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2.4 The Unitarity of Representations

The following theorem shows that in most physical cases, the elements of 
a group can be represented by unitary matrices, which have the property 
of preserving length scales. This theorem is then used to prove lemmas 
leading to the proof of the “Wonderful Orthogonality Theorem,” which is a 
central theorem of this chapter.

Theorem. Every representation with matrices having nonvanishing determi-
nants can be brought into unitary form by an equivalence (similarity) 
trans-formation.

Proof. By unitary form we mean that the matrix elements obey the relation (A
−1)ij = A† = A∗

ji, where  A is an arbitrary matrix of the representation.
ij

The proof is carried out by actually finding the corresponding unitary matrices 
if the Aij matrices are not already unitary matrices.

Let A1, A2, · · ·  , Ah denote matrices of the representation. We start by 
forming the matrix sum

H =
h∑

x=1

AxA
†
x , (2.9)

where the sum is over all the elements in the group and where the adjoint of
a matrix is the transposed complex conjugate matrix (A†

x)ij = (Ax)∗ji. The
matrix H is Hermitian because

H† =
∑

x

(AxA
†
x)† =

∑
x

AxA
†
x . (2.10)

Any Hermitian matrix can be diagonalized by a suitable unitary transforma-
tion. Let U be a unitary matrix made up of the orthonormal eigenvectors
which diagonalize H to give the diagonal matrix d:

d = U−1HU

=
∑

x

U−1AxA
†
xU

=
∑

x

U−1AxUU
−1A†

xU

=
∑

x

ÂxÂ
†
x , (2.11)
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where we define Âx = U−1AxU for all x. The diagonal matrix d is a special
kind of matrix and contains only real, positive diagonal elements since

dkk =
∑

x

∑
j

(Âx)kj(Â†
x)jk

=
∑

x

∑
j

(Âx)kj(Âx)∗kj

=
∑

x

∑
j

|(Âx)kj |2 . (2.12)

Out of the diagonal matrix d, one can form two matrices (d1/2 and d−1/2)
such that

d1/2 ≡

⎛
⎜⎝

√
d11 O√

d22

O . . .

⎞
⎟⎠ (2.13)

and

d−1/2 ≡

⎛
⎜⎝

1√
d11

O
1√
d22

O . . .

⎞
⎟⎠ , (2.14)

where d1/2 and d−1/2 are real, diagonal matrices. We note that the generation
of d−1/2 from d1/2 requires that none of the dkk vanish. These matrices clearly
obey the relations

(d1/2)† = d1/2 (2.15)
(d−1/2)† = d−1/2 (2.16)

(d1/2)(d1/2) = d (2.17)

so that
d1/2d−1/2 = d−1/2d1/2 = 1̂ = unit matrix . (2.18)

From (2.11) we can also write

d = d1/2d1/2 =
∑

x

ÂxÂ
†
x . (2.19)

We now define a new set of matrices

ˆ̂
Ax ≡ d−1/2Âxd

1/2 (2.20)

and
Â†

x = (U−1AxU)† = U−1A†
xU (2.21)

ˆ̂
A†

x = (d−1/2Âxd
1/2)† = d1/2Â†

xd
−1/2 . (2.22)
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We now show that the matrices ˆ̂
Ax are unitary:

ˆ̂
Ax

ˆ̂
A†

x = (d−1/2Âxd
1/2)(d1/2Â†

xd
−1/2)

= d−1/2ÂxdÂ
†
xd

−1/2

= d−1/2
∑

y

ÂxÂyÂ
†
yÂ

†
xd

−1/2

= d−1/2
∑

y

(ÂxÂy)(ÂxÂy)†d−1/2

= d−1/2
∑

z

ÂzÂ
†
z d

−1/2 (2.23)

by the rearrangement theorem (Sect. 1.4). But from the relation

d =
∑

z

ÂzÂ
†
z (2.24)

it follows that ˆ̂
Ax

ˆ̂
A†

x = 1̂, so that ˆ̂
Ax is unitary.

Therefore we have demonstrated how we can always construct a unitary
representation by the transformation:

ˆ̂
Ax = d−1/2U−1AxUd

1/2 , (2.25)

where

H =
h∑

x=1

AxA
†
x (2.26)

d =
h∑

x=1

ÂxÂ
†
x , (2.27)

and where U is the unitary matrix that diagonalizes the Hermitian matrix H
and Âx = U−1AxU . �

Note: On the other hand, not all symmetry operations can be represented by
a unitary matrix; an example of an operation which cannot be represented by
a unitary matrix is the time inversion operator (see Chap. 16). Time inversion
symmetry is represented by an antiunitary matrix rather than a unitary ma-
trix. It is thus not possible to represent all symmetry operations by a unitary
matrix.

2.5 Schur’s Lemma (Part 1)

Schur’s lemmas (Parts 1 and 2) on irreducible representations are proved in
order to prove the “Wonderful Orthogonality Theorem” in Sect. 2.7. We next
prove Schur’s lemma Part 1.
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Lemma. A matrix which commutes with all matrices of an irreducible repre-
sentation is a constant matrix, i.e., a constant times the unit matrix. There-
fore, if a non-constant commuting matrix exists, the representation is re-
ducible; if none exists, the representation is irreducible.

Proof. Let M be a matrix which commutes with all the matrices of the rep-
resentation A1, A2, . . . , Ah �

MAx = AxM . (2.28)

Take the adjoint of both sides of (2.28) to obtain

A†
xM

† = M †A†
x . (2.29)

Since Ax can in all generality be taken to be unitary (see Sect. 2.4), multiply
on the right and left of (2.29) by Ax to yield

M †Ax = AxM
† , (2.30)

so that if M commutes with Ax so does M †, and so do the Hermitian matrices
H1 and H2 defined by

H1 = M +M †

H2 = i(M −M †) , (2.31)

HjAx = AxHj , where j = 1, 2 . (2.32)

We will now show that a commuting Hermitian matrix is a constant matrix
from which it follows that M = H1 − iH2 is also a constant matrix.

Since Hj (j = 1, 2) is a Hermitian matrix, it can be diagonalized. Let U
be the matrix that diagonalizes Hj (for example H1) to give the diagonal
matrix d

d = U−1HjU . (2.33)

We now perform the unitary transformation on the matrices Ax of the rep-
resentation Âx = U−1AxU . From the commutation relations (2.28), (2.29),
and (2.32), a unitary transformation on all matrices HjAx = AxHj yields

(U−1HjU)︸ ︷︷ ︸
d

(U−1AxU)︸ ︷︷ ︸
Âx

= (U−1AxU)︸ ︷︷ ︸
Âx

(U−1HjU)︸ ︷︷ ︸
d

. (2.34)

So now we have a diagonal matrix d which commutes with all the matrices of
the representation. We now show that this diagonal matrix d is a constant ma-
trix, if all the Âx matrices (and thus also the Ax matrices) form an irreducible
representation. Thus, starting with (2.34)

dÂx = Âxd (2.35)

we take the ij element of both sides of (2.35)
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dii(Âx)ij = (Âx)ijdjj , (2.36)

so that
(Âx)ij(dii − djj) = 0 (2.37)

for all the matrices Ax.
If dii �= djj , so that the matrix d is not a constant diagonal matrix, then

(Âx)ij must be 0 for all the Âx. This means that the similarity or unitary
transformation U−1AxU has brought all the matrices of the representation
Âx into the same block form, since any time dii �= djj all the matrices (Âx)ij

are null matrices. Thus by definition the representationAx is reducible. But we
have assumed the Ax to be an irreducible representation. Therefore (Âx)ij �= 0
for all Âx, so that it is necessary that dii = djj , and Schur’s lemma Part 1 is
proved.

2.6 Schur’s Lemma (Part 2)

Lemma. If the matrix representations D(1)(A1), D(1)(A2), . . . , D(1)(Ah)
and D(2)(A1), D(2)(A2), . . . , D(2)(Ah) are two irreducible representations
of a given group of dimensionality �1 and �2, respectively, then, if there is
a matrix of �1 columns and �2 rows M such that

MD(1)(Ax) = D(2)(Ax)M (2.38)

for all Ax, then M must be the null matrix (M = O) if �1 �= �2. If �1 = �2,
then either M = O or the representations D(1)(Ax) and D(2)(Ax) differ from
each other by an equivalence (or similarity) transformation.

Proof. Since the matrices which form the representation can always be trans-
formed into unitary form, we can in all generality assume that the matrices of
both representations D(1)(Ax) and D(2)(Ax) have already been brought into
unitary form. �

Assume �1 ≤ �2, and take the adjoint of (2.38)

[D(1)(Ax)]†M † = M †[D(2)(Ax)]† . (2.39)

The unitary property of the representation implies [D(Ax)]† = [D(Ax)]−1 =
D(A−1

x ), since the matrices form a substitution group for the elements Ax of
the group. Therefore we can write (2.39) as

D(1)(A−1
x )M † = M †D(2)(A−1

x ) . (2.40)

Then multiplying (2.40) on the left by M yields

MD(1)(A−1
x )M † = MM †D(2)(A−1

x ) = D(2)(A−1
x )MM † , (2.41)
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which follows from applying (2.38) to the element A−1
x which is also an element

of the group

MD(1)(A−1
x ) = D(2)(A−1

x )M . (2.42)

We have now shown that if MD(1)(Ax) = D(2)(Ax)M then MM † commutes
with all the matrices of representation (2) and M †M commutes with all ma-
trices of representation (1). But if MM † commutes with all matrices of a rep-
resentation, then by Schur’s lemma (Part 1), MM † is a constant matrix of
dimensionality (�2 × �2):

MM † = c 1̂ , (2.43)

where 1̂ is the unit matrix.
First we consider the case �1 = �2. Then M is a square matrix, with an

inverse

M−1 =
M †

c
, c �= 0 . (2.44)

Then if M−1 �= O, multiplying (2.38) by M−1 on the left yields

D(1)(Ax) = M−1D(2)(Ax)M (2.45)

and the two representations differ by an equivalence transformation.
However, if c = 0 then we cannot write (2.44), but instead we have to

consider MM † = 0
∑

k

MikM
†
kj = 0 =

∑
k

MikM
∗
jk (2.46)

for all ij elements. In particular, for i = j we can write
∑

k

MikM
∗
ik =

∑
k

|Mik|2 = 0 . (2.47)

Therefore each element Mik = 0 so that M is a null matrix. This completes
proof of the case �1 = �2 and M = O.

Finally we prove that for �1 �= �2, then M = O. Suppose that �1 �= �2, then
we can arbitrarily take �1 < �2. Then M has �1 columns and �2 rows. We can
make a square (�2 × �2) matrix out of M by adding (�2 − �1) columns of zeros

�1 columns

�2 rows

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0
0 0 · · · 0

M 0 0 · · · 0
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

= N = square (�2 × �2) matrix .
(2.48)
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The adjoint of (2.48) is then written as
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M †

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= N † (2.49)

so that
NN † = MM † = c 1̂ dimension (�2 × �2) . (2.50)

∑
k

NikN
†
ki =

∑
k

NikN
∗
ik = c 1̂

∑
ik

NikN
∗
ik = c�2 .

But if we carry out the  sum over i we see by direct computation that some 
of the diagonal terms of 

∑
k,i NikN

∗
ik are 0, so that c must be zero. But this 

implies that for every element we have Nik = 0 and therefore also Mik = 0,  
so that M is a null matrix, completing the proof of Schur’s lemma Part 2.




