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Hairpin Vortex Solution in Planar Couette Flow: A Tapestry of Knotted Vortices
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A numerical continuation method has been carried out seeking solutions for two distinct flow
configurations, planar Couette flow (PCF) and laterally heated flow in a vertical slot (LHF). We found
that the spanwise vortex solution in LHF identifies a new solution in PCF. The vortical structure of our
new solution has the shape of a hairpin observed ubiquitously in high-Reynolds-number turbulent flow,
and we believe this discovery may provide the paradigm for a hierarchical organization of coherent

structures in turbulent shear layers.
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An influential study on the vortex organization in the
turbulent boundary layers was recently performed by Perry
& Marusic [1]. The essential finding of their study was that
in the attached eddy hypothesis, in order to obtain the
correct quantitative results for all components of the
Reynolds stresses, two types of eddies are necessary, the
“wall structure” (near-wall vortex structure attached to the
wall) and the “wake structure” (vortex structure not ex-
tending to the wall). If both types are taken into account,
then their theory, with data from equilibrium and quasi-
equilibrium flows, can predict turbulent Reynolds stresses
correctly.

Planar Couette flow (PCF) is a prototype of canonical
wall-bounded shear flows, where the qualitative aspects of
the fundamental structures of turbulent shear flows are
tested. In PCF, a “wall structure’ was first identified in
Ref. [2] (see also Refs. [3—5]) as the nontrivial equilibrium
state containing the streamwise vortices with spanwise
wavy modulation. Moreover, the recent discovery [6] of
periodic solutions rooted at the equilibrium state of PCF
has stimulated many researchers [7,8] to attempt to illumi-
nate the relevance of equilibrium states in the transition
from laminar to the early stages of turbulence in this
prototype flow. These equilibrium states were obtained
within the framework that, before tackling a high-
Reynolds-number turbulent regime, the understanding of
the sustaining process in turbulent shear flows at relatively
low Reynolds values should be undertaken.

At higher Reynolds numbers, another predominant
structure is the hairpin vortex (horse-shoe, A- or
()-shaped, attached vortex loops), which is observed to
be ubiquitous in the region away from the near-wall both
experimentally and numerically (for recent summary, see
Ref. [9]). This structure was first envisaged by Theodorsen
[10] as a “‘wake structure” in the boundary layer. In spite
of a number of attempts since his proposition, the equilib-
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rium state that corresponds to such a hairpin has never been
identified so far. There is, therefore, still a controversy
about the distinction between streamwise and hairpin vor-
tices. In this Letter, we propose a way of isolating the
steady hairpin vortex state in PCF by tracing a homotopy
parameter. As a byproduct of our analysis, it is found that
the streamwise vortex bifurcates from the hairpin vortex
via a symmetry breaking in the homotopy parameter space.

In order to identify the hairpin vortex solution in PCF,
we first consider an incompressible Boussinesq fluid with
Pr = 0 filling a vertical slot of thickness 2/ (see Fig. 1).
The boundaries of the gap are two rigid parallel planes of
infinite extent heated laterally with temperatures 7, = AT,
and which move relative to each other with speed 2AU in
the x-direction of the Cartesian coordinate system of Fig. 1.
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FIG. 1. Schematic view of the fluid flow in a vertical slot
between laterally heated boundaries moving in the opposite
directions.
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Here, T, is the reference temperature. The governing
equations for the perturbation, u, from the laminar state
of our system may be nondimensionalized uniquely in
terms of two parameters, Re = (A + AU)h/P and € =
A/(A + AU), where A = 33 ATh?/6p. Here, %, 7, and
g are the coefficient of thermal expansion and kinetic
viscosity at T, and acceleration due to gravity, respec-
tively . We impose the nonslip condition on the rigid
boundaries, so u(x,y,z= *1) = =(1 — €)e,. The pa-
rameter € plays an important role in our analysis, and we
note here that solutions obtained with € = 0 are exact
states of PCF and that those with € = 1 are exact states
of laterally heated flow in a vertical slot (LHF).

Among the various solutions that our system might
exhibit, those that are periodic in the streamwise and
spanwise directions with wavelengths L, and L,, respec-
tively, are of particular interest in the present study. In
order to search for such standing wave solutions, we set
d, =0 and we expand the unknown variables u that
uniquely determine the nature of the unknown solutions
in terms of infinite Fourier—(modified) Chebyshev series
satisfying the boundary conditions. A truncation scheme to
the infinite set of coefficients was established so that a
solution can be effectively derived. Taking into account the
imposed symmetries (detailed later) as well as the continu-
ity equation, we can deduce from a Galerkin-type projec-
tion quadratic equations for the reduced (truncated)
independent set of coefficients of the series, which are
subsequently determined with the aid of the iterative
Newton-Raphson method.

The sequential bifurcation steps in LHF (e = 1) have
received some attention over the last three decades (for
example, see Refs. [11,12]). We briefly outline here the
transition from the laminar state to the early stages of
turbulence in LHF in order to aid our later discussion of
the hairpin vortex structure for the PCF. Because of the fact
that the basic flow in LHF possesses an inflection point, we
expect the laminar flow to lose its stability with respect to
infinitesimal disturbances although the Rayleigh criteria
are applicable to the inviscid case in the strict sense. In this
sequence, the laminar state first loses its stability to stream-
wise disturbances with wave number, 27/L, = a =
1.345, at Re = 82.6 due to Squire’s theorem.

This instability initiates the supercritical bifurcation
from the laminar state of the two-dimensional spanwise
vortical structure (2DSV). Following a generic breakdown
mechanism of two-dimensional elliptical flows [13], fur-
ther increase of Re produces three-dimensional instabil-
ities for the 2DSV in several ways, but the most preferred
instability is caused by a three-dimensional subharmonic
perturbation. The tertiary state that evolves naturally due to
this instability consists of weakly oblique (in the x-y plane)
spanwise vortical knots. This state satisfies the following
three independent symmetries: Symmetry (A) Stream-
wise translational and spanwise reflectional symmetry,

Ly, uy, u 1" (x, , 2) = [y —uy, u ] (6 + Ly/2, =, 2).
Symmetry (B) Parity symmetry with respect to (x,y,z) =
(L,/4,L,/4,0), [ug uy u " (L,/4 + x Ly/4 + y,2) =
[—uy —uy, —u " (L,/4 — x, Ly/4 — y, —z). Symme-
try (C) Parity symmetry with respect to the origin,
[ty u )"y, 2) = (= —uy, —u ] (=x, =y, —2).

Using the states obtained at € = 1 as seeds, we have
investigated the behavior of these states as e changes from
pure LHF (e = 1) to pure PCF (e = 0) by exploiting the
homotopy. One might expect that the 2DSV that bifurcates
from the laminar state with € = 1 intersects the € = 0
plane for larger Re, even if the laminar state of PCF
contains no inflection point. However, our investigations
show that the bifurcation curve for 2DSV acquires a turning
point as € decreases and does not reach the pure PCF limit
(with € = 0). This result seems to be consistent with a
conclusion from recent quests for two-dimensional states
in PCF [14,15]. On the other hand, the aforementioned
tertiary branch in LHF with € = 1 intersects the € = 0
plane. This new state in PCF (e = 0) has never been
identified before.

In Fig. 2, the mean shear rate at the boundary, 7, is
adopted as an order parameter to characterize the states
in PCF (e = 0). Our new state, which is termed as HVS
(hairpin vortex state) in the figure, has a turning point at
Re = 174, and the lower branch is likely to asymptote to
the laminar state. It exists even at Re = 139 for the stream-
wise and spanwise wave numbers (a, B8) = (0.75, 1.37).
For better comparison, we additionally plotted another
state in PCF (we used the acronym “NBW” formed from
Nagata, Busse, and Waleffe), which was found in previous
studies [2-5]. According to Waleffe [5], the critical
Reynolds number of NBW is Re, = 127.705 at (a, B) =
(0.577, 1.150).

We depict the new state in Figs. 3(a)-3(c), whereas
NBW is given in Figs. 3(d)-3(f). The hairpin structure
depicted as a bundle of vortex lines is observed ubiqui-
tously in turbulent shear flows. As seen in the figures, the
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FIG. 2. Bifurcation diagram of PCF (e = 0) at («, 8) = (1, 2)
in Re-7 plane.
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(a), (b), (c) The x-y, x-z, and y-z projections of the new state (upper branch) at Re = 200 in PCF. Yellow curves are

vortex lines across the channel midplane (visualized over B, but not over B,), underneath which there are low-speed structures

1

visualized as isosurfaces of u, = —0.1 and —0.4, colored by cyan [z = % for the peaks of (B, B,)] and blue [z = — 5 for (§}, $5)],
respectively. (d), (e), (f) Correspond to the same projections but for the upper branch of the NBW state. The vortex lines are integrated
from the equivalent points located at |z| = 0.8 for both HVS and NBW.

most distinct difference between the new state described in
this note and NBW is in their symmetry. The spanwise
reflection symmetry with respect to y = Ly/4 (or y =
3L,/4) [16] is satisfied by the former but not by the latter.
NBW satisfies only two symmetries, A and B, so that the
spanwise reflection symmetry has been broken. This more-
over implies that NBW bifurcates from the LHF tertiary
state via the symmetry breaking in the Re-€e plane, which
was confirmed numerically in the present study, to take
place, for example, at Re =180 for (a, B) = (1, 2),
amongst various other values. In other words, NBW is
the quaternary branch, while our state is the tertiary branch
in the bifurcation sequence for the laminar state. Note that
NBW may exist at lower Re in PCF than our state does (see
Fig. 2) because the bifurcation occurs at € # 0.

We now turn our attention to the structural flow pattern
of the new state and its association to Theodorsen’s wake
structure of Ref. [10]. The localized vorticity lifts up the
low-speed momentum fluid near the boundary (z = —1) so
as to form low-speed regions, as if a tapestry of knots is
intertwined with vortex lines. In NBW, such low-speed
regions are formed only under where vortex lines elevate
in y-z plane, as indicated as S in Fig. 3(f). The elevation is
produced by streamwise vorticity localized besides the
low-speed region, but the three-dimensionality of the re-
gion is relatively weak in NBW [Figs. 3(d) and 3(e)], so
that this region has been often referred to as wall streak
[17] (streaky pattern aligned in x direction). Compared to
NBW, the new state is intrinsically more complicated in

spite of more symmetry restrictions and consists of double
structures of low-speed regions [Fig. 3(a)-3(c)]. One of
them, which exists closer to the boundary than the other, is
indicated by (S, S,) and is visualized as bulges of u, =
—0.4 (blue) isosurface. The structure is streaky and similar
to that appearing in NBW. The other visualized by u, =
—0.1 (cyan) isosurface, which exists across the midplane
of the channel, is knotted rather than streaky, and shows a
staggered pattern of intertwined knots of low-speed regions
in the x-y plane (the bulges observed at B; and B,). The
former (S;, §S,) is attributed to the near-wall vortex line
with two hairpin kinks (described by a red curve in the
figures), while the latter (B, B,) is related to the bundle of
(yellow) vortex lines with a single hairpin kink.

While HVS is kept static, as its monotonic predecessor
in LHF, under the dynamical interaction between upper
and lower boundaries, vortex lines (material line elements)
are advected by the flow. Following the upflow from the
boundary, the near-wall vortex line with two hairpin kinks
may develop into a vortex line with a single hairpin kink
over the channel midplane. Such a growth of the number of
hairpin kinks with distance from the boundary was sug-
gested in Ref. [9] as a possible vortex reconnection event,
where the legs of multiple hairpins near the boundary
realign and connect so as to form a wider hairpin. The
double structural flow pattern in the new state would
account for the fact that the mean shear rate of the upper
branch of the new state is larger than that of NBW (see
Fig. 2). This fact is also reflected in the several subtle
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FIG. 4. Mean velocity profile of NBW and the new state (HVS)
in PCF at Re = 200.

inflection points seen in the mean velocity profile for the
upper branch of the HVS (Fig. 4). The knots of the hairpin
structure are responsible for the higher stress value and
would account for the predominance of the HVS at higher
Reynolds numbers.

The spatial allocation of hairpin vortices and low-speed
bulges on the x-y projection [Fig. 3(a)] is even reminiscent
of the peak-valley pattern of A-shaped vortices staggered
in the “Herbert style,” which was observed in experiments
of turbulent transition in boundary layers [18]. The pre-
vious theoretical quests for three-dimensional nonequilib-
rium state in the transition stages were mostly based on the
linear or weak-nonlinear analysis of the two-dimensional
state under the Floquet assumption. Thus, attention has
always been focused on the search for a nonlinear two-
dimensional equilibrium state in PCF that would pro-
vide the route for identifying a new, alternative, three-
dimensional state in PCF. Strictly two-dimensional steady
solutions of PCF, for example, were the subject of inves-
tigation in Refs. [14,15], where the authors reported that
they were unable to obtain such solutions, albeit limited in
their simulative efforts by the necessary grid representation
of the wall normal coordinate.

We may describe the results of previous literature and
discuss our results in relation to them as follows. It has
been established both numerically and experimentally that
hairpin vortices, or stretched vortex loops or vortex pairs,
are a major constituent of the turbulent shear flows for a
wide range of Reynolds numbers. Furthermore, it appears
that these hairpin vortices are a structure with a substantial
presence over the entire region of the channel for the
Reynolds number values examined. It has been remarked
in the literature that a wide variation in the spanwise scales
of hairpins might be expected in the wall region although it

is not clear how these vortices would reconnect and pro-
duce the long streaks apparent in the turbulent regime [19].

Here, instead of attempting to establish a homotopy
between a noninflectional flow and Couette flow, we chose
to include a shear flow with an inflection point in order to
establish a route via which a new solution to the Couette
flow can be found. Although the obtained state is the more
primitive branch from which the equilibrium state previ-
ously obtained in PCF is bifurcated, it has a richer vortex
structure and may even provide an exact expression for an
equilibrium state of a possible vortex reconnection event in
the near-wall region. The present results may shed some
light on the historical debate concerning the roles of
streamwise and hairpin vortices in turbulent flow.
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