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Abstract. A general procedure to construct a generating partition in 2D symplectic maps is
introduced. The implementation of the method, specifically discussed with reference to the
standard map, can be easily extended to any model where chaos originates from a horseshoe-
type mechanism. Symmetries arising from the symplectic structure of the dynamics are exploited
to eliminate the remaining ambiguities of the encoding procedure, so that the resulting symbolic
dynamics possesses the same symmetry as that of the original model. Moreover, the dividing
line of the partition turns out to pass through the stability islands, in such a way as to yield a
proper representation of the quasiperiodic dynamics as well as of the chaotic component. As a
final confirmation of the correctness of our approach, we construct the associated pruning front
and show that it is monotonous.

PACS numbers: 0545

1. Introduction

Symbolic dynamics is a powerful tool for investigating statistical properties of dynamical
systems. In fact, the representation of any trajectory as an infinite sequence of symbols
allows a fruitful application of thermodynamic formalism [1] and an effective computation
of statistical averages. Among the various approaches introduced to obtain a meaningful
symbolic representation [2], the direct construction of a generating partition from homoclinic
tangencies [3] seems to be the most general and powerful one. One of its advantages is the
possibility to construct the corresponding pruning front [4] and to study the grammar of the
underlying language [5] from it, as well as the possibility to obtain a faster convergence of
thermodynamic variables [6].

The method has been successfully applied to 2D maps [3] and 3D flows [7] with a
relatively strong contraction of volumes in phase space. More recently, an extension to
symplectic maps has been proposed in [8] which is able to account for the evolution of
the main ergodic component, while leaving open the problem of describing the evolution
in the stability islands. In this paper, we solve this last problem by properly taking into
account the symmetry properties of the evolution. Moreover, our approach allows removing
the ambiguities detected in [8], obtaining a symbolic sequence which is invariant under
time-reversal as is the evolution of the map.

We have chosen to work with the most general prototype of Hamiltonian chaos, namely
the standard map

xn+1 = yn

yn+1 = − xn + 2yn − α cos(yn) mod 2π, (1)
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which, in a shorthand notation, will be denoted asF(·). In place of the usual representation
of the dynamics in terms of the variablesθ andρ, we refer tox = θ andy = ρ+θ , since the
map, in this representation, transforms horizontal into vertical lines (as, for instance, in the
Hénon map), thus providing a more natural description of the horseshoe-type transformation.

There are two relevant symmetries characterizing the action of map (1). Firstly, the map
is invariant under the composition of time reversal with the involutionT (x, y) = (y, x)

exchangingx andy variables, i.e.,T ◦ F ◦ T = F−1. Secondly, the map is invariant under
the transformationS(x, y) = (π − x, π − y) mod 2π , namely,F = S ◦ F ◦ S.

We believe that the arguments developed in this paper are general enough to be
applicable to any 2D symplectic map (and to Hamiltonians with 2 degrees of freedom),
provided that the corresponding symmetries are suitably taken into account. In fact, the
problems that we face while discussing the geometric structure of the sequence of primary
homoclinic tangencies are by no means peculiar to the standard map.

In section 2, we briefly describe the action of the map, introducing a first approximation
of the partition. In the following section, we discuss how homoclinic tangencies (HTs)
can be computed and used to construct a symbolic representation. Section 4 is devoted to
the illustration of the main difficulty arising in the identification of the so-called primary
tangencies. In section 5, we make use of the symmetry properties to get rid of the
ambiguities discussed in the previous section, arriving at a prototype of generating partition
which takes into account the properties of the main chaotic component. In section 6, we
discuss stability islands, showing that also such trajectories can be properly included into
the previous framework. In section 7, we use the generating partition to construct the
corresponding symbol-plane and the pruning front. In section 8, we change the nonlinearity
to show that we are still able to cope with different structures of the stability islands,
reinforcing the conjectured generality of the method herein proposed.

2. General remarks

A partition is said to be generating if for every bi-infinite sequence of symbols there may
at most exist one physical trajectory. A general guideline to construct a generating partition
consists in looking for the regions where the map folds the phase-space, so that the support
of the measure remains confined notwithstanding the expansion along the unstable direction.
This is extremely clear in the logistic map, where the position of the maximum, i.e. the
folding point, is the only ingredient required to construct the generating partition which turns
out to consist of the two subintervals lying to the left and to the right of the maximum,
respectively [9].

In two dimensions, the construction of a partition is not equally simple but, as long as
the chaotic evolution originates from a horseshoe-type mechanism, the same ideas proved to
be very powerful in a series of dissipative models [3, 7]. Accordingly, it is natural to start
the analysis of the standard map from this point of view. We have chosen to work with a
high value of the nonlinearity, namelyα = 6, since stability islands, which certainly require
a different treatment, cover a tiny portion of the phase space, as can be seen from figure 1,
where the largest islands (one period-2 and two period-5) have been reported. In a first
approximation, one can hope to construct a partition just disregarding such stability islands.

The folding regions of the map are approximately situated at the vertical lines defined by
x = sin−1(−2/α), as can be seen by looking at the image of a generic vertical line. Let
us arbitrarily choose the locus of primary tangencies to be the two lines corresponding to
the two roots of the above equation, namelyL1 : (x = 3.481. . .) andL2 : (x = 5.943. . .)

(see figure 2). At variance with simple horseshoes (like the Hénon map), the folding lines
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Figure 1. The largest periodic stability islands of the standard map forα = 6: the continuous line
represents the border of a single period-2 island; crosses and triangles indicate two, reciprocally
symmetric, period-5 islands, which are too small to be resolved on the actual scale.
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Figure 2. The approximate generating partition obtained starting from the vertical linesL1

andL2 (solid lines), the pre-image ofL2, F−1(L2) (dashed-dotted lines), and its imageF(L2)

(dashed line). Dots denote homoclinic tangencies classified as primary. The small rectangular
boxes delimit the regions reported in figure 3.

are not sufficient to split the phase space into disjoint sets because of the topology (the
phase space is a torus with no natural boundaries along bothx andy directions). One must,
therefore, break the continuity by introducing two sets of transversal lines, a distance 2π
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apart horizontally and vertically, respectively. We find it convenient to use the folding lines
themselves. For instance, this can be done by using the horizontal pre-imageF−1(L2) of
L2. As a result, the plane is partitioned into infinitely many equivalent squaresS. Any
other pair of transversal lines is, in principle, equivalent; the idea of usingL1 and L2 is
inspired by the attempt to make the partition as simple as possible. As a result, the square
is split into two subsets. The resulting partition is not sufficiently fine-grained to account
for the multiplicity of trajectories generated by map (1). In fact, the (pre-)images of the
two subsets intersect different copies ofS. One is therefore led to further divide each of the
two subsets into as many elements as the number of copies ofS which are visited. This is
automatically obtained by usingF(L2) as a further dividing line (dashed line in figure 2).
The resulting partition turns out to be approximately generating, in the sense that a small
fraction of periodic orbits is characterized by the same symbolic sequence [8].

Thus we can conclude this preliminary discussion by stating that the two folding lines
account for the basic mechanisms involved in the underlying dynamics and we can consider
the partition of figure 2 as a tentative solution to be improved on the basis of more rigorous
arguments.

3. Homoclinic tangencies

The most general method to construct seemingly exact generating partitions in dissipative
dynamical systems is based on the refinement of the concept of folding points, i.e. on the
identification of the ‘primary’ homoclinic tangencies and on the subsequent connection of
all such points with one or more continuous curves representing the border of the elements
of the partition. Such a strategy has been successfully applied to moderately and strongly
dissipative systems, including both maps and flows [10, 7].

The main justification for this method comes from the following argument. Because of
the folding process, if a fibre of the unstable manifold [11] (wu) intersects a fibre of the
stable manifold (ws), it does so twice (see figure 3). When this is the case, let us call two
such trajectoriescompanion, as e.g., the orbits stemming fromP1 andP2 in figure 3. Two
companion orbits approach each other both in the past and in the future, as they belong to the
same fibres of unstable and stable manifold. For a partition to be generating, it is necessary
that a border separatesFn(P1) from Fn(P2) for somen (either negative or positive), since
the same reasoning applies to any pair of intersections, no matter how close they are. Thus,
the only way to distinguish the corresponding symbolic sequences is to set the border of
the partition exactly on the tangency pointPt , or on some backward (forward) image of it.
As long as one limits the analysis to just one fibre, all choices are equivalent. However, the
partition of phase space into distinct elements requires taking all fibres simultaneously into
account. As a consequence, one is faced with the problem of implementing a consistent
procedure.

Any attempt of putting the above considerations on a rigorous ground faces two
problems: (i) there is no argument to justify,a priori, the existence of a subset of HTs
(the primary ones) aligning along more or less smooth curves such that the phase space
is split in a meaningful way (i.e., so that the elements are compact sets); (ii) there is no
clear-cut definition of ‘primary’ tangencies: they are usually identifieda posteriori, after
implementing a careful trial and error approach.

Before discussing in detail how the above problems arise in the context of the standard
map, let us briefly define the numerical methods adopted for identifying HTs. First of all,
one should notice that the lineL2 can be mapped ontoL1 by exploiting the symmetry of
map (1). We need, therefore, to study only one folding line, namelyL1. Moreover, since
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Figure 3. Sketch of the intersections between stable (ws ) and unstable (wu) manifolds. The
trajectories originating fromP1, P2 approach each other both in the past and in the future. The
point Pt indicate a homoclinic tangency.

any piece of unstable manifold eventually fills the main ergodic component densely, we can
restrict ourselves to the unstable manifoldwu of the hyperbolic fixed pointO = (π/2, π/2).

The manifold can be formally parametrized aswu(s) = (xu(s), yu(s)) and the functions
xu(s), yu(s) expanded in a power series ofs. The coefficients of the series can then be
determined by demanding that the curve is left invariant by the map, i.e.

F(xu(s), yu(s)) = (xu(λs), yu(λs)) (2)

where λ is the unstable eigenvalue of the stability matrix for the fixed pointO =
(xu(0), yu(0)). HTs are identified by iterating a piece of unstable manifold and looking
for those points where the local curvature appears to diverge[7]. The curvatureC(s) in the
point wu(s) can be determined from the standard formula

C(s) ≡ ||u × v||
||u||3 , (3)

whereu andv are the first two coefficients of the power expansion ofwu arounds [12],

wu(s + δs) = wu(s) + uδs + v
δs2

2
+ O(δs3). (4)

The above procedure leads to a tentative set of primary HTs which are defined as such
if they lie close toL1. One can see that actually most of the tangencies are really close
to the first approximation of the dividing line, confirming the suitability of the former
approach and also suggesting we are on the right track towards the identification of the
truly ‘primary’ tangencies. However, problems are expected to arise whenever a supposedly
primary tangency returns to the folding region, because then it is not clear which of the two
points should be used to identify the border of the partition. Moreover, practically speaking,
if one tries to connect all the tangencies with a single curve, one cannot avoid discontinuities
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Figure 4. Enlarged picture of the avoided crossings contained in the small boxes of figure 2.
The region in (b) is the second forward image of (a). Solid lines denote those HTs which are
unambiguously classified as primary. Out of the other tangencies (dotted lines), the points along
P0R0 may or may not be classified as primary; when not, their second image, lying onR2P2,
must be taken as primary.Q0 and its second imageQ2 are identified as the points where two
sequences of HTs meet and collapse. The stable and unstable manifolds (dashed lines) departing
from Q0 (Q2) intersect the strand of HTs inP0 (P2) and R0 (R2), respectively. A branch of
the unstable manifold containing three tangencies (triangles) is also shown in (b). The second
pre-image of the intermediate tangency is also reported in (a) (full triangle).

and relatively big jumps (again, see figure 2). In dissipative systems, this is not considered
to be a serious problem. Since the attractor does not fill the whole phase space, one has a
large degree of freedom in connecting HTs that are far apart, as long as such lines do not
intersect other pieces of the attractor. This is no longer true in a conservative map, where
the entire phase space is typically filled by a single ergodic component (with the exception
of stability islands which will be considered separately).
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4. Discontinuities

In order to better clarify what happens around each discontinuity, let us look closer at
one example, namely within the two boxes of figure 2, enlarged in figure 4 (the region in
figure 4(b) is the second iterate of that depicted in figure 4(a)). We realize that the jump is
the consequence of an ‘avoided crossing’ between two lines of HTs. The discontinuity is in
fact caused by the intersection of the border of our generating partition with some forward or
backward image of itself. Such a phenomenon is clearly seen in figure 4, where the second
forward and second backward images (long dashed lines) of the ‘primary’ tangencies (solid
lines) have been added. One is clearly faced with the question of where to stop considering
a line of HTs as primary.

In figure 4(b) it is seen that three distinct tangencies can be identified on those fibres of
the unstable manifold which are not too close to the jump (see, e.g., the triangles onw′

u).
The first and the last of such points are unambiguously classified as primary points, whereas
the middle one corresponds to the 2nd iterate of a tangency classified as primary in the upper
part (see the triangle in figure 4(a)). Upon shifting the fibre of referencew′

u towards the
region with the avoided crossing, the two lower HTs meet to disappear afterwards, thus
preventing a continuation of the dividing line. This happens in the special pointQ2, where
stable and unstable manifolds are not only tangent, but have also the same curvature.

The construction of a meaningful partition now requires bridging the gap between the
lower part of the dividing line, which just stops inQ2, with the above line, which lies a
finite distance apart. Two reasonable candidates are represented by the two branches of
invariant manifold which, departing fromQ2, cross the upper line of HTs (see dashed lines)
in R2 andQ2, respectively. Two such fibres, together with the piece of HTs connectingP2

with R2 (which will be denoted byP2R2) delimit a closed regionU . Let us now focus our
attention on a trajectory visitingU and a nearby trajectory on the opposite side ofP2R2.
It is clear from figure 4, that an orbit visitingU can be discriminated from its companion
trajectory either when the orbit visitsF−2(U) (the region encircled by the curves passing
throughQ0, P0 andR0 in figure 4(a)), or when the orbit lies inU itself. As an example,
if we choose to use the fibre of the unstable manifold,wu, to connectQ2 to R2, the two
trajectories will not be discriminated in figure 4(b). However they will be on opposite sides
of the partition in figure 4(a). In [8], it was conjectured that any curveC lying in U and
connectingQ2 with a pointS on P2R2 is appropriate, provided thatF−2(C) also is used in
F−2(U) in a self-consistent manner. The border itself ofU , i.e. the manifoldswu andws ,
can be used to construct the partition.

In any case, we see that an intrinsic and unavoidable ambiguity is associated with the
existence of avoided crossings of the dividing line. This is the same phenomenon observed
for some parameter values in dissipative maps, where it was found that some periodic orbits
can be encoded in different ways [13, 14]. In a conservative system, like the standard map
under investigation, the same problem occurs for any parameter value, since moving with
continuity across the fibres ofwu is like changing a parameter of the dynamics.

The above described scenario is nothing but a single example of a phenomenon which
occurs any time an image of the dividing line returns to the folding region, i.e. infinitely
often. However, from the series of supposedly HTs reported in figure 2 one can see that the
size of the jumps appear to diminish with the respective number of iterates needed to return
to the folding region. Accordingly, it is tempting to conjecture that the whole procedure
can in principle be implemented until an infinitesimal resolution is reached without yielding
too wild a separation line.
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5. Symmetry lines

The partition constructed from homoclinic tangencies plus pieces of either stable or unstable
manifolds suffer from three problems: (i) the pieces of manifold do not reflect the
symmetries of the dynamical system; (ii) stable islands are not taken into account and orbits
inside a stable island are therefore not distinguished by the partition; (iii) in a section near
the stable period-2 island the partition is constructed by using the same tangencies twice,
i.e. both primary tangencies and one of their forward images which, at least superficially,
seems redundant.

When we searched for HTs we looked solely at the unstable manifold of one of the
unstable fixed points. We might equally well have done the same for the stable manifold
and would then have gotten another set of tangencies. Due to the time reversal symmetry
of the dynamics this set would have been just the original set of HTs transformed byT , i.e.
a reflection in the linex = y. Since the tangencies found by looking at the stable manifold
are by their very nature also points on the unstable manifold, the two sets must be related to
each other by the dynamics. In fact, almost all HTs obtained by monitoring the curvature of
the stable manifold are pre-images of the tangencies determined from the unstable manifold.
This is a straightforward consequence of the invariance of the map under time reversal.

The identification of primary tangencies is more vague in regions where the folding
process is not strong, for example in the area near the stable period-2 island. Here it is
much more likely than elsewhere to find tangencies where both the stable and the unstable
manifolds have a noticeable curvature and where this picture persists for several iterations
of the map, introducing some ambiguity in the notion of primary tangency.

Figure 5. (a) The generating partitions as constructed from primary HTs and suitable pieces of
stable (full line) and unstable (dashed line) manifolds. Near the avoided crossings, specifically
the large gap near(π, π), the set of HTs used here is slightly different from that of figure 2 in
order for the HTs to match up with the pieces of stable and unstable manifold originating from
the main line of HTs [8]. (b) only the partition constructed with pieces of unstable manifold.
(c) The partition in (b) transformed first by the involutionT (interchange ofx andy) and then
by the mapF . Note that (c) is exactly equal to the full line in (a).

In figure 5(a) we show the two partitions obtained from primary HTs of the unstable
manifold plus pieces of the stable and unstable manifolds respectively. In figure 5(b) only
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Figure 6. The region near the stable period-2 island. The curveC1 is given byy = π − x. C2

is found asS ◦ F(C1). The two curves together define a winding number partition of the stable
island, at the same time as they eliminate the need for redundant use of homoclinic tangencies
in the partition.C3 bridges the gap of figure 3.

the partition using pieces of unstable manifold is shown. This should be compared to figure
5(c) which is the partition of figure 5(b) first transformed under the involutionT , and then
mapped once forward by the mapF . This curve is exactly identical to the partition obtained
by combining tangencies with pieces of stable manifold.

The choice of using pieces of stable or unstable manifolds or other curves that may
bridge the gap is rather arbitrary and gives us some freedom to obtain the following: that
the whole partition line, not just the unambiguously primary tangencies, will be left invariant
under the transformationF ◦ T .

Recall that a gap in the curve of HTs is related to a crossing of the partition with some
image,Fn, of itself. The gap is therefore related to a similar gap somewhere on the partition
and we already saw that the curves that bridge the two gaps must also be related asFn-
(pre-)images of each other. The two gaps are furthermore related by theF ◦ T symmetry
and if we want the corresponding curves to have the same symmetry, we end up with the
relation

Fn(x, y) = F ◦ T (x, y) . (5)

Therefore, the curves are parts of the set of fixed points for the mapping

φn(x, y) = T ◦ Fn−1(x, y) , (6)



1632 F Christiansen and A Politi

which turns out to be an involution since

φn ◦ φn = T ◦ Fn−1 ◦ T ◦ Fn−1 = T ◦ T ◦ F 1−n ◦ Fn−1 = id det
dφn(x, y)

d(x, y)
= −1. (7)

We will call this set of fixed points the symmetry lines ofφn[15]. Note that where two such
symmetry lines cross we find a periodic orbit ofF sinceφn ◦ φm(x, y) = Fm−n(x, y). Let
us take a look at the simplest of these curves, namely forn = 1 andn = 2. The curve for
n = 1 relates to the large gap near(π, π). For n = 1 the symmetry line of equation (7) is
trivially found to be the time reversal symmetry line ofF , x = y, which will give us the
upper line in the central gap. The lower curve is then found as the first forward image of
x = y or more explicitlyy = x−α cos(x) mod 2π . Forφ2 the symmetry line is determined
by −x + 2y − α cos(y) = x mod 2π or x = y − α

2 cos(y) modπ . This curve will bridge
the gap shown in figure 3(a). The second forward image of this will then be the curve that
bridges the gap in figure 3(b). The symmetry line forφ2 is also related to two smaller gaps
and can be related to the stable period-2 island, but for this some ambiguity still exists.

There is another possibility for the creation of a gap in the line of HTs, namely that
the partition line crosses a symmetric image of itself, i.e. the two corresponding gaps are
related by the transformationS ◦ Fn, whereS gives the spatial symmetry of the map. They
are still related by the symmetryF ◦ T so the corresponding symmetry curves are fixed
point of

φ(S)
n (x, y) = S ◦ T ◦ Fn−1(x, y). (8)

For n = 1 the symmetry line is given byy = (π − x) mod 2π and forn = 2 we find the
curve asy = π/2 modπ . The first of these curves is related to the period-2 island, whereas
the second bridges some smaller gaps in the partition.

Fixed curves for other values ofn can in principle be found directly from the
corresponding involutionsφn or φ(S)

n but it is in fact much easier than that in [15]. All the
curves forn odd are found as (pre-)images of the curve forn = 1 and all the curves for
n even are found as (pre-)images ofn = 2. In this way it is easy to bridge all significant
gaps in the partition line and we notice that the size of the gaps decrease fast with risingn.

6. Stable islands

As we noted in the previous section, there is still some ambiguity associated with, e.g., the
stable period-2 island: many of the homoclinic tangencies were used twice in the original
partition. Furthermore, we are interested in having the partition pass through the island in
order to distinguish orbits inside the island, something which clearly cannot be done with
a line of points on the unstable manifold of an orbit outside the island, as this manifold
will never penetrate the island. We are going to deal with this by including two of the
symmetry lines determined in the previous section. But also here some free choice exists
because many of the curves pass through the period-2 orbit and the island associated with
it. In fact, since the period-2 orbit is invariant under not only the transformationF ◦ T ,
as all period-2 orbits must be, but also under the symmetry operationF ◦ S, all symmetry
lines ofφn for n even and all symmetry lines ofφ(S)

n for n odd will pass through the island.
For the moment we will just use the simplest choice, namely that ofφ

(S)

1 . As given in the
previous section, this involution has the fixed curvey = π − x. In figure 6, we see how
this curve,C1, will connect the HTs with the period-2 orbit. The period-2 orbit is situated
where the partition line crosses the pre-image of the symmetric partition. To reconnect the
partition line to the HTs we must therefore use the curve obtained fromF ◦ S(C1) or, more
precisely, the curvey = (3x − α cos(x) − π) mod 2π . This curve isC2 in figure 6.
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Including C1 and C2 in the partition has had the effect of excluding exactly a part of
the original partition which contains one copy of the HTs that was used twice and we have
thus rid the partition of this redundancy. At the same time we have made a partition of the
stable period-2 island as shown in figure 6. This partition works very much like a winding
number description inside the island: we have chosen a partition line from the central point
passing through the border of the island. In addition, we have another line which is the
forward image of the first line (albeit related through a symmetry). Any point in the island
inside the small section to the right of the partition is therefore mapped out of this section
by F ◦ S. Any orbit outside the small section must however map into it to go around the
central point. To distinguish orbits inside the island, one may therefore start by counting the
average number of times they hit the small section, i.e. we can construct a winding number.
This winding number varies monotonically along the partition and we are therefore able to
distinguish quasiperiodic orbits inside the island, but it is possible that we may not be able
to take into account motion in sub-islands inside the main island. We will return to this
later.

In the top of figure 6 we see the gap of figure 3. This is bridged by the curve,C3. This
is the second forward image of the symmetry line ofφ2 or, equivalently, the symmetry line
of φ−2. It is interesting to notice that the symmetry lines turn out to touch the sequence of
primary HTs exactly in the higher-order points where two primary tangencies collide (like
Q2 in figure 3(b)). This result represents a strong indication of the internal consistency
of our construction of a generating partition. In fact, it is nota priori obvious that two
seemingly unrelated ingredients such as homoclinic points and symmetries match perfectly
together.

Very near this gap there is a stable period-5 island. We would like to have the partition
pass through this island in the same way as for the period-2 island. However,C3 stops
short just before reaching the island, but a further refinement of the partition will solve this
problem. We will return to this later.

We are now ready to produce the partition that we have sought. This is shown in
figure 7. We have used a similar notation to figure 2. We use the the dividing lineD2

plus its pre-image to make up the border of the primary region of phase space. This is
partitioned byD1. We must also consider that the points in the primary region originate
from different regions, i.e. we must consider the effect of the ‘mod 2π ’ in the map (1).
The forward image ofD2 separates points that are mapped in one iteration into the primary
region. This gives in total seven elements in the primary region and the dynamics can be
described topologically by a seven letter alphabet.

7. A closer look at the stability islands

In order for the partition to be truly generating, the partition line must pass not only through
every primary stable island, but also through all subislands inside these. In figure 8 we show
that such a partition is possible. In figure 8(a) we show the previous choice of partition
(solid lines) with an alternative choice (dashed lines). The solid curve is the symmetry line
of φ

(S)

1 (C1) of figure 6 and the symmetric part of its forward imageC2 = F ◦ S(C1) as
mentioned in the previous section. The dashed line is another possible choice constructed
from the symmetry line ofφ−2 plus its symmetric forward image. This other choice means
that the symmetry lines intersect the set of HTs in different places. However, the extra HTs
used in the lower part of the partition in figure 8(a) is exactly the symmetric pre-image of
the HTs not needed in the upper part of the partition. We are therefore just shifting our
definition of which tangencies are primary in a region where this notion is, as already noted,
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Figure 7. The generating partition. In analogy to figure 2, we have used the dividing line
D2 (solid) and its pre-image (dotted) to define the primary region of phase space. This is then
partitioned byD1 (solid) and by the image ofD2 (dashed).

ambiguous. Figure 8(b) is a magnification of the stable island that shows why the second
choice of partition might be more useful. Inside the island we have plotted a number of
periodic orbits, both stable (diamonds) and unstable (plusses). As can be seen, the symmetry
line of φ

(S)

1 goes through both stable and unstable orbits. The symmetry line ofφ−2, on
the other hand, passes through only the stable orbits. In fact, it passes through a point of
every stable periodic orbit that we have found inside the period-2 island. This indicates
that we can use the same line that defines a winding number for the major island to also
define a winding number on the subislands and that this definition can therefore distinguish
orbits even in the subislands. One can then hope that this construct will continue through
the hierarchy of sub-subislands. In order for this partition to also work successfully in
the chaotic regions inside the island we would need to refine it by finding homoclinic
tangencies for every chaotic layer. This is numerically a difficult task due to the very slow
stretching and folding that takes place in the chaotic layers but could in principle be done.
We will, however, note that by symmetry considerations the primary tangencies must lie
approximately midway between points in the main unstable periodic orbit associated with
the chaotic layer, i.e. where the symmetry line passes through the stable subislands.

8. The pruning front

A useful representation of the dynamics is obtained by constructing a piecewise-linear map
with the same topological properties of the initial transformation. This can be done by first
identifying the qualitative structure of the standard map and then by using the symbolic
encoding to construct two suitable variablesδ and γ the evolution of which keeps the
relevant ‘ordering’ properties of the dynamics.

As a first step, we schematically represent the action of map (1) on the squareS as
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Figure 8. The stable period-2 island revisited. In (a) we show two possible choices for a
partition: our original choice,C1-C2 of figure 5 (solid lines) and curves found from (7) with
n = (dashed line). (b) is a magnification of the stable island including both stable (diamonds)
and unstable (plusses) periodic orbits. It is seen that the dashed partition has the advantage that it
crosses a stable island in every chain of subislands. This holds true for all of the approximately
50 subchains we have been able to locate.

described in figure 9. The reader can recognize in the 7 horizontal stripesA–G the pre-
images of the 7 different regions present in figure 7 (apart from an irrelevant exchange of
x and y directions). They are mapped into 5 different copies of the square in the order
reported in the central part of the figure, with their local orientation given by the orientation
of the corresponding letters. Finally, the equivalence among the copies of the squares allows
interpretation of the action of the mapping as in the rightmost part of the figure.

According to the above picture, all symbols imply an expansion by a factor 7 (i.e. to
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Figure 9. Schematic representation of the mapF as a generalized baker’s transformation. The
unit squared is divided into seven sections corresponding to the elements of the generating
partition. The square is stretched and folded as shown in the intermediate stage and finally put
back into the unit square by the modulus operation.

a shift of the corresponding variable, if represented in a 7-nary alphabet), but whileA–D

(i.e., symbolss = 0, 1, 2, 3) preserve the vertical ordering,E–G (s = 4, 5, 6) reverse it.
Before definingγn, we need the auxiliary variable

an =
∑
i6n

bi mod 2 (9)

wherebi = 0 if si 6 3, and equal to 1 otherwise. In words,bn says whether the ordering
is inverted or not at timen, while an conveys the absolute information about the local
ordering. In this sense there is no difference with the standard horseshoe [4], where there
are two symbols only, one of the two inverting the order. Finally, we obtainγn as,

γn =
∑
j>n

cj 7n−j (10)

where the integercj is equal tosj , if aj is zero (meaning that the direction has been changed
an even number of times), whilesj = 6 − sj , otherwise.

A very similar definition applies toδn, once the time direction has been changed and
the sums run from -1 towards−∞. Accordingly, any trajectory of the map can be first
encoded in a sequence of symbolssn and then transformed into a sequence of variables



Symbolic encoding in symplectic maps 1637

0.0 0.5 1.0
0.0

0.5

1.0

δ

γ

Figure 10. The symbolic plane with pruning fronts. The dots correspond to points in a long
trajectory. In order to also include points from the stable islands which the chaotic trajectory
cannot reach we have also used periodic orbit from inside the stable islands. The full lines are the
pruning fronts: the symbolic representation of the generating partition. The generating partition
is constructed from two dividing lines. For each of these one has the choice of assigning the
symbol of the elements either to the left or to the right of the dividing lines, leading to in all
four pruning fronts.

(γn, δn) bounded between 0 and 1, which provide a symbolic representation of the original
dynamics. The result is reported in figure 10. One can recognize the typical fractal structure
which arises because of the presence of forbidden sequences.

After reproducing the main chaotic component in the symbol plane, it is very important
to obtain the coordinatesγ , δ of the dividing lines, as they represent the so called pruning
front, a continuous line which allows determining the forbidden sequences [4] and, in turn,
to study, the complexity of the dynamical system [18]. The solid lines in figure 10 represent
our front, which indeed is seen to separate the primary forbidden regions. In fact, we should
remind the reader that once a region in the symbol plane is recognized as forbidden, its
forward and backward images are forbidden as well (this is the reason for observing a fractal
structure). Hence, it is obviously sufficient to locate one such region for each forbidden
sequence in order to be able to provide a complete characterization of the dynamical system.

To check that the pruning front does indeed determine the forbidden region we have
found all periodic orbits up to length 9 (approximately 30 000 orbits) and their corresponding
symbolic sequences. They were all inside the two regions bounded by the four pruning fronts
in figure 8. The same check was made with a long trajectory (100 000 points).

An important property of the pruning front which is invoked as a guarantee for
determining the forbidden sequences is its monotonicity [4]. We have checked that this
is indeed true also in our case (see figure 11, for an enlargement of one such piece). This
further evidence of consistency with previous results about the dynamics in the symbol
plane can be considered as both a confirmation of the correctness of our approach and of
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Figure 11. A magnification of one of the pruning fronts of figure 8. One can see both the
monotonicity of the pruning front and the symmetry which is related to the symmetry of the
dividing line under the transformationF ◦ T .

the monotonicity of the pruning front which has been rigorously proved in very few cases
(see [16] for the proof in the Lozi map).

Among the novel features of the pruning front reported in figure 11, with respect to
examples previously discussed in the literature, notice that it includes pieces of symmetry
lines and accounts for the quasiperiodic behaviour in the stability islands. More precisely,
each island corresponds to a specific region in the symbol plane where the lack of chaos,
presumably induces a nearly vanishing fractal dimension.

9. Concluding remarks

In view of a statement about the general validity of our approach, we still need to address
the question of what happens upon changing the control parameter. Here, we will take a
brief look at the effect of a period doubling bifurcation of the stable period-2 island. When
the parameterα is increased to 2π , the stable period-2 orbit turns unstable and a bifurcation
spawns a new stable period-4 orbit. At the moment of creation, the partition constructed
from pieces of the symmetry lines ofφ−2 touches the period 4 islands, but for higher values
of α they do not enter the islands. A kind of bifurcation of the partition therefore also takes
place. The simplest connection we have been able to make in the gap of HTs going through
one of the islands of the period 4 orbit is shown in figure 12. It consist of two pieces of
the symmetry line of ofφ−3 and two corresponding pieces of the symmetry line ofφ5 that
are 4th forward iterates of the former.

A similar thing happens in the major central gap where, also atα = 2π , a tangent
bifurcation gives rise to a new pair of fixed points; one stable, the other unstable. The two
symmetry lines bridging the gap meet at the point of the tangent bifurcation, whereas the
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Figure 12. A section of the partition forα = 6.4. At α = 2π the stable period-2 island goes
through a period doubling bifurcation creating a stable period-4 orbit of which two of the islands
are shown here. The pieces of fixed curves that connect different portions of the HTs likewise
undergo something similar to period doubling. Instead of using a piece of the curve found from
(7) with n = 4 we use 2 pieces of the curve withn = 4 plus their 8th forward image.

small set of HTs inbetween disappear. After the bifurcation, the two symmetry lines meet
at the central fixed point of the newly created stable island.

By recalling the success of methods based on the identification of HTs in several
dissipative systems, and noticing that we have not exploited any specific feature of the
standard map [19] it appears plausible to conjecture that, via this method, a generating
partition can be constructed in generic Hamiltonian systems as well. The procedure is not
straightforward in the sense that several trials with errors are typically required, before
converging to the asymptotic result. However, there is convincing evidence that all possible
problems arising during the construction can be eventually solved. Obviously, it would be
much nicer, if all the questions could be solveda priori, with a general algorithm. The
eventual complete success of this strategy crucially depends on the possibility to give a more
formal definition of primary homoclinic tangencies, and on a better understanding of the
dynamics in the vicinity of stable islands. In particular, a problem that even from a heuristic
point is not completely solved, concerns the observation that primary tangencies appear to
end up precisely in correspondence of the symmetry lines. We have no explanation for
this nice phenomenon which is the key ingredient that allows reconciling under the same
approach both the chaotic and ordered component.
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