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Symmetry reduction and semiclassical analysis of axially symmetric systems
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We derive a semiclassical trace formula for a symmetry-reduced part of the spectrum in axially symmetric
systems. The classical orbits that contribute are closecin,i§,,p,) and havep,=mf, wherem is the
azimuthal quantum number. For#0, these orbits vary with energy and almost never lie on periodic trajec-
tories in the full phase space in contrast to the case of discrete symmetries. The transition=fi@rto m
>0, however, is not as dramatic as our numerical results indicate, suggesting that contributing orbits occur in
topologically equivalent families within which,, varies smoothly[S1063-651X98)02401-9

PACS numbeps): 05.45+b, 03.65.Sq

I. INTRODUCTION space, they are not necessarily periodic in the full phase
space. The end points, however, are related by symmetry. It
Modern semiclassical theories deal with the duality of thenevertheless turns out that when allowed to evolve in time,
guantum energy eigenspectrum and the classical spectrum tifese orbits are eventually periodic in the full phase space.
periodic orbit lengths and stabilitigd]. For integrable sys- Thus trajectories contributing to any given symmetry class of
tems, the Poisson summation formula provides this conneghe spectrum are either full periodic orbits or parts of these
tion and is equivalent to the Einstein-Brillouin-Keller quan- whenever the symmetries present are discrete in ngéirg
tization scheme, while for generic quantum systems, trace The presence of continuous symmetries implies the exis-
formulas deal with this duality and provide the only connec-tence of constants of motion. For example, in systems with
tion between quantum and classical mechanics. As an exial symmetry, the component of the angular momentum
ample, for hyperbolic systems the Gutzwiller trace formulajs conserved and quantum mechanically one may be inter-
expresses the density of quantum energy eigenval{E$  ested in the spectrum of a particukar subspace. A way to

=3,0(E-E,) as deal with this problem semiclassically is to work with an
. effective two-dimensional potentiaV(p,z) +#°m?/2M p?,
1 T whereM is the mass of the particle amd is the azimuthal
B 1 p
d(E)—daU(E)erth: Zfl /|det(M'—|)| quantum number. Her&/(p,z) is the actual potential in
P which the dynamics is executed and the additional term
X cogrS,— wo,r/2), (1.1))  A%m?/2Mp? arises from the conservation of [8,9]. The

semiclassical trace formula then takes the form in @ql)
where the summation ovgr extends over all primitive peri- provided periodic orbits are isolated and unstable.
odic orbits, T, is the corresponding time perio&, is the An alternative procedure is to work with the dynamics in
action, o, is the Maslov index associated with its invariant the full phase space and it is desirable to understand the
manifolds[2], andM, is the stability matrix arising from a nature of the trace formula and the kind of classical orbits
linearization of the transverse flow. For systems where perithat contribute. We shall devote ourselves to this question
odic orbits occur in families, appropriate modifications needthroughout the rest of this paper and our results are, in a
to be madd 3,4], though these may be system spedifit certain sense, very different from those for discrete symme-
Quite often, the systems we encounter in nuclear, atomiary. The orbits that contribute necessarily have an angular
or molecular physics have symmetries and one might be inmomentuml ,=m# and must close im,p, andz,p,. Thus
terested in the spectrum of a particular symmetry class. Fahey are not necessarily periodic since they need not close in
example, billiard systems with reflection symmetry about thep. Unlike discrete symmetries, however, orbits that are not
x andy axes have four classes of wave functions with aperiodic are generally not parts of periodic orbits. We sup-
choice of Dirichlet or von Neumann boundary condition onport these results with extensive numerical evidence.
the symmetry lines. In these as well as in other systems with  On completion of this work, we came across a paper by
discrete symmetries, it is possible to construct the symmetry€reagh[10] that deals with this problem for arbitrary Abe-
reduced Green’s function and evaluate its tré8ke While lian symmetries and rotational symmetry. Our approaches
the orbits that contribute are periodic in the reduced phasare different however. CreadhiO] takes recourse to group-
theoretical methods in order to obtain the symmetry-reduced
Green'’s function and then uses a semiclassical approxima-
*Electronic address: santanu@veccal.ernet.in tion that ultimately involves classical trajectories possessing
TPermanent address: Theoretical Physics Division, Bhabhguantized values of these additional constants of motion. Our
Atomic Research Center, Bombay 400 085, India. Electronic adapproach is based on the fact that for axially symmetric sys-
dress: biswas@kaos.nbi.dk tems, the eigenfunction(p, ,z)=(27) " Y2%e'™¢¢(p,z) and
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we use this in the full Green’s function to obtain the density Wy owt 5
. - . & (n") i (n') ™
of a givenm subspace. The restriction of constants of motion’, =| G(¢"7",¢" 7' ;E)
to their quantized values arises from a stationary phase con? E-Enu 0
dition in our case as well as the fact that the trajectory must ; n_ 1 "
. ; xXexg —i - d 2.4
close inp,p, andz,p,. Thus, even though the final results H-in(e"=eD]de" (24
are identical, the derivation in this paper provides an alterwhere{E, ,} is the subset of eigenvalues for which the azi-
nate viewpoint that is simple and transparent to those natnuthal quantum number equagls Further integration over

familiar with the intricacies of extended phase space. ¢’ on both sides gives

Apart from a rederivation of the trace formula and its (e e
numerical verification, this work emphasizes the fact that D & (0" (1)
orbits contributing to a symmetry-reduced part of the spec- = E—En.

trum in general are not eventually periodic in the full phase
space whenever the symmetry is continuous. This is an im-
portant departure from the case of discrete symmetry. We
also show that contributing orbits occur in topologically _
equivalent families within whictp, varies smoothly. For Xexg—iu(e"—¢")]de"de". (2.5

successiven therefore, distinct orbits from the same family Equation (2.5 can be viewed as the symmetry-reduced
contribute and this is evident from thr—_: shift of peaks in thegaan's function corresponding to the azimuthal quantum
power spectrum of the quantum density. number . A semiclassical expression for this can be ob-

The organization of the paper is as follows. In Sec. Il Wetained by using the semiclassical approximation to the full
provide a derivation of the trace formula. Section Ill dealsgreen’s function

with the inverse problem that motivates our numerical results Do
which we present in Sec. IV. Our conclusions are summaG(¢”7",¢’7';E)

rized in Sec. V.
~ 2m 2 \/|de(D( AN /E):H
(27Tiﬁ)zcltr N, 7N,

1 (2= (2=
=27y JO G(e"n",¢'n";E)

II. FORMALISM
, (2.6

i
Let us consider an axially symmetric three-dimensional Xex;{%S(E)— SV
system described by the coordinates 4), where¢ is the
azimuthal angle about the axis of symmetry ang which has contributions from all classical trajectoriebtr)
=(7,,7n3) represents the other two components in an or-at energyE connecting points ¢”,%") and (¢',n'). The
thogonal coordinate system. The basic definition of the fullaction S(E) is
Green'’s function of such a system can be written as

"n.mn

S(n”,n’,cp,E)=f¢ "pdq

[

e'n
t
n.n ! ! Ip(m)(@”n”)w(m) (‘Plﬂ,) "
G(e" 7" @' 7' E)=2 2 — — : :f" p,dn+p,(¢"—¢ +27N)
n.m E-Enm 7 Y ®

(2.2)

=S(7", 7' Py, E)+py(@+27N),
(2.7)
wherep,, is a constant of motion due to the axial symmetry
. of the systemgp=¢"— ¢’, N is the winding number, an&
B exp(ime)

%m)(%ﬂ) ¢§1m)(71)- (2.2) is t_he r_educed a_ctioﬁ:’;,'p,id 7. FinalT v is the Maslov index,
V2 which is determined by the caustics encountered along the
trajectory[2], while the matrixD is given by[1]

where

In the above, botlyr and ¢ are taken to be normalized and

i i "on o1 a(p " P "'t)
is the azimuthal quantum number. Thus D(¢" 7" ¢ 7' ;E)= ‘P, :7
a(¢’n",E)
1 _ 9*S 7*S 9*S
G(e"n"¢' 1 E)= 52 exdim(¢"—¢")] GoTad dolan GTiE
T 9*S 7*S 9*S
XE ¢n (77 )¢n (7] ) (2 3) = 677,(9(,0" (?7]’(?7]” (97],(9E
n E_En m ' )
’ 9*S 9*S 9*S

IEd¢" JEdy’  IE2
Multiplying both sides by expfiw¢”) and integrating over
¢", one obtains (2.8
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In order to arrive at a semiclassical form for the 2s 2s
symmetry-reduced Green’s function, we insert Exj6) into
Eqg. (2.5 and use a new set of variables= ¢”" — ¢’ and ¢
=(¢"+ ¢')/2 to obtain

:
o (") b (') 1 2w _ fm
2 - E_En = 2 Iﬁ)ZZ f d(Pf d(P X . . . .
n nu (2m cltr Jo - Details of this reduction can be found in the Appendix.
. It is useful at this point to introduce a local coordinate
x exi{ ~ipe]\[de(D)] g

system 7, , n3) in the reduced 4) plane, wherey, changes

an'dn" dn'JE
#s  #s |- (2.14

ol
Il

JEdn"  IE?

iS ivw along the trajectory whiley; increases in the transverse di-
Xexg o~ | (2.9  rection and is zero on the orbit. It follows from the definition
that
where we have used 2s 1 prry 1
" = ER ’ = _r (213
o rom - o dEdmy  mp  ImdE 72
f d(p’d(p”=J d(pf do. (2.10
o Jo - 0 and
. . 2c 3
We shall evaluate the integral overusing the method of J°S —0= S (2.1
stationary phase in the limit— 0. The stationarity condition anl Iy ansdny ’
i 2 2 i
S so that the determinant ratio can be expressed as
5;—Mﬁ:o (2.1
1 #S 11
de(D)=1— —| ———— =T
restricts trajectories to quantized valuesmf (= 9S/d¢). 72 M2\ IN3dMg =gt 1272
We shall denote the stationary point hy* such that (217

P,(¢*)=uh. The integration yields ] S
With these simplifications, we are now ready to evaluate
the trace of the symmetry-reduced Green’s function. Setting

:
> (") e (7") 7n"=n'=7 and integrating overp on both sides of Eq.
n E-En, (2.12), we get
1 JZW —J|defD(¢*, 7", 7";E)]| 1 1 2r ¢ 1
= d E)= =~ J‘ d J.d —JIR
(27Tiﬁ)3/2cltr 0 ¢ \/|U| gM( ) ; E_En,p. (27Tiﬁ)3/2;r 0 ¢ % | l
iS ivw 01 iS ivw
X ex| el (2.12 X ex L (2.18

where U=32Sld?=0p,/de evaluated at the stationary whereg,, is the trace of the symmetry-reduced Green’s func-
point ¢* and v’:v+,8’¢with B’'=1 if U is negative and tion corresponding to the azimuthal quantum numperS

zero otherwise. We shall postpone thantegration, but for =9$p,d», and
now we merely note that the symmetry of the system allows —
this to be evaluated exactly. ]S

The semiclassical symmetry-reduced Green’s function is InsIns L)
thus expressed as a sum of contributions from classical tra- e =T

Jectories at an energg, connecting points;” and »" and Clearly, the only orbits that contribute to the trace are the

having an angular momentum, = /. We can now sim- ones that have,=u# and are closed im but not neces-

rc;g(g)lle/|l5a|“250f the amplitude determinants and expresssar"y in . Further, they integration can be performed by

the method of stationary phase and the stationarity condition

then picks only that subset of orbits for whigh, =p,. at

|de(D)| |de(D)] — n'=n"=n. We shall refer to such trajectories in the full
U | %S =|det(D)], (213 three-dimensiona(3D) dynamics as quasiperiodic trajecto-

ries (QPT9 since they will be periodic in the reduced dy-

namics of thep motion. In what follows such periodic orbits

in the reduced system will be referred to as reduced periodic

where orbits (RPOs.

(2.19

(9()0/{9@//
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The actionS in the neighborhood of a RPO can thus beinterpret ®=2x/N; and T= Topr/r=T, when viewed in

written to second order asS(n3,E) 5(773 0;E) the full phase space. Hereis the repetltlon number of the
+(7;§/2)W, where periodic orbit in the full phase space ambl; =N, With
these clarifications, Eq2.21) becomes

S ”S PSS
oo o amanl o O oS e o IS(E)
"l =0 =~ - exp — — 50T
B pag M ZmhgJdetM-] B 2
(2.2
On performing ther; integration by the method of station- o ) . . )
ary phase, Eq(2.18 reduces to This is the main result of this section. The sum involves
quasiperiodic trajectories at an energyand with p,= u#
277 d, and is identical to the result obtained by Creadf].
gu(E)= f jg It is instructive, however, to examine the significance of
# 27TIﬁQpT

Eq. (2.11) in greater detail. In performing the integration
for each orbit, it is implicit that the action changes smoothly
Xexr{ (E)—| (2.21) as the orbit(chargcterized_ by and hencepq,) i_s varied. Ir_1.
fi other words, orbits occur in topologically equivalent families

, ) _ ] ] [11] within which the action varies smoothly and the station-
whereo=v"+ g with g=1 if W is negative and zero other- ary phase condition of Eq2.11) picks out one orbit from
wise. As in the case without symmetry, is the Maslov  thjs family. By changingu, another orbit from the same
the reduced periodic orbje]. . . _S.The range ofu over which a family contributes depends

While we do not epr|C|tIy show this, the factor mvolvmg on its extent, WhICh in turn is decided by the potentlal
in the neighborhood of the RPO and is expresseflLas aX|aIIy symmetrlc cavities in the following sections.
It is easy to check that the trace of the full Green’s func-

S tion is recovered by summing over as
— — — = ex [ .
" I/+2 " I+ ! !

dnzdnz  Inzdng  InNzdn; =g’ =0 11 -

mlo
-~ d -9
1 (222 if 277% f MQEPT J[de(M —1)]

\/lde(M -1 )| , . D% e(i/ﬁ){gl-Zﬂ',uﬁN}—i(rﬂ'/Z’ (227)

where the X2 matrix M is the stability matrix describing
the dynamics in the linearized neighborhood of the RPO an
| is the unit matrix. Note thatr is independent of the posi-

tion 7, along the periodic orbit and so arS(E) and

(ﬁ/here we have used the Poisson summation formula and
bstituted Eq(2.29 for g,(E). The integral, when evalu-
ated by the methodif stationary phase, picks up only those

trajectories for thatS/dp,+27N=0 or ¢* =27N. Thus

V|det(M —1)]. The integration alongy, thus yields the only orbits that contribute to the full spectrum are the
q ones that are periodic in the full phase space. The final ex-
21 (2.3  Pressionis
72
) ) o _ (E) (27IN)T ap,
whereT is the period of the primitive RPO or, in terms of g i7i(2mi#) 265 [detM —1)] V Jo

the time Tqpr required to span the QPT in the full 3D dy-
namics,To=Topt/Ng, WhereN is the number of primitive i i
RPOs contained in the quasiperiodic trajectory. It is instruc- Xexr{gsp(E)— EU,’JW
tive, however, to deal with they,,¢ integrations together

and this yields the “volume” of initial conditions for which it &/ = o— s, where 5=1 or 0 depending on whether
the various stationarity conditions are satisfied. Thus,

(2.28

(92§(9pi is positive or negative. The result is identical to
that obtained by Creagh and Littlejolp8,12].
277 _ d772 - .
f =W,, (2.24) For the sake of completeness, it is necessary to mention
that there is yet another contribution to the trace that we have
o so far neglected. It arises from ttmero-length orbitsand
whereWy=®T=27T,=27Tqop1/No. Note that when the gives rise to the average density of stad§gE) and to the
QPT is also periodic and has &h fold symmetry, one can leading order this is given bj13,10
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1 quasiperiodic orbitp is conserved while changes by mov-
di(E)= ng dp dq? 8(p,— uh)S(E—H(p,q)). ing from the caustic in the radial direction to another orbit of
(2.29 the same topological family. The stationary phase condition
in Eq. (2.1)) is thus
Equation (2.25 gives the oscillatory part of the density
d (E) = — (1/m)lim_o+Img,(E+ie), where Im denotes p,= VERCOS ¢/2) = pufh (3.3
the imaginary part. In the following sections we shall illus- )
trate our results for axially symmetric cavities and look at®f» €quivalently
contributions of QPTs irdi{,(E) as well as theu depen-
dence ofd4(E).
Though we have restricted ourselves to the case of axialg that
symmetry, the formalism is very general and can be adapted
to other cases of continuous symmetry. For example, in the _ w?h
case of rotational symmetry, one can express the wave func-  S;=2RVE\/1- RE 2uth cos Y uh/RVE)

tion as (3.5

@* =2 cos Y uh/RVE), (3.9

(1,m) _wym (m,l)
Y (1, 0,0) = Y0, 0) () (230 iy Eq.(2.25. For u+0, the orbit varies with energy continu-

m ; . . ously and the system is thus inhomogeneous. At a given
where{Y/(6, )} are the spherical harmonics. This can be(nonzer() value of u, the length of the contributing orbit

used in Eq(2.1) to obtain the trace of the Green’s function . . . .
. increases with energy and thus should give rise to broadened
for a given value of the quantum numbérand m.

peaks in the power spectrust(l).
Note that the stationarity condition in E¢3.3) picks up
one orbit for eachw from this topologically equivalent fam-

We now specialize to the case of a particle moving freelyily of one-bounce orbits within whicp,, varies smoothly. In
inside an axially symmetric cavity and undergoing speculasspite of the complicated dependence®bn E and u, it is
reflections on a collision with the wall. As in most other evident that with increasing, peaks in the power spectrum
systems, it is easier to verify the duality in E§.25 starting ~ S*(l) shift to the left. Moreover, the broadening of peaks is
with quantum levels and obtaining the length spectrum ofexpected to increase with due to a larger spread in the
periodic orbits. This is easily achieved by computing thelength of contributing orbits.

Ill. AXIALLY SYMMETRIC CAVITY

power spectrum of the quantum densit§(VE): An interesting consequence of this analysis is the fact that
at almost all energies this quasiperiodic trajectory is not
_ : eventually periodic in the full phase space whenener0.
Sﬂ(l)_J' dk d”(k)expﬁkl}‘ @ This follows from the fact that periodic orbits in the circle

billiard form a set of measure zero. This conclusion also
. holds in the more general case. For=0, whenever a re-
— o I
_J' dk(dg,+ dOS&eXp{'kl}" duced periodic orbit corresponds to a periodic orbit in the
(32  full phase space withp,=u#, the action S;=\El,
. . —2mN;uh, whereN; is the winding number of the orbit.
— — 2 J J
¥vhere \/E_k aTddﬂgk) _Tikd#(k ) is the qua}ntﬁm density However, on changing the energythis orbit no longer has
dor a given vaiue ofu. E averagst‘ah [l)art ?\.It i quan_'?um the quantized value gf, and hence cannot contribute. Simi-
ensity gives rse to a peak at zeroSH(1), while the OSCl™  |ar arguments hold for QPTs that form part of periodic orbits
latory part contributes peaks at the length of quasnpenodu;n the full phase space. Thus, at any energy, most orbits that

orbits with p,= ut. : . . . Co
. : contribute tod};.do not lie on a trajectory that is periodic in
Whatis pgrh_aps npt apparent IS the fact that,deérlo, the the full phase space. This phenomenon is in sharp contrast to
reduced periodic orbits that contribute dd. vary with en-

o the case of discrete symmetries where all quasiperiodic tra-
ergy whenever they are not periodice., ¢#0). These

jectories are eventually periodic in the full phase space. The
peaks are therefore expected to shift in the power spectru y P P P

ly exception is the trivial casg=0 when all reduced
with the window over which it is computed. y P P

periodic orbits lie on periodic trajectories in the full phase

Consider, for example, an orbit in the equatorial planegy,-e Though we have restricted ourselves to a simple orbit

(z=0) where the particle reflects specularly inside a circulat, o preceding analysis, the conclusions are in fact more

billiard of radiusR. It is easy to see that tWo SUCCESSIVe ganerg| as the numerical results of the following section in-
points on the causti¢14] (one reflection between them dicate.

satisfy the conditions for q/l/JaS|per|od|C|ty sinpe=p", 2’ We now return to an evaluation of the average density of
=2'=0, p,=p;,, andp;=p,=0. The action on this QPT statesd’(E) for cavities where Eq(2.29 becomes

is thus SJ:\/EIj, where |;=2Rsin(¢/2), where ¢ is the
difference in anglex” — ¢ between these points on the caus-
tic. By moving away from the caustic to a point along the
trajectory, there exists another point separated by a collision
where conditions for quasiperiodicity are satisfie@., p’

=p” andp,=p;). It is also easy to check that along this

1
04(E)= 1z | dp,dp.dp,dz & de h o(p,— uh)

X 6

2 5 PG
E—p}-pi- 2 (3.6
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for a particle of mas®1 =1/2. The integrals are straightfor-
ward to evaluate and the final result is expressed as

VA
d& LA
a\/(E)_47Tﬁ2A , (3.7
where
z* Pmax
A’=J maxdzJ dp. (3.8
er;;in p%in Y
Note thatz, . Z5 .« Pin depend o and are dictated by the
centrifugal barrier, whilep,,x depends orz through the
shape of the cavity. For smajl|/\E, however, A’=A \/

—ZyRy , whereZ, is the extent of the cavity along tizeaxis
andRy=|u|#/\E. Thus

Al Zog 1 1
d{;\/(E):—W——M—— (3.9 z

where
ZO Pmax
A=J0maxdzf dp (3.10
Znin 0
is the area of theZ plane. Consequently, the average inte- ———— Y
grated density of state$”(E)=[5d“(E')dE’ is

AE |u|Z,
N&(E)= 71— - S5 —E, (3.1

where for convenience we have get 1.

Note that the first term in the expression fdE(E) is
identical to that for a two-dimensional billiard of aréaWe FIG. 1. Two periodic orbits in ther Z plane on which points
have not evaluated the standard perimeter term here, which lé%para'ted' by half the total length satisfy the conditiphs 2", p’
of the same order as the second term of BdL1), though as —p" and py=pyp,=p,. Their respective Iengths’ are
we shall show later, Eq3.11) predicts the corregl depen- 11 535 715 and 17 856 224 in units R,
dence for cavities.

plane are well known, we have determined periodic orbits in
the YZ plane (p,=0) using the orbit length extremization

We present here some numerical results on an axialljechnique. We believe that the list we have compiled is com-
symmetric cavity described by plete for lengthd <15. Figure 1 shows a plot of two periodic
orbits that also satisfy the conditiqn, = p,» at points sepa-
rated by half their total lengths.

In Figs. 2—4 we show plots of the power spectr8t(l)
for ©=(0,1),(2,4),(6,8). The small arrows mark the posi-
whereR; is the radius of a sphere having the same volume ation of full periodic orbits in theY Z plane and the orbit along
the deformed cavity) is a volume preserving factos;,, is  the diameter in the&XY plane, while the larger arrows mark
the strength of the deformation, ag@,} are the Legendre those orbits that do not close i All of these havep,=0
polynomials.R(8) is the distance from the origin to a point and hence orbits that do not enclagdorm part of the pe-
on the surface of the cavity, which due to the axial symmetryriodic orbits. The peaks in the power spectrum for=0
depends only on the angle measured from th& axis. For  agree very well with the lengths of quasiperiodic orbits
our calculations, we choose R, (n=2) deformed cavity marked by arrows, though there is no distinct peak at 4.7615
with Rp=1, A=1.008 087, andx,=0.2. For convenience, or 9.5230. These correspond to the periodic orbit alonthe
we choose the madd =1/2 andA = 1. Details of the proce- axis and its repetition. Unlike other orbits that occur in a
dure used in obtaining the quantum energy eigenvalues camne-parameter family, this orbit is isolated and hence has a
be found in[15]. much smaller contribution. We shall return to this later while

We have made no attempt towards finding periodic orbitgliscussing states belonging to a particular parity class.
systematically for this system because there is no obvious Theu=1 power spectrum is also described well by these
symbolic dynamics that one can use and also since we ambits that havep,=0. The peaks shift to the left only
interested in the inverse problem. While orbits in ti¥  slightly, indicating that the topology of the orbit does not

IV. SOME NUMERICAL RESULTS

Ro
R(6)= ~{1+ anPy(cos)}, (4.1)
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C1 [l bt tutete S#(1) AR il

p==6
w=0
ﬂl 1 A\ J. L I ) !\ J{\A | I[A L ‘/\I s L L L j\ L L
2 3 4 5 6 7 8 9 1w 1
l

sS4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 12 13 14 15

FIG. 2. Power spectrur@*(1) (in arbitrary unit$ of x=0 and 1 FIG. 4. Power spectrur®“(l) (in arbitrary unit3 of =6 and 8
states. The shorter set of arrows marks the lengthanits ofR,) ~ States. The arrows mark the length units of R,) of orbits with
of full periodic orbits in theY Z plane, while the longer arrows are p,=0 asin Fig. 2.

quasiperiodic trajectories in théZ plane that do not close ia. All ) ) L
trajectories have,=0. We emphasize this aspect in Fig. 5 where we plot the

power spectrum fop=26 for two different windows of en-
: ; _ ergy. The one centered at the higher energy has peaks sig-
change while going fronp,=0 to a nonzero value of,, . pificantly to the right of the other, indicating that the lengths

The phenomenon can be understood from the analysis i J L .
Sec. lll, where we have explicitly described the orbit selec-Of contributing orbits increase with energy. We also compare

tion process for the simplest orbit in theY plane. The only 1€ Power spectrum qi=1andx=26 in Fig. 6 and find that

P . for the simplest(topologica) orbit family (connecting suc-
333'2;22; 223?33 a(k))(I:; urs at 10.38, where the peak helg@assive points on the caugtibe peaks fou=26 are broader
This process continues for larger valuespoind can be and to the_ Ieft of the corresponding peak o 1. .
seen from the power spectrum. The peaks gradually shift t These findings c;orrob_orate our results of the previous sec-
the left of the arrow and nothing dramatic happens excep ons an_d we now investigate the power spectr_um_of even or
that atu=4, there is no trace of the orbit k+10.38. There odd parity states for a particular value pf Contributions to ,
is yet another feature that is readily seen by comparing th € ;emmlassmal symmetry reduced even or odd Green's
ower spectra ofz=0 or 1 andu=8. The peaks broaden unction come from two sources. Apart from the usual orbits
pOWel L . : . with p,=uh connecting p',z',¢") and (p",z",¢") there
significantly with increasinge even though there is hardly dé't' | tributi ; bits haviod = wh
any change in the range of eigenvalues considered for evalt‘ff‘-ret".Jl ! |or'1at CO? r|’ u !ons (rjom,f)r_l ,? «::}\J/rlpg—ﬂ X %otn(-j
ating the power spectrum. This is due to the fact that thd'€t"9 _pt0I|n Sb() tﬁ "Ph) ant b : thz g w)twelg Ge
length of the orbit(belonging to a topologically equivalent appropriately by the character of the symmetry grg@p

family) varies with energy and its spread around the meahbxlternately, one can exploit the additionalsymmeiry and
value increases with the value pf express the symmetry-reduced even or ¢diehoted respec-

tively as+ or —) Green’s function as

|

LI

FIG. 3. Power spectrur®“(l) (in arbitrary unit$ of =2 and 4 FIG. 5. Power spectrurtin arbitrary unitg of u=26 states for
states. The arrows mark the lendth units of R,) of orbits with two different ranges of energy. The window centered at higher en-
p,=0 as in Fig. 2. ergy has peaks shifted to the right. The lengths are in unii®,of
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16 ; . . . 9 .
g .
12+ r=1,2
10}

Sel) 8 r 1 S
6L
4L
gL
01 2 ; ; 4 5

FIG. 6. Comparison of the power spectruim arbitrary unit$ of FIG. 7. Power spectrurtin arbitrary unitg of =0, even-parity

p=1 and 26 states. Thg=26 spectrum gives rise to broader states. The smaller arrow marks the len¢thunits of R,) of the
peaks due to a larger spread in the lengths of contributing orbitshalf orbit along theZ axis.
The window is approximately over the same range of energy in

both cases. The lengths are in unitsRyf Figure 8 is a plot Okf\f‘)— kg\lo) for w=1 (bottom curvg to
: u=6 (top curve. Each curve is approximately constant and
5 B (p,2) d)ﬁff (p.2) the mean separation between curves is|B8s predicted.
n E-E,
' ny.m V. CONCLUSIONS
_ i fzwfsz(go” p.2.0" p.ZE)exr —i u(¢” In the previous sections we have studied the semiclassics
4w Jo Jo R of symmetry-reduced spectra for the case of axial symmetry.

There are two approaches to the problem. The first exploits
—¢")]de"d ,+(_1),LF"J'2”G( " the conservation of, to reduce the system to two dimen-
¢ ¢ he = o Jo ep sions. Orbits then move around in an effective potential that
includes the centrifugal terni?m?/2Mp2. In comparison,
4.2) the approach that we adopt here uses the dynamics in the full
' phase space and the trace formula then takes a different
structure altogether. Our aim has been to understand the na-
The trace of its semiclassical version thus involves quasiture of the classical trajectories that contribute and also point
periodic trajectories witlp,= ufi and trajectories connect- out the differences with the case of discrete symmetry.
ing (p,2) with (p,—2) havingp,= uf andpiz —p,,, where Most of this paper deals with a derivation of the trace
f andi refer respectively to the initial and final points. formula for the spectrum with a given valye of the azi-
Thus we expect to see both full and half QPTs in themuthal quantum numben. Though this has been studied by
power spectrum of even parity and odd parity sequences. IGreagh[10] earlier, we provide an independent derivation
particular, the half orbit along thg axis will have a lower here using only the structure of the wave function to achieve
damping(due to its instability, the damping is exponential
with the length of the orbjtand hence could be visible in the

-0 ,p,ZE)exd —iu(e"—¢')]de"de’

power spectrum. This is indeed obvious in Fig. 7, where ¢ 9 . .
peak appears dt=2.38. In fact, a closer observation also g [T T T e e T e
reveals a peak dt=4.76. Significantly, orbits belonging to T e e e
the XY plane do not have any other symmetry-related orbit 6L ]
and hence have no additional peak at half the length. G [T T A
Finally, we study theu dependence of the average den- k¢ —k{' | foroiunsn i rnsm i msmosrrs]
sity by plottingk{*) —k{’ as a function of the level number s |
N in Fig. 8. Herek=\E£. An approximate expression for \ [ Y T e A e
k(N")—k(NO) can be obtained using E(.11) and is given by I i i e e e
G0 800 900 1000

k(m_k(o):|ﬂ|zo+ M73+4WN [47N

NN A A? A A
4.3

FIG. 8. Plot ofk{{" —k{’’ (in units of R ) as a function of the

Therefore, for larga, k{{) —k{{’=|u|Zo/A and for the cav- level numberN. The curves from bottom to top atén order of
ity that we have considered, this is 1/38. increasingu) for u=1 to u=6.
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symmetry reduction. Finally, though we have worked with The following expressions involving the second deriva-
axially symmetric systems, the method can in principle betives of the action can now be derived:

extended to a large class of systems with continuous symme-

try. _ _

Our main results are the following. s _ &S N #S S &S (A3a)
(i) The average density d4(E)=Al4m—(|u|Zo/ ani’anj’_(y,]f,g,/' PLIn LI e’
i j [ i ()]
47)(1UNE) for small |u|/E so that k{!—k("=2Z,/A,
whereN denotes the level number akg=\Ey. o o o
(i) The only classical trajectories that contribute to the 9S S #S  #*S %S
oscillatory part pf the quantum spectrleg‘sc(E) are those an! JE :f9771' JE +(9p¢(?7’ir Ip ,JIE (9_@2' (A3b)
that are closed ind,z,p,,p,) and for whichp,= u#. Thus
they need not be closed in the full phase space, though they
may be eventually perioo!ic \_/vh_en allowed to evolve. These 92S 92s 2SS 225 4°s
orbits are, however, periodic in the reduced phase space =i - E 702 (A3c)
(P,Z,P,,Py)- anidE  gn!dE ap,dn; IPLIE d¢
(iii) For u=0, all reduced periodic orbits are identical to
or part of periodic orbits in the full phase space. ) = = =
(iv) For w#0, almost all orbits that contribute @*(E) J S:E+ J°S J°S S (A3d)
at any given energy are nonperiodic in the full phase space JE? JE2  IpLIE dp,IE Er
even when they are allowed to evolve in time. Peaks in the
power spectrum thus shift with the window over which it is
computed and the width of peaks increases with S #2s| 7t
Our numerical results support these observations and al- ﬁ_(pzz - (9_2 , (A3e)
low us to state the following: For smooth potentiéigliards Pe
with smooth boundarigs topologically equivalent orbits
contribute at successive valuesofas can be seen from the 2 e 2
o e ; d°S J°S 9°S
gradual shift in the position of peaks in the power spectrum. —_——, (A3f)
This is implicit in the selection criterion in Eq2.11) since N de  dp,dn 0P
each of the orbits selected necessarily occurs (topologi-
cal) family within which p,, varies smoothly. The transition .
from w=0 to u#0 is therefore smooth and this might have #°S #S  3°S
some significance in quantizing the spectrumgor 1 using (97];—'&@ :W Er (A3g)
information about contributing orbits at=0. e
2 2 42
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dQIE  dp,IE 92 (A3h)
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Stephen Creagh for several clarifications. We shall derive Eq(A3a) as an illustration:
APPENDIX 92S 9 [ 3S 9 ( S .
We outline here the steps involved in the reduction of the 37/ 7] 577{(577}') an; 377}'(77 7 P )
amplitude determinants leading to EQ.13. The equation — —
for the reduced action __ S TS b,
Il dn  apan| Ini
S(77”177,1p¢1E):S(77’,177’=§01E)_p¢¢ (Al)
Also,
is a Legendre transformation from the variables
(7",7',¢,E) to the variables §¢”,»’,p, ,E) and leads to the —
relations Y d*S :i(a_s(nu 70 E))= 9*S ‘9_‘P
apgdn P\ dni T Iedn Py’
S IS S dS 9IS IS
ani oy Inl oy’ JE JIE’ so that
IS IS o, _ *S &S
% =Py, r?_p¢ =—0. (AZ) ‘977i/ (9p¢(97]i’ a@z : (A4)
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Thus and
%S #S PSS  #S #S 5
! "= ’ " + ” ’ (9_2 (AS) a—s
IN Ny anlan| PN IpLIn 9P | 790" 2S \ -1 #s 2S
We are now in a position to deal with the ratio of deter- E= 9°S dp' de" de'dn"  d¢'JE
minants. By interchanging rows and columns, the determi- JEdo"
nant of Eq.(2.8) can be expressed as ¢
2 2 2 2
(928 (925 (928 , . 0°S 9°S 9°S 9°S
0—,771577/! 37],07E 077710—)@!/ :( J S ) &7725(,0 ﬁQDZO—"I] 57]207(,0 aQDZ &E
(?28 (928 (}]ZS Uv(P (?(P 0" S” 07, S . & S” &[S
de{D)=detl sEg9y" IEZ  IEdg” dJEde" do'dn"  IEIQ" d¢’JE
39S #°S S
de'an" dp'dE e’ dp” Using relationgA3a)—(A3h), it follows that
9*S D5 (A6) - s |\t _
=— e —_ , — = —
8<p’(?go’ dE(D) deD 5(,0’&(,0” de'(D )
where Py 92s
2 2
9°S 9°S an'dn’ Iy JE
— | dn'9n” In'dE =de = = |. A8
D= 5 , (A7) S S (A8)
s s JEay"  OE?
JEay  OE2 K
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