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Transition from the Couette-Taylor system to the plane Couette system
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We discuss the flow between concentric rotating cylinders in the limit of large radii where the system
approaches plane Couette flow. We discuss how in this limit the linear instability that leads to the formation of
Taylor vortices is lost and how the character of the transition approaches that of planar shear flows. In
particular, a parameter regime is identified where fractal distributions of lifetimes and spatiotemporal intermit-
tency occur. Experiments in this regime should allow us to study the characteristics of shear flow turbulence in
a closed flow geometry.

PACS numbe(s): 47.20.Lz, 47.27.Cn, 47.20.Ft

The transition to turbulence for a fluid between concentriccem and to identify the parameters where the change in be-
rotating cylinders has attracted much experimental and thedyavior occurs. In particular, we study the transition from
retical attention. Ever since Taylor's succgskin predicting  laminar Couette flow to Taylor vortices and the instability of
and observing the instabilities for the formation of vorticesvortices to the formation of wavy vortices. Note that the
the system has become one of the paradigmatic examples fapymptotic situation of plane Couette flow can be character-
the transition to turbulence and a large number of bifurcaized by a single parameter, a Reynolds number based on the
tions have been analyzed in considerable dégil5]. The velocity difference, whereas Couette Taylor flow has at least
limiting case of large radii and fixed gap width where thetwo parameters, the Reynolds numbers based on the veloci-
effects due to curvature become less important and where tHies of the cylinders. This extra degree of freedom provides
system approaches plane Couette flow between parallel wal) additional parameter that can be used to modify the flow
has received much less attention. In this limit the character of/ithout changing the basic features.
the flow changes: plane Couette flow is linearly stable and In cylindrical coordinatesr(, ¢,z) the equations of motion
the mechanisms that drive the transition to turbulence aréor the velocity componentsug,u,,u,) can be written as
still unclear. The question we address here is to what extent ~

the Couette-Taylor system can be used to gain insight into diur+(u-V)u,—vAu,+4, p
the dynamics of plane Couette flow.

This problem is of both experimental and theoretical in- N P Ea o0t L
terest. As mentioned, the experimental situation for Couette- | p ot r2 oUs r2ur r e @
Taylor flow is much better, there being numerous facilities
and detailed studies of patterns, boundary effects and critical ~ ~ 1
parameter§4—6]. The moving boundaries in plane Couette Iyt (U-V)Uy— VAUt 9y P
flow reduce the experimental accessibility and the possibili-
ties of applying controlled perturbations. On the theoretical 1 2 1 1
side it is an intriguing question how the change in stability = V(F(?ru¢,+ — gl — —2u¢) — T Uiy, 2
behavior from the Couette Taylor system to the plane Cou- r r

ette system occurs. Studies by Naggth show that some 1

states from the rotating plane Couette system survive the Y — X =

limiting process and appear in finite amplitude saddle node Gz (U VU= PAUH 0, P= 00y, @

bifurcations in the plane Couette systésee also the inves-

tigation of this state by Busse and Cle\&l). Unless the V.ou=— Eu (4)

transition from linear instability dominated behavior in r"’

Couette-Taylor flow to the shear flow type transition in plane N

Couette flow is singularly connected to the absence of anyhere the modified Nabla and Laplace operators are

curvature it can be expected to happen at a finite radius ratio B 1

near which interesting dynamical behavior should occur. V=6d +e5—dy+ed,, (5)
We should mention that there are other useful embeddings r

of plane Couette. Busse and Cley8} start from a layer of

fluid heated from below with cross flow and proceed to study

the stability and parameter dependence of the states. And

Cherhabili and Ehrensteif@] start from plane Poisseuille

flow and find localized solutions, albeit at Reynolds numbersand wheres are the unit basis vectof40].

higher than the ones studied here. The terms in Eqs(1)—(4) are arranged so that all the ones
Our aim here is to follow some of the instabilities in the on the right hand side vanish when the system approaches

Couette-Taylor system to the limit of the plane Couette systhe plane Couette system, i.e., in the limit of large radii but

~ 1
A:ﬁfr+r_2(9¢¢+&22’ (6)
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finite velocities at the cylinders. The remaining ones become TABLE I. Parameters connected with the Couette-Taylor sys-
the equations of motion for plane Couette flow in cartesiarfem in the limit of large radiiA and B are the coefficients in the
coordinates X,y,z) if the identificationx=r andy=¢r is  Pparametrization13) of the primary instability.7sy is the radius
made. However, there are other ways of taking the limit of gatio where the primary instability lies above R820; finally, 7,
small gap that lead to different limiting systems. For in- and Re are the parameter values for the crossing of the stability
stance, the case of almost corotating cylinders with higtfurves for Taylor vortex flow and wavy vortex flow.

mean rotation rate gives rise to plane Couette flow with ar
additional Coriolis tern{*rotating plane Couette flow'[7]). # A B 7320 e Re:
Another limit corresponds to the case of counterrotating cyly)

i . ) ; ) . 10.8 0.5 0.999 0.990 109
inders with diverging rotation rate[ﬁ;]. In our numerl_cal 04142 16.8 08 0997 0977 110
work we use the full equations, WIthOl,.lt any reduction in_10 33.9 32 0.989 0.929 131
terms. This allows us to extend Nagata’'s work from the r0-_ 5 4147 536 46 0971 ~004  ~220
tating plane Couette flow to the full Couette-Taylor system._ ™" ' ' ' '
The velocities at the inner and outer cylindgtistin-
guished by indices and o, respectively are prescribed and . _ .
define the boundary conditions for »=<1 [15]. This number is larger than-the tr_ansmonal
Reynolds number for plane Couette flowsfis sufficiently
Ug(r=Ro) =Ry, (7)  close to 1. The minimal radius ratigs,, where the linear
instability occurs for Re-320 strongly depends on the ratio
u,(r=R,)=u,r=R,)=0, x=i,o0. (8) of the Reynolds numbers of inner and outer cylinder. A few

. ) ) - examples for minimal radius ratioss,o are summarized in
For the choice of dimensionless quantities we appeal to thggpe |.

plane Couette flow limit. There the relevant quantities are the very important for the transition to turbulence in linearly
velocity difference between the wallAU=R;Q;—R{,,  stable systems are nonlinear processes that could give rise to
and the gap widtll=R,—R;. Without loss of generality we some finite amplitude states, perhaps stationary or periodic,
can always assum@;=0. The Reynolds number for plane around which the turbulent state could form. One candidate
Couette flow is based on half the velocity difference and halthat could serve as a nucleus for turbulence in plane Couette

the gap width, flow is the stationary state first calculated by Nadata He
AUd observed that the wavy vortices that form in a secondary
Re= — . (9) instability from the TVF in the rotating plane Couette system
4v can be followed to the limit of the plane Couette flow where

they become part of a saddle node bifurcation at finite Rey-
For the Couette Taylor system there are two Reynolds numyq, g numbers. This state was also identified and studied in a

_bers based on the_ gap width and the rotation rates of thgittarant limiting process by Busse and Clevi@]. They
inner and outer cylinders, found that the critical axial and azimuthal wavelengths for

Re,=R,Q,d/v, (10) this state are
where the index can stands for or o, the inner and outer No=a and \.=27. (14)
cylinders. The plane Couette flow Reynolds number thus is z ¢
Re=(Re—Re,))/4. The ratio of these Reynolds numbers will 400
be called ' ' ' ' ' ' '/’
7=Re,/Rg (1) | A
300 - / .
(the tilde is used to distinguish it from=Q,/Q;, a fre- ya
quently defined quantity not used hgre r /’ 7
WA
7=RiIR, 12 g20r ER 1

denotes that ratio of radii.

Experiments and numerical simulations show that plane
Couette flow undergoes a subcritical transition to turbulence
around Recp~320 [12-14. The Couette-Taylor system
shows a first linear instability to the formation of vortices
(Taylor-vortex flow, TVH at Reynolds numbers that depend 0 : ' :
on the rotation rates and the curvature of the cylinders. In ' 1
order to see shear flow dominated dynamics the critical Rey-
nolds number for the linear instability has to be above FIG. 1. Bifurcations to Taylor vortex flowTVF) and wavy
Repcr. The formation of TVF occurs at Reynolds numbersvortex flow (WVF) in Couette-Taylor flow for the outer cylinder at
that can be parametrized in the form rest (u=0) and counter-rotating cylinderg.& —1). The vertical

line indicates the parameter range of the lifetime measurements of
Re=A(n)(1—7) Y2+B(w) (13  Fig.5atp=—1.

1
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2nd

1=0.999

1n=0.99

FIG. 2. Geometrical curvature of the cylinders in the Couette- = :
Taylor flow and the plane Couette flow limit. Shown is one funda-
mental azimuthal wavelength for different radius ratipss indi-
cated.

This is roughly twice the critical wavelengths that would be  FIG. 4. The wavy vortex flow state near the Nagata-Busse-
expected for Taylor vortices. Clever state aty=0.993, z=—1 and Re=124. Shown is only the

We developed a numerical code for the solution of the fullgisturbance, without the Couette profile. The frames from left to
Navier-Stokes equation using Fourier modes in axial and aziight show cuts through the (z) plane at azimuthal wave lengths
muthal direction and Legendre collocation in the radial di-¢=0, #/4, 7/2, 37/4 and . The vectors indicate the and z
rection. The pressure terms were treated by a Lagrangsmponents of the velocity field and shading theomponent. The
method. The period iz and ¢ was determined by the fun- inner(outep cylinder is located at the lettight) side of each frame.
damental wavelengthd4) of wavy vortex flow.

The continuation of the wavy vortex flow from the coyette flow and of the Taylor vortex flow cross is a non-
Couette-Taylor system to the plane Couette system is ShOWﬁ%onotonic function of the ratig. of rotation speed. Both the

in Fig. 1 for the case of the outer cylinder atreat<0) and  ritical Reynolds numbers for the linear instability of the
for counterrotating cylinders witle=—1. For small the  Couette profile and for the formation of wavy vortices in-
wavy vortex develops from a secondary bifurcation of TVF, crease with decreasing, but at different rates and with dif-

but for sufficiently largez the wavy vortex state is created ferent dependencies of. As a consequence there seems to
first in a saddle node bifurcation. The critical Reynolds NUM-p . 2 1ocal minimum near about 0.93 farclose to—1.

ber for the formation of Taylor vortices diverges gsap- For the parameter value considered here the curvature of

proaches 1, but the one for the formation of wavy vortices[he cylinder walls is geometrically smabee Fig. 2 On the

approaches a finite value. Thus the gap in Reynolds numbe[gngth of one unit cell ing direction the relative displace-

between the two transitions \_N|dens and the region Wher?:nent in radial direction from a planar wall is abowf1
plane Couette flowlike behavior can be expected increases

=2 i 0 =
with % approaching one. The radius ratigs and Reynolds 7), I.€., only 3% fory=0.99.

numbers Rgof the codimension two point where the insta- The critical Reynolds number for the formation of wavy
o € P . .~ vortex flow (WVF) seems to converge to the same value for
bilities for TVF and wavy vortex flow cross are listed in

Table I. The ratio of radiiy, where the linear instability of POt ratiosu shown in Fig. 1. The critical Reynolds number
as well as the rotation speed of the wavy vortices for several

different ratios. are collected in Fig. 3. The rotation speed

S is defined as the angular phase veloeitpf WVF times the
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FIG. 3. The convergence to the Nagata-Busse-Clever state fo 0.01 ' : :

. . .o~ L . 270 290 310 330 350
different rotation ratioge. In the limit of » going to one the wavy Re

vortex states for all. approach the same flow that moves with the o S
mean velocity azimuthally. The top diagram shows the rotation FIG. 5. Lifetime distribution in Couette-Taylor flow ap
speed and the botton one the critical Reynolds numbers. =0.993,u=—1, and for the indicated range of Reynolds numbers.
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mean radiuR=(R;+R,)/2 minus the mean azimuthal ve- ary bifurcations could have supported some turbulent dy-
locity v =(w;R;+ w,R,)/2. For all ratios between the speed namics in its neighborhood, but the numerical experiments
of inner and outer cylinder the critical Reynolds number fordo not support this. The gap between the Reynolds number
the formation of the wavy vortex state converges to a valuavhere the WVF state is formed and the one where typical
of about 125 and the speed of rotation goes to zero. Th#itial conditions become turbulent is about the same as in
limiting state that is approached is the stationary Nagataplane Couette flow: the WVF states forms around-R&5
Busse-Clever state. The velocity field of a wavy vortex so-and the transition to turbulence, based on the requirement
lution at 7=0.993, = —1 and Re=124 is shown in Fig. 4; that half of all perturbations induce a long living turbulent

it differs little from the corresponding plane Couette stateState, occurs near a value of Rgs=310, very much as in
obtained by Busse and Clevi@], both in appearance and in Plane Couette flof14]. _
critical Reynolds number. In summary, we have identified parameter ranges in the
In the region above the wavy vortex instability but below Couette-Taylor system where some of the characteristics of
the linear instability the dynamics of perturbations shows thén€ plane Couette system can be found. These parameter
fractal lifetime pictures familiar from plane Couette flow r@nges include radius ratios that can be realized experimen-
[16]. Figure 5 shows an example at a radius ratio of tally. Investigations in this regime should be rewarding as
~0.993 and a Reynolds number ratiof — 1. The initial they open up the possibility to study the properties of the

. . ; transition in a closed geometry and to switch continuously
state was prepared by rescaling a WVF f'eld. ok_Jtalned atver etween supercritical and subcritical transition to turbulence.
low radius ratio and Reynolds number. It is interesting to

note that even with this initial condition, which is at least The observation of a codimension two point where the linear
! ipstability to TVF and the secondary instability to wavy vor-

topologically close to the Nagata-Busse-Clever state, it is NOL.y flow cross should provide a starting point for further

possible to realize a turbulent signal in its neighborhood: the . T ! .
. . SO . modeling of the transition in terms of amplitude equations.
state quickly leaves this region in phase space. One mlghrp

have hoped that in spite of the linear instability of the This work was financially supported by the Deutsche For-
Nagata-Busse-Clever state other states created out of secorsthungsgemeinschatt.
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