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We model turbulent plane Couette flow in the Minimal Flow Unit — a domain whose
spanwise and streamwise extent is just sufficient to maintain turbulence — by expanding
the velocity field as a sum of optimal modes calculated via proper orthogonal decom-
position from numerical data. Ordinary differential equations are obtained by Galerkin
projection of the Navier-Stokes equations onto these modes. We first consider a 6 mode
(11-dimensional) model and study the effects of including losses to neglected modes. Ig-
noring these, the model reproduces turbulent statistics acceptably, but fails to reproduce
dynamics; including them, we find a stable periodic orbit that captures the regeneration
cycle dynamics and agrees well with direct numerical simulations. This model, however,
fails to reproduce stability of the laminar state, or account for bifurcation to turbulent
states as Reynolds number increases. To address these failures, we develop a second class
of models based on “uncoupled” eigenfunctions that allow independence among stream-
wise and cross-stream velocity components. A 9 mode (31-dimensional) model produces
bifurcation diagrams for steady and periodic states in qualitative agreement with numer-
ical Navier-Stokes solutions, while preserving the regeneration cycle dynamics. Together,
the models provide empirical evidence that the “backbone” for Minimal Flow Unit turbu-
lence is a periodic orbit, and support the roll-streak-breakdown-roll reformation picture
of shear-driven turbulence.

1. Introduction

In this paper we continue a study of low-dimensional models of plane Couette flow
begun in Moehlis et al. (2002). That paper and the present one takes up earlier work
begun by Aubry et al. (1988); Sanghi & Aubry (1993), cf. Berkooz et al. (1991); Podvin
& Lumley (1998); Podvin (2001), on near-wall turbulence, in which the proper orthog-
onal or Karhumen-Loeéve decomposition (POD), first suggested for use in turbulence
by Lumley (1971), is used to construct optimal bases in the sense that truncations at a
given order maximally capture kinetic energy on average. The Navier-Stokes equations
are (Galerkin) projected onto low-dimensional subspaces spanned by dominant subsets
of modes, yielding (relatively) tractable sets of ordinary differential equations (ODEs) for
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FIGURE 1. Geometry of plane Couette flow (PCF).

the modal amplitudes. The ODEs may then be studied to reveal interactions among co-
herent structures that, hopefully, form the “backbones” of turbulence. A general account
of the strategy, and relevant background information, is given in Holmes et al. (1996). In
the present paper we address perhaps the simplest turbulent flow, using it to assess the
strengths and weaknesses of the low dimensional paradigm.

We consider plane Couette flow in the Minimal Flow Unit (MFU). Here minimality
refers to the spanwise and streamwise extents of the spatial domain, which are reduced
(in numerical simulations) until turbulence with reasonable statistics is just sustainable.
By constraining the flow to a domain that supports only one or two coherent structures,
one hopes that the dynamical interactions that sustain turbulence will be sufficiently
simplified that better understanding of physical mechanisms will result. Jiminez & Moin
(1991) pioneered the idea for turbulent channel flow, and Hamilton et al. (1995) sub-
sequently applied it to plane Couette flow. We shall draw heavily on the latter paper,
hereafter referred to as HKW, in the comparative studies to follow.

In plane Couette flow (PCF), fluid is sheared between two infinite parallel plates mov-
ing at speed Uy, in opposite directions e, ; see Fig. 1. The streamwise, wall-normal, and
spanwise directions are respectively x, y, and z. We nondimensionalize lengths in units
of d/2 where d is the gap between the plates, velocities in units of Up, time in units of
(d/2)/Uy, and pressure in units of UZp where p is the fluid density. Laminar flow is then
given by Ug = ye;, —1 < y < 1 and the Reynolds number is Re = %, where v is the
kinematic viscosity. Writing u = (u1, u2,u3), x = (,y, z), the evolution equation for the
perturbation (u(x,t),p(x,t)) to laminar flow becomes

%u: —(u-V)u—y%u—uQew -Vp+ %Vzu. (1.1)
The fluid is assumed to be incompressible, i.e.,
V-u=0, (1.2)
with no-slip boundary conditions at the plates, i.e.,
uly=11 =0, (1.3)

and periodicity in the streamwise and spanwise directions, with lengths L, = 1.757
and L, = 1.27, respectively, corresponding to the MFU; see HKW. Our POD bases
or empirical eigenfunctions will be derived from a direct numerical simulation (DNS)
database computed at Re = 400. In Moehlis et al. (2002) we took the moderate aspect
ratio domain L, = 4x, L, = 27, also at Re = 400.

Eqns. (1.1-1.3) are equivariant with respect to the following symmetries (Schmiegel
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(1999)):
P - [(u1,u2,us, p)(@,9, 2, )] = (—u1, —u2, —us, p)(—T, —y, —2,1) (1.4)
R- [(’LL , U2,U3,P )(.CE Y,z, t)] (’LL Uz,—U3,p)(.'IS',y,—Z,t) (15)
RP - [(u , U2,U3,pP )("E Y,z t)] ( ul,—ug,u3,p)(—w,—y,z,t) (16)
TAz,Az ) [(u17u27u37 )(.’E Y,z, t)] (u1;u27u3a )(.’E + Aw,y,z + Az7t)' (17)

Thus, if u(x,t) solves (1.1), the solution obtained by acting on u(x,t) with any product
of the actions given in equations (1.4-1.7) also solves it: e.g., if

(ul(xayazat)au2(xayazat)au3(xayazat)ap(xayazat))

solves (1.1), then so does

(ul(a:, —y,z,t), _UQ(ma —y,z,t),ﬂg(.’ll’, _y,Z,t),p(fL', —y,Z,t))-

Physically, P is a point reflection about (z,y,2) = (0,0,0), R is a reflection about
the plane z = 0, RP is a rotation by = about the z-axis, and Tas A, is a translation
by Az in the streamwise direction and by Az in the spanwise direction. As described
in Moehlis et al. (2002), P and R generate a four element group isomorphic to the
abstract group D» (see, e.g., Lomont (1993)), and altogether, with the continuous trans-
lations (1.7), the governing equations are equivariant with respect to the direct product
0(2) x O(2). In the empirical-Fourier decomposition developed below, this corresponds to
independent rotations and reflections with respect to streamwise and spanwise Fourier
wavenumbers. The wall layer model of Aubry et al. (1988) shares only some of these
symmetries, having only O(2) x S* symmetry (the upper wall is absent in Aubry et al.
(1988), thus there is no analog of P (1.4)). We will use (1.4-1.6) in our application of
the POD procedure to create a basis endowed with the appropriate symmetries, and to
check subsequently that the projected ODEs preserve them.

We contend that MFU PCF turbulence is a good test case for assessment of low dimen-
sional modeling strategies because the turbulence is relatively mild and involves few struc-
tures (thus, if the strategy fails here, it is not likely to succeed in more fully-developed
turbulence), and because PCF exhibits numerous interesting properties that a model
should reproduce. Specifically, the laminar state Uy is linearly stable for all Reynolds
numbers (Drazin & Reid (1981)), but both experiments and simulations exhibit sustained
turbulence for sufficiently high Re (> 380-400) and perturbation amplitudes (Dauchot
& Daviaud (1995a,b)). Recent mathematical work (e.g. Baggett & Trefethen (1997);
Schmid & Henningson (2000)) has stressed the réle of non-normal operators in such sub-
critical transitions (the linearised operator of (1.1) is non-normal: LI, # LI where
denotes adjoint), and we shall comment on this below. Moreover, Eqn. (1.1) possesses
numerous branches of (unstable) steady states consisting of wavy streamwise vortices and
streaks that arise in saddle-node bifurcations above Re ~ 125 (Nagata (1990); Clever &
Busse (1992); Schmiegel (1999)), and in Schmiegel (1999) it was suggested that turbu-
lence might be a “chaotic repellor” formed from heteroclinic connections among such
finite amplitude solutions, as in the wall layer models of Aubry et al. (1988). The studies
in Moehlis et al. (2002) support this conjecture, and we provide further comments below.
For additional information, experimental work, and references on PCF, see Bech et al.
(1995); Komminaho et al. (1996).

In their study, HKW identified an almost-periodic regeneration cycle or “self-sustaining
process,” in which near-wall streaks — elongated regions of spanwise alternating high- and
low- speed fluid — are produced by streamwise vortices in a process previously discussed
in Kline (1967). The streaks, almost straight initially, develop streamwise waviness as
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a result of a linear instability; they then break down and, in doing so, regenerate the
streamwise vortices, after which the process begins anew.

We develop two classes of models in this paper, using “coupled” and “uncoupled”
expansions. The former employs the vector-valued basis functions (empirical eigenfunc-
tions) delivered directly by the POD, as described in Holmes et al. (1996). However,
as pointed out by Moffatt (1990), and acknowledged in Holmes (1990); Moehlis et al.
(2002), this can lead to paradoxical results in which, for example, flows containing only
streamwise-invariant modes can extract energy from uniform mean shears such as the
laminar Couette solution Ug. In Berkooz et al. (1991) it was suggested that decoupling
of streamwise and spanwise velocity components might repair this situation, and we use
a generalisation of this notion due to Waleffe (1995b) to develop uncoupled models. In
both cases we use Heisenberg (eddy viscosity) type models to account for energy transfer
to the (many) neglected modes.

In §2 we briefly describe the DNS data and the POD procedure and outline properties
of the empirical eigenvalues derived from it. §§3-4 forms the heart of the paper; here the
coupled and uncoupled models are derived and comparisons with the DNS data made
and discussed. In §5 we conclude, and compare our models with other low dimensional
models, including those of Waleffe (1995a,b, 1997) (following HKW) and Eckhardt &
Mersmann (1999) for shear flow turbulence. The thesis Smith (2003) contains many
additional details and analyses.

2. The database, the POD, and empirical eigenfunctions
2.1. The numerical method and database

Following HKW; Kawahara & Kida (2001), we used a modification of the usual velocity-
vorticity algorithm for channel flow (Kim et al. (1987)). As in HKW, convective terms
were advanced by means of a third-order Runge-Kutta routine (Zang & Hussaini (1985);
Peyret (2002)), rather than the original second-order Adams-Bashforth method. De-
aliased Fourier expansions were employed in the streamwise and spanwise directions and
Chebyshev polynomials in the wall-normal direction. A computational grid of 16 x 33 x
16 (streamwise x wall-normal x spanwise) was used. To produce the simulation data, we
began with random initial conditions at Re = 625, allowed the system to converge on the
turbulent state, and used the final states as new initial conditions as Re was successively
reduced to 400 in decreasing steps. Our code was modified from a channel flow code
kindly provided by C.W. Rowley, and validated for PCF by comparison with statistics
of HKW; Kawahara & Kida (2001), obtaining agreements within 2.2% for mean velocity
and 1.2% for r.m.s. fluctuations (in L? norm).

After allowing transients to decay and a statistically stationary (turbulent) state to
become established, we ran for 20,000 nondimensional time units, assembling a database
of 4000 velocity field snapshots {u(x,t;)} by recording every 500th timestep (At =
0.01). To ensure that the ensemble possesses the appropriate discrete symmetries (1.4-
1.6), we then quadrupled the number of samples in the database by applying these
symmetry operations to create our ensemble. This ensures that the POD modes share the
symmetries of the governing equations, even if the “raw” database does not. See Berkooz
& Titi (1993); Aubry et al. (1993); Moehlis et al. (2002).

2.2. Phenomenology of turbulence in the PCF-MFU

With a view to comparing velocity fields reconstructed from low-dimensional models with
“full” DNS data, we briefly survey the results of HKW and present analogous results from
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FIGURE 2. The behaviour of the RMS modal velocities, as defined by (2.1), for several wavenum-
ber pairs: over 1500 time units of the DNS (left), and a close-up of one representative cycle
(right). Here, and for similar plots throughout this paper, the legend in the right panel also
applies to the left panel.

our DNS. In HKW the RMS modal velocities are defined as

1 1/2
£ - N -
Mg, ) & ([ (e, vn) + Bloespn) + Bl yenl ) @)
1

where the tildes represent Fourier mode amplitudes, and the temporal behaviour of this
quantity for various wavenumber pairs (n;,n,) is studied. Approximately periodic dy-
namics are found for certain (dominant) modal velocities; in particular, M(0,1) and
M(1,0) remain in near antiphase: peaks (toughs) in the former often being accompanied
troughs (peaks) in the latter: Fig. 2 (cf. Fig. 3(a) of HKW). This figure also shows that
the temporal dynamics of M(1,1) is much the same as that of M(1,0), with a recurrence
period is 80-100 nondimensional time units, while M(0, 2) is less regular.

Fig. 3 (cf. Fig. 2 of HKW) shows mid-plane contours of the streamwise velocity at the
times 1-8 noted on the M(0, 1) curve in Fig. 2. At 1, the flow shows prominent streaks.
The flow pattern then develops greater variation with respect to streamwise position,
until at 5 the streaks break down. They then regenerate and at 8 the process begins
anew. We show average streamwise velocity contours and cross-stream velocity vectors
in the cross-stream plane in Fig. 4. To simplify the representation of these quantities we
consider contributions from the streamwise-invariant modes only (cf. Fig. 4 of HKW).
Here “before” and “after” breakdown correspond to the points 1 and 5 in Fig. 2). This
plot shows that the contours of streamwise velocity are much the same after breakdown
as before, with the contours being perhaps a little more diffuse. We also note that the
cross-stream velocities increase during the breakdown process, as explained in HKW.

The streamwise velocity contours presented in Fig. 4 include the laminar solution Uj.
Versions of this plot in which the laminar solution is excluded are subsequently given in
comparing these results with those of low-dimensional models.

2.3. The proper orthogonal decomposition

Numerous accounts of the POD are available, notably those of Sirovich (1987); Berkooz
et al. (1993) and Holmes et al. (1996); rather than sketching the procedure again, we refer
the reader to them and to our earlier paper on PCF (Moehlis et al. (2002)). We merely
recall that the POD modes are the eigenfunctions of the integral operator equation

Z///Q<Ui(x,t)u;(xl,t))an)(x')cpx' =)\£Z)’nzq,l(")(x)7 (2.2)
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F1GURE 3. The streak breakdown process in DNS simulations of PCF in the MFU as indicated
by contours of u (solid positive, dashed negative) in the (z,z) plane lying between the two
plates. Here, and for similar plots in this paper, we label the axes in the subplot in the upper
left-hand corner only. Since the laminar solution is identically zero in this mid-plane it makes
no contribution to the contours in this plot.

'
Neeecvsyy,
[ SRR

S

SRR
RSN s
RN

wittther o,

v,

== 17
Ve 7
17 ]{
N

\ N

[

ol

FIGURE 4. Streamwise velocity contours (left) and cross-stream velocity vectors (right)
associated with streamwise-invariant modes before breakdown 1 and after breakdown 5.

where €2 denotes the flow domain, (u;(x,t)u}(x',t)) the ensemble averaged autocorrela-

tion tensor, and &™) = (q>§”’, @g">,<1>§"’) the POD modes, indexed by “quantum num-
bers” n € Zt and streamwise and spanwise wavenumbers n,,n,. Translation invariance
(1.7) implies that Fourier decompositions in the latter directions are optimal (Holmes
et al. (1996)), and hence that we may write

n n 1 L N n,z n
200 = Y 80,00 = o= 3 e (201 (204 52 ) )6l 00 29)

Nz, Mz
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The representation of the velocity field is therefore

u(x, t) \/ﬁ ZZ Za t) exp (27rz' ("L‘” + ”L )) oM. (). (24)

The modal coefficients a,(f;),nz are complex unless n, = n, = 0. However, reality of u and

&™) (x) implies

al™ . (6) = a™ _, (¢) and ¢, (y) = ¢ _. (v). (2.5)

We shall refer to d)nri,nz (y) as the (n,ngz,n,) POD mode.

The eigenvalues /\(n’:),nz are equal to twice the average kinetic energy of the correspond-

ing modes; thus their decay properties provide an indication of which modes should be
included on energetic grounds.

As shown in Smith (2003); Moehlis et al. (2002), following the action of the discrete
symmetries (1.4-1.6) through Fourier transformation and the POD, we deduce that the
modal components behave as follows under the group elements:

¢§’2m,nz<y) &"’nm_nx y)
P ¢2 Mg, Thy (y) = _¢2 nm—nz( y) ’ (26)
o () é"’nw_nx ~y)
¢ () M o ()
R- ¢étl7)12,nz (y) = ¢2nm—n, ) (27)
¢:(7,T,L7)Lm,n, (y) _¢3nm—nz y
o () &"’M,nz( —y)
RP-| o () | = —¢2 o (=9) |- (2.8)
¢g’,l7)1,m’nz(y) ¢3 )nm,nz( y)

A lengthy analysis, detailed in Smith (2003), then allows us to deduce the following

actions of P and R on the modal amplitude coefficients asf?,nz:

P - ag::)’nz (t) = Cpa(_ng’m’_nz (t), (2_9)
R-a{, (t) = crall_, (), (2.10)
RP - all), (1) = cperally_, (1), (2.11)
where
ep = { -1 ifn, =n;,=0and qb((fg has components even iny (2.12)
+1 otherwise
-1 ifnw:nZZOand¢gn30:O
cR=94 -1 ifn,=0andg¢{") ;= ¢gngm -0 - (2.13)
+1 otherwise

Table 1 shows the eigenvalues associated with the first twelve (sets of) POD modes in
order of decreasing eigenvalue magnitude. Here

st # (i) ¥ ) 1o

M, Ma, Mz
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TABLE 1. Eigenvalues for the POD modes for PCF in the MFU.
(ny na, ) Av(zz),nz %ET(LZ),nz

(1,0,0) 4.4550  68.02
1,0,+1) 0.7821 23.88
1,0,+2) 0.0543  1.66
1,£1,0) 0.0386 1.18
1,0,+3) 0.0195  0.59
(2,0,0) 0.0174  0.27
(2,0,+1) 0.0123  0.38
1,+1,+2) 0.0109  0.33
1,+1,+1) 0.0090 0.27
(3,0,0)  0.0068 0.10
(4,0,0) 0.0054  0.08
(3,0,£1) 0.0039  0.12

is the percentage of average total energy contained in the (n,n;,n,) POD mode. The

symmetries guarantee that )\%Z),nz = )\Sl)

—n.» and we lump these modes together accord-
ingly. (Hence the (2,0, £1) POD modes, each with eigenvalue of 0.0123, together account
for more kinetic energy on average than the (2,0,0) mode with eigenvalue 0.0174.)

The three most energetic modes have Fourier wavenumbers (0,0), (0,1), (0,2); a sim-
ilar triad appeared in the Moderate Aspect Ratio PCF study of Moehlis et al. (2002).
Interestingly, the fourth most energetic mode is the spanwise-invariant (1,1,0) mode,
which has neither a streamwise nor a wall-normal component and is thus unable to di-
rectly interact with the (1,0,0) mode representing the mean flow. In Fig. 5 we show the
(1,0,0) mode and indicate its close approximation to the full (DNS) mean velocity pro-
file. The “two-dimensional modes” which follow the (1,0,0) mode in Table 1 are plotted
in Fig. 6. Over 90% of the turbulent kinetic energy is captured by the first two modes,
while 99% is captured by the leading 43 modes. Table 1 agrees well with independent
results of Gibson (2002).

3. Coupled low-dimensional models for the MFU

We first briefly describe the general derivation and some properties of the ODEs re-
sulting from Galerkin projection of the Navier-Stokes equations onto subspaces spanned
by sets of POD modes. Inserting (2.4) into (1.1) and performing a Galerkin projection,
we obtain ODEs of the form

W, =D ARl . + [N (@ a)nn .. (3.1)
k=1
n= 1723"' y Ng,Nz=--- a_2a_13051a2a"' )

where

def § : 3 (n,m,k) (m) (k)
[N(a7 a)]”;”za”z - an’,n;mmm,amm,mzanz—mm,nz—mz7
m,k

mg,ms



FIGURE 5. The z-component of the POD mode <1>

Models for turbulent plane Couette flow
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(top) The y and z-components are

equal to zero. The velocity profile obtained by addlng thls POD mode with r.m.s. amplitude

\/)‘(()%0 = (|a(1)(t)| ) to the laminar state Up = ze, (bottom). The mean flow obtained from
the full DNS ensemble average is also indicated (dotted curve, barely discernable).

and, letting ' denote differentiation with respect to z,

2 2
“ 1 27n 27n
A(n’k) déf - x z
Ng,Nz Re Lw + Lz 5nk
* 27TZTL *
S wz [
(n)’ (k)*'
Re Z/ ¢]’nz’nz Js "my"zdy7 (32)
A (n,m, d 2TiMmg | (k
B'I('Lm,ynzl;;')mez é \/ﬁ Z/ ( ¢§ 7)'Lm*T"'za"z*"'Lz ¢.§77:')mmz
k
+¢g r)um mz,nz—mz(ﬁynr;lmz
2mmz k *
¢I(3 me —Mg Mz — ‘b]mmmz) ‘755,721,71, (33)

The projected ODEs (3.1) are equivariant with respect to the group actions (2.9-2.11)
and the continuous symmetries

Taz s ), (8) = €M%=l (1), (3-4)
Taz s afl,, (8) = e™%a(V, (1),

where ¢, = 2rAz/L, and ¢, = 2nAz/L,; i.e., writing (3.1) as a = f(a), it is necessary

that f(ya)

=~ f(a) for all ¥ € O(2) x O(2). This implies that many terms which might

appear in (3.1), in fact, vanish. Also, by exploiting symmetry properties of the POD

modes (specifically, oddness or evenness of components d)(

ine,n. Under y — —y), it can

be shown that certain of the A’s and B’s vanish identically. Finally, the nonlinear terms
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(1,0,2) mode
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FIGURE 6. Flow fields u associated with the (n,n.,n.) = (1,0,1), (1,0,2), (1,0,3) and (1,1,0)
POD modes. For the (1,0,1), (1,0,2) and (1,0,3) POD modes the vectors show the spanwise
and wall-normal velocities, while the dark (light) shading denotes positive (negative) streamwise
velocity. For the (1,1,0) mode the 4 and v components are identically zero, and the dark (light)
shading now denotes positive (negative) spanwise velocity.

in the Navier-Stokes equations are energy-conserving. Specifically, we have

///Qu-(“'vu)d3x=///ﬂu-(V(%u-u)—ux(qu)>d3x
I L (o))
=//89(%“'“)“'ﬁd5=0, (3.6)

where we have used vector identities, the facts that u-(ux (Vxu)) =0and V - u = 0,
and the divergence theorem. The surface integral vanishes due to the no-slip boundary
conditions at z = +1 and periodicity in the z and z-directions. Using (2.4), it can be
shown that Eqn. (3.6) is equivalent to

Y Y oIV, a)nmn,n, =0. (3.7)

n=1nz;=—00 N,=—0o0

Eqn. (3.7) and the symmetries (2.9-2.11) and (3.4-3.5) provide checks on the numerically
computed nonlinear coefficients: in all cases we have found that (3.7) is satisfied to
0.01%, and we have therefore subsequently rounded off the coefficients to ensure that
these symmetries are exactly respected.

In Smith (2003) the implications of the symmetries inherent in (2.6-2.11) are devel-
oped for the specific truncations considered below. This allows one to identify numerous
(nested) invariant subspaces, much as for the wall layer model of Aubry et al. (1988),
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cf. Holmes et al. (1996). We shall only draw on small parts of this analysis below, so
largely omit it here and in §4.

The ODEs (3.1) are similar to those of the turbulent boundary layer problem in Aubry
et al. (1988), with the following important differences. In Aubry et al. (1988), in place of
Uy = ye,, the analog of (1.1) involves a spatially-averaged (t-dependent) mean turbulent
velocity, modeled as a balance between the effects of pressure and those of the coherent
structures, giving cubic terms in the ODEs. No such modeling is required here: the
nonlinear terms derive directly from (1.1) and the n, = n, = 0 modes represent time-
varying turbulent modifications to the mean. Second, the contribution from the pressure
term at the outer edge of the wall layer was modeled as stochastic forcing in Aubry et al.
(1988); here, it makes no contribution because of the divergence-free expansion (2.4)
and no-slip and periodic conditions at the boundaries of 2 Holmes et al. (1996). Finally,
in Aubry et al. (1988) the ODEs are equivariant under O(2) x S!; here, the additional
reflection and rotation symmetries make the ODEs equivariant under O(2) x O(2), further
constraining the modal interactions.

3.1. High-dimensional truncations

While we are primarily interested in deriving (very) low-dimensional models by the POD-
Galerkin procedure, it is of interest first to determine how relatively large truncations
capture the detailed dynamics of the DNS database, as in Moehlis et al. (2002). To this
end, in Fig. 7 we present numerical simulations of a model containing the 600 most
energetic POD modes. This achieves good short-term tracking for & 20 non-dimensional
time units, after which sensitive dependence on initial conditions inevitably drives the
model and DNS trajectories apart, although the long term statistics of the 12 most
energetic modes are reproduced well. In the lower panels of Fig. 7 (cf. Figs. 8 and 13,
below) we show projections of the model and DNS solutions onto the two most energetic
modes (1,0,+1), (1,0, +2) following the mean (1,0, 0), illustrating that the model modes
display similar behaviour to the DNS modes, with occasional (unphysical) excursions to
the trivial state, corresponding to near-relaminarisation of the flow. We note that this
effect disappears once ~ 1000 modes are retained.

John Gibson, who independently studied the same problem in Gibson (2002), also
determined that approximately 1000 modes were required to faithfully reproduce the
DNS behaviour.

3.2. Structure of the projected ODEs
3.2.1. The coupled 9-mode model: dynamical equations

We first display the equations resulting from a projection which includes all n = 1
mOdeS ln Table 1 ((17 07 0)7 (17 07 1)7 (17 07 2)7 (17 17 0)7 (17 17 il)? (17 07 3)7 a‘nd (17 17 :l:2))'
This will encompass all the models considered in this section. Here the ODEs (3.1) take
the particular form:

a((Jl()) = Aoo a( )1"‘ 2(By, 11|a |2+Bo 2|ao |2-|-Bol3|a(1)|2
b Bl + 1, P) + Buallald + 1),

W= oy~ Doy i 400
0,2 * 10 o ’
01001 Qp,200,1 + e, =%y )11 a0

_ 1 1)% (1)*
— Each ook o, eicss 1 oicy “)anigng.
) 101

1,2 1,21y (1) ()% 1,1 1,0
+ (0’101,1 01Cl -2 B “ +(0101, 0101 —1) )



12 T. R. Smith, J. Moehlis, and P. Holmes

~ 3.5 ~
’ s ao,0 3 ap,0
2.25 / o |1 ap0
2.2 25 '
2
2.15
1.5
2.1 1
2.05 1 0.5
2 - 0
0 10 20 30 40 50 4000 8000 12000
15 ao, ] a . do 2
ao,1 0 ao 2

-1 -0.5 0 0.5 1 -0.2 0 0.2

FIGURE 7. Short term tracking and phase space geometry for a high-dimensional POD-based
model of plane Couette flow (PCF). Top panels: short and long time histories of (1,0,0) “mean
flow” modes for DNS (solid) and model (dashed). Bottom panels: projections of DNS (solid)
and model (dashed) solutions onto the complex (1,0,+1) and (1,0, +2) modal planes. . In this
figure, and similar ones that follow, the superscript (1) has been dropped from the lablels for
clarity.

a(gl% = (Ao,2 — Bo 2a(1)) a(()I%
(* 201 02 + % 201 0)‘111%?9)1 +0 1CO 2(“(()1%) -2 20111 alllfa?)_l
0,—2 1,2
+ (* 1Co,—3 0 2Co, )a(() %a(() )—1 (© 20 o+ 204 _2)a§ %a( % 0
'y = Ao al)
R i, 0o v
+ (1’000,’1_ - 0’101,71) 1,19, T * 000,2_ + 0 201,72) 1,200.2
aﬁ = (Ai1- Bl,la(%) aﬁ
+ (0,1011:3 1 001, )a$ (1) (1) +0 100 ,3 (1) gl)_l
i 1) {1 1) (1
+ (I’ICS,’—Q HCO 2)a é%ag )—2 (11012+0101 ))a g%a(())1
a§1)_1 = (A1 1— B 1a(1)) (1)
+ (01011 7; 11001) (1) (1) 01003 (1)2 ﬁ
+ ookt —oackalal A 1C02, T ACH Bl Yol
al'y = (Aos—Bo 3a(1)) a(()lg

+ (0,103’,3 020 ) aiia ((]1%+(0 3012 1101 —2) (l)a(l)
+

02 a;10_1,2
1,11,-2 _ 0,3 1 1
( Co,’— Cl —1) a_11012
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TABLE 2. Coefficients for the system (3.8).
Ny Ny A;—b A, Bnm,’nz

z,Nz Na,Nz

0 10.7603 0
0.1281 9.8256 0.0386
-0.0503 21.8841 -0.0074

0 9.9411 0
0.0141 14.9003 0.0006
-0.0562 27.9672 -0.0226
0.2430 18.3647 0.0876

O~ OOO
NWFRONRFRO

al') = (A2 - Bigaly) al') + (1057 - 010 )ag el

3

1,2 1,—2+ (1) (1 0,3 1,2 1) @
+ (0’201,0 - 1’000,2 )ag,())a((),% + (1’10—1,2 +0’3C1,—1)a((),;a§,)—1

.(1 1 1 1,2 1,-2y (1) (1
ag,)—z = (A1 — Bl,2a((),())) ag,)—(z )‘F((O)’zcw - 1’000,2 )a§,())a((),()—1§ W (3.8)
0,3 1,2 1) (1 1,2 1,2 .
(1’10—1,2 + 0’301,—1)a1,1‘10,—3 + (0’101,1 - 1’100,1)611,—1‘10,—1
where the A, ,,. may be partitioned as
def ! "
Anm STz é An,_.,nz - Anm,nz /RC, (39)

with A’nm,nz ’s, A’r’»m,n, ’s and By,_ ,’s given in Table 2, and the remaining nonlinear terms
as follows:

Olcyt =0.0647, ©'Cp?; =0.0120, “'Cjg =0.1833, *'CpI, =0.0445,

Olopt =0.1199, *'CoTr =0.0002, *'Cys =0.0006, °2Cy°, =0.0074,
02018 =0.2374, *2Cir ! =0.0595, °?Cyi =0.1517, °Cgyt =0.0828,
L0Cy;? =0.0083, bCyIi=02413, bCY7, =0.1171,

begi =01723,  %3CP?, = 0.346786.

The nine modes included in this model capture 95.9% of the kinetic energy on average,
and the equations describe a 17-dimensional dynamical system (recall that all but the
ng = n, = 0 modal amplitude coefficients are complex, and that for those triads with two
nonzero Fourier wavenumbers, two independent coefficients must be allowed). The lami-
nar (asllm),nz = 0) state for this model (without modeling losses as in §3.3) is unstable at
sufficiently large Reynolds numbers due to the linear coefficients of the (1,0,1), (1,1, 1)
and (1,1, £2) modes. The first and last two of these three modes span an invariant sub-
space, although this is an artefact of the truncation that does not, e.g., survive addition
of the (1,0,4) mode.

3.2.2. Preliminary comments on choice of modal groups

Since the first four modes of Table 1 capture 94.7% of the average turbulent kinetic
energy, it seems reasonable to base a model on these four, adding other modes necessary
to retain appropriate Fourier wavenumber interactions. This leads us to consider an
11-dimensional model based on the six modes ((1,0,0), (1,0,1), (1,0,2), (1,1,0) and

(1,1,+£1)), the equations for which may be obtained by setting a(()l,; = agzﬂ =0 in
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the first six equations of the system (3.8) and dropping the equations for the omitted
variables.

We also note that the interaction among the (1,0,0), (1,0,1) and (1,0,2) modes,
which together capture 93.5% the most turbulent kinetic energy on average according to
Table 1, is determined by the following three, relatively simple, ODEs:

a((ﬁ()) = Ao a( ) o+ 2(30 1|a(1)|2 + By |a(1) )’
dgi = (Aoa— Bo 1al) afl) —01Cd: fa((ylz 51 (3.10)
d((ﬁ% = (Ao2—Bo 2“01)) %1% 0 100 2(“01%) .

This minimal model is the “energy-conserving” quadratic normal form of the 0:1:2 res-
onance. While it does not reproduce the turbulent dynamics accurately, it does form
an analytically tractable “core” of larger models such as (3.8), and we shall perform a
detailed analysis of it elsewhere (Smith et al. (2004)).

3.3. Modelling neglected modes

Before considering the dynamics of the six- and nine-mode models we describe a crude
model for capturing interactions with modes neglected in these truncations. Henceforth
we denote the “true” modal amplitude obtained by projection of the DNS data onto
the (n,ng,n,) mode by a,(f;)nz. We follow Podvin & Lumley (1998); Podvin (2001) and
calculate, for each of these true modal amplitudes, the effect of the neglected modes on
the POD mode under consideration, given by

7(':?": Z Ag::nz‘) (W:Jbz + Z Bﬁb:ﬁ,rlrcb)mmz Am),m, A;km) Mz Nz—MM " (311)
n'#n

Here the the first sum is over all n’ such that (n',n,,n.) is not in the truncation, while
the second sum is over all m, k, m,, m, such that (m,m,, m;) and (k,ngy — mg,n, —m;)
are not in the truncation.

Having calculated this quantity, we determine how well it correlates with the corre-
sponding coefficient agbm) n.- We define the scalar product between two complex-valued

functions of time f(¢) and g(¢t) as

(flg) % Jim / 1(9)g"(s)ds, (3.12)
with the associated norm
LAV CFLM2 (3.13)
The correlation coefficient between f(t) and g(¢) is then defined to be
of  R[{fl9)]
f,g) % NI 3.14
9= AR olay7 (314

If Tflf)nz and a{" nz are significantly anti-correlated (—C > 0.5, say), we may employ
the linear approx1mat10n

T g 4 . g (3.15)

Nz Nz 'ﬂm,'ﬂz Nz, Nz
which allows closure of the truncated system by approximating ﬁ(lf)nz by an additional
damping term:

aﬁ{;{nz = terms from truncation — ﬂ,(L")’nz 5[;),”:. (3.16)
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The error induced in (3.15),

||T(n) Blr) glm) |2

nm,nz na:anz Nz Nz
¢
= [+ B A B + 0820825
0
can be minimized in a least squares sense by setting

def f() T"S/Z?nz nrxl;)atl Ag’/ri):nzT"gZ:);z) dt
2 [ a2 n. |2 dt

Am, = (3.17)

which reveals the optimal damping required for each mode.

Applying this below we find that the correlation coefficients C(T\"n.,a\™ n.) vary
considerably and the approximation (3.15) is thus more convincing for some modes than
others. We shall attempt to reduce the effects of this variability by lumping the damp-
ing coeflicients /J’nm,n, into a single model-specific damping coefficient via the weighted
average over all modes contained in the model:

v (B, (2 +nd)). (3.18)
Losses to each mode will then be approximated as

T(™ —av(n? 4+ n?)al™ (3.19)

Nz,Nz ”m 3Nz ?

where a = 1 corresponds to a standard spectral eddy viscosity model (c.f Pope (2000),
p. 610).

Eqn. (3.19) implies that fo(,%) is identically zero, and thus no attempt is made to
model the influence of the neglected terms on the (1,0, 0) mode. This “mean flow” mode

is problematic since first, for all truncations considered, fo(lo) oscillates about a mean

close to zero, whilst the mean of a((f()) hovers around 2.1. It is thus no simple matter

to approximate fo(lo) with a function of the form ﬂao()) Secondly, plots of TO( ¢ amply

demonstrate the fact that the a(() ()) mode is often subject to backscatter: energy flows from
the neglected modes back to this mode. Indeed, the first equation of (3.8) indicates that
energy flows from the (1,7n4,n,) mode into the (1, 0,0) mode whenever B,,, . is positive,
and this is a primary mechanism sustaining nontrivial behaviour identified in Moehlis
et al. (2002)

In carrying out the average (3.18) we reduce the (bifurcation) parameters to two:
namely, the Reynolds number Re and «, an O(1) parameter adjusting the losses to the
neglected modes.

3.4. Dynamical behaviour of the coupled models
3.4.1. The 6-mode model

We now consider the dynamics of the coupled 6-mode model, constructed from a
Galerkin projection of (1.1) onto the (1,0,0), (1,0,1), (1,0,2), (1,1,0), (1,1, £1) modes.
Here and throughout §3, all computations are done at at Re = 400. Integration of this
11-dimensional dynamical system, without modelling losses to neglected modes, reveals
travelling waves of the form

al™ =1 exp(i(—wn.t +a™® ), (3.20)

Nz,Nz Nz Nz Nz,Nz
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Fi1GURE 8. Behaviour of the coupled 6-mode model compared to the DNS projected onto the
(1,0,0), (1,0,1) and (1,0,2) modes. Here each of ao,0, ao,1, ao,2 are shown as dashed lines, and
are intended to represent approximations to the nearest (noisy) én,,n, line.

TABLE 3. Mean behaviour of the undamped coupled 6-mode model.

(N, nany) A, (r00.)?

(1,0,0) 44550 4.2171
(1,0,+1) 0.7821 0.7134
(1,0,£2) 0.0543 0.0202
(1,£1,0) 0.0386 0.2791
(1,41, +1) 0.0090 0.1752

where the reality of a((f()] requires that a((f()] is necessarily zero. The amplitudes of the

(1,0,0), (1,0,1) and (1,0, 2) modes are plotted in Fig. 8 in comparison with the “true”
modal amplitudes obtained by projecting the DNS onto these modes, denoted aq,;.

Note that &((,3 and &((f% are approximately confined to a “thickened” torus: each oscil-
lating relatively quickly along a radius and drifting more slowly and chaotically around
the circumference. The model fails to reproduce the radial motion, and caricatures the
circumferential motion as a simple travelling wave with a relatively low period of 65.9
time units. It is clear from Fig. 8 that the average of the projected (1,0,0), (1,0,1) and
(1,0,2) modal amplitudes is well approximated by the travelling wave model: this is
less true of the (1,1,0) and (1,1,+1) modal amplitudes, as indicated by Table 3, where
the eigenvalues /\(n’i),nz are compared with the square of the travelling wave amplitudes
lai .|l = .. (vecall that the latter are twice the modal energies: §2.3).

The travelling wave solution is, however, entirely unsatisfactory from a dynamical
viewpoint. The RMS modal velocities, calculated from

1 n
M(nw,nz)=m§ [ (3.21)
Tz n

are constant, since the modal amplitudes are constant: see the right panel of Fig. 9. The
HKW regeneration cycle is completely absent. Here, and for similar plots in this paper,
we present in the left panel the analogous quantities for the DNS with only those modes

present in the low-dimensional model included in the projection, i.e. (3.21) with a%’i),nz



Models for turbulent plane Couette flow 17

0.25

— M(0,1)
M(0,2)
0.2 - - M(1,0)
ML) [
0.15
0.1 . 1 01t
0.05 % 1 0.05
47 \\\ ‘\
A < /\/I :\\\ ot ”/ t t
1340 1360 1380 1400 1420 1440 1460 1%40 1360 1380 1400 1420 1440 1460

F1GURE 9. RMS modal velocities: from a representative cycle of the DNS (left, computed from
(3.21) for n = 1, and thus slightly different from the right panel of Fig. 2) and analogous
(constant) quantities for the coupled 6-mode model (right).

TABLE 4. Correlation coefficients for the 6 mode model.
n Ng N C(Tn Mz Qng nz) ﬂnz nz

1 0 1 —0.2650 0.0024
1 0 2 —0.8870 0.1294
11 0 —0.3086 0.0229
11 1 —0.5150 0.1039
11 -1 —0.5136 0.1038

(n)

replaced by anp,’n.. In neither case do we sum over n, since only one quantum number is
included in the models considered in this paper.
Substituting (3.20) into the Galerkin approximation (2.4) yields

nm,nz L NgX U (z - gﬂft) agi),nz n
Z ,—L T exp <27Tl (L— + T 2 + o ¢1(1,_.),nz (y)a(322)

hence the travelling waves (3.20) represent streak/vortex structures moving in the span-
wise direction at speed wL,/(27).

3.4.2. The 6-mode model with losses to neglected modes

We now attempt to improve the model behaviour by including energy transfer to ne-
glected modes, using the ideas of §3.3. The resulting correlation coefficients and optimal
damping values, calculated from (3.11-3.17), are presented in Table 4. There is significant
variation in C (fr(bf)n , asﬁ),nz), indicating that the quality of the linear damping approx-
imation varies widely. To illustrate, we exhibit the best- and worst-approximated modes
in Figs. 10 and 11, respectively. Averaging this variability via (3.18-3.19), we obtain the
eddy viscosity ¥ = 0.0333.

We now adjust the O(1) parameter a to obtain the best fit between the behaviour
of the model and the DNS by computing a bifurcation diagram using the program
AUTO (Doedel et al. (1997)), shown schematically in Fig. 12. This shows how exis-
tence and stability of solutions depends on a. As « increases from zero, we successively
encounter the previously-described travelling waves (TW), modulated travelling waves
(MW), and two different types of standing waves confined to a rotated version of the
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FIGURE 10. For the coupled 6-mode model: plot of ?R(—,B(()Bd((f% (solid) and %(T\O(lz)) (dashed)

against time, ¢ (top); plot of %(—68}2) d((f% (solid) and %(T\élg ) (dashed) against time, ¢ (bottom).
This reflects the high correlation coefficient of —0.8870 of Table 4.
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FIGURE 11. For the coupled 6-mode model: plot of §R(—10,8((],11) &8% (solid) and %(fé,ll)) (dashed)
against time, ¢ (top); plot of %(—10,36,11)&8%) (solid) and %(’fo(,ll)) (dashed) against time, ¢ (bot-
tom). The optimal least-squares approximation in this case, with 8 = —0.0024 is essentially
flat; we have multiplied this damping factor by 10 to show that the linear approximation (3.15)

captures some of the low-frequency part of the noisy T\O(’ll) term. This reflects the low correlation
coefficient of —0.2650 of Table 4.

real subspace: (SW; and SW5). Schematic diagrams of the behaviour of the (1,0,1) and
(1,0,2) modal amplitudes for these solutions are shown at the bottom of Fig. 12; at left
are the travelling wave solutions shown in Fig. 8. All solutions with the exception of MW
are stable over some interval of a. We draw the reader’s attention to the branch of fixed
points at right, which are produced in a pitchfork bifurcation from the laminar state at
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FIGURE 12. Schematic bifurcation diagram with respect to a for the modified coupled 6-mode
model.
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FIGURE 13. Behaviour of the modified coupled 6-mode model compared to the DNS projected
onto the (1,0,0) (left) and (1,0,1), (1,0,2) modes (right).

a higher value of a (~ 1.4); indeed, as we noted in §3.2 the laminar state of this model
is unstable for Reynolds numbers in the vicinity of Re = 400.

The SW solution, for which the (1,0,1) and (1,0, 2) modal amplitudes oscillate along
radii, captures the appropriate DNS dynamics. A representation analogous to Fig. 8 for
a = 0.8 appears as Fig. 13. However, while the amplitudes of the complex modes are
reasonable, the amplitude of the (1,0,0) mode in the model is significantly lower than in
the projected DNS.

The RMS modal velocities for the model, calculated from (3.21), are presented in the
right panel of Fig. 14, for comparison with analogous DNS quantities, re-plotted in the
left panel (cf. Fig. 2). The cyclic behaviour is essentially reproduced: M(0, 1) and M(1, 0)
are approximately of opposite phase, while the latter is approximately in phase with
M(1,1). The magnitudes of the RMS modal velocities also compare well with those from
the DNS.
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FIGURE 14. RMS modal velocities: from a representative cycle of the DNS (left, repeated from
Fig. 9) and for one period from the coupled 6-mode model, including modelling of losses to
neglected modes with o = 0.8 (right).
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FIGURE 15. The streak breakdown process viewed in the (z,z) plane lying between the two
plates in PCF: DNS projected onto the 6 modes present in the model (left) and computed from
one period of the 6-mode coupled model (right).

In Figs. 15 and 16 we show reconstructed model velocity fields at the time instants
1’-8” marked on the right panel of Fig. 14 (analogous to 1-8 on the left), for comparison
with analogous quantities from the DNS. The left panels of these figures repeat data from
Figs. 3 and 4, but projected only onto the 6 modes present in the model (so the majority
of the small scales is removed, leaving essential large scale structures). Fig. 15 shows that
the solution provides reasonable reconstructions of the streak-breakdown process in the
(z, z) mid-plane, although Fig. 16 indicates that the agreement between the streamwise
velocity contours (as calculated from the streamwise-invariant modes) is somewhat less
striking. This is largely due to the low amplitude of the (1,0,0) mode: subtracting the
laminar solution to obtain Fig. 17, we observe much more striking similarity between the
DNS and the low-dimensional model.

Finally we compute turbulent statistics for the model by reconstructing the veloc-
ity field over one period of the limit cycle and calculating mean velocity fluctuations
(u',v',w"). Fig. 18 compares these with analogous DNS quantities. We note good qual-
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FIGURE 16. Streamwise velocities in the (y, z) plane calculated from the streamwise invariant
modes and the laminar state: projection of the DNS onto the 6 modes present in the model
(left) and computed from the 6-mode coupled model (right).
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FIGURE 17. Streamwise velocities in the (y, z) plane calculated from the streamwise invariant
modes only (excluding the laminar state): projection of the DNS onto the 6 modes present in
the model (left) and computed from the 6-mode coupled model (right).

itative agreement for streamwise and spanwise RMS fluctuations (/{u2) and /{v'2),
respectively) and also for Reynolds stress ({u'v'}). The qualitative agreement is less strik-
ing in the wall-normal direction (1/(w'2?)), with a peak dominating the central portion
between the two flat plates rather than a valley, although quantitative agreement is
better.

3.4.3. The 9-mode model

Adding the (1,0, 3) mode to the 6-mode model considered above produces similar dy-
namic behaviour: in particular, the travelling waves (3.20) persist and the energy budget
of the leading four model modes remains reasonable, as Table 5 indicates. Moreover,
addition of damping to this model to represent losses to neglected modes produces a
periodic orbit with behaviour similar to that of the damped 6-mode model of §3.3.

However, if we add the (1,1,+2) modes to obtain the “full” set of equations (3.8) of
the 9-mode model, the dynamic behaviour changes markedly: instead of travelling wave
solutions we now observe chaos, as illustrated in Fig. 19. But while the amplitude coef-
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FIGURE 18. Performance of the 6-mode model measured by turbulent statistics with DNS
(solid) and model (dotted) shown.

TABLE 5. Mean behaviour of the naive coupled “6-mode + (1,0,+3)” model.

(na Nz, ny) )\'ELT;),nz (TEZ),”: )2

(1,0,0) 4.4550 4.0487
(1,0,+1) 0.7821 0.7047
(1,0,42) 0.0543 0.0318
(1,+1,0) 0.0386 0.2553
(1,+1,1) 0.0090 0.1140
(1,+1,—1) 0.0090 0.2345
(1,0,%3)  0.0543  0.0006

ficients explore an appropriate region of phase space, the dynamics do not approximate
the thickened tori of Fig. 8. Nor did it seem possible to improve the behaviour of this
model by addition of eddy viscosity terms. Accordingly, we shall discuss this model no
further here, although we shall see in §4 that an uncoupled version of it produces much
more relevant behaviour.
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FiGure 19. Behaviour of the coupled 9-mode model: evolution of a((]}()) versus time (left) and

evolution of a((ﬁ% and a((ﬁ% in the complex plane (right).

4. Uncoupled low dimensional models

Commenting on the wall layer model of Aubry et al. (1988) with only streamwise-
invariant modes (n, = 0 in the present notation) presented in Holmes (1990), Moffatt
(1990) pointed out that, if streamwise and cross-stream components are allowed to evolve
independently, as they can in real flows, all disturbances eventually decay in the absence
of streamwise variations. Indeed, for streamwise-invariant flow, where the convective
derivative reduces to

D /Dt = 0/0t + u20/0y + u30/0z, (4.1)
the z-component of the Navier Stokes equation is
D 1 (67 0?
ol = = + = 4.2
HiU+w) =& <6y2 +6Z2) U +w), (4.2)

where U denotes the laminar profile, entirely in the z-direction, and u; 2 3 are the fluc-
tuations. Furthermore, it can be shown that

%//(u% +ud)dydz = —2v {//widydz} ) (4.3)

where w, is the z-component of the vorticity, showing that the energy in the cross-
stream components of the velocity must decay to zero. In the long-time limit then, in
(4.2), D/Dt — 9/8t, giving a simple diffusion equation for u;. Thus for large time uq
tends to a constant value, the only possible solution being u; = 0. Hence, although the
streamwise velocity may experience transient growth due the cross-stream flow, it must
also eventually vanish.

As pointed out in an addendum to Holmes (1990) and in more detail in Berkooz
et al. (1991), the vector-valued POD eigenfunctions impose coupling between stream-
wise and cross-stream components in each mode. In particular, this implies that the
inner product in the second term in the linear coefficients A%Z,kn) of Eqn. (3.2) with
n, = 0 is nonzero, and, in fact, positive. This term provides the energy source. The
constraint imposed by projection onto streamwise-invariant modes that (correctly) rep-
resent the typical behaviour with streamwise fluctuations present, imposes coupling that
can maintain streamwise velocity fluctuations. To remove this constraint, we must allow
the streamwise and cross-stream velocity components of streamwise invariant modes to
evolve separately.



24 T. R. Smith, J. Moehlis, and P. Holmes

4.1. Uncoupled basis functions

Following the suggestion of Waleffe (1995b), we construct a pair of “uncoupled” basis
functions from each empirical eigenfunction by decomposing it into mutually orthogonal

components:
2(7,.. () = 2001 0 + 20 (x), (4.4)

Mg,z Mg, Mz

where

3l (x) ¥ Py, 0, @7, (x), 8 (x) ¥ (I - Py, )80, (x)  (45)

Mg, Nz Nz ,Nz Nz,Nz
and the projection matrix is defined by

def

P, . = pp" /(p"p) with p [ 21n,/L,0,2mn,/Ly)" . (4.6)

Here @%2)7%1 (x) and @%2),[31 (x) are of the form (2.3) with

ag\™) . (y) —bds") . (y)
! (y) = 0 , (4.7)
—b\™) () +cdd) ()
and

(1- a)¢§fﬁw,nz( )+ b5 (y)
¢£’LT:),[n21 ( ) ¢2 ST, Ty ( ) ’ (48)
") @)+ (L — )P . ()

respectively, appearing in the place of ¢(n’?’nz (y), and where

def n;/L; def Mgnz/(LgL:) ¢ def ny/L; (4.9)
-~ n2/L2+nZ/LY - n2/LZ+nZ/LY Con2/LZ4nZ/L2T T
The streamwise- and spanwise-invariant modes therefore take the forms
0. (9) 0
Pho () = ( 0 , Pom(y) = ¢§Ta;,nz W |. (4.10)
0 ¢3?0,nz (y)
(n)[1] . (n)[2] P9
¢nm,0 (y) = (n)o ) ¢nm70 (y) = ¢gr’bn),m’0(y) ’ (411)
¢3 ,Na,0 ( ) 0

and for modes with neither streamwise nor spanwise variation we have ¢(n)[1 (y) =

0, d)(") By = gb((),"g (y). We also note that the functions are pairwise-orthogonal and
dlvergence free:

(@5 (), @0 (%)) = L G, (4.12)
v - amim (x) = Oform=12. (4.13)
We do not normalise the uncoupled modes, hence the (non-unity) coefficients e(n?,[ﬂ];

however, we have e%?,[yﬂ + e%ﬁ’,[ﬁl =1

For n, = 0 we recover the decomposition of Berkooz et al. (1991), but in general neither
term in the decomposition represents a purely streamwise or cross-stream component. For
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TABLE 6. Invariant subspaces for equations (5.1-5.16): variables omitted from each set {...}
remain zero in the subspace concerned. Numbers in parentheses refer to restrictions to the real
subspace.

invariant subspace dimension
1) (MWL (D[L,2 DIL,2
5= (o a0 — "
Se = {agt) (12)[1 ,2] ago) (1)[1 2] 51)[21 2]} 11 (6)
(ig (1>{5821°])’(1(§12>)[[11;j]’ (511))[1%151)[112)] _(1)511 )2[1]1 %, (12()1[;[?2]: (il)fz?]} LD 15 (&)
S12 ={agg’s a0 5 age Qo35 A10,0 a;’y7 " aq, =a;2; "} 23(12)

Ng,ny # 0, ¢nm,n (y) represents a structure that lies parallel with the walls at y = +1,
while d)nm,nz( ) is fully three-dimensional, cf. (4.7-4.8).

4.2. Structure of the projected ODEs
Uncoupling the (1,0,1), (1,0,2), (1,0,3), (1,1,41), and (1,1,+2) POD modes as out-
lined above and projecting Eqn. (1.1) onto these modes along with the single-component
(1,0,0) and (1,1,0) POD modes, we obtain ODEs for the following set of modal ampli-
tudes:

a7 = (ol o101 a0, o0, o 2, o021 o0 o)

)

These equations are too lengthy to display here, but have similar structure to the coupled
equations, with important differences in the linear terms to be subsequently described.
We list them in the Appendix as (5.1-5.16). We note that a(()l,[)) is real, all other modal

amplitudes are complex, and that all modes other than a((:% and ag()) appear in pairs.

Counting each complex mode as two real dimensions, this 9-mode uncoupled model is
therefore 31-dimensional.

There are numerous invariant subspaces resulting from the O(2) x O(2) symmetries
inherited by the ODEs, as detailed in Smith (2003). In what follows we need only one of
these: the subspace

Si2 € {2 i} =~ and of25 = o)), (414)

but to illustrate how the full phase space may be parsed by such invariant subspaces, we
list four of them in Table 6.

4.3. Dynamical behaviour of the uncoupled models

4.3.1. The uncoupled 6-mode model

The equations for this truncation may be obtained from (5.1-5.10) by setting a(l)[1 -

9%[1 2= E)_[; 2 = 0. As noted in §4, for any initial condition, the solution of an
uncoupled expansion with zero streamwise variation must eventually decay to zero (all
streamwise-invariant flows necessarily relax to the laminar state). It was hypothesised in
Berkooz et al. (1991) that, during this transient, the system would display “ghosts” of
the behaviour demonstrated in the coupled expansion. In the uncoupled 6 mode model,
we include the (1,1,0) and (1,1,+1) streamwise modes, which do provide a (genuine)
source of energy, so one might reasonably expect sustained dynamic behaviour. In Fig. 20
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FIGURE 20. RMS modal velocities for the DNS (left) and computed from the uncoupled
6-mode model from (4.15). Note the differing scales on the ordinates of these two plots.

we plot the RMS modal velocities for this uncoupled model, computed via

Z e gL o 2l 2] 2 (4.15)

M(ng,n;) = \/ﬁ

and observe that this is not the case. During the transient, however, the dynamics re-
semble the behaviour of §3.4 at a = 0.8. In particular, the modal amplitudes are rapidly
attracted to (some rotation of) the real subspace, and the transient oscillations have an
approximate period of 87 non-dimensional time units.

4.3.2. The uncoupled 9-mode model

A primary motivation in considering uncoupled models is to remedy the problem of
instability of the laminar state, exhibited by the coupled 6-mode model. Unfortunately,
Eqns. (5.1-5.16) do not allow the laminar state to remain stable for all values of Re.
Indeed, Eqn. (5.16) (as well as its close relation (5.14)) reveals that the trivial solution
loses stability at

nr

A

2 =57T7.6. (4.16)
A
We may, of course, remedy this by adding eddy viscosity terms. Slightly generalizing the
procedure of §3.3, we add a term of the form

Re = —

—av(n2 4+ n?)a(Mlm (4.17)

Tbm 3Nz

to each ODE, to find that the laminar state remains stable for all Re provided we choose
a such that

1

a >

: Vem =0.2179, (4.18)

(we retain v = 0.0333 as in the coupled 6-mode model). We therefore choose o = 0.22
and compute bifurcation diagrams for steady and periodic states with respect to Re, with
a view to comparisons with branches of steady solutions of the Navier Stokes equations.

4.3.3. Dominant attractor at Re = 400

The trivial solution is now stable, and solutions started sufficiently close to it approach
it as t — oo. However, at Re = 400 almost all initial conditions of significant amplitude
approach a periodic orbit lying within the Si, subspace. To explore the source of this
attractor, we use AUTO (Doedel et al. (1997)) to follow its locus over a range of Reynolds
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FiGURE 21. The isola of periodic orbits existing in the S12 subspace. Here and for the bifurcation
diagram of Fig. 26, the ordinate A denotes the L? norm of the solution. Solid (resp., dashed)
lines indicate stable (resp., unstable) solutions, and the dots indicate bifurcation points.
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FIGURE 22. RMS modal velocities: from a representative cycle of the DNS (left, repeated from
Fig. 9) and computed from one period of the uncoupled 9-mode model (right).

numbers, as shown in Fig. 21. We find that it arises in a saddle-node bifurcation at
Re =~ 379.8 and loses stability in another saddle-node bifurcation at Re = 852.8, forming
an isola. The remainder of the branch, and additional branches bifurcating from it, are all
unstable. This is consistent with the observation that the MFU turbulent state appears
as the Reynolds numbers passes between 300 and 400, cf., HKW.

RMS modal velocities for this model, calculated via (4.15), are compared with the same
quantities for DNS in Fig. 22. Whilst magnitudes agree fairly well, phase relationships
among the model’s modal velocities are incorrect; in particular, M(0,1) and M(1,0) are
now in phase and the model streak-breakdown process is consequently phase-shifted, as
shown in Fig. 23. The velocity contours resulting from the streamwise-invariant modes
in the model, shown in Fig. 24, are however much improved; here there is no need to
subtract the laminar state to demonstrate qualitative agreement between model and DNS
results.

In Fig. 25 we plot turbulence statistics for the uncoupled 9-mode model. In comparison
to the analogous quantities for the coupled 6-mode model of Fig. 18, the RMS v’ velocity
is slightly improved, the RMS v’ velocity is now larger than the DNS data rather than
smaller, and while the RMS w' velocity is significantly greater (and worse) in magnitude,
it now has the correct form, with a central valley rather than a peak. The Reynolds
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FIGURE 23. The streak breakdown process as viewed in the (z, z) plane lying between the two
plates in PCF: DNS projected onto the 9 modes present in the model (left) and computed from
one period of the uncoupled 9-mode model (right).

FIGURE 24. Streamwise velocities in the (y, z) plane calculated from the streamwise invariant
modes and the laminar state: DNS projected onto the 9 modes present in the model (left) and
computed from one period of the uncoupled 9-mode model (right).

stress, bottom right, is also improved, showing very good agreement between DNS and
model in the near-wall region.

In addition to this periodic orbit, there are many other periodic and stationary states;
some of the latter are shown in Fig. 26. With the exception of the stable laminar state
represented by the solid line with amplitude A = 0, these fixed points are generated in
saddle-node bifurcations, predominantly in the range Re = 200-375, and they are all
unstable with the exception of a single (modulo symmetry) stable state born in a saddle-
node bifurcation at Re ~ 220, that becomes unstable in a supercritical Hopf bifurcation
at Re ~ 393). These branches are qualitatively similar to those found by Schmiegel
(1999) for the full Navier Stokes equations, cf. Nagata (1990); Clever & Busse (1992).
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FIGURE 25. Performance of the 9-mode model measured by turbulent statistics with DNS
(solid) and model (dotted) shown.
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FIGURE 26. Branches of fixed points in the full phase space of the uncoupled 9-mode model. The
stable laminar solution is represented by the solid line at .A = 0. Conventions are as in Fig. 21.

4.4. Non-normality effects in the uncoupled models

As noted in §1, the linear operator in Eqn. (1.1) is non-normal; however, the constraints
among velocity components implicit in restriction to the first family of quantum numbers
n = 1 in the coupled models of §3 render the linear part of Eqns. 3.8 diagonal (and hence
very normal). The uncoupled expansion developed above restores non-normality, as may
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be seen by examining Eqns. (5.1-5.16). In Smith (2003) eigenvalues and e-pseudospectra, of
the linear part AUC of these equations are examined using the theory of Trefethen (1992).
As pointed out there, stable but highly non-normal operators with spectra lying close to
the imaginary axis are likely to have e-pseudospectra contours protruding into the right-
hand half plane, and as demonstrated in Trefethen et al. (1993) this is the case for plane
Couette flow at high Reynolds numbers, and for Poiseuille flow at Reynolds numbers
slightly less than the critical value 5772. This in turn implies that certain linear modes
can grow very large before eventually decaying, suggesting that small perturbations from
the stable trivial solution might trigger a (nonlinear) transition to sustained turbulence.

We found that e-pseudospectra contours for (5.1-5.16) do not penetrate far into the
right-hand half plane, indicating that non-normality does not play a large role in the
response of this system to perturbations. Nonetheless, we investigated the dynamical
effects of non-normality via numerical simulations, samples of which for @ = 0 and
a = 0.22 are given in Figs. 27-28.

In the upper panel of each figure we follow the prescription in Baggett & Trefethen
(1997) § III, setting

a”“(0) = C(apax + 0.1 " 1), (4.19)

where a{Gy is a unit vector aligned with the most linearly unstable direction asso-

ciated with AUC found through maximisation of (d/dt)||etA” alSy|| at t = 0 sub-
ject to the constraint ||[afGx|| = 1. Obtaining this via the eigenvalue decomposition of

AVC 4+ (AUT indicates that ajGy may be chosen to align with the a%i[g] directions.
This is unsurprising in light of the discussion at the beginning of §4.3.2, where we noted
that the A, , linear term leads to linear instability of the laminar state, absent a model

for losses to neglected modes. As noted in §3.2, the modes a(()f()) and agiQ span an invari-

ant subspace in the coupled model; the span of a(()f()] and agi[il,’z]

is likewise invariant for
the uncoupled model. Hence the random vector agaﬁl qin (4.19) is added to ensure that
the system does not remain in this invariant subspace. In the lower panel of each figure
we do not include a{%y and choose our initial condition vector solely at random.

The results in Figs. 27-28 are representative of those found over many runs. In de-
scribing them we shall refer to “amplification factors”, which we define to be the max-
imum of ||aV“(#)||/||aV“(0)||. The initial amplification is certainly greater in the upper
panel in each case (approximately 2.6 and 1.4 for @« = 0 and « = 0.22 respectively)
but all trajectories eventually decay, with the exception of the two cases a = 0 and
|a¥¢ (0)|| = 1.0,10°5. In contrast, while the initial amplification is lower for the random
initial data of the lower panel (1.4-2.1 for « = 0 and 1.0 for a = 0.22), more of these
trajectories converge on the periodic orbit described in §4.3.2.

We thus conclude that, while non-normality may result in a modest amplification
of suitably aligned initial conditions, this alone is generally insufficient to guarantee
transition to the “turbulent” state. Indeed, the boundaries of the domains of attraction
of both the trivial solution and the periodic orbit are likely to be complicated sets within
the full phase space, and amplification in any one direction need not necessarily cause
transition. Indeed, Eckhardt and colleagues (Schmiegel & Eckhardt (1997); Eckhardt
& Mersmann (1999)) have shown that the full Navier Stokes equations (1.1) exhibit
apparently fractal domain boundaries. With this in mind, it is unclear what linear analysis
of the trivial state, normal or not, can reveal about transition.

The simulations with varying initial data uncover one other interesting feature of the
uncoupled model. As Fig. 28 indicates, for a = 0.22 most trajectories with initial con-
ditions [[a¥“(0)]| = 10°° either decay “smoothly” to zero or converge on the periodic
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FIGURE 27. Transient behaviour of the 9-mode uncoupled model in the real subspace, with
|a¥ (t)|| plotted for solutions to (5.1-5.16) with Re = 400 and a = 0. Initial amplitudes are
given set to ||a’ (0)|| = 1072%, 1072, 10715, 1071, 107%5, 1, 10°°. In the top panel the initial
conditions are set according to (4.19), whereas in the bottom panel they are generated from
purely random data.
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FIGURE 28. Transient behaviour of the 9-mode uncoupled model in the real subspace, with
|a¥€ (t)|| plotted for solutions to (5.1-5.16) with Re = 400 and a = 0.22. Initial amplitudes are
given set to |[a’C (0)|| = 10725, 1072, 10715, 1071, 107%5, 1, 10%°. In the top panel the initial
conditions are set according to (4.19), whereas in the bottom panel they are generated from
purely random data.

orbit of Fig. 22, but a few initial conditions display long-lived transients, as illustrated
in Fig. 29. Here the upper panel shows [|aV“(¢)|| on a normal Cartesian scale and in
the lower panel we reconstruct the RMS modal velocities of (4.15). The behaviour is
strikingly similar to that of the RMS modal velocities for the DNS (cf. Fig. 2) for several
thousand time units, before collapsing the origin rather abruptly. This is reminiscent of
the observed behaviour of numerical simulations of PCF in cases in which the spanwise
dimension has been reduced to a value too small to sustain turbulence, e.g. as in HKW
Fig. 20. We observed similar behaviour in our DNS simulations of the standard MFU
domain for various initial conditions before arriving at the sustained behaviour of Fig.2.
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FIGURE 29. Transient behaviour of the 9-mode uncoupled model in the real subspace. ||a(t)|| for
solutions to (5.1-5.16) with Re = 400 and o = 0.22. Initial amplitude is set to ||a¥“ (0)|| = 10%5.
In the top panel ||a”“ (t)|| is plotted, while in the bottom panel we reconstruct the RMS modal
velocities according to (4.15). This is to be compared with the behaviour in Fig. 22.

5. Conclusion

We open this concluding section with a brief survey of other low-dimensional models
of shear-driven instability and turbulence, and then go on to summarise the principal
contributions of this paper.

5.1. Waleffe’s models

Waleffe proposed two models of turbulent PCF in the papers Waleffe (1995a,b, 1997)
that followed HKW. Both are 4-dimensional quadratic ODEs of the form:

U At 0 0 —OuW Oy U
d v 1 Ay 0 0 OpW 0 v
da|l w | Re AW + OpW —O,W 0 —opmw w
m A — O, —ouv 0 oW 0 m

where the variables (u, v, w, m) respectively represent the amplitudes of spanwise modu-
lation of the streamwise velocity, of the spanwise rolls, of an inflectional streak instability,
and of the mean shear. Explicit expressions for the spatial fields of these modes are not
given.

Waleffe (1995b) sets the parameters to [0, Oy, 0y, 0] = [0,1,1,0.5] and [Am, Ay, A, A
= [-10,—10, —10, —15]: this guarantees that the laminar state (u,v,w,m) = (0,0,0,1)
is stable for all values of Re, and the bifurcation behaviour of (5.1) is then as follows.
A saddle-node bifurcation of fixed points occurs at Re = 98.6325, creating stable and
unstable steady solutions. The lower branch is unstable for all moderate values of Re;
the initially stable upper branch becomes unstable in a supercritical Hopf bifurcation at
Re = 100.0232 and the resulting periodic orbit remains stable until it disappears in a
homoclinic bifurcation at Re = 101.0311. The laminar state is the only stable attractor
in the range 101.0311 < Re < 356, after which another stable periodic orbit appears in
a second homoclinic bifurcation, remaining stable until it vanishes in a third homoclinic
bifurcation at Re ~ 435: a time series for this periodic orbit at Re = 400 is shown in
Fig. 30(a). Given the definitions of u and v above, one might infer that the RMS modal
velocities associated with (5.1) can be expressed (in terms of (2.1)) as v ~ M(0,1) and
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F1GURE 30. Behaviour of the periodic orbit of (5.1).

u ~ M(1,0), in which case these would be in phase rather than antiphase, as in the MFU
of HKW (cf. Fig. 2): alas, a periodic orbit alone does not a good model (for PCF in the
MFU) make.

A similar model is considered in Waleffe (1997), which attempts to put (5.1) on firmer
footing. Waleffe begins by considering sinusoidal shear flow — a channel subject to sinu-
soidal forcing with free-slip at the bounding walls — which is related, but not identical, to
PCF. This (artificial) flow has the advantage that elementary trigonometric basis func-
tions exist, yielding ODEs with analytically-determined coefficients. Waleffe projects the
Navier Stokes equations onto eight (real) modes, and then imposes constraints among
modal amplitudes to reduce first to a 5- and ultimately a 4-dimensional model. Al-
though the rationale for these constraints seems unclear, the final result is a model
“derived” from Navier Stokes, with parameters [0y, 0y, 0y, 0] = [0.31,1.29.0.22,0.68]
and [Am, Ay, Ay, Aw] = [2.47,5.20, 7.67,7.13]. The most significant difference between this
model and that in Waleffe (1995a,b) is the inclusion of a nonzero o, term, representing
interaction between the mean shear and the streak instability. Waleffe (1997), p.894, then
notes that “... an unstable limit cycle is generated ... for the parameter values of interest”.
This observation is supported by Dauchot and Vioujard’s study of the system (Dauchot &
Vioujard (2000)), in which Fig. 2 shows a saddle-node bifurcation which gives two unsta-
ble fixed points; one of these subsequently gains stability in a subcritical Hopf bifurcation
in which an unstable periodic orbit branch appears. Dauchot and Vioujard discover re-
gions of parameter space for which either no Hopf bifurcation occurs or a subcritical Hopf
bifurcation occurs, yielding unstable periodic orbits. Nowhere is it claimed that the Hopf
bifurcation is supercritical or stable periodic orbits exists, and parameter ranges in which
the homoclinic bifurcation of Waleffe (1995a,b) might occur are not identified. Waleffe
(1997) ends by quoting his previous stable periodic orbit, which does not exist for the
parameters derived in Waleffe (1997), and (Waleffe 1997, Fig. 13) shows “some possible
dynamics” for the four dimensional model. Thus, while (5.1) contains ingredients that
can result in a regeneration cycle, parameter values for which this occurs do not seem
derivable from fluid physics.

5.2. Models of the Universitdt Marburg group
Several low-dimensional models inspired by PCF have been considered by B. Eckhardt’s
group at the Universitit Marburg, as detailed in Eckhardt & Mersmann (1999); Schmiegel
& Eckhardt (1997); Schmiegel (1999). As in Waleffe (1997), these models were also con-
structed for sinusoidal shear flow. The most interesting among them have 9 and 19 de-
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grees of freedom, and both exhibit transitional behaviour similar to PCF. In Eckhardt &
Mersmann (1999) the evolution of perturbations for the 19-mode model is displayed in a
plot similar to those of Figs. 27-28 above (although the critical perturbation amplitudes
differ greatly). Similar information for the 9-mode model, which is essentially the 19-
mode model restricted to an invariant subspace, is presented in three-dimensional form
in Schmiegel (1999). In both instances, the fractal nature of the lifetime of perturbations
is investigated; something which we did not address in this paper.

Various stationary states appear as Re is increased in the 19-mode model, the first
in a saddle-node bifurcation at Re =~ 190. This is similar to full Navier Stokes results
for PCF in Nagata (1990); Clever & Busse (1992) (Re = 125), and also to the present
uncoupled 16-mode model of §4.3 (Re = 195: Fig. 26). In Schmiegel (1999) it is concluded
that these stationary states have no dynamic significance, and instead it is collections of
unstable periodic orbits which lead to the transition to turbulence by means of a “chaotic
repeller.” This contrasts with evidence that PCF turbulence arises through stationary
states and heteroclinic orbits among them, also presented in Schmiegel (1999). We recall
that in Moehlis et al. (2002) we also found, for the moderate aspect ratio domain, various
complicated dynamics deriving from heteroclinic connections among stationary states.
Schmiegel reasons that these low-dimensional models and the full PCF problem differ
due to boundary conditions (free-slip for the sinusoidal shear flow of the models, no-slip
for PCF). Eckhardt et al. (2004) also finds that collections of unstable periodic orbits
are associated with a chaotic repellor and turbulence for a different 9-mode model for
sinusoidal shear flow, which generalizes the 8-mode model of Waleffe (1997).

5.3. Summary of the present results

We believe that our attempts to model plane Couette flow in the Minimal Flow Unit have
been a qualified success. We have examined two models in depth, one constructed from
six and the other from nine POD modes. At Reynolds number 400, the 6-mode model
has simple travelling waves with amplitudes that well-approximate the corresponding
average DNS quantities. Since the POD is a dynamics-blind, statistical technique one
might conclude that this is the best that can be done. However, adding damping terms
to represent energy losses to neglected modes, the travelling waves were replaced peri-
odic orbits confined to (a rotation of) the real subspace that showed good qualitative
agreement with DNS statistics and quantitative agreement with DNS time-scales. Addi-
tionally, velocity field reconstructions analogous to those of HKW were also in agreement
with DNS fields, at least for perturbations riding on the laminar solution.

We then performed the first analysis of uncoupled POD models, suggested by Berkooz
et al. (1991) and independently by Waleffe (1995b). We found that the conjecture of Berkooz
et al. (1991) that the uncoupled models would retain “ghosts” of the coupled model
behaviour did not strictly hold true: the uncoupled 6-mode model gave unsustained be-
haviour; we could, however, relate this naive projection to the behaviour of the damped
coupled 6-mode model. We then found that the 9-mode truncation, which did not lead to
an interesting dynamic model with coupled modes, does yield a reasonable model when
the modes are suitably uncoupled. We were able to remedy the problem of instability of
the laminar state present in coupled models, and could also retain the cyclic regenera-
tion behaviour found in this model. We also examined the influence of non-normality of
the linear terms in the uncoupled model, finding that while it did weakly determine the
initial response to perturbations, it is a poor indicator of whether the perturbations lead
to “transition” to the non-trivial state, or collapse to laminar flow.

In both the 6-mode coupled and 9-mode uncoupled models, the attractor most relevant
to the regeneration cycle is a standing wave periodic orbit. The projection of this onto
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the three dominant modes ((1,0,0), (1,0,1) and (1,0, 2)) reveals that it involves a cyclic
transfer of energy among the mean flow ~ (1,0,0) (Fig. 5) and streamwise-invariant
vortical structures with differing cross-stream scales ~ (1,0, 1), (1,0, 2) (Fig. 6). However,
although these three modes capture 93.5% of the energy on average, at least three further
modes (albeit containing less than 1.3%) are required to sustain the dynamics; notably,
these include the streamwise-varying (1,1,0) and (1,1,41) modes. The most striking
qualitative deficiency of both models is their inability to reproduce the irregularity of
the regeneration cycle, which appears in projections onto the (1,0,1) and (1,0, 2) modes
as a rapid radial oscillation precessing slowly in the azimuthal direction (cf. Figs. 8
and 13, righthand panels). However, in studies of the 0:1:2 model (3.10) we have found
combinations of parameters A4,, ,, at which standing waves and modulated traveling
waves coalesce in “branch-point” bifurcations, giving a potential for such behavior (Smith
et al. (2004)). Hence these three dominant modes, suitably damped and excited by a
model for the neglected modes, might capture the regeneration cycle both qualitatively
and quantitatively.

The moral of this paper is that low-dimensional modelling is an imperfect science or,
perhaps more properly, an art. While the POD necessarily yields sets of modes that con-
tain the majority of the average turbulent kinetic energy, it is a rather poor indicator of
which modes are essential to the dynamics. Despite this, through judicious selection of
model truncations and appropriate modelling of losses to neglected modes, one may use
this technique to construct convincing low-dimensional models, the components (ampli-
tudes and coefficients) of which derive directly from the Navier Stokes equations.
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Appendix: ODEs for the uncoupled model
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The 6nm,n, coefficients on the left hand side of the above ODEs result from the fact
that the uncoupled modes are no longer orthonormal, but are merely orthogonal.
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