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Symmetry reduction and semiclassical analysis of axially symmetric systems
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We derive a semiclassical trace formula for a symmetry-reduced part of the spectrum in axially symmetric
systems. The classical orbits that contribute are closed in (r,z,pr ,pz) and havepw5m\, wherem is the
azimuthal quantum number. FormÞ0, these orbits vary with energy and almost never lie on periodic trajec-
tories in the full phase space in contrast to the case of discrete symmetries. The transition fromm50 to m
.0, however, is not as dramatic as our numerical results indicate, suggesting that contributing orbits occur in
topologically equivalent families within whichpw varies smoothly.@S1063-651X~98!02401-5#

PACS number~s!: 05.45.1b, 03.65.Sq
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I. INTRODUCTION

Modern semiclassical theories deal with the duality of
quantum energy eigenspectrum and the classical spectru
periodic orbit lengths and stabilities@1#. For integrable sys-
tems, the Poisson summation formula provides this conn
tion and is equivalent to the Einstein-Brillouin-Keller qua
tization scheme, while for generic quantum systems, tr
formulas deal with this duality and provide the only conne
tion between quantum and classical mechanics. As an
ample, for hyperbolic systems the Gutzwiller trace formu
expresses the density of quantum energy eigenvaluesd(E)
5(nd(E2En) as

d~E!5dav~E!1
1

p\(
p

(
r 51

`
Tp

Audet~M p
r 2I !u

3cos~rSp2pspr /2!, ~1.1!

where the summation overp extends over all primitive peri-
odic orbits,Tp is the corresponding time period,Sp is the
action,sp is the Maslov index associated with its invaria
manifolds@2#, andM p is the stability matrix arising from a
linearization of the transverse flow. For systems where p
odic orbits occur in families, appropriate modifications ne
to be made@3,4#, though these may be system specific@5#.

Quite often, the systems we encounter in nuclear, atom
or molecular physics have symmetries and one might be
terested in the spectrum of a particular symmetry class.
example, billiard systems with reflection symmetry about
x and y axes have four classes of wave functions with
choice of Dirichlet or von Neumann boundary condition
the symmetry lines. In these as well as in other systems w
discrete symmetries, it is possible to construct the symme
reduced Green’s function and evaluate its trace@6#. While
the orbits that contribute are periodic in the reduced ph
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space, they are not necessarily periodic in the full ph
space. The end points, however, are related by symmetr
nevertheless turns out that when allowed to evolve in tim
these orbits are eventually periodic in the full phase spa
Thus trajectories contributing to any given symmetry class
the spectrum are either full periodic orbits or parts of the
whenever the symmetries present are discrete in nature@6,7#.

The presence of continuous symmetries implies the e
tence of constants of motion. For example, in systems w
axial symmetry, thez component of the angular momentu
is conserved and quantum mechanically one may be in
ested in the spectrum of a particularm subspace. A way to
deal with this problem semiclassically is to work with a
effective two-dimensional potentialV(r,z)1\2m2/2Mr2,
whereM is the mass of the particle andm is the azimuthal
quantum number. HereV(r,z) is the actual potential in
which the dynamics is executed and the additional te
\2m2/2Mr2 arises from the conservation ofl z @8,9#. The
semiclassical trace formula then takes the form in Eq.~1.1!
provided periodic orbits are isolated and unstable.

An alternative procedure is to work with the dynamics
the full phase space and it is desirable to understand
nature of the trace formula and the kind of classical orb
that contribute. We shall devote ourselves to this ques
throughout the rest of this paper and our results are, i
certain sense, very different from those for discrete symm
try. The orbits that contribute necessarily have an angu
momentuml z5m\ and must close inr,pr andz,pz . Thus
they are not necessarily periodic since they need not clos
w. Unlike discrete symmetries, however, orbits that are
periodic are generally not parts of periodic orbits. We su
port these results with extensive numerical evidence.

On completion of this work, we came across a paper
Creagh@10# that deals with this problem for arbitrary Abe
lian symmetries and rotational symmetry. Our approac
are different however. Creagh@10# takes recourse to group
theoretical methods in order to obtain the symmetry-redu
Green’s function and then uses a semiclassical approxi
tion that ultimately involves classical trajectories possess
quantized values of these additional constants of motion.
approach is based on the fact that for axially symmetric s
tems, the eigenfunctionc(r,w,z)5(2p)21/2eimwf(r,z) and

a
-
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1476 57SANTANU PAL AND DEBABRATA BISWAS
we use this in the full Green’s function to obtain the dens
of a givenm subspace. The restriction of constants of mot
to their quantized values arises from a stationary phase
dition in our case as well as the fact that the trajectory m
close inr,pr and z,pz . Thus, even though the final resul
are identical, the derivation in this paper provides an al
nate viewpoint that is simple and transparent to those
familiar with the intricacies of extended phase space.

Apart from a rederivation of the trace formula and
numerical verification, this work emphasizes the fact t
orbits contributing to a symmetry-reduced part of the sp
trum in general are not eventually periodic in the full pha
space whenever the symmetry is continuous. This is an
portant departure from the case of discrete symmetry.
also show that contributing orbits occur in topologica
equivalent families within whichpw varies smoothly. For
successivem therefore, distinct orbits from the same fami
contribute and this is evident from the shift of peaks in t
power spectrum of the quantum density.

The organization of the paper is as follows. In Sec. II
provide a derivation of the trace formula. Section III dea
with the inverse problem that motivates our numerical res
which we present in Sec. IV. Our conclusions are summ
rized in Sec. V.

II. FORMALISM

Let us consider an axially symmetric three-dimensio
system described by the coordinates (w,h), wherew is the
azimuthal angle about the axis of symmetry andh
5(h2 ,h3) represents the other two components in an
thogonal coordinate system. The basic definition of the
Green’s function of such a system can be written as

G~w9h9,w8h8;E!5(
n

(
m

cn
~m!~w9h9!cn

~m!†
~w8h8!

E2En,m
,

~2.1!

where

cn
~m!~w,h!5

exp~ imw!

A2p
fn

~m!~h!. ~2.2!

In the above, bothc andf are taken to be normalized andm
is the azimuthal quantum number. Thus

G~w9h9,w8h8;E!5
1

2p(
m

exp@ im~w92w8!#

3(
n

fn
~m!~h9!fn

~m!†
~h8!

E2En,m
. ~2.3!

Multiplying both sides by exp(2imw9) and integrating over
w9, one obtains
n
n-
st

r-
ot

t
-

e
-
e

ts
-

l

-
ll

(
n

fn
~m!~h9!fn

~m!†
~h8!

E2En,m
5E

0

2p

G~w9h9,w8h8;E!

3exp@2 im~w92w8!#dw9 ~2.4!

where$En,m% is the subset of eigenvalues for which the a
muthal quantum number equalsm. Further integration over
w8 on both sides gives

(
n

fn
~m!~h9!fn

~m!†
~h8!

E2En,m

5
1

2pE0

2pE
0

2p

G~w9h9,w8h8;E!

3exp@2 im~w92w8!#dw9dw8. ~2.5!

Equation ~2.5! can be viewed as the symmetry-reduc
Green’s function corresponding to the azimuthal quant
numberm. A semiclassical expression for this can be o
tained by using the semiclassical approximation to the
Green’s function

G~w9h9,w8h8;E!

.
2p

~2p i\!2(cl tr
Audet@D~w9h9,w8h8;E!#u

3expF i

\
S~E!2

i

2
np G , ~2.6!

which has contributions from all classical trajectories~cl tr!
at energyE connecting points (w9,h9) and (w8,h8). The
actionS(E) is

S~h9,h8,w,E!5E
w8h8

w9h9
p dq

5E
h8

h9
phdh1pw~w92w812pN!

5 S̄~h9,h8,pw ,E!1pw~w12pN!,

~2.7!

wherepw is a constant of motion due to the axial symme
of the system,w5w92w8, N is the winding number, andS̄

is the reduced action*h8
h9phdh. Final,n is the Maslov index,

which is determined by the caustics encountered along
trajectory@2#, while the matrixD is given by@1#

D~w9h9,w8h8;E!5
]~pw9,ph9,t !

]~w8,h8,E!

5S ]2S

]w8]w9

]2S

]w8]h9

]2S

]w8]E

]2S

]h8]w9

]2S

]h8]h9

]2S

]h8]E

]2S

]E]w9

]2S

]E]h9

]2S

]E2

D .

~2.8!
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In order to arrive at a semiclassical form for th
symmetry-reduced Green’s function, we insert Eq.~2.6! into
Eq. ~2.5! and use a new set of variablesw5w92w8 and w̄
5(w91w8)/2 to obtain

(
n

fn
~m!~h9!fn

~m!†
~h8!

E2En,m
.

1

~2p i\!2(
cl tr

E
0

2p

dw̄E
2p

p

dw

3exp@2 imw#Audet~D !u

3expF iS

\
2

inp

2 G , ~2.9!

where we have used

E
0

2pE
0

2p

dw8dw95E
2p

p

dwE
0

2p

dw̄ . ~2.10!

We shall evaluate the integral overw using the method of
stationary phase in the limit\→0. The stationarity condition

]S

]w
2m\50 ~2.11!

restricts trajectories to quantized values ofpw ~5 ]S/]w).
We shall denote the stationary point byw* such that
pw(w* )5m\. The integration yields

(
n

fn
~m!~h9!fn

~m!†
~h8!

E2En,m

.
1

~2p i\!3/2(cl tr
E

0

2p

dw̄
Audet@D~w* ,h9,h8;E!#u

AuUu

3expF i S̄

\
2

in8p

2
G , ~2.12!

where U5]2S/]w25]pw /]w evaluated at the stationar
point w* and n85n1b8 with b851 if U is negative and
zero otherwise. We shall postpone thew̄ integration, but for
now we merely note that the symmetry of the system allo
this to be evaluated exactly.

The semiclassical symmetry-reduced Green’s function
thus expressed as a sum of contributions from classical
jectories at an energyE, connecting pointsh9 and h8 and
having an angular momentumpw5m\. We can now sim-
plify the ratio of the amplitude determinants and expre
udet(D)u/uUu as

udet~D !u
uUu

5
udet~D !u

U ]2S

]w8]w9
U 5udet~D̃ !u, ~2.13!

where
s

is
a-

s

D̃5S ]2S̄

]h8]h9

]2S̄

]h8]E

]2S̄

]E]h9

]2S̄

]E2
D . ~2.14!

Details of this reduction can be found in the Appendix.
It is useful at this point to introduce a local coordina

system (h2 ,h3) in the reduced (h) plane, whereh2 changes
along the trajectory whileh3 increases in the transverse d
rection and is zero on the orbit. It follows from the definitio
that

]2S̄

]E]h29
5

1

ḣ29
,

]2S̄

]h28]E
52

1

ḣ28
~2.15!

and

]2S̄

]h i8]h29
505

]2S̄

]h28]h i
9
, ~2.16!

so that the determinant ratio can be expressed as

det~D̃ !5H 1

ḣ29

1

ḣ28
S 2

]2S̄

]h38]h39
D J

w5w*

5
1

ḣ29

1

ḣ28
R.

~2.17!

With these simplifications, we are now ready to evalu
the trace of the symmetry-reduced Green’s function. Set
h95h85h and integrating overh on both sides of Eq.
~2.12!, we get

gm~E!5(
n

1

E2En,m
.

1

~2p i\!3/2(cl tr
E

0

2p

dw̄E dh
1

ḣ2

AuRu

3expF i S̄

\
2

in8p

2
G , ~2.18!

wheregm is the trace of the symmetry-reduced Green’s fun
tion corresponding to the azimuthal quantum numberm, S̄
5rphdh, and

R5H 2
]2S̄

]h38]h39
J

w5w* ,h85h9

. ~2.19!

Clearly, the only orbits that contribute to the trace are
ones that havepw5m\ and are closed inh but not neces-
sarily in w. Further, theh integration can be performed b
the method of stationary phase and the stationarity condi
then picks only that subset of orbits for whichph85ph9 at
h85h95h. We shall refer to such trajectories in the fu
three-dimensional~3D! dynamics as quasiperiodic trajecto
ries ~QPTs! since they will be periodic in the reduced dy
namics of theh motion. In what follows such periodic orbit
in the reduced system will be referred to as reduced perio
orbits ~RPOs!.
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1478 57SANTANU PAL AND DEBABRATA BISWAS
The actionS̄ in the neighborhood of a RPO can thus
written to second order asS̄(h3 ,E)5 S̄(h350;E)
1(h3

2/2)W, where

W5F ]2S̄

]h39]h39
12

]2S̄

]h39]h38
1

]2S̄

]h38]h38
G

h
395h

3850

.

~2.20!

On performing theh3 integration by the method of station
ary phase, Eq.~2.18! reduces to

gm~E!.
1

2p i\(
QPT

E
0

2p

dw̄ R dh2

ḣ2
AUR

WU
h350

3expF i

\
S̄~E!2 i

p

2
sG , ~2.21!

wheres5n81b with b51 if W is negative and zero other
wise. As in the case without symmetry,s is the Maslov
index of the stable or unstable manifold and is an invarian
the reduced periodic orbit@2#.

While we do not explicitly show this, the factor involvin
the second derivatives ofS̄ is related to linearized dynamic
in the neighborhood of the RPO and is expressed as@1#

!U S ]2S̄

]h38]h39
D

h
395h

3850

S ]2S̄

]h39]h39
12

]2S̄

]h39]h38
1

]2S̄

]h38]h38
D

h
395h3850

U
5

1

Audet~M2I !u
, ~2.22!

where the 232 matrix M is the stability matrix describing
the dynamics in the linearized neighborhood of the RPO
I is the unit matrix. Note thats is independent of the posi
tion h2 along the periodic orbit and so areS̄(E) and
Audet(M2I )u. The integration alongh2 thus yields

R dh2

ḣ2

5T0 , ~2.23!

whereT0 is the period of the primitive RPO or, in terms o
the timeTQPT required to span the QPT in the full 3D dy
namics,T05TQPT/N0, whereN0 is the number of primitive
RPOs contained in the quasiperiodic trajectory. It is instr
tive, however, to deal with theh2 ,w̄ integrations togethe
and this yields the ‘‘volume’’ of initial conditions for which
the various stationarity conditions are satisfied. Thus,

E
0

2p

dw̄ R dh2

ḣ2

5W0 , ~2.24!

whereW05F̄T52pT052pTQPT/N0. Note that when the
QPT is also periodic and has anN1 fold symmetry, one can
f

d

-

interpret F̄52p/N1 and T5TQPT/r 5Tp when viewed in
the full phase space. Herer is the repetition number of the
periodic orbit in the full phase space andrN15N0. With
these clarifications, Eq.~2.21! becomes

gm~E!.
1

2p i\(
QPT

2pT0

Audet~M2I !u
expF i

\
S̄~E!2

i

2
sp G .

~2.25!

This is the main result of this section. The sum involv
quasiperiodic trajectories at an energyE and with pw5m\
and is identical to the result obtained by Creagh@10#.

It is instructive, however, to examine the significance
Eq. ~2.11! in greater detail. In performing thew integration
for each orbit, it is implicit that the action changes smooth
as the orbit~characterized byw and hencepw) is varied. In
other words, orbits occur in topologically equivalent famili
@11# within which the action varies smoothly and the statio
ary phase condition of Eq.~2.11! picks out one orbit from
this family. By changingm, another orbit from the same
family contributes and this has a slightly different value
S̄. The range ofm over which a family contributes depend
on its extent, which in turn is decided by the potent
V(r,z). These ideas are put on a more concrete footing
axially symmetric cavities in the following sections.

It is easy to check that the trace of the full Green’s fun
tion is recovered by summing overm as

(
m

gm~E!5(
N

E dm gm~E!exp~2p imN! ~2.26!

.
1

i\

1

2p(
N

E dm(
QPT

2pT0

Audet~M2I !u

3e~ i /\!$ S̄12pm\N%2 isp/2, ~2.27!

where we have used the Poisson summation formula
substituted Eq.~2.25! for gm(E). The integral, when evalu
ated by the method of stationary phase, picks up only th
trajectories for that] S̄/]pw12pN50 or w* 52pN. Thus
the only orbits that contribute to the full spectrum are t
ones that are periodic in the full phase space. The final
pression is

g~E!.
1

i\~2p i\!1/2(PO

~2p/N1!Tp

Audet~M2I !u
AU]pw

]w U
3expF i

\
Sp~E!2

i

2
sp8p G , ~2.28!

with s85s2d, where d51 or 0 depending on whethe
]2S̄/]pw

2 is positive or negative. The result is identical
that obtained by Creagh and Littlejohn@3,12#.

For the sake of completeness, it is necessary to men
that there is yet another contribution to the trace that we h
so far neglected. It arises from thezero-length orbitsand
gives rise to the average density of statesdav

m (E) and to the
leading order this is given by@13,10#
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dav
m ~E!5

1

h3E dp dq \ d~pw2m\!d„E2H~p,q!….

~2.29!

Equation ~2.25! gives the oscillatory part of the densit
dosc

m (E)52(1/p)lime→01Imgm(E1 i e), where Im denotes
the imaginary part. In the following sections we shall illu
trate our results for axially symmetric cavities and look
contributions of QPTs indosc

m (E) as well as them depen-
dence ofdav

m (E).
Though we have restricted ourselves to the case of a

symmetry, the formalism is very general and can be adap
to other cases of continuous symmetry. For example, in
case of rotational symmetry, one can express the wave f
tion as

cn
~ l ,m!~r ,u,w!5Yl

m~u,w!fn
~m,l !~r ! , ~2.30!

where$Yl
m(u,w)% are the spherical harmonics. This can

used in Eq.~2.1! to obtain the trace of the Green’s functio
for a given value of the quantum numbersl andm.

III. AXIALLY SYMMETRIC CAVITY

We now specialize to the case of a particle moving fre
inside an axially symmetric cavity and undergoing specu
reflections on a collision with the wall. As in most oth
systems, it is easier to verify the duality in Eq.~2.25! starting
with quantum levels and obtaining the length spectrum
periodic orbits. This is easily achieved by computing t
power spectrum of the quantum densitydm(AE):

Sm~ l !5U E dk dm~k!exp$ ikl %U ~3.1!

5U E dk~dav
m 1dosc

m !exp$ ikl %U,
~3.2!

whereAE5k anddm(k)52kdm(k2) is the quantum density
for a given value ofm. The average part of the quantu
density gives rise to a peak at zero inSm( l ), while the oscil-
latory part contributes peaks at the length of quasiperio
orbits with pw5m\.

What is perhaps not apparent is the fact that formÞ0, the
reduced periodic orbits that contribute todosc

m vary with en-
ergy whenever they are not periodic~i.e., wÞ0). These
peaks are therefore expected to shift in the power spect
with the window over which it is computed.

Consider, for example, an orbit in the equatorial pla
(z50) where the particle reflects specularly inside a circu
billiard of radius R. It is easy to see that two successi
points on the caustic@14# ~one reflection between them!
satisfy the conditions for quasiperiodicity sincer85r9, z8
5z950, pr85pr9 , and pz85pz

950. The action on this QPT

is thus Sj5AEl j , where l j52Rsin(w/2), wherew is the
difference in anglew92w between these points on the cau
tic. By moving away from the caustic to a point along t
trajectory, there exists another point separated by a collis
where conditions for quasiperiodicity are satisfied~i.e., r8
5r9 and pr85pr9). It is also easy to check that along th
t

al
ed
e
c-

y
r

f

ic

m

e
r

-

n

quasiperiodic orbit,w is conserved whilew changes by mov-
ing from the caustic in the radial direction to another orbit
the same topological family. The stationary phase condit
in Eq. ~2.11! is thus

pw5AERcos~w/2!5m\ ~3.3!

or, equivalently

w* 52 cos21~m\/RAE!, ~3.4!

so that

S̄j52RAEA12
m2\2

R2E
22m\ cos21~m\/RAE!

~3.5!

in Eq. ~2.25!. FormÞ0, the orbit varies with energy continu
ously and the system is thus inhomogeneous. At a gi
~nonzero! value of m, the length of the contributing orbi
increases with energy and thus should give rise to broade
peaks in the power spectrumSm( l ).

Note that the stationarity condition in Eq.~3.3! picks up
one orbit for eachm from this topologically equivalent fam
ily of one-bounce orbits within whichpw varies smoothly. In
spite of the complicated dependence ofS̄ on E andm, it is
evident that with increasingm, peaks in the power spectrum
Sm( l ) shift to the left. Moreover, the broadening of peaks
expected to increase withm due to a larger spread in th
length of contributing orbits.

An interesting consequence of this analysis is the fact
at almost all energies this quasiperiodic trajectory is
eventually periodic in the full phase space whenevermÞ0.
This follows from the fact that periodic orbits in the circ
billiard form a set of measure zero. This conclusion a
holds in the more general case. FormÞ0, whenever a re-
duced periodic orbit corresponds to a periodic orbit in t
full phase space withpw5m\, the action S̄j5AEl j
22pNjm\, whereNj is the winding number of the orbit
However, on changing the energyE this orbit no longer has
the quantized value ofpw and hence cannot contribute. Sim
lar arguments hold for QPTs that form part of periodic orb
in the full phase space. Thus, at any energy, most orbits
contribute todosc

m do not lie on a trajectory that is periodic i
the full phase space. This phenomenon is in sharp contra
the case of discrete symmetries where all quasiperiodic
jectories are eventually periodic in the full phase space. T
only exception is the trivial casem50 when all reduced
periodic orbits lie on periodic trajectories in the full pha
space. Though we have restricted ourselves to a simple o
in the preceding analysis, the conclusions are in fact m
general as the numerical results of the following section
dicate.

We now return to an evaluation of the average density
statesdav

m (E) for cavities where Eq.~2.29! becomes

dav
m ~E!5

1

h3E dprdpzdpwdz dr dw \ d~pw2m\!

3dS E2pr
22pz

22
pw

2

r2 D ~3.6!
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1480 57SANTANU PAL AND DEBABRATA BISWAS
for a particle of massM51/2. The integrals are straightfor
ward to evaluate and the final result is expressed as

dav
m ~E!5

1

4p\2 A8, ~3.7!

where

A85E
zmin
m

zmax
m

dzE
rmin

m

rmax
dr. ~3.8!

Note thatzmin
m ,zmax

m ,rmin
m depend onm and are dictated by the

centrifugal barrier, whilermax depends onz through the
shape of the cavity. For smallumu/AE, however, A8.A
2Z0R0 , whereZ0 is the extent of the cavity along theZ axis
andR05umu\/AE. Thus

dav
m ~E!.

A

4p

1

\2 2
umuZ0

4p

1

AE

1

\
, ~3.9!

where

A5E
zmin
0

zmax
0

dzE
0

rmax
dr ~3.10!

is the area of therZ plane. Consequently, the average in
grated density of statesNav

m (E)5*0
Edav

m (E8)dE8 is

Nav
m ~E!5

AE

4p
2

umuZ0

2p
AE, ~3.11!

where for convenience we have set\51.
Note that the first term in the expression forNav

m (E) is
identical to that for a two-dimensional billiard of areaA. We
have not evaluated the standard perimeter term here, whi
of the same order as the second term of Eq.~3.11!, though as
we shall show later, Eq.~3.11! predicts the correctm depen-
dence for cavities.

IV. SOME NUMERICAL RESULTS

We present here some numerical results on an axi
symmetric cavity described by

R~u!5
R0

l
$11anPn~cosu!%, ~4.1!

whereR0 is the radius of a sphere having the same volume
the deformed cavity,l is a volume preserving factor,an is
the strength of the deformation, and$Pn% are the Legendre
polynomials.R(u) is the distance from the origin to a poin
on the surface of the cavity, which due to the axial symme
depends only on the angleu measured from theZ axis. For
our calculations, we choose aP2 (n52) deformed cavity
with R051, l51.008 087, anda250.2. For convenience
we choose the massM51/2 and\51. Details of the proce-
dure used in obtaining the quantum energy eigenvalues
be found in@15#.

We have made no attempt towards finding periodic orb
systematically for this system because there is no obv
symbolic dynamics that one can use and also since we
interested in the inverse problem. While orbits in theXY
-

is

ly

s

y

an

s
s
re

plane are well known, we have determined periodic orbits
the YZ plane (pw50) using the orbit length extremizatio
technique. We believe that the list we have compiled is co
plete for lengthsl ,15. Figure 1 shows a plot of two periodi
orbits that also satisfy the conditionph85ph9 at points sepa-
rated by half their total lengths.

In Figs. 2–4 we show plots of the power spectrumSm( l )
for m5(0,1),(2,4),(6,8). The small arrows mark the po
tion of full periodic orbits in theYZ plane and the orbit along
the diameter in theXY plane, while the larger arrows mar
those orbits that do not close inw. All of these havepw50
and hence orbits that do not enclosew form part of the pe-
riodic orbits. The peaks in the power spectrum form50
agree very well with the lengths of quasiperiodic orb
marked by arrows, though there is no distinct peak at 4.7
or 9.5230. These correspond to the periodic orbit along thZ
axis and its repetition. Unlike other orbits that occur in
one-parameter family, this orbit is isolated and hence ha
much smaller contribution. We shall return to this later wh
discussing states belonging to a particular parity class.

Them51 power spectrum is also described well by the
orbits that havepw50. The peaks shift to the left only
slightly, indicating that the topology of the orbit does n

FIG. 1. Two periodic orbits in theYZ plane on which points
separated by half the total length satisfy the conditionsz85z9,r8
5r9 and pz85pz9,pr85pr9. Their respective lengths ar
11.532 715 and 17.856 224 in units ofRo.
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change while going frompw50 to a nonzero value ofpw .
The phenomenon can be understood from the analysis
Sec. III, where we have explicitly described the orbit sele
tion process for the simplest orbit in theXY plane. The only
significant change occurs at 10.38, where the peak hei
decreases appreciably.

This process continues for larger values ofm and can be
seen from the power spectrum. The peaks gradually shift
the left of the arrow and nothing dramatic happens exce
that atm54, there is no trace of the orbit atl 510.38. There
is yet another feature that is readily seen by comparing
power spectra ofm50 or 1 andm58. The peaks broaden
significantly with increasingm even though there is hardly
any change in the range of eigenvalues considered for eva
ating the power spectrum. This is due to the fact that t
length of the orbit~belonging to a topologically equivalent
family! varies with energy and its spread around the me
value increases with the value ofm.

FIG. 2. Power spectrumSm( l ) ~in arbitrary units! of m50 and 1
states. The shorter set of arrows marks the lengths~in units of Ro!
of full periodic orbits in theYZ plane, while the longer arrows are
quasiperiodic trajectories in theYZ plane that do not close inw. All
trajectories havepw50.

FIG. 3. Power spectrumSm( l ) ~in arbitrary units! of m52 and 4
states. The arrows mark the length~in units of Ro! of orbits with
pw50 as in Fig. 2.
in
-

ht

to
pt

e

lu-
e

n

We emphasize this aspect in Fig. 5 where we plot th
power spectrum form526 for two different windows of en-
ergy. The one centered at the higher energy has peaks s
nificantly to the right of the other, indicating that the lengths
of contributing orbits increase with energy. We also compar
the power spectrum ofm51 andm526 in Fig. 6 and find that
for the simplest~topological! orbit family ~connecting suc-
cessive points on the caustic! the peaks form526 are broader
and to the left of the corresponding peak form51.

These findings corroborate our results of the previous se
tions and we now investigate the power spectrum of even
odd parity states for a particular value ofm. Contributions to
the semiclassical symmetry reduced even or odd Green
function come from two sources. Apart from the usual orbit
with pw5m\ connecting (r8,z8,w8) and (r9,z9,w9) there
are additional contributions from orbits havingpw5m\ con-
necting points (r8,z8,w8) and (r9,2z9,w91p) weighted
appropriately by the character of the symmetry group@6#.
Alternately, one can exploit the additionalw symmetry and
express the symmetry-reduced even or odd~denoted respec-
tively as1 or 2! Green’s function as

FIG. 4. Power spectrumSm( l ) ~in arbitrary units! of m56 and 8
states. The arrows mark the length~in units of Ro! of orbits with
pw50 as in Fig. 2.

FIG. 5. Power spectrum~in arbitrary units! of m526 states for
two different ranges of energy. The window centered at higher e
ergy has peaks shifted to the right. The lengths are in units ofRo.
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(
n1

fn1

~m!~r,z!fn1

~m!†
~r,z!

E2En1 ,m
6

5
1

4pF E
0

2pE
0

2p

G~w9,r,z;w8,r,z;E!exp@2 im~w9

2w8!#dw9dw86~21!mE
0

2pE
0

2p

G~w9,r,

2z;w8,r,z;E!exp@2 im~w92w8!#dw9dw8G . ~4.2!

The trace of its semiclassical version thus involves qua
periodic trajectories withpw5m\ and trajectories connect-
ing (r,z) with (r,2z) havingpw5m\ andpz

f52pz
i , where

f and i refer respectively to the initial and final points.
Thus we expect to see both full and half QPTs in t

power spectrum of even parity and odd parity sequences
particular, the half orbit along theZ axis will have a lower
damping~due to its instability, the damping is exponenti
with the length of the orbit! and hence could be visible in th
power spectrum. This is indeed obvious in Fig. 7, where
peak appears atl 52.38. In fact, a closer observation als
reveals a peak atl 54.76. Significantly, orbits belonging to
the XY plane do not have any other symmetry-related or
and hence have no additional peak at half the length.

Finally, we study them dependence of the average de
sity by plottingkN

(m)2kN
(0) as a function of the level numbe

N in Fig. 8. HerekN
m5AEN

m. An approximate expression fo
kN

(m)2kN
(0) can be obtained using Eq.~3.11! and is given by

kN
~m!2kN

~0!.
umuZ0

A
1Am2Z0

2

A2 1
4pN

A
2A4pN

A
.

~4.3!

Therefore, for largeN, kN
(m)2kN

(0).umuZ0 /A and for the cav-
ity that we have considered, this is 1.38umu.

FIG. 6. Comparison of the power spectrum~in arbitrary units! of
m51 and 26 states. Them526 spectrum gives rise to broade
peaks due to a larger spread in the lengths of contributing orb
The window is approximately over the same range of energy
both cases. The lengths are in units ofRo.
i-

In

a

it

-

Figure 8 is a plot ofkN
(m)2kN

(0) for m51 ~bottom curve! to
m56 ~top curve!. Each curve is approximately constant and
the mean separation between curves is 1.38umu, as predicted.

V. CONCLUSIONS

In the previous sections we have studied the semiclass
of symmetry-reduced spectra for the case of axial symmetr
There are two approaches to the problem. The first explo
the conservation ofl z to reduce the system to two dimen-
sions. Orbits then move around in an effective potential th
includes the centrifugal term\2m2/2Mr2. In comparison,
the approach that we adopt here uses the dynamics in the f
phase space and the trace formula then takes a differe
structure altogether. Our aim has been to understand the
ture of the classical trajectories that contribute and also poi
out the differences with the case of discrete symmetry.

Most of this paper deals with a derivation of the trace
formula for the spectrum with a given valuem of the azi-
muthal quantum numberm. Though this has been studied by
Creagh@10# earlier, we provide an independent derivation
here using only the structure of the wave function to achiev

s.
n

FIG. 7. Power spectrum~in arbitrary units! of m50, even-parity
states. The smaller arrow marks the length~in units of Ro! of the
half orbit along theZ axis.

FIG. 8. Plot ofkN
(m)2kN

(0) ~in units of Ro
21! as a function of the

level numberN. The curves from bottom to top are~in order of
increasingm) for m51 to m56.
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symmetry reduction. Finally, though we have worked w
axially symmetric systems, the method can in principle
extended to a large class of systems with continuous sym
try.

Our main results are the following.
~i! The average density dav

m (E)5A/4p2(umuZ0 /
4p)(1/AE) for small umu/AE so that kN

(m)2kN
(0).Z0 /A,

whereN denotes the level number andkN5AEN.
~ii ! The only classical trajectories that contribute to t

oscillatory part of the quantum spectrumdosc
m (E) are those

that are closed in (r,z,pr ,pz) and for whichpw5m\. Thus
they need not be closed in the full phase space, though
may be eventually periodic when allowed to evolve. The
orbits are, however, periodic in the reduced phase sp
(r,z,pr ,pz).

~iii ! For m50, all reduced periodic orbits are identical
or part of periodic orbits in the full phase space.

~iv! For mÞ0, almost all orbits that contribute todm(E)
at any given energy are nonperiodic in the full phase sp
even when they are allowed to evolve in time. Peaks in
power spectrum thus shift with the window over which it
computed and the width of peaks increases withm.

Our numerical results support these observations and
low us to state the following: For smooth potentials~billiards
with smooth boundaries!, topologically equivalent orbits
contribute at successive values ofm as can be seen from th
gradual shift in the position of peaks in the power spectru
This is implicit in the selection criterion in Eq.~2.11! since
each of the orbits selected necessarily occurs in a~topologi-
cal! family within which pw varies smoothly. The transition
from m50 to mÞ0 is therefore smooth and this might ha
some significance in quantizing the spectrum form51 using
information about contributing orbits atm50.
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APPENDIX

We outline here the steps involved in the reduction of
amplitude determinants leading to Eq.~2.13!. The equation
for the reduced action

S̄~h9,h8,pw ,E!5S~h9,h8,w,E!2pww ~A1!

is a Legendre transformation from the variabl
(h9,h8,w,E) to the variables (h9,h8,pw ,E) and leads to the
relations

]S

]h i8
5

] S̄

]h i8
,

]S

]h i9
5

] S̄

]h i9
,

]S

]E
5

] S̄

]E
,

]S

]w
5pw ,

] S̄

]pw
52w. ~A2!
e
e-

ey
e
ce

ce
e

l-

.

s-
ks

e

The following expressions involving the second deriv
tives of the action can now be derived:

]2S

]h i8]h j9
5

]2S̄

]h i8]h j9
1

]2S̄

]pw]h i8

]2S̄

]pw]h j9

]2S

]w2 , ~A3a!

]2S

]h i8]E
5

]2S̄

]h i8]E
1

]2S̄

]pw]h i8

]2S̄

]pw]E

]2S

]w2 , ~A3b!

]2S

]h i9]E
5

]2S̄

]h i9]E
1

]2S̄

]pw]h i9

]2S̄

]pw]E

]2S

]w2 , ~A3c!

]2S

]E2 5
]2S̄

]E2
1

]2S̄

]pw]E

]2S̄

]pw]E

]2S

]w2 , ~A3d!

]2S

]w2 52S ]2S̄

]pw
2 D 21

, ~A3e!

]2S

]h i8]w
5

]2S̄

]pw]h i8

]2S

]w2 , ~A3f!

]2S

]h i9]w
5

]2S̄

]pw]h i9

]2S

]w2 , ~A3g!

]2S

]w]E
5

]2S̄

]pw]E

]2S

]w2 . ~A3h!

We shall derive Eq.~A3a! as an illustration:

]2S

]h i8]h j9
5

]

]h i8
S ]S

]h j9
D 5

]

]h i8
S ] S̄

]h j9
~h9,h8,pw ,E!D

5
]2S̄

]h i8]h j9
1

]2S̄

]pw]h j9

]pw

]h i8
.

Also,

]2S̄

]pw]h i8
5

]

]pw
S ]S

]h i8
~h9,h8,w,E! D 5

]2S

]w]h i8

]w

]pw
,

so that

]pw

]h i8
5

]2S̄

]pw]h i8

]2S

]w2 . ~A4!
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Thus

]2S

]h i8]h j9
5

]2S̄

]h i8]h j9
1

]2S̄

]pw]h j9

]2S̄

]pw]h i8

]2S

]w2 . ~A5!

We are now in a position to deal with the ratio of dete
minants. By interchanging rows and columns, the deter
nant of Eq.~2.8! can be expressed as

det~D !5detS ]2S

]h8]h9

]2S

]h8]E

]2S

]h8]w9

]2S

]E]h9

]2S

]E2

]2S

]E]w9

]2S

]w8]h9

]2S

]w8]E

]2S

]w8]w9

D
5

]2S

]w8]w9
det~D̄2 Ē!, ~A6!

where

D̄5S ]2S

]h8]h9

]2S

]h8]E

]2S

]E]h8

]2S

]E2

D ~A7!
cs

A

ar
-
i-

and

Ē5S ]2S

]h8]w9

]2S

]E]w9

D S ]2S

]w8]w9D
21S ]2S

]w8]h9

]2S

]w8]ED

5S ]2S

]w8]w9D
21S ]2S

]h8]w9

]2S

]w8]h9

]2S

]h8]w9

]2S

]w8]E

]2S

]E]w9

]2S

]w8]h9

]2S

]E]w9

]2S

]w8]E

D .

Using relations~A3a!–~A3h!, it follows that

det~D̃ !5detDS ]2S

]w8]w9D
21

5det~D̄2 Ē!

5detS ]2S̄

]h8]h9

]2S̄

]h8]E

]2S̄

]E]h9

]2S̄

]E2
D . ~A8!
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