A Mathematical Example Displaying

Features of Turbulence
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Introduction

Before entering upon the study of the example in question we want to
make some introductory remarks about the actual hydrodynamic problems, in
particular, about what is known and what is conjectured concerning the future
behavior of the solutions. Consider an incompressible and homogeneous viscous
fluid within given material boundaries under given exterior forces. The boundary
conditions and the outside forces are assumed to be stationary, i.e. independent
of time. For that, it is not necessary that the walls be at rest themselves.
Parts of the material walls may move in a stationary movement provided that
the geometrical boundary as a whole stays at rest. An instance is a fluid
between two concentric cylinders rotating with prescribed constant velocities or
a fluid between two parallel planes which are translated within themselves with
given constant velocities. As to the stationarity of the exterior forces we may
cite the case of a flow through an infinitely long pipe with a pressure drop
(regarded as an outside force). In this case the pressure drop is required to
be a given constant independent of time.

‘Each motion of the fluid that is theoretically possible under these conditions
satisfies the Navier-Stokes equations (p = 1)
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and the given stationary boundary conditions. To an arbitrarily prescribed
initial velocity field u(z, 0) satisfying (0.2) and the boundary conditions there
is expected to belong a unique solution u(z, t; u) (t > 0) of (0.1) and (0.2) that
fulfills these boundary conditions. The pressure p(z, t; ») may be considered
as an auxiliary variable which, at every moment ¢ is (up to an additive constant)
perfectly well determined by the instantaneous velocity field u(z, t) (solution
of a Neumann problem of potential theory). If p is eliminated in this manner
the Navier-Stokes equations appear in the form of an integrodifferential space-
time system for the u; alone where the right hand sides consist of first and
second degree terms in the u, .
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It is convenient to visualize the solutions in the phase space @ of the
problem. A phase or state of the fluid is a vector field u(z) in the fluid space
that satisfies (0.2) and the boundary conditions. The totality Q of these phases
is therefore a functional space with infinitely many dimensions. A flow of the
fluid represents a point motion in £ and the totality of these phase motions
forms a stationary flow in the phase space @, which, of ¢ourse, is to be dis-
tinguished from the fluid flow itself. What is the asymptotic future behavior
of the solutions, how does the phase flow behave for ¢t - «? And how does
this behavior change as u decreases more and more? How do the solutions which
represent the observed turbulent motions fit into the phase picture? The great
mathematical difficulties of these important problems are well known and at
present the way to a successful attack on them seems hopelessly barred. There
is no doubt, however, that many characteristic features of the hydrodynamical
phase flow occur in a much larger class of similar problems governed by non-
linear space-time systems. In order to gain insight into the nature of hydro-
dynamical phase flows we are, at present, forced to find and to treat simplified
examples within that class. The study of such models has been originated by
J. M. Burgers in a well known memoir." His principal example is essentially
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where 0 < z < 1 and where the boundary conditions are v = w = 0atz = 0
and = 1. Though simpler in form than the hydrodynamic equations this
example presents essentially the same difficulties and the future behavior of
the solutions for small values of u still is an unsolved problem.

In this paper another nonlinear example is presented and studied that
differs from Burgers’ model in that the future behavior of its solutions can be
completely determined. In this respect our example seéms to us to be the first
of its kind. The detailed study of this space-time system reveals geometrical
features of the phase flow which come close to the qualitative picture we believe
to prevail in the hydrodynamic cases. It must, however, be said that, for
reasons to appear later in the paper, the analogy does not extend to the quanti-
tative relations found to hold in turbulent fluid flow.

The observational facts about hydrodynamic flow reduced to the case
of fixed side conditions and with u as the only variable parameter are essentially
these: For u sufficiently large, » > uo , the only flow observed in the long run
is a stationary one (laminar flow). This flow is stable against arbitrary initial

1J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of
turbulent fluid motion. Akademie van Wetenschappen, Amsterdam, Eerste Sectie, Deel XVII,
No. 2, pp. 1-53, 1939.
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disturbances. Theoretically, the corresponding exact solution is known to
exist for every value of 4 > 0 and its stability in the large can be rigorously
proved, though only for sufficiently large values of u. The corresponding phase
flow in phase space @ thus possesses an extremely simple structure. The laminar
solution represents a single point in € invariant under the phase flow. For
B > po , every phase motion tends, as ¢ — o, toward this laminar point. For
sufficiently small values of u, however, the laminar solution is never observed.
The turbulent flow observed instead displays a complicated pattern of ap-
parently irregularly moving “eddies” of varying sizes. The view widely held
at present is that, for g >0 having a fixed value, there is a ‘‘smallest size’
of eddies present in the fluid depending on x and tending to zero as u — 0.
Thus, macroscopically, the flow has the appearance of an intricate chance
movement whereas, if observed with sufficient magnifying power, the regularity
of the flow would never be doubted.

The qualitative mathematical picture which the author conjectures to
correspond to the known facts about hydrodynamic flow is this: To the flows
observed in the long run after the influence of the initial conditions has died
down there correspond certain solutions of the Navier-Stokes equations. These
solutions constitute a certain manifold M = M(x) in phase space invariant
under the phase flow. Presumably owing to viscosity It has a finite number
N = N(u) of dimensions. This effect of viscosity is most evident in the simplest
case of u sufficiently large. In this case I is simply a single point, N = 0.
Also the complete stability of I is in this simplest case obviously due to vis-
cosity. On the other hand, for smaller and smaller values of u, the increasing
chance character of the observed flow suggests that N(u) — « monotonically
as p — 0. This can happen only if at certain “critical” values
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the number N(u) jumps. The manifold 9M(u) itself presumably changes
analytically as long as no critical value is passed. Now we believe that when
u decreases through such a value u, a continuous branching phenomenon
occurs. The manifold M(u) of motions observed in the long run (more pre-
cisely its analytical continuation for p < u) loses its stability. The notion
of stability here refers to the whole manifold and not to the single motions
contained in it. The loss of stability implies that the motions on the analytically
continued M are no longer observed. What we observe after passing u, is not
the analytical continuation of the previous It but a new manifold M(x) con-
tinuously branching away from MM (x,) and slightly swelling in a new dimension.
This new (x) takes over stability from the old one. Stability here means
that the “majority”’ of phase motions tends for ¢t — toward M(s). We must
expect that there is a “minority” of exceptional motions that do not converge
toward I (for instance the motions on the analytical continuation of the old
M and of all the other manifolds left over from all the previous branchings).
The simplest case of such a bifurcation with corresponding change of stability
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is the branching of a periodic motion from a stationary one. This case is
clearly observed in the flow around an obstacle (transition from the laminar
flow to a periodic one with periodic discharges of eddies from the boundary).
The next simplest case is the branching of a one-parameter family of almost
periodic solutions from a periodic one. The new solutions are expressed by
functions
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periodic in each ¢ with period 2= where
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and where the c; are arbitrary constants (we can without loss of generality assume
¢, = 0). The functions f with ¢, arbitrary describe the manifold M(u) which,
in our case, is of the type of a torus. If 9%, quite generally, continuously de-
velops out of the laminar point there is a reasonable expectation that It is a
multidimensional torus-manifold described by functions
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with period 2 in each of the ¢ and that the turbulent solutions are given by
linear functions ¢; = a.(u)t + c; as before. This is what happens in our example
which precisely exhibits this phenomenon of continuous growth of almost
periodio solutions out of the laminar one with an infinite succession of branchings
of the type described above.

The geometrical picture of the phase flow is, however, not the most im-
portant problem of the theory of turbulence. Of greater importance is the
determination of the probability distributions associated with the phase flow,
particularly of their asymptotic limiting forms for small x. In the case of our
example these distributions have limiting forms (normal distribution). Recent
investigations, however, suggest that there are essential deviations from nor-
mality in the hydrodynamic case. It seems that the influence of the second
degree terms is in this case essentially different and much more complicated
than in the case of our over-simplified model.

Another observation on our model case is this: If we proceed to the limit
u — 0 within the “observed,” i.e. the turbulent solutions the turbulent fluctua-
tions are found to disappear and we obtain a special stationary solution in the
“ideal case” (equations with 4 = 0). This shows, by way of analogy, how
important a role viscosity plays in turbulence.

Formulation of the Problem

The space of our model is a one-dimensional circular line and our space
variable is an angular variable x mod 2x. All space functions are thus periodic
functions of z with period 2x. For two arbitrary space functions f, g we denote



