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Direct numerical simulations of a highly constrained plane Couette flow are em- 
ployed to study the dynamics of the structures found in the near-wall region of 
turbulent flows. Starting from a fully developed turbulent flow, the dimensions of the 
computational domain are reduced to near the minimum values which will sustain 
turbulence. A remarkably well-defined, quasi-cyclic and spatially organized process 
of regeneration of near-wall structures is observed. This process is composed of 
three distinct phases: formation of streaks by streamwise vortices, breakdown of the 
streaks, and regeneration of the streamwise vortices. Each phase sets the stage for 
the next, and these processes are analysed in detail. The most novel results concern 
vortex regeneration, which is found to be a direct result of the breakdown of streaks 
that were originally formed by the vortices, and particular emphasis is placed on this 
process. The spanwise width of the computational domain corresponds closely to 
the typically observed spanwise spacing of near-wall streaks. When the width of the 
domain is further reduced, turbulence is no longer sustained. It is suggested that the 
observed spacing arises because the time scales of streak formation, breakdown and 
vortex regeneration become mismatched when the streak spacing is too small, and 
the regeneration cycle at that scale is broken. 

1. Introduction 
One of the remarkable features of the coherent structures observed in turbulent 

shear flows is that these structures are self-regenerating. Though individual structures 
may break up or decay, their presence ensures the creation of subsequent structures. 
It is through a continuous cycle of generation and regeneration that the turbulence 
is sustained. In the near-wall region, the predominant structures are low- and high- 
speed streaks and streamwise vortices, and these structures have a characteristic 
spanwise ‘wavelength’, widely observed (Kline et al. 1967; Smith & Metzler 1983; 
Kim, et aE. (1987) to be about 100 v/u, (where u, = ( ~ , / p ) ~ ’ *  is the friction velocity, 
z, is the shear stress at the wall, p is the density, and v is the kinematic viscosity). 
After much study, the kinematics of coherent structures have been well characterized 
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(e.g. Kline et al. 1967; Robinson 1991), but the dynamics of the various mechanisms 
involved in the regeneration process, including the factors which govern the spanwise 
spacing of the streaks, have proven tremendously difficult to ascertain. Direct exami- 
nation of the flow dynamics in a fully turbulent flow is complicated by the random 
distribution of the coherent structures in space and time, by the fact that no two 
realizations of a structure are identical, and by the presence of additional structures 
(‘debris’) which may not be necessary components of the regeneration process. 

Several investigators have sidestepped these complications by studying simplified 
flows and, often, by considering only part of the regeneration process. In each case, 
the goal has been to reduce the complexity of the problem while preserving the 
essential dynamics under investigation. Jiminez & Moin (1991) used direct numerical 
simulation to study turbulence in a channel flow at Reynolds numbers of 2000 to 
5000. Simplification was achieved by considering a computational domain in which 
the streamwise and spanwise dimensions were near the minimum values required to 
sustain turbulence. The boundary conditions in these directions were periodic, and 
the simulated flow thus consisted of a periodic array of identical cells. Despite the 
constraint imposed by the small size of the computational domain, various statistical 
measures (mean streamwise velocity profile, Reynolds stresses, turbulence intensities) 
and turbulence structures (sublayer streaks, streamwise vortices, near-wall shear 
layers) in the near-wall region closely matched those observed by other investigators. 
Sendstad & Moin (1992) also used this technique to study the dynamics of near- 
wall structures. Aubry et al. (1988) used a dynamical systems approach to study the 
behaviour of streamwise vortices in the near-wall region of turbulent boundary layers. 
They were able to achieve a great reduction in the complexity of the observed flow by 
using a severely truncated modal decomposition and by considering only the region 
very near the wall. Intermittent behaviour of the streamwise vortices, similar to the 
bursting events widely observed in the near-wall region, was reproduced and studied. 
No attempt was made, however, to recreate the full regeneration cycle: the origin of 
the streamwise vortices, including the possible role of the bursting events in producing 
these vortices, was outside the scope of the study. 

The origin of the streamwise vortices was addressed by Jang, Benney & Gran (1986) 
who employed ‘direct resonance’ theory to explain the observed spanwise spacing of 
the vortices and the accompanying streaks. The direct resonance mechanism produces 
rapid growth of oblique wall-normal vorticity modes, but applies only to modes which 
satisfy a resonance condition, and thus provides a scale selectivity. These wall-normal 
vorticity modes can then interact nonlinearly to form streamwise vortices and streaks 
of the correct spacing. Subsequently, however, Waleffe, Kim & Hamilton (1993) ex- 
amined direct resonance and noted that some non-resonant modes were amplified 
more than the resonant modes, eliminating any scale selection due to the resonance 
mechanism. Furthermore, they found that the creation of streamwise vortices by the 
interactions of oblique modes was dominated by the interactions of the wall-normal 
velocity modes, rather than the wall-normal vorticity modes as required for scale 
selection in the direct resonance theory. 

Waleffe et al. (1993) also examined the possibility that the spanwise spacing of the 
streaks is determined by a length scale associated with the mean velocity profile of the 
turbulent flow. The streamwise vortices are found very near the wall where the velocity 
gradient is highest, and it is reasonable to imagine that a streak spacing proportional 
to the thickness of the high-gradient layer is favoured (selective amplification). This 
was found not to be the case, however, as the peak in wall-normal vorticity response 
is too weak to be significant, and, in any case, corresponds to a streak spacing of 
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less than half the observed value. Thus, neither of the linear mechanisms (direct 
resonance and selective amplification) studied by Waleffe et al. was found to explain 
the spanwise spacing of streaks. 

Butler & Farrell (1993) employed a variational approach to find ‘optimal’ pertur- 
bations - perturbations that produce the greatest growth in perturbation energy over 
a given time - and applied this technique to study streak spacing. They found that 
streamwise vortices are the optimal perturbations in a flow with a characteristically 
turbulent mean velocity profile, and that when the optimization is constrained by a 
time scale (eddy turnover time) imposed by the turbulence, these vortices produce 
streaks with the correct spacing. The optimal perturbation mechanism is linear, but 
the processes which govern the eddy turnover time are nonlinear. No generation 
mechanism is described for the optimal streamwise vortices, and it is supposed that 
the near-wall region contains streamwise vortices of many sizes with only those of 
the optimal size producing energetic streaks within the allowed time. Other evidence, 
however, suggests that this is not the case. Robinson (1991), for instance, reports 
a sharp peak in the distribution of streamwise vortex diameters, with 73% of the 
visually identified streamwise vortices in a numerically simulated turbulent boundary 
layer having diameters of 10 - 40 viscous lengths. 

Jimknez & Moin (1991) addressed the issue of streak spacing when they noted 
that turbulence could not be sustained in their plane channel flow simulations if the 
spanwise dimension of the computational domain was less than the normally observed 
streak spacing of about 100 wall units, even though the flow Reynolds number, based 
on half the separation of the channel walls, was 2000 to 5000. This is a fascinating 
result since reducing the width not only eliminated the streaks, but the turbulence too. 
The streaks (or whatever produces them) are not mere artifacts, but essential features 
of turbulent flow. Waleffe et al. observed that at 100 wall units, the width of the 
channel is much less than the wall separation, and that the Reynolds number might 
more appropriately be based on the spanwise dimension. Indeed, the characteristic 
spanwise spacing, &, when expressed in wall units, uJz/v, is a Reynolds number 
and the value of 100 may best be regarded as the critical Reynolds number for 
sustained turbulence. Waleffe et al. conjectured that the preferred spanwise spacing, 
the critical Reynolds number, is set by the entire process of self-regeneration, rather 
than by any of the individual mechanisms that constitute the process. Hence the 
failure of the linear approaches which attempted to analyse only a single mechanism 
(e.g. streak formation). Waleffe et al. went on to show that the critical Reynolds 
number obtained from the streak spacing, after conversion to the conventional flow 
Reynolds number, gives the correct critical values for plane Poiseuille, plane Couette, 
and other shear flows. This suggests that 100 may be a universal critical Reynolds 
number for near-wall processes. 

Another approach to understanding turbulence regeneration is to assemble various 
known dynamical processes into a ‘conceptual model’ of the regeneration cycle. A 
plausible model must accurately reproduce the observed behaviour of turbulence 
structures and should include some sort of feedback mechanism to close the cycle. 
One such model of the near-wall region is due to Jimknez (1994). In his model 
lateral instability waves form in regions of large wall-normal vorticity that separate 
the streaks. Streamwise vortices form as this vorticity is tilted into the streamwise 
direction by the shearing action of the mean flow. He goes on to show that the 
characteristic spanwise spacing of the streaks can be estimated from the wavelength 
of the lateral instability waves and a balance of vortex concentration by stretching 
versus viscous diffusion. The cycle is closed with the formation of new streaks by 
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the streamwise vortices. A different mechanism for streamwise vortex generation 
is proposed in the conceptual model of Sreenivasan (1988). He adopts the idea of 
Coles (1978) that the streamwise vortices arise through a Gortler, or centrifugal, 
instability mechanism. This mechanism is driven by near-wall pathlines that have 
concave-upward curvature as a result of some large-scale disturbance. A closely 
related phenomenon is the Craik-Leibovich instability (Craik & Leibovich 1976). 
The original analysis for the Craik-Leibovich instability was developed in connection 
with Langmuir circulations, arrays of vortices aligned with the wind direction found 
near the surface in oceans and lakes. The Craik-Leibovich instability mechanism 
has also been proposed as the source of streamwise vorticity in the near-wall region 
of turbulent flows, and Craik (1982) has provided an Eulerian interpretation of the 
instability showing it to be very similar to the Gortler instability mechanism. 

Clearly, there is no shortage of reasonable candidate mechanisms for the regenera- 
tion of near-wall structures, but the complications of turbulent flow make narrowing 
down the list very difficult. In the present study, we begin with a turbulent plane 
Couette flow and progressively reduce the Reynolds number and dimensions of the 
computational domain to near the minimum values for which turbulence can be 
sustained. The complexity of the resulting flow is greatly reduced, yet the essential 
dynamics of the regeneration cycle are retained. This is in contrast to the more 
common approach in transition and turbulence studies of considering deterministic 
perturbations to a laminar or mean shear flow. One advantage of our minimal tur- 
bulent flow is that it allows us to examine the regeneration cycle as a whole, and to 
evaluate each phase of regeneration in the context of the others to provide a complete 
and consistent description of the entire cycle. 

The approach used in the present study is similar to that of Jimenez & Moin (1991) 
in the reduction of the streamwise and spanwise extent of the computational domain, 
but here the constraints imposed on the flow are much stronger. They examined a 
channel flow of low to moderate Reynolds number while the present flow is a plane 
Couette flow of minimal Reynolds number. The mean flow in a channel has shear 
of opposite sign at each wall and therefore two separate near-wall regions. Plane 
Couette flow has a single-signed shear and, as will be seen, at low Reynolds numbers 
the two walls share a single set of structures. 

The direct numerical simulation technique and flow geometry used in the present 
study are presented in $2 of this paper. The general characteristics of the regeneration 
cycle are discussed in $3. This is followed by an examination of the various phases 
of regeneration, with streak formation in 54, streak breakdown in $5, and streamwise 
vortex regeneration in $6. In 97, streak spacing is considered in the context of the 
regeneration mechanism. The results of the present study are compared to those of 
previous investigations in $8, and both similarities and differences are noted. 

2. Numerical method and flow geometry 
The direct numerical simulation results presented in this paper were obtained using 

the pseudo-spectral channel flow code of Kim, et al. (1987) modified to simulate 
plane Couette flow and using a third-order Runge-Kutta time advancement for the 
convective terms, rather than the original Adams-Bashforth. The computational 
domain is illustrated in figure 1. Dealiased Fourier expansions are used in the 
streamwise (x) and spanwise ( z )  directions, and Chebychev polynomials are used in 
the wall-normal (y) direction. Boundary conditions are periodic in x and z ,  and the 
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FIGURE 1. Flow geometry. Streamwise and spanwise boundaries are periodic. Top and bottom 
walls move in the x-direction at velocities U ,  and -U,, respectively. 

no-slip condition is imposed at the walls. The mean streamwise pressure gradient is 
zero, and the flow is driven by the motion of the walls. 

The flow velocities in the x-, y- ,  and z-directions are u, v, and w, respectively. The 
Fourier transforms of the velocities are ‘hatted’, and are functions of the streamwise 
wavenumber, k,, the spanwise wavenumber, k,, and the untransformed y-coordinate, 
e.g. zi(k,, y ,  k, ) .  The ‘mean’ velocity zi(0, y ,  0), the instantaneous streamwise velocity 
averaged in the x- and z-directions, is denoted by U ( y ) .  The fundamental streamwise 
and spanwise wavenumbers are a = 2rc/L, and p = 2n/L,, where L, and L, denote 
the streamwise and spanwise dimensions of the computational domain. Quantities 
have been non-dimensionalized by ‘outer’ variables : half the wall separation, h, and 
the wall velocity, U,. In cases where the ‘inner’, or ‘wall’, variables v and u, are used 
for non-dimensionalization, a + superscript is used. The flow Reynolds number is 
given by Re = U,h/v. 

A computational grid of 16 x 33 x 16 in x, y and z was used for the calculations 
presented here. Because of the small computational domain, u, varies with time, but 
the resolution in wall units, for the bulk of this study, lies in the range Ax+ = 10.8- 
13.0, Az+ = 7.4-8.9, and Ay+ = 0.15-0.18 near the wall, and 3.1-3.7 at the centre of 
the channel. This resolution is similar to that obtained by Kim, et al. (1987). 

3. Regeneration cycle 
The first step in the study of the regenerative cycle of near-wall turbulent structures 

was to determine the minimum Reynolds number and minimum dimensions of the 
periodic domain of a plane Couette flow. Computations for Reynolds number 
minimization began with random initial conditions at Re = 625, a value known to 
produce sustained turbulence. The resulting flow was allowed to develop in time, the 
Reynolds number reduced, and the flow once again allowed to evolve. The Reynolds 
number was reduced in this manner to R e  = 500 and 400, with turbulence no longer 
sustained at R e  = 300. The lateral dimensions of the domain were minimized in 
a similar fashion, with reductions first in the spanwise dimension, L,, then in the 
streamwise dimension, L,. The final parameter values (except where otherwise noted) 
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are L, = 1.7571 and L, = 1.271 (L,f = 116.9-143.6) at Re = 400. These values were 
chosen because they produce a flow which is best suited to the present study, as will 
be discussed below. 

The flow realized in this small domain is ideal for examining the turbulence 
regeneration mechanisms. Much of the randomness in the location of the turbulence 
structures is eliminated, and regeneration occurs temporally in a well-defined, quasi- 
cyclic process. The general characteristics of the flow over one complete regeneration 
cycle can be seen in figure 2. This is a plot of streamwise (u )  velocities in the (x,z)- 
plane midway between the walls at various times. At the upper left, the flow can 
be seen to have little x-dependence, and strong streak-like structures dominate the 
flow. As time increases, the x-dependence increases, with the streaks becoming ‘wavy’ 
and then breaking down. By ‘breakdown’ we mean the production of smaller-scale 
features and loss of definition of the streak, not the breakdown of Swearingen & 
Blackwelder (1987), a violent process of scale and structure change during transition 
to turbulent flow. Finally, in figure 2(h), a well-defined, nearly x-independent streak 
has been regenerated, and the cycle is ready to repeat. 

Because periodic solutions in x and z are used in these simulations, Fourier 
decomposition is a natural means to study the regeneration cycle. The modal RMS 
velocity (the square root of the ‘kinetic energy’) is given by 

r l  

(3.1) 
and figure 3(a) is a plot of this quantity in various modes over many cycles. The 
cyclic nature of the flow is particularly apparent in the (0,p) and (a,O) modes of 
this plot. Though M(0,P) is summed over all three modal velocity components, 
the dominant contribution is from G(0, y, p), the fundamental-in-z, x-independent 
streamwise velocity mode, i.e. the streaks. The streamwise velocity contours of 
figure 2 come from a single cycle of the flow of figure 3(a), and the corresponding 
times are marked, with an expanded scale, in figure 3(b). Note the decrease and then 
increase in M(0,  p)  as the flow passes from small x-dependence to large x-dependence, 
and back again. 

The period of the regeneration cycle is slightly less than 100 h/U, ( x  270 v/u,2), 
based on 16 cycles in 1500 time units in figure 3. This is approximately the same as the 
period observed by Jimknez & Moin (1991) in their minimal channel flow at higher 
Reynolds number, though their channel flow and the present plane Couette flow have 
slightly different time normalizations. The regeneration cycle can be divided roughly 
into two phases, each with a duration of about 50 time units: streak formation, 
where dM(0, P)/dt > 0, and streak breakdown, where dM(0, P)/dt < 0. These are the 
subjects of the next two sections. 

4. Streak formation 
Near-wall streaks, elongated regions of spanwise alternating low- and high-speed 

fluid, can easily be produced by streamwise vortices. Streaks produced in this way are 
formed in regions where the vortex has a component of velocity across the gradient 
of streamwise velocity. On one side of the vortex, low-speed fluid is lifted away from 
the wall by the vortex into a region of higher-speed fluid, producing a low-speed 
streak, while on the other side of the vortex, high-speed fluid is pushed toward the 
wall, creating a high-speed streak. This mechanism has been widely discussed by 
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FIGURE 2. Iso-contours of u-velocity in the (x,z)-plane centred between the walls; solid contours 
positive, dashed contours negative. Contour interval 0.032. ( a )  t = 757.5, ( b )  t = 764.8, (c )  t = 772.0, 
( d )  t = 777.8, ( e )  t = 783.0, (f) t = 794.1, ( g )  t = 808.2, ( h )  t = 830.2. 

previous investigators, including Klebanoff, Tidstrom & Sargent (1962), Kline et al. 
(1967), Bakewell & Lumley (1967), and Aubry et al. (1988). Mathematically, streak 
formation by streamwise vortices can be represented as the modification of some 
suitably averaged mean flow, u(y), by advection (e.g. Ellingsen & Palm 1975): 
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FIGURE 3. Modal decomposition: ( a )  multiple regeneration cycles, (b )  single cycle of the same flow. 
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circles on the M(0,  p )  curve in ( b )  are at times which correspond to figure 2(a-h). 

(note that this is a linear process). In the minimized plane Couette flow of the present 
study, the streaks occupy the k ,  = 0 (x-independent) Fourier modes. The dynamics 
of streak formation, in Fourier space, are thus governed by the various terms in the 
equation for dQ0, y, n/?)/dt. The linear advection mechanism is represented by 

(the Fourier space equivalent of (4.1)). This is the only mechanism by which energy 
can be transferred directly to the streaks from the mean flow, U ( y ) ;  there are other 
k ,  = 0 interactions, but only the terms of (4.2) can account for extraction of energy 
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- 0.1 

FIGURE 4. Streamwise and cross-flow velocities in the (y, z)-plane for the x-independent modes: 
(a,b), t = 757.5; ( c , d ) ,  t = 794.1. Iso-contours of u in (a) and (c), solid lines are positive values, 
dashed lines are negative values, contour interval 0.1. The velocity vectors for u, w in ( b )  and ( d )  
have the same scale. Reference vectors of magnitude 0.1 are plotted. 

from U(y) .  The k ,  = a, 2a, . . . modes can also affect a(0, y ,  np),  but not through direct 
interaction with the mean shear. 

Examples of the streaks and streamwise vortices in the present study are plotted 
in figure 4. Isolines of u, the streaks, and velocity vectors of u and w, the vortices, 
are plotted in the cross-flow ( y , z )  plane for the x-independent modes at times 
corresponding to a maximum and a minimum in M(O,P) in figure 3. (Note that 
the streamwise vortices are stronger after breakdown; this is discussed in $6.) The 
spatial arrangement of the streaks and vortices is consistent with the notion that the 
vortices have created the streaks through the linear advection mechanism, but the 
actual generation of the streaks can be tested. To do this, we examine the results of 
a series of simulations in which the initial conditions are taken from the regeneration 
cycle, but with some of the Fourier modes modified. 

To examine the formation of streaks by x-independent vortices acting on the 
mean flow, it is desirable to simulate a flow in which only the vortices are present 
initially, and to look for the subsequent development of streaks. This is possible 
when considering the x-independent modes because the cross-flow velocities u and w 
decouple from the streamwise velocity u :  for u(y,z) ,  u(y ,z)  and w(y ,z )  

a0 au au ap 1 (aia 
at + ay + w- a Z  = -- a y  Re  a y 2  

+- - + - ,  - ( 4 . 3 ~ )  

a0 a w  
ay  az - + - = o .  (4.3c) 

The streaks can be removed numerically by zeroing the i(0, y ,  np )  modes for n # 0, 
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FIGURE 5. Streak formation, growth of the (0, p )  mode: - , growth due to streamwise vortices 
in k ,  = 0 modes, initial data U ( y )  and 6, 9(0, y ,  n p )  at t = 757.5 corresponding to a peak in M(0,  /I); 
........... , growth due to k,  = a modes, initial data U ( y ) ,  B, 6, G(a ,y ,np )  at t = 777.8 corresponding 
to a peak in M(cr,p). 
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Z 

FIGURE 6. Iso-contours of streamwise velocity in the (y,z)-plane at t = 51.6 in the simulation of 
figure 5. Negative contours dashed, contour interval 0.1. 

i.e. zeroing all the streamwise velocity Fourier modes in z except the mean (the k ,  # 0 
modes of fi, 6, and 6 have already been removed). This has no effect on the vortices 
because of the decoupling of the velocity components. The initial conditions for the 
vortices are the same as figure 4(b). The cross-flow is held fixed (‘frozen’) during the 
computation to prevent decay of the vortices. The resulting growth of the streaks is 
plotted with a solid line in figure 5, a plot of the growth in M(0,p).  Note that the 
time scale of streak generation in this simulation, about 50 time units, is the same 
as in the full simulation of the regeneration cycle (figure 3). In addition, the streaks 
formed by the streamwise vortices, in figure 6, are remarkably similar to the streaks 
of the full simulation in figure 4(a). 

The formation of streaks by the k ,  = a modes was also examined (the reason 
for investigating the formation of streaks by a-modes will become apparent in $8). 
The mean velocity profile, U ( y ) ,  was retained, along with 6, 6, 6(+ct, y ,  np), and all 
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FIGURE 7. Iso-contours of the k ,  = 0 modes of streamwise velocity generated by interactions of the 
k, = c( modes. Negative contours dashed, contour interval 0.1. 

other modes were zeroed. The a-modes were frozen, and 6, G(O,y,np) were fixed at 
zero. The growth in M(O,P) due to these interactions is plotted with a dashed line 
in figure 5. The time scale is about the same as the k ,  = 0 interactions, but the 
amplitude is smaller. More importantly, the resulting ‘streaks’, plotted in figure 7, are 
very different from those found in the full simulation. The shapes of the mean flow 
distortions are different, and have opposite spanwise phase; that is, u is increased 
where there should be a low-speed streak, and decreased where there should be a 
high-speed streak. 

The mean velocity profile in a laminar plane Couette flow is linear. In a correspond- 
ing turbulent Couette flow, turbulent mixing causes higher velocity gradients near the 
walls, and lower gradients toward the centre of the flow. While the velocity gradient 
at the wall in the present flow shows moderate variation over the regeneration cycle 
(Re ,  = u,h/v = 31.5-37.7), the general shape of the mean velocity profile varies 
relatively little, as do the shapes of the streamwise vortices (see figure 4b,d). This 
suggests that the redistribution of momentum by the vortices may be the primary 
effect governing the mean velocity profile. To determine whether this is true, the cal- 
culations of figures 5 and 6 were repeated with an initially linear ‘mean’ velocity, V ( y )  
(recall that this ‘mean’ is the average in the x- and z-directions). The mean velocity 
profile that develops from these initial conditions is plotted in figure 8 along with the 
mean profile from the full simulation of the regeneration cycle. The mean profile due 
to the vortices only is plotted at a time corresponding to a peak in M(O,p), similar 
to the peak in figure 5. The mean profile from the full simulation is at t = 757.5. The 
two profiles are very similar, indicating that the mean profile is, indeed, governed by 
the streamwise vortices. 

5. Streak breakdown 
The high- and low-speed streaks in figure 2 are nearly straight initially, with little x- 

dependence, but they quickly develop a ‘waviness’ in x and then break down. This can 
also be seen in the modal energy plot of figure 3(a). The peaks in M(0, p )  correspond 
to the times at which the streaks have the least x-dependence. As the streaks become 
wavy M(0,  p )  decreases. Finally, breakdown occurs and M(0,  p)  reaches a minimum. 
The decrease in M(0,  p)  during streak breakdown is accompanied by a sharp increase 
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FIGURE 8. Profile of U ( y ) ,  streamwise velocity averaged in x and z :  ~ , profile from full 
simulation at t = 757.5; - - - - - - - -  , profile at peak of M(O,b) from simulation with initially linear 
( .-.....-... ) streamwise velocity profile and streamwise vortices from full simulation at t = 757.5. 

in energy in the (q0) mode, the fundamental-in-x mode with no variation (i.e. no 
streakiness) in z .  

Swearingen & Blackwelder (1987) used Gortler vortices formed in flow along a 
concave wall to model the near-wall region, and concluded that breakdown was 
the result of the inflectional instability of the streaks produced by the vortices. In 
order to determine whether an instability causes breakdown in the present case, the 
growth or decay of small-amplitude, spatially random fluctuations in an otherwise 
x-independent flow was examined. The initial conditions consisted of a base flow 
and small random perturbations. The base flow was obtained from the simulation of 
figures 2 and 3, at time t = 757.5, corresponding to a peak in M(0,  p). Only the k ,  = 0 
modes of 6, 6 and G (i.e. the x-independent modes) were retained. All remaining 
Fourier modes were replaced with random perturbations, uniformly distributed from 
zero to 10-6U,,,. The base flow was ‘frozen’, and the perturbations allowed to evolve 
normally. This procedure is much like that used to observe the development of 
streaks in the previous section, except that here both the cross-flow and the streaks 
are frozen, and it is the growth of perturbations in the x-dependent modes that is of 
interest. The small initial perturbation amplitudes were chosen in order to study the 
linear stability of the flow. In effect, this is an indirect way to obtain solutions of the 
linear eigenvalue problem. 

If the base flow is unstable, the fastest growing instability mode would be expected 
to dominate after sufficient time. In general, this instability mode will consist of 
many Fourier modes. During the computation, when the amplitude of any Fourier 
mode grew above some preset threshold, the amplitudes of all perturbations were 
renormalized to ensure calculation of linear stability. The results of this simulation 
show that the streaks are indeed linearly unstable. The growth of the most unstable 
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FIGURE 9. Linear stability of k ,  = 0 modes of flow from full simulation at t = 757.5: - , 
(a,O), (tl,B) and ( 4 2 8 )  modes; - - - - - - - -  , ( 2  a,O), (2a,p) and ( 2 4 2 8 )  modes; .-......... , (3c(,O), ( 3 4 8 )  
and (3a, 2 8 )  modes. 

modes is shown in figure 9. For purposes of this plot, the a, 2a and 3a instability 
modes obtained from the simulation were normalized to have approximately the same 
initial amplitude. Note that because the base flow is periodic in z the perturbations 
must have the form 

elax C CneinSZ. 

Thus, the various spanwise Fourier modes that contribute to each instability mode 
grow at the same (exponential) rate. 

Comparison of the linear stability results to the full simulation shows some differ- 
ences, but these are to be expected, since breakdown is clearly a nonlinear (i.e. finite 
amplitude) process. The waviness that develops during actual breakdown is not really 
a ‘mode’; for instance, M(a,  0), M(a,  p )  and M(a,  28) do not grow together as a single 
instability mode in figure 3 as they do in figure 9. In addition, the time scale of the 
linear instability is too long, with M(a,O) in figure 3 growing by nearly an order of 
magnitude in less than 20 h /U,  during breakdown, while the a instability mode in 
the linear simulation of figure 9 requires nearly 50 time units. The linear approach 
matches the rapid growth rates of the full simulation only during the initial, transient 
phase. The principal limitation of the linear approach is that the ‘base’ flow we are 
trying to analyse evolves on the same time scale as the instability. The choice of a 
base flow corresponding to a peak in M(O,P) for the stability computation was for 
this reason somewhat arbitrary. A base flow obtained from data at t = 753.8, just 
slightly before the peak at t = 757.5, gives rather different results. At the earlier time, 
only the a-modes are unstable, while at the later time, both the a- and the 2a-modes 
grow. Clearly, the linear analysis is sensitive to the details of the base flow. This 
sensitivity applies also to the shape of the instability modes. In figure 10, the mode 
shapes, in y ,  of v^(a,y,p), G(a,y,O) and G(a,y,p)  are plotted. Data from the linear 
stability computations for t = 753.8 and t = 757.5 are plotted, along with the actual 
mode shapes obtained from the simulation at mid-breakdown at t = 775.1. Each 
mode is normalized to give a peak amplitude of 1. The mode shapes calculated from 

n 
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FIGURE 10. Shapes of a-modes due to streak breakdown and linear instability: - , modes from 
full simulation at t = 775.1; --------, linear stability of k, = 0 modes of full simulation at t = 753.8; 

, linear stability of k ,  = 0 modes from full simulation at t = 757.5. Modes normalized for 
maximum amplitude of 1. For the full simulation, liiI(a,y,O)lmox = 0.16, IG(ct,y,fi)lmax = 0.02, and 
IG(u, Y, B)lmax = 0.06. 

........... 

the two base flows differ from the actual mode shapes, and they differ as much from 
each other. But, given that the flow in the full simulation continues to evolve, the 
mode shapes are surprisingly similar. 

The linear approach gives strong evidence that the x-independent base flow is 
unstable, but the nature of this instability can be explored further with no assumption 
of linearity by selectively altering various Fourier modes, as was done in $4. 

Again, the starting point is the flow of figures 2 and 3 at t = 757.5, corresponding 
to a peak in M(0,P). Of the x-dependent Fourier modes, only the fundamental 
modes, of wavenumber a, are retained; all higher modes (2a, 3a, etc.) are set to zero. 
The amplitudes of the a modes are unaltered. Of the x-independent ( k ,  = 0) Fourier 
modes, three cases are considered: (i) only U ( y ) ,  the mean streamwise velocity, is 
retained, all other modes and velocities are set to zero; (ii) the G(O,y,np) Fourier 
modes (for n # 0) are set to zero, eliminating the streaks, but retaining the mean 
streamwise velocity and the streamwise vortices; and (iii) the G(0, y, np) and G(0, y ,  np) 
Fourier modes, for all n, are set to zero, eliminating the streamwise vortices but 
retaining the streaks and the mean streamwise velocity. Of these three cases, only 
the last produces growth of the a modes. Clearly, then, it is the instability of the 
streaks which causes breakdown, not the instability of the mean flow, G(0, y, 0), or the 
streamwise vortices, though, as was seen in $4, it is the streamwise vortices acting on 
the mean flow which produces the streaks. 

6. Streamwise vortex regeneration 
The regeneration of turbulence structures, as discussed so far, consists of a contin- 

uous cycle of streak formation and breakdown. Streak formation was shown to be 
the result of momentum redistribution by streamwise vortices ($4). In particular, it 
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was shown that the streaky structure in the C(0, y, np) modes was due to the C(0, y, np) 
and G(0, y, np) modes (n # 0). This raises the question of how the streamwise vortices 
are produced. 

Some insight into the behaviour of the streamwise vortices can be gained by first 
examining the characteristics of x-independent flows. Waleffe (199 1) has calculated 
the eigenmodes of the cross-flow (u  and w), and the most slowly decaying mode is 
plotted in figure 11. In this computation, the streamwise flow is irrelevant since u and 
w decouple from u in x-independent flows, as shown in (4.3). One consequence of this 
decoupling is that the cross-flow in an x-independent flow must always decay since 
there is no mechanism by which energy can be transferred from the driven, streamwise 
flow into the cross-flow. The cross-flow eigenmodes, by definition, have a constant 
mode shape, or distribution of velocities, and only the magnitude of the velocities 
can change. The present flow also exhibits a relatively constant velocity distribution 
in the x-independent modes. In figure 4, it can be seen that the streamwise vortices 
persist throughout the regeneration cycle with little change in shape, and this shape 
is quite similar to the most slowly decaying eigenmode of figure 11. However, the 
streamwise vortices of figure 4 actually become stronger after breakdown, compared 
to the continuous decay of the eigenmodes. Since it is the a-modes which grow 
during streak breakdown, it would appear that the strengthening of the vortices is 
due to interactions among the a-modes. To examine these interactions, we again use 
simulation data as a starting point. 

A close examination of the cycle in question shows that the strength of the 
streamwise vortices begins to increase at about t = 772.0, corresponding to figure 2c. 
The flow field at this time is used as an initial condition, with all modes set to zero 
except the mean, U ( y ) ,  and the a-modes: C, 6, and 9 of (a,y,na) (for all n). In 
addition, the a-modes are frozen. With this initial condition, streamwise vortices 
quickly appear, and these vortices then produce streaks, as would be expected ($4). If 
the a-modes are then 'unfrozen', the flow immediately begins to follow the regenerative 
cycle normally observed. This process is shown in figure 12. Up  to t = 34.9, the 
a-modes are frozen, and M(0,p)  is seen to rapidly increase. After t = 34.9 (the heavy 
vertical line), the a-modes are unfrozen. The energy in the (0,p) mode decreases 
slightly as breakdown due to the a-modes continues, followed by streak regeneration, 
and another cycle. This result indicates that it is the nonlinear interactions of the 
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FIGURE 12. Regeneration of streamwise vortices from k, = ct modes, and subsequent reversion to 
regeneration cycle. Initial conditions: k ,  = a modes from full simulation at t = 772.0, and all k, = 0 
modes zero except U ( y ) .  The k ,  = ct modes are frozen until t = 34.9 (heavy vertical line), and 
thereafter all modes are free to evolve. 

a-modes which regenerate the streamwise vortices, but does not reveal the dynamics 
of the process. The dynamics are most easily studied by an examination of the 
evolution of streamwise vorticity. 

Returning to the full simulation, the cross-flow velocity field and streamwise vor- 
ticity field at t = 772.0 in the (y,z)-plane are shown in figure 13(a,b). Only the fields 
due to the (O,y,P) modes are shown. Note that each vortex is associated with three 
distinct regions of vorticity: a large, central region of vorticity of the same sign as 
the vortex, and two smaller regions, near the walls, of opposite-sign vorticity due to 
the no-slip wall boundary condition. In Fourier space, the time rate of change of 
streamwise vorticity, d&,(ma, nP)/dt, is governed by contributions from six nonlinear 
terms (neglecting viscosity) : the three advection, or redistribution, terms 

and the three ‘source’ terms 

(the y-dependence has been omitted here). The total time rate of change of streamwise 
vorticity in the (ma,nP) mode is the sum of these terms over all values of p ,  q, r 
and s such that p + r = m and q + s = n. Figure 13(c) is a plot of the contribution 
of the a-modes to dG,(O,p)/dt; that is, the sum over all modes for which p + r = 0 
and q + s = 1. A comparison of figures 13(b) and 13(c) shows that, remarkably, 
the interactions of the a-modes produce additional streamwise vorticity in exactly 
the right places to augment the streamwise vortices. This alignment of the newly 
produced streamwise vorticity with the pre-existing vorticity persists throughout the 
process of vortex regeneration, and is the reason the vortices increase in strength with 
no significant change in shape, as shown in figure 4(b ,d ) .  
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FIGURE 13. Quantities in the cross-flow ( y , z )  plane at t = 772.0 due to the ( O , y , P )  modes only. 
(a) Velocity vectors, reference vector of magnitude 0.05 is plotted; ( b )  streamwise vorticity due to 
hX(O, y ,  f l ) ,  contour interval 0.015, negative contours dashed; (c )  time rate of increase in (0, P)-mode 
streamwise vorticity due to nonlinear terms only, contour interval 0.005, negative contours dashed. 

To compare the contributions of the individual nonlinear terms of the vorticity 
equation over time it is easiest to consider 

(where the t superscript indicates the complex conjugate), since this quantity is 
positive at y-locations where the existing streamwise vorticity is being augmented, 
and negative where the vorticity is being reduced. The contributions of each term 
for many wavenumber-pair interactions, integrated in y, are plotted in figure 14(a). 
The sum of the contributions of all the modes is denoted by the heavy solid line 
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in the figure. The cumulative augmentation of the vortices (i.e. time integration 
of figure 14a) is plotted in figure 14(b). Only the a-modes are plotted, since the 
contributions of interactions of the higher x-wavenumber modes to the (0, P )  mode 
are negligible. Note that only the nonlinear terms are being represented in these plots, 
and the continuous viscous decay of the vortices is not considered. One might hope, 
for simplicity, that only a single term of the vorticity equation would be dominant. 
In fact, the plot shows that the largest contribution is from the term 

J. M .  Hamilton, J .  Kim and F. Walefle 

but this term accounts for only about half of the total vortex augmentation, and the 
terms 

+ C.C., (6.2) 

+ C.C., (6.3) 

are also significant. The C.C. denote the complex conjugates, and the y-dependence 
has been omitted. Equations (6.4) and (6.5) can be shown to be identical and appear 
as single lines in figure 14(a,b). The spatial distributions of the dominant terms of 
aw,(O,B)/at at t = 772.0 are plotted in figure 15. The contributions of the terms 
of figures 15(a), 15(b) and even 15(c) have approximately the correct overall spatial 
distribution to augment the streamwise vortices (i.e. the same distribution as the 
vorticity in figure 13b). The term of figure 15(d), however, has a much different spatial 
distribution, and the vorticity associated with this term tends to reduce the strength 
of the vortices. The dashed lines in figure 14(a,b) are due to this interaction, and 
reflect the negative contribution of this term to d)dx12/at. Several pairs of terms, 
such as (6.2) and (6.3), produce approximately equal and opposite contributions, and 
would appear to tend to cancel each other. The plots of figure 15(6,d), however, show 
that the cancellation is not point by point, but only on average over the height of the 
channel. 

While (6.1)-(6.5) represent modal interactions in Fourier space, each has a physical 
interpretation, as well. Consider (6.1) near one wall. The &,(a,O) modes consist 
of streamwise alternating sheets of ox that are 'anchored' at the wall and incline 
sharply downstream. The a part (x-dependence) of G(a,B) tends to force these 
inclined sheets into alignment with the flow, by pushing, say, positive ox away from 
the wall at one x-location, and pushing positive ox toward the wall a distance L,/2 
downstream. That portion of w, that does align with the flow becomes x-independent. 
The P part (z-dependence) of fi(a,fi) causes this alignment of streamwise vorticity 
to occur with opposite phase at spanwise separations of L,/2. This is exactly the 
x-independent, fundamental-in-z rearrangement of vorticity required to produce the 
elongated streamwise vortices that correspond to the Gx(O, P )  mode. 

Only a single cycle has been examined in detail here, and it should be noted 
that there are definite cycle-to-cycle variations. The contribution of (6.1) is almost 
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FIGURE 14. Contributions of various terms to (a) al15~(0,8)1~/at, integrated in y ,  and ( b )  cumulative 
contribution integrated from to = 761.1. - , summation of all terms, all interactions; - , 
equation (6.1); -------- , equation (6.2); -------, equation (6.3); equations (6.4) and (6.5); 
........... , all other (+a,O), (+a, +p), (+a, +2p) and (*a, 38) interactions. 

always largest, but the other terms vary in their importance. There is also a variation 
during some cycles in the spatial distribution of vorticity produced during vortex 
regeneration and, interestingly, vortex regeneration is nearly absent for some cycles. 
This is evident in figure 16, a plot of dl&x(0,~)12/dt  over many cycles, along with 
M(0,  p )  for reference. Regeneration is almost negligible, in this figure, for the cycles at 
t w 1000 and t w 1300. If there is no regeneration of the streamwise vortices, how is 
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FIGURE 15. Spatial distribution of the most dominant terms of d&,(O, P ) / a t  
at t = 772.0 (inverse Fourier transform for physical space representation). Solid 
contours, positive values; dashed contours, negative values. Contour interval 0.002. ( a )  
-B(a,~)~ui,(-a,O)/dy-B(-a,~)dui,(a,O)/dy (cf. equation (6.1)); ( b )  -$(a, P)dui;,(-a,O)/ax 
-G(-a, j?)dui,(a, O)/dx and &&(a, O)dG(-a, P)dx+h,(-a, O)aG(a, P)ax (cf. equations (6.4) and 
(6.5)); (c) hy(a ,  3P)dG(-a, -2P)/dy+GY(-a, 3P)dG(a, -2P)/ay (cf. equation (6.3)); ( d )  
&(a, -2P)dG(-a, 3/3)/~z+uii,(-a, -2P)dG(a, 3P)/dz (cf. equation (6.2)). 

it possible that the turbulence is sustained? Experiments by Hamilton & Abernathy 
(1994) showed that, in a laminar flow, streamwise vortices must have a circulation 
above some threshold in order to cause transition to turbulence. The analogous 
statement for near-wall streamwise vortices in a turbulent flow would be that the 
vortices must have a circulation above a threshold in order to produce unstable 
streaks. If this is the case, regeneration of the vortices need not occur every cycle 
as long as vortex circulation does not decay below the threshold before subsequent 
cycles. The circulation of the k ,  = 0 mode streamwise vortices, r k X z O ,  is plotted in 
figure 17. The circulation peaks during breakdown and then decays. The streaks 
form as the vortices decay, and the maximum in M(0,P)  corresponds closely to the 
minimum in rk,=o. Therefore, the threshold applies to the minimum values of rk,=~; 
the maximum values are relatively unimportant. Hamilton & Abernathy found that 
the threshold value of the circulation, using the present non-dimensionalization, is 
about 0.15 in a steady flow. This is consistent with figure 17 since the minimum 
circulations are never much below that value, even during the two cycles which have 
no regeneration of the vortices. The circulation of the vortices will also be considered 
in flows with unsustained turbulence in the next section. 

7. Streak spacing 
Jim6nez & Moin (1991) found that when the spanwise dimension of their compu- 

tational domain was less than the typically observed spanwise spacing of the streaks, 
turbulence could not be sustained. As discussed in $1, this led Waleffe et al. (1993) to 
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FIGURE 16. Vortex regeneration over multiple cycles. 
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FIGURE 17. Circulation of streamwise vortices in k, = 0 modes. rk,=~ = &,(O, y ,  nfi)dA. Circulation 
plotted is based on the contour that gives the maximum circulation from among all rectangular 
contours on computational grid points in the ( y ,  z)-plane. 

conjecture that the streak spacing corresponds to a critical Reynolds number for the 
entire self-regeneration process. The regeneration process has been examined in some 
detail in previous sections, and the techniques developed to investigate regeneration 
can now be used to address the issue of the spanwise spacing of near-wall structures. 
To do this, we reduce the dimensions of the computational domain in stages, first 
to a width which, though smaller, will still allow sustained turbulence, and then to a 
domain so narrow that turbulence is not sustained. We can then establish whether a 
single step in the regeneration process is disrupted by the constraint of the reduced 
spanwise dimension, or whether, as Waleffe et al. conjectured, the entire process is 
affected. 

The regeneration cycle in a flow with domain dimensions L, = 1.5871, L, = 1.171 
(L: = 103.0-130.3) and Re = 400 is plotted in figure 18. The only notable difference 
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FIGURE 18. Modal decomposition of many regeneration cycles in a reduced domain. Line types 
correspond to same modes as figure 3(a). 

between this figure and figure 3(a) (L: = 116.9-143.6) is that the 'period' of each 
cycle is slightly shorter, with 18 cycles in 1500 time units, rather than 16. The streak 
formation, streak breakdown, and vortex regeneration processes were also compared 
for the two cases, and some differences were observed. First, there is less likely to 
be a single dominant term among the contributions to d\G,(O, P ) I 2 / d t ,  though the 
term of (6.1) is usually slightly larger than any other. Also, the vortex regeneration 
mechanism tends to produce opposite-signed vorticity at the centre of each vortex, 
as shown in figure 19 (compare to figure 13). This distribution of dco,/dt is typical 
for most vortex regeneration events with this domain size, but exceptions are more 
frequent than with the larger domain size. None of these effects is particularly 
significant, since the turbulence is sustained, but they do suggest a subtle shift in the 
dynamics of the mechanism as L,+ decreases. 

The dimensions, L, and L,, of the computational domains considered up to now 
were, as mentioned earlier, near the minimum values required to sustain turbulence, 
but they were not the absolute minimum values. The modal energies in the flow 
of figure 3 have a well-defined, quasi-cyclic behaviour while some of the other 
domain dimensions considered, but not presented here, produced flows with much 
more chaotic cycles. Obviously, streak breakdown is affected by the choice of the 
streamwise dimension, L,, since this choice determines a, the streamwise wavenumber 
of the instability, and the optimum value of a is itself determined by the choice of 
L,. Other processes, such as vortex regeneration, may also be affected by the choice 
of domain dimensions. 

When choosing a domain in which the spanwise dimension has been reduced to 
a value too small to sustain turbulence, these same considerations apply: we wish 
to find a domain which produces a relatively regular and well-defined regeneration 
cycle before the turbulence decays. Two such cases of unsustained turbulence are 
considered here. 

The modal decomposition of the first flow is plotted in figure 20. The spanwise 
dimension of the flow is L, = 1 . l q  or L t  = 109.2 to 126.1 (where L: is based on u, 



Regeneration mechanisms of near-wall structures 339 

Y -  

v, w 

4 

- 0.05 
(a) 

. . . . . . . . . . . . . . .  . . . . . .  . . . .  . . . .  . . .  
Z 

Z 

FIGURE 19. Quantities in the cross-flow ( y , z )  plane at t = 555.0 due to the ( O , y , j )  modes only. 
(a )  Velocity vectors, reference vector of magnitude 0.05 is plotted; (b)  streamwise vorticity due to 
&(O, y, I), contour interval 0.015, negative contours dashed; (c) time rate of increase in (0, fi)-mode 
streamwise vorticity due to nonlinear terms only, contour interval 0.004, negative contours dashed. 

during the early part of the simulation before the turbulence begins to decay). The 
streamwise dimension is Lx = 1.671, and the same Reynolds number, 400, is used. This 
flow was obtained by first reducing the spanwise dimension of a sustainable turbulent 
flow, and then the streamwise dimension. 

The quasi-cyclic behaviour of the modal energies in the unsustained turbulent flow 
of figure 20 appears similar to that of the sustained flow until the final peak in 
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FIGURE 20. Modal RMS velocity over many regeneration cycles of an unsustained turbulent flow. 
Plotted modes same as figure 3. 

M(0,P). There is no breakdown of the flow after this peak, and the energies of all the 
modes decay (except M(O,O), not shown) as the flow becomes laminar. In 95 it was 
shown that breakdown is the result of an instability of the x-independent (k ,  = 0) 
modes of the flow; thus, the absence of breakdown after the final peak would imply 
that the flow has become stable. To check this, the linear approach of 95 was used to 
examine the stability of the unsustained turbulent flow at several different times, and 
the x-independent modes are indeed found to have a dramatic increase in stability 
for the final, decaying cycle. This result is shown in figure 21 for t = 603.4, three 
cycles before the turbulence decays; at t = 947.7, the final peak in M(0,P); and a 
short time later at t = 981.3. At the earliest time, the flow is linearly unstable, with a 
growth rate of the a-modes approximately the same as the sustained flow of figure 9. 
At t = 947.7, the flow is unstable, but with a much lower growth rate. Finally, at the 
latest time, the flow is linearly stable. Because of this increase in the stability of the 
flow, breakdown does not occur. 

In the sustained turbulent flow, breakdown is the result of the instability of the 
streaks, and the streaks are the result of advection of momentum by streamwise 
vortices. Whatever changes occur in the streaks to increase their stability in the 
unsustained turbulent flow are likely then to be traceable to changes in the streamwise 
vortices. The regeneration of the streamwise vortices for the last few cycles of the 
unsustained turbulent flow is shown in figure 22, a plot of al&,(O, P) I2 /a t  integrated 
in y .  Also plotted is the RMS of the (0,P) mode. Note that the first two vortex 
regeneration events in the plot peak during streak breakdown, while the final event 
does not peak until the new streaks have already begun to form. Thus, even though 
the peak amplitude of the vortex regeneration process is nearly constant for each of 
the three regeneration events plotted, the final regeneration occurs late relative to the 
beginning of streak formation. The circulation of the vortices is plotted in figure 23, 
and it can be seen that the streamwise vortices continue to decay during this delay, 
with the circulation falling to about 0.11 before regeneration begins. This value is 
lower than any observed during the sustained cycle of figure 17. After regeneration 
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FIGURE 21. Linear stability of unsustained turbulent flow at various times: - , t = 603.4; 
. . . . . . . . , t = 947.7; . - . . . . . - . - .  , t = 981.3. The energies of the (a,O), ( c I ,~ )  and (cq28) instability modes 
for the flow at each time are shown. 
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FIGURE 22. Time history of vortex regeneration compared to M(0,P):  - 2 a / a t l ~ x ( O , P ) l * ,  
integrated in y ,  contribution of all terms, all interactions; - , M(O,8). 

finally takes place, the circulation drops to about 0.09 at the final maximum in 
M(0,  p), and there is no subsequent breakdown. 

To verify that the relative delay in vortex regeneration does indeed cause the 
turbulence to decay, the strength of the streamwise vortices was artificially boosted 
at t = 858.5, a time corresponding to mid-breakdown in the final full regeneration 
cycle of figure 22. The result is plotted in figure 24. The strength of the vortices was 
increased by multiplying all the B(O,y,n/?) and Q(O,y,np) modes by a factor of 2.0, 
and all other modes were left unmodified. The effect of increasing the vortex strength 
is immediate and the flow returns to the normal regeneration cycle. Note that the 
turbulence does not subsequently decay; the domain size is such that turbulence is 
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FIGURE 23. Circulation of the streamwise vortices in the k, = 0 modes for the flow of figures 20, 22. 
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FIGURE 24. M(0,  f l )  for: __ , unsustained turbulent flow of figure 20; -------, the same flow 
with G(0, y ,  nfl) and &(O, y ,  nfl) modes multiplied by 2.0 at t = 858.5 (denoted by heavy vertical line). 

marginally sustainable and can go through a relatively large number of cycles before 
decaying. 

A second case of unsustained turbulence (L: = 97.Ck86.5) is presented in figure 25. 
The solid line in the in the upper half of the plot is M(O,B), and the associated 
vortex regeneration, i31&x(0,/3)12/&, is shown in the lower half. In this flow, vortex 
regeneration takes place at about the same point in the cycle as in the sustained cases, 
and the circulation, plotted in figure 26, is increased appropriately. Thus, there is no 
delay in regeneration as in the previous flow. In this case, the opposite is true, and 
vortex regeneration takes place too early; at the time of the final peak in M(0,P) in 
figure 25, rk,=o has dropped to about 0.1. To verify this assertion, rk,=~ was increased 
by a factor of 1.5 at t = 130.0 (the peak in circulation in figure 26) and M(O,B) of 
the resulting flow is plotted as a dashed line in figure 25. The increase in circulation 
produces unstable streaks, followed by breakdown and a return to a (rather chaotic) 
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FIGURE 26. Circulation of streamwise vortices in the k,  = 0 modes for the flow of figure 25. 

regeneration cycle. Since streak formation takes place during the decay of the vortex, 
the increase in circulation at the peak in rk,=o increases circulation at subsequent 
times and simulates a delay in regeneration. 

Two other cases of unsustained turbulence were examined, and the results, though 
not presented here, were consistent with the above: in both cases, decay of the 
turbulence could be prevented by increasing rk,=o at an appropriate time before the 
final cycle. Though these four cases are insufficient to draw conclusions with any 
certainty, the results are suggestive. There are several ways to think about the effects of 
reducing the computational domain size below that required for sustained turbulence, 
but the most useful may be to think of the small domain as causing the flow to develop 
a very critical dependence on the time scales of each process in the regeneration cycle. 
As the domain becomes smaller, the streamwise vortices decay more quickly (Waleffe 
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1991) and the flow is less able to accommodate variation in the timing of breakdown 
and vortex regeneration. In the four cases of unsustained turbulence examined, the 
regeneration of streamwise vortices occurred with full vigour, but at the wrong times. 
Turbulence can be sustained only when streak formation, streak breakdown, and 
vortex regeneration occur at proper intervals, and it would appear that these intervals 
are incorrect for structures spaced more closely than the typically observed streak 
spacing. 

We have only addressed the question of what factors determine the minimum 
spanwise streak spacing, but it seems reasonable to suspect that the maximum spacing 
may also be determined by the requirement for appropriately matched time scales 
of the regeneration processes. In a full-scale turbulent flow, structures may come 
into existence that have spanwise spacing larger or smaller than the expected value 
of about 100 v/u7, but these structures will not be regenerated if the regeneration 
processes depend too critically on precise timing. Another possibility is as follows. The 
same sort of nonlinear interactions that regenerate the (0, P)-mode streamwise vortices 
also generate higher modes: (0,2P), (0,3p), etc. When p is based on a computational 
domain of L t  w 100, the (0,2P) mode cannot sustain a regeneration cycle of its own, 
as has been shown in this section. However, as L: approaches 200, the (0,2p) mode 
can sustain the regeneration cycle, since this mode now corresponds to A,+ w 100. 
The time scale of regeneration of the larger-scale ( p )  structures would be expected 
to be longer than for the smaller-scale (2p) structures (cf. figures 3 and 18, see also 
Butler & Farrell 1993 for the time scales of optimal perturbations with increasing 
spanwise wavelength), and the smaller-scale structures might dominate because they 
are regenerated faster. Simulations of a plane Couette flow with near minimum L, 
and Reynolds number, but with L, set to approximately twice the standard streak 
spacing, and initialized with random data develop two pairs of streamwise structures 
(i.e. (0,2P) mode) with the correct spacing of 1; w 100. It has not been possible 
to determine what the role of the larger, (0,P)-mode, structures is in this evolution. 
Clearly, more study is needed to resolve the question of streak spacing. 

The results of this section lend support the conjecture by Waleffe et al. (1993) that 
the minimum spanwise wavelength is set by the entire regeneration process, rather 
than any individual element of regeneration. When the computational domain is 
too narrow, turbulence decays because breakdown does not occur. Breakdown, in 
turn, depends on the creation of unstable streaks by sufficiently strong streamwise 
vortices. The strength of the streamwise vortices depends on vortex regeneration, and 
this, of course, returns us to the starting point, since regeneration depends on streak 
breakdown during the previous cycle. 

8. Comparison with previous results 
Streak formation by streamwise vortices has been well documented in the literature 

(e.g. Bakewell & Lumley 1967; Blackwelder & Eckelmann 1979; Landahl 1980), 
and the present findings are in agreement with previously published results. Streak 
breakdown has also received considerable attention in the literature, and it is generally 
found, as here, that streak instability is the cause of breakdown (e.g. Kim, Kline & 
Reynolds 1971; Swearingen & Blackwelder 1987). There is as yet, however, no general 
theory of the stability of three-dimensional flows, and the nature of the disturbances 
that might grow in a particular streaky flow is not easily determined. Streak formation 
and breakdown were included in the present study to help obtain an understanding of 
the regeneration of near-wall structures that is as complete and consistent as possible. 



Regeneration mechanisms of near-wall structures 345 

There is much less of a consensus regarding the origin of streamwise vortices in 
the near-wall region, and many possible mechanisms have been proposed. Jimhez 
& Moin (1991), in their study of a minimal plane Poiseuille flow, relied primarily 
on flow visualization to study the generation of streamwise vortices. They describe 
a mechanism in which regions of the spanwise vorticity associated with the mean 
flow tend to wrap around streamwise vortices, and in so doing, develop a wall- 
normal component of vorticity, q,. The shearing action of the mean flow then tilts 
this vorticity into the x-direction, producing streamwise vorticity, w,. Sendstad & 
Moin (1992), studying the same minimal plane Poiseuille flow, also found that the 
tilting of vorticity into the streamwise direction is the dominant mechanism for the 
generation of w,. Since the tilting of vorticity was found in the present study not to 
be the principal mechanism for regeneration of streamwise vortices, it is worthwhile 
to examine why these investigations differ. 

The equation for the time evolution of streamwise vorticity may be written as 

1 
- = -u * vw, + 0 * v u  + -v2w, am, 
a t  Re 

where the first term on the right side of the equation accounts for the redistribution 
of m, by advection, and the second term is, in effect, a source term for the creation of 
new cox within the bulk of the fluid. Sendstad & Moin (1992) were interested in the 
generation of streamwise vorticity in the near-wall region, and focused their attention 
on the source term. They found that the greatest contribution to w.Vu was from the 
term 

They noted that the vorticity associated with this term forms in sheets which then roll 
up to become streamwise vortices. The -(aw/ax)(au/dy) term is the largest term, in 
physical space, in the present study as well. However, since streak formation requires 
streamwise vorticity in the k ,  = 0 modes, it is important to ensure that any proposed 
mechanism for vortex regeneration produces these modes. Fourier decomposition of 
-(aw/ax)(au/dy) is plotted in figure 27. While there is some contribution to 6,(O,p) 
(heavy solid line), the greater contribution is to the k, = a modes, and it has been 
shown (figure 7) that the k, = a modes cannot, by themselves, produce the proper 
streaks. Instead, as discussed in 96, the regeneration cycle can only be closed by 
interactions among the a-modes that produce the elongated (x-independent) vortices 
that generate the observed streaks. The mechanism identified by Sendstad & Moin 
is an important one in the generation of these k ,  = a modes, but is not sufficient to 
complete the regeneration cycle. 

The Gortler-type, centrifugal instability and the related Craik-Leibovich instability 
have also been proposed for regeneration of streamwise vortices, as discussed in the 
Introduction. In the present flow, the curved pathlines required for Gortler vortices 
would be found only in the k ,  = a and higher modes, and not in the k,  = 0 
modes. Therefore, while streamwise vorticity might be produced by this mechanism, 
the modal interactions of 96 would still be required in order to produce elongated 
streamwise vortices and streaks. Of course, these instabilities can be important: in 
flow near a curved wall, say, for the case of the Gortler instability. But in that case 
the instability is imposed externally, and is not part of a self-regeneration cycle as 
discussed in this paper. 



346 J.  M. Hamilton, J. Kim and F. Walefe 

0.05 - 
0.04 - 

- 

0.03 - 
9 
v i! 

g;; 0.02 - 
I - 

0.01 - 

0 1  
750 775 800 825 850 

t 

FIGURE 27. Fourier decomposition of - (aw/ax) (du /ay ) ,  integrated in y : - , (0, 8) mode; 
, (0,Zb); - (a  0) .  -------- (a  p) .  ------- (dl  28) ........... 

9 , )  , , >  3 , .  

9. Discussion and conclusions 
The research presented here was part of an attempt to understand the self- 

regeneration and the characteristic spanwise spacing of the structures commonly 
observed in the near-wall region of turbulent flows. The flow employed to study 
regeneration was a plane Couette flow with periodic streamwise and spanwise bound- 
aries in which the Reynolds number, streamwise length, and spanwise width were 
near the minimum values required for turbulence to be sustained. This flow is ideal 
for the study of regeneration since it contains, by construction, the minimum set of 
structures required for sustained turbulence. 

The turbulence structures in this minimal Couette flow were found to undergo 
a temporally quasi-cyclic process of regeneration, with little of the spatial random- 
ness observed in full-scale turbulent flows. Each cycle consists of three, sequential 
sub-processes : streak formation, streak breakdown and vortex regeneration. The 
formation of streaks is found to be the result of simple advection of momentum 
by streamwise vortices, and breakdown is due to an instability of the streaks. Dur- 
ing streak breakdown, a somewhat complicated set of interactions re-energizes the 
streamwise vortices, leading to formation of a new set of streaks, and completing the 
regeneration cycle. This process is illustrated schematically in figure 28. 

The streamwise vortices in the near-wall region were found to account not only 
for the streaks, but also the general shape of the ‘mean’ (averaged in the x , z  plane) 
velocity profile. This suggests the possibility that structure-based turbulence models 
may be able to adequately predict viscous drag by incorporating only the effect of 
the streamwise vortices and ignoring the other near-wall structures. 

The vortex regeneration process was found to be somewhat complicated in the 
sense that the full increase in strength of the vortices could only be accounted for by 
including the nonlinear interactions of several pairs of spanwise Fourier modes. In 
addition, the distribution, in y, of the vorticity produced by these interactions varied 
widely for different modes and different terms in the vorticity equation. It is possible 
that vortex regeneration would prove less complicated if some appropriately chosen 
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FIGURE 28. Schematic illustration of regeneration cycle of near-wall turbulence structures. 

basis, other than Fourier modes, were used in the spanwise direction. This may be a 
useful approach for further study. 

The flow used to study the streak spacing was similar to that used to study 
the regeneration process, except the dimensions of the computational domain were 
reduced below the values required to produce sustained turbulence. By reducing the 
spanwise dimension of the domain, we hoped to find which parts of the regeneration 
process were not sustained at short length scales, and thus why streak spacings of less 
than about 100 v / u ,  are not observed. Four realizations of unsustained turbulence 
were examined, and, in each case, we found that all the regeneration mechanisms 
continue to function, up to a point. It appears, however, that a mismatch develops 
in the timing of the processes and interrupts the regeneration cycle. Such a mismatch 
might also occur at larger length scales, explaining why a dominant streak spacing 
of 100 v /u ,  is observed, but this was not examined in the present work. 

The results of the streak spacing investigation also give support the conjecture by 
Waleffe et al. (1993) that streak spacing is set by the entire regeneration process, 
rather than by any single component of the process (such as streak formation). 

Perhaps the most interesting aspect of the regeneration cycle described here is 
that it is a cycle, and breaking the cycle at any point would prevent regeneration of 
new near-wall structures. Since, as discussed earlier, turbulence cannot be maintained 
without the near-wall structures (JimCnez & Moin 1991), designing flow modifications 
to break or partially disrupt the regeneration cycle may be an ideal way to approach 
turbulent drag reduction or control. 

The highly constrained flow studied here was chosen as ideal for an attempt to 
discover which processes are important in the regeneration of near-wall structures. 
It remains to be seen to what extent the mechanisms identified here carry over 
into full-scale turbulent flows. Real turbulence, of course, is not periodic in x 
and z ,  and Fourier decomposition is of less use in isolating structures and their 
dynamics. The regeneration mechanisms identified here, however, all have physical 
space interpretations, and it is important that comparisons be made to unconstrained 
turbulent flows. 
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