
208 Group Representation Theory for Physicists 

5.2. Definition of a Lie Group; With Examples 

A Lie group is a special kind of continuous group. The group elements R(a) are labelled by 
r real parameters a1, a2, ... , ar, 

(5-19) 

The parameters aP may vary over a finite or an infinite range. The space of the r parameters is 
called the group-parameter space. A group G is called a Lie group of order r if R(a) obeys the 
following five postulates: 

1. The identity element R(a0 ) exists, that is, 

R(ao)R(a) = R(a)R(ao) = R(a), for any R(a) E G. (5-20) 

The parameters a0 of the identity element are usually taken as zero, that is, R(a0 ) = R(O). 
2. For any a we can find a such that 

R(a)R(a) = R(a)R(a) = R(O) , 

i.e., for every R(a) an inverse exists: 

R(a) = R- 1 (a) . (5-21) 

3. For given parameters a and b, we can find c in the set of parameters such that 

R(c) = R(b)R(a) , (5-22) 

where the parameters c are real functions of the real parameters a and b, 

c=rp(a,b). (5-23) 

Equation (5-23) is called the combination law of group parameters and tells us that the group 
is closed. 

4. Associativity. 

R(a)[R(b)R(c)] = [R(a)R(b)]R(c) , 

rp(rp(c,b),a) = rp(c,rp(b,a)). (5-24) 

5. The parameters c in (5-23) are analytic functions of a and b, and the a in (5-21) are analytic 
functions of a. 

A Lie group is said to be compact if its parameters are bounded. 
Example 1: The real linear transformation group G L(2, R) in two-dimensional space 

(x') =(au a12) (x), R(a) =(au a12) . 
y' a21 a22 y a21 a22 

(5-25) 

The collection of all 2 x 2 nonsingular matrices R( a) forms a real linear transformation group 
under matrix multiplication. Its elements are labelled by four real parameters (a11 , a12, a21, a22)· 
The order of GL(2, R) is therefore four. If we restrict ourselves to the transformations with 
det(R(a)) = 1, we obtain a subgroup of GL(2, R), called the special real linear transformation 
group of dimension two, and denoted by SL(2, R). 

Example 2: The complex linear transformation group G L(2, C) in two-dimensional space. If 
the parameters a in (5-25) are allowed to be complex, R(a) form a complex linear transformation 
group of dimension 2. Let akl = bkl + ickt, where bkt and Ckt are real. Therefore its elements 
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are characterized by eight real parameters, a1 = b11 , ... , a8 c22 , and the order of GL(2, C) is 
therefore eight. 

Example 3: The group SU2. If the matrices in (5-25) are unitary, that is, 

u = ( ~ ~) = ( ~~~ 
utu = 1, 

ai2) , 
a22 

( 5-26a) 

(5-27) 

then the collection of matrices (5-26a) forms the unitary group U2• If we further restrict the 
matrices to those satisfying 

det(U) = 1, (5-28) 

the corresponding group is called the special unitary group SU2. 
From (5-26a) and (5-28) we have 

u-1 = ( d -b) 
-c a 

( 5-26b) 

Moreover from (5-27), (5-26a) and (5-28), we have 

d = a*, c = -b* , ial 2 + lbl2 1 . 

Therefore the most general form of the group elements of SU2 is 

_ (ei~ cos'T/ -ei( sin"I) 
U - '( ·c ei sin 1/ e-i~ cos 1/ · 

(5-29) 

It contains three real parameters ~' 1/ and (. Thus the order of SU2 is three. 
Example 4: The 2-dimensional rotation group R2• A point P(x, y) in the x-y plane goes 

to a point P'(x',y') after a rotation through angle c.p about the z-axis. From Fig. 5.2, we have 

j j' 
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Fig. 5.2. Rotations of points and axes. 

(~'.) (5-30a) 

Rz(c.p) (c?sc.p -sinc.p) . (5-30b) 
sm c.p cos c.p 

The matrices Rz(c.p)(O ~ c.p < 21!') constitute the 2-dimensional rotation group R2. Rz(c.p) in 
(5-30b) is identical to the rep D(c.p) of (2-60b) carried by the basis c.p1(x) = x and c.pz(x) = y. 
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There is only one real parameter, thus r = 1. The matrix Rz('P) of (5-30b) is orthogonal, 
that is, 

(5-31) 

so R2 is also called the special orthogonal group of dimension 2, or S02. 
Comparing (5-27) with (5-31) it is seen that if the unitary transformations are restricted to 

be real, the unitary group degenerates to the orthogonal group. For example, (5-29) goes over 
to (5-30b) when ~ ( 0, and T/ = 'P· 

From Fig. 5.2 it is seen that if the point Pis kept fixed and the coordinates axes are rotated 
through the angle -ip, then the same relation (5-30) holds between the coordinates x', y' of the 
same point P in the new axes i' and j', and its old coordinates x, y. S 

It is easy to see that the hierarchies of the groups so far mentioned are GL(2, C) :J )\£(2, R) :J 

R2, and GL(2, C) :J U2 :J SU2 :J R2. 
Example 5: The 3-dimensional rotation group R3• In analogy with (5-31), the transforma­

tion matrices for rotations through angles a, (3, I about the x, y, z axes, respectively, are 

R,(a) = G 0 0 ) ('oofi 0 sinfi) 
c?sa - sin a , Ry((J) = O 1 0 ' 
sm a cos a - sin (3 0 cos (3 

-sin/ 

D· 
(5-32) 

('"'7 Rz(r) = si~/ COS/ 

0 

Alternatively, we can first rotate the point P through angle I about the z axis, then rotate 
through angle (3 about the y axis, and finally rotate through angle a about the z axis. The set 
of angles (a, (3, 1) are the Euler angles (Rose 1957). As a result of these three rotations, the 
point P goes to the point P'. The relation between the coordinates of P and P' is 

D(a,(3,1) = R(a,(3,1) = Rz(a)Ry((J)Rz(r) 

(

cos a cos (3cos1- sin a sin/, - cos a cos (3 sin I sin a cos/, cos a sin (3) 
= sin a cos (3 cos I+ cos a sin/, - sin a cos (3 sin I+ cos a cos/, sin a sin (3 

- sin (3 cos /, sin (3 sin /, cos (3 

(5-33) 

(5-34) 
Dis an orthogonal matrix v-1 = i5. The Lie group R3 is also called the special orthogonal 

group S03 of dimension three. In Chapter 6 we discuss this rotation group in more detail. 
Let us now consider a new coordinate system xyz which is obtained from rotating successively 

the original coordinate system through angles /, (3 and a about the axes z, y, and z, respectively 
(see the diagram in Bohr 1969, p. 76). From the discussion in Example 4 we know that the 
relation between the old and new coordinates is given by 

(5-35) 

5.3. Lie Algebras 

One great contribution of Sophus Lie to the theory of Lie groups was to consider those 
elements which differ infinitesimally from the identity, and to show that from them one can 
obtain most of the properties of the Lie group. 
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We begin with the Taylor expansion of the group elements R(a), 

R(a) = R(O) + aP Xp + ... , (5-36) 

(aR(:)) ' 
Oa a=O 

(5-37) 

are called infinitesimal generators or simply generators of the Lie group . For a Lie group of 
order r, there are r linearly independent generators. To explore the neighborhood of the identity, 
we only need retain terms linear in a in (5-36), that is, 

R(a) 1 + aP Xp . (5-38) 

The inverse element is 
(5-39) 

Suppose that there are two infinitesimal elements and each has only one non-vanishing pa­
rameter, 

R(a) = 1 + c:Xp , R(b) = 1 + c:X11 • 

According to the definition of the Lie group, 

R(a)R(b) = R(c) = 1 +er Xr , 

R(b)R(a) = R(c') = 1 + c'r Xr , 

[R(a), R(b)] = c: 2c;11 xr , 

c;
11 

(Cr_ c'r)jc:2 . 

On the other hand from (5-40) we have 

Comparing (5-41) with (5-42), we get an important relation: 

(5-40) 

(5-41) 

(5-42) 

(5-43) 

namely, the commutator of two generators is a linear combination of the r generators. The 
coefficients c;

11 
are called the structure constants of the Lie group. They have the following two 

properties. 
1. They are anti-symmetric with respect to the subscripts. 

(5-44) 

2. According to the Jacobi identity 

(5-45a) 

we have 
(5-45b) 

The r generators span a real r-dimensional vector space Cr. Any vector in the space can be 
expressed as aP Xp. The product of two basis vectors in the space is defined by their commutator 
(5-43). The set {Xp} is thus closed under linear combinations and multiplications defined by 
(5-43), that is, {Xp} constitutes an algebra and is called the Lie algebra corresponding to the 
given Lie group. If aP are real, it is called a real algebra, otherwise it is a complex Lie algebra. 
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Results obtained by Lie reduce the searching for irreps of the Lie group with an infinite 
number of elements, to a search for irreps of the Lie algebra with a finite number of elements. 
Having found irreps of the Lie algebra, the irreps of the Lie group are also known. Therefore the 
Lie algebra plays a crucial role in the theory of Lie groups. For a given Lie group, we always first 
find its corresponding Lie algebra. In physical problems, it often occurs that a certain kind of 
Lie algebra emerges naturally; nevertheless, the corresponding Lie group does not have a simple 
physical meaning. In such cases, we only deal with the Lie algebra and do not bother about the 
related Lie group at all. 

In the space Lr = { Xp : p = 1, 2, ... r }, any vector can be expressed as 

(5-46) 

where aP can be thought of as the coordinates of an abstract vector X. According to (5-2), the 
basis vectors and the coordinates transform in the following ways: 

X' = B 11 X a'P = AP a11 A = tr 1 
p p 11' 11 ' • (5-47a,b,c) 

In the new coordinate system with the basis { X~}, the structure constants are C~~, 

[X~ ,x~J = c~~x~. (5-48) 

From ( 5-9b), the relation between the new and old structure constants is 

C, T - B µB VAT c>-
p11 - p 11 >. µv · (5-49) 

Equation (5-48) shows that the Lie algebra of the same Lie group may take different forms due 
to the different choices of the group parameters. This point merits special attention when we 
are dealing with the classification of Lie algebras. 

Example 1: The group GL(2, R). Using (5-25) and (5-37) we get the four generators 

Xi = e11 = 0 ~) , X2 = ei2 = ( ~ ~) , 

X3 = e21 = ( ~ ~) , X4 = e22 = ( ~ n 
It can be shown that those generators obey the following commutation relations: 

Example 2: The group S02• From (5-30b) and (5-37) we obtain 

(0 -1) 
X'+' = 1 0 . 

Example 3: The group S03. From (5-32) and (5-37) we have 

Xi=O H), X,=U ~ n, Xs=(n n. 
They obey the commutation relations 

(5-50) 

(5-51) 

(5-52) 

(5-53a) 

(5-53b) 
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5.4. Finite Transformations 

Equation (5-38) is the expression for infinitesimal transformations. Now let us find the ex­
pression for finite transformations. 

Consider first the single parameter group S02• The counterparts of (5-36) and (5-37) are 

(0 -1) R(8c.p) = l+8c.pX1p, Xcp = l O . (5-54) 

Let the infinitesimal angle 8c.p = c.p / N, where N is an arbitrarily large number. Therefore 

Applying R( 8c.p) N times, we obtain the finite rotation 

R(~) ~ (1+ ~X, t = t, (:) (~x, r 
c.p2 

2 c.p3 
3 (5 55) -+ 1 + c.pXcp + -

2
, x'/! + -

3
, x'/! + . . . -

N~oo . . 

= cosc.p o n + sinc.p (~ -D = G~:; ~~~n:) . 

This is the familiar result (5-30b). Equation (5-55) can be written formally as 

R(c.p) = ecpX'I' . (5-56) 

In the above discussion we ignored the unchanged z-component. If the z-component is 
included, then the generator Xcp in (5-52) goes over to X3 in (5-53a). Letting X3 = -iJz, we 
get the representative matrix of the operator Jz in the Cartesian coordinate system as shown in 
(5-58b). The group elements of S02 thus take the well-known form 

(5-57) 

Analogously, we introduce for S03 

(5-58a) 

From (5-53) we have 

J'.I'. = (~ ~ -~) ' Jy = ( ~ ~ ~) ' Jz = (~ -~ ~o) . 
0 i 0 -i 0 0 0 0 

(5-58b) 

(5-59) 

J'.l'.,y,z are the three components of angular momentum . Equation (5-58b) is their matrix repre­
sentation in the 3-dimensional Cartesian basis. 

The rotation operators corresponding to (5-32) are 

(5-60) 

The operator for a rotation through angle c.p about an axis n with orientation angle ( (}', 'P') can 
be expressed as 

Rn(c.p) = e-iipn · J =exp [-i'{l( Jx sin(}' cos '{!1 + Jy sin(}' sin c.p1 + Jz cos B')] . (5-61) 
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Such a rotation can be written as a product of three rotations 

Rn( 'P) = R( r.p1
, e1

, O)R( r.p, 0, O)R(O, -e1
, -r.p1

) = R(r.p', e', O)R(r.p, -e', -r.p') , (5-62) 

namely, first rotate the n-axis onto the z-axis, then rotate through angle 'P about the z-axis, 
and finally bring the z-axis back to the n-axis. Using (5-62) and (5-34) we can get the matrix 
form of the rotation Rn ( 'P) in the 3-dimensional space x, y and z. 

The transition from the infinitesimal transformation (5-54) to the finite transformation can 
be extended to the more general case 

(5-63a, b) 

It should be mentioned that it is not always possible to write the finite transformation in the 
form ( 5-63b). If the transformation can be put in this form, then the group parameters aP are 
said to be canonical. For example in ( 5-61) ax = 'P sine' cos tp1

, ay = 'P sine' sin rp', az = 'P cos O' 
are canonical parameters. If we choose the Euler angles o:, /3 and 'Y as the group parameters of 
803, from (5-34) and (5-60), we have 

(5-64) 

Since Jy and Jz do not commute, 

Therefore the Euler angle o:, /3 and 'Y are not canonical parameters. 

5.5. Correspondence between Lie Groups and Lie Algebras 

The classifications of Lie groups and Lie algebras are in one-to-one correspondence. This 
correspondence is based on the two relations (5-65) and (5-66) which follow. Let Rp, R11 be two 
infinitesimal elements. Making an expansion of ( 5-63b) and retaining terms up to e,2, we obtain 

2 2 

Rp ~ 1 + cXp + ~! x;, R11 ~ 1 + e,X11 + ~! x; . 
Therefore 

[Rp,R11 ] = c2[Xp ,X11] = c2C;11 Xr. (5-65) 

(5-66) RpR11 R;1 R; 1 =1+c2[Xp,X11]=1 + c2C;11 Xr. 

According to the above two relations it is easy to establish the following correspondences: 

Lie groups 

la. Abelian Lie groups 

p,G'=l,2, ... ,r. 
(5-67a) 

2a. Subgroups Gs of a Lie group G. 
Let Xi, XJ, ... , Xk be the generators of Gs. 
Let Ri = l+e,Xi,Rj = l+cXj. Therefore 

Lie algebras 

lb. Abelian Lie algebras 

[Xp,X11] = 0, 

p, G' = 1, 2, ... , r . 
(5-67b) 

2b. Subalgebras As of a Lie algebra A. 
By (5-68a), [Ri, Rj] is an element of the 
group algebra of G8 • Using (5-65) we know 
that Xi, Xi, ... , Xk form a subalgebra A8 

of A, that is, 
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(5-68a) 

3a. Invariant subgroups. 
If the elements Ri, Rj, ... , Rk belong to an 
invariant subgroup G8 , one has from (1-28) 

Thus 

RpRiR;1 E Gs , Ri E Gs , 

p 1,2, ... ,r 

4a. Simple Lie group. 

(5-69a) 

A Lie group which has no invariant sub­
groups is a simple Lie group. 

5a. Semi-simple Lie group. 
The Lie group which has no Abelian invari­
ant subgroups is a semi-simple Lie group. 
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(5-68b) 

3b. Invariant subalgebras. 
From (5-69a) and (5-66) it is known that 

[Xa, Xp] = C~pXb , 
a,b=i,j, ... ,k, p= 1,2, ... ,r. 

(5-69b) 

The algebra Xi, ... , Xk is called the invari­
ant subalgebra of A. 

4b. Simple Lie algebra 
A Lie algebra which has no invariant sub­
algebra is a simple Lie algebra. 

Sb. Semi-simple Lie algebra. 
The Lie algebra which has no Abelian in­
variant subalgebras is a semi-simple Lie 
algebra. 

6a. Theorem 5.1: A semi-simple Lie group is a direct product of a set of simple Lie groups, 

( 5-70a) 

where Gi are simple and [Gi, Gil= 0. 

6b. Theorem 5.1': A semi-simple Lie algebra is a direct sum of a set of simple Lie algebras, 

(5-70b) 

where Ai are simple, [Ai,AJ] = 0 and the intersections between any Ai and Ai are zeroes. 

7. A compact Lie algebra is one corresponding to a compact Lie group. 

It is important to distinguish between the semi-simple and non-semi-simple Lie groups, 
since Abelian invariant subgroups, though apparently the easiest to deal with, can actually be 
the most troublesome from the point of view of representations. Fortunately, in most physical 
applications we deal only with semi-simple Lie groups. Below we mainly concern ourselves with 
semi-simple Lie groups. (The criteria for semi-simple Lie groups is given in Sec. 5.13.) 

In a semi-simple Lie algebra the maximum number of linearly independent generators, de­
noted H1, ... , H1, which commute with one another, is called the rank of the Lie algebra or the 
rank of the corresponding Lie group, designated by l. (An equivalent definition of rank is given 
in Sec. 5.18.) . The set of operators H1, ••• H1 form a subalgebra, called the Cartan subalgebra . 

Naturally, any Lie group must be of at least rank 1. 
Example 1: For S02, there is only one generator lz. Naturally ]z commutes with itself. 

Therefore S02 is an Abelian group with rank l = 1. 
Example 2: For S03, there are three generators l., ly and lz. Each of them only commutes 

with itself. S03 is a non-Abelian group of rank 1. 

S02 and S03 are both simple. 
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5.6 Linear Transformation Groups 

In Secs. 5.2 and 5.3, we gave the general definitions of Lie groups and Lie algebras. In Sec. 5.2 
we also gave some simple examples. We will now extend these examples to the general linear 
transformation groups. These groups are the most useful ones in physics. Assume R(a) :::: 
R(a1 , a2, ••• , ar) is an n-dimensional linear transformation, 

R(a) 
x ~ x' = R(a)x, (5-71a) 

or equivalently 
x":x:::: Raf3(a)xf3, a= 1,2, ... ,n. (5-71b) 

Here x may be real or complex. The set of all n x n matrices R(a) forms a linear transformation 
group in n-dimensional space. It can be further classified into the following categories: 

1. GL(n, C) = GL(n), the general complex linear transformation group. The matrix elements 
Raf3(a) are complex numbers. The group contains 2n2 real parameters; therefore the order is 
r=2n2

• 

2. GL(n, R), the general real linear transformation group. The matrix elements are restricted 
to real numbers. There are n2 real parameters. The order is r = n2• 

3. SL(n, C), SL(n, R), the special linear transformation groups. These two groups are ob­
tained from GL(n, C) and GL(n, R) by requiring that the determinants of the transformations 
be unity. Their orders are equal to 2n2 - 2 and n2 - 1, respectively. Obviously we have 

GL(n, C) :J SL(n, C) :J SL(n, R), GL(n, R) :J SL(n, R). 

4. Un and SUn, the unitary group and unimodular unitary group inn dimensions. Restricting 
matrices R(a) to be unitary, that is, 

(5-72a) 

we get the unitary group Un of order r = n2• The unitary group is compact, since by (5-72a) 
the matrix elements IRaf3(a)I :5 1. The condition (5-72a) also stipulates that 

det R(a) =exp (irp) . (5-72b) 

Demanding that the determinants of R(a) equal unity, we obtain the unimodular unitary 
group SUn of order r = n2 

- 1. The unitarity (5-72a) ensures that the quantity I::=l lx°'l2 is 
an invariant under the unitary transformation, 

n n 

L lx°'l2 
= L lx'°'l2 

• (5-73) 
a=l a=l 

The fundamental role of unitary groups in quantum mechanics is easily understood when one 
realizes that the probabilistic nature of quantum theory requires a preservation of squares of 
absolute values of various inner product of wave functions. 

5. The group U(n, m). All the linear transformations which keep the quantity 

n n+m 
L lx°'l2 

- L lxf31 2 (5-74) 
a=l f3=n+l 

invariant form the group U(n, m) with order r = (n + m) 2 • U(n, m) is a noncompact group. 
Obviously, Un = U(n, 0) = U(O, n), GL(n, m) :J U(n, m). Similarly we can define the group 
SU(n, m), with order r = (n + m) 2 - 1. 
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6. The complex orthogonal group O(n, C). All the complex linear transformations which 
leave I:::=l (xa) 2 invariant form the complex orthogonal group. From 

n n 

~)x'a) 2 = L Raf3Raf3'Xf3xf3' = L (x 13 )2 
, ( 5-75) 

a=l af3f3' f3=1 

we have 
(5-76a) 

Thus R(a) are orthogonal matrices, 

R(a)R(a) = 1 . (5-76b) 

O(n, C) has n(n-1)/2 complex parameters (see Sec. 5.8), therefore it is of order r = n(n-1). 
From (5-76b) we have 

det(R(a))det (R(a)) = 1, det (R(a)) = ±1. (5-76c) 

The transformation matrices of O(n, C) can be divided into two sets, one is associated with 
det (R(a)) = +1, and the other with det (R(a)) = -1. The set with determinant +1 forms a 
subgroup respreseting proper rotations, the unimodular complex orthogonal group SO(n, C). We 
can decompose the group O(n, C) into cosets with respect to the subgroup SO(n, C), that is, 

O(n, C) = SO(n, C) EB SO(n, C) x I , (5-77) 

where I is the space inversion operator. 
The quotient group O(n,C)/SO(n,C) is a group of order 2. The set with determinant -1 

represents rotation-reflections. Any element of SO(n, C) can be reached from the identity via 
continuous paths in parameter space, while the elements with det(R(a)) = -1 cannot. In other 
words, the group O(n, C) consists of two disconnected parts and we cannot go from one part to 
the other continuously. 

7. The real orthogonal group On. Restricting the matrices of O(n, C) to be real leads to the 
real orthogonal group, denoted by On or O(n), which is of order r = ~n(n - 1). By further 
requiring det ( R( a)) = 1, we get the unimodular orthogonal group S On. It is still of order 
~n(n - 1). Similarly, the group On also consists of two disconnected parts. Obviously we have 

O(n, C) :::> SO(n, C) :::> SOn , On :::> SOn . 

8. The group O(n, m). 
All the real linear transformation which leave the quantity 

n n+m 
L (xa)2 - L (xf3)2 (5-78) 
a=l f3=n+l 

invariant form the group O(n, m) with order r = t[n(n - 1) + m(m - 1)] +nm. O(n, m) is a 
noncompact group. The Lorentz group 0(3, 1) is a special case of O(n, m). 

Obviously, we have On = O(n, 0) = 0(0, n). 
9. Complex symplectic, real symplectic and unitary symplectic groups Sp(2n, C), Sp(2n, R), 

and Spzn· 
Suppose x = (x1, ... ,xn;x-1 , ..• ,x-n) and y = (y 1 , .•. ,yn;y-1 , ... y-n) are two column 

vectors with dimension 2n and R(a) are 2n x 2n matrices, which transform x and y into x' and 
y': 

x' = R(a)x, y' = R(a)y. (5-79a) 
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The symplectic group is the set of all 2n x 2n linear transformations R( a) which leave the 
skew-symmetric bilinear form 

(5-79b) 
a=I 

invariant. If the 2n x 2n matrices R(a) are complex (real), it is called the complex (real) 
symplectic group of order 2n(2n + 1) (n(2n + 1)). If the complex matrices R(a) are unitary, the 
group is called the unitary symplectic group Sp2n . We have 

GL(2n, C) :J Sp(2n, C) :J Sp(2n, R), Sp(2n, C) :J Sp2ni SU2n :J Sp2n . 

The groups Sp(2n, C) and Sp(2n, R) are noncompact, while Sp2n is compact. 

5. 7. Infinitesimal Operators for Linear Transformation Groups 

Consider subjecting x1, x2, ••• , xn to an infinitesimal transformation 

x' = R(a)x, R(a) = 1 + A(a) , 

A(a) = L aa13ea,e , 
a/3 

(5-80a) 

(5-81) 

where aa,e are infinitesimal quantities and ea/3 are the n x n matrices defined in (2-4). The ea/3 
obey the commutator (5-51) and the following relation 

Equation (5-80a) can also be rewritten as 

Under the transformation (5-80b), an arbitrary function 'lf;(x) goes over to 

'lf;'(x) = 'lf;(x') = 'lf;(x°' + a°'13 x
13 ) = 'lf;(x) + a°'a x13 ~'lf;(x) . 

I' 8x°' 

Defining the infinitesimal operators 

Eq. (5-83) reads 
'lf;'(x) = (1 +a°'13 E13a)'l/J(x) = (1 +aPXp)'lf;(x), 

and ( 5-80b) can be expressed as 

x'°' = (1+ l:a°'13 E13a)x°'. 
,B 

(5-82) 

(5-80b) 

(5-83) 

(5-84) 

(5-85) 

(5-80c) 

From this we obtain a simple method for finding the infinitesimal operators of the linear 
transformation group: 

1. First find the infinitesimal matrix A in the infinitesimal transformations (5-80a), that is, 

(5-86a) 

Notice that not all the parameters aa/3 are independent, except for the group GL(n, R) or 
GL(n,C). 




