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A direct numerical simulation of a turbulent channel flow is performed. The unsteady 
Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based 
on thc mean centreline velocity and channel half-width, with about 4 x los grid points 
(192 x 129 x 160 in 2, y, 2). All essential turbulence scales are resolved on the com- 
putational grid and no subgrid model is used. A large number of turbulence statistics 
are computed and compared with the existing experimental data at comparable 
Reynolds numbers. Agreements as well as discrepancies are discussed in detail. 
Particular attention is given to the behaviour of turbulence correlations near the wall. 
In addition, a number of statistical correlations which are complementary to the 
existing experimental data are reported for the first time. 

1. Introduction 
Fully developed channel flow has been studied extensively to increase the 

understanding of the mechanics of wall-bounded turbulent flows. Its geometric 
simplicity is attractive for both experimental and theoretical investigations of 
complex turbulence interactions near a wall. As a result, a large number of 
experimental and computational studies of channel flow have been carried out. 

Nikuradse (1929) and Reichardt (1938) were among the first to investigate fully 
developed turbulent channel flow. Nikuradse’s measurements were limited to the 
mean flow ; Reichardt reported velocity fluctuations in the streamwise and normal 
(to the wall) directions. Laufer (1951) was the first to document detailed turbulence 
statistics. His measurements were made a t  three Reynolds numbers (12300, 30800, 
and 61600), based on the mean centreline velocity and the channel half-width. 
Comte-Bellot (1963) provided the most extensive data, including many higher-order 
Statistics such as two-point correlations, energy spectra, skewness and flatness 
factors. Her measurements were made over the Reynolds-number range 
57000-230000. Clark (1968) reported additional detailed information in the regions 
very near the wall over the Reynolds-number range 1500045600. Hussain & 
Reynolds (1975) conducted experiments in an extremely long, two-dimensional 
channel to confirm that the higher-order turbulence statistics reached a fully 
developed state. The ratio of their channel length to the channel half-width was about 
450, compared with 86,122 and 120 of Laufer, Comte-Bellot and Clark, respectively. 
The Reynolds-number range in the experiment of Hussain & Reynolds was 
13800-33300. Eckelmann (1970) carried out his experiment with oil as the working 
fluid, and at very low Reynolds numbers, 2800 and 4100, to facilitate measurements 
in the region very close to the wall. Detailed information regarding the turbulence 
structures near the wall in the same facility were also reported by Eckelmann (1974) 
and Kreplin & Eckelmann (1979). Johansson & Alfredsson (1982) presented recent 
measurements at a Reynolds-number range of 690S24 450. 
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Despite the significant effort in this relative simple flow, there is poor agreement 
among the reported measurements, even in lower-order statistics such as turbulence 
intensities, especially in the vicinity of the wall. Part of the discrepancy may be due 
to the wide range of Reynolds numbers used in the experiments - for example, it is 
well known that there is a significant Reynolds-number effect on the log law of mean 
velocity profiles-but most of the scatter is probably a result of experimental 
uncertainty involved in measuring turbulence quantities near the wall, where the 
presence of high shear and small scales of turbulent motions makes measurements 
extremely difficult. Johansson & Alfredsson (1 984) reported the effect on turbulence 
msasurements of imperfect spatial resolution due to  probe length. The low-Reynolds- 
number experiments in the oil channel by Eckelmann and his colleagues a t  Gottingen 
attempted to  reduce this difficulty by making the wall layer thick enough to  allow 
reliable measurements in this region. 

I n  recent years, numerical simulations of turbulent flows have become an im- 
portant research tool in studying the basic physics of turbulence. For the reasons 
outlined above, extensive effort has been devoted to  the calculation of turbulent 
channel flow. The simulation databases, which contain three-dimensional velocity 
and pressure fields, provide information to  complement experimental data in the 
study of the physics of turbulent flows. Interested readers are referred to a recent 
review article by Rogallo & Moin (1984). Deardorff (1970) and Schumann (1973) 
performed three-dimensional computations of turbulent channel flow in which 
synthetic boundary conditions are used in the log layer, rather than the natural 
no-slip boundary condition, thereby avoiding explicit computation of the near-wall 
region. Nevertheless, they were able to predict several features of turbulent channel 
flow with a moderate number of grid points. In  the computations of Moin & Kim 
(1982)) the wall region was explicitly computed rather than modelled, and most of 
the experimentally observed wall-layer structures were reproduced. The database 
from that simulation has been used extensively for studying the structure of 
wall-bounded turbulent flows, although the computational resolution was not 
adequate to  completely resolve turbulence scales in the vicinity of the wall. The 
qualitative statistical and time-dependent features of the flow were in accordance 
with experimental measurements, but the scales of the flow structures in the wall 
region were generally larger than the experimental observations. Therefore, reliable 
quantitative information on turbulence structures could not be extracted from the 
computations. 

The objective of this work is to perform a direct numerical simulation of turbulent 
channel flow where all essential scales of motion are resolved. The database generated 
by such a simulation is of considerable value for the quantitative and qualitative 
studies of the structure of turbulence in wall-bounded flows, and for the design and 
testing of turbulence closure models. The computed flow fields can also be used to  
calibrate new measurement techniques that can be used in more complex flows which 
are currently inaccesible for direct numerical simulations. In  this paper we report the 
results of this simulation, and document its detailed turbulence statistics. The 
computed results are compared extensively with the available experimental data. 
Agreements as well as discrepancies will be discussed in detail. In  addition, a number 
of statistical correlations, which complement the existing experimental data, are 
reported for the first time. 
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FIGURE 1. Coordinate system in channel. 

2. Computational domain and grid spacing 
The flow geometry and the coordinate system are shown in figure 1. Fully 

developed turbulent channel flow is homogeneous in the streamwise and spanwise 
directions, and periodic boundary conditions are used in these directions. The use of 
periodic boundary conditions in the homogeneous directions can be justified if the 
computational box (period) is chosen to include the largest eddies in the flow. As in 
Moin & Kim (1982), the initial choice of the computational domain is made by 
examining the experimental two-point correlation measurements. The computational 
domain is adjusted, if necessary, to  assure that the turbulence fluctuations are 
uncorrelated a t  a separation of one half-period in the homogeneous directions. The 
computation is carried out with 3962880 grid points (192 x 129 x 160, in x, y, z )  for 
a Reynolds number of 3300, which is based on the mean centreline velocity U, and 
the channel half-width 6 (a Reynolds number of 180 based on the wall shear velocity 
uT). For the Reynolds number considered here, the streamwise and spanwise 
computational periods are chosen to  be 4a8 and 2x8, respectively (2300 and 1150 in 
wall units). With this computational domain, the grid spacings in the streamwise 
and spanwise directions are respectively Ax+ x 12 and Azf x 7 in wall units.t 
Non-uniform meshes are used in the normal direction with yj = cos0, for 
Sj = ( j - l ) n / ( N - l ) , j  = 1,2,  ..., N .  Here N is the number of grid points in the 
y-direction. The first mesh point away from the wall is at y+ x 0.05, and the 
maximum spacing (at the centreline of the channel) is 4.4 wall units. No subgrid-scale 
model is used in the computation, since i t  is shown (Moser & Moin 1984) and 
confirmed, a posteriori, that  the grid resolution is sufficiently fine to resolve the 
essential turbulent scales, even though it is larger than the estimated Kolmogorov 
scale of 2 wall units obtained using the average dissipation rate per unit mass across 
the channel width. 

Examples of two-point correlations and energy spectra are shown in figures 2 and 
3 to illustrate the adequacy of the computational domain and the grid resolutions. 
In  figure 3, k, and k, are the wavenumbers in the streamwise and spanwise directions, 
respectively. I n  figure 2, the two-point correlations in the x- and z-directions at two 
y-locations - one very close to the wall and the other close to the centreline - show 
that they fall off to zero values for large separations, indicating that the computa- 
tional domain is sufficiently large. The energy spectra shown in figure 3 illustrate that  
the grid resolution is adequate, since the energy density associated with the high 

t The superscript + indicates a non-dimensional quantity scaled by the wall variables; e.g. 
y+ = yu,/v, where v is the kinematic viscosity and u, = ( ~ ~ / p ) i  is the wall shear velocity. 
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wavenumbers is several decades lower than the energy density corresponding to  low 
wavenumbers, and there is no evidence of energy pile-up at  high wavenumbers. 

It should be noted, however, that  the drop-off of the computed spectra of high 
wavenumbers is not sufficient evidence that the computed results are unaffected by 
the small-scale motions neglected in the computations. It is not clear what significant 
dynamical roles, if any, these small scales would play if included in the computations. 
Numerical experiments with much finer resolutions than those used here would 
presumably clarify this issue. Such computations are very difficult and time 
consuming to carry out with the present computers. However, comparison of the 
present results with those obtained using a coarser mesh (128 x 129 x 128 in 2, y, z )  
did not reveal any differences in the statistical correlations considered in this paper. 
This was also the case when we compared the present results with those obtained by 
Moser & Moin (1984) in which they used 128 x 65 x 128 grid points in studying a 
turbulent flow in a curved channel a t  a comparable Reynolds number. 

3. Numerical procedures 

form 
The governing equations for an incompressible flow can be written in the following 

1 $- - -- a' +H,+-V2u,, 
at ax, Re 

Here, all variables are non-dimensionalized by the channel half-width 6, and the wall 
shear velocity uT; Hi includes the convective terms and the mean pressure gradient; 
and Re denotes the Reynolds number defined as Re = u, S / v .  

Equations ( 1 )  and (2) can be reduced to yield a fourth-order equation for v, and 
a second-order equation for the normal component of vorticity as follows: 

where 

a 1 
-V2v at = h,+-v4v, Re 

a 1 tg = hg+-V2g, Re 

av f+- = 0, 
a Y  

(3) 

(4) 

aH, aH, h =--- 
g aZ ax . 

A spectral method - Fourier series in the streamwise and spanwise directions, and 
Chebychev polynomial expansion in the normal direction - is employed for the spatial 
derivatives. The time advancement is carried out by the same semi-implicit scheme 
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as in Moin & Kim (1982) : Crank-Nicolson for the viscous terms and AdamsBashforth 
for the nonlinear terms. Equation (4) then reduces to 

At At 

g(+1)  = o .  J 
Equation (6) is solved by the Chebychev-tau method (Lanczos 1956; Gottlieb & 
Orszag 1977) for each wavenumber after it is Fourier transformed in the streamwise 
and spanwise directions. It reduces to a tridiagonal system with one full row after 
decoupling the even and odd modes of the Chebychev coefficients. 

The fourth-order equation ( 3 )  can be solved most efficiently by splitting i t  into two 
second-order equations as follows 

At (3ht - ht-l)  + (1 + ~ R , V ~ )  At qP,] 

avn+l 
vn+y f 1)  = - ( k l )  = 0. 

aY J 
This coupled system is solved by the Chebychez-tau method, in which the four 
boundary conditions are satisfied as follows. Let 

@+l = n+l+c vn+l+c vn+l, 

where the particular solution v;+l, and the two homogeneous solutions v:+l and v:+l 
satisfy 

(8) VP 1 1  2 2  

At 

$,"+I( + 1) = 0, 
VZV,"+l = ,;+I, 

v;+y f 1) = 0, 

(9) 

$q+l(l) = 1 ,  @+I(  - 1 )  = 0, 
V2V!+' = #:+I, 

Vz"+'( f 1) = 0. 

Equations (9)-( 11)  are solved after they are Fourier transformed in the streamwise 
and spanwise directions - in fact, they are solved simultaneously by eliminating the 



140 

same banded matrix 
are then chosen such 

J .  Kim, P .  Moin and R.  Moser 

with three different right-hand sides. The constants c1 and cz 
that 

We note that this approach is similar to the Chebychev-tau/Green function 
technique used by Orszag & Patera (1981), except that  here a linear combination of 
three intermediate solutions rather than five is required. 

Once the normal velocity and vorticity are computed, the streamwise velocity u, 
and the spanwise velocity w, are then obtained from (5) and the definitions off and 
g. Computation of pressure is not required for time advancement ; i t  is calculated only 
to  obtain turbulence statistics involving pressure. There are two ways to  compute 
the pressure: either from the normal momentum equation with the wall pressure 
values determined from the combination of streamwise and spanwise momentum 
equations (the governing equation for f ), or from the equation for f with the pressure 
corresponding to  the zero wavenumbers (k, = k, = 0) determined from the normal 
momentum equation. For the present numerical method, there is no difference 
between the two results, indicating that the pressure satisfies both the Neumann and 
the Dirichlet boundary conditions (Gottlieb & Orszag 1977; Moin & Kim 1980). This 
consistency requirement is not preserved by some spectral codes. 

The nonlinear terms in ( 1 )  are computed in the rotational form (see Moin & Kim 
1982) to  preserve the conservation property of mass, energy, and circulation 
numerically. I n  addition, the number of collocation points is expanded by a factor 
of before transforming into the physical space to avoid the aliasing errors involved 
in computing the nonlinear terms pseudo-spectrally . 

The computations were carried out on the CRAY-XMP computer at NASA Ames 
Research Center. Since the required memory (about 28 x lo6 words for 7 words per 
each grid point) was  much larger than the central core memory, an external memory 
device was used during the computations. To reduce overhead due to 1/0 process, 
the database was arranged in the form of drawers so that i t  can be accessed from 
two different passes (transferring (z, 2) -  and (5, y)-planes to the core memory 
respectively). Data transfer between the core memory and the external device(s) was 
performed using a double-buffer scheme. When the Solid-State-Device (SSD) of 
CRAY -XMP was used as the external memory, double buffering was not necessary 
since the 1/0 wait time for this case was negligible. However, when external hard-disk 
devices were used, the above data management scheme results in significant savings 
in 1/0 wait time. The CPU time required for the computations with 192 x 129 x 160 
grid points was about 40 s per time step. The computations were carried out for about 
10 non-dimensional time units (tuJ8) using approximately 250 CPU hours. 

The accuracy of the numerical code was examined by computing the evolution of 
small-amplitude oblique waves in a channel. Both decaying (stable) and growing 
(unstable) waves were tested for Re, = 7500, based on the centreline velocity and the 
channel half-width. These initial conditions were obtained from numerical solutions 
of the Orr-Sommerfeld equations (Leonard & Wray 1982). With 65 Chebychev 
polynomials, both decay and growth rates were predicted to  within lop4% of the 
value predicted by the linear theory when the initial energy either decreased or 
increased by a factor of 10 yo. 
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4. Turbulence statistics 
The initial velocity field used in the present work was obtained from the large-eddy 

simulation of Moin & Kim (1982). A velocity field from this (64 x 63 x 128)-calculation 
is interpolated onto the present collocation points by spectral interpolation and then 
integrated forward in time until the flow reaches a statistically steady state. The 
steady state is identified by a linear profile of total shear stress, - u"+ (l/Re) aU/ay, 
and by quasi-periodic total kinetic energy. Once the velocity field reaches the 
statistically steady state, the equations are integrated further in time to obtain a 
running time average of the various statistical correlations. The statistical sample 
was further increased by averaging over horizontal planes (homogeneous directions). 
I n  this paper an overbar indicates an average over x, z and t ,  and a prime indicates 
perturbation from this average. 

4.1. Mean properties 

The profile of the mean velocity non-dimensionalized by the wall-shear velocity 
is shown in figure 4. The collapse of the mean-velocity profiles corresponding to 
the upper and lower half of the channel indicates the adequacy of the sample taken 
here for the average. Also shown in the figure is the mean-velocity profile from the 
experimental result of Eckelmann (1974) a t  Re, = 142(Re, = 2800). The dashed line 
represents the law of the wall and the log law. Within the sublayer, y+ c 5 ,  both the 
experimental and the computational results follow the linear law of the wall. In 
the logarithmic region, however, there exists a noticeable discrepancy between the 
two results. Note that 5.5 is used for the additive constant in the log law in contrast 
to 5.0, the value used in Moin & Kim (1982). The higher constant is a low- 
Reynolds-number effect (Re, = 180 for the present work compared with 640 in Moin 
& Kim). However, the difference between the Reynolds number of the prescnt work 
and that of Eckelmann is not large enough to cause the difference shown in the figure. 
I n  fact, the mean-velocity profile of Eckelmann (1974) for a slightly higher Reynolds 
number (Re, = 208) collapses with his experimental data shown here (see figure 3 of 
Eckelmann 1974). The mean-velocity profile obtained earlier from the same facility 
at Re, = 187, and reported by Wallace, Eckelmann & Brodkey (1972), agrees well 
with the present results (figure 1 of Wallace et aZ.). It is not clear why these results 
reported by Eckelmann (1974) and by Wallace et al. (1972) are significantly different 
from each other. Since the profile reported by Wallace et aZ. (1972) agrees well with 
the present results, we rescaled the mean-velocity profile reported by Eckelmann 
(1974) such that the two experimental results agree with each other a t  y+ = 100. This 
amounts to increasing the u, of Eckelmann (1974) by 6 % (i.e. u,c/u,m = 1.06), where 
the subscripts c and m denote the corrected and measured values. This result is shown 
in figure 5 and shows an excellent agreement with the computed results. 

Other mean properties such as the skin-friction coefficient, bulk mean velocity, 
displacement and momentum thicknesses are also computed from the computed 
mean-velocity profile. These computed values are compared with the experimental 
correlations proposed by Dean (1978). The bulk mean velocity, defined as 

normalized by the wall-shear velocity, is 15.63, which gives the Reynolds number 
based on the bulk mean velocity and the full channel width, Re, z 5600. The skin 
friction coefficient, C, = 7,,,/$pWm is 8.18 x which is in good agreement with 
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FIQURE 5. Mean-velocity profiles: -, upper wall; ---, lower wall (masked by solid line); 
0, 'corrected' data of Eckelmann (1974); ----, law of the wall. 

Dean's suggested correlation of C, = 0.073 Re;;P.25 = 8.44 x lop3. The ratio of the 
mean centreline velocity to the mean bulk velocity, UJU,, is 1.16, an excellent 
agreement with Dean's correlation of U,/ Urn = 1.28 Re;;o.0116 = 1.16. Other com- 
puted mean properties are shown in table 1.  Comparisons of these computed bulk 
flow variables with the experimental data compiled by Dean show excellent 
agreement. 

4.2. Turbulence intensities 
Turbulence intensities normalized by the wall-shear velocity are shown in figure 6, 
and they are compared with those at Reynolds numbers Re, = 194 from Kreplin & 
Eckelmann (1979, hereinafter denoted KE). The symmetry of the profiles about the 
channel centreline again indicates the adequacy of the sample ta.ken for the average. 
Although the general shape of the profiles is in good agreement, there exists some 
discrepancy between the two results. The computed results for all three components 
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'corrected' wall shear velocity. 

are lower than the measured values. Since the level of the normal component of 
intensity is the lowest, it has the largest fractional difference. In  accordance with the 
rescaling of the mean-velocity profile discussed above, the turbulence intensities are 
renormalized by U , ~  and are shown in figure 7 .  With the new scaling the overall 
agreement is improved, but the computed results are still lower than the measured 
values, except the streamwise fluctuations. However, Perry, Lim & Henbest (1985) 
point out  that  most of the existing data in the wall region measured by the standard 
hot-wire techniques - especially for the normal component - may contain significant 
error caused by cross-contamination, where an X-wire signal sensitive to v is also 
sensitive to the velocity component normal to the plane of the wires. This error would 
result in higher measured values for the normal and spanwise components. Further 
careful experimental verification is required to clarify this issue. The location of the 
maximum streamwise fluctuation is at yf x 12 for both cases, which also corresponds 
to the location of the maximum production, i.e. - u " ( d U / a y ) .  

I n  figure 8, turbulence intensities are normalized by the local mean velocity U.  The 
limiting values of these quantities should approach the wall values of streamwise, 
normal, and spanwise vorticity fluctuations normalized by the mean velocity 
gradient at the wall. For comparison, the experimental data of KE and Hanratty 
et al. (1977, hereinafter denoted HCH) are shown in the same figure. The experimental 
points are from their curve fit through the data;  the data points of HCH are in fact 
from a fit through scattered expcrimcntal data by several investigators. It can be 
seen that there are discrepancies among the reported results in the near-wall region. 
For example, urm,/U of the present result and HCH approach asymptotic values of 
0.37 and 0.3, respectively, whereas the result of KE shows a maximum at y+ x 5 and 
then approaches 0.25 a t  the wa1l.t Note that this asymptotic value corresponds to  
the normalized wall value of the spanwise vorticity fluctuation. A similar discrepancy 
is noticeable for wrm,/U (streamwise vorticity a t  the wall). The present result shows 
that this quantity reaches the maximum value of 0.2 at the wall, while that of KE 

t J .  H .  Haritonidis C A. V .  tJohansson (1985, private communication) performed new measure- 
ments in the oil channel used by Eckelmann and his co-workers, and they reported that the new 
measurements indicated urmS/ii approached about 0.4 without a decrease near the wall, which is 
in good agreement with the present results. They attributed the error to the heat-conduction 
problem in the proximity of the wall. 
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decreases near the wall with the wall value of 0.065, and the result of HCH shows 
a dip near y+ = 2.5 before i t  increases to 0.1. These different wall behaviours result 
in significantly different wall values of the vorticity fluctuations, except the normal 
component, which is zero at the wall. Different experimental results reported in KE 
(table 1 of KE) indicate that the spanwise vorticity at the wall varies from 0.205 to 
0.3 while the streamwise vorticity varies from 0.065 to 0.1 15. 

Figure 9 shows the profile of root-mean-square (r.m.s.) pressure normalized by the 
wall shear velocity, pr,,/pu,". It has a maximum value of 1.75 at y+ x 30 and 
approaches 1.5 at the wall. This r.m.8. wall pressure is somewhat lower than the 
experimental results compiled by Willmarth (1975), which show that the r.m.s. wall 
pressure in turbulent boundary layers varies between 2 and 3. Note, however, that 
the Reynolds number of the present calculation is much lower than the Reynolds- 
number range in the experimental measurements. Willmarth (1975) shows a definite 
decreasing trend of the r.m.s. wall-pressure fluctuations with Reynolds number (see 
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figure 7 of Willmarth).t I n  a previous simulation at a higher Reynolds number 
(Re, = 13800, Moin & Kim 1982), the r.m.s. wall pressure was about 2.0. Willmarth 
also considered the effect of the size of transducers on the measured r.m.s. wall 
pressure, and showed that i t  increases significantly with smaller probes. Since the grid 
resolution of the present calculation is much finer than that of Moin & Kim, the 
reduction in the r.m.9. wall pressure appears to  be due to the low Reynolds number. 

4.3. Reynolds shear stress 
The Reynolds shear stress and the correlation coefficient are shown in figures 10 
and 11,  respectively. Also shown in figure lO(a) is the total shear stress, 
- u'd + ( l / R e )  aU/ay. I n  the fully developed channel flow considered here, this profile 
is a straight line when the flow reaches an equilibrium state. The computed result 
clearly indicates that  this is the case. The computed shear stress is compared with 
the experimental results in figure l O ( b ) .  The results shown in the figures correspond 
to three slightly different Reynolds numbers : Re, = 180 for the present computation 
and Re, = 142 and 208 for Eckelmann's (1970) data.$ The behaviour of the Reynolds 
shear stress in the immediate vicinity of the wall for a fully-developed channel flow 
can be deduced from the following equation (Tennekes & Lumley 1972) : 

- 

- 
--+- u'd du+ = I-- Y+ 

u,2 dy+ s+ 

Non-dimensionalized in this way, the Reynolds-number dependence is absorbed into 
S+ . Thus for small y + / 6 + ,  the Reynolds shear stress for different Reynolds numbers 
should collapse into one curve. For example, for the three Reynolds numbers 
considered here, the difference in (-u")/u,2 should be less than 0.022 a t  y+ < 10, 
but the difference between the measurements and computations at y+ = 10 is about 
0.1. Although the two experimental results collapse into each other, the computed 
result is lower. However, considering the expected y3 behaviour of the Reynolds shear 
stress in the immediate vicinity of the wall (§4.4), the experimental results seem to 
be too high in the wall region. In  figure lO(c), the measured Reynolds shear stresses 
are rescaled by (U,,/U,~)~ as before. The discrepancy in the wall region persists, 
although the overall agreement between the present results and the experimental 
results corresponding to Re, = 208 is satisfactory for y+ > 10. The profile of the 
correlation coefficient (figure 11)  is in good agreement with that of Sabot & 
Comte-Bellot (1976), although the Reynolds number of their flow was much higher 
(Re, = 68000 and 135000 based on the centreline velocity and the pipe diameter). 
This suggests the correlation coefficient is less dependent on the Reynolds number 
than are the Reynolds stresses. It is interesting to  note that the present result shows 
a local peak a t  y+ x 12, which is also the location of the maximum production and 
the maximum streamwise velocity fluctuation. This peak, although rather weak, was 
also observed in the large-eddy simulation of Moin & Kim (1982) as well as in the 
direct simulation of a curved channel flow (Moser & Moin 1984) where it was 
attributed to certain organized motions in the wall region. The limiting wall values 
of the correlation coefficient and other stresses are given in table 2. 

t P. Bradshaw (1985, private communication) shows that if one assumes that the power spectra 
of wall pressure has l/k-dependence. then the r.m.s. wall pressure would have a logarithmic 
dependence on the Reynolds number: i.e. p,,, = c1 +c, In (u,S/u). 

2 The data points are obtained from figure 10(a) of Hanjalic & Launder (1976). 
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FIQURE - 10. Reynolds shear stress normalized by the wall shear velocity: (a) in global coordinates, 
- -ufv# .  , -m+(l/Re)i?%/ay; ----, total shear stress for fully developed channel; 
(b)  in wall coordinates, -, --; 0, data from Eckelmann (1974) for Re, = 142; + , data from 
Eckelmann for Re, = 208; (c) same as ( b )  except the data are renormalized by ‘corrected’ u,. 
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Y P  
FIQURE 11. Correlation coefficient of u' and u': ~ , computation; 0, data  from Sabot & 

Comte-Bellot (1976). 

Y+ 

0.05381 
0.2152 
0.484 1 
0.8603 
1.344 
1.934 
2.630 
3.433 
4.341 
5.354 
6.472 
7.693 
9.018 

10.44 

4 m s l Y +  

0.3637 
0.3634 
0.3629 
0.362 3 
0.361 5 
0.360 1 
0.357 4 
0.352 2 
0.3435 
0.3305 
0.3131 
0.292 1 
0.2685 
0.2439 

v:ms/y+2 x 103 

8.616 
8.425 
8.119 
7.714 
7.233 
6.700 
6.138 
5.570 
5.015 
4.489 
4.000 
3.553 
3.151 
2.790 

w:msIY+ 

0.1940 
0.1903 
0.1845 
0.1768 
0.1677 
0.1575 
0.1466 
0.1355 
0.1246 
0.1141 
0.1043 
0.09543 
0.087 39 
0.080 14 

-W/Y+~ x 104 

7.212 
7.284 
7.399 
7.542 
7.681 
7.765 
7.729 
7.516 
7 .ow2 
6.468 
5.6!17 
4.855 
4.019 
3.248 

TABLE 2. Near-wall behaviour of Reynolds stresses 

- 
- Ulr/Urms ~ ' r m s  

0.230 I 
0.237 9 
0.251 2 
0.2699 
0.293 8 
0.321 8 
0.352 4 
0.383 1 
0.41 1 7 
0.4:i60 
0.454!) 
0.465!) 
0.475 I 
0.475 3 

4.4. Near-wall behaviour of Reynolds stresses 
The limiting wall behaviour of the Reynolds stresses is shown in figure 12. From the 
figure, it is apparent that 

ur,,= a , y + a 2 y 2 +  ..., 

(12) I w,,, = b, y2+ b, y3+ ..., 

u,,, = c1y+czy2+ ..., 
m = d,  y3+d2 y4+ ... . 
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FIGURE 12. Near-wall behaviour of Reynolds stresses: -, u,,,/y + +  ; ---, w&,,/y+; ----, 

The y-behaviour of the tangential stresses and the y2 behaviour of the normal stress 
are expected from consideration of the no-slip boundary condition and the continuity 
equation. However, the limiting behaviour of the shear stress has been a subject of 
some disagreement. Hinze (1975) describes the controversy over y3 us. y4. Ohji (1967) 
claimed i t  should be y4 ; Chapman & Kuhn (1985) showed that y4 behaviour of Ohji's 
analysis was due to an erroneous assumption. The present numerical result seems to 
support the ys behaviour. The same behaviour was also observed in a recent direct 
simulation of a turbulent boundary layer by Spalart (1985). 

Finnicum & Hanratty (1985) estimated the limiting behaviour of v, and reported 
v,,, x 0.005yf2. The present result indicates v,,, x 0 . 0 0 9 ~ + ~  (see table 2). We note, 
however, that if one uses 0.2u,2/v as the wall value of r.m.s. streamwise vorticity 
fluctuation (the wall value of the present simulation) instead of 0.11u,2/v as used in 
their analysis, one obtains v,,, x 0.0083~+~,  which is in good agreement with the 
present result. It appears that their analysis and measurements, including the 
estimation of the Taylor microscales from the two-point correlation measurements, 
are consistent with the present results. The discrepancy is due to the different wall 
values of streamwise vorticity used in their analysis. A comparison of the present 
results of the near-wall behaviour of v with the data presented in figure 7 of Finnicum 
& Hanratty is shown in figure 13. The present results fall below all the experimental 
data, but they are above the results of Nikolaides and Hanratty, whose results are 
obtained from their near-wall model. Note that v,,,/y2 should approach a constant 
at the wall, but the experimental data do not show this behaviour. In fact some of 
the data, especially those of Eckelmann and of Ueda, indicate v,,, - y, which is not 
compatible with the continuity equation at the wall. Finnicum & Hanratty concluded 
from this figure that reliable measurements cannot be made with an X-probe for 
y+ < 10. 

4.5. Vorticity 
Vorticity fluctuations normalized by the mean shear at the wall (wi v/u,2) are shown 
in figure 14 (a). Away from the wall, the three components of the fluctuating vorticity 
are identical. In figure 14(b), the vorticity fluctuations in the wall region are 
plotted us. y+. In  addition streamwise vorticity fluctuations measured by Kastrinakis 
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FIQURE 13. Comparison of the near-wall behaviour of the normal velocity fluctuation with 
experimental data from Finnicum & Hanratty (1985). 
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FIQURE 14. Root-mean-square vorticity fluctuations normalized by the mean shear. (a) In global 
coordinates : -, w, v/u: ; - - - - , w,v/uIp; , ozv/uIp; (b) in wall cordinates: 0, w, from 
Kastrinakis & Eckelmann (1983), A, o, at the wall from Kreplin & Eckelmann (1979). 
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FIGURE 15. A streamwise vortex model responsible for high streamwise vorticity at the wall. 

& Eckelmann (1983) and the streamwise vorticity fluctuation at the wall reported 
by Kreplin & Eckelmann (1979) are also plotted for comparison. The computed 
streamwise vorticity agrees well with the existing experimental results for y+ greater 
than about 20, where the computed profile shows a local maximum. Unfortunately, 
no data exist between y +  x 20 and the wall, and the measured wall values vary 
significantly, as mentioned earlier (between 0.065 and 0.115). The computed result 
shows a local minimum at about y+ = 5 before i t  attains the maximum value at the 
wall. The same behaviour was observed in the numerical results of Moin & Kim 
(1982), Moser & Moin (1984), and Spalart (1985). Moser & Moin attributed this 
behaviour - the presence of a local maximum and minimum in the streamwise 
vorticity - to streamwise vortices in the wall region. They reasoned that the location 
of the local maximum corresponds to the average location of the centre of the 
streamwise vortices and the local minimum is caused by the streamwise vorticity with 
opposite sign created a t  the wall because of the no-slip boundary condition. In  a single 
realization (and assuming the existence of vortical structures near the wall), the 
streamwise vorticity must become zero somewhere between the centre of the vortex 
and the wall, but on the average its r.m.s. value would have a local minimum at the 
average location of the edge of the vortex, since its size and location vary in time 
and space. It can be estimated then from figure 14 (b) that the centre of the streamwise 
vortex is located on the average at y+ x 20 with radius r+ x 15 (see figure 15) and 
strength about 0.13u,2/v. This estimate of the size of the streamwise vortex from the 
profile of r.m.s. streamwise vorticity near the wall is in good agreement with the 
experimental results of Smith & Schwartz (1983). From this flow module, one can 
estimate the magnitude of streamwise vorticity at the wall caused by the presence 
of the streamwise vortex. If we assume that the velocity distribution inside the vortex 
is similar to that of a Rankine vortex (see figure 15), then for the spanwise velocity 
fluctuations, we have 

Yc-Ye = 3 
Ye el Yc-Ye 
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where the subscripts c, e and w denote the centre of the vortex, the edge of the vortex 
and the wall, respectively. Sincc 

us x 0.19--. 
U 

This is in good agreement with the computed results shown in figure 14(b). 
Admittedly, the model in figure 15 is crude, but this flow module does provide a 
vorticity field consistent with the behaviour of the computed streamwise vorticity 
near the wall. Note that no assumption is made regarding the streamwise extent of 
the streamwise vortices. 

4.6. Quadrant analysis 
The quadrant analysis of the Reynolds shear stress provides detailed information on 
the contribution to the total turbulence production from various events occurring 
in the flows (Willmarth & Lu 1972; Wallace et al. 1972). The analysis divides the 
Reynolds shear stress into four categories according to the signs of u’ and v’. The first 
quadrant, u’ > 0 and v’ > 0, contains outward motion of high-speed fluid; the second 
quadrant, u ’<  0 and v’>O, contains the motion associated with ejections of 
low-speed fluid away from the wall; the third quadrant, u‘ < 0 and v‘ < 0, contains 
inward motion of low-speed fluid; and the fourth quadrant, u’ > 0 and v’ < 0, 
contains an inrush of high-speed fluid, sometimes referred to as the sweep event. Thus 
the second- and fourth-quadrant events contribute to the negative Reynolds shear 
stress (positive production), and the first- and third-quadrant events contribute to 
the positive Reynolds shear stress (negativc production). This analysis also has been 
used to detect the organized structures associated with the bursting event in channel 
flow (Kim & Moin 1985). The contribution to  the Reynolds shear stress from each 
quadrant as a function of y-location is shown in figure 16 along with the experimental 
data of Willmarth & Lu (1972), Brodkey, Wallace & Eckelmann (1974), and Barlow 
& Johnston (1985). Wallace et al. (1972) also reported similar data, which are 
significantly different from those of Brodkey et al., but Brodkey et al. later attributed 
the difference to anomalies in the data-reduction process. Both the experimental 
results and the present results display the dominance of the ejection event (second 
quadrant, u‘ < 0 and v‘ > 0) away from the wall with the sweep event (fourth 
quadrant, u’ > 0 and v’ < 0) dominating in the wall region; at y+ x 12, they are 
about the same. Although the general characteristics of the present results - such as 
the crossing point and the dominance of sweep and ejection events in different 
regions - are in agreement with the experimental data, there exists a significant 
quantitative difference, especially in the near-wall region. However, there are 
significant differences, even among different experimental results, as shown in figure 
16. I n  particular, the results by Brodkey et al. indicate that large negative contri- 
butions originate from the first and third quadrants which are observed neither in the 
present results nor in those of Barlow & Johnston (1985). The present results seem 
to agree better with those of Barlow & Johnston, although they did not make 
measurements close to the wall. 

Fractional contributions from the four quadrants to  the total Reynolds shear stress 
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at three y-locations are shown in figure 17. The present results are in good agreement 
with the experimental data of Alfredsson & Johansson (1984), who measured only 
at y+ x 50. A t  y+ x 50 (figure 17c), where the ejection events dominate, about 80 % 
of the total shear stress is due to the ejections, and the intense u'w' events, say 
- u'w' > 3urmS w,,,, are essentially from the second quadrant. This situation reverses 
in the wall region, as indicated in figure 17 (a) ,  where the fractional contribution at 
y+ x 8 is shown. Here most of the large values of u'w' are due to the events in the 
fourth quadrant. A t  y+ x 12, the approximate location where the contributions from 
the ejection and sweep events are about the same, figure 17(b) indicates that even 
their fractional distributions are identical with each other. 

4.7. Higher-order statistics 
The computed skewness and flatness factors of ul and p' are shown in figure 18 (a, b). 
Unlike the lower-order statistics presented in the previous sections, these figures show 
that the adequacy of the sample size used to compute the higher-order statistics is 
only marginal, as indicated by the small asymmetry and oscillations in the profiles. 
The skewness of w', which should be zero because of the reflection symmetry of the 
solutions of the Navier-Stokes equations, also indicates the marginal sample size. 

The skewnes and flatness factors of all the quantities shown here are significantly 
different from those values for a Gaussian distribution (0 and 3, respectively). It is 
interesting to note that the flatness factor of pressure is significantly higher than that 
of the velocity fluctuations in the central region of the channel, indicating that the 
pressure fluctuation is more intermittent throughout the channel, except near the 
wall. As the wall is approached, the flatness factor of pressure fluctuations becomes 
about 5, while that of v' becomes about 22 (out of the range shown in figure 18b),  
indicating the highly intermittent character of the normal velocity near the wall. 

In figures 19 and 20, the skewness and flatness factors for each component are 
compared with measurements from KE and Barlow & Johnston (1985). Note that 
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represent the interpolated data at y+ = 50 from figure 3 of Alfredsson & Johansson (1984) : A, first; 
0,  second; V, third; 0 ,  fourth quadrant. 

first; -, second; ---, third; . . . . .  - ,  fourth quadrants: (a) y+ x 8; ( b )  12; (c) 50. Symbols 

the experimental results of Barlow & Johnston correspond to a turbulent boundary 
layer whereas those of KE and the present results correspond to a turbulent channel. 
Agreements among the computed and measured values are satisfactory for u' and 
w', but there exists a significant discrepancy for v', especially for the flatness factor 
in the vicinity of the wall. While the computed results show that the flatness factor 
approaches about 22, both measurements show that it decreases as the wall is 
approached. The laser-Doppler velocimeter (LDV) measurements by Barlow & 

FIGURE 3. As a consequence of the subharmonic perturbations each vortex experiences a change 
in the relative impact of its two closest neighbours in the opposite row. This change induces a 
differential velocity, which is qualitatively indicated by the straight arrows. ( a )  Mode A :  the  phase 
difference between the subharmonic (---) and the basic wave (-) in both layers is in at the 
respective reference points. The differential-velocities induced by this configuration amplify the 
subharmonic perturbation in the upper row whereas in the lower row they slow its growth down. 
(b) Mode B:  here the phase difference between the subharmonic (---) and the basic (-) wave 
in the upper layer is in whereas in the lower layer it is -in. This configuration tends to amplify 
the growth of the subharmonic in the lower row and to  damp it in the upper row. 
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Johnston are suspect near the wall, say y+ < 10, since the signal-to-noise ratio was 
too low (R. S. Barlow 1985, private communication). The data of KE obtained by a 
hot-film anemometer are alsc likely to be affected by the wall proximity. The 
computed skewness of v‘ does not agree with measurements of KE, but it is in good 
agreement with that of Barlow & Johnston, including the crossover point a t  y+ x 30. 
For y+ < 10, the agreement between computed and experimental data is again not 
good. Agreement between the present results and those from Moser & Moin (1984) 
is very good, with the exception that the overall magnitudes are either decreased 
(convex side) or increased (concave side) as a result of the curvature effect. 

The behaviour of the skewness of v’ near the wall is somewhat unexpected, whereas 
that  of u’ is as expected from the quadrant analysis in $4.6; that is, the most violent 
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FIGVRE 19. Skewness factors in wall coordinates : -, computed ; 0, Kreplin & Eckelmann 
(1979); +, Barlow t Johnston (1985): (a) S(u’); ( b )  S(v’); (c) S(w’). 

Reynolds shear-stress-producing events are from the second quadrant (u‘ < 0 and 
w’ > 0) for yf > 12, while they are from the fourth quadrant (u’ > 0 and w’ < 0) for 
y+ < 12. According to the profile of skewness of v‘, there exist strong positive w’ 
motions for y+ > 30, strong negative w’ motions for 6 < y+ < 30, and then strong 
positive w’ motions for y+ < 6. Note that the term ‘strong’ is used here relative to 
the local r.m.8. value. This suggests that in the region 12 < y+ < 30, where the 
skewness of both u’ and w’ is negative, the large excursions of negative v‘ (responsible 
for the negative skewness) are not correlated with the large excursions of negative 
u’ (responsible for the negative skewness of u’);  otherwise, we would have large 
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FIQURE 20. Flatness factors in wall coordinates: -, computed; 0, Kreplin & Eckelmann (1979) ; 
+, Barlow & Johnston (1985): (a) F(u’); ( b )  F(v’); (c) F(w’). A flatness of 3 corresponding to a 
Gaussian distribution is also shown for a reference. 

contributions of positive Reynolds shear stress from the third quadrant. Figure 21 ( c )  
shows a plot of u‘v’ distribution at y+ x 20 obtained from instantaneous values of 
u’ and v’ at all grid points in this plane, where the skewness of both u‘ and v‘ is negative 
and large values of u’v’ are from the second quadrant. The skewnesses of u‘ and v‘ 
for the data shown in the figure (only a small fraction of the total sample used in 
computing the statistics is shown here) are -0.35 and -0.18, respectively. The 
dashed lines in the figure represent hyperbolas corresponding to lu’v’l = 8 x -n; 
symbols outside the hyperbolas indicate u’v’ larger that eight times the mean 

6-2 
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Reynolds shear stress. As indicated from the quadrant analysis, the large negative 
v' is not correlated with the large negative u'. It also shows that the events responsible 
for the large negative Reynolds shear stress are from large negative u' and positive 
v'. Figure 21 (a)  shows a similar plot at y+ x 2.7, where the skewness factors of u' 
and v' are both positive (0.9 and 0.24 respectively). Note that the ordinate is expanded 
by a factor of 10. Here the events associated with large positive u' are responsible 
for the negative Reynolds shear stress, while the events associated with large positive 
v' are not. Figure 21 ( b )  shows a similar plot at y+ x 8, where the skewness of u' is 
positive and that of v' is negative. Here, the large positive u' responsible for the 
positive skewness is well correlated with the large negative v' responsible for the 
negative skewness of v', resulting in a large negative u'v'. Figure 21 ( d ,  e) shows similar 
plots at y+ x 100 and y+ x 180. Note that at the centreline of the channel (figure 
21 e ) ,  where the mean Reynolds shear stress is zero, there are many events associated 
with large u'v', but they average to zero - the large negative u'v' corresponds to the 
second quadrant (ejection) of the lower wall while the large positive u'v' corresponds 
to the ejection events of the upper wall. 

The skewness and flatnes factors of the Reynolds shear stress shown in figure 22 
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have higher values than those of turbulence intensities. The skewness is about - 2  
to - 3 (or 2 or 3) with a slight increase in magnitude toward the centreline - except 
near the centreline of the channel where i t  should go through zero by the symmetry - 
and approaches about - 10 (or 10) very close to the wall. The flatness factor is about 
20, again with a slight increase toward the channel centreline and approaches about 
200 very close to the wall, indicating the extremely intermittent nature of the 
Reynolds shear-stress-producing events near the surface. Gupta & Kaplan ( 1972) 
measured the high-order statistics of the Reynolds shear stress in turbulent boundary 
layers, and their measurements also indicate high skewness and flatness factors in 
the wall region; the highest values were obtained a t  the point nearest the wall (- 6 
and 104 for the skewness and flatness factors, respectively). However, these values - 
including the skewness and flatness factors for the velocity components near the 
wall - should be accepted with some reservation, since both the denomenator and the 
numerator of the skewness and flatness factors becomes zero as the wall is approached, 
and any inaccuracy in its measurement (or computation) could be excessively 
amplified. 

5. Turbulence structures 
The database of Moin & Kim (1982) has been used extensively in investigating the 

organized structures associated with well-bounded shear flows (Kim 1983,1985 ; Moin 
1984; Moin & Kim 1985). Although essentially all qualitative features of their results 
were in good agreement with experimental data, some quantitative structural 
information such as the streak spacing in the wall region was not consistent with 
experimental results because of the coarse mesh used in the computation. The present 
computation, with Az+ x 7, should have a sufficient grid resolution for the formation 
of the wall-layer streaks, observed experimentally to  have a mean spacing of 
Az+ x 100. Contour plots of streamwise velocity in the wall region (not shown) in 
addition to the two-point autocorrelation of the streamwise velocity a t  points 
separated in the spanwise direction (figure 23), clearly indicate that the streaks are 
properly resolved in the present simulation. This correlation becomes negative and 
reaches a minimum at Az+ x 50. The separation a t  which this minimum occurs 
provides an estimate of the mean separation between the high- and low-speed fluid, 
and the mean spacing between the streaks should be roughly twice the distance. The 
presence of the minimum of R,, at Azi x 25 is consistent with the existence of 
streamwise vortical structures in the wall region. The separation of minimum R,, 
corresponds to the mean diameter of the streamwise vortex. These results are 
consistent with the numerical results of Moser & Moin (1984), who observed the same 
behaviour in their direct simulation of a mildly curved channel flow. The presence 
of a minimum in the profile of R,, a t  Azi x 50 appears to  indicate the presence of 
countcr-rotating vortex pairs. However, as pointed out by Moser & Moin, since a 
minimum in R,, does not occur for y+ > 30, the minimum in R,, at y+ x 10 is more 
likely to be due to the impingement or splatting effect which can be caused by a single 
vortex. The mean streak spacing as a function of the distance from the wall can be 
evaluated by examining the two-point correlations a t  various y-locations. This result 
is shown in figure 24 together with the experimental results reported by Smith & 
Metzler (1983). I n  agreement with the experimental observations, the computed 
streak spacing increases with the distance from the wall. 

In  figure 25, examples of two visualization techniques are shown. I n  figure 25 (a) ,  
hydrogen-bubble flow visualization is simulated by gcncrating particles along a line 
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parallel to the z-axis at y+ x 10. The resulting pattern illustrates the formation of 
low- and high-speed streaks in the wall region. On the other hand, figure 25(b )  is 
obtained by tracking particles initially distributed on a plane parallel to the wall at 
y+ x 10. The initial sheet of particles is distorted by the instantaneous velocity field. 
Visualized in this way - this should be similar to the visualization of a smoke-filled 
boundary layer illuminated by a laser sheet parallel to the wall - flow patterns similar 
to the pocket flow module (Falco 1980) are visible. Figure 25(a, b) illustrates how 
different aspects of flow characteristics are emphasized by different visualization 
methods. The particles in figure 25 (c) were generated along a line parallel to the y-axis. 
They illustrate the violent vortical motions associated with the bursting event in a 
way similar to that of the flow-visualization photographs obtained using a vertical 
hydrogen-bubble wire by Kim, Kline & Reynolds (1971). 
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FIGURE 25(a, b ) .  For caption see facing page. 
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(4 
FIGURE 25. Flow structures visualized by fluid markers: (a) particles are generated along a line 
parallel to the z-axis at y+ x 10 (oblique top view); (b )  particles are initially distributed uniformly 
on a plane parallel to the wall at y+ x 10 (top view); (c) particles are generated along a line parallel 
to the y-axis (side view). 

6. Summary and discussion 
A direct numerical simulation of a turbulent channel flow was carried out with 

192 x 129 x 160 mesh points at a Reynolds number of 3300, based on the centreline 
velocity and channel half-width. A fully spectral method - Fourier series in the homo- 
geneous directions and Chebychev polynomial expansion in the normal direction - 
is used for the spatial derivatives in conjunction with a second-order time- 
advancement scheme. 

The computed results are compared with experimental results a t  comparably 
low Reynolds numbers (most of which were obtained from the oil channel at 
the Max-Planck-Institut fur Stromungsforschung of Gottingen, West Germany). 
Although the general characteristics of the computed turbulence statistics are in 
good agreement with the experimental results, detailed comparison in the wall 
region reveals consistent discrepancies. In particular, the computed Reynolds stresses 
- both the normal and the shear stresses - are consistently lower than the measured 
values, while the computed vorticity fluctuations at  the wall are higher than the 
experimental values. The same conclusion was drawn from the other two recent 
numerical simulations (Moser & Moin 1984 ; Spalart 1985). 

One source of the discrepancy might be related to the measurement of the 
wall-shear velocity u,. When the mean-velocity profiles are renormalized with the 
corrected (experimental) u,, excellent agreement among the experimental results and 
the computed results is obtained. When the turbulence intensities and the Reynolds 
shear stress are similarly rescaled, the overall agreement is better, but the computed 
turbulence intensities, except the streamwise fluctuations, remain lower than the 
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measured values. Whether or not the remaining differences are due to the cross- 
contamination mentioned by Perry et al. (1985) remains to be resolved. Furthermore, 
new measurements by J. H. Hartonidis & A. V. Johansson (1985, private communi- 
cation) indicate that measurements near the wall might be significantly affected by 
the heat-conduction problem experienced by hot-film probes used to measure the 
turbulence quantities in the proximity of the wall. 

Another source of the discrepancy may be the test section of the oil channel used 
in the aforementioned experiments. The test section is 22 cm wide and 7 m long, and 
is filled with oil to a depth of 85 cm, which gives an aspect ratio of 3.9 (depth to width), 
and the length of the test section is 32 channel widths. This aspect ratio is well below 
the recommended minimum value of 7 to be representative of ‘two-dimensional ’ flow 
(Dean 1978). In addition, it is not possible in general that a fully developed state can 
be reached over such a short length (Comte-Bellot 1963; Hussain & Reynolds 1975). 
Dean & Bradshaw (1976) pointed out that the mean velocity and turbulence 
intensities near the centreline overshoot their fully developed values in the developing 
section. On the other hand, experimental results of Comte-Bellot indicated that the 
turbulence intensities increased monotonically as the flow develops downstream 
without any overshoot. Eckelmann (1974) reported that the mean-velocity profiles 
were independent of streamwise locations, and the variation of the higher-order 
turbulence statistics (such as skewness and flatness factors of u and w) upstream of 
the measuring station was within his measurement accuracy ; and he concluded that 
the flow was fully developed. 

Although the disagreement between the computed and measured values does not 
seem to be serious-especially because most disagreements are confined to the 
immediate vicinity of the wall - it is important to resolve the differences if the use 
of the computer-generated databases or experimental data in studying turbulence 
structures and in developing improved turbulence models is to be continued. We hope 
more thorough investigations will be carried out in the near future to clarify the 
discrepancies discussed here. 

We are grateful to Drs R. S. Rogallo and R. V. Westphal for helpful comments on 
a draft of this manuscript, and to  Dr N. Mansour for numerous discussions we had 
during the course of this work. 
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