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The plane Couette system does not exhibit any secondary solutions bifurcating from
the primary solution of constant shear. Since the work of Nagata (1990) it has
been well known that three-dimensional steady solutions exist. Here the manifold of
those steady solutions is explored in the parameter space of the problem and their
instabilities are investigated. These instabilities usually lead to time-periodic solutions
whose properties do not differ much from those of the steady solutions except that
the amplitude varies in time. In some cases travelling wave solutions which are
asymmetric with respect to the midplane of the layer are found as quaternary states
of flow. Similarities with longitudinal vortices recently observed in experiments are
discussed.

1. Introduction
Plane Couette flow represents the simplest solution of the Navier–Stokes equation

of motion. But it has some unusual properties. Although the constant shear is known
to be replaced by a turbulent state of flow at sufficiently high Reynolds numbers,
theoretical analysis indicates that it is stable with respect to arbitrary infinitesimal
disturbances. Nevertheless, steady solutions describing two-dimensional and three-
dimensional flows exist even though they do not bifurcate from the basic solution of
a plane shear. The three-dimensional solutions can be understood as tertiary solutions
arising from secondary bifurcations if the plane Couette problem is imbedded in a
more general problem. Nagata (1988, 1990) found the three-dimensional solutions
through the consideration of higher bifurcations in the small-gap limit of the circular
Couette problem in the special limit of vanishing mean rate of rotation in which
case the problem turns out to be identical with the plane Couette problem. Clever
& Busse (1992) found the same tertiary solution in the case of the Bénard–Couette
problem of a fluid layer heated from below with the horizontal boundaries moving in
opposite directions. The wavy roll solutions generated by the secondary bifurcation
from longitudinal convection rolls persist in the isothermal limit of vanishing Rayleigh
number which is identical with the plane Couette problem. In this paper the manifold
of these solutions is more fully explored and further bifurcations leading to quaternary
solutions are analysed.

Besides the three-dimensional steady solutions in the form of wavy longitudinal
rolls two-dimensional steady finite-amplitude solutions have also been found recently
(Cherhabili & Ehrenstein 1995) which do not depend on the spanwise coordinate.
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These solutions describe flow in the form of spatially localized transverse rolls, but
they require Reynolds numbers Re which are of the order 10 times higher than the
minimum values of Re for the existence of the wavy roll solutions considered in the
present paper. Most recently the same authors (Cherhabili & Ehrenstein 1996) have
found three-dimensional versions of the localized rolls characterized by transverse
modulations. Because of the large difference in the values of Re we have not yet
been able to establish connections between the localized solutions and the spatially
periodic solutions of the present analysis.

In the following the mathematical methods for the analysis of the problem will be
described briefly in §2. Steady three-dimensional solutions in the form of wavy rolls
will be discussed in §3. Their instabilities and the time-dependent periodic solutions
that evolve from the steady states are studied in §4. The paper closes with a discussion
section.

2. Mathematical formulation of the problem
We consider a layer of an incompressible fluid with thickness d bounded by two

parallel rigid plates which move relative to each other with the velocity Û in the
x-direction of a Cartesian system of coordinates. The z-coordinate is directed normal
to the plates. Using d as length scale and d2/ν as time scale, where ν is the kinematic
viscosity of the fluid, we can write the basic Navier–Stokes equations in the form

∂

∂t
u+ u · ∇u = −∇π + ∇2u (1a)

∇ · u = 0. (1b)

The boundary conditions are given by

u = ±iRe/2 at z = ± 1
2

(2)

where i is the unit vector in the x-direction and Re = Ûd/ν is the Reynolds number.
It is convenient to introduce the general representation for a solenoidal velocity field

u = U (z, t) + ∇× (∇× kϕ) + ∇× kψ ≡ U + δϕ+ εψ (3)

where k is the unit vector in the z-direction and the condition that the average of ϕ
and ψ over the (x,y)-plane vanishes can be imposed,

ϕ = ψ = 0, u = U (z, t) = (Ux,Uy, 0).

The equations for ϕ and ψ can be obtained in the form of the z-components of the
curl curl and of the curl of equation (1a), respectively

∇4∆2ϕ = k · ∇× [∇× (δϕ+ εψ) · ∇(δϕ+ εψ)] +

(
U · ∇+

∂

∂t

)
∇2∆2ϕ−U ′′ · ∇∆2ϕ, (4a)

∇2∆2ψ = −k · ∇× [(δϕ+ εψ) · ∇(δϕ+ εψ)]−U ′ · ε∆2ϕ+

(
U · ∇+

∂

∂t

)
∆2ψ, (4b)

where ∆2 denotes the two-dimensional Laplacian, ∆2 = ∂2/∂x2 + ∂2/∂y2, and where
the primes denote differentiation with respect to z. The equation for U is given by(

∂2
zz −

∂

∂t

)
U = −∂z(∆2ϕ(∇2ϕ′ + εψ)) (4c)
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where ∇2 is the two-dimensional gradient, ∇2 = ∇− k∂/∂z. For the solution of equa-
tions (4) the Galerkin method will be employed. The dependent variables are expanded
in complete systems of functions satisfying the respective boundary conditions,

ϕ =
∑
l,m,n

almn(t) exp{ilαxx+ imαyy}gn(z), (5a)

ψ =
∑
l,m,n

clmn(t) exp{ilαxx+ imαyy} sin nπ(z + 1
2
), (5b)

U = Rezi +
∑
n

(Un(t)i + Vn(t)j) sin nπ(z + 1
2
), (5c)

where the Chandrasekhar (1961) functions gn(z) are defined by

gn =
cosh λnz

cosh λn
1
2

− cos λnz

cos λn
1
2

for odd n, gn =
sinh λnz

sinh λn
1
2

− sin λnz

sin λn
1
2

for even n, (6a)

and the numbers λn are determined such that the conditions g′(z) = g(z) = 0 at
z = ± 1

2
are satisfied,

tanh 1
2
λn + tan 1

2
λn = 0 for odd n, coth 1

2
λn − cot 1

2
λn = 0 for even n. (6b)

In order that real expressions (5a), (5b) are obtained, the conditions almn = a∗−l−mn,
clmn = c∗−l−mn must be imposed where the asterisk indicates the complex conjugate.
After representations (5) have been inserted into (4) and these are multiplied by the
expansion functions and averaged over the fluid layer, a system of ordinary differential
equations in time is obtained for the coefficients almn, clmn, Un and Vn. These equations
can be solved after a truncation scheme has been established. We shall neglect all
coefficients and corresponding equations for which

l + m+ n > NT (7)

holds, where NT is a natural number which will be chosen sufficiently high such that
the physically significant properties of the solution change only minutely when NT is
replaced by NT + 2.

Among the solutions those with constant coefficients almn, clmn, Un are of special
interest since they can be obtained as solutions of an algebraic system of equations
through the use of a Newton–Raphson method. The coefficients Vn vanish for these
steady solutions. The stability of the steady three-dimensional solutions can then be
studied through the superposition of infinitesimal disturbances of the form

ϕ̃ = exp{idx+ iby + σt}
∑
l,m,n

ãlmn exp{ilαxx+ imαyy}gn(z), (8a)

ψ̃ = exp{idx+ iby + σt}
∑
l,m,n

c̃lmn exp{ilαxx+ imαyy} sinmπ(z + 1
2
). (8b)

When (4a, b) are linearized in the disturbances ϕ̃, ψ̃ an homogeneous system of linear
algebraic equations for the unknown coefficients ãlmn, c̃lmn is obtained with the growth
rate σ as eigenvalue. Whenever there exists a σ with positive real part as a function
of b and d for a given steady solution of the form (5) with constant coefficients
almn, clmn, Un, then the latter is regarded as unstable. Otherwise it will be considered as
stable. There is no need to consider a disturbance of the mean flow since the right-
hand side of (4c) vanishes when the terms linear in ϕ̃, ψ̃ are considered as long as d or
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b is finite. In fact the disturbances of the mean flow are included in the representation
(8a, b) where the sum includes the case l = m = 0 in contrast to the summation in
(5a, b). Only in the special case d = b = 0 must the mean flow disturbance

Ũ = exp{σt}
∑
n

(Ũni + Ṽnj) sin nπ(z + 1
2
) (8c)

be included in the stability analysis while the coefficients with subscripts l = m = 0
are dropped in (8a, b).

3. Steady three-dimensional solutions
In the Bénard–Couette problem longitudinal rolls are the preferred solution bifur-

cating from the basic solution in the form of a constant shear when the Rayleigh
number Ra exceeds the critical value, Rac = 1708. When the Rayleigh number is
increased, the longitudinal rolls become unstable to wavy disturbances provided the
Reynolds number Re exceeds a critical value. Steady solutions in the form of wavy
rolls bifurcate from the two-dimensional secondary solution. This bifurcation is su-
percritical if the Reynolds number is not too high, but for increasing values of Re
the bifurcation becomes subcritical (Clever & Busse, 1992). For Reynolds numbers
of the order 500 and higher the wavy roll solutions extend to Ra = 0 and to negative
values of Ra. The wavy roll solutions can be represented in the form (5) with constant
coefficients almn, clmn which exhibit the following symmetry properties:

almn = (−1)m+na−lmn , almn = (−1)lal−mn , (9a)

clmn = (−1)m+nc−lmn , clmn = −(−1)lcl−mn . (9b)

Two typical examples of steady wavy roll solutions are shown in figure 1(a, b, c).
The form of the solutions exhibits remarkably little variation with the parameters
Re, αx, αy . As must be expected for a subcritically bifurcating solution there is an
upper and a lower branch. Even though the amplitude of motion is much higher on
the upper branch than on the lower branch, the spatial dependence is rather similar.
As has already been discussed by Clever & Busse (1992) the waviness of the flow
pattern is more pronounced near the boundaries, while in the midplane the rolls are
rather straight except for sharp kinks as shown in figure 1(a). The lines of equal
z-velocity uz in plane z = 0.4 can be obtained from the lines in the plane z = −0.4
shown in figure 1(a) through the use of the symmetry property

uz(x, y, z) = −uz
(

2π

αx
− x, π

αy
+ y,−z

)
(9c)

which represents another way of expressing the left-hand conditions of property (9).
The waviness of the longitudinal rolls manifests itself in the sidewise shifting of the
plumes of positive and negative x-momentum shown in figure 1(b). The combined
effect of longitudinal waviness and shearing is most strongly expressed by the lines of
constant spanwise velocity shown in figure 1(c). The concentration of the mean shear
towards the boundaries is quite evident from the plots of figure 1(c) as well as those
of figure 1(b).

The physical quantity that best characterizes solutions of the plane Couette problem
is the shear Nusselt number S which denotes the average viscous force exerted at the
boundary divided by the same force in the case of the primary solution of constant
shear. S is always equal to or larger than unity under stationary conditions. The



Tertiary and quaternary solutions for plane Couette flow 141

(a)

y

x

(b)

y

x
z

0

p
αx

p
2αx

(c)

y

x

z

0

p
αx

p
2αx

Figure 1. (a) Lines of constant z-velocity in the planes z = 0 (upper plots) and z = −0.4 (lower
plots) in the cases of the upper branch (left plots) and of the lower branch (right plots). (b) Lines of
constant x-velocity in the planes x = 0, x = π/2αx, x = π/αx in the cases of the upper (left plots) and
lower (right plots) branches. (c) Lines of constant y-velocity in the planes y = 0, y = π/2αy, y = π/αy
in the cases of the upper (left plots) and lower (right plots) branches. Re = 600, αx = 1.5, αy = 3.0.
Solid lines indicate positive values, dashed lines negative.
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Figure 2. (a) The shear Nusselt number S (solid line) and the poloidal kinetic energy Epol (dashed
line) as a function of Re for wavy roll solutions with αx = 1.5, αy = 2.5. The upper branch is
distinguished from the lower branch by a thicker line. The computations have been carried out for
NT = 20. Results obtained for NT = 18 are shown by the dotted lines for comparison. (b) The
same plot as (a) but for the toroidal kinetic energy Etor (solid line) and the mean flow energy Emf
(dashed line).

dependence of S on Re for given values of αx and αy of the steady wavy rolls is
shown in figure 2(a) with its upper and lower branches. The same dependence on Re
is shown by the kinetic energy of the poloidal part of the motion

Epol = 1
2
〈| ∇× (∇× kϕ) |2〉 (10)

in figure 2(a), while the kinetic energy of the toroidal part of the motion

Etor = 1
2
〈| ∇× kψ |2〉 (11)

and the kinetic energy of the mean flow as displayed in figure 2(b) show an inverted
dependence, i.e. the lower-branch solution now corresponds to the high values while
the values for the upper branch reside below. Since the roll-like motions derive their
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Figure 3. The logarithm of the absolute value of the coefficients alm1 as a function of l and m in
the case of the upper-branch solution with Re = 103, αx = 1.5, αy = 2.5. Negative coefficients are
indicated by a minus sign on top of the columns.

energy from the mean flow, the energy of the latter is anticorrelated with Epol . The
toroidal component of motion is generated by the advection of the mean flow and
thus decreases when the mean shear decreases in the interior of the layer.

In order to indicate the quality of the numerical approximation two different
truncation parameters have been used for all curves of figure 2(a, b). Although the
increase from 18 to 20 of the truncation parameter may appear to be small, it should
be noted that the number of coefficients increases by more than one third from 1956
to 2680. Only for values of Re above 103 may the difference between the curves reach
1% or more. For this reason most of the detailed analysis of this paper will be carried
out for values of Re less than 103. To give a visual impression of the decay of the
magnitude of coefficients, alm1 have been plotted in figure 3 on a logarithmic scale for
a solution with NT = 20. A difference of more than four orders of magnitude can be
seen between the largest coefficients and those at the truncation boundary.

To get a better picture of the dependence of S , Epol and Etor on the wavenumbers αx
and αy of the wavy rolls, the variations of S , Etor and Epol with αy are indicated for a
set of different Reynolds numbers in figure 4(a–c). The curves shown in this figure are
actually closed, but the numerical scheme used for the computations did not produce
converging solutions in regions of very rapid change with αy . The dependence of S on
Re and αy for a given αx thus gives rise to a tube-like surface in the parameter space.
The toroidal energy (11) measures mainly the spanwise variation of the x-component
of the velocity field. It thus reaches a maximum for relatively low values of α since
viscous stresses damp the variations in the y-direction for higher values of αy . The
dependence on αx and Re for a fixed value of αy corresponds to a similar tube-like
surface as shown in figure 5.

Of particular interest is the lowest Reynolds number for which steady tertiary
solutions can exist. The computations have therefore been extended over a broad
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Figure 4. The shear Nusselt number S as a function of (a) αy , (b) the poloidal energy Epol , (c) the
toroidal kinetic energy Etor , for fixed αx = 1.2 at different values of Re as indicated.
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Figure 5. The shear Nusselt number S as a function of αx for fixed αy = 2.5 at different values of
Re as indicated.
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Figure 6. The minimum Reynolds number Re for the existence of steady wavy roll solutions as a
function of the wavenumbers αx and αy .

range of wavenumbers αx and αy and the results for the lowest value of Re have been
plotted in figure 6. It is evident that there exists a rather flat minimum which extends
roughly along the line αy ≈ 2αx.

4. Quaternary solutions bifurcating from tertiary solutions
It had already been shown by Clever & Busse (1992) that all wavy roll solutions

of the branches that extend to the isothermal case of the plane Couette problem are
unstable. Later computations by Nagata (1993) have extended these calculations by
considering the stability with respect to subharmonic disturbances for a particular
set of wavenumbers αx, αy of the steady wavy roll solution. In carrying out the
stability analysis Clever & Busse have restricted the disturbances to those which fit
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Growth rates σ with maximum real part
in the cases

Re αx αy SS SA AS AA

525 1.0 2.0 −1.23± i14.4 −5.25 −6.78 −16.4± i18.6
540 1.0 2.0 0.19± i20.4 −5.02 −6.87 −18.0

Upper 600 1.0 2.5 1.29± i32.5 −3.94 −7.45 −2.96
branch 540 1.5 3.0 −7.3± i5.0 −4.03 −7.50 −13.6

580 1.5 3.0 0.48± i40.4
630 1.5 3.5 −0.11± i49.8 −1.32 −8.63
670 1.5 3.5 7.26± i54.4 0.15 −9.35
610 2.0 3.5 −6.96± i45.4 −2.26 −8.39 −7.65
640 2.0 3.5 0.47± i45.1 −1.51 −8.99 −4.55
675 1.0 3.0 −3.3± i35.0 10.6 −7.1± i14.6

520 1.0 2.0 7.17 −5.52 −6.65 −13.7± i18.2
Lower 540 1.0 2.0 13.2 −5.59 −6.52 −11.8± i18.0
branch 565 1.0 2.0 9.37 −5.37 −6.49 −15.0± i18.3

600 1.0 2.5 14.4 −5.52 −6.35 −12.8± i18.2
540 1.5 3.0 5.99 −4.34 −7.28 −17.0
560 1.5 3.0 13.7 −4.72 −6.91 −20.7
595 2.0 3.5 6.55 −3.39 −7.64 −14.1

Table 1. Selected growth rates for disturbances of different symmetry classes

the periodicity interval 0 6 x < 2π/αx, 0 6 y < 2π/αy . In other words, the Floquet
parameters b and d in (7) are assumed to vanish. This restriction permits an enormous
simplification of the stability analysis in that for d = b = 0 the disturbances separate
into four classes depending on whether they satisfy the symmetry conditions (9a) or
their counterparts,

SS : ãlmn = (−1)m+nã−lmn , ãlmn = (−1)l ãl−mn , (12a)

SA : ãlmn = (−1)m+nã−lmn , ãlmn = (−1)l+1ãl−mn , (12b)

AS : ãlmn = (−1)m+n+1ã−lmn , ãlmn = (−1)l ãl−mn , (12c)

AA : ãlmn = (−1)m+n+1ã−lmn , ãlmn = (−1)l+1ãl−mn . (12d)

Analogous relationships based on the symmetries (9b) apply to the coefficients c̃lmn.
The stability analysis of the steady wavy roll solution with respect to the four
disturbance classes (12) has been extended in the αx, αy, Re-parameter space. Some
typical growth rates σ are given in table 1. As expected the lower-branch solutions
are always unstable with respect to the SS -disturbances which exhibit the same
symmetry as the steady states. The upper-branch solutions are also usually unstable
except for a small range of Reynolds numbers just above the minimum value for
which they can exist. Typically the most dangerous disturbances are again those with
the same symmetry as the steady solution. But in contrast to disturbances on the
lower branch the SS -disturbances on the upper branch usually correspond to an
oscillatory onset of instability. In table 2 typical values are given of the frequency σi
of oscillation at the onset of SS -disturbances. But there are examples of the AS-type
instability preceding the onset of the SS -disturbances. Usually such cases correspond
to wavenumbers of the steady solutions close to the boundary of its existence as in
the case αx = 1.0, αy = 3.0 of table 1.

The oscillatory wavy roll solutions bifurcating from the steady wavy roll solutions in
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αx αy Remin ReIII σi

1.0 2.0 519 538 20
1.0 2.5 558 595 27
1.0 3.0 675 685 34
1.5 3.0 543 575 39
1.5 3.5 617 631 50
2.0 3.5 596 638 45

Table 2. Onset Reynolds number ReIII and frequency σi of the SS -instability of steady wavy rolls
on the upper branch (Remin gives an approximate lower bound for existence of the steady solution)

the form of SS -disturbances can be determined numerically relatively easily through
a forward integration in time of the system of ordinary differential equations for
the coefficients almn(t) and clmn(t) as discussed in §2. Typical dependences on time
of the energy of the fluctuating parts of the motion are shown in figure 7(a, b). The
periods of oscillation agree quite well with those predicted on the basis of the stability
analysis. For example the period 2π/σi given in table 2 for αx = 1.0, αy = 2.5 is within
10% of the period shown by the finite-amplitude oscillations displayed in figure 7.
The oscillations seem to correspond to a periodic swinging back and forth between
the steady states of the upper and the lower branches. The energies do not quite reach
the extreme values marked by the steady states. But the amplitude of the oscillation
increases just as the difference between the amplitudes on the upper and the lower
branches increases with Re. The structure of the oscillatory wavy roll motion changes
remarkably little throughout the cycle as is evident from the plots shown in figure
8. Although the amplitude changes by at least a factor of two, the motion remains
very similar to the motion of steady wavy rolls as shown in figure 1(a). Since the
maximum of the amplitude of motion is assumed close to t = 0 in the case of figure
8 it is not surprising that the pattern at t = 0 is nearly identical to that of the upper
branch shown on the left-hand side of figure 1(a), while at later times in the cycle it
changes in the direction of the pattern of the lower branch.

As the Reynolds number increases, a doubling of the period can often be observed
as shown in the case of figure 7. But this doubling does not indicate the beginning
of a period doubling sequence since a transition to aperiodic flow was usually found
with maxima and minima following in an apparently irregular way. The changes of
the mean profile of the flow through the cycles of oscillatory wavy rolls are relatively
small. In figure 9 the variation of the mean flow component U(z, t) in the x-direction
is indicated for a case where Epol varies by more than 50% from its mean value. There
is a phase lag of nearly 90◦ between the maximum of Epol and the maximal distortion
of the mean flow profile from its linear shape in the plane Couette flow limit. After the
Epol has reached a maximal value, the transport of x-momentum leads to a maximum
distortion which in turn decreases the mean flow energy which is available as the
source for the poloidal component of motion. Only after the distortion has decayed
does the fluctuating component of motion grow again in order to start a new cycle
of oscillation. The energy of the toroidal component of motion is nearly opposite
in phase to Epol . This indicates that the oscillation can be understood in part as a
periodic shift of the kinetic energy between poloidal and toroidal components.

The forward integration in time in the case of growing disturbances with the
symmetry (12c) requires a considerably larger numerical effort since the number of
coefficients doubles. A point of bifurcation of the AS-disturbances from the steady
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Figure 7. Time dependence of (a) Epol and (b) Etor for oscillatory wavy rolls with αx = 1.0, αy = 2.5
for the Reynolds numbers Re = 610 (solid curve), 620 (dashed curve), and 630 (dotted curve). Two
periods are shown for Re = 610, 620, but only one period for Re = 630 since a period doubling
occurs in the interval 620 < Rc < 630.

upper-branch solution with wavenumbers in the neighbourhood of αx = 1.0, αy = 3.0
could not be found since the steady solution ceased to exist towards lower values of
Re before the growth rate of the AS-disturbances decreased to zero. But in following
the evolution of the AS-disturbances through forward integrations in time, shape-
preserving travelling wave solutions have been found. A comparison between these
new solutions and the steady wavy roll solutions is shown in figures 10(a) and 10(b).
The travelling wave solution is asymmetric with respect to the midplane of the layer
which is apparent from figure 10(b). It also violates the symmetry property (9(c)) as
can be seen from the asymmetry between ascending and descending motion in figure
10(a). There are always two asymmetric travelling wave (ATW) solutions differing in
the sign of the coefficients with the symmetry property (12c). The mean flow profile
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t = 0 t = tp/3 t = 2tp/3

Figure 8. Lines of constant z-velocity in the planes z = 0 (upper row) and z = −0.4 (middle row),
and lines of constant ψ(x, y) in the plane z = 0 (lower row), in the case αx = 1.5, αy = 3.0, Re = 600
of the oscillatory wavy roll solution. The period of oscillation is tp = 0.16.
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Figure 9. Profiles of the mean velocity, U(z), in the x-direction in the case of oscillatory wavy rolls
with αx = 1.0, αy = 3.0, Re = 720 at the times t = 0 (solid line), tp/4 (dashed), tp/2 (dotted), and
3tp/4 (dash-dotted) where the period is given by tp = 0.342. This period includes two maxima of
Epol similarly to the case Re = 630 in figure 7(a).

also assumes an asymmetric shape which for the type of ATW solutions of figure 10
assumes the form shown in figure 11.

Because the ATW solution is steady with respect to a moving frame of reference,
the coefficients in (5) are time independent with respect to the moving system and
can be determined through a Newton–Raphson iteration. The momentum transport
of the ATW is less than that of the wavy rolls as is apparent from the shear Nusselt
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Figure 10. (a) Lines of constant z-velocity in the plane z = 0 for steady wavy rolls (upper plot) and
asymmetric travelling waves (ATW) for Re = 850, αx = 0.9, αy = 3.0. NT = 18 has been used for
the solutions. The ATW travels in the positive x-direction (from left to right). (b) Lines of constant
x-velocity in the planes x = 0, x = π/2αx, x = π/αx as indicated and lines of constant x-average of
the x-velocity (upper plots) for the steady wavy rolls (left plots) and for the ATW solution (right
plots) in the same case as (a).
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Figure 11. Profile of the mean flow for ATW solutions with αx = 0.9, αy = 3.0 and Re = 750
(dotted line), 850 (dashed line), and 1000 (solid line).
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Figure 12. Shear Nusselt number S (solid lines), Epol (dotted lines), and Etor (dash-dotted lines)
are shown for steady wavy rolls (thin lines) and ATW solutions (thick lines) as function of Re in
the case αx = 0.9, αy = 3.0. Also shown is the frequency of the ATW solution (dashed line, right
ordinate).

number plotted in figure 12 even though the poloidal component of the energy, Epol ,
is higher. The toroidal component of the kinetic energy of the ATW is less than that
of the wavy rolls and the distortion of the plane Couette flow profile is weaker such
that the kinetic energy of the mean flow is higher. The frequency ω decreases rapidly
towards an apparent saddle node which could be reached with the numerical scheme
and ω may vanish at the yet unknown point of bifurcation from the steady wavy
roll solution. There is thus not necessarily a contradiction between the vanishing



152 R. M. Clever and F. H. Busse

imaginary part of the growth rate of the AS-disturbances and the travelling wave
solution to which they evolve.

5. Discussion
It is remarkable that the tertiary and quaternary solutions discussed in this paper

exist at Reynolds numbers less than half the Reynolds number of 1440 at which
sustained turbulence can be observed in experiments (Tillmark & Alfredsson 1992).
The existence of nearly two-dimensional longitudinal vortices as tertiary solutions has
stimulated experimenters to search for realizations of such solutions. By using a thin
wire stretched in the spanwise direction of a plane Couette system Dauchot & Daviaud
(1995) and more recently Bottin, Dauchot & Daviaud (1996) have demonstrated the
excitation of longitudinal vortices. Although the minimum Reynolds number in the
experiment depends somewhat on the thickness of the wire that is used for the
generation of the longitudinal vortices, the lowest Reynolds numbers are typically of
the order 600 as in the case of the theoretical solutions presented in this paper. A
detailed comparison with the experimental measurements is difficult, however, because
the periodicity of the vortices in the spanwise direction is usually not well established
and there are no observations available of periods of oscillations.

The stability analysis that has been performed in §4 is far from general, of course,
since the x, y-periodicity of the steady solution has been imposed onto the distur-
bances. Long-wavelength modulations of the vortex pattern are likely to occur which
may lead to the turbulent spots that have typically been observed in large-scale numer-
ical simulations (Lundbladh & Johansson 1991) as well as in laboratory experiments
(see, for example, Tillmark & Alfredsson 1992). Nevertheless the observations as well
as more recent simulations with smaller aspect ratio (Bech et al., 1995; Hamilton,
Kim & Waleffe 1995) show nearly periodic longitudinal roll vortices similar to those
visualized in various figures of this paper (and a few additional ones shown in an
earlier note, Busse & Clever 1996).

Most closely related to the analysis of the present paper are the numerical simula-
tions of turbulent Couette flow by Hamilton et al. (1965). They use a relatively small
periodicity interval in the plane parallel to the boundaries corresponding to αx ≈ 2.3
and αy = 3.4 of the present analysis. But since their Reynolds number, set at 1600
according to the present scaling, is much beyond the range explored in preceding
sections, their simulations show a turbulent flow. The finding of Hamilton et al. that
the flow decays to the state of pure Couette flow when the periodicity interval is
decreased agrees roughly with the present result that no solution can be obtained
when αy exceeds the critical value for a given value of αx and vice versa. For example
the maximum value of αy ≈ 4.3 for αx = 1.2 at Re = 1000 is found according to
figure 4(a) and this maximum value will decrease to 2.5 as αx is increased to about
1.7 according to figure 5.

The fact that a special technique is needed at low Reynolds numbers for the
experimental excitation of nearly longitudinal vortices indicates that these types of
solutions have a small basin of attraction. This property is also evident from the
numerical simulations. Time integrations have usually led to the trivial solution
ϕ ≡ ψ ≡ 0 corresponding to plane Couette flow. Just as the steady solutions could
only be obtained by changing the parameters in small steps, the time-dependent
solutions have required the superposition of sufficiently small disturbances onto the
steady solutions as an initial condition for the forward integration in time. Perhaps
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future experimental developments will lead to a more direct realization of the tertiary
and quaternary solutions discussed in this paper.

The research reported in this paper has been supported by the US National Science
Foundation under Grant ATM-9417864 and by a NATO travel grant.
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