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Abstract
The problem of understanding the nature of fluid flow through a circular
straight pipe remains one of the oldest problems in fluid mechanics. So far
no explanation has been substantiated to rationalize the transition process by
which the steady unidirectional laminar flow state gives way to a temporally
and spatially disordered three-dimensional (turbulent) solution as the flow rate
increases. Recently, new travelling wave solutions have been discovered which
are saddle points in phase space. These plausibly represent the lowest level
in a hierarchy of spatio-temporal periodic flow solutions which may be used
to construct a cycle expansion theory of turbulent pipe flows. We summarize
this success against the backdrop of past work and discuss its implications for
future research.

PACS numbers: 47.27.Cn, 47.20.Ft

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ever since the pioneering experimental work of Osborne Reynolds (1883), the issue of how
and why the fluid flow along a circular pipe changes from being laminar (highly ordered
in space and time) to turbulent (highly disordered in both space and time) as the flow rate
increases has intrigued physicists, mathematicians and engineers alike. The problem, of
course, is not that we do not know the governing equations of motion since we do—they
are the celebrated Navier–Stokes equations. Rather the challenge is to extract the relevant
information from this notoriously difficult set of nonlinear equations to rationalize what we
see. One promising idea emerging from dynamical systems theory is to use unstable periodic
solutions as building blocks in a weighted expansion to describe temporally and spatially
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complicated flows (Cvitanović 1988, Artuso et al 1990a, 1990b). This has been successfully
applied in low-dimensional dynamical systems and quantum mechanics (e.g. Artuso et al
(1990b) and references herein, Cvitanović (1992) and later papers in the same journal issue,
Cvitanović et al (2005)) as well as a one-space-and-time partial differential equation (PDE)
setting (the Kuramoto–Shivashinsky equation: Christiansen et al (1997)) but remains untested
for a fully 3-spatial dimension nonlinear PDE system like the Navier–Stokes equations. The
primary reason for this is the difficulty in initially finding all the dynamically important unstable
periodic orbits—perhaps more accurately described as recurring spatio-temporal patterns—in
such a high-dimensional setting. Recently, however, the first successes have been made in
this direction for pipe flow by the discovery of travelling wave solutions (Faisst and Eckhardt
2003, Wedin and Kerswell 2004). These periodic solutions are actually stationary states
when viewed from a frame translating with a constant phase speed (which depends on the
wave structure) down the pipe and therefore represent the lowest rung in the hierarchy of
phase space structures which could potentially be used to characterize mean properties of
the flow either in the transitional or fully turbulent regime. They are found to exist down to
flow rates significantly below those at which transition is observed to occur. This seems to
indicate that transition to turbulence is delayed until the stable and unstable manifolds of these
saddle points become sufficiently tangled with each other (with increasing flow rate) to sustain
complicated time-dependent flow trajectories away from the laminar fixed point in phase
space.

The purpose of this paper is to describe how these travelling wave states were found
as numerical solutions to the governing Navier–Stokes equations, to put their discovery in
historical perspective and to discuss their implications for future work.

For many fluid dynamicists, pipe flow remains the classical problem of stability theory
not only because of its historical pedigree but because the gap between theory and experiment
has remained perhaps the largest across all the canonical flow stability problems that have
been studied subsequently. The reasons for this are multifold. First, and most important, all
experimental and theoretical evidence points to the fact that the laminar flow state (which exists
for all flow rates) is linearly stable to any infinitesimal disturbance. The clear implication is
that the observed transition process can then only be initiated by finite amplitude disturbances.
Mathematically, this means that the laminar solution does not offer a bifurcation point at some
finite flow rate which could be used as a starting point to generate new alternative (preferred)
solutions to the governing equations as in the cases of Rayleigh–Bénard convection, Taylor–
Couette flow or plane Poiseuille flow. In these flows, an ordered sequence of bifurcations can
be traced in which the preferred flow becomes progressively more complicated in space and
time. In contrast, the transition in pipe flow is rather delicate but when triggered leads abruptly
to a complicated, disordered state. This absence of an initial bifurcation from the laminar state
has meant that theoretical work has largely had to concentrate upon direct numerical simulation
(DNS) as its tool of enquiry with limited tangible results.

Second, many experimental studies over the years have highlighted the somewhat
surprising, spatially intermittent behaviour of transitional pipe flow—disordered motion arises
in patches separated by regions of laminar flow—for a range of flow rates beyond that required
to sustain turbulence. As a result pipe flow has become the canonical example of this
phenomenon. The detailed data collected by probing these disordered patches has also served to
emphasize the lack of any accompanying theoretical understanding beyond post rationalization
through DNS.

Third, the fact that a pipe is cylindrical rather than planar and that transition occurs
at higher relative flow rates than in other canonical planar shear flow such as the closely
associated plane Couette flow or plane Poiseuille flow, has meant that it is less theoretically
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accessible than these alternatives. As a result, pipe flow has been the least studied using
analytical and numerical techniques although being most easily realized in the laboratory. The
recent theoretical discovery of travelling wave solutions in pipe flow (Faisst and Eckhardt 2003,
Wedin and Kerswell 2004) and their apparent observation soon after in experiments (Hof et al
(2004): see also the commentaries Barenghi (2004), Busse (2004)) has however helped redress
this imbalance. These solutions provide the first solid theoretical stepping stones beyond the
laminar basic state from which to explore the transitional dynamics of pipe flow.

The plan of this paper is as follows. In section 2, the governing Navier–Stokes equations
are written down along with some parameter definitions for the core problem of understanding
the transition to turbulence in an incompressible Newtonian fluid flowing along a smooth,
cylindrical straight pipe. Section 3 reviews past achievements in understanding the pipe flow
problem with an emphasis on the theoretical side because a detailed review of experimental
work is being prepared elsewhere (Mullin 2005). Section 4 details how the travelling waves
were found numerically, describes their flow structure and indicates where they are to be
found in parameter space. Section 5 discusses the significance of the travelling waves from
a dynamical systems perspective before a final section 6 considers the exciting outlook for
future research.

2. Notation

Here we set up notation for the rest of the paper. For an incompressible fluid of constant
density ρ and kinematic viscosity ν flowing in a circular pipe of radius s0 under the action of
a constant applied pressure gradient

∇p∗ = −4ρνW

s2
0

ẑ (2.1)

(where ẑ is directed along the pipe axis), the realized flow is known to be for long times uniquely
of the parabolic form

u∗ = W

(
1 − s2

s2
0

)
ẑ (2.2)

at low enough values of the Reynolds number

Re := s0W

ν
, (2.3)

where s is the radius in the normal cylindrical coordinates (s, φ, z). The governing Navier–
Stokes equations (non-dimensionalized using the centreline speed W of the parabolic laminar
flow and pipe radius s0) for pipe flow are

ut + u · ∇u + ∇p = 1

Re
∇2u +

4

Re
ẑ, (2.4)

∇ · u = 0, (2.5)

with non-slip velocity boundary condition

u(1, φ, z) = 0, (2.6)

where u = u∗/W and p represents the pressure deviation away from the imposed gradient.
State-of-the-art pipe flow experiments aim to ensure constant mass flux along the pipe as
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opposed to constant pressure gradient either by sucking the fluid through (Hof et al 2003) or
by pumping the flow with feedback to maintain an approximately constant flux (Draad et al
1998)—see Mullin (2005) for a detailed discussion. In this case it makes more sense to work
with a ‘mass-flux’ Reynolds number

Rem := 2s0W

ν
(2.7)

based upon the mean flow

W := 1

π

∫ 2π

0
dφ

∫ 1

0
s ds u∗ · ẑ (2.8)

along the pipe. The ratio

Rem

Re
= 2W

W
� 1 (2.9)

is a measure of the mass flux relative to that of the laminar solution and indicates how ‘far’ the
solution is away from the laminar state u = (1 − s2)ẑ where the ratio is maximally one.

3. Background

3.1. Experimental work

Characterizing the resistance felt by a fluid when flowing through a circular pipe has been
a fundamental problem in fluid mechanics since the beginning of the subject. Although the
earliest traceable study is perhaps the treatise of Mariotte (1686), the first serious experimental
studies are generally considered to be those carried out independently by the German engineer
Gotthilf Hagen (1839) and the French physician Jean Poiseuille (1840) (see Rouse and Ince
(1957)). Poiseuille studied the resistance in small capillaries (diameters ranging from 0.015
to 0.6 mm: see Sutera and Skalak (1993)) and thereby concentrated unwittingly on the steady
unidirectional laminar flow invariably realized. Hagen, in contrast, used much larger diameters
(2.5–6 mm) and noticed that another type of flow in which the motion was unsteady and three-
dimensional could be realized beyond the steady laminar response (2.2) now known as the
Hagen–Poiseuille flow (HPF). He worked on characterizing the resistance laws for both types
of motion but never reached the point of isolating a general similarity parameter involving the
fluid viscosity to describe his findings. This was to be Osborne Reynolds’ triumph in his now
famous 1883 study of the transition of the laminar Hagen–Poiseuille solution to ‘sinuous’ flow
consisting of unsteady eddies.

Reynolds realized that a non-dimensional number corresponding to the ratio of dissipative
D2/ν to advective D/W times was sufficient to characterize the onset of eddy motion (where
D is the diameter of the pipe, W is the mean flow along the pipe and ν is the kinematic viscosity
of the fluid). The fact that many shear flows depend only on this ‘Reynolds’ number, Rem, is
one of the first things taught in any fluid dynamics course. Surprisingly, however, Reynolds
failed to realize that his new parameter may also completely characterize the flow resistance
function: Blasius demonstrated this later for smooth pipes (Blasius 1913). Characterizing the
form of the flow resistance and mean velocity field as a function of Rem has continued to attract
attention (e.g. Prandtl (1927), Nikuradse (1932), Zagarola and Smits (1998), Swanson et al
(2002), McKeon et al (2004a, 2004b)).

Reynolds’ other great discovery in 1883 was the fact that the transitional Reynolds
number Ret

m varied with the level of disturbance in the flow. He found Ret
m ≈ 2000 in
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one series of experiments whereas in a more tightly controlled environment, transition was
delayed until ≈12 000. Subsequent experimental work has essentially confirmed Reynolds’
lowest critical value with current estimates varying across the range 1760 < Ret

m < 2300
(Binnie and Fowler 1947, Lindgren 1958, Leite 1959, Wygnanski and Champagne 1973,
Darbyshire and Mullin 1995). In contrast, Reynolds’ upper value has now been raised to
100 000 by suppressing the level of ambient disturbances even further (Pfenniger 1961). The
clear implication of all this work is that there exists a finite-amplitude disturbance threshold
to trigger transition and that this threshold decreases as Rem increases.

Reynolds also found that when the flow became disordered it did so in patches separated by
laminar regions. This spatial intermittency was examined more carefully by Wygnanski and co-
workers in the 1970s who found what they thought were two different turbulent states christened
‘puffs’ and ‘slugs’ (Wygnanski and Champagne 1973, Wygnanski et al 1975). A puff was
identified as a turbulent region with a sharp upstream boundary but whose downstream border
is blurred due to the presence of larger-scale structures centred at the pipe axis which gradually
peter out. Found for 2000 < Rem < 2700 and typically of 20–30 pipe diameters in length, the
speeds of the upstream and downstream fronts are roughly equal and just less than the mean
flow so that, on average, fluid passes through the puff on its way downstream. Puffs were
generated by introducing large disturbances in the pipe inlet and viewed as an ‘incomplete
relaminarization process’.

A turbulent slug on the other hand was found to have two well defined fronts upstream
and downstream enclosing turbulence which extended across the whole pipe cross section and
which looked indistinguishable from fully turbulent pipe flow. Found to exist for Rem > 3200,
the upstream front moves slower than the mean flow speed whereas the downstream front
moves faster so that the slug grows in spatial extent as it is advected down the pipe and fluid
entrained into the slug never relaminarizes. Wygnanski’s group considered only the slugs to
be associated with the transition from laminar to turbulent flow, believing them to be the end
product of a boundary layer instability in the pipe inlet region.

At this point, all experimental work had either relied on an imposed disturbance in the
inlet flow (e.g. Wygnanski and Champagne (1973)) or a permanent but spatially localized
perturbation in the fully developed flow to trigger transition (e.g. Fox et al (1968)). To avoid
studying the wrong process (inlet instability or instability of perturbed HPF), attention was
then focused on applying a spatially and temporally-localized (impulsive) disturbance to fully-
developed HPF. Importantly, Rubin et al (1980) found that the structure of the transitional flow
remains the same as that produced by a disturbed inlet provided the disturbance amplitude is
large enough. The observed transitional behaviour also remains qualitatively similar if the flow
is driven under constant-mass-flux conditions rather than the original pressure-driven system
of Reynolds (Darbyshire and Mullin 1995). Darbyshire and Mullin, however, did fail to find
the clear separation described by Wygnanski and Champagne (1973, figure 2b) in disturbance
amplitude and Rem for puffs and slugs to exist. They found both can exist over a range of
Rem depending on the type and not just the size of disturbance used. Using an impulsive
perturbation, they also mapped out the finite amplitude stability curve (where ‘amplitude’ is
defined as the ratio of the perturbation mass injection rate to the total mass flux) such that
disturbances with amplitudes greater than the threshold produce transition while smaller ones
decay downstream. It soon became clear that the amplitude threshold is also very sensitive to
the frequency of the perturbation (Draad et al 1998) as well as to its azimuthal structure (Eliahou
et al 1998, Han et al 2000). Recent work by Hof et al (2003, summarized in the popular article
by Fitzgerald (2004)) has found that the threshold amplitude curve can be lowered to one scaling
like Re−1

m over the range 2000 < Rem < 20 000 provided the perturbation is applied for long
enough.
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3.2. Theoretical work

The initial theoretical response to Reynolds’ experiments was to examine the plight of small
perturbations to HPF. Rayleigh (1892) found that inviscid, infinitesimal disturbances do not
grow on laminar pipe flow, that is, HPF is inviscidly, linearly stable (see also the discussion
by Kelvin (1887a, b)). Sexl (1927) incorporated the effects of viscosity but found HPF still
linearly stable to axisymmetric disturbances at high Re (later proved by Herron (1991)).
Subsequently there have been many theoretical (e.g. Gill (1965, 1973), Davey and Drazin
(1969)) and numerical studies (Lessen et al 1968, Garg and Rouleau 1972, Salwen and Grosch
1972, Salwen et al 1980, Meseguer and Trefethen 2003) concentrating on the stability to
asymmetric disturbances. The consensus now is that the flow is linearly stable to these too
although a formal proof remains elusive.

At the other end of the theoretical spectrum, Joseph and Carmi (1969) established that
a disturbance to HPF of any amplitude would exponentially decay—i.e. HPF is a global
attractor—provided Re < 81.49. Interestingly, the first disturbance able to extract energy
out of HPF (as Re is increased to 81.49) is unusually streamwise-dependent (helical) with
azimuthal and streamwise wavenumbers of precisely and about one respectively. The large
gap in Re between this energy stability value of 81.49 and the lowest transitional value of
≈2000, however, served only to emphasize the gulf between experiment and theory at that
time. It was soon realized that this gap could be closed by rotating the pipe about its axis
quickly but this is then a very different problem (Mackrodt (1976): rotating HPF becomes
linearly unstable at a Re which approaches 82.88 from above as the rotation rate → ∞ with
81.49 still being the energy stability limit).

Given the mounting evidence that HPF is linearly stable, efforts switched to constructing
weakly nonlinear states around the least decaying linear disturbances. Davey and Nguyen
(1971) and Itoh (1977) independently developed finite amplitude expansions for axisymmetric
disturbances supposedly valid in the limit of Re → ∞. Differing in only the ordering of terms,
their results unfortunately contradicted each other indicating a lack of convergence of the series
(Davey 1978). However, Gill realized that simple dimensional analysis arguments were able to
reproduce the gross scaling results of Davey and Nguyen (1971, see appendix). The underlying
premise for such an approach is that if a finite amplitude solution is wholely concentrated at
the wall or at the pipe centre, the only relevant length scale would be set by the local HPF shear
(at the wall) or curvature (at the axis). Numerical calculations by Patera and Orszag (1981),
however, failed to find any axisymmetric equilibria. In a follow-up paper, Orszag and Patera
(1983) found evidence that pipe flow is susceptible to a strong non-axisymmetric secondary
instability of decaying axisymmetric states.

At about this time, Smith and Bodonyi (1982) applied the nonlinear critical layer theory of
Benney and Bergeron (1969) to pipe flow at asymptotically large Re. They found neutral, finite-
amplitude disturbances but only with an azimuthal wavenumber one structure of O(Re−1/3)

(rising to O(Re−1/6) in the critical layer) coupled with O(Re−1/6) mean axial and azimuthal
(swirl) flow. Subsequently, Walton (2002) has shown how these disturbances can be reached
as endstates of linear instabilities to impulsively started pipe flow. However, numerical
computations by Landman (1990) for Re up to 4000 failed to find any evidence of these
states.

Around the early nineties, attention refocused upon the ability of certain disturbances to
undergo temporary algebraic growth in shear flows (Boberg and Brosa (1988), Gustavsson
(1991), Butler and Farrell (1993), Reddy and Henningson (1993), Trefethen et al (1993); see
also Tumin (1996) and Reshotko and Tumin (1999) for a spatial version of the theory) following
the initial works by, for example, Case (1960), Benney (1961, 1964) and Stuart (1965).
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Physically, the mechanism is simply one by which a small initial disturbance with some wall-
normal velocity advects the large mean shear either away from or towards the wall. Typically,
these wall-normal velocities only experience weak viscous decay and so their slow but sustained
advection of the mean shear can produce large local anomalies in the streamwise velocity called
streaks. Mathematically, this ‘transient growth’ is caused by the apparently generic non-
normality of the linear operator governing the temporal evolution of infinitesimal disturbances
in shear flows. This non-normality means that the eigenfunctions of the linear operator are not
orthogonal (under the energy norm) with the consequence that certain initial flow conditions
are poorly spanned. This ill-conditioning means that the eigenfunction expansion for some
certain initial conditions requires unusually large coefficients due to a subset of eigenfunctions
significantly cancelling. When each eigenfunction decays exponentially over time (otherwise
the flow would be linearly unstable) they do so with different rates so that the initial cancellation
melts away. This uncovers the large coefficients in the expansion which has the effect of
producing a period of algebraic growth. A simple example from the appendix of Schmid and
Henningson (1994) illustrates the point nicely (see also Eckhardt and Pandit (2003)). Consider
the two-dimensional linear evolution equation

d

dt

[
x

y

]
= A

[
x

y

]
:=




−1

Re
0

1
−2

Re




[
x

y

]
, (3.10)

where Re is a model Reynolds number (i.e. a large parameter) and A is a non-normal matrix,
i.e. A does not commute with its adjoint (ATA �= AAT). The eigenvalues of A, −1/Re and
−2/Re, are both negative and therefore any initial condition in R2 is assured to asymptotically
decay to zero as t → ∞. However the associated eigenvectors

1√
1 + Re2

[
1

Re

]
and

[
0
1

]
(3.11)

are not orthogonal and poorly span the x direction. Hence an initial condition (x, y) = (1, 0)

experiences initial algebraic growth before ultimately decaying

[
x(t)

y(t)

]
=

[
1

Re

]
e−t/Re −

[
0

Re

]
e−2t/Re ≈




1 − t

Re
+ O

(
t

Re

)2

t + O

(
t

Re

)2


 . (3.12)

The algebraic growth persists until t = O(Re) and thus amounts to an O(Re) amplitude
growth. It is equally important to notice that this growth is not modal in the sense that the
initial condition is simply magnified in amplitude. Rather the initial condition is rotated and
amplified in another direction. Work in pipe flow (Boberg and Brosa 1988, Bergström 1992,
1993, O’Sullivan and Breuer 1994a, Schmid and Henningson 1994) has revealed that the
initial perturbation which experiences the largest growth takes the form of two-dimensional
streamwise-independent vortices (rolls) with a unity azimuthal wavenumber (equivalent to
the initial condition (x, y) = (1, 0) in the above example). Since such streamwise rolls
have viscous decay rates of O(Re−1) they can persist over an O(Re) timescale with no energy
source. During this period streamwise rolls of amplitude O(ε) can advect fluid across the O(1)

mean shear a distance O(εRe) and thereby produce O(min(εRe, 1)) ‘streaks’ or azimuthal
(spanwise) variations in the mean flow (equivalent to (x, y) = (0, 1) in the above example). In
this linearized picture, an initial disturbance in the form of streamwise rolls can be amplified
by a factor of O(Re2) in energy (changing structure into streaks) before ultimately decaying
over an O(Re) time.
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Given this apparently potent linear amplification process, thinking naturally turned to
examining how energy could be fed back from the streaks into the secularly-decaying
rolls so that the process could be sustainable and thereby accomplish transition. Simple
models invoking generic mixing by the nonlinearity of the Navier–Stokes equations (e.g.
see Baggett and Trefethen (1997), Gebhardt and Grossman (1994)) proved successful but
an oversimplification of the situation (Waleffe (1995a): see Benney and Gustavsson (1981),
Boberg and Brosa (1988), Brosa and Grossmann (1999) for more serious attempts to understand
the nonlinear feedback processes, as well as the review by Grossmann (2000)). Streamwise-
independent perturbations which experience the largest transient growth cannot be self-
sustaining according to the Navier–Stokes equations. Moreover their nonlinear development
adjusts the mean flow in such a way as to reduce the transient growth possible. Clearly
further flow structures needed to be excited and the obvious candidate process was the
instability of finite-amplitude streaks. With this in mind, Zikanov (1996) studied the three-
dimensional linear instability of pipe flow with two-dimensional streamwise rolls initially
added. He found that once the rolls induce large enough spanwise modulation of the streamwise
velocity (i.e. streaks), inflection points appear which are highly (inertially) unstable to three-
dimensional disturbances. This approach mimicked the original work of Orszag and Patera
(1983) which probed for secondary instability but by choosing an axially-invariant rather
than an axisymmetric two-dimensional modulation (or primary flow), Zikanov found far
larger potential for growth. In other words, the transient growth of the initial modulation to
produce unstable streak structures meant that the starting amplitude needed to trigger secondary
instability was necessarily smaller.

At about this time, interest was shifting from the traditional question of how turbulence
is initiated to answering the question of how turbulence maintains itself. Jiménez and Moin
(1991) pioneered the idea of a ‘minimal’ channel flow unit in which the spanwise and stream-
wise dimensions are reduced to the least values needed to sustain turbulence in DNS. Using
this approach in plane Couette flow, Hamilton et al (1995) managed to identify a spatially and
temporally organized cycle of events appearing to underpin the turbulence (following specula-
tion of just such in Waleffe et al (1993)). This consisted of three phases: formation of streaks
by streamwise vortices, breakdown of the streaks and the regeneration of the streamwise vor-
tices. The last process was least understood being fundamentally nonlinear but it appeared that
the streak instability directly regenerated the streamwise vortices through its nonlinear self-
interaction. Waleffe (1995b, 1997) theoretically explored this observation by cutting open
the Navier–Stokes equations and confirming the feasibility of each phase in isolation. Most
importantly, he was able to demonstrate that a streak instability could indeed directly feed
energy back into the streamwise rolls hence potentially establishing a self-sustained process
(SSP); see Waleffe (1997) for low-dimensional models and Dauchot and Vioujard (2000) and
Moehlis et al (2004, 2005) for phase space explorations. Significantly, Waleffe (1998, 2001,
2003) was able to convert this piecemeal verification analysis into a smooth numerical con-
tinuation procedure which has generated nonlinear steady state solutions and travelling wave
solutions in plane Couette and travelling wave solutions in plane Poiseuille flows to arbitrary
accuracy. These states consist of the three flow structures—streamwise vortices (rolls), streaks
and waves (streak instabilities) blended together in such a way that they maintain each other
symbiotically against viscous decay. The thinking was that one of these solutions—christened
exact coherent structures (ECS) by Waleffe—acted as an organizing centre for the turbulence
quasi-cycle found by Hamilton et al (1995). Kawahara and Kida (2001) have confirmed that
a periodic orbit does exist there consisting of a time-dependent version of Waleffe’s SSP.

Following Hamilton et al (1995) and Zikanov (1996), Reddy et al (1998) studied streak
instability in plane Couette and Poiseuille flow establishing the generic nature of the process.
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The appearance of this secondary instability was considered enough to signify turbulent
transition. Numerical computations in pipe flow by Ma et al (1999) further confirmed this
evolutionary sequence of rolls → streaks → streak instability → turbulence.

Other DNS work has been directed at probing the ‘puffs’ and ‘slugs’ structures produced
in transitional flows (Leonard and Reynolds 1985, Nikitin 1994, O’Sullivan and Breuer 1994b,
Shan et al 1999, Priymak and Miyazaki 1998, 2004, Reuter and Rempfer 2004). The general
conclusion is that achievable numerical solutions of the Navier–Stokes equations are starting
to reproduce at least qualitatively what is seen and measured in experiments. The major
difficulty is ensuring the computational pipe is long enough (while maintaining cross sectional
resolution) so that transitional structures can evolve without being influenced by artificial
numerical boundary conditions. This is an ongoing challenge in the transitional regime but is
not an issue for fully developed turbulent flow where correlation lengths are small. For example,
Eggels et al (1994) find favourable quantitative comparison between fully developed turbulent
flow seen experimentally at Rem ≈ 5300 and numerical results from a short (periodic) pipe of
length 5 diameters at the same Rem. Recently, Gavarini et al (2004) have returned to the issue of
pipe inlet conditions by examining the effect of imposing very small but persistent axisymmetric
(and axially invariant) distortions to HPF. Suitably chosen, these can make the base flow linearly
unstable and transition occurs more readily. They discuss two scenarios: amplification of
axisymmetric disturbances and the growth and breakdown of streaks. Significantly, the latter
streak breakdown process is found to be the more robust mechanism under reduction of the
length of the pipe over which the base distortion is imposed.

4. Travelling waves in pipe flow

Waleffe’s success in developing a mechanistically motivated continuation procedure to generate
nonlinear ECS solutions was particularly significant for the pipe flow problem. Homotopy—
the approach by which known nonlinear solutions in a neighbouring problem are smoothly
continued back to the original system of interest—had already been exploited with considerable
success in other problems. Most notably in 1990, Nagata discovered the first nonlinear
steady states in plane Couette flow using homotopy from rotating plane Couette flow. Further
successes followed by building solution ‘bridges’ between Benard convection, Taylor–Couette
flow and plane Couette flow (Nagata 1990, 1997, 1998, Clever and Busse 1992, 1997, Faisst
and Eckhardt 2000). However, no continuation strategy back to pipe flow from another physical
system had thus far succeeded. Efforts to repeat Nagata’s success by trying to continue solutions
known in rotating pipe flow (Toplosky and Akylas 1988) back to non-rotating pipe flow failed
(Barnes and Kerswell 2000), and an attempt to use a geometrical embedding of (circular) pipe
flow in elliptical pipe flow proved impractical (Kerswell and Davey (1996): the elliptical pipe
has to have a cross-sectional aspect ratio of over 10 to become linearly unstable!). However,
armed with this new approach, two groups (Faisst and Eckhardt 2003, Wedin and Kerswell
2004) have now found nonlinear travelling wave solutions in pipe flow.

To understand the mechanistic origin of these travelling waves, we decompose the
‘perturbation’ velocity away from HPF, that is, ũ := u − (1 − s2)ẑ into the basic building
blocks of streamwise rolls, streaks and axially-dependent wave structures as follows:[

ũ
p

]
=

[
U(s, φ)ŝ + V (s, φ)φ̂

P(s, φ)

]
rolls

+

[
W(s, φ)ẑ

0

]
streaks

, (4.13)

+

[
û(s, φ, z − ct)

p̂(s, φ, z − ct)

]
waves

. (4.14)
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Here c is the a priori unknown phase speed of the travelling wave and it is understood that the
waves have no mean under streamwise averaging, that is, ũ

z = U := U ŝ + V φ̂ + W ẑ with

( )
z

:= lim
L→∞

1

2L

∫ L

−L

( ) dz. (4.15)

The governing equations (2.4) and (2.5) can be rewritten for ũ as follows.

ũt + (1 − s2)ũz − 2sũẑ + ũ · ∇ũ + ∇p − 1

Re
∇2ũ = 0, (4.16)

∇ · ũ = 0, (4.17)

where ũ satisfies homogeneous boundary conditions and p is assumed strictly periodic in the
axial direction. The equations for the streamwise rolls are ŝ · (4.16)

z
and φ̂ · (4.16)

z
,

Ut + Ps − 1

Re
ŝ · ∇2U = −ŝ · (U · ∇U + û · ∇û

z
), (4.18)

Vt +
1

s
Pφ − 1

Re
φ̂ · ∇2U = −φ̂ · (U · ∇U + û · ∇û

z
), (4.19)

together with the incompressibility condition

(sU)s + Vφ = 0. (4.20)

Ignoring the presence of the waves û for the moment, small amplitude streamwise rolls will
approximately satisfy the linear Stokesian problem obtained by suppressing the right-hand
sides of (4.18) and (4.19). All solutions to this experience viscous decay over a timescale of
O(Re) and it is reasonable to take the least damped roll as a potentially typical structure for
a travelling wave (see Wedin and Kerswell (2004)). For a given azimuthal wavenumber, this
takes the form

[U, V, 0, P ] := [Ũ (s) cos mφ, Ṽ (s) sin mφ, 0, P̃ cos mφ] (4.21)

so that it is invariant under the rotational transformation

Rm :




u

v

w

p


 (s, φ, z) →




u

v

w

p




(
s, φ +

2π

m
, z

)
(4.22)

and also invariant under the reflectional symmetry

Z :




u

v

w

p


 (s, φ, z) →




u

−v

w

p


 (s, −φ, z). (4.23)

These rolls advect the mean shear to produce high and low-speed streaks W(s, φ) via the
equation ẑ · (4.16)

z

UWs +
V Wφ

s
− 1

Re
∇2W − 2sU = −û · ∇ŵ

z
. (4.24)

This is a linear inhomogeneous equation for W when the nonlinear wavelike contribution is
suppressed and at a certain amplitude ε of the rolls, the streaks become inflexionally unstable.
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Subtracting the parts of (4.16) which have been satisfied by defining the rolls and streaks leads
to the wave equations

ût + (1 − s2)ûz − 2sûẑ + U · ∇û + û · ∇U + ∇p̂ − 1

Re
∇2û

= −û · ∇û −




U · ∇U − V 2

s

U · ∇V +
UV

s

0


 , (4.25)

∇ · û = 0 (4.26)

(note this is not simply (4.16)−(4.16)
z

since the roll equations solved are linearized). Dropping
the right-hand side recovers the linear stability problem for the disturbance û superimposed
upon U, the rolls + streaks. At marginality, a wavelike instability û(x, t) = u(s, φ)eiα(z−ct)

exists where c is a real frequency and α is a real wavenumber. This wavelike instability can
either be symmetric or antisymmetric with respect to the shift-and-reflect symmetry

S :




u

v

w

p


 (s, φ, z) →




u

−v

w

p




(
s, −φ, z +

π

α

)
, (4.27)

that is S-symmetric or S-antisymmetric and can respect the symmetry Rm (Rm-symmetric)
or not.

At this point, the streamwise rolls are feeding energy from the mean flow into the streaks
which in turn are feeding energy into the wavelike instability. For a self-sustaining cycle to
be set up, the wavelike instability must inject energy back into the streamwise rolls which
otherwise would secularly decay. This is ensured if the parts of the nonlinear self-interaction
û·∇û term in (4.18) and (4.19) act to force ‘new’ rolls of the same form as the originally chosen
streamwise rolls. This positive feedback scenario has been explicitly demonstrated for an initial
choice of least decaying streamwise rolls for m = 2, 3, 4, 5 and 6 (Wedin and Kerswell 2004).
The waves can be imagined to grow in amplitude (typically reaching O(

√
ε/Re)) until their

nonlinear self-interaction terms take over the role of the time derivative terms in the Stokesian
operator. At this point, a steady balance exists between nonlinear wave driving and viscous
diffusion of the rolls.

It is important to emphasize that this feasibility analysis includes all ‘linear’ aspects of
the equations but ignores the majority of the nonlinear terms, specifically

U · ∇U − (U · ∇W)ẑ and û · ∇û − (ŝ · û · ∇û
z
)ŝ − (φ̂ · û · ∇û

z
)φ̂, (4.28)

so the designed combination of rolls, streaks and wave represents only an approximate solution
argued for in the limit of small amplitude rolls but assuming the associated streaks are large
enough to be neutrally stable. To confirm the existence of a self-sustaining cycle, the full
Navier–Stokes equations must be tackled.

4.1. Exact solutions via continuation

A connection can be made between the approximate feasibility analysis presented above and
a more formal continuation setting by adding an artificial body force f := f (s, φ)ŝ + g(s, φ)φ̂
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to the Navier–Stokes equations which specifically targets the roll equations

Ut + Ps − 1

Re
ŝ · ∇2U + ŝ · (U · ∇U) = f (s, φ) − ŝ · (û · ∇û

z
), (4.29)

Vt +
1

s
Pφ − 1

Re
φ̂ · ∇2U + φ̂ · (U · ∇U) = g(s, φ) − φ̂ · (û · ∇û

z
). (4.30)

This body force is designed to initially maintain streamwise rolls of chosen structure against
viscous decay (Faisst and Eckhardt 2003, Wedin and Kerswell 2004). The numerical procedure
is then to increase | f | until the directly forced two-dimensional rolls and concomitant streak
field suffers a symmetry-breaking bifurcation where a three-dimensional instability appears.
Using a body force which produced the least decaying roll structure discussed above, this
streak instability is found to be very similar to that predicted in the feasibility analysis (Wedin
and Kerswell 2004). As a result, a streak instability which is already known to have a
positive feedback onto the rolls can be pre-selected. Formally, this does not guarantee that the
bifurcation is subcritical since the excitation and subsequent influence of the second harmonic
is not taken into account. However, practically, ensuring positive feedback seems to invariably
imply subcriticality allowing the new roll + streak + wave solution branch to be followed back
to lower values of | f |. In effect the two components of û · ∇û

z
start to take over the role of f

in (4.29) and (4.30). Ideally, the forcing amplitude | f | can be reduced to zero at which point
a fully nonlinear travelling solution to the physical pipe flow problem has been achieved.

Although the feasibility analysis is excellent in predicting which bifurcations can be
tracked back, it cannot guarantee that the | f | = 0 axis will ultimately be reached (before
the curve bends back towards increasing | f |) since this is a fully nonlinear result which can
hinge on the neglected terms (4.28). A particularly stark demonstration of this is the fact
that S-symmetric and S-antisymmetric wavelike instabilities can both show positive feedback
onto the original rolls, but no S-antisymmetric waves have so far been successfully continued
back to | f | = 0 (Wedin (2004): the situation is apparently similar in plane Couette and
Poiseuille flow too: Waleffe, private communication). The S-symmetric travelling waves
currently known have been found only by using bifurcations where the wavelike instability
shares the same Rm-symmetry as the underlying rolls+streaks. This has led to Rm-symmetric
travelling waves for m = 2, 3, 4, 5 and 6 but not m = 1 (Faisst and Eckhardt 2003, Wedin
and Kerswell 2004). These Rm travelling waves have as their foundation a 2m streamwise
vortex structure. Two streamwise rolls (m = 1) is the initial structure which experiences the
most transient growth (Bergström 1993, Schmid and Henningson 1994, Zikanov 1996) but
surprisingly does not seem to support a travelling wave. This emphasizes the importance of
the nonlinear feedback of the streak instability onto the rolls. A R1-symmetric wave can
been found but only by tracking a subharmonic wavelike instability with R1-symmetry upon
a R2-symmetric 4-roll structure (Wedin and Kerswell 2004). This has a different structure to
the finite amplitude m = 1 wave discussed by Smith and Bodonyi (1982) in which swirl is
an important component. The R1-symmetric wave, along with all the other travelling waves
found so far, has no swirl associated with it. Other travelling waves surely exist involving
more exotic wavelike instabilities but they are more expensive to capture numerically and, if
the R1 wave found is any indication, probably exist at higher Re.

The travelling wave solutions currently known all appear through saddle node bifurcations
at some minimum value of Re for fixed values of α over a finite range. Since ongoing pipe
flow experiments (at Manchester—e.g. Hof et al (2003) and Delft—e.g. Hof et al (2004))
are constant mass flux set-ups, it makes sense to couch the results in terms of the mass-flux
Reynolds number Rem rather than the pressure gradient Reynolds number Re. The phase speed
is an important a priori unknown feature of the waves and is a convenient coordinate against
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Figure 1. The phase speed normalized by the average streamwise speed, C = c × W/W as a
function of Rem for the different m solution branches at their optimal wavenumber α∗ given in
table 1 (there are multiple solution branches for m = 3 and 4). The phase speed is seen to clearly
decrease systematically with increasing m (each branch is shown only as far as it is assured to be
resolved).

which to plot the wave solution surface. Figure 1 plots a single fixed α-slice through each
solution surface in the three-dimensional space (Rem, α, C) where C = cW/W is the phase
speed in units of the mean axial velocity. The value of α chosen through each Rm-symmetric
solution surface corresponds to the lowest value of Rem at the saddle node bifurcation: Rm-
symmetric solutions only exist above this. Curves are shown only as far as they prove robust
against numerical truncation changes (with typically O(16 000) degrees of freedom used to
represent all three velocity components and the pressure field: Wedin and Kerswell (2004)). The
R3 and R4 solution surfaces are particularly interesting because there are multiple branches
indicating surface folding. Table 1 collates the optimal values of α and Re which produce
min Rem as a function of m. Only travelling waves with m = 2, 3 and 4 exist over the normally
quoted range for turbulent transition (2000 < Rem < 2500). The friction factors (Schlichting
(1968), equation (5.10))

� := 1

ρ

dp

dz

/
1

4s0
W

2 = 64Re

Re2
m

, (4.31)

associated with the travelling wave branches shown in figure 1 are plotted in figure 2. This
shows that there are R2, R3 and R4 waves with dissipation rates comparable with what is
observed experimentally beyond transition (e.g. at Rem = 2000). The currently best (lowest)
rigorous theoretical bound on the friction factor (Plasting and Kerswell 2005) is about five
times higher than the experimentally observed value at Rem = 2000. Interestingly however,
the optimal ‘velocity’ field (which needs only satisfy a small subset of the dynamical constraints
imposed by Navier–Stokes equations) is dominated by fast and slow streaks alternately
arranged around the pipe wall. The travelling waves have a similar structure but apparently
the full constraints of the Navier–Stokes equations stop them becoming so strong and close to
the wall (see figure 3 of Plasting and Kerswell (2005)).

Cross-sections of all the three solutions surfaces known to exist down to Rem = 2000
(R2, R3 and R4) are shown as a function of α in figures 3 and 4. This shows that there is also



R30 Invited Article

Table 1. Optimal properties of the travelling wave solutions at their saddle node bifurcation points.

R1 R2 R3 R4 R5 R6

minα Rem 3046 1358 1251 1647 2485 2869
Corresponding Re 3800 1663 1631 2280 3427 4069
Wavenumber α 2.17 1.55 2.44 3.23 4.11 4.73
Wavelength (in radii) 2.90 4.05 2.58 1.95 1.53 1.33
Phase velocity c 0.63 0.59 0.49 0.42 0.39 0.35
C (c in units of W ) 1.56 1.44 1.28 1.16 1.08 1.00

max |wm|z 0.70 0.39 0.36 0.36 0.41 0.40

max | ũ |z 0.023 0.034 0.047 0.056 0.025 0.026

The value of Re corresponding to min Rem is given although this is not the minimum value of this
parameter only close to it. Maximum streamwise-averaged values for wm := w̃ + (1 − Rem/Re)
(1 − s2), the velocity differential of the wave above the equivalent laminar solution with the
same mass flux and the radial velocity ũ are given in units of W to indicate that streamwise
velocities dominate transverse velocities. These figures also show that the R1 wave has a different
character from the other waves found.
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Figure 2. The friction factor � := 64Re/Re2
m for the Rm travelling waves branches (labelled by

m) at their optimal wavenumber α∗. The straight dashed lower line represents the lower bound
given by the Hagen–Poiseuille solution (Re = Rem) and the upper dash–dot curve corresponds to
the log-law parametrization of experimental data 1/

√
� = 2.0 log(Rem

√
�)−0.8 (see Schlichting

(1968) equation (20.30)). The hollow circles are experimental data from Schlichting (1968) and
the solid circles are the Oregon data from McKeon et al (2004b) (both indicate a slightly delayed
transition past Rem = 2000). The vertical dotted line at Rem = 2000 indicates the slice considered
in figures 3 and 4.

folding in the R2 surface which is missed by the optimal wavenumber slice α∗ = 1.55 shown
in figure 1 (and as a vertical dashed line in figure 3). The wavelengths λm (in radii) of the Rm

waves are limited to finite ranges: 3.2 � λ2 � 8.0, 2.1 � λ3 � 6.1 and 1.8 � λ4 � 2.6 at
Rem = 2000 with some uncertainty in the lower estimate for R3 due to difficulty in resolving the
solution fully there (the curve becomes sensitive to the exact truncation used). The structure
of the travelling waves is fairly consistent over the cross-sections (figures 5–7). There is a
uniform distribution of fast streaks near the pipe wall and slow streaks in the interior. The fast
streaks are very two-dimensional, hardly varying with distance down the pipe and typically
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Figure 3. Cross-sections of the R2 and R4 travelling wave surfaces over α at fixed Rem = 2000
(each dot represents a solution found by a branch continuation procedure). The vertical dashed
lines indicate the optimal wavenumbers α∗ (α∗

2 = 1.55 and α∗
4 = 3.23). The range of wavenumbers

is 0.784 � α � 1.97 for R2 and 2.38 � α � 3.59 for R4. Typical solutions are labelled by
numbers for referencing in following plots.

number 2m for R2, R3 and R4 waves and m for R5 and R6 waves (Wedin and Kerswell
2004). However there are exceptions, for example, solution 3 for R3 (see figure 4) only has m

fast streaks (for more R3 examples see Wedin and Kerswell (2004)) and Faisst and Eckhardt
(2003) discuss seeing a 2m fast streak R5 solution. Interestingly, the typically-quoted streak
separation of 100 viscous wall units observed experimentally in planar shear flows translates
into an angular separation of just about 2π/5 around the pipe wall at Rem = 2000 (taking
Re = 3100 to be consistent with the experimental friction factor value) or five equally spaced
streaks. This certainly seems to resonate with what is observed—the Rm wave selects m or
2m fast streaks depending on which is closest to 5 except for the R4 solution for which no
m streak solution has so far been found.

The slow streaks, however, show much more three-dimensionality or variability along the
pipe. Most notably, the central region around the axis can be the location of the largest negative
anomaly in the travelling waves (darkest contour in figures 5–7; e.g. solution 2 in figure 6) or
suffer very little adjustment when compared with the equivalent laminar state (e.g. solution 4
of figure 7). The dissipation rate associated with a travelling wave depends on the strength
of the fast streaks and their proximity to the wall. Figures 8 and 9 indicate the variation in
friction factor values over the R2, R3 and R4 cross-sections for Rem = 2000. Solution 2 of
the R2 waves, for example, has stronger streaks more tightly pressed against the wall than its
neighbouring solution 1 (figure 5) and is correspondingly more dissipative.

Contour plots of the streamwise vorticity (figures 10 and 11) emphasize the staggered
nature of the streamwise vortices in these travelling waves with regions of negative and positive
axial vorticity wrapped around each other. This is consistent with the structure of analogous
steady and travelling waves known in channel flows (Waleffe 2003). These plots taken at
Rem = 2000 also illustrate two other features: the wavelengths of the Rm waves typically
shorten and the wave becomes more localized near the wall as m increases. This is also seen in
figure 12 which plots the root mean square (rms) values of the azimuthal velocity and the axial
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Figure 4. A cross-section of he R3 travelling wave surface over α at fixed Rem = 2000 as far as
it can be resolved using O(16 000) degrees of freedom to represent the three components of the
velocity field and the pressure field. The vertical dashed line indicates the optimal wavenumber
α∗ = 2.44. Solutions found have 1.03 < α � 3.06. Again, typical solutions are labelled by
numbers for referencing in following plots.

velocity differential from the equivalent mass-flux laminar state (w−Rem/Re(1−s2)) for a R2,
R3 and R4 wave at Rem = 2000. The disparity in the velocity scales is also entirely typical:
the streamwise (axial) velocity dominates the cross-stream (radial) and spanwise (azimuthal)
velocities by an order of magnitude.

5. Significance of the travelling waves

Dynamical systems theory offers the best framework in which to understand the significance
of the recently discovered travelling wave solutions. In this, pipe flow can be considered as
a nonlinear dynamical system du/dt = f(u; Re) defined by the governing Navier–Stokes
equations, flow incompressibility, the appropriate pressure-gradient or constant-mass flux
forcing and boundary conditions. Here u is no longer a spatially and temporally-dependent
incompressible vector field but can be most conveniently considered as a large dimensional
array of time-dependent scalar coefficients which arise from a Galerkin projection of the
velocity field onto a complete basis of three-dimensional, incompressible spatial basis functions
which each satisfy the boundary conditions. Although formally infinite dimensional, the usual
argument is that the motion of a viscous fluid in a finite domain is always finite dimensional
due to the viscous cutoff of fine scales (e.g. Constantin et al (1985) and see chapter III of Foias
et al (2001)). The Reynolds number Re is the one parameter of the system.

As discussed above, there is one linearly-stable fixed point (HPF) for all Re which is
a global attractor for Re < Reg (nonlinearly stable) but only a local attractor for Re > Reg

(nonlinearly unstable but still linearly stable): experiments suggest that Reg is around 2000. It is
known that all disturbances to this basic state must decay exponentially if Re < Ree = 81.49
(Joseph and Carmi 1969), the energy stability limit, whereas for Ree � Re < Reg, some
disturbances can transiently grow but then decay (Boberg and Brosa 1988, Bergström 1993,
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Figure 5. Typical slices across R2 travelling waves at Rem = 2000. The arrows indicate the
cross-stream velocities (larger arrows corresponding to larger speeds) and the shading represents
the axial velocity differential away from the laminar flow corresponding to the same mass flux, that
is, w̃ + (1 − Rem/Re)(1 − s2) (dark most negative and light most positive). The same contours
are used throughout to help contrast the different solutions (the shading outside the pipe indicates
0: contours levels range from −0.37 to 0.16 in 12 steps). The lighter islands near the pipe wall
indicate fast streaks whereas the darker regions near the pipe axis represent slow streaks. The
solutions shown in the nomenclature of figure 3 are: 1 (upper left), 2 (upper right), 3 (lower left)
and 6 (lower right) (4 looks like 6 and 5 like 3).

Schmid and Henningson 1994, O’Sullivan and Breuer 1994a, Zikanov 1996). At Re = Reg,
new limit sets in phase space must come into existence to prevent every trajectory ultimately
spiralling down to HPF. The travelling waves found so far are all saddle points in phase
space with low-dimensional unstable manifolds (Faisst and Eckhardt (2003) quote 2 unstable
directions for R2 and 1 for R3 at their saddle node points and the situation is similar for R4,
R5 and R6). These saddles presumably are organizing structures in phase space acting to
attract a flow trajectory from the vicinity of the laminar state but then repelling it away and
ultimately back at least for Re � 2000 so that the global attractor property of HPF is not
disturbed. Put another way, the travelling wave solutions constitute a ‘skeleton’ about which
complicated time-dependent orbits may drape themselves temporarily before falling back to
the laminar state (this is a general idea in chaotic systems which goes back to Ruelle (1978),
Eckmann and Ruelle (1985) and Cvitanović (1988) and has been suggested more recently in
the context of shear flows by Schmiegel and Eckhardt (1997), Eckhardt et al (2002)). However
as Re increases to around 2000, it is natural to speculate that the stable and unstable manifolds



R34 Invited Article

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

Figure 6. As in figure 5 but for R3 travelling waves at Rem = 2000. The contours levels range
from −0.29 to 0.17 in 12 steps and the solutions shown in the nomenclature of figure 4 are: 1 (upper
left), 2 (upper right), 3 (lower left) and 4 (lower right) (5 looks like 1). Solution 3 has only 3-fast
streaks as opposed to the other solutions and solution 2 clearly looks the most dissipative because
of the large shears at the wall.

of these ever increasing number of saddle points start to connect through homoclinic and
heteroclinic bifurcations, and tangle giving rise to horseshoe structures and the concomitant
chaotic complexity that these imply. Moreover, one can expect other periodic orbits to be borne
to further complicate phase space to the extent that at some point an attracting set emerges
other than the laminar state (Kawahara and Kida (2001) have isolated two such states in plane
Couette flow and Toh and Itano (2003) a periodic-like solution in plane Poiseuille flow). The
fact that HPF remains a local attractor in phase space is largely secondary to the fact that its
basin of attraction diminishes rapidly as Re increases. This, taken with the fact that the basin
boundary is undoubtedly complicated in such a high dimensional phase space, explains why
HPF is so sensitive to the size and form of an initial disturbance.

The appearance of a turbulent attractor is however not assured or in fact necessary to
explain all experimental or numerical findings (e.g. Crutchfield and Kaneko (1988)). Pipes,
whether in the laboratory or represented on the computer, are always finite and as a result
long-lived transients can appear in new permanent states if they survive beyond the pipe
end. In fact, Brosa (1989) has suggested that pipe flow turbulence consists only of transients
since all initial conditions eventually relaminarized in his numerical code. In a similar vein,
Faisst and Eckhardt (2004) have recently suggested that a chaotic saddle is formed at least
initially in phase space for transitional Re following that made from similar observations in



Invited Article R35

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1
–1

–0.5

0

0.5

1

Figure 7. As in figure 5 but for R4 travelling waves at Rem = 2000. The contours range from
−0.23 to 0.15 in 12 steps and the solutions shown in the nomenclature of figure 3 are: 1 (upper left),
2 (upper right), 3 (lower left) and 4 (lower right). Due to the increased wall gradients, solutions 2
and 3 are clearly more dissipative than 1 and 4 which both have weaker fast streaks.

other shear flows (Schmiegel and Eckhardt 1997, 2000, Bottin and Chaté 1998, Bottin et al
1998, Faisst and Eckhardt 2000, Eckhardt et al 2002). Transition is then seen as an effectively
statistical phenomenon in which transient lifetimes systematically increase with Re (see Mullin
and Peixinho (2005) for experimental data). Once the probability of a transient surviving
to the end of the pipe becomes measurable or sufficiently large—which presumably means
reproducible in the laboratory—then the transitional Re is nominally reached for that pipe and
environment. The characteristic features of a chaotic saddle are: a sensitive dependence of
trajectory lifetimes on initial conditions (e.g. seen experimentally by Darbyshire and Mullin
(1995)), an exponential distribution of lifetimes for trajectories which start ‘close’ to the chaotic
saddle (seen experimentally by Mullin and Peixinho (2005)), positive Lyapunov exponents in
the chaotic phase and independent variations of Lyapunov exponents and escape rate under
changes in Re. Faisst and Eckhardt (2004) show numerical evidence for all these over the range
1600 � Re � 2250 in a suite of calculations within a short pipe (length 10 radii) across which
periodic boundary conditions are imposed. They find a lifetime divergence for Re ≈ 2250
which they speculate could indicate the transition from a chaotic saddle to a chaotic attractor.

Some fascinating experimental evidence for the relevance of the travelling waves to
transitional pipe flow has now been gathered (Hof et al 2004). Velocity fields measured
instantaneously over a cross-sectional slice of a real transitional pipe flow show the presence
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Figure 8. The friction factor � := 64Re/Re2
m for the R2 and R4 travelling wave surfaces over α

at fixed Rem = 2000. The vertical dashed lines indicate the optimal wavenumbers α∗ (α∗
2 = 1.55

and α∗
4 = 3.23). The horizontal dotted line indicates the laminar friction factor value and the

horizontal dashed line indicates the experimentally measured value at Re = 2000 (from the log-law
parametrization). The numbers indicate the same solutions as in figure 3.
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Figure 9. As in figure 8 but for R3 as far as can be traced. Again the numbered points correspond
to the solutions already shown in figure 4.

of nearly uniformly distributed fast streaks around the pipe wall and areas of slow flow near
the pipe axis in a turbulent puff. This, along with the near m-fold rotational symmetry of the
experimental velocity data, resonates with the features of the Rm-symmetric waves described
above. The clear indication is that at least momentarily the flow trajectory must be getting
‘close’ to the travelling wave saddle point in phase space. The structural correspondence it
must be said is not exact—the data seem always to have a large negative anomaly at the pipe axis
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Figure 10. Isocontours of axial vorticity ω for R2 travelling wave solutions at Rem = 2000.
Two levels are shown at ±60% of max ω (+ light, − dark). The solution on the left is solution
2 (α = 1.615: two wavelengths shown) and on the right solution 3 (α = 0.785: one wavelength
shown). The interlocking of streamwise vorticity is similar to the travelling waves found in plane
Poiseuille flow by Waleffe (2003, figures 15 and 16).

whereas the travelling waves do not (most notably the R6 wave shown in figure 2F of Hof et al
(2004)). This can be explained away by saying that the flow trajectory will transit the vicinity
of the saddle point with varying levels of approach and/or that a slightly different travelling
wave is being visited (different axial wavenumber on perhaps a hitherto unknown Rm solution
branch?). However, invoking these caveats is not entirely satisfactory and these discrepancies
warrant further investigation. Hof et al (2004) also present some preliminary measurements
of the axial coherence of R3- and R4-looking velocity fields in a puff. Interestingly, they find
a 3-fast streak structure over four pipe diameters followed by what looks to be a 6-fast streak
structure over the next two pipe diameters at Rem = 2000: figure 6 indicates that 3-streak and
6-streak R3 travelling wave solutions co-exist at this Rem.

Detailed quantitative comparisons with experimental or DNS data have yet to be carried
out however. In plane Couette and Poiseuille flow, structural comparisons have been made
between the mean and streamwise-fluctuating velocity components of the travelling waves
known there and the statistics of turbulent flows (Jimenéz and Simens 2001, Waleffe 2003).
Even though the travelling waves are strictly ordered in space and time, there is encouraging
correspondence both in the spatial (streamwise and spanwise) scales and the rms values of the
various velocity components. Jimenéz et al (2005) have recently gone further to show that near-
wall turbulence stays ‘close’ to the upper branch travelling wave solutions in between extreme
short-lived visits to other parts of phase space (see also Toh and Itano (2005)). In severely
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Figure 11. Isocontours of axial vorticity ω for R4 travelling wave solutions at Rem = 2000.
Two levels are shown at ±60% of max ω (+ light, − dark). The solution on the left is solution 3
(α = 3.434: four wavelengths shown) and on the right solution 4 (α = 2.376: three wavelengths
shown). The axial scale is purposely the same as figure 10 to aid comparison.

confined geometries at low Re, these transient excursions can be towards the lower branches
of travelling wave solutions (Kawahara and Kida 2001) but this is not so clear at higher Re
or less-constrained flows (Jimenéz et al 2005). Current thinking, plausibly enough, views
the lower branch travelling wave solutions and their stable manifolds as acting as a separatrix
between the basin of attraction of the laminar state and the turbulent domain in phase space
(Itano and Toh 2001, Toh and Itano 2001, Waleffe 2003).

6. Outlook

It should be clear that there are many challenges for the future. Perhaps the first is to confirm
the dynamic importance of the travelling waves in transitional flows. At present, experimental
evidence for their physical relevance is emerging but cannot be yet considered unequivocal.
Furthermore, the signatures of these travelling waves have yet to be reported within DNS
data sets although the search has admittedly only just started. Above and beyond this issue,
there is the question of whether these travelling waves actively structure the flow trajectory in
phase space or are just passive secondary objects visited only occasionally by the flow. The
low-dimensionality of their unstable manifolds would suggest the former ‘active’ scenario
where the flow trajectory is imagined as ‘pinging’ between the travelling waves in phase
space like a ball in a pinball machine. Assuming that the time transiting between the (phase
space) neighbourhoods of the waves is small compared to the time actually spent in these, the
averaged properties of a transitional flow may be well represented by a time-weighted sum of
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Figure 12. Rms velocities (labelled by m value) for typical R2, R3 and R4 waves at Rem = 2000
plotted over the radius s. The most dissipative wave is chosen for each (solution 2 for R2 and

R3, and solution 3 for R4: see figures 8 and 9). vrms(s) :=
√

α/(2π)2
∫ 2π/α

0

∫ 2π

0 |ṽ|2 dz dφ and

wrms(s) :=
√

α/(2π)2
∫ 2π/α

0

∫ 2π

0 |w − Rem/Re(1 − s2)|2 dz dφ so that wrms is the rms of the axial
velocity differential away from the equivalent mass-flux laminar state. All velocities are shown
in units of the mean axial velocity of the flow W . It is clear that as m increases both the fast and
slow streaks move outwards towards the pipe wall. Note also the disparity in the magnitudes of
the streamwise and cross-stream velocities in these waves (the radial velocity is the same order as
the azimuthal velocity component).

the properties associated with the dynamically important travelling wave solutions. Adding
the contributions from the next in the hierarchy of unstable periodic solutions could improve
matters further (Cvitanović 1988). This is certainly an appealing picture but is of course only
speculation in the absence of solid evidence. Support for such a situation is, however, starting
to emerge in plane Couette and plane Poiseuille flow as discussed above.

The gap between the first appearance of travelling wave solutions at Rem = 1251 and
the commonly quoted transitional value of Rem ≈ 2000 suggests that simply the presence of
the travelling waves is far from the whole story. There appears no significant change in the
structure of the waves as Rem increases through the range Rem = 1750–2300 for example,
and this probably extends to their local stability properties too. Undoubtedly, what does
change is the global connections between the stable and unstable manifolds of the various
travelling waves. It is also hard not to imagine other (unstable) periodic orbits being borne
in the meantime and contributing to the phase space complexity which is necessary to sustain
the seemingly ‘disordered’ flow dynamics seen at transition. Verifying these ideas, however,
is a formidable task probably best pursued in more accessible planar shear flows like plane
Couette and plane Poiseuille flow where similar gaps exist. In plane Couette flow, steady
solutions have been found down to Re = 125 (Nagata (1990), or more accurately 127.7
Waleffe (2003)) whereas transition is seen at Re ≈ 320–350 (Lundbladh and Johansson 1991,
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Tillmark and Alfredsson 1992, Daviaud et al 1992, Dauchot and Daviaud 1995, Bottin et al
1998) and travelling waves in plane Poiseuille flow occur down to Re = 997 (Waleffe 2003)
compared to transition at Re ≈ 2100–2300 (Rozhdestvensky and Simakin 1984, Keefe et al
1992).

Understanding how large and in what form disturbances need to be to trigger flow transition
permanently is a continuing challenge. This requires characterizing the boundary of the basin
of attraction of HPF which, given the high-dimensionality of transitional flow dynamics, seems
inevitably a complicated multi-dimensional object. Uncertainty in setting up initial conditions
near this in an experiment would explain the apparent stochasticity associated with transition
observed in the laboratory. Whether knowledge of the travelling waves ‘nearest’ to HPF in
phase space and their stable manifolds can help remains to be seen. It may, in fact, be better to
try to understand the process of relaminarization (as Re decreases) instead, which is probably
a more robust and reproducible phenomenon than transition (as Re increases). This change of
approach has certainly paid dividends in DNS studies and seems ripe for exploitation in the
laboratory.

Finally, given that the most frequently quoted practical reason for studying transition to
turbulence is to try to delay or even prevent it, can the discovery of travelling waves in pipe
flow help? Implicit in much of the above discussion is the thinking that the emergence of
the travelling waves is a necessary precursor (as Re increases) to transition. This suggests
concentrating on delaying their emergence or ideally eliminating them completely to control
the flow. This is perhaps the most daunting of all the outstanding challenges outlined above.

Acknowledgments

The author is very grateful to Bruno Eckhardt, Tom Mullin and Fabian Waleffe for providing
valuable comments on earlier drafts of this paper.

References

Artuso R, Aurell E and Cvitanovic P 1990a Recycling of strange sets: I. cycle expansions Nonlinearity 3 325
Artuso R, Aurell E and Cvitanovic P 1990b Recycling of strange sets: II. applications Nonlinearity 3 361
Baggett J S and Trefethen L N 1997 Low-dimensional models of subcritical transition to turbulence Phys. Fluids

9 1043
Barenghi C F 2004 Turbulent transition for fluids Phys. World 17 17
Barnes D R and Kerswell R R 2000 New results in rotating Hagen–Poiseuille flow J. Fluid Mech. 417 103
Benney D J 1961 A non-linear theory of oscillations in a parallel flow J. Fluid Mech. 10 209
Benney D J 1964 Finite amplitude effects in an unstable laminar boundary layer Phys. Fluids 7 319
Benney D J and Bergeron R F 1969 A new class of nonlinear waves in parallel flows Stud. Appl. Math. 48 181
Benney D J and Gustavsson L H 1981 A new mechanism for linear and nonlinear hydrodynamic instability

Stud. Appl. Math. 64 185
Bergström L 1992 Initial algebraic of small disturbances in pipe Poiseuille flow Stud. Appl. Math. 87 61
Bergström L 1993 Optimal growth of small disturbances in pipe Poiseuille flow Phys. Fluids 5 2710
Binnie A M and Fowler J S 1947 A study by a double refraction method of the development of turbulence in a long

cylindrical tube Proc. R. Soc. Lond. A 192 32
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Cvitanović P 1988 Invariant measurement of strange sets in terms of cycles Phys. Rev. Lett. 61 2729
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Prandtl L 1927 Über den Reibungswiderstand strömender Luft Ergebnisse AVA Göttingen 3 1–5
Priymak V G and Miyazaki T 1998 Accurate Navier–Stokes investigation of transitional and turbulent flows in

a circular pipe J. Comput. Phys. 142 370
Priymak V G and Miyazaki T 2004 Direct numerical simulation of equilibrium spatially localized structures in pipe

flow Phys. Fluids 16 4221
Lord Rayleigh 1892 On the question of stability of the flow of fluids Phil. Mag. 34 59
Reddy S C and Hennyson D S 1993 Energy growth in viscous channel flows J. Fluid Mech. 252 209
Reddy S C, Schmid P J, Baggett J S and Henningson D S 1998 On stability of streamwise streaks and transition

thresholds in plane channel flows J. Fluid Mech. 365 269
Reshotko E and Tumin A 1999 Spatial theory of transient growth in a circular pipe flow Bull. Am. Phys. Soc. 44 72
Reuter J and Rempfer D 2004 Analysis of pipe flow transition. Part 1. Direct numerical simulation Theor. Comput.

Fluid Dyn. 17 273
Reynolds O 1883 An experimental investigation of the circumstances which determine whether the motion of water

shall be direct or sinuous, and of the law of resistance in parallel channels Proc. R. Soc. Lond. 35 84
Rouse H and Ince S 1957 History of Hydraulics Iowa Institute of Hydraulic Research
Rozhdestvensky B L and Simakin I N 1984 Secondary flows in a plane channel: their relationship and comparison

with turbulent flows J. Fluid Mech. 147 261
Rubin Y, Wygnanski I J and Haritonidis J H 1980 Further observations on transition in a pipe Proc. IUTAM Symp. on

Laminar-Turbulent Transition (Stuttgart, FRG 1979) ed R Eppler and F Hussein (Berlin: Springer) pp 19–26
Ruelle D 1978 Statistical Mechanics, Thermodynamics Formalism (Reading, MA: Addison-Wesley)
Salwen H and Grosch C E 1972 The stability of Poiseuille flow in a pipe of circular cross-section J. Fluid Mech. 54 93
Salwen H, Cotten F W and Grosch C E 1980 Linear stability of Poiseuille flow in a circular pipe J. Fluid Mech.

98 273
Schlichting H 1968 Boundary-Layer Theory (New York: McGraw-Hill)
Schmid P J and Henningson D S 1994 Optimal energy density growth in Hagen–Poiseuille flow J. Fluid Mech.

277 197
Schmiegel A and Eckhardt E 1997 Fractal stability border in plane Couette flow Phys. Rev. Lett. 79 5250
Schmiegel A and Eckhardt E 2000 Persistent turbulence in annealed plane Couette flow Europhys. Lett. 51 395
Sexl T 1927 Zur stabilitatsfrage der Poiseuilleschen und Couetteschen stromung Ann. Phys., Lpz. 83 835
Shan H, Ma B, Zhang Z and Nieuwstadt F T M 1999 Direct numerical simulation of a puff and a slug in transitional

cylindrical pipe flow J. Fluid Mech. 387 39
Smith F T and Bodonyi R J 1982 Amplitude-dependent neutral modes in the Hagen–Poiseuille flow through a circular

pipe Proc. R. Soc. Lond. A 384 463
Stuart J T 1965 The production of intense shear layers by vortex stretching and convection NATO AGARD Report

No 514 1
Sutera S P and Skalak R 1993 The history of Poiseuille’s law Ann. Rev. Fluid Mech. 25 1
Swanson C J, Julian B, Ihas G G and Donnelly R J 2002 Pipe flow measurements over a wide range of Reynolds

numbers using liquid helium and various gases J. Fluid Mech. 461 51
Tillmark N and Alfredsson P H 1992 Experiments on transition in plane Couette flow J. Fluid Mech. 235 89
Toh S and Itano T 2001 On the regeneration mechanism of turbulence in channel flow Proc. IUTAM Symp. on Geometry

and Statistics of Turbulence ed T Kambe et al (Dordrecht: Kluwer) p 305
Toh S and Itano T 2003 A periodic-like solution in channel flow J. Fluid Mech. 481 67
Toh S and Itano T 2005 Interaction between a large-scale structure and near-wall structures in channel flow

J. Fluid Mech. 524 249
Toplosky N and Akylas T R 1988 Nonlinear spiral waves in rotating pipe flow J. Fluid Mech. 190 39
Trefethen L N, Trefethen A E, Reddy S C and Driscoll T A 1993 Hydrodynamic stability without eigenvalues Science

261 578
Tumin A 1996 Receptivity of pipe Poiseuille flow J. Fluid Mech. 315 119



R44 Invited Article

Waleffe F, Kim J and Hamilton J 1993 On the origin of streaks in turbulent shear flows Turbulent Shear Flows 8:
Selected Papers from the 8th Int. Symp. on Turbulent Shear Flows (Munich, 9–11 September 1991) ed F Durst
et al (Berlin: Springer) pp 37–49

Waleffe F 1995a Transition in shear flows: nonlinear normality versus non-normal linearity Phys. Fluids 7 3060
Waleffe F 1995b Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process Stud. Appl.

Math. 95 319
Waleffe F 1997 On a self-sustaining process in shear flows Phys. Fluids 9 883
Waleffe F 1998 Three-dimensional coherent states in plane shear flows Phys. Rev. Lett. 81 4140
Waleffe F 2001 Exact coherent structures in channel flow J. Fluid Mech. 435 93
Waleffe F 2003 Homotopy of exact coherent structures in plane shear flows Phys. Fluids 15 1517–34
Waleffe F 2004 Private communication
Walton A G 2002 The temporal evolution of neutral modes in impulsively started flow through a circular pipe and

their connection to the nonlinear stability of Hagen–Poiseuille flow J. Fluid Mech. 457 339
Wedin H 2004 Nonlinear solutions to pipe flow PhD Thesis University of Bristol
Wedin H and Kerswell R R 2004 Exact coherent structures in pipe flow: travelling wave solutions J. Fluid Mech.

508 333
Wygnanski I J and Champagne F H 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in

a turbulent slug J. Fluid Mech. 59 281
Wygnanski I J, Sokolov M and Friedman D 1975 On transition in a pipe. Part 2. The equilibrium puff J. Fluid Mech.

69 283
Zagarola M V and Smits A J 1998 Mean-flow scaling of turbulent pipe flow J. Fluid Mech. 373 33
Zikanov O Y 1996 On the instability of pipe Poiseuille flow Phys. Fluids 8 2923


	1. Introduction
	2. Notation
	3. Background
	3.1. Experimental work
	3.2. Theoretical work

	4. Travelling waves in pipe flow
	4.1. Exact solutions via continuation

	5. Significance of the travelling waves
	6. Outlook
	 Acknowledgments
	 References

