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Abstract

A nonperturbative weak noise scheme is applied to the Kardar-Parisi-Zhang equation for a

growing interface in all dimensions. It is shown that the growth morphology can be interpreted

in terms of a dynamically evolving texture of localized growth modes with superimposed diffusive

modes. Applying Derrick’s theorem it is conjectured that the upper critical dimension is four.
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There is a current interest in the general morphology and in particular the scaling prop-

erties of nonequilibrium models in statistical physics. There is, moreover, a need to develop

general methods beyond perturbation theory, renormalization group theory, mode coupling

theory, and numerical simulations, which permit an analysis of these often intractable prob-

lems.

The purpose of this Letter is two-fold. On the one hand, I should like to draw the attention

of the community to the availability of a weak noise approach to stochastic equations driven

by Gaussian noise which is based on a principle of least action and which allows a discussion

of stochastic processes in terms of classical equations of motion and, moreover, provides the

Arrhenius factor or weight of a specific kinetic transition; the method is summarized below.

Secondly, I apply the weak noise approach to the Kardar-Parisi-Zhang (KPZ) equation

for the kinetic growth of an interface in arbitrary dimensions and show that the growth

morphology can be interpreted as a dynamical network of growth modes with superimposed

diffusive modes. As a corollary, using Derrick’s theorem, it is finally shown that the texture

of growth modes does not persist above four dimensions, indicating that the upper critical

dimension of the KPZ equation is d = 4. Details and further developments will be discussed

elsewhere.

The variationally-based weak noise method dates back to Onsager [1] and has since

reappeared as the Freidlin-Wentzel theory of large deviations [2–4] and as the weak noise

saddle point approximation to the functional Martin-Siggia-Rose scheme [5, 6]. The point

of departure is the Langevin equations for the set of stochastic variables wn, n = 1, · · ·N ,

driven by white Gaussian noise [7, 8]

dwp

dt
= −1

2
Fp − ∆

2
Gmn∇mGpn + Gpnηn, (1)

〈ηnηm〉(t) = ∆δnmδ(t), (2)

where Fn(wp) is the drift, Gnm(wp) is accounting for multiplicative noise, ∇n = ∂/∂wn and

∆ is the explicit noise strength; sums are performed over repeated indices. The associated

Fokker-Planck equation for the probability distribution P (xn, t) then has the form [7, 8]

∂P

∂t
=

1

2
∇n[Fn + ∆∇mKmn]P, (3)

where the symmetrical noise matrix Kpm(wp) = Gpn(wp)Gmn(wp).
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Introducing the WKB ansatz

P (wn, t) ∝ exp[−S(wn, t)/∆], (4)

the Hamilton-Jacobi equation ∂S/∂t + H = 0, pn = ∇nS follows to leading order in ∆ with

Hamiltonian

H = −1

2
pnFn +

1

2
Knmpnpm, (5)

The Hamilton equations of motion are

dwn

dt
= −1

2
Fn + Knmpm, (6)

dpn

dt
=

1

2
pm∇nFm − 1

2
pmpq∇nKmq, (7)

determining classical orbits on the energy surfaces given by H in a classical (wn, pn) phase

space. Finally, the action S is given by

S(wn, T ) =
∫ wn,T

dtdNw pn
dwn

dt
−HT. (8)

The weak noise scheme bears the same relationship to stochastic fluctuations as the WKB

approximation in quantum mechanics, associating the phase of a wave function with the

action of a classical orbit. In addition to providing a classical orbit picture of stochastic

fluctuations and thus allowing the use of dynamical system theory, the method also yields

the Arrhenius factor P ∝ exp(−S/∆) for a kinetic transition to wn in time T . Here the

action S serves as the weight in the same manner as the energy E in the Boltzmann fac-

tor P ∝ exp(−E/kT ) for equilibrium processes. This completes the brief review of the

nonperturbative weak noise scheme; for details see e.g. Ref. [9]

The KPZ equation is a field theoretic Langevin equation describing the nonequilibrium

growth of an interface [10–13]

∂h

∂t
= ν∇2h +

λ

2
∇h · ∇h− F + η, (9)

〈ηη〉(r, t) = ∆δd(r)δ(t). (10)

Here h(r, t) is the height of the growth profile, ν a diffusion coefficient, λ a growth coefficient,

F an imposed drift, and η a locally correlated white Gaussian noise of strength ∆. Dynamic

renormalization group (DRG) studies [11, 14, 15] indicates that the KPZ equation conforms
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to the dynamical scaling hypothesis with long time -long distance correlations 〈hh〉(r, t) =

r2ζΦ(t/rz), characterized by roughness exponent ζ, dynamic exponent z and scaling function

Φ. The KPZ equation is, moreover, invariant under the Galilean transformation, r →
r − λu0t, h → h + u0 · r, F → F + (λ/2)u0 · u0, and the slope ∇h = u → u + u0 which,

implying the scaling law ζ + z = 2, delimits the KPZ universality class. In d = 1 the

stationary distribution of h is P (h) ∝ exp[−(ν/∆)
∫

dx (∇h)2] [16], yielding ζ = 1/2 and

z = 2 − η = 3/2. In d ≥ 2 the DRG implies a kinetic phase or roughness transition at a

finite λ from a smooth phase with z = 2, and ζ = (2− d)/2, the linear Edwards-Wilkinson

(EW) case for λ = 0 [17], to a rough phase with still debatable scaling exponents z and

ζ = 2− z, see e.g. Refs. [18–21]. It has, moreover, been conjectured that d = 4 is an upper

critical dimension beyond which the KPZ equation exhibits EW behavior [22–24].

Applying the nonlinear Cole-Hopf transformation [11] w(r, t) = exp(λh(r, t)/2ν) the KPZ

equation (9) takes the form

∂w

∂t
= ν∇2w − λ

2ν
wF +

λ

2ν
η, (11)

with multiplicative noise. In a moving frame w is changed according to w → w exp[(λ/2ν)u0·
r]. Note that in the noiseless case for η = 0 (11) reduces to the linear diffusion equation

permitting a rather complete analysis of the deterministic KPZ equation for a relaxing

interface [11, 25]. The Cole-Hopf equation (11) with multiplicative noise forms the basis

for the mapping of the KPZ equation to a model of directed polymers (DP) in a quenched

random medium which by means of the replica method relates the roughness transition to

a pinning transition in the DP model [26, 27].

In recent work I have applied the weak noise method to the KPZ equation or, equivalently,

the noisy Burgers equation in d = 1 [9, 28]. Here the method readily yields a consistent

Galilean invariant dynamical picture of a growing interface in terms of propagating domain

walls with superimposed diffusive modes. The localized domain walls account for the growth;

the diffusive modes form a subdominant background governed by EW dynamics and not

contributing to the growth. The method, moreover, identifies scaling exponents, universality

classes, and associates the dynamic exponent z with the domain wall dispersion law or the

Hurst exponent H = 1/z with the anomalous superdiffusion of growth modes, see also Ref.

[12].

Drawing on the insight gained in d = 1, the weak noise method is here applied to the
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KPZ equation in arbitrary dimensions [21]. Unlike the d = 1 case, where the local slope

field u = ∇h is the natural variable, the Cole-Hopf diffusive field w is more convenient for

analysis in d > 1. Referring to the general weak noise scheme and making the assignment,

wn → w, pn → p, Knm → (λ/2ν)2w2δd(r − r′), and Fn → −2[ν∇2w − (λ/2ν)wF ], the

Hamiltonian density is given by

H = p[ν∇n∇n − νk2]w +
1

2
k2

0w
2p2, (12)

and the canonical field equations take the form

∂w

∂t
= ν∇2w − νk2w + k2

0w
2p, (13)

∂p

∂t
= −ν∇2p + νk2p− k2

0p
2w. (14)

Here k = (λF/2ν2)1/2 and k0 = λ/2ν define two characteristic inverse length scales. Using

the equation of motion (13) the action is

S(w, T ) =
1

2
k2

0

∫ w,T

wi,0
ddxdt w2p2, (15)

and P (w, T ) ∝ exp(−S(w, T )/∆) yields the transition probability.

The action and as a result the equations of motion are invariant under the combined

Galilei transformation w → w exp[(λ/2ν)u0 · r], p → p exp[−(λ/2ν)u0 · r]. The equations

of motion determine orbits in the canonical (w, p) phase space from an initial configuration

wi to a final configuration w traversed in time T with the noise field p as a slaved variable.

The orbits lie on the constant energy surfaces H =
∫

ddx H. The action evaluated along

the orbit then yields the transition probability P (wi → w, T ). The formalism is symplectic

(canonical) and it is an easy task to perform canonical transformations to the height field h

or the local slope field u = ∇h.

The growth of the interface is due to the propagation of localized modes across the system.

As in the d = 1 case the first task is thus to identify the relevant excitations and connect them

in a dynamical network in order to obtain a consistent growth morphology. In the static limit

the field equations (13) and (14) assume the symmetrical form: ν∇2w = νk2w− k2
0w

2p and

ν∇2p = νk2p − k2
0p

2w. On the noiseless manifold, p = 0, and the noisy manifold, p = νw,

the static equations reduce to the linear diffusion equation and the nonlinear Schrödinger

equation (NLSE), respectively,

∇2w = k2w for p = 0 , (16)

∇2w = k2w − k2
0w

3 for p = νw. (17)
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The diffusion equation (16) admits the radially symmetric solution w+(r) ∝
r1−d/2I1−d/2(kr), where I(z) is the modified Bessel function [29]. For small r, w+(r) → cst.

For large r, w+(r) ∝ r(1−d)/2 exp(kr), yielding the asymptotic height field h+(r) =

(2ν/λ)((1−d)/2) ln r+kr) ≈ (2ν/λ)kr, and the outward-pointing vector slope field u+(r) =

(2ν/λ)kr/r of constant magnitude (2ν/λ)k. In d = 1, w+(x) ∝ cosh(kx), giving rise to the

height field h+(x) = (2ν/λ) ln cosh(kx), and the slope field u+(x) = ∇h = (2ν/λ)k tanh(kx),

i.e., the right hand domain wall solution of the static Burgers equation ν∇2u = −λu∇u

[30, 31]. Since the solution w+ lives on the noiseless manifold p = 0 and the action S+ = 0

it carries no dynamics.

The NLSE (17) admits a radially symmetric bound state w−(r) falling off as w−(r) ∝
r(1−d)/2 exp(−kr) for large r [32–34]. At the origin w−(0) = adk/k0, where ad depends on

the dimension. Numerically, a1 = 1.41(
√

2), a2 = 2.21, a3 = 4.34. In the limit d → 4

the amplitude diverges, the width vanishes, and the bound state disappears for d ≥ 4.

The asymptotic height field h−(r) = −(2ν/λ)kr and the inward-pointing slope field u− =

−(2ν/λ)kr/r of constant magnitude (2ν/λ)k. In d = 1 the NLSE admits the soliton solution

w−(x) = a1(k/k0) cosh−1(kr) yielding the height field h−(r) = −(2ν/λ) ln cosh(kr) and slope

field u− = ∇h− = −(2ν/λ)k tanh(kr), i.e., the noise-induced left hand domain wall solution

[35, 36]. Here the solution w− is associated with the noisy manifold p = νw and carries

according to (15) the action S− = (k2
0/2)T

∫
ddx w4

−. In Fig. 1 the radial solutions of the

NLSE are depicted with parameter choice k = 1 and k0 = 1 in d = 1, 2, 3, 3.5.

At large distances the slope fields u± associated with w± approach vector fields of constant

magnitude 2(ν/λ)k and the boundary condition u = 0, corresponding to a flat interface,

is implemented by combining a set of modes with appropriately chosen amplitudes k. In a

charge language, connecting modes with positive (k > 0) and negative charges (k < 0) and

enforcing charge neutrality
∑

i ki = 0, the boundary condition is automatically enforced.

The construction of the network is implemented in terms of the slope field u. Assigning a

dilute network of static modes at positions r0
i , i = 1 · · · with charges ki the total slope field is

u(r) = (2ν/λ)
∑

i∇wi(|r− r0
i |)/wi(|r− r0

i |),
∑

i ki = 0. In the vicinity of the mode position

r0
l the slope field is shifted by u0

l = (2ν/λ)
∑

i6=l∇wi(|r0
l − r0

i |)/wi(|r0
l − r0

i |) and the l-th

mode is assigned the velocity vl = −λu0
l . Using the asymptotic expressions for the modes

and introducing a core radius ε or order k−1 the self-consistent dilute dynamical network
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FIG. 1: The radially symmetric bound states of the NLSE are depicted for k = k0 = 1 in d =

1, d = 2, d = 3, d = 3.5.

constituting the growth of an interface together with the associated action is given by

h(r, t) =
2ν

λ

∑

i

ki

√
(r− ri(t))2 + ε, (18)

ri(t) =
∫ t

0
vi(t

′)dt′ + r0
i ,

∑

i

ki = 0, (19)

vi (t) = −2ν
∑

l 6=i

kl
ri(t)− rl(t)

|ri(t)− rl(t)| , (20)

S =
∑

i,ki<0

Si, Si =
k2

0

2
T

∫
ddx w4

i . (21)

In Fig. 2 we depict a 3D snapshot of a 4-node growth morphology in d = 2. In the linear

case for k0 = 0 the equations of motion (13) and (14) admit extended diffusive modes with

dispersion ω = νk2, corresponding to the EW universality class, as discussed in d = 1 case

in Refs. [9, 28]. The linear modes do not contribute to the growth and are superimposed
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FIG. 2: 3D plot of a 4-node height profile with nodes at (±20,±20) and charges 2.0, −1.5, −1.0,

and 0.5 (in units of 2ν/λ)

on the dynamical network in the KPZ case.

On the basis of mode coupling and DP theory [22–24] it has been argued that the upper

critical dimension for the KPZ equation is dc = 4. In the present context dc is associated

with the absence of growth modes above d = 4 as indicated by the numerics of the NLSE.

Here I present a more rigorous argument for the existence of an upper critical dimension

using Derrick’s theorem [34, 37] based on constrained minimization.

The NLSE (17) can be derived from the variation of the free energy F = K +(1/2)k2N−
k2

0I, where K = (1/2)
∫

ddx (∇w)2 is the deformation energy, N =
∫

ddx w2 the norm,

and I =
∫

ddx w4 the interaction, i.e., δF/δw = 0 yields ∇2w = k2w − k2
0w

3. Moreover,

multiplying the NLSE by w and integrating over space yields the first identity: −2K =

k2N − k2
0I. Under the scale transformation w(r) → w(µr) one infers K → µd−2K, N →
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µdN , and I → µdI and subject to constrained minimization dF/dµ|µ=1 = 0 the second

identity: (d− 2)K + (k2/2)dN − (k2
0/4)dI = 0. Eliminating K from the identities one infers

k2N = (k2
0/4)(4 − d)I. Since N > 0 and I > 0 it follows that d < 4 in order for a bound

state to exist with finite norm.

In the present Letter I have summarized a general nonperturbative variationally-based

weak noise approach to white noise driven stochastic processes. The method has, moreover,

been applied to the KPZ equation in arbitrary dimensions yielding a Galilean invariant self-

consistent dynamical network of modes accounting for the kinetic growth of the interface. In

d = 1 the results agree with earlier findings, i.e, a network of matched domain walls whose

dispersion yields the dynamic exponent z = 3/2; in d > 1, the detailed scaling properties

remain to be worked out. Finally, based on the dynamical network representation and

constrained minimization I have given an argument for d = 4 as the upper critical dimension

for the KPZ equation.
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[20] M. Lässig, Phys. Rev. Lett. 80, 2366 (1998).

[21] H. C. Fogedby, Physica A 314, 182 (2002).
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