Characterizing dynamics with covariant Lyapunov vectors

Francesco Ginelli

Institut des Systèmes Complexes Paris lle de France \& CEA/Saclay

Joint work with:
A Politi, H. Chaté, R. Livi, P. Poggi, A. Turchi

Lyapunov Exponents

- Chaotic dynamics is characterized by exponential sensitivity to initial conditions:

$$
\begin{aligned}
& \vec{x}_{t+1}=\overrightarrow{\mathbf{F}}\left(\vec{x}_{t}\right) \\
& \frac{d}{d t} \vec{x}_{t}=\overrightarrow{\mathbf{F}}\left(\vec{x}_{t}\right)
\end{aligned}
$$

$$
\left\|\delta \vec{x}_{t}\right\| \approx\left\|\delta \vec{x}_{0}\right\| \cdot \exp \left[\lambda_{1} t\right] \quad t \gg 1
$$

- Tangent evolution of linearized perturbations is ruled by the Jacobian:

$$
\begin{array}{ll}
\mathbf{J}_{t}: \quad\left[\mathbf{J}_{t}\right]_{\mu v}=\frac{\partial F_{\mu}\left(\vec{x}_{t}\right)}{\partial x_{v}} & \\
\delta \vec{x}_{t}=\mathbf{M}\left(\vec{x}_{0}, t\right) \delta \vec{x}_{0} & \mathbf{M}\left(\vec{x}_{0}, t\right)=\left(\mathbf{J}_{t-1} \mathbf{J}_{t-2} \cdots \mathbf{J}_{t_{0}+1} \mathbf{J}_{t_{0}}\right) \\
& \frac{d}{d t} \mathbf{M}\left(\vec{x}_{0}, t\right)=\mathbf{J}_{t} \mathbf{M}\left(\vec{x}_{0}, t\right) \quad \mathbf{M}\left(\vec{x}_{0}, 0\right)=\mathbf{I}
\end{array}
$$

Lyapunov Exponents

- The existence of a complete set of N LEs is granted by the Oseledec theorem:

$$
\Lambda_{+}\left(\vec{x}_{0}\right)=\lim _{t \rightarrow \infty}\left[\mathbf{M}^{\mathrm{T}}\left(\vec{x}_{0}, t\right) \mathbf{M}\left(\vec{x}_{0}, t\right)\right]^{1 /(2 t)}
$$

$$
\Lambda_{+}\left(\vec{x}_{0}\right) \vec{e}_{+}^{j}\left(\vec{x}_{0}\right)=\gamma_{j} \vec{e}_{+}^{j}\left(\vec{x}_{0}\right)
$$

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N} \quad \lambda_{j}=\ln \gamma_{j}
$$

- There exist a sequence of nested subspaces connected with these growth rates:

$$
\begin{array}{r}
\mathbf{R}^{N}=\Gamma_{\vec{x}_{0}}^{(1)} \supset \Gamma_{\vec{x}_{0}}^{(2)} \supset \cdots \supset \Gamma_{\vec{x}_{0}}{ }^{(N)} \quad \lambda_{j} \quad \text { exp. growth rate of } \vec{u} \in \Gamma_{\vec{x}_{0}}{ }^{(j)} \backslash \Gamma_{\vec{x}_{0}}^{(j+1)} \\
\operatorname{dim}\left(\Gamma_{\vec{x}_{0}}{ }^{(j)}\right)=N-j+1
\end{array}
$$

- LEs quantify the growth of volumes in tangent space
- Entropy production (Kolmogorov-Sinai entropy):

$$
H_{K S}=\sum_{\lambda_{i}>0} \lambda_{i}
$$

- Attractor dimension (Kaplan Yorke Formula)

$$
D_{K Y}=k+\frac{\sum_{i=1}^{k} \lambda_{i}}{\left|\lambda_{k+1}\right|}
$$

- There exist a thermodynamic limit for Lyapunov spectra in spatially ext. systems:

Lyapunov Vectors ?

- After exponents (i.e. eigenvalues), people got interested in vectors (i.e. eigenvectors ?) to quantify stable and unstable directions in tangent space.
- Hierarchical decomposition of spatiotemporal chaos
- Optimal forecast in nonlinear models (e.g. in geophysics)
- Study of "hydrodynamical modes" in near-zero exponents and vectors (access to transport properties ?)

But... which vectors ?

Gram Schmidt vectors

Gram Schmidt vectors are obtained by GS orthogonalization (Benettin et al. 1980)

$$
\tilde{\mathbf{G}}_{t}=\left(\tilde{g}_{t}^{1}|\cdots| \tilde{g}_{t}^{N}\right)
$$

$$
\mathbf{Q}_{t}=\left(g_{t}{ }^{1}|\cdots| g_{t}^{N}\right)
$$

Upper triangular
$\tilde{\mathbf{G}}_{t+\Delta t}=\mathbf{Q}_{t+\Delta t} \mathbf{R}_{t, \Delta t}$

- It can be shown that any orthonormal set of vectors eventually converge to a well defined basis (Ershov and Potapov, 1998)
- For time-invertible systems they coincide with the eigenvectors of the backward Oseledec matrix:

$$
\vec{g}^{j} \rightarrow \vec{e}_{-}^{N-j+1}
$$

$$
\Lambda_{-}\left(x_{0}\right)=\lim _{t \rightarrow-\infty}\left[\mathbf{M}^{-1}\left(x_{0}, t\right)^{T} \mathbf{M}^{-1}\left(x_{0}, t\right)\right]^{1 / 2 t}
$$

But...

- They are orthogonal, while stable and unstable manifolds are generally not.
- Dynamical properties are "washed away" by orthonormalization, which is norm dependent, while LEs are not (for a wide class of norms).
- They are not invariant under time reversal, while LEs are (sign-wise):

$$
\vec{g}_{+}^{j} \neq \vec{g}_{-}^{N-j+1} \quad \lambda_{j}^{+}=-\lambda^{-}{ }_{N-j+1}
$$

- They are not covariant with dynamics and do not yield correct growth factors:

$$
\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right) \vec{g}_{t}^{j} \neq \gamma_{j} \vec{g}_{t+\Delta t}^{j} \quad\left\langle\ln \left\|\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right) \vec{g}_{t}^{j}\right\|\right\rangle \neq \lambda_{j}
$$

Covariant Lyapunov vectors v

- Ruelle (1979) - Oseledec splitting

$$
\begin{aligned}
& \vec{v}^{j} \quad \text { spans } \quad \mathbf{E}_{\vec{x}_{0}}^{(j)}=\Gamma_{\bar{x}_{0}}^{(j)} \cap \bar{\Gamma}_{\bar{x}_{0}}^{(j)} \\
& \bar{\Gamma}_{\bar{x}_{0}}^{(j)}=\mathbf{U}_{+}^{(J)}\left(\vec{x}_{0}\right) \oplus \cdots \oplus \mathbf{U}_{+}^{(N)}\left(\vec{x}_{0}\right) \quad \mathbf{U}_{ \pm}^{(j)}\left(\vec{x}_{0}\right) \quad \text { eige } \\
& \bar{\Gamma}_{\bar{x}_{0}}^{(j)}=\mathbf{U}_{-}^{(N-j+1)}\left(\vec{x}_{0}\right) \oplus \cdots \oplus \mathbf{U}_{-}^{(N)}\left(\vec{x}_{0}\right) \\
& \operatorname{dim}\left[\Gamma_{\bar{x}_{0}}^{(j)}\right]=N-j+1 \quad \operatorname{dim}\left[\overline{\bar{x}}_{\bar{x}_{0}}^{(j)}\right]=j
\end{aligned}
$$

- They are covariant with dynamics and do yield correct growth factors (LEs):

$$
\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right) \vec{v}_{t}^{j}=\gamma_{j} \vec{v}_{t+\Delta t}^{j} \quad\left\langle\ln \left\|\mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right) \vec{v}_{t}^{j}\right\|\right\rangle=\lambda_{j}
$$

After Ruelle

- Brown, Bryant \& Abarbanel (1991) - Covariant vectors in time series data analysis
- Legras \& Vautard; Trevisan \& Pancotti (1996) - Covariant vectors in Lorenz 63
- Politi et. al. (1998) - Covariant vectors satisfy a node theorem for periodic orbits
- Wolfe \& Samelson (2007) - Intersection algorithm, more efficient for $\boldsymbol{j} \ll \boldsymbol{N}$

Lack of a practical algorithm to compute them
No studies of ensemble properties in large systems

Computing covariant Lyapunov Vectors v by forward-backward iterations

Upper triangular

$$
\left[\mathbf{C}_{t}\right]_{i j}=c_{t}^{i j}=\left(\vec{g}_{t}^{i} \cdot \vec{v}_{t}^{j}\right)
$$

Consider vectors which are linear combinations of the first j Gram-Schmidt vectors g

$$
\vec{v}_{t}^{j}=\sum_{i=1}^{j} c_{t}^{i j} \vec{g}_{t}^{i} \quad \sum_{i=1}^{j}\left[c_{t}^{i j}\right]^{2}=1
$$

1. R evolves the coefficients C according to tangent dynamics

Covariant evolution means:

$$
\mathbf{V}_{t+\Delta t} \Delta_{t, \Delta t}=\mathbf{M}_{t, \Delta t} \mathbf{V}_{t} \quad\left(\mathbf{M}_{t, \Delta t} \equiv \mathbf{M}\left(\vec{x}_{t}, t+\Delta t\right)\right)
$$

(Expand CLV on GS basis)
(use QR decomposition)
one gets the evolution rule

$$
\mathbf{C}_{t+\Delta t} \Delta_{t, \Delta t}=\mathbf{R}_{t, \Delta t} \mathbf{C}_{t}
$$

2. Moving backwards insures convergence to the "right" covariant vectors

$$
\mathbf{R}_{t, \Delta t}{ }^{-1} \tilde{\mathbf{C}}_{t+\Delta t} \tilde{\Delta}_{t, \Delta t} \rightarrow \mathbf{C}_{t}
$$

(consider two different random initial conditions)

$$
\tilde{\mathbf{C}}_{t+\Delta t} \Delta_{t, \Delta t}=\mathbf{R}_{t, \Delta \Delta} \tilde{\mathbf{C}}_{t} \quad \tilde{\tilde{\mathbf{C}}}_{t+\Delta \Delta} \tilde{\tilde{\Delta}}_{t, \Delta t}=\mathbf{R}_{t, \Delta t} \tilde{\mathbf{\tilde { C }}}_{t}
$$

A. If C are upper triangular with non-zero diagonal, one can verify that

$$
\tilde{\tilde{\Delta}}_{t, \Delta t}, \tilde{\Delta}_{t, \Delta t} \xrightarrow{\Delta t \rightarrow \pm \infty} \operatorname{diag}\left(e^{ \pm \Delta t \lambda_{1}}, e^{ \pm \Delta t \lambda_{2}}, \cdots, e^{ \pm \Delta t \lambda_{N}}\right)
$$

B. By simple manipulations

$$
\begin{aligned}
& \mathbf{R}_{t, \Delta t}=\tilde{\mathbf{C}}_{t+\Delta t} \Delta_{t, \Delta t} \tilde{\mathbf{C}}_{t}^{-1}=\tilde{\tilde{\mathbf{C}}}_{t+\Delta t} \Delta_{t, \Delta t} \tilde{\mathbf{C}}_{t}^{-1} \\
& \Rightarrow\left[\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t}\right]=\tilde{\tilde{\Delta}}_{t, \Delta t}\left[\tilde{\tilde{\mathbf{C}}}_{t}^{-1} \tilde{\mathbf{C}}_{t}\right] \tilde{\Delta}_{t, \Delta t}^{-1}
\end{aligned}
$$

(by matrix components)
$\Rightarrow\left[\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t}\right]_{\mu \nu} \rightarrow \exp \left[\Delta t\left(\lambda_{\mu}-\lambda_{\nu}\right)\right]\left[\tilde{\mathbf{C}}_{t}^{-1} \tilde{\mathbf{C}}_{t}\right]_{\mu \nu}$
$\Rightarrow\left[\tilde{\mathbf{C}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t}\right]_{\mu v} \approx\left\{\begin{array}{rl}0 & \mu>v \\ \exp \left[\Delta t\left(\lambda_{\mu}-\lambda_{v}\right)\right] & \begin{array}{l}\mu<v \\ \phi_{\mu}\end{array} \\ \mu=v\end{array} \quad \lambda_{\mu}-\lambda_{v}>0\right.$

If we follow the reversed dynamics
$\tilde{\tilde{\mathbf{C}}}_{t+\Delta t}^{-1} \tilde{\mathbf{C}}_{t+\Delta t} \xrightarrow{\Delta t \rightarrow-\infty} \Phi \quad$ (diagonal matrix)
$\Rightarrow \tilde{\mathbf{C}}_{t+\Delta t} \xrightarrow{\Delta t \rightarrow-\infty} \tilde{\tilde{\mathbf{C}}}_{t+\Delta t} \Phi$

All random initial conditions converge to the same ones, apart a prefactor

Thus this reversed dynamics converges to covariant vectors for almost any initial condition

Covariant Lyapunov Vectors properties

- They coincide with stable and unstable manifolds
- They are invariant under time reversal.

$$
\vec{v}_{+}^{j}=\vec{v}_{-}^{N-j+1} \quad \lambda_{j}^{+}=-\lambda^{-}{ }_{N-j+1}
$$

- They are covariant with dynamics and do yield correct growth factors (LEs):

$$
\mathbf{M}_{t, \Delta t} \vec{v}_{t}^{j}=\gamma_{j} \vec{v}_{t+\Delta t}^{j} \quad\left\langle\ln \left\|\mathbf{M}_{t, \Delta t} \vec{v}_{t}^{j}\right\|\right\rangle=\lambda_{j}
$$

- They are norm independent and, for time reversible systems, coincide with the Oseledec splitting (Ruelle 1979)
- They can be computed for non time reversible systems too by following backward a stored forward trajectory

The stable algorithm for covariant Lyapunov Vectors

Upper triangular

$$
\left[\mathbf{C}_{t}\right]_{i j}=c_{t}^{i j}=\left(\vec{g}_{t}^{i} \cdot \vec{v}_{t}^{j}\right)
$$

$$
\left\{c^{i j}\right\}_{t+\Delta t}
$$

Matrix R evolves the coefficients C according to tangent dynamics

$$
\left(\mathbf{R}_{t, \Delta t}\right)^{-1} \mathbf{C}_{t+\Delta t} \Delta_{t, \Delta t}=\mathbf{C}_{t}
$$

A Simple recipe

- Start from a random initial condition.
- Run a forward transient to obtain convergence of GS vectors
- Continue your phase space trajectory continuously storing the QR decomposition of tangent space.
- Run a final backward transient only storing the R matrices from QR
- Generate a random upper triangular matrix C
- Evolve C backward by inverting R matrices along the backward transient
- Convergence to CLV coefficients is ruled by difference between nearest LEs
- Once backward transient has been done and CLV coefficients are converged, continue to move backward along trajectories. CLV can be recovered as V=QC
- Some further tricks to ease memory storage in RAM are possible

On Wolfe \& Samelson (2007): vector n-th out of N

$$
\begin{aligned}
& \phi_{n}=\sum_{i=n}^{N}\left|z_{i}, \phi_{n}\right| z_{i}, \\
& \phi_{n}=\sum_{j=1}^{n}\left(\hat{\eta}_{j}, \phi_{n}\right) \hat{\eta}_{j}, \\
& \sum_{j=1}^{n}\left(\hat{\eta}_{j}, \phi_{n}\right) \hat{\eta}_{j}=\sum_{i=n}^{N}\left\{\hat{\xi}_{1}, \phi_{n}\right) \hat{\xi}_{i} \\
& \downarrow \\
& \left.\left\langle\hat{\eta}_{k}, \phi_{n}\right\rangle=\sum_{j=1}^{n}\left[\sum_{i=n}^{N}\left\langle\hat{\eta}_{k}, \hat{\xi}_{i}\right\rangle\left\langle\hat{\xi}_{i}, \hat{\eta}_{j}\right\rangle\right] \hat{\eta}_{j}, \phi_{n}\right\rangle \quad k \leq n . \\
& \forall \text { since } \sum_{k=1}^{N}\left\langle f_{i}, e_{k}\right\rangle\left(e_{k}, f_{j}\right\rangle=\delta_{i j} \text {. } \\
& \Longrightarrow \quad \mathbf{D}^{(n)} y^{(n)}=0, \\
& \sum_{j=1}^{n} \sum_{i=1}^{n-1}\left\langle\hat{\eta}_{k}, \hat{\xi}_{i}\right\rangle\left\langle\hat{\xi}_{i}, \hat{\eta}_{j}\right\rangle\left\langle\hat{\eta}_{j}, \phi_{n}\right\rangle=0 \quad k \leq n . \\
& \text { where } \\
& y_{k}^{(n)}=\left\langle\hat{\eta}_{k}, \phi_{n}\right\rangle \quad k=1,2, \ldots, n, \quad D_{k j}^{(n)}=\sum_{i=1}^{n-1}\left\langle\hat{\eta}_{k}, \hat{\xi}_{i}\right\rangle\left\langle\hat{\xi}_{i}, \hat{\eta}_{j}\right\rangle \quad k, j \leq n .
\end{aligned}
$$

$n-1$ forward and n backward GSV are needed to compute the kernel

Some applications

- Angles between CLV or linear combinations of CLV: hyperbolicity.
- Localization properties
- Hydrodynamic modes ...
- Data assimilation algorithms ?

1. Localization properties in spatially extended systems

-Localization properties of vector j can be characterized by the inverse participation ratio

$$
Y_{2}(j)=\frac{\left\langle\sum_{i}\left(\alpha_{i}^{j}\right)^{4}\right\rangle}{\left(\sum_{i}\left(\alpha_{i}^{j}\right)^{2}\right)^{2}} \quad \alpha_{i}^{j}=\left\{\begin{array}{c}
\delta x_{i} \\
\sqrt{\delta q_{i}^{2}+\delta p_{i}^{2}}
\end{array}\right.
$$

- Localized: nonvanishing Y_{2}

$$
Y_{2}(j) \approx 1 / \ell+L^{-\gamma}
$$

- Delocalized: vanishing Y_{2}
$Y_{2}(j) \approx 1 / L$

Localization in spatially extended systems - Numerical results

a) CML of Tent maps
b) Simplectic maps
c) Rotors
d) FPU

$$
h=i / L=0.2
$$

Localization length

Fourier analysis of "last positive" vector

$$
S(k)=\left|\sum_{m} \delta q_{m}{ }_{m}^{i_{m} k}\right|^{2} \quad k=2 \pi \frac{j}{L}
$$

$$
C L V-\delta q
$$

$$
\text { GSV - } \delta q
$$

2. Density of Hyperbolicity "violations"

$$
\Phi_{n}=\cos ^{-1}\left(\left|\vec{v}_{n}^{(1)} \cdot \vec{v}_{n}^{(2)}\right|\right)
$$

- Hénon Map
$x_{n+1}=1-1.4 x_{n}{ }^{2}+0.3 x_{n-1}$
- Lozi Map
$x_{n+1}=1-1.4\left|x_{n}\right|+0.3 x_{n-1}$

More then 2 dimensions, linear combinations between vectors should be considered (Kuptsov \& Kuznetsov ArXiv:0812.4823 (2009))

$$
\begin{aligned}
& \vec{u}_{n}^{(u)}=\sum_{i=1}^{u} \beta_{n}^{i} \vec{v}_{n}^{(i)} \quad \vec{u}_{n}^{(s)}=\sum_{i=u+1}^{N} \alpha_{n}^{i} \vec{v}_{n}^{(i)} \quad w_{n}=\vec{u}_{n}^{(u)} \cdot \vec{u}_{n}^{(s)} \\
& \mathbf{C}_{n}=\underbrace{\left(\vec{c}_{n}^{1}|\ldots| \vec{c}_{n}^{u}\right.}_{\mathbf{U}: \lambda_{i}>0} \underbrace{\left.\left|\vec{c}_{n}^{u+1}\right| \ldots \mid \vec{c}_{n}^{u+s}\right)}_{\mathbf{S}: \lambda_{i}<0} \\
& \mathbf{U}_{n}=\mathbf{Q}^{(u)}{ }_{n} \mathbf{R}^{(u)}{ }_{n} \quad \mathbf{S}_{n}=\mathbf{Q}^{(s)}{ }_{n} \mathbf{R}^{(s)}{ }_{n}
\end{aligned}
$$

$w_{n}^{(1)} \quad$ largest singular value of $\quad \mathbf{Q}_{n}^{(s)^{T}} \mathbf{Q}_{n}^{(s)}$

$$
\Phi_{n}=\arccos \left(w_{n}^{(1)}\right)
$$

Minimum angle between stable and unstable manifold

- CML of Tent maps

$$
\begin{aligned}
& x_{t+1}^{i}=(1-2 \varepsilon) f\left(x_{t}^{i}\right)+\varepsilon\left[f\left(x_{t}^{i+1}\right)+f\left(x_{t}^{i-1}\right)\right] \\
& f(x)= \begin{cases}a x & 0 \leq x<1 / a \\
\frac{a}{1-a}(x-1) & 1 \geq x \geq 1 / a\end{cases}
\end{aligned}
$$

- Symplectic Maps

$$
\begin{aligned}
& p^{i}{ }_{t+1}=p^{i}{ }_{t}+\mu\left[g\left(q^{i+1}{ }_{t}-q^{i}{ }_{t}\right)-g\left(q_{t}^{i}-q^{i-i}{ }_{t}\right)\right] \\
& q^{i}{ }_{t+1}=q^{i}{ }_{t}+p^{i}{ }_{t+1} \quad g(x)=\frac{1}{2 \pi} \sin (2 \pi x)
\end{aligned}
$$

- Continuous time Hamiltonian systems

$$
\ddot{q}_{i}=F\left(q_{i+1}-q_{i}\right)-F\left(q_{i}-q_{i-1}\right)
$$

- Rotators $\quad F(x)=\sin (x)$
- FPU

$$
F(x)=x+x^{3}
$$

CLV as a tool to characterize collective modes

- Localized, extensive covariant Lyapunov vectors corresponding to microscopic dynamics

- Delocalized, nonextensive covariant Lyapunov vectors corresponding to collective modes

Conclusions

- Covariant Lyapunov Vectors are the right vectorial quantities to analyze spatiotemporal dynamics. Our dynamical algorithm is much more efficient then previous numerical methods.
- They are covariant with dynamics, invariant under time reversal, norm independent and allow to compute LEs by ensamble averages
- For time reversible systems they coincide with Oseledec splitting
- CLVs yield drastically different behavior with respect to GSV (where orthonormalization induced "noise" disrupt dynamical properties) for what concerns spatially extended systems.
- CLVs allow to numerically test (deviations from) hyperbolicity in dynamical systems.
- We would like to discuss possible applications to geophysical problems, like data assimilation
- More on applications to came on Thursday talks: see Takeuchi's

$$
\text { Phys Rev Lett 99, } 130601 \text { (2007). }
$$

THANK YOU...

Phys Rev Lett 99, 130601 (2007).

