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Transition from the Couette-Taylor system to the plane Couette system

Holger Faisst and Bruno Eckhardt
Fachbereich Physik, Philipps Universita¨t Marburg, D-35032 Marburg, Germany

~Received 29 November 1999!

We discuss the flow between concentric rotating cylinders in the limit of large radii where the system
approaches plane Couette flow. We discuss how in this limit the linear instability that leads to the formation of
Taylor vortices is lost and how the character of the transition approaches that of planar shear flows. In
particular, a parameter regime is identified where fractal distributions of lifetimes and spatiotemporal intermit-
tency occur. Experiments in this regime should allow us to study the characteristics of shear flow turbulence in
a closed flow geometry.

PACS number~s!: 47.20.Lz, 47.27.Cn, 47.20.Ft
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The transition to turbulence for a fluid between concen
rotating cylinders has attracted much experimental and th
retical attention. Ever since Taylor’s success@1# in predicting
and observing the instabilities for the formation of vortic
the system has become one of the paradigmatic example
the transition to turbulence and a large number of bifur
tions have been analyzed in considerable detail@2–5#. The
limiting case of large radii and fixed gap width where t
effects due to curvature become less important and where
system approaches plane Couette flow between parallel w
has received much less attention. In this limit the characte
the flow changes: plane Couette flow is linearly stable a
the mechanisms that drive the transition to turbulence
still unclear. The question we address here is to what ex
the Couette-Taylor system can be used to gain insight
the dynamics of plane Couette flow.

This problem is of both experimental and theoretical
terest. As mentioned, the experimental situation for Coue
Taylor flow is much better, there being numerous facilit
and detailed studies of patterns, boundary effects and cri
parameters@4–6#. The moving boundaries in plane Couet
flow reduce the experimental accessibility and the possib
ties of applying controlled perturbations. On the theoreti
side it is an intriguing question how the change in stabi
behavior from the Couette Taylor system to the plane C
ette system occurs. Studies by Nagata@7# show that some
states from the rotating plane Couette system survive
limiting process and appear in finite amplitude saddle n
bifurcations in the plane Couette system~see also the inves
tigation of this state by Busse and Clever@8#!. Unless the
transition from linear instability dominated behavior
Couette-Taylor flow to the shear flow type transition in pla
Couette flow is singularly connected to the absence of
curvature it can be expected to happen at a finite radius r
near which interesting dynamical behavior should occur.

We should mention that there are other useful embedd
of plane Couette. Busse and Clever@8# start from a layer of
fluid heated from below with cross flow and proceed to stu
the stability and parameter dependence of the states.
Cherhabili and Ehrenstein@9# start from plane Poisseuille
flow and find localized solutions, albeit at Reynolds numb
higher than the ones studied here.

Our aim here is to follow some of the instabilities in th
Couette-Taylor system to the limit of the plane Couette s
PRE 611063-651X/2000/61~6!/7227~4!/$15.00
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tem and to identify the parameters where the change in
havior occurs. In particular, we study the transition fro
laminar Couette flow to Taylor vortices and the instability
vortices to the formation of wavy vortices. Note that th
asymptotic situation of plane Couette flow can be charac
ized by a single parameter, a Reynolds number based on
velocity difference, whereas Couette Taylor flow has at le
two parameters, the Reynolds numbers based on the ve
ties of the cylinders. This extra degree of freedom provid
an additional parameter that can be used to modify the fl
without changing the basic features.

In cylindrical coordinates (r ,f,z) the equations of motion
for the velocity components (ur ,uf ,uz) can be written as

] tur1~u•“̃ !ur2nD̃ur1] r p

5nS 1

r
] rur2

2

r 2
]fuf2
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r 2
ur D 1

1

r
uf

2 , ~1!
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] tuz1~u•“̃ !uz2nD̃uz1]z p5n
1

r
] ruz , ~3!

“̃•u52
1

r
ur , ~4!

where the modified Nabla and Laplace operators are

“̃5er] r1ef

1

r
]f1ez]z , ~5!

D̃5] rr 1
1

r 2
]ff1]zz, ~6!

and whereei are the unit basis vectors@10#.
The terms in Eqs.~1!–~4! are arranged so that all the one

on the right hand side vanish when the system approac
the plane Couette system, i.e., in the limit of large radii b
7227 ©2000 The American Physical Society
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7228 PRE 61BRIEF REPORTS
finite velocities at the cylinders. The remaining ones beco
the equations of motion for plane Couette flow in cartes
coordinates (x,y,z) if the identificationx5r and y5fr is
made. However, there are other ways of taking the limit o
small gap that lead to different limiting systems. For i
stance, the case of almost corotating cylinders with h
mean rotation rate gives rise to plane Couette flow with
additional Coriolis term~‘‘rotating plane Couette flow’’@7#!.
Another limit corresponds to the case of counterrotating c
inders with diverging rotation rates@11#. In our numerical
work we use the full equations, without any reduction
terms. This allows us to extend Nagata’s work from the
tating plane Couette flow to the full Couette-Taylor syste

The velocities at the inner and outer cylinder~distin-
guished by indicesi ando, respectively! are prescribed and
define the boundary conditions

uf~r 5Rx!5VxRx , ~7!

ur~r 5Rx!5uz~r 5Rx!50, x5 i ,o. ~8!

For the choice of dimensionless quantities we appeal to
plane Couette flow limit. There the relevant quantities are
velocity difference between the walls,DU5RiV i2RoVo ,
and the gap widthd5Ro2Ri . Without loss of generality we
can always assumeV i>0. The Reynolds number for plan
Couette flow is based on half the velocity difference and h
the gap width,

Re5
DUd

4n
. ~9!

For the Couette Taylor system there are two Reynolds n
bers based on the gap width and the rotation rates of
inner and outer cylinders,

Rex5RxVxd/n, ~10!

where the indexx can stands fori or o, the inner and outer
cylinders. The plane Couette flow Reynolds number thu
Re5(Rei2Reo)/4. The ratio of these Reynolds numbers w
be called

m̃5Reo /Rei ~11!

~the tilde is used to distinguish it fromm5Vo /V i , a fre-
quently defined quantity not used here!.

h5Ri /Ro ~12!

denotes that ratio of radii.
Experiments and numerical simulations show that pla

Couette flow undergoes a subcritical transition to turbule
around RePCF'320 @12–14#. The Couette-Taylor system
shows a first linear instability to the formation of vortice
~Taylor-vortex flow, TVF! at Reynolds numbers that depen
on the rotation rates and the curvature of the cylinders
order to see shear flow dominated dynamics the critical R
nolds number for the linear instability has to be abo
RePCF . The formation of TVF occurs at Reynolds numbe
that can be parametrized in the form

Re5A~m̃ !~12h!21/21B~m̃ ! ~13!
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for h&1 @15#. This number is larger than the transition
Reynolds number for plane Couette flow ifh is sufficiently
close to 1. The minimal radius ratioh320 where the linear
instability occurs for Re.320 strongly depends on the rat
of the Reynolds numbers of inner and outer cylinder. A fe
examples for minimal radius ratiosh320 are summarized in
Table I.

Very important for the transition to turbulence in linear
stable systems are nonlinear processes that could give ri
some finite amplitude states, perhaps stationary or perio
around which the turbulent state could form. One candid
that could serve as a nucleus for turbulence in plane Cou
flow is the stationary state first calculated by Nagata@7#. He
observed that the wavy vortices that form in a second
instability from the TVF in the rotating plane Couette syste
can be followed to the limit of the plane Couette flow whe
they become part of a saddle node bifurcation at finite R
nolds numbers. This state was also identified and studied
different limiting process by Busse and Clever@8#. They
found that the critical axial and azimuthal wavelengths
this state are

lz5p and lf52p. ~14!

FIG. 1. Bifurcations to Taylor vortex flow~TVF! and wavy
vortex flow ~WVF! in Couette-Taylor flow for the outer cylinder a

rest (m̃50) and counter-rotating cylinders (m̃521). The vertical
line indicates the parameter range of the lifetime measuremen

Fig. 5 atm̃521.

TABLE I. Parameters connected with the Couette-Taylor s
tem in the limit of large radii.A and B are the coefficients in the
parametrization~13! of the primary instability.h320 is the radius
ratio where the primary instability lies above Re5320; finally, hc

and Rec are the parameter values for the crossing of the stab
curves for Taylor vortex flow and wavy vortex flow.

m̃ A B h320 hc Rec

0.0 10.8 0.5 0.999 0.990 109
20.4142 16.8 0.8 0.997 0.977 110
21.0 33.9 3.2 0.989 0.929 131
22.4142 53.6 4.6 0.971 '0.94 '220
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This is roughly twice the critical wavelengths that would
expected for Taylor vortices.

We developed a numerical code for the solution of the
Navier-Stokes equation using Fourier modes in axial and
muthal direction and Legendre collocation in the radial
rection. The pressure terms were treated by a Lagra
method. The period inz andf was determined by the fun
damental wavelengths~14! of wavy vortex flow.

The continuation of the wavy vortex flow from th
Couette-Taylor system to the plane Couette system is sh
in Fig. 1 for the case of the outer cylinder at rest (m̃50) and
for counterrotating cylinders withm̃521. For smallh the
wavy vortex develops from a secondary bifurcation of TV
but for sufficiently largeh the wavy vortex state is create
first in a saddle node bifurcation. The critical Reynolds nu
ber for the formation of Taylor vortices diverges ash ap-
proaches 1, but the one for the formation of wavy vortic
approaches a finite value. Thus the gap in Reynolds num
between the two transitions widens and the region wh
plane Couette flowlike behavior can be expected increa
with h approaching one. The radius ratioshc and Reynolds
numbers Rec of the codimension two point where the inst
bilities for TVF and wavy vortex flow cross are listed
Table I. The ratio of radiihc where the linear instability of

FIG. 2. Geometrical curvature of the cylinders in the Coue
Taylor flow and the plane Couette flow limit. Shown is one fund
mental azimuthal wavelength for different radius ratiosh as indi-
cated.

FIG. 3. The convergence to the Nagata-Busse-Clever state

different rotation ratiosm̃. In the limit of h going to one the wavy

vortex states for allm̃ approach the same flow that moves with t
mean velocity azimuthally. The top diagram shows the rotat
speed and the botton one the critical Reynolds numbers.
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Couette flow and of the Taylor vortex flow cross is a no
monotonic function of the ratiom̃ of rotation speed. Both the
critical Reynolds numbers for the linear instability of th
Couette profile and for the formation of wavy vortices i
crease with decreasingm̃, but at different rates and with dif
ferent dependencies ofh. As a consequence there seems
be a local minimum near about 0.93 form̃ close to21.

For the parameter value considered here the curvatur
the cylinder walls is geometrically small~see Fig. 2!. On the
length of one unit cell inf direction the relative displace
ment in radial direction from a planar wall is aboutp(1
2h), i.e., only 3% forh50.99.

The critical Reynolds number for the formation of wav
vortex flow ~WVF! seems to converge to the same value
both ratiosm̃ shown in Fig. 1. The critical Reynolds numbe
as well as the rotation speed of the wavy vortices for sev
different ratiosm̃ are collected in Fig. 3. The rotation spee
is defined as the angular phase velocityv of WVF times the

-
-

or

n

FIG. 4. The wavy vortex flow state near the Nagata-Bus

Clever state ath50.993, m̃521 and Re5124. Shown is only the
disturbance, without the Couette profile. The frames from left
right show cuts through the (r ,z) plane at azimuthal wave length
f50, p/4, p/2, 3p/4 and p. The vectors indicate ther and z
components of the velocity field and shading thef component. The
inner~outer! cylinder is located at the left~right! side of each frame.

FIG. 5. Lifetime distribution in Couette-Taylor flow ath

50.993,m̃521, and for the indicated range of Reynolds numbe
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mean radiusR5(Ri1Ro)/2 minus the mean azimuthal ve
locity v5(v iRi1voRo)/2. For all ratios between the spee
of inner and outer cylinder the critical Reynolds number
the formation of the wavy vortex state converges to a va
of about 125 and the speed of rotation goes to zero.
limiting state that is approached is the stationary Naga
Busse-Clever state. The velocity field of a wavy vortex s
lution ath50.993,m̃521 and Re5124 is shown in Fig. 4;
it differs little from the corresponding plane Couette sta
obtained by Busse and Clever@8#, both in appearance and i
critical Reynolds number.

In the region above the wavy vortex instability but belo
the linear instability the dynamics of perturbations shows
fractal lifetime pictures familiar from plane Couette flo
@16#. Figure 5 shows an example at a radius ratio ofh
50.993 and a Reynolds number ratio ofm̃521. The initial
state was prepared by rescaling a WVF field obtained at v
low radius ratio and Reynolds number. It is interesting
note that even with this initial condition, which is at lea
topologically close to the Nagata-Busse-Clever state, it is
possible to realize a turbulent signal in its neighborhood:
state quickly leaves this region in phase space. One m
have hoped that in spite of the linear instability of t
Nagata-Busse-Clever state other states created out of se
h.
r
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ary bifurcations could have supported some turbulent
namics in its neighborhood, but the numerical experime
do not support this. The gap between the Reynolds num
where the WVF state is formed and the one where typ
initial conditions become turbulent is about the same as
plane Couette flow: the WVF states forms around Re5125
and the transition to turbulence, based on the requirem
that half of all perturbations induce a long living turbule
state, occurs near a value of Retrans5310, very much as in
plane Couette flow@14#.

In summary, we have identified parameter ranges in
Couette-Taylor system where some of the characteristic
the plane Couette system can be found. These param
ranges include radius ratios that can be realized experim
tally. Investigations in this regime should be rewarding
they open up the possibility to study the properties of
transition in a closed geometry and to switch continuou
between supercritical and subcritical transition to turbulen
The observation of a codimension two point where the lin
instability to TVF and the secondary instability to wavy vo
tex flow cross should provide a starting point for furth
modeling of the transition in terms of amplitude equation
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