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We model turbulent plane Couette flqRCPH by expanding the velocity field as a sum of optimal
modes calculated via the proper orthogonal decomposition from numerical data. Ordinary
differential equations are obtained by Galerkin projection of the Navier—Stokes equations onto these
modes. For a minimal truncation including only the most energetic modes having no streamwise
variation, we show under quite general conditions the existence of linearly stable nontrivial fixed
points, corresponding to a state in which the mean flow is coupled to streamwise vortices and their
associated streaks. When the two next most energetic modes, still lacking streamwise variations, are
included, chaos and heteroclinic cycles associated with the fixed points are found. The attractors
involve repeated visits near unstable fixed points and periodic orbits corresponding to steady and
periodically varying vortices, and account for a self-sustaining process in which vortices interact
with the mean flow. The models considered in this paper can also serve as a foundation for more
sophisticated ordinary differential equation models for turbulent PCF, including those which include
modes with streamwise variations. 002 American Institute of Physics.
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I. INTRODUCTION pairs® AHLS, and parallel work of Sirovich,led to a num-
ber of similar studies; see Ref. 7 for background and further
In 1967, Lumley (cf. Ref. 2 suggested that the proper citations.
orthogonal decompositiofPOD) could be used to extract In this paper, we consider a simpler problem than the
energetic, and hence presumably dynamically relevant, cdully developed turbulent boundary layer: Plane Couette flow
herent structures from turbulent velocity fields. However, thegPCH at a relatively modest Reynolds number. PCF has
two-point velocity correlation tensors required for the deri-many interesting properties, includin@) linear stability of
vation of the empirical basis functions of the POD demandhe laminar state for all Reynolds numbde® (ii) the ex-
the collection of large amounts of data, and not until theperimental observation of turbulence for sufficiently high
1980's did experimental and computational techniques deand/or perturbation amplitudésand (iii) the existence of
velop to the point at which this remarkable idea could flour-unstable finite amplitude solutions consisting of streamwise
ish. Working with hot film anemometry, Herzbgrovided vortices and streaks which do not bifurcate from the laminar
turbulent boundary layer data which Aubey al? (hereafter ~ state!°~*? While progress in understanding these and other
AHLS) used to create a low-dimensional model of the wallproperties of PCF turbulence has been made through experi-
region by projection of the Navier—Stokes equatioNSE) ments and the numerical study of the NSE, ordinary differ-
onto empirical subspaces, following modeling of the meargntial equationfODE) models have provided additional in-
(spatially averagediow and use of a Heisenberg-type model sight. For example, the models reviewed in Ref. 13
to account for energy transfer to neglected modes. Thi€mphasize non-normality of the linearized Navier—Stokes
model captured aspects of the experimentally observed eje@perator, proposing that the resulting transient growth of per-

tion and bursting events associated with streamwise vortefdrbations may trigger a nonlinear transition to turbulence.
Weaknesses of such models are that they are not derived in a

systematic way from the NSE, and in fact often violate basic
dAuthor to whom correspondence should be addressed. Telephone:y y

609-258-2958: fax: 609-258-6109: electronic mail- nonlinear properties of the NS The model considered in
pholmes@rimbaud.princeton.edu Refs. 15 and 16Gfollowing previous work in Refs. 14, 17,
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and 18 views the turbulent state as being related to a nonpresent models apply to themtire channel and thus not only
linear “self-sustaining process” involving streamwise rolls, describe boundary layer dynamics, but also include modal
streaks and their instabilities, all feeding off the mean flow;interactions characteristic of the full channel. Moreover, in-
see also Ref. 19. Stable fixed points or periodic orbits for thelusion of the entire domain eliminates the pressure forcing
model are associated with the turbulent state. A relatederm required in AHLS.(Zhou and Sirovicf?® also used
higher-dimensional mod®&t?® captures the existence of full channel POD modes, but with a wall-weighted norm, to
many unstable finite amplitude solutions, and suggests thatxtract a boundary layer model, cf. Ref. 7, Sec. 11Sec-

the transition boundary is characterized by a chaotiond, PCF has amexactlaminar solution, whoséconstant
repelle! Note that the models in Refs. 12, 15, 16, and 20shear can act as an energy source for turbulence. We allow
are for sinusoidal shear flow, which is related to but notthe mean of perturbations to this laminar solution to evolve
identical to PCF. under the NSE rather than modeling the turbulent mean as in

While these ODE models successfully capture variousAHLS. Finally, the governing equations for PCF enjoy more
aspects of the PCF system, the description of the sustainegpatial symmetry than those for the turbulent boundary layer.
turbulent state as a fixed poittorresponding to steady fluid These symmetries, plus the fact that the nonlinear terms con-
flow) or a periodic orbit(corresponding to periodic fluid serve energy, constrain the projected ODEs, permitting
flow) is undoubtedly too simple. In this paper, we use thechecks to be performed on the resulting models, and simpli-
approach described in AHLS to suggest a more sophisticateffing their analysis.
characterization of the sustained turbulent state. In particular, In applying the POD and projection method to one of the
we investigate in detail the interesting possibility, suggestegimplest nontrivial shear flows, we hope to provide a critical
for PCF in Refs. 12 and 22 and partially demonstrated for th@ssessment of the method by making direct comparisons of
turbulent boundary layer in AHLS and Refs. 23, 24, thatmodel predictions with direct numerical simulati¢BNS)
fully developed PCF turbulence might be related to heteroand experimental results. In this first paper we confirm that
clinic connections among unstable, ordered structures in theelatively high[O(600-1200-] dimensional projections can
flow, such as streamwise vortices. This nicely resolves theapture the observed modal energy budgets and provide ac-
paradox that streamwise vortices are observed “on averagegeptable short-term tracking of individual solutions, and we
and hence are represented among the leading empiricahow that very low O(2-10-] dimensional models can re-
eigenfunctions, both in the boundary la¥érand in the veal qualitative mechanisms by which low Reynolds number
present study, even though they are ostensibly linearly urturbulence is sustained and cross stream length scales are
stable due to the inflection-point shear profiles they induceselected. We find that the detailed behavior depends in a
Repeated visits to the neighborhoods of unstable sets aresaibtle manner on the modes included in the truncation, and
necessary consequence of heteroclinic cycles. that a proper account of the symmetries of the system is

Specifically, using well-resolved data for the turbulentcrucial.
state obtained from numerical simulations, we perform a  We begin by giving the governing equations for PCF and
POD which identifies an energetically dominant set of em-discussing their symmetries in Sec. Il. Sec. Il describes the
pirical eigenmode$‘POD modes”) from the data. We then POD modes derived from turbulent PCF data. In Sec. IV,
construct models by Galerkin projection of the NSE ontoafter verifying that high-dimensional models of turbulent
finite-dimensional subspaces spanned by the domina®CF derived using the POD and Galerkin projection of the
modes; this yields ODEs for the evolution of the modal am-NSE can accurately reproduce the flow properties, we de-
plitudes. After verifying the validity of this procedure by scribe results for two different classes of low-dimensional
examining truncations which retain a large number of termsmodels. We summarize our results in Sec. V.
we consider low-dimensional models; because the modes op-
timally represent the cumulative kinetic energy, it is hoped
that these low-dimensional models will capture important asy;. p| ANE COUETTE FLOW: EQUATIONS AND
pects of the turbulence. In studying the low-dimensionalsyMMETRIES
models, we pay particular attention to symmetries of the PCF
system and their implications for the ODEs. Our analysis In PCF, fluid is sheared between two infinite parallel
suggests that heteroclinic cycles and chaos are important cdplates moving at speed,, in opposite directionstg,. The
relates of sustained turbulence. Note that the model in Ref, Y, z directions are defined to be the streamwise, spanwise,
12, 15, 16, and 20 are also obtained through Galerkin proand wall normal directions, respectively. We nondimension-
jection of the NSE, but they use elementdand nonopti- alize lengths in units ofl/2 whered is the gap between the
mal) trigonometric bases. plates, velocities in units dfy, time in units of @/2)/Ug,

As in AHLS, the modes included in the present studyand pressure in units digp wherep is the fluid density.
lack streamwise structure. While this is clearly restrictive, weLaminar flow is then given bY,=2ze,, —1<z<1. Writing
believe that it is a useful starting point for understandingu= (U1,Uz,Us), X=(X,y,z), the evolution equation for the
models which include streamwise variatiofiBor example,  perturbationfu(x,t),p(x,t)] to laminar flow is
Sec. IV of Hamilton et all’ uses “zeroed” streamwise 9 1
modes to investigate the effect of vortices on the turbulent —u=—(u-V)u—z—u—uze,—Vp+ =—V2u, (D)
mean) Moreover, there are important differences between X Re
the present models and those considered in AHLS. First, thethere the Reynolds numb&e is defined by
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The fluid is assumed to be incompressible, i.e.,

V-u=0, ©)

Models for turbulent plane Couette flow 2495

Ill. POD MODES FOR PLANE COUETTE FLOW
A. The POD procedure

Details of the POD procedure are described in Ref. 7;
here we summarize key aspects. The POD modes
=(®,,P,,d;) are chosen to maximize the average projec-

and there are no-slip boundary conditions at the plates, i.eion of the perturbationu=(u,,u,,us) onto each mode.

U, +1=0. @

Finally, the flow is assumed periodic in the streamwise and

spanwise directions, with lengths =47 andL =2, re-

spectively, following Refs. 10—12. We denote the domain 0

sXsL,, OsysL,, —1sz<1 by Q.

First, we define the inner product on the space of velocity
fields[L2(Q)]° as

19=3, [ [ [ riogtoes

where the subscripts identify components of the functions

Equations(1) and (3) along with the boundary condi- and* denotes complex conjugation. The POD modes are

tions are equivariant with
symmetrie$

P'[(Ul,UZ,Ug,p)(X,y,Z,t)]

=(—Ug,— Uz, — Uz, p)(—X,—Yy,— 1), ©)
R-[(ug,uz,uz,p)(X,y,2,1)]

=(Ug,—Uz,U3,p)(X,—Y,Z1), (6)
RP-[(ug,uz,u3,p)(X,y,2,1)]

=(—Ug,Up,—Uz,pP)(—X,y,—Z1), (7)
Taxay-[(Ug,uz,uz,p)(X,y,Z,1)]

=(Uq,Uy,Us,pP)(X+AX,y+Ay,z,t). 8

Equivariance means that if there is a solutigix,t) to (1),
then the solution obtained by acting ofx,t) with any prod-
uct of the actions given in Eq$5)—(8) will also be a solu-
tion. For example, if

(Ul(X,y,Z,t),Uz(X,y,Z,t),U3(X,y,Z,t),p(X,y,Z,t))

solves(1), then so does
(ul(X,—y,Z,t),—uz(X,—y,Z,t),

UB(X! _y,Z,t),p(X, _y,Z,t)) .

Physically,P is a point reflection aboutx(y,z)=(0,0,0),R
is a reflection about the plane=0, RP is a rotation by
about they axis, and7,, ,, is a translation byAx in the
streamwise direction and hyy in the spanwise directior?
and R generate the four element grodld,P,R,RP}, iso-
morphic to the abstract group,Osee, e.g., Ref. 27 The
group generated bfR’P and translations in the direction is

0(2)=Z,(RP)X S}(7,,) where X denotes the semidirect

respect to the following chosen to maximize the average projection of the perturba-

tion u onto each mode; specifically, we seek functions
®(x) e[L?(Q)]® such that the quantity](u,®)|2)/[|®||? is
maximized, wherd-|=(-,-)¥? and(-) is an(ensemble or
time) averaging operation. This leads to the eigenvalue prob-
lem

3
> fjf(ui(x,t)uf(x’,t)ybfﬂ)n(x’)d3x’
=1 Q X'y

=\ @0, (0, =123, ©)

where the “quantum numbersie Z*, and wave numbers
ny,ny e Z distinguish different POD modes. The eigenvalue
A" “is twice the average kinetic energy in the POD mode

Yy
<I>§”X)ny [see(14) below]. The (orthogonal POD modes will be
normalized so that

(n) (n")\ _
(CI)any ,CDn;n;) = Snny 5nxn)’( 5nyn)’/-

The POD modes are optimal in the sense of capturing,
on average, the most kinetic energy possible for a projection
onto a given number of modes. In applications one is typi-

cally only interested in POD mod&ﬂ;)ny with strictly posi-
tive eigenvalueaf{}y. While these do not form a complete

basis, almost every member of the original ensemble used to
obtain the POD modes can be reproduced by linear combi-
nations of the POD modes; moreover eablf, inherits

linear properties from the ensemibla®}, such as incom-
pressibility and boundary conditions. Finally, we note that
the POD procedure can be formulated for other inner prod-
ucts(e.g., Ref. 28 allowing the computation of POD modes
which optimally represent quantities other than the kinetic
energy.

product, and the group generated®yand translations in the B. Application to plane Couette flow

y direction isO(2)=ZZ(R)D<Sl(TAy). Altogether, the gov-
erning equations are equivariant with respect to the direcll_;,O

product of these groups, i.6),(2)X 0O(2). We note that the

boundary layer of AHLS shares ongpmeof the symmetries
of the PCF system: It lack® and PR and altogether has

O(2)xS' symmetry, whereO(2)=Z,(P)xS'(7,,) and

We expand the perturbation velocity fieldin terms of
D modes as

uxh=> > 2 af e (x), (10)
n=1 ny=-—o ny=—o= Xy X'y

St=S!(7,,). We will use the symmetries in our application Where the amplitudeaﬁ,z)ny are complex unless,=n,=0, in
of the POD procedure to create a basis endowed with theshich case they are real. Note that the vector-valued func-

appropriate symmetries.

tions ¢§12)ny effectively couple all three components of the
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velocity field; this has implications to which we shall return. tion are accounted for by the Fourier decompositia).

Translation symmetry ix andy implies optimality of the
Fourier decomposition in these directiéns

(n)
‘D(”)n( X) = (Z_() 277.( » + Lyyy)) (11)
Complex conjugating9) and using(11) gives
P, (D)= BTNy (2). (12
Sinceu is real,(10) then implies that
aph (D=alr_, (1), (13
We also note that
)\(ﬂ) _<|a(n) |2> and <a(n) a(k)*> 0,
unless k=n,k,=n, ,k,=ny . (14

The DNS velocity data is computed in the form

u(x,t)= 2 exp 2mi —+ Ly))F(nx,ny;z,t),
NNy LX Ly
(15)
and reality ofu implies that
F(—ny,—ny;z,t)=F*(ny,ny;z,t). (16)

Substituting Eqs(15) and (11) into (9), integrating overx’
andy’, and Fourier transforming ir andy, we obtain

3
1
LXLyJZl fﬁl<Fi(nX,ny;z,t)F}‘(nx,ny;z’,t))

X i (21)dZ =\ ¢, (2). (7

We now consider computation of the kerd@;F}) of
(17). The data are not given for continuoysbut rather as a
series ofsnapshotat discrete times,

u®(x)=>D exp 2i

nny

L ,_yj))F(k)(nx,ny;Z),
(18

whereu® is the kth snapshot ofs, and F¥ is the corre-
spondingkth snapshot of. One might be tempted to take

Lx

(Fi(ng,ny;Z,H)Ff (ng,ny;2',1))

T
1
= _2 Fi(k)(nxany;Z)F](k)*(anny;Z/),

19
) (19

The kernel obtained by averaging over the remaining sym-
metry group B={ld,P,R,RP} is given by

(Fi(ng,ny;Z,H)FF (ng,ny;2',1))

T/

2 > vFOn,,ny;2)

=1 yeDy

><7-F(")*(nx,ny;2’)

1
Efz F(n Ny i2F % (n,nyi2), (20

where the set of snapshots is extended in the obvious way to
give a total of T=4T' velocity fields. The actions of the
elements of B on theF™’s are given in Appendix A. Equa-
tion (17) thus becomes

3

'z)FJ(k)*(nx,ny;z’)

X iy (2)dZ =N} ¢, (2). (2D)
Numerical methods are used to sol\d) for the ¢'s, repre-
sented as vectors specifying values at discrete spatial loca-
tions. This can be accomplished by the method of snapshots
or by direct approximation of the integral using the trapezoi-
dal or Simpson’s rulé® Both methods reformulatel) as a
matrix eigenvalue problem which can then be solved numeri-
cally by standard methods, giving virtually identical results
for the plane Couette flow dataset. This was implemented in
FORTRAN90 using the LAPACK3* numerical linear algebra
package.

C. POD modes for plane Couette flow

POD modes were obtained using 1000 snapsihetfore
averaging over the P symmetry from a single well-
resolved DNS of turbulent plane Couette flowRx=400.
(This is just beyond the critical Reynolds numbBre,
=370+ 10 at which sustained turbulence arises through a
more natural transition, as opposed to transitions in response
to special perturbations) The code uses Fourier modes in
the streamwise and spanwise directions, and Legendre collo-
cation in the wall normal direction to produce the
F(ny.ny;z,t)’s of (15. Pressure terms were treated by a
Lagrange methodf-3¢

Table | shows the eigenvalues associated with the first
thirteen (sets of POD modes in decreasing order of eigen-
value magnitude. Here

where T’ is the number of snapshots in the original en-
semble. However, it has been pointed®atltat the symme-
tries of such systems can be used to enlarge the ensemble
size without having to solve the governing equations for new
initial conditions, and it was subsequently noted that, to obis the percentage of average total energy contained in the
tain bases which appropriately retain all symmetries of then,n,,n,) POD mode. Note that for consistency in a model
governing equations, it is in factecessaryto average over obtained by Galerkin projection of the governing equations,
orbits of the symmetry groufy.=? For the present system, if modes withn, are included, then modes with n, must
translation symmetries in the streamwise and spanwise dire@lso be includedsimilarly for n,). Since, for examplegach

el ~(A0, /3

y m,m, ,m

Aﬁn"x‘%y X100
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TABLE |. Eigenvalues for the POD modes.

(n,ny,ny) Nih, N NG WEN,
(1,0,0 8.9246 1.0000 57.47
(1,0%2) 0.5804 0.0650 3.74
(1,0+1) 0.2807 0.0315 1.81
(1,£1,+2) 0.0846 0.0095 0.54
(1,0%3) 0.0639 0.0072 0.41
(1,+1,+1) 0.0522 0.0058 0.34
(2,0%2) 0.0499 0.0056 0.32
(2,0+1) 0.0489 0.0055 0.31
(1,£1,+3) 0.0479 0.0054 0.31
(2,0+3) 0.0361 0.0040 0.23
(2,£1,+2) 0.0346 0.0039 0.22
(1,£2,+2) 0.0330 0.0037 0.21
0.0325 0.0036 0.21

(1,0x4)

of the (1,0,2 and (1,0;-2) modes account for 3.74% of the

2497

Models for turbulent plane Couette flow

FIG. 2. Flow fieldsu associated with théa) (n,n,,n,)=(1,0,1) and(b)
(1,0,2 POD modes. The vectors show the spanwise and wall normal com-
ponents of the velocity, while the darftight) shading denotes positive
(negative streamwise velocity.

average total energy, together these modes account farandz components are even and thecomponent odd, or

7.48%.

that thex andz components are odd and tlgecomponents

Following AHLS, the ODE low-dimensional models even undez— —z. The (1,0n,) POD modes consist of,
considered in this paper will only involve projections onto (spanwisg pairs of streamwise rolls and associated streaks,
POD modes lacking streamwise variatidns., with n,=0);
here we briefly describe the structures of such modes, devith n>1 andn,#0 have multiple layers of streamwise
rived via careful analysis of the symmetri€¢s)—(8). The
(n,0,0) modes can be taken to be purely real, and nonzero The eigenvalues succeeding the five leading entries of
onlyin thex or they component, and are either odd or evenTable | remain almost flat as n, ,n, increase, so criteria for
underz— —z. The(1,0,0 mode contains over ha{b7.47%
of the total average energy, and, as shown in Fig. 1, approxipurely energetic. In Sec. IV we use the modal interaction
mates the experimentally and numerically observed meastructure determined by the symmetries of&{%’ in choos-
turbulent velocity profile with higher velocity gradient near ing specific truncations. Y
the walls and lower gradients toward the ceritet: the re-

maining (,0,0);n=2 modes contribute only 0.7%
mean. Thex andz components of;sg?])y

generality be taken to be real, with tgecomponent purely

henceforth called “roll modes{see Fig. 2 (n,0,n,) modes

vortices and streaksee Fig. 3.

inclusion of modes in low-dimensional model cannot be

It is not surprising that streamwise vortices and their

to this associated streaks are important coherent structures for tur-

can without loss of

bulent PCF. As mentioned in the Introduction, such struc-
tures have been found numerically as unstable steady solu-

imaginary*® Also, symmetry arguments show that either thetions of the NSE°~2 (these finite amplitude solutions have

@

b |

L L L
0.4 06 0.8 1

2+ /A 2i0p

FIG. 1. (a) Thex component of the POD modg{Y) . They andz compo-

nents are equal to zerth) The velocity profile obtained by adding this POD
mode with its r.m.s. amplitudg\ (5= \{[al5(t)[%) [cf. (14)] to the laminar

some variation in the streamwise direction, but nonetheless
have a strong resemblancerig=0 POD modes, which can
be seen as streamwise-averaged versions of)tHEmey can

be stabilized by spatially forcing the flow with a stationary
wire or bead®*® They are also involved in the self-

0 1 2 B 4 5 s Y

stateUy=2ze, . This lies within 0.7% of the mean flow obtained from the full FIG. 3. Flow fieldsu associated with théa) (n,n,,n,)=(2,0,1) and(b)
DNS ensemble averagdotted curve, barely visibje

(2,0,2 POD modes.
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sustaining process elucidated in Refs. 14, 15, 17, and 1&onditions on thé8’s arising from the fact that the nonlinear

although there, separate modes are associated with rolls apskms in the Navier—Stokes equations are energy-conserving.
streaks. Here the relative roll and streak magnitudes are fixegpecifically

by each vector eigenfunctiaﬁﬁ,’l)ny(z), but the ODEs of Sec.
IV permit scale selection and roll and streak adjustment viaf J J u-(u- Vuyd3x
dynamical interactions among the modal amplitudes @

agz)ny(t). In the following section, we derive models which ) ,
determine dynamical interactions of such streamwise vorti- :J J JQU(V(EU'U)_UX(VXU))CJ X
ces.
=f j J V- ((u-uyu)d3x
Q

IV. LOW-DIMENSIONAL MODELS

zf f (3u-u)u-AdS=0, (24)
Inserting (10) into (1) and performing a Galerkin aQ
projectiorl we obtain an infinite set of ODEs of the form  where we have used vector identities, the facts thau
. X(VXu))=0 and V-u=0, and the divergence theorem.
A(K) — A (k,n) 5 () The surface integral vanishes from the no-slip boundary con-
8 ky ngl Akxky akxky+[N(a'a)]kkxky’ 22 ditions atz=+1 and periodicity in thex andy directions.
Using (10), it can be shown that Eq24) is equivalent to

© ) oo

. (K* N\ _ 5
(N2l = > BT Al al o o 2 2 2, Al IN@ T, =0 @9
m,n, X X X X X!
my,my Equation(25) and the symmetrie@3) provide checks on the
_ B nonlinear coefficients: in all cases we have found (B8} is
k=1,2,.., kx,ky—...,—Z,— 1,0,1,2,.... satisfied to 0.01%.
Finite dimensional models are obtained by truncati2g). The ODEs(22) are similar to those of the turbulent
TheA’s andB’s are calculated from integrals of products of boundary layer problem in AHLS. However, there are sev-
components of POD modes and their derivatives; explici€ral important differences. In AHLS, in place tl=ze,,
expressions are given in Appendix B. Equatids) implies the analog of1) involves a spatially averagdt-dependent

that we need only explicitly include approximately half of Mmean turbulent velocity; this was modeled as a balance be-
the variablesa(k‘j( . Note that theA’s containRe as a param- tween the effects of pressure and those of the coherent struc-

) q imal B but th tures, giving cubic terms in the ODEs. No such modeling is
eter; our POD modes amptimal at Re=400, but the NSE o4 jired here: The nonlinear terms derive directly from the
can be projected onto them fany Re

o . NSE and then,=n,=0 modes represent turbulent modifica-
Through multiplication by appropriate complex con- ti?ns to the mean, cf. Fig. 1. Second, the contribution from
stants, the POD modes may be chosen so that the actions e pressure term at the outer edge of the wall layer was

tEe g_rou:J ilements given {%)—(8) on the amplitudes take modeled as stochastic forcing in AHLS; here, it makes no
the simple forms contribution because of the divergence-free expan§l@h

Pag), ()—=al) (1), and no-slip and periodic conditions at the boundarieQdf
X x Third, in AHLS an eddy viscosity parameter was included to
R;agn)ny(t)_) +al" ny(t), account for energy trans_fer to neglected mo(iasf_act,_this
x X was treated as a bifurcation paramgteuch modeling is not
RPal (H—=+a (1), (23)  included at this stage, arle is treated as the bifurcation
Xy xy parameter. Finally, in AHLS the ODEs are equivariant under
/TAx:agn)n (t)ﬁeinxaﬁxagn)n (1), 0(2)x S here, the additional reflection and rotation sym-
“y “y metries noted in Sec. Il make the ODEs equivariant under
Q-Ay:ag}y(t)ﬂeiny%ag}y(t)_ 0(2)x0(2), with actions as given above i(23), further

constraining the modal interactions.
Here the choice of- depends om,, ny, andn in an em-
pirically determined fashion, and¢,=2mwAXx/Ly,¢p, A. High-dimensional models, tracking, and energy
=27Ay/L,. The ODEs(22) will be equivariant with re- budgets

;pect to these group ilctions, L.e., writifp) asa:f(ahig To confirm the validity of the POD and Galerkin proce-
is necessary thdt(ya) = yf(a) for all ye O(2)x0(2). dure to derive models for turbulent PCF, we first consider

This can be interpreted as ””?‘.“”9 the nonzero term_s Whichyncations which retain a large number of terms, specifi-
appear in(22). Also, by exploiting symmetry properties of cally: All modes with|k,|+|k,/<6 and I=k<K, with K
the POD modegspecifically, oddness or evenness of com-_ g (resp.K = 15), corresponding to eight real and 336 in-

(n) _ i
ponentsdin. n, underz— —2), it can be shown that more of yonandent complex modéesp. 15 and 6301n both cases,
the A’s and B’s vanish identically. Finally, there are further these modes include over 99% of the average total energy.
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TABLE IlI. Coefficients for Egs(26) and (27) for N,=6.

(1)

a
00 j Al A B,
0 e 11.4349 e

1 0.0688 5.5563 0.0117

2 0.1738 10.8038 0.0264

3 0.2218 15.3067 0.0325

4 0.2414 22.0804 0.0336

) 5 0.2324 30.2181 0.0339

R(ag’) 6 0.1968 41.0443 0.0289

B. Models with k=1 and k,=0

In AHLS, a ten-dimensional system of ODEs modeling
the turbulent boundary layer was derived and studied; that
model would correspond in the present notation to the trun-
cation of the analog 0f22) with k=1, k,=0, —5=<k,<5.
Inspired by the success of that model in capturing certain
e m  w e e w e m e ¢ features of boundary layer turbulence, we first cons{@ey

for the truncationk=1, k,=0, —Ny<k,<N,. For N =2
FIG. 4. Tracking performance for thaly , al}, anda{}) modes. Solid, this is the leading triad of Table I.
dash—dotted and dotted lines respectively show the DKIS8 and K Letting rozag%)e R and a&);,’jei 9, r=0 for j

=15 model results. =1,... ,Ny, we obtain

R(aly)

N

y
We project the DNS data to get modal time histories ; —a +2> B2 (26)
(k) . L 0 0'0 - q'q:
akxyky(t), and then integrate the models from the same initial q=1
conditions. Typical results are shown in Fig. 4, from which Fi=(A=Bjro)rj, j=1...N,, (27)
we see that good short-term tracking is achieved~dr0 .
(resp. 23 nondimensional time units; the time scales of these 6;=0, j=1,..N,. (28

modes also appear to be correctly reproduced. We note th
sensitive dependence on initial conditions precludes long
term tracking, irrespective of the order of truncation. Similar
results were obtained for all other modal coefficients. Ao=—Ag/Re, A=A/ —A//Re j=1, (29

The models were then integrated for 2000 time units, the

same duration as the DNS, and the value§af” , |?) com- Whe_re theA S, Aj’S andBg’s are positive(see Table 1 In
My particularA is always negative. For asymptotic behavior, at

pared. The results for the most energetic modes are given iy eq Re we need only consider modes wify>0; j=1
_Table II. We _observe rea_sonable agreement, improving as because(26) and positivity of theB,’s imply that ro<0
increases, with the possible exception of & mode. givesi,>0. Thus, eventually the system evolves to a state

In the following, we consider much more drastic trunca-\yith r >0, and then, from(27), modes withA. <0 asymp-
tions than these. While they necessarily neglect importan[rotica”y decay to zero. )

effects,_ including energy t.ransp.ort through higher modes, the Equations(26) and (27) have the trivial fixed poinP,
dynamics of such low-dimensional models can be undergefined byr;=0 for all j, corresponding physically to the

stood in considerable detail, and, as we shall see, they su@gminar state. Its eigenvaluds, A, ... Ay show that it is
gest that sustained PCF turbulence is associated with Chaﬁﬁearly unstable if anyA; is positive foryj>1 Equations
] =

and heteroclinic cycles in phase space. (26) and (27) also have nontrivial fixed point®, for |
=1,...N, defined byr;=(—AcA /(2B}))*% ro=A/B,,

TABLE II. Comparison of(|aj” , |?) values. andr;=0 for j#0,. [From(28), eachP, represents a circle

of fixed points in terms of the original amplitude§;’, cor-

?ferer, theA;’s, and theB,’s are real, and the former have
the forms

(n,ny,ny) K=8 model K=15 model DNS data : . . vl 7
responding to spanwise translatidf, of the velocity field]

(1,00 11.0205 8.8361 8.9246  The eigenvalues of these fixed points are

(1,0+2) 0.0928 0.3105 0.5804

(1,01) 0.1582 0.2842 0.2807 wD=(Ag+ (A3+8AA) )12, (30)

(1,£1,£2) 0.0662 0.0793 0.0846 - ) ] .

(1,0,£3) 0.0457 0.0795 0.0639  corresponding to perturbations in thiey(r,) plane, and

(1,x1,£1) 0.0667 0.0537 0.0522 N

(2,022) 0.0377 0.0449 0.0499 n=Aq—BA /B, q#0],

(20x1) 0.0281 0.0359 0.0489 corresponding to perturbations in tmg-direction. TheP,

(1,£1,+3) 0.0495 0.0569 0.0479 . . . ; :
fixed points represent states in which the mean flow is

coupled to streamwise vortices and their associated streaks.
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TABLE IV. Fixed point properties foN,=6. -r3: (Ag— B3ro)r3, (33
Fixed Pt Existence Stable range .
9 F4=(As=Byro)ry. (34)
Po all Re Re<62.16 o (4) (3)
P, Re>80.76 At the exchange of stabilityus”’=uy”’=0, so A3/B;
P, Re>62.16 62.16:Re<255.89 =A,/B,. At ro=A3/B3=A,/B,, we thus have ;=r,=0,
Ps Re>69.01 255.89'Re<517.30  and at this value of, =0 for
P, Re>91.47 Re>517.30
Ps Re>130.03 2B3r3+2B,ri=AgA;/B;. (35)
Ps Re>208.56

Thus, there are fixed points atro(ri,ro,r3,r4,rs,re)
=(A3/B3,0,0r3,r4,0,0) for allr; andr, satisfying(35): this
) ) is an (elliptical) arc of fixed points connectin@; to P,.
Such states strongly resemble those associated with stabdgmniiar behavior occurs at the exchange of stabilityRat

fixed points for the model considered in Refs. 15 and 16_ 55 gg. Only at such bifurcation values RE do multiple
Note thatr,>0 implies a “turbulent” mean flow profile g pie equilibria exist.

similar to that discussed in Refs. 37 and 38; cf. Fig. 1 above.  Note that. in view of(28), eachr;#0 fixed point actu-

We have the following general result: ally belongs to aircle of equilibria. Reference to Figs. 2 and
The system (26) and (27) with, A0 and A>0,8;>0 for 3 shows that this corresponds to families of streamwise vor-
j=1,...N, has at least one, and generically only one, lin- tices and streaks at arbitrary spanwise locations.
early stable nontrivial fixed point These “minimal” models suggest a simple interpretation
_ Stability is shown by induction. Supposé,=1. The  of the mechanism that sustains nontrivial behavior in PCF
fixed pointP; has eigenvalues ™) which both have nega- (we hesitate to call it turbulence in this contexecall that
tive real part. Now suppose for the truncatiorNgtthat there ro is the amplitude of thémodification to the mean flow
is a linearly stable nontrivial fixed point, s&( . The eigen- (), which, forr,>0, promotes the inflection-point pro-
values ofP aren), both with negative real part, and files observed in turbulent PQFig. 1), and that; ; j=1 are

,ugL)<0, 9=12,..L—1L+1,...N,. (31) thg amplitudes of thg modes containing streamwi.se vortices

) N . (Fig. 2. From Equation(26) we see that the collective mag-
F(()Lr)the truncation a,+1, P,_has an additional eigenvalue pjydes of the latter drive the former, which would otherwise
mny+1 - 1T this is negative ther is linearly stable and the - gecay. In turn(some of the roll modesr; are linearly un-
result follows, so suppose instead the{ty)+l> 0. The fixed  stable for smalt,, but excessive growth in, leads to decay

point Py ., has eigenvaluege™ " both with negative N therj [Eq. (27)], setting up a self-sustaining and self-
y +1) " limiting process, much as in the model of Waletfgl68

(N
real part, an y L
part, qu However, as shown above, for almost all coefflmeﬁpsBj

, d=1,... N, . By explicit computation

B. >0, the flow of Egs.(26) and (27) tends to a stable fixed
pl = —o——ul), <0, i = (A//B, . (—AoA /(2B2)¥2,0), wh
L By s1' NWF point at (o,ri,rq)=(A/Bi,(—AoAI/(2B[))"0), where
. y A I1B;>Ay/By for all g#0, [cf. (30)]. This is the unique
Finally, M(Ny)+ 1> 0 implies thatAy +1/By +1>AL/BL, SO attractor for the two-dimensional invariant subspace spanned
WL by ro andr,, and on which the dynamics are simply given
Aq_BqANy+l/BNy+1<Aq_BqAL/BL::U’q , by
and using(31), we conclude that 'ro=A0r0+ZB|r,2, Fi=(A—Bro)r. (36)
(Ny+1) _ _
' <0, q=1.2,..L=1L+1...Ny. Thus only the “least stable” roll mode remains active. As we
Thus, PNy+l is linearly stable. shal_l see, addition_ of_t_wo members of th_e S(_ecdthntum
As an example, consider Eq&6) and (27) with N, family of modes significantly enriches thls_ picture. _
=6, which captures 70.17% of the average total enéady It must be noted that these models incorrectly predict

beit omitting more energetic modes than some of those inthat the laminar stat®, becomes linearly unstable for suf-
cluded. The coefficients and fixed point properties are givenficiently high Re (as soon as the *first/A; becomes posi-

in Tables 11l and IV, respectivelyHere and henceforth, we {ive). This comes from a well-known limitation of POD-
specify coefficients to four decimal places: at this order th?@sed models: as discussed in Refs. 15 and 46 and noted in
“conservative” constrain{(25) is always satisfied. All of the S€c. Il B, models derived from sustained turbulent data us-
results which we report are robust to small changes in thes®9 the expansion(10) necessarily couple streamwise and
coefficients) The exchange of stability between tRg and ~ Cross-stream dlls.turbances,.leadlng to instability of the lami-
P, fixed points atRe=517.30 may be understood by con- Nar state. Specifically, tR e-independent componentg of
sidering a restriction to,=r,=rs=rs=0 [from (27) this is the linear coefflcu_ants 0¢27)_,_der|ved from the second term
an invariant subspace, meaning that if the system starts @f (B1), are strictly positive. Indeed, for(very) low-
this subspace, it remains there for all tindhe reduced dimensional truncations, including ones lacking streamwise

equations are modes, instability of the trivial solution is an unavoidable
) ) 5 consequence of averaging over “active” velocity fields of the
Fo=Aolot2B3rz+2Byry, (32 ensemble that remain relatively far from the laminar state,
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Ve ri ; ) ; k :
and give rise to eigenfunctions W|thf¢(3r,‘()xky¢(lk)x’,‘(ydz>0, a@)= (AP - BPaf)a?)+ C, 4 all)?
cf. Ref. 7. Ensembles collected for smallee, having longer D (1
. . . . —(C35+C 2)a( )* 5(1)
episodes of laminar flow, would presumably give modes with 3127 ~1,3291 " 93
— (M plO* ; - :
f¢3kxky 1kxkydz<0, leading to stability of the laminar —(Coazt C4,22)a(21)*a21)+ C(Z?l)l(a(lZ))Z_ (43

state. Moreover, it is argued in Ref. 46 that models using an ) ,
“unconstrained” empirical expansion derived from the POD, Heéré we have suppressed the subsdrjpt0 of thea’s and

that decouples streamwise and cross-stream disturbancédmplified the notatipn 0f22), as in(26)—(28). The coeffi-

correctly give laminar stability, and furthermore, behaviorsc'?mSAO andAj,Bj;1=j=4 are given by(29) and Table

of models derived using the expansid) are strongly ech- Il; the additional coefficients are

oed in those derived using the decoupled expansion. In short,  A(2)=0 0323-12.0680Re,

the present model can represent sustained “turbulence,” but

not the transition from laminar flow aReincreases. Further A{?)=0.1062- 15.9763Re,

comments on this appear in Sec. V. ) )
B{*=0.0028, B!?=0.0077,

C. A model including k=2 modes Cy15=0.0098, Cj,=0.0164,

The models of Sec. IV A can capture the sustained tur-
bulent state quite well; however, they are of such high di- C13,-0.0165, C;4,=0.0209,
mension that detailed analysis is impossible. On the other Cp4=0.0167, C,4=0.0105,
hand, the severely truncated models of Sec. IVB can be ’ '
essentially completely understood, but their stable fixed Cj3;,=0.0302, C;,,=0.0439,
points are too simple to characterize the turbulent state. Here
we consider an extension of the models of Sec. IVB that lies ~ C3.41=0.0204, C45,=0.0613,
between these extremes: Its dimension is.low enough that Caa=0.0471, C@),=0.0064.
detailed analyses can be undertaken, yet it preserves more ’ :
realistic signatures of sustained turbulence. Specifically, wa&his model includes the leading modes lacking streamwise
include the most energetic streamwise invariant modes withariations, cf. Table I, and its structure remains similar when
k>1, namely the (2,@;1) and (2,0:2) modes. Inclusion more modes wittk,=0 are included.
of these members of the second “quantum” family intro- Some preliminary notes are in order. First, t
duces new Fourier wave number interactions, the most im=0} and{a$?)= 0} subspaces amotinvariant:a{*) anda$?’
portant being those with the modes (k, with |k,|<4. can be excited by nonlinear interactions among ?ya)

2)

Truncating to include only these modes, we obtain modes. Othek# 1 modes not included in this truncation can
be similarly excited, but these contain a smaller fraction of
4 the average kinetic energy, and hence are presumably less
afl=npafh+2| X Bq|a§]1)|2+ B{|a{?|2+B{?|a?)|? |, important, and their exclusion simplifies the analysis. Sec-
a=t (37) ond, the dynamics of this model typically fail to satisfy the

energy budgets of Table I, presumably because significant
energy-transferring interactions are absent. In AH(s8e
a(ll):(Al_Blagl))a(ll)_cl,ﬂa(ll)* af?) also Ref. 24 this problem was partially overcome through
the introduction of a Heisenberg-type model to account for

1 2)% 1 2)%
+Crgg al”* —Copmal, (38) energy losses to neglected modes. This requires determina-
tion of additional parameters; for simplicity, we do not model
alt=(A,—Ba{)afh+C, saMai?* neglected modes here, so that our only parameter is the Rey-
nolds numbeRe As we will see, Eqs(37)—(43) exhibit
—Cpuafal)— Cpzafal?" (39 interesting behavior for 356R e< 600.
To understand these dynamics, we first observe that Egs.
all=(A;—BsaP)al + C;5a{Pal? (37)—(43) have a hierarchy of invariant subspaces as given in
' Table V. For exampleSSCSe is the “real” subspace ob-
—Cz2a8Val?)~ C3 4afMal?* (400 tained by restricting the amplitudes in the “even” subspace
S, to being real(recall thata(" is always regl Real sub-
agl)=(A4—B4agl))a§11)+ C, 22a(21)61(22) spaces correspo.nd 'Fo veIocity fields symmetric under the
' spanwise and pointwise reflectioRsandP, as follows from
—C4y31a§1)a(12), (41 (13 and(23) with n,=0. Acting on the invariant subspaces

SR, SR, SBi So, S3, Sy, andSP) with SY(74,) gives
invariant subspaces which are rotat@e., spanwise trans-

5(2) — (A(2) _p(2)5(1)y45(2) (1) 5 (1)
ay’=(A Bi”ay’)ay”’+(Ci2tCsqpas’a . .
1= (A= BiTag)ar + (Crart C21085 78 lated copies of the originals.

+(Cpat C3,21)a(31)a(21)* The fixed pointsP,, P5, andP, of Sec. IVB can be
() (L (2) (D(D) shown to persist fo(37)—(43) by restricting to the subspaces
+(Cga1t Cyglay'ay”™ —Cyja;~ay”™ , (42 S,, 83, andS,, respectively. An analogous nontrivial fixed
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TABLE V. Invariant subspaces for Eq37)—(43): Variables not identified 12 T T T T
in {---} remain zero. aol gk i
Invariant subspace Dimension 6r W \ W T
3l ]
s=(a.al) o) 7 . . . . . t
So={a§ )ia(l )273(3 )Z’a(z 3 7 0 10000 20000 30000 40000 50000
SORJLZE{ai(] ):a(l )vla(z ) . ) 5
Se E{agl) ,m(a(21>),m(agl>),m(a<22))} 4 3 , : — :
Sg={at" M(al) R(al") R(af)} 4 al? 2 ; " ]
Sha(af) (@), walPh) 3 i b ]
SzE{aél’m(a(zl))} 2 °r ! \‘ A ]
Ss={af), ()} 2 oL i 1 ' 1
842{3'(() )rm(ag ))} 2 -3 1 i 1 1 |
SP={a® n(a?)} 2 0 10000 20000 30000 40000 50000
6 T T T T
@ sk b Lo i
Gy L[ 3 W ) )

. . - . ol .
point P2eS also exists for sufficiently highRe 5 ) L | ) |
(=>150.44). Note thafal ,%(a(")} and{al" ,9:1(a{?)} are 4k S e . 1t

6

not invariant subspaces; “pureP; and P{? fixed points do - 10000 20000 30000 40000 50000
not exist for (37)—(43). As above, all fixed points lie on
circles of equilibria obtained under the action$if(TAy).

We first consider th&,;, subspace, on which Eg&87)-
(43) reduce to

FIG. 5. Time series showing an attracting heteroclinic cycle conne@lﬁ??g
fixed points for Eqs.(37)—(43) restricted t0Sy;, at Re=400. The solid
(dashedl lines show the realimaginary parts of the amplitudes.

5(1) (1) (2)]15(2)(2 (2)| 5(2))2
ay '=Apay ' +2(Bi”|a +B5”|a , 44 e .
6= Aoy +2(Byar|"+ By 8y %) 49 andstructural stabilityimplies that they persist over a range
aP=(AP-BPaM)a@—c af?al@* (450  of Re values, and also under small perturbations to other
' coefficients, as might result from different POD bases. Struc-
~(2) _ 2 2 1 2 2 2)\2 . .. .
afP=(AP-BPaf)al?+cf)y(al?)?. (46)  tural stability of these heteroclinic cycles is a consequence of

This subspace captures the interaction of the mean flow witf€ O(2) symmetry for theSy;, subspace inherited from pe-
the k=2 modes in 1:2 spatial resonance. In the region griodic boundary conditions in the spanwise direction; this
<z<1 (or —1<z<0), this mode interaction corresponds also implies that there is a full circle of such cycles.
physically to a “boundary-layer” mean flow profile interact-  The time series for such a cycleRe=400 is shown in
ing with streamwise rolls in 1:2 spatial resonarice Figs. 1~ Fig. 5, with reconstructed velocity fields at eight time in-
and 3. Such an interaction has been investigated from @tants during passage near the cycle shown in Fig. 6. As for
similar perspective for a single turbulent boundary layer inthe boundary layer model in AHLS, the pair of fixed points
Ref. 47, although this involved modeling of the mean flow,in €ach individual cycle correspond to rolls translated
whereas here we allow the mean flow to evolve dynamically.
We summarize the main results from a numerical bifur-
cation analysisusing AUTO®) of Egs. (44)—(46) for the
coefficients of interest. Here and elsewheydhital stability
is indicated, that is, asymptotic stability with respect to per-
turbations within the sub-spac®t associated with the con-
tinuous symmetrySl(TAy) (which gives an eigenvalue or
Floguet exponent equal to ze§ Our description is for in-
creasingRe. The laminar state a{Y=a{¥=a{?=0) is
stable forRe<150.44; at this value, it loses stability to a
circle of stable “pure mode” fixed pointgwith a§M#0,
al?)#0,a?=0). These then lose stability &e=311.86 to
a circle of stable “mixed mode{MM) fixed points (with
afV#0, a?’#0, al?#0). At Re=339.82, the MM fixed
points lose stability to periodic traveling waves; these in turnz i}
lose stability aRe=340.84 to quasiperiodic modulated trav-
eling waves, which remain stable unile=354.82. Most
interestingly, attracting, structurally stable heteroclinic cycles o 2

. 2 . . .
connecting tWOT|_y,4-symmetry relate@(z ) fixed points eXISt  FiG. 6. Snapshots of velocity fields corresponding to part of the heteroclinic

for Re=346. Near such a cycle, trajectories alternately visitcycle of Fig. 5; same convention as Fig. 2, time increasing down left then
the vicinities of these two unstable saddle points, with excur_nght column. The first and last panels are near the_unstable fixed points;

. . . (2) (1) ’ . between these the rolls and streaks interact, combine and reform with a
sions in whichja;”| grows andag™'| collapses between Vis- |aeral shift as the orbit follows the heteroclinic connection. Due to the

its. Since the cycleattract nearby solutions approach them, restricted set of modes, flows maintain symmetry about the midplane.
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FIG. 7. Projections onto modal phase planes of solutions of B3%-(43)
restricted to theS, subspace(a) The stable three-torus &e=350; the
solid, dashed, and dotted lines correspondkid) = (1,2),(1,4), and2,2),
respectively(b) The strange attractor i§ ¥ at Re=400. The thick dashed
line shows the unstable periodic orbit which acts as the “core” of the
strange attractor.

through one quarter of the spanwise domégie., half a
wavelength of the roll pattern, via the actioniifym, cf. Fig.

3(b)]. Note that the existence and stability properties de-
scribed here are analogous to those for the normal form for

spatial 1:2 mode interactiowithout mean flow?® if a{l) is
replaced by its adiabatic value obtained by setﬁaré =0,
Eqgs.(44)—(46) reduce exactly to that normal form.

We next describe the behavior restricted to fhesub-
space. TheP, fixed points are stable withib, from Re
=62.16, where they bifurcate from the laminar stateR®
=279.43, where a degenerate Hopf bifurcatfaakes place,
giving rise to a branch of tori carrying quasiperiodic motions
with three independent frequencies; see Fi@).7The tori
are stable withinS, for 255.89<Re<396.86. A periodic or-
bit, which without loss of generality lies iﬁfj, also appears

2503

Models for turbulent plane Couette flow

-y

FIG. 8. Velocity fields corresponding an orbit making a half circuit on the

strange attractor of Fig.(8). Note how the rolls grow and shrink cyclically.
SinceS, contains only even spanwise wave numbers, the pattern has span-
wise periods (half the boy.

Similar, somewhat more complex, bifurcations occur in

S, . Here we note only that for 530Re< 750, attracting,

structurally ~ stable, heteroclinic cycles connecting
T, j-Symmetry relatedP!? fixed points exist; see Fig. 9, and
Fig. 10 for the reconstructed velocity fields. These cycles
differ in detail from those inSy;, described abovéthe ex-
cursions involve modega{’)| and|a$”)| in place of|a{?)),

but their effects are similar in that the fixed points in each
cycle are related by one-quarter-domain spanwise translation

in the Hopf bifurcation. This periodic orbit branch undergoes
a complicated sequence of saddle-node and period-doubling (122
bifurcations, the latter initiating period-doubling cascades to
chaos; such chaos exists for 37Be<430, and the(un-

stable periodic orbit acts as the “core” of the apparent
strange attractor, see Fig(bj, and Fig. 8 for the recon-

15 T T T T
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0 10 [\M\/\JV\H"V \}v \j‘v ~ fp—
5 -
L . \ t
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A A
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(2) at P N [T N [
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2F 1 ! ! 1
4L el [ / Yermmm - i
B8 1 1 1 1 t

2000
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structed velocity fields. Such attractors lie in all four- FIG. 9. Time series showing an attracting heteroclinic cycle connejflg

dimensional subspaces obtained under the acticﬁimy)
on SS, subspaces which are apparently attracting within
for all Rein this range.

fixed points for Eqs.(37)—(43) restricted toS, at Re=600. The initial
conditions are random, and the system quickly starts making visitsl?&@ar
fixed points, each successive visit being longer. The s@akhed lines
show the realimaginary parts of the amplitudes.
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3
FIG. 10. Velocity fields corresponding to part of the heteroclinic cycle of agl) %
Fig. 9. The first and last panels are near the unstable fixed points; between 0
these the rolls interact and reform with a lateral shift. Note how the sym- :;
metry differs from that of Fig. 6. 3

0 2000 4000 6000 8000 10000

of the rolls. Like the heteroclinic cycles found in the AHLS
model? the stable eigenvalues &%) in S, include a com-
plex conjugate pair corresponding to perturbations in the .
8(22) subspace, and the cycle’s attractivity is determined by 0 2000 4000 6000 8000 10000
eigenvalues for perturbations out 61(22). Specifically, the
cycle attracts when the single positive eigenvalué’@f has
smaller magnitude than the leadirfigea) negative eigen-
value.

The velocity fields of Figs. 6, 8, and 10, corresponding “o 2000 4000 6000 8000 10000
to solutions restricted to “special” subspaces, necessarily 4
display more symmetry than typical experimental or DNS a(2) 2 i
realizations. Fields corresponding to orbits with all modes 2
nonzero, as in Fig. 11 below, lack such clear symmetries. -2 ’
-4 1

A complete analysis of the full mode(87)—(43) is be-
yond the scope of this paper. However, we do indicate the
complicated relationship between the full dynamics and dygi'rﬁénlslibrg“s‘i;:zeiggr TS&':‘S'?(E fﬁeﬁﬂﬂ_ﬁﬁg@i?hihfe%ﬂn?i?EZ‘TS'
hamI(;S restricted to invariant subspaces. The_reRwsanges parts of the amplitu%es. Arounid=800 and 7500 the system magkes visits
in which each of the subpace, S;, andSy;, is stable for  pear thes, subspace.
the full system, so that the remaining complex amplitudes in
(37)—(43) decay to zero. For examplé, is stable forRe
~ 280 (typical trajectories approach the three-torus in thispresent in Eqs37)—(43) render these simple states unstable,
subspackg S, is stable forRe~600, andSy,, is stable for replacing them by dynamically active motions that “grow”
Re=700 (typical trajectories approach structurally stablefrom the steady states in bifurcationsie varies. Nonethe-
heteroclinic cycles as in Figs. 9 and 5, respectively; at thdess, observations similar to those of Sec. IV B concerning
lower end of the latter range small excursions outSgf,  self-sustaining and self-limiting processes still hold, with the
occur, but the dynamics is dominated by tSg-cycles.  added complication thdtocal) stability of subspaces such as
There are als® e ranges for which none of these subspacesS, andS, is determined not only by the magnitudea{f),
are stable; for example, &e=400 typical solutions ap- but also by the nonlinear terms 87)—(43). This permits
proach quasiperiodic motions involving all modes. Howevermuch richer behavior, involving energy transfer among sev-
even if S, is unstable, chaotic solutions can exist that makeeral distinct roll modes and intermittent visits to the neigh-
intermittent visits near this subspace; see Fig. 11 for such horhoods of subspaces corresponding to diffetepanwise
solution atRe=500. The full dynamics of(37)—(43) are lengthscales and roll geometries.
clearly complicated, but they can be partially understood in  As noted above, for such drastic truncations we cannot
terms of behavior in lower-dimensional invariant subspacesexpect energy budgets to match those of the original data

The (stable fixed pointsP,, P5;, andP, of Sec. IVB  ensemble; not, at least, without models to represent losses to
necessarily belong to the attractors found for the full modelneglected modes. We note that the mean Ievdla@f)|2 is
(cf. Table V), but the additional K=2) modal interactions significantly too high(33.15, compared with the DNS value

0 2000 4000 6000 8000 10000
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8.9246, and the mean square levels of the model's leadindgref. 22. Moreover, these heteroclinic cycles are character-
roll modes are correspondingly too small. Writing the kineticized by successive spanwise translations of rolls by half a
energy of this modefrecalling that each mode witk,=1  wavelength. A similar prediction was made in AHL®r the

must be counted twice, cf13)] ejection and bursting events for the turbulent boundary layer;
4 2 evidence for such spanwise translations was found in the

E= l|agl)|2+ > |aél)|2+ > |a82)|2, (47)  experiments described in Ref. 5. For turbulent PCF, we note

2 q=1 q=1 that Fig. 14 of Ref. 37 indicates that similar spanwise trans-

lations are associated with large velocity fluctuation events.

we compute the rate of change along solutipmsing (25)] > - ! "
The difference irRe and the domain’s aspect ratio between

as
. ) those experiments and our DNS data makes direct compari-
dE son difficult; however, we hope that the present work will
= (1))2 (12 (2)]5(2)}2 T ' ’ . . .
dt Aolag”| +2qzl Aq|aq | +2qzl Aqg |aq °. inspire more careful exploration of this possibility. We note

(48)  that structural stability and genericity arguméntsimply

. that these results are robust to small changes in the ODE
(2)

_Smce“(for I?%lio)t Ag=0<Aq ’Atq ,dnet etr;wergy ”growz coefficients induced by changes in empirical eigenfunctions,

n 8) cone” in stale space centered on the foll MOGes,, example. Also, this type of geometry has been used to

(lag’|=0), and decays on a cone centered onaﬁéams.

This is clearl ati fthe t ﬂ propose control methods to reduce the rate of “bursting”
is is clearly a poor representation of the true energy OWaway from such sefd-53

W.h'Ch myotllvesé(h;ggetrrr]n odes asﬂwell as dth(%s_e \f[\gth stlream- Kawahara and Kid& presented DNS evidence in PCF
wise variationsc,=0. 1he mean Tlow modag ™ IS theonly - 4 hateroclinic cycles connecting periodic orbits that lie in a

Iirr:earlr)]/ diSSigatin rgode in.this mc;}del and is driygn b% a”subspace analogous )., but with streamwise modes,
the other modefct. (37)], so it is perhaps not surprising that #0. They used a smallgiminimal flow uniy domain, so

it equilibrates at an unrealistically high level, thus Skewmgcomparisons are problematic, and they report only 1% accu-

the energies of the other modes. Preliminary studies indicatl%cy in their calculations, but it is possible that they have

that the inclusion of losses to neglected modes, modeled Vifhund a periodic orbit or recurrent motion analogous to those

a Heisenberg mechanishi;?* can improve this picture. of Fig. 7(b).

An interesting class of low-dimensional models for shear
flows, including PCF, was proposed by Waleffe>*8A ma-

In this paper, we modeled turbulent plane Couette flowjor difference between our models and his is that the latter
by expanding the velocity field as a sum of optimal “POD include decoupledstreamwise velocities representing the
modes” calculated via proper orthogonal decompositionmean flow and streak modes, and cross-stream roll compo-
from numerical data obtained &e=400. The most ener- nents, along with a “wakelike” x-dependent streak
getic mode approximates the observed mean turbulent veloinstability!® These lead to coexistence of a stable laminar
ity profile.3"*8 Other POD modes include pairs and stacks ofstate and a nontrivialperiodig attractor and allow investi-
streamwise rolls and associated streaks. ODE models wegation of transition. Our POD-based models employ a vec-
then obtained by Galerkin projection of the Navier—Stokedorially coupled decomposition, constraining relative roll-
equations onto these modes. The validity of the procedurstreak magnitudes within each mode and implying instability
was illustrated in Sec. IV A by examining truncations thatof the laminar state, but permitting rational inclusion of a
retain many terms. hierarchy of freely interacting modes that respect the sym-

We then considered two classes of low-dimensionaimetries of the problem, and whose relative amplitudes can
models. For a minimal truncation including only the mostdynamically adjust to capture the roll-streak-mean interac-
energetic family of modes having no streamwise variationtions. [Our simplest model, of Sec. IV B, describes interac-
the existence of linearly stable nontrivial fixed points wastion between the meaafy and a “most unstable” roll-streak
shown under quite general conditiosee Sec. IV B Such modeag}) whose spanwise scale depends on Reynolds num-
fixed points correspond to states in which the mean flow ider. If we continue Waleffe’s reduction scheit®ec. Il C of
coupled to one set of streamwise vortices and their assocRef. 15, assuming that his streak and roll mod¢sand V
ated streaks. These roll structures resemble unstable finiteaintain a fixed amplitude ratio, and neglect the streamwise
amplitude solutions of the NSE;? “modes” that can be varying modeW, his model collapses to outdn Waleffe’s
stabilized by spatially forcing the flow with a stationary wire simplest model there is only one real mode in each group,
or bead®®=* and structures involved in the self-sustaining and spanwisdor streamwisg translations are not allowed,
process elucidated in Refs. 14-17. thus excluding the possibility of heteroclinic cycles of the

When the next most energetic family of modes, stilltype that we find in Sec. IV C, and that also play a crucial
lacking streamwise variations, is included, richer dynamicakole in models of the turbulent boundary layef. Refs. 4
behaviors are fountsee Sec. IV € Of particular interest are and 49. Thus, both types of models impose constraifats
the attracting, structurally stable heteroclinic cycles in theany low dimensional model mystand each highlights a dif-
So12 and S, subspaces. Such cycles provide an explanatiofierent aspect of the turbulence production and sustainment
for the fact that streamwise vortices are prominent features iprocess.
turbulent PCB’ even though they are unstable: indeed, the A further comment on our vectorially coupled POD
cycles imply repeated visits near such unstable structafes bases and the resulting instability of the laminarO state in

V. CONCLUSION

Downloaded 16 Dec 2003 to 128.112.32.216. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



2506 Phys. Fluids, Vol. 14, No. 7, July 2002 Moehlis et al.

our models is appropriate. As noted in Sec. IV B, since the 2 ik, 2

empirical eigenfunctions derive from turbulent DNS data ~ A{)=— 3 > f ¢(n)k ¢J('§)T§

that remains far fronu=0, the leading basis functions in- Y x =1

duce coupling between streamwise and spanwise velocity Jl 1
¢3kx

components that leads to an energy source féne second (1‘81‘( z— Re
term on the right-hand side of E¢B1)], in the absenceof h €
modes containing explicit streamwise variations. This is be- (27Tk

27k, \ 2
Lx

y) ) nk+2f d)(n) (k)*/dz

ny

cause the empirical basis functions with=0 effectively
average over the longest nonzero streamwise scales. As ex-
plained by Berkoozet al.”*® and Waleffe!* this constraint (B1)
may be relaxed by using a representation in which stream-

wise and spanwise components are decoufdéthe cost of Blkmm _ f (mex (n)

doubling the number of modesPreliminary studies of such Kykym,m, = LL, =)l Ly ¢1’kx_mx’ky_my

a decomposition indicate eventual decay to the trivial state Y

for models lacking streamwise variations, as expected. We (m) 277Imy o) (m)

are currently studying both coupled and decoupled models ¢Jm m, ¢2kx—mka —my, Pim
including streamwise modes, but correct representions of the

energy budgets and modal interactions would require use of + ) K )¢(k)* (B2)
eddy viscosity(Heisenberymodels; this work will appear in Sk k- Fimm, | i, d

a future paper.
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