
ELSEVIER Applied Numerical Mathematics 25 (1997) 193-205 
MATHEMATICS 

On the stability of implicit-explicit linear multistep methods" 

J. F rank  *, W. H u n d s d o r f e r ,  J .G. Verwer  

CWl, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands 

Abstract 

In many applications, such as atmospheric chemistry, large systems of ordinary differential equations (ODEs) 
with both stiff and nonstiff parts have to be solved numerically. A popular approach in such cases is to integrate 
the stiff parts implicitly and the nonstiff parts explicitly. In this paper we study a class of implicit-explicit 
(IMEX) linear multistep methods intended for such applications. The paper focuses on the linear stability of 
popular second order methods like extrapolated BDE Crank-Nicolson leap-frog and a particular class of Adams 
methods. We present results for problems with decoupled eigenvalues and comment on some specific CFL 
restrictions associated with advection terms. © 1997 Elsevier Science B.V. 
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1. Implicit-explicit linear multistep methods 

When adopting the method of  lines approach, space discretization of  multi-space dimensional, time 
dependent  PDE problems results in large systems of  ODEs which are to be integrated in time by an 
appropriate time stepping scheme. Frequently in such applications one is confronted with problems 
having both stiff and nonstiff  parts. Here the term nonstiff is used in a loose way to indicate terms 
that may be solved efficiently in an explicit way. For example,  in atmospheric chemistry one may 
have a nonstiff horizontal advection term and a stiff term containing chemical reactions and vertical 
diffusion, see, for instance, Verwer et al. [10], Zlatev [12]. In such cases it is desirable to treat the 
stiff part with an implicit scheme while applying an explicit scheme to the nonstiff part. 

In this paper we look at the general ODE problem 

w ' ( t ) : F ( t , w ( t ) ) + G ( t , w ( t ) ) ,  t>~O, (1.1) 
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where F represents the nonstiff part and G represents the stiff part of the system. For the numerical 
solution of (1.1) we consider implicit-explicit (IMEX) linear multistep methods 

k k k 

ajWn+l-j = ~- Z bjF(tn+l-j,  Wn+l--j) ~- T ~ cjG(lJn+l_j, WnTl_j). (1.2) 
j=0 j=l j=0 

Here 7- > 0 denotes the time step and the vectors Wn approximate the exact solution at 15 n ~ nT. 
Schemes of this type were introduced by Crouzeix [3] and Varah [9]. 

A natural way to derive such a method is to start with an implicit method that is known to possess 
favorable stability properties, and then replace the term F(tn+l, w,~+l) by a linear combination of 
explicit terms using extrapolation. If the implicit method has order p and the extrapolation is of 
order q, the resulting scheme will be of order rain{p, q), see [6]. On the other hand, it is not hard 
to see from the proof of [6] that any consistent IMEX linear multistep method can be decomposed 
into an implicit scheme and an extrapolation procedure. Direct derivations of the order conditions for 
IMEX linear multistep methods are given by Ascher et al. [2]. 

In this paper we will discuss the stability properties of the schemes for the scalar, complex test 
equation 

w'(t) = Aw(t) + pw(t). (1.3) 

In applications for PDEs, these A and p represent the eigenvalues of the nonstiff and stiff part, 
respectively, found by a Fourier analysis. We will not assume that A and p are coupled, so that F and 
G may contain discretized spatial derivatives in different directions. To simplify the notation, we will 
make in the following the substitutions A ---+ TA and p ---+ ~-p. Application of the IMEX scheme then 
gives 

k k k 

Z ajWn+l-j = /~ Z bjWn+l-j + # ~ ejWn+l-j. (1 .4)  

j = 0  j = l  j = 0  

As a simple example consider the first order IMEX Euler method 

W n +  1 - -  W n = 7"F(tn, w~) + TG(tn+I, w~+l). (1.5) 

For the linear test equation this gives 

Wn+l = (1 - p ) - l (1  + A)wn, 

and it easily follows that the method is stable whenever A lies in the stability region of the explicit 
Euler method, l1 + hi ~ 1, and p is in the stability region of the implicit Euler method, I1 - P l  ~> 1. As 
we shall see, this is an exceptional situation. Usually, stability of the individual explicit and implicit 
methods does not guarantee stability of the combined IMEX method. 

In this paper we consider several second order methods, where the implicit method is A-stable. We 
shall address two questions: 

• Suppose that A lies in the stability region $ of the explicit method. What restrictions are to be 
placed on the location of p to have stability? 

• What additional restrictions, if any, are to be imposed on the location of A to ensure that the 
method is stable for all p in the left half-plane? 
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Some examples of IMEX methods that seem interesting for practical applications are given in 
Section 2. In Section 3 we discuss the restrictions on A for having stability for arbitrary # in the left 
half-plane. In Section 4 we discuss the question of stability of the IMEX methods under the assumption 
that A lies in the stability region of the explicit method. Some consequences for CFL restrictions are 
considered in Section 5, where A will be an eigenvalue for advection discretizations. 

Related stability results for IMEX multistep methods have been derived by Varah [9] and Ascher 
et al. [2] for the one-dimensional convection-diffusion problem, with central spatial discretizations, 
where the convection is treated explicitly. For such problems there will be a coupling between the 
eigenvalues A and #. The results presented in this paper are applicable to more general problems and 
more general spatial discretizations, since A and # are considered to be independent of each other and 
the specific form of the eigenvalues is not prescribed a priori. 

Clearly there is a big gap between the test equation (1.3) and the general problem (1.1). Results for 
(1.3) can be easily extended to linear systems with normal, commuting matrices. Note that if F = L®I 
and G = I ® M, with Kronecker product ®, then F and G will commute. Matrices of this type arise 
from linear PDE problems with constant coefficients if F and G contain discretized spatial derivatives 
in different directions. Stability and convergence results for the noncommuting case, but where G is 
assumed to be negative definite, can be found in Crouzeix [3]. Generalizations for G linear, negative 
definite and F nonlinear are given in Akrivis et al. [1]. Here we shall restrict ourselves to the scalar, 
linear case but there is no a priori restriction on the location of the eigenvalues A and # other than 
that they should lie in the stability region of the explicit or implicit multistep method, respectively. 

2. Preliminaries 

Stability of (1.4) is determined by the location of the roots of the characteristic equation 

k k k 

Z aiCk-~ - A E biCk-i -#2_,v" c¢,'k-i = 0 .  
i=O i=1 i=O 

(2.1) 

For a root ¢, stability requires that ]¢] ~< 1, with strict inequality for multiple roots, see for instance 
[4,5,7]. If this last condition is omitted, a weak, polynomial instability may occur. The requirement 
that ]¢] <~ 1 is more important, since its violation will lead to an exponential blow-up. 

Dividing the equation by ~k and making the substitution z = 1/¢, the characteristic equation reads 

A ( z )  - - p C ( z )  = 0 ,  

where A, B and C are the polynomials 

k k k 

A ( z )  : Za z ' : : 

i = 0  i =  1 i = 0  

(2.2) 

So, for stability we require that all roots satisfy Izl ~> 1, again with strict inequality if z is a multiple 
root. A necessary condition for this is 

A(z ) -AB(z ) -#C(z )¢O for al l[z I < 1. (2.3) 



196 J. Frank et al. /Applied Numerical Mathematics 25 (1997) 193-205 

Apart from the possibility of multiple roots with modulus 1 this is also a sufficient condition. We shall 
use (2.3) as a criterion for determining stability. On the boundaries of the stability domains it can then 
be verified separately whether multiple roots with modulus 1 occur. 

In the following we denote by S the stability region of the explicit method. Its interior int(S), 
where all characteristic roots have modulus less than 1, is given by the complement of the set 
{A(z)/B(z):  ]z] ~< 1}, as can be seen from the above by setting # = 0. The boundary of the 
stability region is contained in the root locus curve 

{A(ei°)/B(ei°): 0 E [-Tr, Tr]}. (2.4) 

Below we give some examples of IMEX multistep methods with the stability regions of the explicit 
methods. The attention will be restricted to second order methods for which the implicit method is 
A-stable. We shall denote Fn = F(tn, wn) and Gn = G(t~, wn). 

Example 2.1 (Crank-Nicolson leap-frog). Using the explicit midpoint method (leap-frog) for the ex- 
plicit part with trapezoidal rule (Crank-Nicolson) for the implicit part provides the popular scheme 

l ( W n + l  - -  Wn-- l )  = rFn + ½T(Gn+I + Gn-,). (2.5) 

The polynomials (2.2) for this method are 

A(z) = ½ ( 1 -  z2), B(z) = z, C(z) = ½(1 + z2), 

and the root locus curve for the stability region of the explicit method is 

1 - e i2° 
A ( 0 ) -  2 e i ~  - - i  sin 0, 0E  [-Tr, Tr]. 

That is, the explicit eigenvalues A must be restricted to the imaginary axis between - i  and i. For the 
extremal values A -- + i  the roots of the characteristic equation coincide, so we then have a linear 
instability. 

E x a m p l e  2 . 2  (Extrapolated BDF). A second order IMEX method can be derived from the two-step 
backward differentiation formula, with extrapolation Fn+l ~ 2Fn - F n - 1  for the explicit part, thus 
giving 

3//3 = - -  n + l  - -  2Wn + ½wn-1 ~-(2Fn F n - 1 )  + ~-Gn+l. (2.6) 

In Verwer et al. [10] this method was applied successfully to a large system (1.1) arising from spatial 
discretization of an atmospheric transport-chemistry model. The implementation there was slightly 
different, with F(2wn - wn-1) instead of 2Fn - Fn- l ,  but for linear stability this is irrelevant. 

The polynomials (2.2) are given by 

A(z) = ½(3 - z)(1 - z), B(z) = z ( 2 -  z), C(z) = l, 

and the boundary of the explicit stability region S is parameterized by 

(3  - -  e i 0 ) ( 1  - -  e i0)  

A(0) = 2ei0(2 _ ei0) , 0 E [--Tr, 7r]. 
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Example 2.3 (Adams methods). We consider the class of second order Adams type methods, with 
parameter c >~ 0, 

Wn+l  - Wn z 3 T F  n --  ½7-Fn_ 1 -.}- ½(1 -~- c ) T G n +  1 -}- ½(1 --  2 c ) T G n  -Jr- ½ C T G n - 1 .  (2.7) 

Again these methods can be obtained from the implicit formula by extrapolation. The implicit methods 
are A-stable for any c ~> 0. For c = 0 the implicit method is simply the trapezoidal rule (Crank- 
Nicolson). The choice c = 1 was considered by Ascher et al. [2]; within this class c = 1 yields 

maximal damping at # = oo. The implicit method with c = ½ was advocated by Nevanlinna and 
Liniger [8], with regard to maximum norm contractivity. 

The polynomials (2.2) are given by 

A ( z )  = 1 - z,  B ( z )  = lz(3  - z) ,  C ( z )  = ½(1 + c) + 1(1 - 2c)z  + l c z  2. 

The boundary of the stability region of the explicit method, the two-step Adams-Bashforth method, 
is given by 

~ 1  - e i 0 )  

A ( 0 ) -  ei-O-((3~-e~), 0 E [-Tr, Tr]. 

3. Restrictions on explicit eigenvalues for implicit A-stability 

Defining ~;~(z) = ( A ( z )  - A B ( z ) ) / C ( z ) ,  criterion (2.3) reads 

# # ~;~(z) for any Izl < 1. (3.1) 

We shall apply this criterion to determine under what conditions we have A-stability with respect to the 
implicit eigenvalue, that is stability for arbitrary # E C- ,  the left half-plane. In the first section it was 
noted already that the IMEX Euler method remains A-stable with respect to the implicit eigenvalues 
so long as all of the explicit eigenvalues are in the stability region of the explicit method. We can 
show a similar result for the Crank-Nicolson leap-frog scheme (2.5). 

Example 3.1. For scheme (2.5), with ), -- - i  sin 0 in the explicit stability region, we have 

= 

1 - z 2 + 2zi sin 0 
1 + z  2 

1 - ( z  2 - ~ 2 )  _ izl4 ÷ 2iz sin0(1 + ~,2) 
z 

1 + (z 2 + £2) + iz14 

The denominator of this last expression is obviously positive for [z I < 1. The real part of the numerator 
is 

1 - [ z ]  4 -  2s in0Im[z(1  + £2)] = ( 1 -  Iz]2)[1 + x  2 + y 2 _  2ysin0] > 0 

for any Iz I < 1, z ----- x ÷ iy. So A-stability for the implicit eigenvalues # is preserved as long as the 
explicit eigenvalues A are in S. 
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As we shall see, for the other methods of Examples 2.2 and 2.3 A-stability for the implicit eigen- 
values is not preserved for arbitrary A E S. We define 

79 = {A E C: (2.1) is stable for any # E C - } .  (3.2) 

Obviously, 79 will be a subset of the closure of the explicit stability domain S. The following lemma 
gives a characterization for the boundary in terms of the functions M(O) = A(ei°)/C(e i°) and N(O) = 
B(ei°) / (] (ei°). 

L e m m a  3.2. Suppose ReN(0)  ~ 0 and M(O), N(O) are bounded for all 0 E [--Tr, Tr]. Then 079 C 
{A(0): 0 E [--Tr, Tr]} with 

d (M(O)_+M(-O) N(O) "~ ]- '  
\ N ( - O )  ) [ d (  (3.3) )~(0) 

dO N(-0)JJ 

Proof. If )~ E 79 then, according to (3.1), ~;~ maps the interior of the unit disc into the right half-plane. 
By assumption the image of the unit disc under qo~ is bounded. For a point on the boundary of 79 we 
thus have 

Re qo~ (e i0) = 0 (3.4) 

for some point e i0 o n  the unit circle. Moreover, 

~0Re qo;~ (e i0) = 0, (3.5) 

which is necessary so that R e  qo),(e i0) does not become negative for points near z = e i0 on the unit 
disk. We can simplify these conditions somewhat, obtaining a single parameterization in terms of the 
functions M and N,  evaluated in the point 0, as follows: 

0 = N X) + ( M  - 

0 = + ( M ' -  

Solving this system for A = $(0), we obtain 

- N - M ' + N ' M - l V M ' + N ' ~  N ( M '  + M' )  - N ' ( M  + M)  

~(0) -- N ' N  - N N '  - N N '  - N ' N  ' 

which is equivalent to (3.4). This expression is well defined iff N(O) is not identically equal to 
N(O). [] 

For specific methods the boundary of the set 79 can be parameterized by evaluating (3.3) for 
0 E [ -~ ,  ~]. For the IMEX-BDF method (2.6) this leads to a region 79 with boundary 

)~(0) = - I  (1 - e i°) (3 - e i°) ,  (3.6) 

see Fig. 1. This region seems only marginally smaller than the explicit stability region S. Note however 
that near the origin S stays closer to the imaginary axis than 79. 

For the IMEX-Adams schemes (2.7) we get the more complicated formula, found by Maple, 

)~(0) = p(ei°)  / Q ( e  iO) ( 3 . 7 )  
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Fig. 1. The explicit stability region S (dashed) and the region 79 for the IMEX-BDF2 method. 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

I" T T T 

\ 

. 1 ~ . . . . . . _ . _ . ~ _ . ~ _ _  
-1.5 -1 -0.5 0 0.5 

i and 0. Fig. 2. The explicit stability region S (dashed) and the regions 79 for the IMEX-Adams2 methods with c = ½, 

with 

P ( z )  = c ( z -  1 ) ( -  6cz 3 + 2 ( 5 c - 6 ) z  2 - 2 ( c +  12)z 2 - 2 ( c -  2)) ,  

O ( z ) =  3(c  + C2)Z 4 "~- 2 ( 3 -  C--4C2)Z 3 + 2(6 + l l c  + 5C2)Z 2 -'1-- (3.8) 

+ 2 ( 3 -  C--4C2)Z + 3(C + C2). 

The D regions for c = 81- and c = 1 are given in Fig. 2. For c = 1 it is close to S,  whereas for c = 1 
we lose a considerable part of  the explicit stability region. For c = 0 the lemma does not apply since 
M and N are not bounded near 0 = rr, and so we consider this method separately. 
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Example 3.3. For (2.7) with e -- 0, the Adams-Bashforth Crank-Nicolson method, we have 

2(1 - z) - Az(3 - z) : 
l + z  

This can be written as 

z(3 - z) (3.9) ~ ( z ) - - 2 - z + ( 1 - + - A ) X ( Z )  w i t h x ( z ) -  l + z  

By some calculations it follows that Re x(e i0) : - 2  + cos 0. Note that for 0 ~ 7r the real part 
of x(e  i°) tends to - 3  and its modulus to oc. Hence X maps the unit disk into the half plane {~ E 
C: Re ( /> - 3 }  and the imaginary axis lies totally in this image. It follows that the image of the 
unit disk under qo;~ will have a nonempty intersection with the left half plane if 1 + A has a nonzero 
imaginary part. Therefore A has to be real to be in 79. 

Since 79 is a subset of S, the only possible values are in the interval [ -  1,0]. Indeed any A on this 
piece of the real negative axis is in 79. This can be seen as follows: we have for real A 

Re q~ (e iO) = -A(2  - cos 0) ~> 0 if A ~< O, 

and from (3.9) it now follows that the unit disk is mapped into the right half-plane if A ~< 0 and 
I + A ~ > 0 .  

4. Restrictions on implicit eigenvalues for full explicit stability 

Although A-stability is a valuable property, in most practical situations one can settle for less 
demanding properties, such as A(a)-stability. In this section we consider what requirements on # are 
needed to ensure stability of the IMEX methods for arbitrary A E S. The implicit eigenvalues # are 
supposed to be in the wedge 

W a :  {~ EC:  [ arg(-~)[  < a )  

with angle a E (0, ½7r). 

Lemma 4.1. Suppose that 

larg(a(z)-,~B(z))[<~ ½7r+3, larg(CCz))[<~'~ 
for all [z I : 1 and A E ~S, with/3 + 7 < ½7r. Then the IMEX scheme will be stable for  any A E S 

and # E VV,~, with a : ½ 7r - / 3  - 7. 

Proof. We have 

larg (~;~(z)) I ~< l arg (A(z )  - AB(z)) [ + l arg (C(z)) I. 
From the assumptions it follows that 

I arg + / 3  

for all [z[ ~< 1 and A E S. Using criterion (3.1), the result follows. [] 
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Fig. 3. Exterior of shaded region: stability fo r / ,  with arbitrary A E $ for the IMEX-BDF2 method. 

To determine the angle/3 in the above lemma for the 2-step methods, note that we can write 

A(z) - )~B(z) = A(0)(1 - plz)(1 - p2z), 

where 01 and P2 are the characteristic roots of  the explicit method. For A E 8S we get IPl[ = 1 
and 1/921 ~ ~" with some constant r <~ 1 determined by the explicit method. It follows by geometrical 
considerations that we can take/3 = arcsin r. 

Example  4.2. Consider the IMEX-BDF2 scheme (2.6). The characteristic equation of the explicit 
method reads 

3 ~ 2 _  2(1 + A)~ + 1(1 + 2 A ) =  0, 

see (2.1) with > = 0. If k C 38  we can set Pl = e i° and by some calculations it is seen that 

1 3e i° - 2 5 
P2 - -  3 2e i° - 1 '  ]P21 ~ ~. 

Further we have arg(C(z))  = 0. Therefore Lemma 4.1 gives stability with angle 

= ½re - arcsin ~- ~ 0.31re. (4.1) 

The region of those p for which we have stability with arbitrary A E S is given by the complement 
of the set {qo;~(z): k E S, Iz[ < 1}. Although we do not have a parameterization of  the boundary 
of  this set, we can make a (crude) picture of  it by plotting the value of ~;~(z) for sufficiently many 
A E S and ]z[ < 1. In Fig. 3 this region is shown for the IMEX-BDF2 scheme. By zooming in on 
the origin one can establish an experimental bound of the angle ~, and for this method it was found 
that c~ ~ 0.327r, which is close to the lower bound (4.1). 
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Example 4.3. Consider the IMEX-Adams  scheme (2.7). For the 2-step Adams-Bashfor th  method, 
with A E 0S,  we get, similar to the previous example, Pl -- ei° and 

e i 0 -  1 
1 

P2 -- 3ei0 _ 1' ]Pzl ~< 3, 

giving fl = arcsin 1. 
1 z2), and thus we can take 7 = arcsin ~. This gives stability of  scheme If c---- ½ then C(z) ---- ¼ ( 1 + ~  

(2.7) for A C OS and # E ~Vc~ with 

c~ ---- ½7r - arcsin ½ - arcsin ½ ~ 0.23~r. (4.2) 

As in the previous example we determined from Fig. 4 an experimental bound for c~ and this was 
found to be ~ 0.307r, so here the lower bound (4.2) seems not very close. 
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1 9 If c : ~ then C ( z )  : 3 ( 1  + ~z)-, leading to 7 : 2arcsin ½. This gives an angle 

o~ = ½re - arcsin ½ - 2 arcsin ½ ~ O. 12re. 

The experimental bound for this method, see Fig. 4, was found to be ,~ O. 14re. 

(4.3) 

Example 4.4. For the IMEX-Adams scheme (2.7) with c = 0 we have C ( z )  = ½(1 + z), leading to 

,y = ½7r. Hence for his case Lemma 4.1 does not provide a positive angle c~. Note that Lemma 4.1 
only gives a sufficient condition. We show that indeed there is no positive ~ such that the scheme is 
stable for all A E S and/z E l/Vs. 

We have 

2(1 - z )  - A z ( 3  - z )  
= 

l + z  

Now take z = - 1  + ie + O(c 2) on the unit circle and ), = - 1  - ic + O(e 2) on the boundary of S, see 
Fig. 2. Then ~;~(z) = - 1  + O(e), showing that we can have values for ~;~(z) arbitrarily close to the 
negative real axis. 

5. CFL restrictions for advection terms 

So far we have followed an ODE stability analysis in the sense that the eigenvalues A and # were 
allowed to take on arbitrary complex values in certain bounded or unbounded regions in the complex 
plane. Of course, in actual applications they are determined by specific spatial operators and selected 
spatial discretization techniques. Often, the nonstiff part F in Eq. (1.1) emanates from advection and 
the stiff part G from reaction-diffusion terms. For example, in the study of atmospheric transport- 
chemistry models, a useful test model is the system ct + u cx  + v c  v = eczz  + 9 ( t ,  c),  where c is 
a vector of concentrations, ucx + vcu models advection in a horizontal wind field, ec=  a vertical 
turbulent/diffusion process, and 9(t, c) stiff chemical reactions, see [10] for instance. 

In this section we consider the specific case that A is associated to the advection term ucx  while 
# may still take on arbitrary values. We consider the first and third order upwind biased schemes for 
discretization on a uniform grid with grid size Ax. Let u denote the Courant number lul-r/Ax. Then 
for the first order method we have explicit eigenvalues 

A = - u ( 1 - c o s 0 + i s i n 0 ) ,  -Tr<~0~<re, (5.1) 

whereas in the third order case 

A = - ½ u ( ( c o s 0  - 1) 2 + is in0 ( 4 -  cos0)) ,  -Tr ~ 0 <~ re, (5.2) 

see for instance [10,11]. Central advection discretization of even order leads to purely imaginary 
eigenvalues, and among the explicit methods considered here only the leap-frog method (2.5) will be 
stable. 

We consider the restrictions on the Courant numbers u for all explicit eigenvalues to be in the regions 
S or 79, introduced in Section 3. The bounds, given in Table 1, have been established experimentally. 

For applications, the results for the third order upwind discretizations seem more important than for 
the first order discretization. It is interesting to note the effect of the apparently moderate restriction 
for implicit A-stability of the IMEX-BDF2 method on the Courant number. If we demand A-stability 
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Table l 
CFL restrictions for the I M E X  methods (2.6) and (2.7) 

$ D $ D $ D 

(5.1) 0.66 0.66 0.50 0.50 0.50 0.50 

(5.2) 0.46 0.23 0.58 0.16 0.58 0.43 

I M E X - B D F 2  Adams,  1 Adams,  I c : ~ e = 

for the stiff eigenvalues, the slightly smaller region 73 in Fig. 1 results in a reduction of the maximal 
Courant number by approximately half. The reason for this is that eigenvalues of the third order 
upwind scheme are very close to the imaginary axis near zero. In this respect, among the IMEX 
schemes considered here, the Adams scheme (2.7) with c = 1 gives the best results. However, for 
practical purposes the results of Section 4 seem more important, and there the largest angle c~ was 
obtained for the BDF scheme (2.6). 

l In conclusion, both the IMEX-BDF method (2.6) and the IMEX-Adams method (2.7) with c = 
give satisfactory stability results. For third order advection discretization, the Adams scheme allows 
somewhat larger Courant numbers. On the other hand, the BDF scheme has optimal damping properties 
for the implicit eigenvalues. 

R e m a r k  5.1. The bounds of Table 1 were determined experimentally (using Matlab graphics) and are 
sufficiently accurate for practical purposes. Upper bounds could be obtained by using the techniques 
of [11]. For the explicit two-step schemes it is even possible to determine maximal Courant numbers 
analytically by examining the characteristic polynomial. These examinations are elementary but the 
derivations involved are lengthy and readily become very cumbersome. In [10] a derivation is given 
for the explicit scheme in (2.6) and the third order upwind discretization. The final steps in this 
derivation have been carried out with Maple. To ten decimal digits accuracy, the maximal Courant 
number computed from this expression equals 0.4617485908. 

We have carried out a similar derivation for the explicit Adams scheme (2nd order Adams-Bashforth) 
and the third order upwind discretization. In this case the maximal CFL number in ten decimal digits 
accuracy is equal to 0.5801977435. The maximum can be shown to be equal to 

min u(x), 
O~<x~< 1 

where u(x) is the real zero of the cubic equation 

P 3 ( x ) / j 3  -k- e 2 ( x )  b '2 - 2 = O, 

with 

(O(x)) 2 
P3(x) - 1 6 2 ( x -  1) 2' P2(x) = ~O(x), Q(x)=(x- 1 ) ( 4 x 2 -  5x - 17). 

It can be shown that the above cubic polynomial in u has only one real root for Ix[ ~< 1, which means 
that u(x) is defined by the well known formula of Cardano. However, the minimization over x is very 
complicated and at this stage Maple has to be used to find the (very long) analytical expression for 
the maximal Courant number given above. 
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