Turbulent Transport, Dissipation \& Drag

Charles R. Doering
Department of Mathematics and
Michigan Center for Theoretical Physics
University of Michigan, Ann Arbor

Outline:

1. Phenomenology, physics \& philosophy
2. Mathematical models \& methods
3. Conclusions \& conundrums

Viscosities of familiar fluids:

Fluid	Density (ρ)	Kinematic Viscosity (v)
Water $\left(0^{\circ} \mathrm{C}\right)$	$1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	$1.8 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
Water $\left(20^{\circ} \mathrm{C}\right)$	$1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	$1.0 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
Air $\left(0^{\circ} \mathrm{C}\right)$	$1.3 \mathrm{~kg} / \mathrm{m}^{3}$	$1.3 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
Air $\left(20^{\circ} \mathrm{C}\right)$	$1.2 \mathrm{~kg} / \mathrm{m}^{3}$	$1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$
Glycerine $\left(20^{\circ} \mathrm{C}\right)$	$1.3 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$	$1.1 \times 10^{-3} \mathrm{~m}^{2} / \mathrm{s}$

Viscosity is the friction and the dissipation coefficient

Force required to maintain laminar flow: $F=\rho \cdot v \cdot(U / h) \cdot A$
Power required to maintain laminar flow: $P=F \times U=\rho A h \cdot v \cdot U^{2} / h^{2}$
General relationship: $P_{\text {laminar }} \sim$ mass \times viscosity $\times(\text { stirring rate })^{2}$

Example: what is the maximum speed V of your car?

Suppose engine power $P=100$ horsepower $\approx 75,000 \mathrm{~W}$.

- If drag due to air is laminar friction, then $P=P_{\text {laminar }}$.
- Use spherical approximation for the car so $P_{\text {laminar }}=P_{\text {Stokes }}=6 \pi r \rho_{\text {air }} v_{\text {air }} V^{2}$
- Therefore, $V_{\max } \approx\left(P /\left[6 \pi \rho_{a i r} v_{a i r} r\right]\right)^{1 / 2}$
- Use $r=1 m$ as radius of the sphere.
- $V_{\max }=14,000 \mathrm{~m} / \mathrm{s}=30,000 \mathrm{mph}$!
- Note: speed of sound $=350 \mathrm{~m} / \mathrm{s}=750 \mathrm{mph}$

Example: What is the maximum speed V of your car?

Suppose engine power $P=100$ horsepower $\approx 75,000 \mathrm{~W}$.

- If drag due to air is turbulent dissipation, then $P=P_{\text {turbulent }}=c_{D} \rho_{\text {air }} A V^{3}$.
- c_{D} is the drag coefficient, depends only only on the shape of the car.
- $V_{\max } \approx\left(P / c_{D} \rho_{\text {air }} A\right)^{1 / 3}$
- Use $A=1 m^{2}$ and $c_{D}=.2$ for guesstimate:
- $V_{\max }=66 \mathrm{~m} / \mathrm{s} \approx 140 \mathrm{mph}$
- Compare laminar estimate $V_{\max } \approx$ Mach 40!

