h on Y equals
rank (N(Z)/Z).

To prove Theorem 4.5 we need to answer the following question. What are the
possible images of the vector Yo under F-equivariant vector fields? Suppose that V is
the space of all possible images of y under F-equivariant vector fields; that is,

V- {h(y), h:R - R is a F-equivariant vector field).

If h is a F-equivariant vector field, then it follows that h(yo) is fixed by all elements
in Eyo. Hence Vc Fix (Eyo). The following proposition shows that the other containment
also occurs.

PROPOSITION 4.6..’.The space V is equal to the fixed-point space of Zyo; that is,

V Fix (Zyo).

Proof Let Y Fyo and let Zyo- Suppose that v Fix (E). We first show that
there exists a smooth and F-equivariant vector field g:R"-R" such that g(Yo)= v.
Let N(Y) be the normal bundle of Y. Recall that N(Y) can be identified with an
invariant neighborhood U of Y in R". It follows that TN(Y) can be identified with
R". We define a vector field h:Nyo-TN(Y) by h(z)= v. Clearly, h is smooth and
E-equivariant. By Proposition 1.1 we can extend h to a smooth, F-equivariant vector
field gl on N(Y). The properties of the normal bundle N(Y) imply that the vector
field gl can be identified with a vector field g2 defined on U. Let c" R"- R be a
smooth, invariant function such that a(yo)= 1 and a(x)=0 for all x U. Let g be
defined as follows:

g(x)= {(x)g2(x)
if xC_U.

if xU,

Clearly, g is smooth, F-equivariant, and g(Yo)= v.
Remark 4.7. The vector field h described in Theorem 4.5(iii) can be chosen so

that g + h is a polynomial vector field. The existence of such h can be shown using
the equivariant version of the Stone-Weierstrass approximation theorem (see Poenaru
[1976, proof of Prop. 1, p. 20]).

The final ingredient necessary to prove Theorem 4.5 is given by the following
elementary lemma.

LEMMA 4.8. The following equality holds for any y R":

TyYf) Fix (Ey) {:y: (N(,y))).

Proof Let : (F), y R. Then y Fix (Zy) if and only if exp :y Fix (Zy).
This implies that r exp :y-exp :y for all trZy. It follows that there exists
(N(Z)) such that /y- :y. The lemma now follows.

Proof of Theorem 4.5. The theorem is an easy consequence of Proposition 4.4,
Proposition 4.6, and Lemma 4.8.

In the remainder of this section we prove Theorem 4.1’. Let F be a family of
vector fields satisfying ($1) and ($2). We begin by defining a map which assigns to
each HC(R"xR, R") a curve : in (N(E)/E) such that (F+ H)(y(A),A)=
:(A)y(A) for each A in some interval I. Recall that TyYTIFixE={y: : (N(E))}.
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Let V. be the set ofy R with isotropy group E. For y V the space {:y: (N(E))}
is isomorphic to (N(E)/E). Let .." TyY fq Fix E -* (N(E)/E) denote this isomorph-
ism. It is clear that E changes smoothly as y is being varied in Vs. Let I be a subinterval
of (0, ho). The map (R)" C(R R, R") Coo(I, (N(E)/E)) is defined as

O(H)(A) E((F + H)(y(A), )).

We prove Theorem 4.1’ by showing that for a residual set of H C(R x R, R) the
curve O(H) is transverse to all the sets E (see Proposition 4.3). Before presenting
the proof we review some concepts related to the Whitney Coo topology. For a more
complete treatment of this topic see Golubitsky and Guillemin [1974]. Let Z, W be
smooth manifolds. For a positive integer q let Jq(Z, W) denote the space of q-jets of
smooth maps from Z to W. We describe a neighborhood basis of a map f in the
Whitney C topology on Coo(Z, W). Let q be a positive integer and let dq be a metric
on Jq(z, W) compatible with its topology (such a metric exists by (I, 5.9) in Golubitsky
and Guillemin [1974]). Let 6" Z--> R/ be a continuous function. Let

Uq,6 {g Coo(Z, W)" dq(jqf(x), jqg(x)) < 6(x) for all x Z}.

The collection of the sets Uq, for all choices of q and 6 forms a neighborhood basis
of f in the Whitney Coo topology.

Suppose that Z is an open subset of Rp for some p, and W is a vector space.
Then the above-mentioned metrics dq can be chosen as follows. Suppose s dim W.
We identify W with R. For a positive integer q and g Jq(z, W) let

Ottg(x)
Ilgllq(x)+lxl/lg(x)l/ E

l___lol=<q OX

Here a denotes a p-vector of nonnegative integers. We define dq on Jq(Z, W) as

dq(Crl, or2) Ilgl-

where (rl, cr_ Jq(z, W) and gl, g2 are such that (r =jqgl(x) and cr2=jqg2(x). It is
easy to see that dq agrees with the topology on Jq(Z, W).

Let I be the interval used in the definition of the map O. Then we have Lemma 4.9.
LEMMA 4.9. If I c (0, A0) then 0 is continuous in the Whitney Coo topology.
Proof. Let C(I) {(y(A), A)" A I}. In this proof we use the metrics dq described

prior to the statement of Lemma 4.9. The map O can be written as

O(H)=oHIC(I).

Hence O is a composition of two maps: a map O1 given as

O(H)=HIC(I)

and a map O2 defined as

The map O does not, in general, have to be continuous, but it is continuous if
I c (0, Ao). This follows, since I (0, Ao) implies that for any given q all the partial
derivatives of the function A - y(A) are bounded on I. Hence continuity of O1 can
be established through repeated application of the chain rule. The map O2 is continuous
by (II, 3.5) in Golubitsky and Guillemin [1974].

Proof of Theorem 4.1’. Part (i) of the theorem follows from Theorem 4.5.
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We now prove part (ii). Suppose that is the rank of N(E)/E. Let - be a maximal
torus in N(E)/E. As in the proof of Proposition 4.3 we identify ql- with RI/z and
(ql-) with R I. Recall the definitions of the sets E" and P" (see the proof of Proposition
4.3). In the proof of Proposition 4.3 we show that the sets E" have the following
property: a vector c (N(E)/E) generates a maximal torus if and only if : is in the
complement of E" for all m in ZI.

The sets E may not be manifolds, but we show that each E" is a finite union
of manifolds. Let : P" and let A be the isotropy subgroup of sc with respect to the
adjoint action of N(E)/E on (N(E)/E). Let [.,. denote the bracket in (N(E)/E).
It is known (see Br6cker and tom Dieck [1985, I, eq. (2.12)]) that

d
(4.1) r/, ’] - Adexpn 1 =o for all r/, sr (N(E)/Z).

The containment P’=(7) implies that [, r/]=0 for all r/P". Let O()=
nx)/ Ad: be the orbit of . Let U be a small neighborhood of eA in (N(E)/E)/A

and let or" U N(E)/E be a local cross section. Equation (4.1) implies that TO()
P"={0}. It follows that the map " U P"-(N(E)/E), given by q(u,
Ad,) r/, is a local diffeomorphism near (e, ).

Let Em(A) be the set of all elements of E" whose isotropy subgroup (with respect
to the adjoint action) is conjugate to A, and let P"(A) P" f3 E(A). Note that P"(A)
is an open subset of P’fq Fix (A). For every : P" the corresponding map is a
local diffeomorphism near (e, so). It follows that E"(A) is a smooth manifold.

Note that the number of the sets E m(A) is finite. This follows from the fact that
N(E)/E, being a compact group, has a finite number of conjugacy classes of isotropy
subgroups. Clearly, Em= Em(A).

The theorem follows from the following assertion:

(.) For every m Z,/x (0, Ao), there exists an interval I containing/x and a set
’(I) c C(R X R, R") with the following properties:
(1) g "(I) is residual in the C Whitney topology.
(2) O(H) is transverse to all the sets E’(A) at each h I.

We first show that the theorem follows from (,). To see this let I7’, I’, be a
sequence of intervals such that i1 I7’ (0, ho) and g’(IT’) satisfies the properties
(1) and (2). Let f3 i=l,j=l J(I{). It follows that for every H g the curve (R)(H)
is transverse to all the sets E at every h (0, ho). It is clear that satisfies the property
required in the statement of Theorem 4.1’.

We now prove (,). Fix rnZ1, a subgroup A c N(E)/E and /x(0, ho). Let
IcIoc(0, ho) be intervals with /xI and Ioc(0, ho). Let ‘fo be the set of
C(Io, (N(E)/E)) such that sc is transverse to E"(A) at each h 6 I. By standard
transversality arguments (see Golubitsky and Guillemin [1974, (II, 4.5)]) the set -fro
is open and dense in the Whitney C topology. We assume that Io is the interval used
in the definition of the map O. Let ‘f O-l‘fo It follows from Lemma 4.9 that ‘f is
an intersection of open sets. We now show that ‘f is dense. Fix H C(R x R, Rn).
We construct a sequence of families {Hi} converging to H and such that each Hi
Let {sci } be a sequence of elements of C(Io, (N(E)/E)) such that each curve 19(H) +
is in ‘fo and the curves :i converge to the zero curve as i- c. Such a sequence exists,
since ‘fo is dense in C(Io, (N(E)/E)). To show the existence of the sequence {Hi}
it suffices to prove that for every 1 C(Io, (N(E)/E)) there exists a family H, such
that 19(Hn)(A)= rt(A) for all A I and such that for every positive integer q the size
of partial derivatives of Hn of order less than or equal to q can be estimated by the
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size of partial derivatives of r/ of order less than or equal to q. We now give a more
precise description of this estimate. Let be a smooth curve of elements of 3f(N(E))
which projects to 7 in (N(,)/E). Suppose that a is an n-vector of positive integers
and/3 a positive integer. Then there exists a constant C, depending only on m, and
such that

(4.2)
Ot"l+H,(z, A)

< C
O(X

Oz Oh t Oh t

for all (z, A) VxIo. Moreover, Hn(z, A)-0 for (z, A) VXIo.
We now construct Hn. Let Yo y(/x) and Y Fyo. Recall that N(Y) is equivariantly

diffeomorphic to an invariant neighborhood of Y in R". Let V be such a neighborhood.
In the sequel we identify V with N(Y). By shrinking the interval I we can assume
that y(h) V for all h I. We can assume that y(h)e Ny for all )t I. Otherwise, we
could replace the curve y(h) by a curve )(h)= y(h)y(h) with y(h)e N(E)/E. We can
now define H(z, A) as (h)z is z Ny and extend this definition by equivariance (see
the proof of Proposition 4.6). Let Uo be a small neighborhood of e; in F/E and let
r be a local cross section of r (see 1). Let 4" UoX No be defined as &(u, y) r(u)y
(here No denotes a disc of radius e around Yo in Nyo). Recall that for e small enough
& is a ditteomorphism. Let U 4( Uox No). We can express every point z e Uo in
local coordinates as o’(u)y, y Nyo, u U. Then, for every z U, H(z, h) r(u)(h)z.
It is clear from this expression and from the smoothness of the action of F that (4.2)
holds for all z U. From compactness of Y it follows that the bound (4.2) holds on
a neighborhood V1 of Y in R" with possibly a different constant C. With no loss of
generality we can assume that V V1. Let W be an invariant neighborhood of Yo such
that Wc V and suppose that I is chosen so that y(h) W for all h I. Let h" R" x R - Rbe a smooth F-invariant cutoff function vanishing on the complement of V x Io and
equal to 1 on U x I. Let Hn (z, h h (z, h H(z, h ). It is clear that Hn is globally defined
and satisfies (4.2).

We complete the proof of (*) by defining Y3"(I) as the intersection of the sets s4
for all choices of A.

For ml, m2 Z let E ml’m2 E", E’% Note that if m and m2 are not collinear
then the sets E m’m2 have codimension 2 in (N(,)/E). The union ofthese sets consists
of the elements t’ (N(E)/,) which generate a torus of dimension no less than
rank (N(E)/E) 1. In the proof of Theorem 4.1’ we could, instead of the sets E m, use
the sets E m,’". Then, for every H , the curve O(H) would be transverse to all
E m’m2 at each X (0, Xo). This would imply that if ml and m2 were not collinear then
E rn’m2 and O(H) would not intersect. This property implies the following proposition.

PROPOSITION 4.10. Suppose that F satisfies (S1) and ($2). Then there exists a
residual set B C(R" x R, R) such that ifH B then the dimension of the trajectories
of F+ H on the sets Y is greater than or equal to rank (N(E)/E)- 1.

5. Hopf bifurcations. Let Xo be in R" and let X FXo. Suppose that F" R" x R -> R"
is a smooth family of equivariant vector fields and X is a relative equilibrium of F
for all values of X. By Theorem 2.1 F Fu + FT, where F is a family of normal vector
fields and FT is a family of tangent vector fields. Let G be the family defined at the
beginning of 4; that is, G(., A) is the restriction of Fu(., A) to the normal space
No. Recall that x0 is the trivial equilibrium of G. We say that the family F has a Hopf
bifurcation near X, if there exists a branch of nontrivial periodic orbits of G emanating
from Xo. Note that such a bifurcation will generically occur if (dG)txo,O) has a purely
imaginary eigenvalue.
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Suppose that F has a Hopf bifurcation. Let Y(A), ho> h > 0, be a branch of
periodic orbits of G and let y(h) denote the initial conditions for the trajectories Y(A).
We assume that all the points y(h) have the same isotropy subgroup E. Let E y() be
the group of symmetries of the set Y(A); that is,

Zg(x)-{creZxo: rY(A)- Y(A)}.

We assume that all the sets Y(A) have the same group of.symmetries y.
Let Z(A) denote the group orbits of the sets Y(A). Theorem 2.2 guarantees that

the sets Z(A) are invariant under the flow of F. The goal of this section is to analyze
that flow of F on the sets Z(A). Our analysis is based on the following result: every
trajectory of F on Z is dense in a (k + 1)-dimensional torus, with k frequencies given
by the drift along group orbits and the additional frequency corresponding to the
motion along the periodic orbit Y. This result was obtained by Field [1980, Prop. B2].
Field also showed that the number of the drift frequencies is bounded by
rank (N(E)/E).

This section contains two main results. The first of these results is a modification
of the theorem of Field. We assume that f is a smooth F-equivariant vector field, X
is a relative equilibrium off, and Y is a periodic orbit offIv. Let Z F Y. The theorem
states that the trajectories on Z are dense in tori of dimension k+ 1, with k_<

rank N(Ey)/Ey. For some choices of f rank (N(Ey)/E,r)<rank (N(E)/E). This is
illustrated in Example 5.3.

Our second main result (Theorem 5.2) deals with the dynamics of the family of
vector fields F on the sets Z(A). The theorem states that, given a generic family of
vector fields F, there exists a countable set Lo C (0, Ao) such that if A Lo then the
trajectories on Z(A) are dense in tori of maximal dimension. In Proposition 5.7 we
strengthen this result by showing that generically the dimension of trajectories on Z(A
drops only by 1.

We now state the first of the two main theorems. Let f: R"- R be a smooth,
F-equivariant vector field with the following properties"

(VH1)
(VH2)

The orbit X is a relative equilibrium offi
The vector field fry has a periodic orbit Y {y(t): [0, T]}, where T is
the period of Y.

Let E y denote the group of symmetries of Y and let Z F Y. We have Theorem 5.1.
THEOREM 5.1. All trajectories on the set Z are dense in (k + 1)-dimensional tori,

where k-<_rank N(,y)/Y-,y. For every e >0 there exists a smooth and F-equivariant
vectorfield h such that Ilhll <= , h satisfies (VH1) and (VH2), and such that the trajectories

off+ h on the set Z are dense in tori of dimension equal to rank N(,y)/y q- 1.
We now state the second main theorem. Let F:Rn--> R be a smooth family of

F-equivariant vector fields with the following properties:

(H1)
(H2)

The orbit X is a relative equilibrium of F for all values of A e R.
There exists ao> 0 and a branch of periodic orbits of FN, parametrized as
(A, Y(A)), 0 < A < Ao, with initial conditions ya. All the elements ya have the
same isotropy subgroups and all the sets Y(A) have the same group of
symmetries E y. The map a - y is smooth on the interval (0, Ao).

For a family of vector fields satisfying (H1) and (H2), let Z(A)- FY(A). We have the
following theorem.
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THEOREM 5.2. IfF is a family of vector fields satisfying (H1) and (H2) then there
exists a set c C(R x R, R) with the following properties"

(i) For every H there exists a countable set Io C (0, Ao) such that for every
A 6 (0, ,ko)\Io trajectories of F+ H on the manifolds Z(A) are dense in tori of maximal
dimension.

(ii) The set is residual in the Whitney C topology.
We now present an example of a vector field f for which rank (N(,)/,)>

rank N(Ey)/Ev.
Example 5.3. Let F" R" x R R" be a smooth family of vector fields equivariant

under the action of 0(2). Let K 0(2)\S0(2). Suppose that the invariant equilibrium
x =0 bifurcates to a branch of equilibria x(A) with Ex( {e, K}. Consider a secondary
Hopf bifurcation occurring along the branch x(A). In other words, suppose that
(dFs)(xo,ao) has, for some Ao, a pair of purely imaginary eigenvalues iw. Let V be
the real eigenspace of ito. We assume that V is two-dimensional and that the action
of on V is nontrivial. Then, by the standard Hopf bifurcation theorem, FN has a
branch of periodic solutions with period T and such that y (t + (T/2)) y (t). By
Theorem 2.2 the trajectory of F corresponding to y (t) is z (t) 7(t)Y (t), where
y(t) SO(2) and y(0)= e. Let t denote the flow of F. Then

x t) TY(0) T/2(T/2Y (0)) T/2( y( T/2)Y (0)).

Equivariance of T/2 implies that

T/2(Y( T/2)y (0)) (y( T/2)K)2y (0) y (0) x (0).

It follows that x (t) must be a periodic solution. Note that E {e}, so N(Z)/E 0(2),
but Zr {e, }, so N(Ey)/Ey is discrete. Hence rank (N(E)/E) > rank (N(Zy)/Zy).

In the remainder of the section we prove Theorems 5.1 and 5.2. In the proof of
Theorem 5.1 we will use two lemmas and some background information from Lie
group theory. We begin by stating and proving the first of the lemmas. Note that
E c E y c N(E). Let A ,y/,. We have the following lemma.

LEMMA 5.3. The group A is finite and cyclic or A is isomorphic to S.
Proof Let Yo be the initial condition of the periodic orbit Y. We assume, with no

loss of generality, that the period of the solution y(t) is 1. We identify S with R/Z.
Note that Y is diffeomorphic to S via the map t- y(t). Let p:A- S be defined by
the identity

y(p(t)) 6yo, 6cA.

Clearly, # is smooth and well defined. Note that the action of A on Y is free, so p
must be injective. Equivariance off implies that p is a Lie group homomorphism. It
follows that #(A) (which is isomorphic to A) is a Lie subgroup of S and therefore
must be isomorphic to either S or Zl for some I.

We now review some of the concepts from Lie group theory, which will be used
in the proof of Theorem 5.1. For a Lie group H let Ho denote the connected component
of the identity in H. We say that a subgroup K of a compact Lie group H is topologically
cyclic if there exists t$ e K such that K cl { t" n is an integer}. The element 6 is called
the generator of K. We say that K is a Caftan subgroup of H if K is topologically
cyclic and N(K)/K is discrete. In the proof of Theorem 5.1 we will use the following
two propositions.

PROPOSITION 5.4. Each element h H is contained in a Cartan subgroup K of H
such that K/Ko is generated by hKo.
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PROPOSITION 5.5. IfK is a Cartan subgroup ofH generated by z, then any h Hoz
is conjugate to an element of Koz via conjugation by an element of Ho.

The statements and the proofs of Propositions 5.4 and 5.5 can be found in Br6cker
and tom Dieck [1985, IV, eqs. (4.2) and (4.3)].

If K is a Cartan subgroup and K a topologically cyclic group, then K/K1 must
be discrete. Proposition 5.4 implies that each topologically cyclic group is contained
in a Cartan subgroup. It follows that a Cartan subgroup can be defined as a topologically
cyclic group of maximal dimension.

Let K be a topologically cyclic subgroup of H. Then Ko must be a torus in Ho
and K/Ko must be finite and cyclic. It follows that K is isomorphic to KoX ZI, for
some (see Br/Scker and tom Dieck [1985, I, eq. (4.14)]).

Letf be a smooth F-equivariant vector field satisfying (VH1) and (VH2). Theorem
2.2 guarantees that the trajectory off with initial condition y(0) has the form y(t)y(t),
where y(t) (N(,)/,)o. We assume that A is finite and cyclic with generator 6o (see
Lemma 5.3) and let To be defined by the identity y(To)= 6oYo. To prove Theorem 5.1
we need to prove the following lemma.

LEMMA 5.6. Suppose that y( To)= Yo and that ")11 (N(,)/,)o. Then there exist a
smooth, F-equivariant tangent vector field h and a curve yl( t) such that"

(i) 1(0)-- e.
(ii) ,’(To) Yl.
(iii) yl(t)y(t) is the trajectory off+ h.
Proofi Let s(t) y(t)-1 (t). Note that fT(y(t)) (t)y(t). Let r 3’, yl and let

sr exp-1 r. Let r/(t) be a smooth function such that /(0) 0, r/(To) 1, and

d d- r/(0) - r/(To) O, j 1, 2, .
Let Yl(t) exp r/(t)sr) T(t). We define a curve (t) s(t) + r)( t)y(t) -1 sty(t). Let 1(t)
(t) s(t). Note that

dJ dJ
(5.1) (0)=-;7 (To)=0, j=l,2,....

We extend the definition of s1 to all of R by requiring that s(t + To) Ada s(t), where
6 is as defined in Lemma 5.3. Equation (5.1) implies that this extension is smooth. Let
h(y(t)) l(t)y(t). Let Z F Y. We extend h to Z by equivariance. Let N(Z) be the
normal bundle of Z. Recall that N(Z) can be identified with a F-invariant neighborhood
of Z. We extend h to N(Z) by letting h(w)= h(z) for we Nz. We use an invariant
cutoff function to extend the definition of h to all of R n. A simple computation shows
that yl(t)y(t) is a trajectory off+h. It is also clear that ]]hl]0 as tr approaches e.

Proof of Theorem 5.1. Let A be as defined prior to the statement of Lemma 5.3;
that is, A E y/E. Lemma 5.3 implies that A is either finite and cyclic or isomorphic
to S. We divide the analysis in two cases:

(1) A is isomorphic to S1.
(2) A is finite and cyclic.
Case (1). It follows from the proof of Lemma 5.3 that Z is a relative equilibrium

off Therefore the dynamics on Z is described by Theorem 4.5. Hence the trajectories
on Z are dense in tori of maximal dimension equal to rank N(Z)/E. We now show
that rank N(Z)/E=rank N(Ey)/Ey+ 1. Note that A is a torus of dimension 1 con-
tained in N(E)/Z. Hence there is a maximal torus 31- in N(E)/Y, such that
Clearly, c N(Ey)/E. It follows that /A is a maximal torus in N(Zy)/Ey, which
proves the required equality.
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Case (2). Let z(t) be a trajectory on Z. By Theorem 2.2 z(t)= 7(t)y(t), y(t)e F.
Since Ey(,)= we can assume that y(t)e N(E)/,. Let To be the number defined prior
to the statement of Lemma 5.6 and let yo 3’(To)6o. Clearly, z(To)= YoYo. Let q]-=

cl {z(t):te R} and let

S cl {yok" k is an integer}.

Observe that Syo c . Let t be the flow of f. We have

,yoYo ,roYo dP,+roYo z( + To).

It follows that ,Syo Z for all e R. Let us define the action of F x R on R" as

(5.2) (t, y)w=,yw where (t,y)eFxR, we

It follows that (S x R)yo. Let Ao be the isotropy subgroup of Yo with respect to
the action defined by (5.2). It is clear that (Sx R)/Ao is compact, connected, and
Abelian. Hence (S x R)/Ao is isomorphic to a torus. This implies that ql- is diffeomorphic
to a torus. Note that S is topologically cyclic and 3’o is its generator. Hence the
dimension of S is less than or equal to the dimension of a Cartan subgroup containing
3’o. Note that 3’o and 6o lie in the same component of the identity in N(E)/Z, which
we denote by S(6o). Let K be a Cartan subgroup generated by an element yl e S(o).
Proposition 5.5 implies that dim S -<_ dim K and dim ql- -< dim K + 1.

We now prove that for a small perturbation off the dimension of the closure of
a trajectory on Z equals dim K + 1. Suppose that yl e S(6o) generates a Cartan sub-
group. By Lemma 5.6 there exists a vector field h satisfying (VH1) and (VH2) and
such that if if(t)--(t)y(t) is the trajectory of f+ h with initial condition Yo then
(To)go y. Clearly, the dimension of the closure of if(t) equals dim K + 1.

To conclude the proofwe need to show that dim K rank N(Ey)/Zy. By Proposi-
tion 5.4 we can choose K so that A c K. The definition of A and the fact that A is
discrete imply that rank (N(Zy)/Z)=rank (N(,y)/,y). Let N(A) denote the nor-
malizer of A in N(,)/,. Note that N(A)= N(Zy)/Z. Clearly, K c N(A). We show
that rank N(A)=dim K. Suppose that b e N(A)o and let To be the torus generated
by b. Let bo b6o and let K be the topologically cyclic subgroup generated by bo.
Since 4 e N(A) we have 4A4-= A, which implies that

(5.3) b6o 6’b for some m.

Note that continuity implies that rn is independent of b. It follows that for any positive
integer j we must have bo 6b for some s (depending on j but independent of b).
Since bo is the generator of/ it follows that for some we must have b/o e/o C N(A)o.
By continuity we must have 4oe N(A)o for all be N(A)o. Now (5.3) implies that
3b e N(A)o for some s (independent of 4 e N(A)o). It follows that for some b the
torus generated by 6ch is a maximal torus in N(A). It follows that dim To-<dim
dim K. The inequality dim K >_-rank N(A) follows from the fact that Ko is a connected
Abelian subgroup of a compact Lie group; hence it is contained in a maximal torus.
It follows that rank N(A)=> dim K.

Let F be a family of vector fields satisfying (H1) and (H2). Suppose that /X is
finite and cyclic and let To be as defined prior to the statement of Lemma 5.6. Let
xx(t) be the trajectory of F(., h) with initial condition y. By Theorem 2.2 x(t)=
y(t)y(t) (y(t) is the periodic orbit of F(., h)). Let y(h)= y(To). The proof of
Theorem 5.2 is based on the following assertion: a generic F- gives rise to a generic
curve y. Given H satisfying (H1) and (H2) let y(t)y(t) be the trajectory of H(., A).
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We now define a map tO which assigns to every family of vector fields satisfying (H1)
and (H2) the corresponding curve ),(h). Let I c (0, ho) be an open interval and let

O(H)(A ,u(To), X e I.

Let S(6o) be the connected component of N(E)/E containing 60. Note that tO(H) is
an element of C(I, S(6o)).

Proof of Theorem 5.2. The proof is analogous to the proof of Theorem 4.1’(ii).
We will therefore only outline the proofand omit the technical details. IfA is isomorphic
to S then F satisfies the assumptions of Theorem 4.1’ with y(A)= y being the curve
of relative equilibria. Hence the theorem follows from Theorem 4.1’ and part (2) of
the proof of Theorem 5.1.

Suppose that A is finite and cyclic. Let Q c S(6o) be the set of elements which
does not generate a Cartan subgroup. We show that Q is a countable union of
submanifolds of S(6o), each of codimension greater than or equal to 1. Let K be a
Cartan subgroup containing 6o and generated by an element of S(6o). The existence
of K follows from Proposition 5.4. Recall that K is isomorphic to Ko Zt with Ko x { 1 }
corresponding to oKo (we identify ZI with {0, 1, 2,..., l-1}). In Ko we define the
sets pm (see the proof of Proposition 4.3). It follows that oKo CI Q is the union of the
sets Pm x {1}. Let E be the union of all conjugacy classes of P x { 1} by the elements
of (N(E)/E)o. Proposition 5.5 implies that Q is the union of the sets E. Consider
the action of (N(E)/E)o on N(E)/E defined as conjugation by a group element. As
in the proof of Theorem 4.1’ we can partition E into manifolds Era(A), consisting
of all elements of E whose isotropy with respect to this action is conjugate to A.

The remaining part of the proof is analogous to the proof of Theorem 4.1’. The
main objective is to show that there exists a residual subset C(R x R, R) such
that if H then for all choices of m and A the curve tO(H) is transverse to E(A)
at every A (0, Ao). This is done by showing that for some fixed m and A there exists
a residual set (A), whose elements are transverse to E(A), and then taking the
intersection of the sets (A).

We now fix m and A and regard tO as a mapping from C(R"R,R) to
C(I, S(o)). To show existence of (A) we need to prove the following properties
of O"

(1) If the interval I is such that ! (0, Ao), then tO is continuous in the Whitney
C topology.

(2) For each/ (0, Ao) there exists an interval I such that/ I and I c (0, Ao)
and a residual set c C(Rx R, Rn) such that if H then tO(H) is transverse to
E (A) at all A I.

Property (1) follows from standard theorems on smooth dependence of solutions
of ordinary differential equations on parameters (also see the proof of Theorem 2.2).

We now indicate how to prove property (2). We choose an interval Io such that
Io and Io c (0, ho). Given some interval I Io we define o as the set of elements

of C(Io, S(6o)) which are transverse to Era(A) at all A I. Standard transversality
theory implies that o is residual in the Whitney C topology on C(Io, S(6o)). Let

to-l(o). The property (1) implies that is an intersection of open sets. If I is
small enough then 5g is dense in the Whitney C topology on C(R"x R, R n). To
see this, suppose that y C(Io, S(6o)) is a small perturbation of the curve tO(F).
Then there exists a small perturbation H of the family F such that tO(F + H) y. The
proof of the existence of H is a straightforward generalization of Lemma 5.6.

The methods used in the proof of Theorem 5.2 can be easily generalized to prove
the following proposition.
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PROPOSITION 5.7. Suppose that F satisfies (H1) and (H2). Then there exists a
residual set N c C(R" x R, R") such that if H e N then the dimension of the trajec-
tories of F+ H on the sets Y is greater than or equal to rank (N(Ey)/Ey).

6. Bifurcations of relative equilibria with 0(2) symmetry. In this section we discuss
bifurcation problems with symmetry group 0(2). Let 4- denote semidirect product.
Recall that 0(2)= SO(2)q-Z:(), where Z2(K)= {1, K}, K is an orientation reversing
element of O(2), and SO(2) is the subgroup of 0(2) consisting of orientation preserving
rotations. We assume that 0(2) acts on R" and that F" R" x R --> R" is a smooth and
equivariant family of vector fields. We restrict our attention to bifurcations of group
orbits of equilibria whose isotropy subgroups are either Z2(K) or Dk, k >_-2. Here Dk
denotes the group of symmetries of a regular k-gon. The groups Z2() or Dk occur
as maximal isotropy subgroups for the various irreducible representations of 0(2);
hence the bifurcations we study can occur as secondary bifurcations from an invariant
equilibrium.

Let Ro denote the rotation of the plane by the angle 0. The groups Dk are generated
by the reflection and the rotation R2=/k. Let Zk denote the cyclic group generated
by R2/k. We have Dk "-Zk -Jr-Z2(K ). In the sequel we use D1 to denote Z2(I) and Z1
to denote the trivial subgroup 1.

Fix Xo R n, let X O(2)Xo, and let Exo be the isotropy subgroup of Xo. We assume
that ,o Dk, k => 1, and that X is a relative equilibrium of F. Let G be as defined in

3; that is, G is the restriction of FN to the normal space Nxo. Let g G(., 0); and
let E be the center subspace of (dg),o. In this section we analyze steady-state and
Hopf bifurcations of F near X. More precisely, we consider the following situations:

(a) (dg), has a zero eigenvalue.
(b) (dg)xo has a purely imaginary eigenvalue iw.
Let Y{(,xo)= {tr Z,o: try v for all v E} be the kernel of the action of xo on

E. We assume that the action of Exo on E is nontrivial; that is, Y{’(Yxo) is properly
contained in Exo. We now state the two main results of this section: a steady-state
bifurcation theorem and a Hopf bifurcation theorem. We begin with the steady-state
bifurcation theorem. Suppose that (dg)xo has a zero eigenvalue. We make a generic
assumption that E is the nullspace of (dg)xo and that the action Of Yxo on E is absolutely
irreducible. The following theorem describes all the generic types of bifurcating
solutions and gives the number of distinct nonconjugate branches.

THEOREM 6.1. All the generic types of bifurcating solutions of F are listed in
Table 6.1.

We now state the Hopf bifurcation theorem. Suppose that (dg)xo has a purely
imaginary eigenvalue ito. We make a generic assumption that E is the eigenspace of
ito and that the action of Exo on E is F-simple. The following theorem describes all
the generic types of bifurcating solutions and gives the number of distinct nonconjugate
branches.

TIqEOREM 6.2. All the generic types of bifurcating solutions of F are listed in
Table 6.2.

TABLE 6.1

Kernel of isotropy Type of solution Number of branches

Zk rotating wave
D,., k 2m steady state

Zl. I k, < k steady state 2
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TABLE 6.2

Kernel of isotropy Type of solution Number of branches

Z periodic orbit
Din, k 2m periodic orbit
Zl, 1/k, < k periodic orbit 2

two-torus

In the remainder of this section we prove Theorems 6.1 and 6.2. We begin by
classifying all the possible kernels of the action of Exo on E. We prove the following
lemma.

LEMMA 6.3. One of the following statements must hold"
(i) Y{(Exo) Zl, <- k, divides k, k/2.
(ii) k 2m and Y{(E,,o) is isomorphic to Din.
Proof Note that 9’{(Eo) is normal in Zo. Hence finding all the possible groups

Y{(Zxo) is equivalent to classifying the normal subgroups of Eo.
We consider two cases: Y{(E,,o)C SO(2) and Y{(Eo) SO(2). Suppose that

Yd(Exo)C SO(2). Then Y{(Exo) is a subgroup of Zk. Hence Yd(E,,o)=ZI l<-k,
divides k.

Suppose now that Yf(Eo) SO(2). Let ’Yf(Eo) srSO(2). Since Yf(Exo) is
normal in E,, we have Ra=/k R2=/k R-2=/k Yf(E,,o). Hence Ra,/k Yf(E,o). If
k =2m then it follows that Yf(E,,o) is generated by R4/k and " and therefore is
isomorphic to D,,. Otherwise k+ 1 is divisible by 2 and (R4,,/k) k+1)/2= Rzrr/k. This
implies that Y{(Exo) Dk Eo, which is a contradiction.

The case Yf(Eo)= Z, k/2 cannot occur, since then E,,o/Yf(E,,o) would be
isomorphic to D2 and every irreducible action of O2 has a nontrivial kernel.

Proof of Theorem 6.1. We begin by describing the bifurcation problem for the
family G. We assume that the center manifold reduction has been carried out; that is,
G is a family of Exo-equivariant vector fields on E. Recall that Y{(Eo) is normal in

Eo. Let r" Eo- Eo/Y{(Yxo) be the natural projection. We define the action of -(Eo)
on E by ’(r)v =-o-v, v E, r Eo. Note that this action is well defined, since ker r

Y{(Eo). It follows that G is Eo-equivariant if and only if it is r(Exo)-equivariant. We
replace the action of Exo by the action of r(Eo).

As indicated in Table 6.1 we divide the analysis into three cases:
(1) Y{(Eo) II, < k, divides k.
(2) Y{(Exo)= Zk.
(3) k 2m and 9’{’(o) is isomorphic to D,.
Case (1). Let m k I. Since < k it follows that m >= 2. Clearly, r(Zxo) is isomor-

phic to Dm. Since the action of r(,o) is faithful it follows that dim E > 1. This implies
that dim E =2, since all the irreducible representations of Dm are one- or two-
dimensional. Also m-> 3, since any irreducible representation of O2 has a nontrivial
kernel. It follows that the action of r(o) is isomorphic to the standard action of
on C. According to Table XIII, 5.2 in Golubitsky, Stewart, and Schaetter [1988] a
generic family G has two branches of steady-state solutions yl(A) and Y2(A). Let
Y1 O(2)y and Y2 O(2)y2. We now show that the sets Y1 and Y2 consist of equilibria
of F. The results of Golubitsky, Stewart, and Schaetter also imply that the isotropy
subgroups of yl and Y2 with respect to the action of D, are two-element groups, each
generated by an element not contained in Zm. Let y, and Ey denote the isotropy
subgroups of y and Y2 in Eo. It follows that yl SO(2) and y2 SO(2). Hence the
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normalizers of Zy, and Xy: are discrete. Theorem 4.1 implies that the group orbits Y1
and Y2 consist of equilibria of F.

Case (2). Note that ’(Exo) is isomorphic to Z2. Hence dim E 1. Since the action
of Z2 is nontrivial it follows that Z2 acts on E as minus identity. Hence generically G
undergoes a pitchfork bifurcation; that is, G has a unique (up to conjugacy) branch
of equilibria y(A) with trivial isotropy. For more information on Z2-equivariant
bifurcation, see Golubitsky and Schaeffer [1985, Chap. XVI].

Let Y O(2)y. We show that generically the trajectories of F on Y are rotating
waves. Let y be the isotropy subgroup of y in Xo. It follows that y {(Xo Zk.

We conclude that N(,y) 0(2). By Theorem 4.1 generically the trajectories of F(., A)
on Y(A) are given by drift along circles.

Case (3). As in Case (2) z(Xxo) is isomorphic to Z2. Hence G has a branch of
equilibria y(h ), whose isotropy subgroup in Z2 is trivial. Let Ey be the isotropy subgroup
ofy inX Since Ey ffLr(Xo and ’’(Exo) is isomorphic to D,, it follows that Ey Z SO(2)
and that N(,y) is discrete. By Theorem 4.1 the orbit Y O(2)y consists of equilibria
ofF.

Before proving Theorem 6.2 we give some background on Hopf bifurcation from
an invariant equilibrium. The results we review will be used in the analysis of bifurca-
tions of the family G. Let F c O(n) be a Lie group acting on R and suppose that this
action is nontrivial. Let H" R x R --> R be a family of smooth, F-equivariant vector
fields. Let h H(., 0) and suppose that (dh)o has a purely imaginary eigenvalue toi.
Suppose that the center manifold reduction has been carried out; that is, R is the
real part of the sum of the eigenspaces of +toi. We make a generic assumption that
the action of F on R is F-simple. Then the group {exp (Lt): t R} is isomorphic
to S1. We define the action of S on R" as

(y, O)x y exp (LO)x where (3,, O) F x S and x e R".

The following theorem is the equivariant Hopf bifurcation theorem (see Golubitsky
and Stewart [1985, Thm. 5.1] or Golubitsky, Stewart, and Schaeffer [1988,
Thm. XVI, 4.1 ]):

THEOREM 6.4. Suppose that A is a maximal isotropy subgroup of F x S and
dim Fix (A) 2. Then H has a branch of small amplitude periodic solutions xa such
that trx + O) x (t) for every pair (tr, O) A.

Suppose that x (t) is a branch of periodic solutions described in the statement
of Theorem 6.4. Let X(A)= {x(t): R}. Recall the definition of the group of sym-
metries of the set X, denoted by Ex, as the set of all tr F such that trx x for all
x R n. Clearly, Ex is obtained by projecting A onto the first component of F x S"
that is,

X,x {r e F: (r, O) e A for some 0 e S}.

We refer to the group A as the group of spatial-temporal symmetries of the periodic
orbit X.

We will now describe generic Hopf bifurcations in two cases: F Z2 and F Dk,
k >_-3. Assume that F Z2. We have the following proposition.

PROPOSITION 6.5. Generically, the family H has a branch of periodic orbits Y(A)
with .y() 22.

Proof. The irreducible representations of Z2 are absolutely irreducible and one-
dimensional. Hence a F-simple representation of Z2 will be two-dimensional and will
have the form R R. The action on each of the copies of R will be given as reflection
with respect to the origin. Let " be the nontrivial element in Z2. Then, for (x, y) R
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st(x, y) (-x, -y). Also

and exp (Lt) is a rotation by angle t. It is easy to see that Z2(r, 7r)= {(0, 0), (, 7r)} is
a maximal isotropy subgroup of Z2 x S1. It follows from Theorem 6.4 that H has a
branch of periodic orbits Y(A) with Ey(a Z2. Using normal form theory we can
show that generically this branch is unique.

We now discuss the case where F Dk, k >-3. We assume that the action of Dk
on R" is faithful. Let : 27r/k. We define the following subgroups of Dk x $1:

Zk= k
"m=0,1,...,k

z2() {(0, 0), (, 0)},

z2(,. ) {(0, 0), (., )},

z2(, :)= {(o, o), (, :)},

and when k is even

z {(o, o), (. )}.

We have the following theorem.
THEOREM 6.6. Generically, thefamily Hhas three branches ofperiodic orbits" Y1 (h ),

Y_(A ), and Ya(A ). The groups ofspatial-temporal symmetries Of Yl(h ), YE(A ), and Ya(A
are given r.espectively by"

(a) Zk, Z2(K), and Z2(K, 7r) if k is odd.
(b) Zk, Z2()Z2, and Z2(, 7r)Z2 ifk=-2(mod4).
(c) Zk, Z2()Z2, and Z2(, :)Z2 if k=- O (mod 4).
Theorem 6.6 is a consequence of Theorem XVIII, 3.1 in Golubitsky, Stewart, and

Schaetfer 1988].
We now present the proof of Theorem 6.2.
Proof of Theorem 6.2. We begin by describing the bifurcation problem for the

family G. We assume that the center manifold reduction has been carried out; that is,
G is a family of Exo-equivariant vector fields on E. Recall that z is the natural projection
from Exo onto E,o/Y{(E,o). As in the proof of Theorem 6.1 we replace the action of
E by the action of ’(Eo). We consider three cases:

(1) Y{’(Eo) ZI, < k, divides k.
(2) Y/(Exo)= Z.
(3) k 2m and Y{(o) is isomorphic to D,,.
Case (1). Let m 1/k. We have r(o)= D,. Since the action of r(o) on E is

faithful it follows that m >= 3. The action of r(o) on E is F-simple, so we are in
position to apply Theorem 6.6. Hence G has three branches of solutions YI(A), Y2(A),
and Y3(A) whose groups of spatial-temporal symmetries in D,, are as indicated in
Theorem 6.6. Let r,, r, and r be the groups of symmetries of these trajectories
inside of xo. Observe that r, Z and the groups r2 and r, are not contained in
SO(2). It follows that N(r)= 0(2) and the normalizers of the groups r2 and r,
are discrete. Let Z,(A) 0(2) Y(A), Z2(X) 0(2) Y2(A), and Z3(A) 0(2) Y3(A).
Theorem 5.2 implies that generically the trajectories of F on Z are dense in two-
dimensional tori and the trajectories of F on Z2 and Z3 are periodic orbits.
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Case (2). We have ’(Exo)= Z2. By Proposition 6.5 G has a unique branch of
periodic orbits Y()t). Let sr be the nontrivial element in Z2. It follows from the proof
of Proposition 6.5 that (st, 7r) is a spatial-temporal symmetry of Y. Let Zy denote the
group of symmetries of Y inside ofZ,o. We have ’()= sr, so Eye SO(2) and N(Zy)
is discrete. Let Z 0(2) Y. It follows that the flow of F on Z consists of periodic orbits.

Case (3). We have ’(E,o)= Z2. By Proposition 6.5 G has a unique branch of
periodic orbits Y(A). Since Y{’(Z,,o) SO(2) it follows that Ey SO(2) and N(Zy) is
discrete. Let Z 0(2)Y. It follows that the flow of F on Z consists of periodic
orbits.

7. The Kuramoto-Sivashinsky equation. The Kuramoto-Sivashinsky equation is
used to model several physical and chemical phenomena, for example, flame propaga-
tion and some aspects of the dynamics of the Belousov-Zhabotynski reaction. The
following is the Kuramoto-Shivashinsky equation in one space variable:

2(7.1) u, + 4u,,xx + a(u,, +u) O.

In this section we study a bifurcation problem derived from (7.1). Equation (7.1) is
equivariant with respect to translations and reflections in the space variable. An
approach often used in such situations is to impose periodic boundary conditions with
period L> 0. Then L becomes an additional parameter in the problem. The space
variable x can be rescaled so that the boundary conditions become 27r periodic. As a
result we obtain the following boundary value problem:

2(7.2) v,+4v,,,,,,,,+x(v,,+-v,)=O, v(x+27r, t)=v(x, t)

where the period L has been absorbed into the parameter c. The boundary value
problem (7.2) is O(2)-equivariant. Hence the theory developed in 6 will apply to
bifurcations of relative equilibria of (7.2).

An interesting aspect of the bifurcation analysis of the Kuramoto-Sivashinsky
equation is that we can easily find primary branches of solutions with isotropy Dk,
for all k >_-2. This is a consequence of the following observation. Suppose that u is a
steady-state solution of (7.2). If we extend u by periodicity to the interval [0, 2kTr]
and rescale the space variable by k, then the so-obtained function is an equilibrium
solution of (7.2) for a different value of the parameter c. The new equilibrium is called
a replicated solution. Note that this solution is 27r/k periodic, which implies that its
isotropy subgroup contains Zk. It is easy to see that u 0 is an equilibrium of (7.2).
This equilibrium is stable for a near zero. As ce is increased the solution u 0 loses
stability and bifurcates to a branch of solutions with isotropy group Z(). Hence for
each k-> 2 there exists a branch of replicated equilibria with symmetry Dk.

We might expect that the secondary branches of solutions bifurcating along the
replicated branches would be replications of the secondary branches bifurcating from
the primary branch. According to the analysis of 6, however, secondary bifurcations
from the replicated branches can be different from secondary bifurcations from the
branch with symmetry Z2(). In particular, we expect the branch with isotropy Zz(K)
to bifurcate to a rotating wave, and the branches with isotropy Dk to bifurcate to group
orbits of equilibria. Kevrekedis, Nicolaenco, and Scovel [1988] carried out a computer-
assisted study of secondary and tertiary bifurcations from the branches with isotropy
groups Zz(K), O2, and D3. Their results fit the predictions of Theorems 6.1 and 6.2;
in particular, the first bifurcation along the branch of the equilibria with isotropy group
Z() is to a rotating wave, and the first bifurcations along the branches of equilibria
with isotropy groups D2 and D3 are to orbits of equilibria. In this section we discuss
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the results of Kevrekedis, Nicolaenco, and Scovel and compare them with the predic-
tions of Theorems 6.1 and 6.2.

The numerical results of Kevrekedis, Nicolaenco, and Scovel also indicate
existence of quasi-periodic solutions and dynamics related to homoclinic and hetero-
clinic connections. None of these arise as a result of the bifurcations discussed in 6.
Armbruster, Guckenheimer, and Holmes 1987] analyzed the 0(2) equivariant problem
of interaction of two steady-state modes, one with isotropy group Z2(K) and the other
with isotropy group D2. The dynamics they found was much like the dynamics found
by Kevrekedis, Nicolaenco, and Scovel near the Z2(K) and D2 branches.

Let us now give a more detailed description of the bifurcation problem derived
from the Kuramoto-Sivashinsky equation. We start by modifying the coordinates in
(7.2) so that the solutions are bounded (see Kevrekedis et al. [1988]):

re(t)= v(x, t) dx.

We use (7.2) and the fact that the integrals [.o v dx and Vx dx vanish to show that

io 2( t) -- vx dx.

We now modify the coordinates by letting u(x, t)= v(x, t)- m(t). We obtain

u, +4Uxxxx+ a(ux +1/2u2) m(t) =0,
(7.3)

u(x, t) u(x + 27r, t).

Let us now describe the symmetries of (7.2) and (7.3). Let X be a space of four
times differentiable functions u(x, t), 2r periodic in the space variable x. The 0(2)
action on X is generated by

Ou(x, t) u(x + O, t), 0 SO(2),

u(x,t)=u(-x,t).

It is easy to see that (7.2) and (7.3) are equivariant with respect to this action.
Let us now explain in more detail how we obtain the replicated steady-state

solutions. The ideas we present can be found in Kevrekedis, Nicolaenco, and Scovel.
Consider the steady-state problem corresponding to (7.3):

(7.4) 4u,x+a Ux,+-u + udx=O.
0

We assert the following. Suppose u(x) is a steady-state solution of (7.3) with
a Co and let k be a positive integer. Then w(x)= u(kx) is a solution of (7.3) with
a 4k2ao. To prove the assertion we apply the left-hand side of (7.3) to w and use
the fact that u is a solution.

Note that u 0 is a trivial solution of (7.2). To determine the stability of zero we
write (7.2) as

u, F(u)

where

F(u) -4Uxxx + a(uxx +U2x) + th( t).

Then

dFI ,=oh -4hxx + ahx.
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It is easy to see that the functions e2"trikx, where k is an integer, form a complete
set of eigenvectors of (dF)u=o and the corresponding eigenvalues are (2r)2k2(4k2- a).
The first instability occurs at k- 1 and a 4. As a crosses 4, a branch of equilibria
with isotropy group Z2() bifurcates from the trivial solution. We will refer to it as
the unimodal branch. This branch is replicated for a 4k2. These replicated branches
will be referred to as the k-modal branches. Kevrekedis, Nicolaenco, and Scovel
describe some secondary and tertiary bifurcations discovered in their numerical studies
of the Kuramoto-Sivashinsky equation. If we believe that those bifurcations are generic
in the sense discussed in 6, then each one of them must match one of the cases
described in Theorems 6.1 and 6.2. In what follows we summarize the findings of
Kevrekedis, Nicolaenco, and Scovel and relate them to the results of Theorems 6.1
and 6.2. The bifurcation diagram based on the results of Kevrekedis, Nicolaenco, and
Scovel is given in Fig. 7.1. The solid lines represent branches of asymptotically stable
solutions and the dotted ones represent branches of unstable solutions.

11 H2 11

’ /BT I
R I

u/ /

4 16 36
FIG. 7.1. Secondary and tertiary bifurcation of the Kuramoto-Shivashinsky equation.

Let U be the branch of equilibria with isotropy Z2(K), B the branch of equilibria
with isotropy D2, and T the branch of equilibria with isotropy D3. We discuss the
secondary bifurcations found by Kevrekedis, Nicolaenco, and Scovel along each of
these branches. We first consider steady-state bifurcations.

(1) Steady-state bifurcations from the branch U. At a 13.005 the computations
of Kevrekedis, Nicolaenco, and Scovel reveal that a real eigenvalue passes through
zero. In this case Theorem 6.1 predicts a bifurcation to a rotating wave. The numerical
experiments confirm the existence of a rotating wave. Moreover, Kevrekedis,
Nicolaenco, and Scovel give an analytical proof of the existence of the rotating wave,
based on the ideas of Iooss [1986].

(2) Steady-state bifurcations from the branch B.
(a) The first bifurcation on the branch B occurs at a- 16.1399. Theorem 6.1

predicts a bifurcation to a unique branch of orbits of equilibria with isotropy group
isomorphic to Z2 (provided that the kernel of the action of D2 on the nullspace is not
contained in SO(2)). This is in agreement with the computations, which show that the
branch U merges with the branch B.

(b) An analogous bifurcation is observed for a =22.559. The isotropy group
bifurcating branch is Zz(K). We label this branch BT since it later joins with the
trimodal branch.

(3) Steady-state bifurcationsfrom the branch T. At a 36.235 two real eigenvalues
of the branch T pass through zero. According to Theorem 6.1 there are two branches
of equilibria bifurcating of the branch T. The isotropy of these equilibria is Z2(). The
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numerical results are in complete agreement with this prediction. One of the bifurcating
branches is the branch BT. Kevrekedis, Nicolaenco, and Scovel refer to the other
branch as a continuation of BT and also label it BT. For this reason we label this
branch as BT’.

(4) Steady-state bifurcations from the branch BT. Kevrekedis, Nicolaenco, and
Scovel also find a bifurcation point related to a zero eigenvalue on the branch BT.
They conjecture that the corresponding bifurcation is to a rotating wave. Theorem 6.1
also predicts a bifurcation to a rotating wave and hence supports the conjecture.

Kevrekedis, Nicolaenco, and Scovel discuss three Hopfbifurcation points, marked
in Fig. 7.1 as H1, H2, and H3. The following are the predictions of the nature of these
bifurcations derived from Theorem 6.2.

The Hopf bifurcation point 1. Point H1 corresponds to a Hopf bifurcation from
the branch of rotating waves R. The group of symmetries of the branch of rotating
waves is SO(2). Theorem 6.2 implies that generically the bifurcating trajectories are
dense in two-tori. This agrees with the predictions of Kevrekedis, Nicolaenco, and
Scovel 1988, closing remarks of 5a], who conclude from the structure ofthe dynamics
that a doubly periodic solution is likely to exist.

The Hopfbifurcation point 2. Point H2 corresponds to a Hopfbifurcation occurring
along the branch B. The isotropy group of the equilibria on the branch B is D2.
Theorem 6.2 implies that this Hopf bifurcation leads to a periodic flow. The numerical
results of Kevrekedis, Nicolaenco, and Scovel indicate that the bifurcating solutions
are periodic.

The Hopfbifurcation point 3. Point H3 corresponds to Hopf bifurcation occurring
along the branch BT. Let E be the isotropy group of the equilibria on that branch. We
have previously remarked that E Z2() or E Z2(, r). It follows from Theorem 6.2
that the bifurcating solutions must be periodic orbits. Kevrekedis, Nicolaenco, and
Scovel do not comment on the dynamics related to this bifurcation.

8. The B6nard problem. In this section we analyze secondary steady-state bifurca-
tions of a dynamical system equivariant with respect to the group F D6 +-[]-2, where
1-2 is a two-dimensional torus and 96 is the group of symmetries of a regular hexagon.
A bifurcation problem with this symmetry arises in the analysis of the mathematical
model of convection between two infinite planes. This problem is called the planar
B6nard problem. We now briefly describe the symmetries of the model and the
derivation of the bifurcation problem with symmetry group F. Detailed information
on this topic and the analysis of primary bifurcations can be found in Buzano and
Golubitsky [1983] or in Golubitsky, Stewart, and Schaeffer [1988, Case Study 4].

Let x, y be the coordinates in a horizontal plane and z the coordinate in the
vertical direction. The model of convection is equivariant with respect to translations,
reflections, and rotations in the xy plane. The group generated by these transformations
is called the group of Euclidian motions in the plane and is denoted by E2. Let w be
in R2 and let Tw denote translation by w. The group of translations in the plane is
isomorphic to R2 with the isomorphism defined by the assignment w- Tw. The
group E2 can be thought of as the semidirect product 0(2)+ R2 with multiplication
defined by

(8.1) (crl, Tw)(cr2, Tw2)--(grlo’2, Tw+lW2), (3"1, 0"2 O(2), W1, w26 R2.

Let e R2 be an arbitrary vector and let f be obtained by rotating e by r/3. The
hexagonal lattice H6 is given as

H6 {ne + mf: for all pairs of integers n and m}.
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Note that H6 is a subgroup of R2. The solutions of the convection problem have the
form u(t, x, y, z). We restrict our attention to those that are periodic in both directions
of the lattice. Let

= {u(t, x, y, z): u(t, (x, y, z)+(e, 0))= u(t, (x, y, z)+(f, 0))= u(t, x, y, z)}.

Clearly, the only elements of 0(2) that leave invariant are the elements of 06. Also
the action of H6 on T is trivial. Hence the group of symmetries of the convection
problem restricted to is given by F with q]-2= RZ/H6"

Multiplication in F is induced by multiplication in E2. Let D6 act on R2 by the
standard action. Let 1 denote the identity in D6, zero the identity in q]-2, and e the
identity in F. For p R2 let p’ denote the image of p under the natural projection
R2o 2. For 0- 06 we define 0-. p’= (o-p)’. Multiplication in F is given as follows:

(8.2) (01, Pl)(o2, P) (0102, Pl -" 0"1"

Here 0"10"2 is the product of 0-1 and 0"2 in D6 and pl + 0-1 "P is the sum of vectors in q1-2.
The B6nard problem has an invariant equilibrium (the pure conduction state).

There exists a region in the parameter space where this equilibrium is stable. The
known primary bifurcations are to two types of equilibria with maximal isotropy
subgroups. These subgroups are D6 and D2-i-S (--Z2@O(2)). The equilibria with
isotropy 06 are called hexagons, and the equilibria with isotropy Z2@ 0(2) are called
rolls. In what follows we describe the kinds of steady-state bifurcations each one of
these solutions can undergo.

From now on we consider an abstract F-equivariant bifurcation problem. We
assume that F:R" R" x R (for some n) is a smooth F-equivariant family of vector
fields and that F has a branch of equilibria with isotropy group 06 (which we refer
to as hexagons) and a branch of solutions with isotropy group Z2@ 0(2) (which we
refer to as rolls). We analyze the generic bifurcations of these solutions.

(A) Bifurcations of hexagons. Suppose X Fxo is a group orbit of hexagons. Let
G be the restriction of FN to the normal space Xo + Nxo and let g G(., 0). We assume
that (dg)x has a zero eigenvalue. Let E be the center subspace of (dg)o. We make a
generic assumption that E is the nullspace of (dg) and that the action of 96 on E
is absolutely irreducible. Our bifurcation analysis will depend on the action of 96 on
E. Let ’{(D6) be the kernel of the action of 96 on E. We assume that the bifurcation
is symmetry breaking, that is, Yg’(D6) is a proper subgroup of 96. According to Lemma
6.3, either Y{(D6)--Zm, m 1, 2, 6, or ,{’(D6) is isomorphic to D3. The following
proposition gives a classification of generic bifurcations of hexagons.

PROPOSITION 8.1. All generic types of bifurcating solutions of F are listed in
Table 8.1.

We now state and prove a lemma necessary to prove Proposition 8.1. Suppose
that is a subgroup of 06 and let N() denote the normalizer of in F. Let Fix ()

TABLE 8.1

Kernel of isotropy Type of solution Number of half branches

Z or D steady state
Z steady state 2

trivial periodic orbit 2
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denote the fixed-point space of 5; taken with respect to the standard action of D6

on R2. We have the following lemma.
LEMMA 8.2. dim N(5;) dim Fix (5;).
Proof Let Fo denote the connected component of the identity in F. Since F is a

compact group it suffices to show that the normalizer of 5; in Fo has the same dimension
as Fix (5;). The group Fo consists of elements of form (1, p’), p’ 72. Suppose that
(or, 0) is in 5;. The element (1, p’) is in N(5;) if (1,-p’)(cr, 0)(1, p’) is in 5;. We have

(8.3) (1, -p’)(cr, 0)(1, p’) (or, or. p’-p’).

If (8.1) holds then we must have cr.p’-p’=0, which is equivalent to (rp-p)’=0.
The proof now follows.

Proof of Proposition 8.1. Let 7.:D6- D6/Yf(D6) be the natural projection. In the
analysis of bifurcations of the family G we replace the action of D6 by the action of
7.(D6). As indicated in Table 8.1 we divide the analysis into three cases:

(1) Y{(D6) Z6 or Y[(D6) is isomorphic to D3.
(2) (D6)-- Z2

(3) 7{’(D6) is trivial.
Case (1). Observe that 7"(06) is isomorphic to Z2. In this case a generic family

G has a unique branch of equilibria y(h), whose isotropy subgroup in 06 is trivial
(see the proof of Theorem 6.1). The isotropy group of y(h) in 7.(06) is trivial. Let 5;y
be the isotropy group of y(h) in D6. It follows that Ey is ’{’(O6). The group Y{(O6)
contains a nontrivial rotation. It follows that the fixed-point space of {(O6) with
respect to the standard action of D6 on R

2 is trivial. By Lemma 8.2 dim N(E)= 0. Let
Y(A) Fy(h). By Theorem 4.1 the set Y(A) consists of equilibria of F.

Case (2). Observe that 7.(D6) is isomorphic to D3. It follows from Table XIII,
5.1 in Golubitsky, Stewart, and Schaeffer [1988] that a generic family G has two half
branches of equilibria y(h), yz(A). Let Ey, and 5;y: denote the isotropy subgroups of
y and y2 in D6. Both of these groups must contain ’{(O6). Since fir(D6) contains the
rotation by r it follows that the fixed-point spaces of Ey, and Ey are trivial. Lemma
8.2 implies that the normalizers of these groups are discrete. Let Y(A)=Fy(A),
Yz(A Fy:(h ). Theorem 4.1 implies that the sets Y(h) and Yz(A consist of equilibria
of F.

Case (3). According to Table XIII, 5.2 in Golubitsky, Stewart, and Schaeffer
[1988], a generic family G has two half branches of equilibria y(A), y2(A), with
5;y, {1, } and 5;ya= {1, r}. Here denotes the reflection through the x-axis and r
denotes the reflection through the y-axis. Clearly, these groups have one-dimensional
fixed-point spaces, hence, by Lemma 8.2, their normalizers are one-dimensional. Let
YI(A)--Fy(A), Y2(A)= Fy2(A). Theorem 4.1 implies that generically the trajectories
of the flow of F on the sets Y(A) and Y2(A) are rotating waves.

(B) Bifurcations of rolls. Suppose X Fxo is a group orbit of rolls. Let G be the
restriction of FN to the normal space N and let g G(., 0). We assume that (dg)
has an eigenvalue on the imaginary axis. Let 5; denote the isotropy subgroup of rolls.
Let E be the center subspace of (dg)o. We make a generic assumption that the action
of 5; on E is irreducible. We will show that this implies that the action of 5; on E is
absolutely irreducible. This implies that (dg) must have a zero eigenvalue and hence
the bifurcation we consider is a steady-state bifurcation.

The group 5; is generated by translations along the y-axis, reflection through the
y-axis and rotation by r (see Golubitsky, Stewart, and Schaeffer [1988, p. 154]). The
projection of the y-axis into the torus 72 is a circle which we denote by S1. Let :
correspond to the element of D6 which acts on R as rotation by r, and let " denote
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the element of D6 which acts as reflection through the y-axis. The element sr commutes
with the elements of S and the element : anticommutes with the elements of S1. It
follows that Zr is isomorphic to Z2q)O(2), with S corresponding to SO(2), sc corre-
sponding to a reflection in 0(2), and sr corresponding to the nontrivial element of Z2.
The irreducible representations of Z2q) 0(2) are given by the irreducible representations
of O(2), with " acting as identity or as minus identity. Since the irreducible representa-
tions of 0(2) are absolutely irreducible it follows that (dg)xolE =-0.

We now divide that analysis into two cases:
(1) S acts trivially on E.
(2) S acts nontrivially on E.
Case (1). In the analysis of bifurcations of G we can replace the action of Er on

E by the action of D2 {1, :, sr, sc’}. The space E must be one-dimensional and the
kernel of the action of D2 must be one of the groups:

(8.4) Z:z(’) {1, ’}, Z2() {1, :}, Z2(scsr) {1, :’}.

It follows that in the analysis of bifurcations of G the action of D2 can be replaced
by the action of a group isomorphic to Z2. Hence a generic family G has a unique
branch of equilibria y(A) and the isotropy group of y(A) in DE is equal to one of the
groups listed in (8.4). Let Ey be the isotropy subgroup ofy(A in Er. We have Ey (S
or Xy (S 1, ) or Ey---(S 1, :ff). In other words, Ey is generated by the elements of S
and , sr, or :sr. Let Y(A)= Fy(h). We have the following proposition.

PROPOSITION 8.3. If ,y--(S1, ) then the trajectories offlow of F on Y(A) are
rotating waves. Otherwise, Y(A consists of equilibria.

Proof. We prove that if Ey=(S,:sr) then dim N(Ey)=2 and otherwise
dim N(Ey)= 1. The proposition will then follow from Theorem 4.1.

By compactness of F it suffices to show that the normalizer of Ey in Fo has the
indicated dimension. Recall that Fo consists of the elements of F of the form (1, p’),
p, 2. Suppose that (o-, 0)Ey, tr D2. The identity (8.3) implies that

(8.5) or. p’-p’ S1.

Recall that S is the image of the y-axis under the natural projection R2- qy2. Hence
(8.5) implies that crp p (0, q), q R.

Suppose that p (pa, p). The element :sr acts on R2 as reflection through the
x-axis; that is, :’(p, P2)=(P,-P2). It follows that sCsrp-p (0,-2p2). Hence (8.4)
holds for all p’ in S. It follows that if Ey (S1, sc’), then dim N(Ey) 2.

The element : acts on R2 as rotation by 7r; that is, sc(pl, P2) (--P, --P2). It follows
that sop -p (-2pl, -2p). Hence (8.5) holds if p’ S1. It follows that if Ey
then dim N(Ey) 1.

The element r acts on R as reflection through the x-axis, that is, ’(pl,p)=
(-Pl, P2). It follows that ’p-p (-2pl, 0). Hence (8.5) holds if p’ S. It follows that
if Ey (S1, ’), then dim N(Ey)= 1.

Case (2). We show that if S acts nontrivially, then generically the flow on the
bifurcating relative equilibria is trivial. Namely, we prove the following proposition.

PROPOSITION 8.4. A generic family F has a unique branch of bifurcating relative
equilibria Y(A ). The flow on the sets Y(A is trivial.

Proof We first consider bifurcations of the family G. Let Yg’(Er) be the kernel of
the action of Er on E. We show that Y{(Er) must be nontrivial. If sr acts on E as
identity, then (’, 0) 3’((Er), which implies the assertion. Suppose that sr acts on E as
minus identity. Let Po be the element of S acting on E as rotation by 7r. Then
(’, Po) Yg’(Er), SO 3’((Zr) is nontrivial.
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Since the action of S is nontrivial it follows that the action of : on E is a reflection.
Hence :7r(Er) is generated by a cyclic subgroup of S and either (’, 0) or (’, Po). It
follows that Er/:7{(Er) is isomorphic to 0(2). In the analysis of the bifurcations of G
we replace the action of Er on E by the action of Er/3’’(E) on E. By standard results
on O(2)-equivariant bifurcation G has a unique branch of equilibria y(h) and Ey
contains a reflection. Since " acts as reflection we can assume (by possibly replacing
y(h) by a conjugate branch) that (’, 0) Ey.

We now prove that the normalizer of y in Fo is discrete. As we argued earlier,
this implies that the normalizer of y in F is discrete. The group y is generated by
(’, 0) and the elements of ’t(Er). Suppose that (1, p’) N(Ey), p (Pl, P2). Recall that
sc acts on R2 as rotation by 7r; that is, sc(pl, P2) (-Pl, -P2). The identity (8.3) implies
that r. p’-p, Ey. Also p-p (-2pl,-2p2) =-2p’. It follows that 2p’ must be in
7f(Er) f’) S 1, which, by assumption is a discrete group. It follows that N(Ey) is discrete
and by Theorem 4.1 the relative equilibria Y(A)= Fy(h) consist of equilibria of F.

Acknowledgments. The author thanks Marty Golubitsky for very helpful
suggestions and comments. The author is also grateful to Mike Field and Andr6
Vanderbauwhede for helpful discussions.

REFERENCES

D. ARMBRUSTER, J. GUCKENHEIMER, AND P. J. HOLMES [1987], Heteroclinic cycles and modulated
traveling waves in a system with 0(2) symmetry, Phys. D, 29, pp. 257-282.

G. BREDON [1972], Introduction to compact transformation groups, in Pure and Applied Mathematics,
Vol. 46, Academic Press, New York, London.

T. BRtCKER AND T. TOM DIECK [1985], Representations of Compact Lie Groups, Graduate Texts in
Mathematics, Springer-Verlag, New York.

E. BUZANO AND M. GOLUBITSKY [1983], Bifurcations on the hexagonal lattice and the Bdnard problem,
Philos. Trans. Roy. Soc. London Ser. A, 308, pp. 617-667.

P. CHOSSAT 1986], Bifurcation secondaire de solution quasi pdriodiques dans un problme de bifurcation de
Hopfpar symdtrie O(2), C. R. Acad. Sci. Paris S6r. I, 302, pp. 539-541.

P. CHOSSAT AND M. GOLUBITSKY [1988], Iterates of maps with symmetry, SIAM J. Math. Anal., 19,
pp. 1259-1270.

E. N. DANCER 1980], An implicitfunction theorem with symmetries and its application to nonlinear eigenvalue
problems, Bull. Austral. Math. Soc., 21, pp. 404-437.

G. DANGLEMAYR [1986], Steady state mode interactions in the presence of 0(2) symmetry, Dynamics and
Stability of Systems, 1, pp. 159-185.

M. J. FIELD [1980], Equivariant dynamical systems, Trans. Amer. Math. Soc., 259, pp. 185-205.
1988], Equivariant bifurcation theory and symmetry breaking, preprint, University of Sydney, Sydney,
Australia.

M. GOLUBITSKY AND W. W. GUILLEMIN 1974], Stable Mappings and Their Singularities, Springer-Verlag,
New York.

M. GOLUBITSKY AND D. SCHAEFFER 1985], Singularities and Groups in Bifurcation Theory, Vol. I, Applied
Mathematical Sciences, Vol. 51, Springer-Verlag, New York.

M. GOLUBITSKY AND I. STEWART 1985], Hopf bifurcation in the presence of symmetry, Arch. Rational
Mech. Anal., 87, pp. 107-165.

M. GOLUBITSKY, I. STEWART, AND D. SCHAEFFER 1988], Singularities and Groups in Bifurcation Theory,
Vol. II, Applied Mathematical Sciences, Vol. 69, Springer-Verlag, New York.

V. GUILLEMIN AND A. POLLACK [1974], Differential Topology, Prentice-Hall, Englewood Cliffs, NJ.
G. Iooss [1986], Secondary bifurcations of the Taylor vortices into wavy inflow and outflow boundaries,

J. Fluid. Mech., 173, pp. 273-288.
I. G. KEVREKEDIS, B. NICOLAENCO, AND J. C. SCOVEL [1988], Back in the saddle again: a computer

assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50 (1990), pp. 760-790.
E. MOUTRANE 1988], Interaction de modes sphdriques dans le problbme de Bdnard entre deux spheres, Ph.D.

thesis, Universit6 Nice, Nice, France.



1486 MARTIN KRUPA

V. POENARU [1976], Singularitds C en prdsence de symdtrie, Lecture Notes in Math., 510, Springer-Verlag,
Berlin, New York.

D. RUELLE 1973], Bifurcations in presence ofa symmetry group, Arch. Rational Mech. Anal., 51, pp. 131-172.
A. VANDERBAUWHEDE, M. KRUPA, AND M. GOLUBITSKY [1989], Secondary bifurcations in symmetric

systems, in Proc. Equadiff Conference 1987, Lecture Notes in Pure and Appl. Math., Vol. 118,
Marcel Dekker, New York, Basel, 1989.


