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Double-group theory on the half-shell and the two-level system. I.
Rotation and half-integral spin states

William G. Harter
Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards,
Boulder, Colorado 80309

Narciso dos Santos®

Instituto de Fisica, Departamento Electronica Quantica, Universidade Estadual de Campinas, Campinas,
S. P.,Brazil

‘(Received 23 February 1977; accepted 9 August 1977)

A geometrical construction by Hamilton is used to simplify the quantum mechanics of half-
integral spin. A slide rule is described which can be used to (a) compute products of half-
integral or integral spin rotation operators, (b) convert between the Euler-angle and “axis-
angle” rotation operator parameters, and (c) calculate the time evolution of a spin-1/2 state
for a constant Hamiltonian operator. A type of nomogram is developed which suggests ways
to simplify the “double-group” theory of half-integral spin in molecular point symmetry, as

well as the “ordinary” group theory for integral spin systems. Cubic and icosahedral
symmetry group characters are derived for half-integral spin operators.

I. INTRODUCTION

Among the first things we notice about the physical
world are the two kinds of freedom of motion or symmetry
associated with translational movement and with rotation.
Much of theoretical physics of atoms, molecules, and solids
is derived from some obvious and some not so obvious
consequences of having some translational or some rota-
tional symmetry.

Of the two kinds, translational symmetry is far more
widely understood. The idea of adding translation or ve-
locity vectors in order to make resultant vectors is consid-
ered elementary. The concept of Fourier analyzing various
quantities in free space or crystalline environments, by
taking advantage of translational symmetry, is fundamental
to modern physics.

The study of rotations, however, is still reserved almost
exclusively for experts in “group theory,” a subject that is
widely believed to be difficult. Part of the reason for this
stems from the difficulty in visualizing and computing
various properties of rotations and rotation groups. How-
ever, we shall show an approach to this subject which we
find simpler and more appealing, and which may help to
make it more well known.

To this end we review and develop an early idea of
Hamilton uncovered recently by Biedenharn' and Louck,?3
and we discuss some inventions and techniques that follow
from this idea. One of the inventions is a slide rule* which
can be used to compute products of successive rotations, and
which serves as a useful instructional and laboratory tool
with a number of applications.

As far as the theory of rotations goes, it seems that it is
quite easy to be misled by the appearance of the three-
dimensional space in which we live. It becomes fairly easy
to accept incomplete and unnecessarily complicated de-
scriptions of rotations and techniques for calculating them.
For most physicists the first hint that something is missing
comes in the form of the rotational behavior of the electron:
a complete rotation (2 or 360°) of an electron state gives
(—1) times that state. Two complete rotations are needed
to return any half-integral wave function back to itself.
Indeed, it turns out that the transformations of spinors (spin
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1/2) rather than those of vectors (spin 1) provide the most
complete yet simple description or rotations in our space.
Hamilton’s quaternions or hypercomplex numbers are re-
lated to Pauli’s spinors; roughly speaking they are the
spinors. (It is certainly a credit to Hamilton that he recog-
nized so much of the significance of his invention so many
years before the discovery of quantum spin.)

We will discuss some of the basic theory and a number
of physical applications of Hamilton’s ideas in this article
and in a companion article (II) which follows. We have
written the articles so that a reader could, depending upon
his interest, start by reading either one; while occasionally
referring to the other one for certain details.

This article (I) is concerned with the basic mathematics
of rotations, and leads into Hamilton’s theory, the slide rule,
and its application to rotation and time evolution of the
spin-1/2 two-level system. The following article (1I) starts
out describing the evolution and rotation of another two-
level system: photon polarization. Then it leads backward
into applications of the slide rule in optics calculations and
the theory involved there. Either article is dealing with
exactly the same type of mathematics, mainly that of
Hamilton, and the two-level quantum mathematics of
Feynman, Vernon, and Hellwarth,’ or the earlier work of
Rabbi, Ramsey, and Schwinger.6

Most of these articles, with the possible exception of Sec.
VII in article I, are written at a level close to that of the
Feynman Lectures Vol. II1.7 The last section (Sec. VII) of
this article deals with the representation theory of half-
integral spin in molecular point symmetry. Nevertheless,
we hope that even this will be a simplification of previous
treatments.®?

. REVIEW OF ROTATIONS

In order to demonstrate rotations, we need something to
rotate. A ball mounted in the gimbal and crank device
shown by Fig. | would serve this purpose. The device clearly
defines the famous Euler rotational coordinates® (a8v). For
each setting of the «,(, or -y dials there is a unique rotational
position. Note, however, that for each rotational position
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Fig. 1. Euler angles as coordinates. Angles («87v) as read from the dials
define the rotational position (afv) of a body.

there are fwo possible settings of the dials: (afv) and (« —
180°, —3,vy + 180°). It is conventional to eliminate one of
these by putting “stops” on the 8 dial so that 0 < 8 <
180°,

Now for mathematical purposes we need to define an
operation R(afvy) which would take the ball from the
original position (000) shown in the inset of Fig. 1 to the
position (afBy). We may do this with just two cranks fixed
to the y and z axes of what we shall call the lab frame (xyz).
As shown in Fig. 2 these cranks are fitted with suction cups
and permitted to slide in or out along their respective axes.
In this way the operations of rotation around y or z can be
performed one after the other but not simultaneously. Now
the order of application of cranks is important. ‘

Starting with (o =0, 8 = 0, ¥ = 0) in Fig. | we see that
the v crank lies along the z axis. Any setting of the -y dial
could just as well be done by the z crank and we shall label
this operation R(00v).

After the v setting is made, we note that the § crank is
still lined up with the y axis. Any setting of the 3 dial could
just as well be done by the y crank, and we shall label this
operation R(030).

Finally, after all this, we note the axis of the whole ma-
chine, i.e., the a axis is still lined up with the z axis. Any
setting of the a dial can just as well be done by using the z
crank, and we shall label this operation R(«00). Now put-
ting these operations together in the right order (in any
product AB we assume B acts first, i.e., ABY = AYB =
y48) we have '

R(aBy) = R(a00) R(050) R(00y). 2.1

[Some confusion might exist about the difference between
R(«00) and R(00v). In fact there is no difference; from Fig.
1 we see that

R(a00) = R(00a) = R(a — y0y) (2.2)

for all ¢.]

So we end up with a way to make all rotations using just
the two cranks: y once and z twice. The last two z and y
rotations by o and g set the polar angles ® = aand 9 = g3
of the body axis, while the first z rotation by + sets its
“twist.”

The efficient use of cranks is one of the operational ad-
vantages of the Euler angle definition. Crank operators are
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represented by matrices, and the fewer matrix operations
we have to do, the better.

However, the most “popular” definition of rotations is
the axis angle or w definition R[w] = R[¢0w] (note that we
use brackets for axis angles), since, more often that not, one
has already chosen some symmetry axis in a crystal or
molecule at given polar angles ($8) which is the axis of a
rotation by a given angle (w). Indeed, we may “picture” a
rotation operation much more casily by its w vector, where
& is the rotation axis and w = |wl| is the angle of rotation.
[See Fig. 2(b)]

Nevertheless, w parameters [¢fw]| serve rather poorly for
defining rotational position. (No machine like Fig. 1 exists
for w.) Furthermore, if we have to compute R[¢fw] as it is
usually done using just y and z cranks or rotations, then we
have roughly twice as much operator multiplication to do
as seen in the following:

R{¢fw] = (R(¢00)R(060)) R(w00)(R(400)R(060))~!
= R(¢00)R(080)R(«wO0)R(0 ~ 60)R(—¢00). (2.3)

[Equation (2.3) is read as follows: To do R[¢8w] first
“un”-rotate with (R(¢#00)R(060))~! so that the w axis lines
up with the z axis, then rotate w radians around z with
R(w00), and finally rotate the w axis back to the [¢6] po-
sition using R(¢00)R(060).]

However, we will discuss in Sec. IV a slide rule makes it
possible to convert back and forth between the Euler (afa)
and the axis angle [¢fw] systems of parameters very easily.
Therefore, we will be able to enjoy the advantages of either

-system.

III. REVIEW OF ROTATION
REPRESENTATION

The representation of a rotation by w, around a crank
axis @, may be computed from the equation (see Appendix
A)

Rlwc] = eweldi (3.1)

using the representation of the angular momentum operator
J.. (Weset A = 1.) We shall be interested in the spin-1/2
representations

ﬂ 7 CRANK
Does R{a 00}

(o)

Fig. 2. (a) Euler angles as rotational operator parameters. Rotational
operators like “rotation around z” {R(a00) or R(00v)] and “rotation
around y” [R(0B0)] are represented by cranks with suction cups which
can be stuck to the body during rotation. The operator R{(a8y) which
converts the starting position (000) in Fig. | (sec’inset) to the (afy) po-
sition is thought of as an ordered product R(a00)R(0YO)R(00v) =
R(afy), i.e., as successive applications of the crank operations, as explained
in the text. (b) Axis angles as rotational operator parameters. A single
crank turn of the (000) body by w around the [¢6] axis could rotate it to
any given rotational position (afv), i.e., R{afy) = R[¢0w].
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(R(aOO)) = eﬂ’(-lz)/i = e‘—'(ﬂz)/Zi

onfe (200177 %)

(3.2)
(R(OBO)) = eBUy)i = pBlay)/2i

=5, ) /1] = G oty

cos(w/2) — i sin(w/2) cosf

(R[¢fu]) = (

We may expand the preceding matrix in terms of Pauli
spinors as follows:

(R[¢6]) = cos(w/2) <(') ?)

—i cos¢ sinfl sin(w/2) <? (1)>

—i sing sinf sin(w/2) <(l) -;)l)

—i cosf sin(w/2) <(1) _E)]> ,

(3.5)
R[¢0w] = cos(w/2) 1 —i cos¢ sind sin(w/2) oy
—i sin¢ sinf sinw/2) oy —i cos sin(w/2) o,.

We note that the coefficients of —io, is the cth Cartesian
component of the vector [sin(w/2)].

R[¢fw] = cos(w/2) 1
—isin(w/2) (&x 0x + &y 0y + &, 0,)
(3.6)
= cos(w/2) ¥ —isin(w/2) & -0

This leads to a multiplication rule for a product of two
rotation operators.

R[¢’0'w’ |R[pbw] = (cos(w/2) 1 — i sin(w’/2) & - 0)
X (cos(w/2) 1 —isin{(w/2) - a)

= cos{w’/2) cos(w/2) 1 (.7
~ i [cos{w’/2) sin(w/2) &
+ cos(w/2) sin(w'/2) &'] - &
— sin(w’/2) sin{w/2) (& - o)(& + 7).
Finally using Pauli’s identity

@ 0)(pr0)=d" - wl+i(&’Xd):a, (3.8)

we have the following expression for the product:

Fig. 3. Great circle arcs and their polar
axes.
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— i cos¢ sind sin(w/2) + sing sin(w/2) sind cos(w/2) + i sin(w/2) cosd

which are derived using the Pauli spinors o, = 2J,. in Ap-
pendix B. Combining Eq. (2.4) using Egs. (2.1) and (2.2)
we have the Euler spin-1/2 rotation matrices.

(R(B7)) = (R(«00)R(0B0)R(007))
e~ et)2 cos(8/2) —el(r—)/25in(B/2)
< efle=1/25in(8/2)  eita+7)/2 cos(B/2)

Similarly by carrying out the multiplications in Eq. (2.3)
we have the axis-angle rotation matrices for spin 1/2.

)- (3.3)

—i cos¢ sinf sin(w/2) — sing sinf sin(w/?.)) . (3.4)

R[¢'@w’] R [¢pbw] = [cos(w'/2) cos(w/2)
— sin(w’/2) sin(w/2) & - &)
~i [cos(w’/2) sin(w/2) & + cos(w/2) sin(w'2) &
+ sin(w’/2) sin(w/2) &’ X w] -0. (3.9)

This is the well-known Cayley-Klein formula for rotational
products. !0

If we compare the preceding formula with a generalized
“cosine law” for a spherical triangle defined by unit vectors
6 (1),6 (2), and & (3), as shown in Fig. 3 we will be able to
derive Hamilton’s multiplication rule. To derive the cosine
law we express the vector #(2) and 5(3) in terms of #(1).
First we have

B(2) = cos(12) 6(1) + sin(12) 8(1) X &(12),
(3.10a)
B(3) = cos(23) H(2) + sin(23) 5(2) X &(23),
(3.10b)
where the cross product definition is
B(1) X 6(2) =sin(12) &(12),
B(2) X 6(3) =sin(23) &(23),
and (i) is the unit circle arc length or angle between 6(i)
and 5(j). Then, substituting (3.10a) into (3.10b) gives the
following
3(3) = cos(23) cos(12) 6(1)
+ [c0s(23) sin(12) & + sin(23) cos(12) &’'] X 8(1)
© +sin(23)sin(12) & X [& X 8(1)]. (3.11)
Finally using the vector identities
& X (X6(1) =@ -8(1))e — (& - &) 6(1),

(@ X®)XB(1) =@ - 0(1))é — (w-0(1))d’
= (& -8(1))a,
we derive £(3) in terms of 5(1), &, and &’
B(3) = [cos(23) cos(12) — sin(23) sin(12) & - &]5(1)
+ [cos(23) sin(12)& + cos(12) sin(23) &’
+ sin(23) sin(12) & X &] X 8(1). (3.12)
We can see that the expressions within parentheses or
brackets in the preceding Eq. (3.12) are identical in form
to those in Eq. (3.9). By comparing the form of Eq. (3.10)

to that of (3.6) we see that each great circle arc in Fig. 3
represents one of the rotations in the product equation.

R[¢"0"w”] = R[¢'0'w’] - R [pbw]. (3.13)

W. G. Harter and N. dos Santos 253
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Fig. 4. Rotational slide rule (copyright William G. Harter 1976). (a) Upper scale; .(b) lower scale.

Arc (12) represents the first rotation R[¢fw] around @, arc
(23) represents the second rotation R{¢'#’w’] around &, and
arc (13) represents their product R[¢”0”w”]. One inter-
esting thing is that the arcs are each one-half of their cor-
responding angle of rotation.

(12) =w/2, (23)=«’/2, (13)=w"/2. (3.14)

This 1/2 comes more or less directly from the ({J.)) = 1/2
value of angular momentum. Indeed, the “spherical vector
addition” of Hamilton must give the correct muitiplication
rules for rotations of electron waves of half-integral spin
states since the fundamental spin-1/2 algebra was used to
derive it.

IV. HAMILTON’S RULES AND THE
ROTATIONAL SLIDE RULE

Hamilton’s rules, as derived in the preceding section, are
the following: To find the product of two rotations R[w] and
R[], (a) construct the great circle arcs perpendicular to
w and w’, respectively, on the unit sphere, (b) draw arrows
or “vectors” along each arc of length w/2 and ’/2, re-
spectively, and pointed in the directions of rotation so that
the head of the arrow of the first rotation touches the tail
of the arrow of the second one, and (c) find the great circle
arc between the tail of the first arrow and the head of the
second. The resulting vector-sum arrow defines the desired
product rotation.

Figure 4 shows the slide rule that permits one to carry out
the spherical vector addition accurately. The upper scale
should be printed on a transparent plastic and fastened so
its center stays precisely over the center of the lower scale.
A small bolt through the centers, or better, a guiding rim
is needed so that the upper scale may turn smoothly over
the bottom one. (Both scales should be put on transparent
plastic if the device is to be used with an overhead projector
for instruction.)
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To compute a product of two rotations R{¢fw] and
R[¢'#'w’'] we first draw the arcs of the respective rotations
onto the upper scale. An arc is drawn by setting the desired
¢ in the “¢ window™ (sce top of lower scale) and tracing the
desired (,w) arc using the f and w scales of the lower scale.
(One may use a fine overhead projector pencil or a Leroy
acetate pen. Either one erases easily from Plexiglas.) It is
necessary to first find the intersection of the [¢0] arc with
the [¢’0'] arc. Then we count back w degrees along the {¢]
arc to mark the tail of the first vector, and we count forward
o’ degrees along the [¢’6] arc to mark the head of the sec-
ond vector. The “w scale” is used for each counting. Finally
the slide rule is turned until the head and the tail points lic
along a f line. (Interpolation may be necessary.) Then the
desired answer ¢” in the product R[¢”07w”] = R{¢'0'w’]
R[¢pfw] is read in the ¢ window, while §” and w” are shown
by their respective scales.

The upper slide rule scale is a stereographic projection
of the “northern” hemisphere of a globe while the lower
scale is the same projection of half the “western” hemi-
sphere. The structure of rotations as described by Hamilton
makes it possible for us to do all products on just half of a
sphere. A rotation for which w is less than 180° corresponds
to an arc of less than 90°. Any rotation with w between 180°
and 360° can be replaced by a rotation that goes the other
way by angle —(360° — ) and has an arc of —(180° —
w/?2) which again is less than 90°. Whenever we do this trick
while operating on electron wave functions, we need to
multiply the result by (—1).

R(w — 27 - - ) for integral spin
—R (w — 27 - - +) for half-integral spin.
4.1

R(---w---)={

So anytime there appears an arc vector that extends over
the edge of the slide rule, we simply replace it by one of
length (360° — ) going the other way. [Remember the

W. G. Harter and N. dos Santos 254
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Fig. 5. (Euler angle [axis angle] conversion on the slide rule. (a) Axis angles are (approximately) [3w] = [80° 34° 129°]: (b) Euler angles are (a8Y)

= (50° 60° 70°).

factor of (—1) for all half-integral spin problems, but forget
it for the others.]

Using Fig. 5 we can understand how the slide rule may
be used to convert back and forth between Euler angles
{aBv) and axis angles [$fw] in the equation

R(afy) = R[pbw] = Rlw]. (4.2)

Figure 5(b) shows a given rotation R[w] reduced by two
vector sums into the product R(«00) R(080) R(00y) =
R(afBy) given by Eq. (2.1). The scales of the slide rule have
been designed so that these products can be done without
drawing arrows. To obtain the position shown in Fig. 5(b)
one must move the upper scale so that the angle between the
meridian passing through the tail of R[w] and the +8 scale
is bisected by the center () line of the lower scale. The “tail
scales” or T scales indicated in Fig. 5(b) make this easy. We
simply read the angle of R[w]’s tail using the T scale, find
this number on the 77 scale, and set it over the center line
below, as shown in Fig. 5(b).

So the procedure for converting an R[¢fw] to an equal
R(apy) is simple. After setting the ¢ in the ¢ window and
locating the tail using the # and w scales (if R[¢fw] has just
been given by a previous calculation the ¢ position will be
all set up. We only have to locate by subtraction (w (head)
—w (tail) where the tail would be if the head is moved to the
edge of the slide rule), we bisect the tail angle using the 7
scales and read off the answers «.8, and v. v is in the y
window, « is pointed out by the R[w] vector head, and 8 is
on the + scale *““across from™ the tail. (Follow a circle or
a fline to +3.)

The inverse calculation: converting R(a3vy) to R[¢pfw],
is just as easy. After setting v in the v window, we locate
the tail of R[¢fw] using the +3 and T scales, and the head
of R[¢bw] on the edge using the « scale. (It helps to put a
dot at each end point with the marking pen.) Then we rotate
the slide rule until the head is over an « = 0 position so we

255 Am. J. Phys., Vol. 46, No. 3, March 1978

read off w and # from the tail point and ¢ in the ¢ win-
dow.

When doing the conversions for spin 1/2 we may need
toinclude a (—1) phase. The (—1) will be necessary for all
R[w] vectors that cross the lower scale center line, i.e., the
6-scale line. Note that for each « and tail point you can
choose one vector that does cross the center line and one that
does not. Both are right but the former has the (—1).

If a tail falls near the —8 axis one may find it to be more
convenient and accurate to bisect with respect to it. As we
mentioned in Sec. I +8 and —g rotations are related by

R(a — 8v) = R(a + 180° By — 180°)

= R{a — 180°3 v + 180°). (4.3)

A number of other interesting problems can be solved on
the slide rule or abstractly using Hamilton’s theory. For
example, suppose we want to find which rotations T will
transform one given rotation R into rotation R’ given by

R’ = TRT". (4.4)

The great circles belonging to R and R’ must intersect in two
antipodal points on the sphere as shown in Fig. 6 and one
of these points must show up on the slide rule. Obviously one
of the possible solutions to Eq. (4.4) is a rotation T around
an axis through the two antipodal points which takes the R
great circle into that of R”. The great circle corresponding
to this particular T rotation intersects the R and R’ circles
at points 90° from either antipodal point, as shown in Fig.
6. We may measure the 90° arcs on the slide rule using the
w scales, however, we must measure 180° of w since the w
scale is half-angle. Two such measurements are sufficient
to construct the arc between two 90° points on R and R’
circles. The Hamilton arc vector corresponding to the
rotation T is exactly half of the arc between the 90° points
as seen in Fig. 6. :

W. G. Harter and N. dos Santos 255



We note that if R = R[¢fw], then R” = R[¢'#'w’] must
be a rotation by the same angle w = ’. Indeed, this is a
necessary and sufficient condition for R and R’ to be in the
same class of the rotation group R;.

Furthermore, since the subgroup Cg of all rotations R”
= R[#fw”], having the same axis as R, will commute with
R, ie.,

R[#6w] = R[p0w”] R[pbw] R™! [pbw”],

we then see that all rotations T” = TR” will satisfy Eq. (4.4)
as well as T, [The set of all rotations TR” is called the (T)
left coset of Cp.]

The problem of finding T is equivalent to another: find
the rotation transformation that transforms one orthogonal
coordinate system to another. An orthogonal coordinate
system can be defined by a spherical triangle with each side
being 90° of arc. The vertices of the triangle are the points
where the three axes x, y, and z of the system poke through
the unit sphere. In fact it is easy to see that just one directed
90° arc (say the x — y arc) is enough to define a system.
Now if we have two such arcs, one for each of two systems,
we can find a T on the slide rule which rotates the great
circle of one into that of the other. This is followed by a
rotation along the new great circle in order to bring the old
arc on top of the new one. The combination of T and this last
rotation is the desired coordinate transformation.

Three orthogonal 90° arcs and the 180° rotations asso-
ciated with them can be thought of as the basis of Hamil-
ton’s theory. In fact the three matrices,

01

0. = (R(=90° 180° 90°)) = —i ( o

)E—i(ax),
0, = (R(0180° 0)) = —i (? N ==itay,

0, = (R(180° 0 0)) = —i <1 _01) =—i(a:), (45)

0
are the famous quaternion matrices which satisfy the
well-known multiplication rules

Q% = Qi - Qg =—1, Qny =Q.= _Qny

cen (xyz cyclic), (4-6)

of the quaternion group. Many interesting mathematical
properties of these “hypercomplex™ quantities are discussed
by Biedenharn and Louck.?

V. TIME BEHAVIOR OF SPIN-1/2 STATES

We now briefly review a solution of the Schrodinger
equation for a spin-1/2 system and indicate how the rota-
tional slide rule may be used to calculate it. The Schrodinger
equation is written

(G Iramy = (e (4 ey,

where |1) stands for the state of “spin-up” ({1|J.|1) =
1/2) and |2) stands for “spin-down” ({2|J.|2) = —1/2),
and H;; are components of the Hamiltonian matrix.

If the H;; are constant, we may use the well known3-6
exponential solution to Eq. (5.1). This solution has the
form

(5.1
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Fig. 6. Showing class equivalence and
coordinate transformations using
Hamilton arc vectors.

()=l ] ()
(5.2a)

where we expand the matrix exponent in terms of spin an-
gular momentum operators J, J,, and J,

H”le) <]0)
. = (H + H»)/2
<H]2H22 (Hi 2)/ 01
" 0 1/2
+(H12+H12)<1/2 0>
+i(Hy H12)<1/2 0>
1/2 0
H —
+ (Hy H22)<0 _1/2)
(5.2b)
= Ho(l) + w, (Jx)+wy(~]y>+wz<~]z>,

and where we let
Ho= (Hy + H2)/2, wx = Re Hy,,

wy=—lmH12, wz=H1|—H22. (5.20)

Rewriting the solution in terms of the w vector we have
AN _ ot iy { 190D
(<2|¢(z>>) o <<2|¢<o)>)

= oHotfi p(wifi)(d) <§; :ié;’;;)

which, except for the overall phase e0/i is just a rotation
R[w?] of the initial state |¢(0)). [Recall Eq. (3.1).]

[¥ (1)) = efo/i Rlwt] [¥(0)). (5.4)

Following Refs. 5 and 6 one may show that all states
[¢(0)) - -+ |¢Ar)) can be written as rotations R(aoBovo) * - *
R(a,8;7v:) of some single state, say “spin-up™ |1). For any
given |¢) may be set equal to

|¢) = R(agy) |1),
or [using Eq. (3.3)]
<<1I¢>)
(2ly)
_ fe~iatn)/2 co5(3/2) —ei(r—e)/2 sin(B/Z)) <l>
= < el /2 sin(8/2) ei=tV/2cos(8/2) / \O

(5.3)

(5.5a)

(5.5b)
o e~Y2 cos(B/2)
=T < e’/2sin(B/2) )’

for some Euler angles «, 8, and . Furthermore the expec-
tation values of the spin angular momentum vector in this
state are
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B e—i/2 COS(ﬁ/z) *
(YlIe [¥) = <e"‘/2 sin(8/2) >

<(192'0) Comnan2)

= [(e/® + e~«)/4]sin(8/2)cos(8/2)
= (1/2) cosa sing,

W Jy [¥) = (1/2) sina sing, ($|J:|¢) = (1/2) cosB,

i.e., a spin--!, vector with polar angles ® = ¢ and 0 = 3.
(The “twist angle” + is just the overall phase multiplied by
2.) We see here how Euler angles provide a convenient de-
scription of a state while axis angles [w] prov1de a conve-
nient description of an operator.

Putting these two descriptions [Egs. (5.4) and (5.5a)
together we have

IHb(t)) R(a:8:v:) |l>
efot/i Rwt] « R(agBovo) |1)
R{wt] - R(aoBoyo — 2Hot) | 1. (5.7)

Now the problem of finding the final state |¢(7)) reduces
to computing the «,, 8;, and v, of the product operator

R(c:B,7:) = Rlwt] - R(aoBovo — 2Hot),  (5.8)

given wt, Hot [Eq. (5.2¢)], ao, Bo, and ¢ [Eq. (5.5b)]. The
procedure for doing this on the slide rule has been described
in the preceding section. The physical effect of R[w?] is the
well-known precession of the spin vector (J(a)) around
the axis vector w as time goes on.

In article II we shall do some numerical examples in
detail for the analogous optical activity problem., The
physical interpretation of the various angles a, 8, v, and wt
is probably easier to understand there.

(5.6)

VI. FINITE ROTATIONAL SYMMETRIES

Just as the integers are a subset of all numbers, so are the
finite or molecular point symmetries a subset of all spatial
rotations. In fact, it is common practice to write multipli-
cation tables for the finite groups that remind one of the
“times tables” for arithmetic. Now we shall see how simple
nomograms can be made which contain all possible products
of symmetry rotations. We use as our examples the two
most complicated finite symmetries in nature, the cubic-
octahedral symmetry (O), and the icosahedral-dodecahe-
dral symmetry (7).

Figure 7(a) shows the octahedral rotations as they appear
according to Hamilton’s prescription for assigning arcs that
are each half the corresponding angle of rotation. There are
five classes of rotations: the null or identity operator, and
four classes of nonzero rotations. The 120° rotations (ry,
I3, I3, r4) in the counterclockwise direction around (111),
(111), (111) and (11]) axes, resgectively, are in the same
class with 240° rotations (r}, r, r3, r7) about the same axes.
Similarly, the 90° rotations (R;, R, R3) around x, y, and
z [i.e., (100), (010), and (001)] axes, respectively, are in the
same class with the 270° rotations (R}, R3, R3) about the
same axes. However, the 180° x, y, and z rotations (R}, R3,
RJ) are in a class by themselves as are the 180° rotations (i;,
iz, i3, 14, is, ig) around the (101), (101), (110), (110), (011),
and (011) axes.

One should note that for ordinary (nonspin 1/2) trans-
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formation a rotation like the 270° R} around (001) has the
same effect as a 90° rotation around (001), i.e., the same
as a 90° clockwise rotation around (001). So its easy to see
that Ry and R3 are in the same class since they are both 90°
rotations around octahedral vertices, as are Ry, R,, - - - etc.
To be more precise, the six operators Rj, Ry, - - -, R} belong
to six equivalent vertices of the octahedron and there exist
octahedral transformations T to transform them into each
other.

R, =TR,T-! (forT=r} R;3,--+)

= TR3T_[ (fort,rl, Rz,-'-). (61)

Class relations like the preceding can be derived by direct
inspection, on the rotational slide rule, or most easily using
the nomogram in Fig. 7(a)-(c).

To construct the nomogram, we first superimpose the
great circles of each rotation as shown in the stereopicture
in Fig. 7(b). A hemispherical projection of Fig. 7(b), with
the arrows labeled, is the desired nomogram in Fig. 7(c).
Note that we have labeled many of the elements with minus
signs. For electrons or spin-15 states,  we will have, for
example, that the rotation R3 by 270° around (001) is not
quite the same as the 90° clockwise rotation R5'. In fact we
have [from Eq. (4.1)]

R7'= —Rj}, (6.2)

and this is how we have labeled all rotations that would have
otherwise given arrows longer than 90°.

Thus the nomogram gives not just the O group table, but
all 48 X 48 = 3304 entries of the so called “double group”
of 0. However, we shall show in Sec. VII that there is no
need to deal with double groups, and that in fact the phys-
ical applications of symmetry to half-integral spin should
be roughly half as much work instead of double trouble!

Our last example of finite symmetry is the icosahedral
group /. This is the most complex multiaxial three-dimen-
sional point symmetry, and includes 59 nonzero rotations
indicated in Fig. 8. We label each one by the permutation
which it performs on integers 1 through 5 attached to the
icosahedron. For example, (153) means all I’s jump to
where 5’s were, 5’s jump to where 3’s were, 3’s jump to
where 1’s were, but 2’s go into 2’s and 4’s into 4’s. This
corresponds to a 120° rotation around the axis labeled (153)
in Fig. 8. In this way the multiplication rules for permuta-
tions give the group multiplication for / symmetry. (An
octahedron can be numbered so that all the rotations in O
correspond to permutations of | through 4.)

However, to combine rotations for half-integral spin
states easily, we need to make a nomogram using Hamil-
ton’s rules. The great circle arcs corresponding to various
classes of I are shown on the stereo drawing of Fig. 9(a)-(c),
and they are superimposed in Fig. 9(d). It is interesting to
see which part of the Hamilton arcs make up the basic
Fuller geodesic'! dome which is shown in Fig. 9(e). The
dark arcs are the 72°-144° class circles, while the lighter
lines are segments of the 180° class circles, which are pro-
jections of the edges of the icosahedron onto the sphere.,

A projection of one side of Fig. 9(d) is the / nomogram
shown by Fig. 10. Each permutations symbol corresponds
to a given counterclockwise rotation around the axis indi-
cated in Fig. 9 by the angle written there. Rotations by more
than 180° are replaced by shorter clockwise arrows and a
minus sign as usual. One difference between this nomogram
and the cubic one (Fig. 7(c)) is the order of products ab
instead of ba. This is because the operations of I are defined
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THE 180°CLASS

R / ’
\éf;ﬁ #;Rg

THE 120° CLASS THE 90° CLASS THE 180° CLASS
[T AR
1'2'3%'s' 1 f2 13 Fi Rz Rs R2 R2 R2
I "2 73
2 .2 2 3 .3 o3
rTorz r3rg RT Rz R3

(a)

Fig. 7. Spherical vector addition for cubic symmetry. (a) Classes of cubic-octahedral group (0). Each rotation is assigned to an arc vector. {20° rotations
ry, ra, r3, and rqaround (111), (L11), (111), and (111) axes, respectively, are assigned to 60° arc vectors which are normal to these directions. 90° rotations
Ry, Ry, and Ry around x, y, and z axes belong to 45° arcs lying in the coordinate planes. 90° arcs are assigned to the 180° rotations i1, iy, i3, i, is, and
ig around the (101), (101), (110), (110), (011), and (011) directions, respectively. (b) Stereo drawing of the arc-paths for cubic rotations. (c) Cubic
symmetry nomograms. To muitiply rotations using the nomogram, one imagines moving their vectors into a head-to-tail position as shown in the key
above the figure. The desired product corresponds to the resultant or vector sum. One ignores the signs written in the labeling circles when operating
on integral-spin (Bose) systems, but they must be included in any calculation involving half-integral (Fermi) systems.

with respect to the body frame, i.e., the integers 1-5 are
glued to the icosahedron and ride with it.

A nomogram can be constructed and used for any of the
other molecular point groups in the same way. Many of the
point groups contain “improper” reflections or rotation
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reflections, however, as long as the proper rotation products
are known, the improper ones are easily found. Each im-
proper operation S is always a product

S=1-R=R"-I (6.3)
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ICOSAHEDRAL  SYMMETRY
ROTATIONS

20 (243)
15423) ROTATIONS
OF 120° .7}

(13452}

of a proper rotation and the inversion [ (x = —x, y —> —p,
and z = —z). Furthermore, inversion commutes with all
rotations and I2 = 1. Finally, one may assume that inversion
has no effect on spin functions.

There is one very interesting observation about plane
reflections which is part of a development of Hamilton’s
rules. For any two planes in space, a reflection through
plane 1 followed by a reflection through plane 2 is the same
as a rotation by twice the dihedral angle (1 2) of intersection

{23Has5])

{I5)(24)

(13)(45), (2)(34)

Fig. 8. lcosahedral symmetry rotations. Each
rotation corresponds to an even permutation of
the integers 1-5 which are written on the icosa-
hedron.

between the two planes. The Hamilton arc (1 2) = w/2 s
precisely the great circle arc perpendicular to the two planes
and extending from 1 to 2.

VII. SIMPLIFIED DERIVATION OF HALF-
INTEGRAL SPIN CHARACTERS

The derivation of ordinary (integral spin) characters of
irreducible representations (IR) of point groups is based

(e)

Fig. 9. Hamilton arcs for icosahedral symmetry. Stereo drawings of arcs paths for (a) 120°, (b) 180°, (¢) 72° and 144° rotations all show icosahedral
symmetry. All the arcs are drawn together in (d). This forms the icosahedral “lattice” which is projected to make the nomogram (Fig. 10). (¢) The
72° arc paths are selected parts of the 180° arc paths form the elementary geodesic dome structure of Fuller.
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Table I.__Partial group table of cubic rotations (half-integer spin).
— e el

1
I riory ory rgl=rt —=r3 =13 =r}}R, Ry R31-R} —R} —R}
B
r 1 ; R]
ra 1 :
rs I i R1
—r4 [T T A —
—ri 1 1=r 1 .
—r% 1 : r RII
—r§ | : ry }
—r} 11 r 1 R,
-— —_—
R, r) : 1
R; r : |
R3 r 1
-R} [ B
—R} 1
—R3 1

upon the theory of class algebras. The number of indepen-
dent IR of any group & must equal the number of classes
which ¢ has. As we mentioned in Sec. 1V, operators # and
h’ belong to the same class of ¢ if

(7.1)

for some g in §. The key algebraic quantities in any IR
character derivation are the independent class sums ¢
defined by

h' = ghg~!

chn=Np 2 ghg™!, (7.2)

ging
where NV, is a “normalization” factor. (N, is the ratio of the
number operators in the class of 4 to the number in §.)

We give now a way to find the characters needed to an-
alyze half-integer as well as integer spin representations of
a finite group 9. The representations needed for the half-
integer cases are called irreducible ray representations
(IRR) of &, or “double-group” representations. The pro-
cedure we describe is simpler than conventional ones which
deal with a whole double group. Working with double the
number of operators generally means having four times as
much algebra to do.

In order to calculate characters for either IR or IRR, we
may use a § nomogram such as Figs. 7(c) and 10 to derive
the class sums by Eq. (7.2). To obtain IR characters we
ignore the minus signs in the nomograms, but we will in-
clude them in all products needed for the IRR case.

For example, without the signs we find the following five
independent class sums for cubic octahedral symmetry:

c=ritrotrstratrivri+ri+r,
CR=R1+R2+R3+R|3+R%+R§
crz= R+ R3+ R},
Ci=i1+i2+f3+i4+f5+i6. (73)
However, if we include the signs, then only the following
independent class sums exist: :

c1=l,

Table 1. Cubic class algebra (half-integer spin). Just the upper half of
the table is shown since class algebras commute {(¢'c = ¢c').
=1 c, Ccr
¢ 1 [ CR
c, 81+ 2¢, dcp
CR 61+ 3¢,
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Fig. 10. Icosahedral vector additipn nomogram.

2

o=l c=ritrtrntrn-—ri-ri-ri-ri

cR=R+R,+R:— R} —R3—R3. (1.4)

We note that the classes ¢g2 and ¢; of 180° rotations “die”
when the spin- '4 signs are used. It can be proved that this
will happen in general.

To derive the three independent IRR characters of cubic
symmetry we must find and solve the algebra of ¢y, ¢,, and
cz. We use the O-nomogram [Fig. 7(c)] to construct the
partial group table in Table I. The class sum algebra given
by Table 11 is deduced just from the 1, 7{, and R, entries in
the partial group table.

To reduce a class algebra we construct the lowest-order
polynomial equation satisfied by key elements, such as the
following for cg. '

cr3— 18cg = 0. (7.5)
(These equations must involve powers of the key element
and ¢; = 1 only. They are called minimal equations of the
element.) Such equations may be factored in all cases to give
distinct roots or eigenvalues8 as in the following factoriza-
tion of Eq. (7.5).
(R =3V21D)(cr+3V2D(cr)=0. (7.6)
Then we use spectral decomposition formulas described in
Appendix C to compute class projection operators. From
C¢r We obtain

(cr + 3V2 1)cg 1 1 2
P = (3x/§+3\/‘z“)()3\/§) ARETAARTAL
PEr = (cr = 3V2 1)er
(=3v2~3Vv2) (-3V2)
=(1/6) 1+ (1/12) ¢, — (2/12) ¢
pc = (ErR=3V2 1D (g +3V21)
(=3v2) (3v2)

=(2/3)1~(1/6)c,

(1.7)
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Table I1I. __Cubic IRR characters. Table 1V. Icosahedral class algebra (half-integer spin).
XG £§= 1 r R €| R CRr2 (VS
A =E) 2 1 2 ¢ |2C| +5€R Cr — CRr2 5CR+ 5CR2
E, 2 I -2 R + cp2 + 3¢, +3¢, +3¢,
G 4 -1 0 cp2 120| — CR 50R+5CR2
R —5¢g2 + 3¢, +3c¢,
. . . ¢ 20C] + SCR
where Table Il is used to simplify the products, and the 4 —Scgz + 5S¢,

notations £, E4, and G are the conventional labels for the
roots 3v/2 , —3v/2, and 0, respectively, of Cp.

Now when we have n projection operators P4 expressed
as n linearly independent combinations of the n class sums
g, 1.,

n
Pe= 8 di cg (7.8)
g
then we may compare the expansion with the standard®
general expression for the irreducible projection apera-
tor.
n
P4 = 8 (IYng) x ¢, (7.9)
g
Here, x4 are the desired characters, /4 = x{'is the dimen-
sion of the irreducible representation (A4), and ng is the
number of operators in the group §. The characters are

found by equating the coefficients in Eqs. (7.8) and
(7.9).

xg = (ng/l*) df". (7.10)
The dimensions /4 are found using a simple formula
14 = (ng d")'? (7.11)

as, for example, from Eq. (7.7).
1/2 1/2
JE1 = <24é> P T (24%) 2oy

Finally, we obtain the cubic IRR characters which are as-
sembled in Table 111
All half-integral angular momentum levels (J = 1/2,3/2,
5/2,-+-) will split into some number of E;, E, or G levels
in cubic crystal fields.

Icosahedral symmetry has a rather formidable structure,
however, the methods just described are surprisingly easy
to carry out in the derivation of its IR or IRR characters.
We shall do the latter.

Let us denote the 72° rotations as follows:

Ry = (14325), R,=(15423), R;=(13524),
Rs=(15342), Rs=(12354), Rg=(13452);

and the 120° rotations as follows:
ry = (123), r, = (245), r3 = (153),

rqg = (]24), rs = (345)

re = (125), r; = (145), rg = (143),
ro = (243), rip = (253).

The only independent IRR class sums are the following:

6 4
¢ =1, cp= Zn (R, — R}),
a=
6 10
cre= 3 (RI—R2)., ¢ =3 (ra—rd).
a=1 a=|
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The algebra of these class sums is found using the nomo-
gram in Fig 10, and is given in Table 1V.

The minimal equation of the class sum ¢g is found by
computing powers of ¢g using Table IV, and checking for
linear dependence each time. The results is

CR4 — 7CR3 - 36CR2 + 72CR + 216C| = 0,

which has roots m; = 3(1 + V/3),my =3(1 —=V5), m3 =
3, and my4 = —2. Using the formulas given in Appendix C
we derive the following projection operators:

P! = (4¢; + (1 + V/5) eg — (1 = V'5) cgz2 + 2¢,) /60,
P2 = (4¢; + (1 = V5) cgp — (1 + V/5) cgr2 + 2¢,)/60,
p3= (4C| + Cpr — CR2~— C,)/]S,

P* = (6¢; — cg + cg2)/10.

Using Egs. (7.10) and (7.11) the icosahedral IRR charac-

ters follow immediately. These are given in Table V.
The application of these and related symmetry quantities
are beyond the scope of this article. Some particularly in-

teresting applications of the theory in this article have been
made quite recently!2 in molecular spectroscopy.
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APPENDIX A. EXPONENTIAL FORM FOR
ROTATION OPERATORS

Let the orbital wave function of an electron in state |¢)
be given by

(xpz|¥) = ¢ (xp2). (A1)

Let the wave function of the electron in the rotated state
R(aBvy)|¥) be given by

(xyz| R(aBY)|¥) = ¢y R(xyz2). (A2)
For z-axis rotations R(600) by an infinitesimal angle da,

Table V. Icosahedral IRR characters [Gx = (1 £ V/5)/2].

xg: g= 1 R R? r

A =1 2 G+ G- 1
2 2 G- G+ I
3 4 1 -1 -1
4 6 -1 1 0
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we obtain the following Taylor expansion for the rotated
wave Y R(xyz).

YR{(xyz) = Y(x + yéa, vy — xda, 2)

9 )
= y(xyz) + ya—f oo — xﬁfj Oeve o

= [1 — b <x§y— —y%) +--‘-] Yixvz). (A3)

The standard representation of the z component of an-
gular momentum is

(xyz|3:|¥) = (xyz|xp, — ypx|¥)
—nf.8 _ 9
= ( ”("ay ya=) W)

Comparison of Egs. (A3) and (A4) suggests that we may
write

(A4)

R(6c 00) = 1 + 8ad./i (A5)
for infinitesimal z rotations. For z rotations by a finite angle
o = n(a/n) = n(éa), (n — «), we imagine an infinite
product of infinitesimal rotations.

R(a00) = lim (R(a/n 00))"

n—>w

= lim (1 + (a/n)d./i)".

n—» o

(A6)
Then we apply the well-known definition of the exponential:
e* = lim, (1 + (x/n))” to obtain the formula

R(200) = e*3+/i = R(00a). (A7)

Similarly, we would have the following y-rotation opera-

tor:
R(0B0) = efd/i

and similarly for rotations around any axis w.

(A8)

APPENDIX B. MATRIX SPECTRAL
DECOMPOSITION AND EXPONENTIAL
FORM EVALUATION.

In order to evaluate specific examples of the exponential
forms [Egs. (A7) and (A8)] we shall use the spectral de-
composition

M=m1P[+m2P2+"'+mnPn (Bl)

of an nxn matrix M having n distinct eigenvalues m,, m,,
- «+, m,, where the P; are defined by

P = (n_ M - mjl)/<_n_ (i — m,-)). (B2)
Vil J#I

The P; are projection operators satisfying orthonormality

relations

P;P.=0 (ifk =1i), (B3a)
PP, =P, (B3b)

as well as the following eigenvalue equations.
MP; = m;P; = P;M. (B4)

The spectral decomposition equations [Egs. (B1) to (B4)]
follow from the fact that a matrix satisfies its own eigen-
value (secular) equation, i.e.,
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M-m1)M—ml)---(M=m,1)=0. (B5)

(This is essence of the Hamilton-Cayley Theorem.) To
verify the relations we isolate the (ith) factor in Eq. (B5)
so that it reads

M = m;1)p, = 0, (B6)
where
pi= [ (M—m;1). (B7)
JE
Thus we have
Mp; = m;p;, (B8)

which is the same as Egs. (B2) and (B4) except for a con-
stant factor. Next we may prove (B3) using, in turn, (B7)
and (BS).

Pipc = [ (M —m;1) ps
J#EI

=[] (me —m;) px = 0 (if k #i).

i
This proves (B3) if we divide p; by the constant factor which
makes it into P;. {See Eq. (B2).]

Finally, to prove (Bl) we use the completeness rela-

tion

1=P|+P2+'-'+P". (Bg)
This is a general algebraic result. It is easy to verify for n
=2:
P, 4+ Py = (M — m>1)/(my — my)

+ (M — m 1)/ (my—m))

M = nil = M+ m 1)/ (m — my)
= 1.

and similarly for » = 3, but it is more difficult to prove in
general. [Eq. (B9) holds for all values of m1;, not just the M
eigenvalues.] Now Eq. (B1) follows if we operate on both
sides of (B9) and use (B4).

We may evaluate matrix exponentials eM and other
functions using decomposition (B1). For the exponential
we have

eM = emP + 2Py + ... +emP,  (B10)

which follows directly from (B1) if we expand e¥ = | + M
+ M?%/2! + - - - and use (B3) to eliminate the cross terms.
In the case of the y rotation R(030) we need the spectral
decomposition of the y component (J,) of angular mo-

‘mentum. The spin-'/, representation of J, is the (Yth) Pauli

spinor multiplied by 1/2. Its eigenvalues are m; = 1/2 and
mjy = —1/2. From (B1) we derive

_ /0 =ij2\ _ 1 /1/2=ij2\ 1 /1/2 i)2
Wy) = <i/2 0 >_2<1'/2 1/2) 2(—1’/21/2)'
Then from (B10) we derive Eq. (3.2b)
sy — amign (V2 =12\ o (12 0)2
eTIHthy = et <i/2 1/2 > e (-i/2 1/2)
L/ (em 24 B2 (2 (emiB2 = eif2)/2
- <—(e'f‘3/2 — eiB2)[2i (7782 + €18/2)/2
_ <cos(6/2) —sin(ﬂ/Z))
sin(8/2) cos(8/2) /°
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APPENDIX C. REDUCTION OF CLASS
ALGEBRAS

The same techniques which give the spectral decompo-
sition of a matrix in Appendix B may also be used to de-
compose a class operator ¢. Suppose that we are given the
minimal equation of ¢:

e"+aic" ' +taxr 24+ .- +a,1 =0.

It can be shown? that the roots ¢y, s, -+ -, and ¢, of this
equation must be distinct. Therefore we may construct a
set of orthonormal projection operators using the same
formula (B2) which worked for matrices.

Pi=1I (c—¢g1) / I (¢ —¢).

J#i J#Ei

(CH

These operators will satisfy the completeness relation
1=P|+P2+-"+Pn, (C2)

the eigenvalue equations (¢cP; = ¢;P;), and the spectral

decomposition relations
c=c Py +cPry+---+¢,P, (C3)

If we are lucky enough to have a class sum ¢ for which the
degree n of its minimal equation is equal to the number of
class sum operators, then Egs. (C1)-(C3) give the complete
reduction of the class algebra. Otherwise, we may combine
them with different spectral decompositions

d=dQ +dyQy+---(1=Q;+Qx+--+)

until a complete one is achieved.
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1=1-1=(Q;+Q,+--)(P,+P,+---+P,)
=QP,+Q/P+---+ QP,
+Q2P]+Q2P2+"'+Q2Pn"'

Since all class algebras are commutative (ed = de, Q;P; =
P;Q;, etc.) these multiplications must yield bona-fide
spectral decompositions each time. Furthermore, it can be
shown that the final result is unique.®
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