Turbulent Transport, Dissipation & Drag

Charles R. Doering

Department of Mathematics and Michigan Center for Theoretical Physics University of Michigan, Ann Arbor

Outline:

- 1. Phenomenology, physics & philosophy
- 2. Mathematical models & methods
- 3. Conclusions & conundrums

Viscosities of familiar fluids:

<u>Fluid</u>	<u>Density (p)</u>	Kinematic Viscosity (v)
Water (0° <i>C</i>)	$1.0 \times 10^3 \ kg/m^3$	$1.8 \times 10^{-6} m^2/s$
Water ($20^{\circ} C$)	$1.0 \times 10^3 kg/m^3$	$1.0 \times 10^{-6} m^2/s$
Air (0° <i>C</i>)	$1.3 \ kg/m^3$	$1.3 \times 10^{-5} m^2/s$
Air (20° <i>C</i>)	$1.2 \ kg/m^3$	$1.5 \times 10^{-5} m^2/s$
Glycerine (20° C)	$1.3 \times 10^3 kg/m^3$	$1.1 \times 10^{-3} m^2/s$

Viscosity is the *friction* and the *dissipation* coefficient

Force required to maintain *laminar* flow: $F = \rho \cdot v \cdot (U/h) \cdot A$ Power required to maintain *laminar* flow: $P = F \times U = \rho Ah \cdot v \cdot U^2/h^2$ *General relationship*: $P_{laminar} \sim mass \times viscosity \times (stirring rate)^2$ *Example:* what is the maximum speed V of your car? Suppose engine power P = 100 horsepower $\approx 75,000$ W.

- If drag due to air is *laminar* friction, then $P = P_{laminar}$.
- Use spherical approximation for the car so $P_{laminar} = P_{Stokes} = 6 \pi r \rho_{air} v_{air} V^2$
- Therefore, $V_{max} \approx (P/[6\pi \rho_{air} v_{air} r])^{1/2}$
- Use r = 1 m as radius of the sphere.
- $V_{max} = 14,000 \ m/s = 30,000 \ mph$!
- *Note:* speed of sound = 350 m/s = 750 mph

Example: What is the maximum speed V of your car? Suppose engine power P = 100 horsepower $\approx 75,000$ W.

- If drag due to air is turbulent dissipation, then $P = P_{turbulent} = c_D \rho_{air} A V^3$.
- c_D is the drag coefficient, depends only only on the *shape* of the car.
- $V_{max} \approx (P/c_D \rho_{air} A)^{1/3}$
- Use $A = 1 m^2$ and $c_D = .2$ for guesstimate:
- $V_{max} = 66 \ m/s \approx 140 \ mph$
- Compare laminar estimate $V_{max} \approx$ Mach 40!