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Abstract. We consider the dynamics of a low-dimensional model for turbulent shear flows. The
model is based on Fourier modes and describes sinusoidal shear flow, in which fluid between two
free-slip walls experiences a sinusoidal body force. The model contains nine modes, most of which
have a direct hydrodynamical interpretation. We analyze the stationary states and periodic orbits
for the model for two different domain sizes. Several kinds of bifurcations are identified, including
saddle-node bifurcations, a period doubling cascade, and Hopf bifurcations of the periodic orbits.
For both domain sizes, long-lived transient chaos appears to be associated with the presence of a
large number of unstable periodic orbits. For the smaller minimal flow unit domain, it is found
that a periodic solution is stable over a range of Reynolds numbers, and its bifurcations lead to the
existence of a chaotic attractor. The model illustrates many phenomena observed and speculated to
exist in the transition to turbulence in linearly stable shear flows.
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1. Introduction. In discussing the transition to turbulence, one may broadly
distinguish two kinds of behavior: there are flows that show a linear instability of
the laminar profile, so that one can apply center manifold techniques to derive ampli-
tude equations. Such flows typically approach the turbulent state through a series of
bifurcations that introduce additional spatial and temporal degrees of freedom. Clas-
sical examples of this group are Taylor-Couette and Rayleigh-Bénard flows [9, 27, 5].
For other flows the transition behavior is less well established due to the absence
of a linear instability of the laminar profile. The transition can only be induced by
perturbations of sufficient amplitude, the transition depends sensitively on the initial
conditions, the border between initial conditions that trigger turbulence and those
that do not is fractal, and the dynamics are high-dimensional right from the onset.
This is the case for many turbulent shear flows, including plane Couette flow and pipe
flow [37, 35, 17].

From a dynamical systems perspective, one might propose that such shear flows
have a chaotic attractor associated with the turbulent state, coexisting with a stable
fixed point corresponding to the laminar state. Indeed, the boundary between the
basins of attraction of the two states could be fractal, which would be consistent with
many of the above observations. However, results showing decay of the turbulent
state, exponential distributions of turbulent lifetimes, and agreement of turbulent
averages obtained from different initial conditions, suggest that the turbulent state is
not an attractor but an open hyperbolic structure, a chaotic saddle [37, 4, 17]. At the
least, it seems plausible that a chaotic saddle is present for moderately high values
of the Reynolds number Re, with a chaotic attractor only appearing, if it does at all,
for higher values of Re.

For shear flows at low Re, all initial conditions decay to the laminar profile.
Therefore, such a chaotic saddle would have to appear at a finite Reynolds number.
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Fig. 2.1. Geometry for sinusoidal shear flow.

Given the challenge of directly showing the existence of a chaotic saddle, we focus
here on simpler dynamical entities, namely fixed points and periodic orbits. We
expect that such solutions will form part of the chaotic saddle. We note that the
governing partial differential equations for several shear flows have been shown to
possess numerous branches of (unstable) steady or traveling states consisting of wavy
streamwise vortices and streaks [32, 33, 6, 36, 15, 16, 25, 24]; in dynamical systems
terms, such solutions correspond to (unstable) fixed points or periodic orbits and can
be used to approximate and explain the dynamics on the hyperbolic structure.

In this paper, we undertake a dynamical systems analysis of fixed points and
periodic orbits for a nine mode model for sinusoidal shear flow, in which fluid between
two free-slip walls experiences a sinusoidal body force. The model is based on Fourier
modes, and generalizes the eight mode model presented, but not studied in detail
from a dynamical systems perspective, in [41]. Further discussion of our model and
its dynamics is given in the companion paper [29].

The outline of the present paper is as follows. In Section 2 we summarize the
general features of the model. The equations are given in Section 3, with a special
emphasis on the symmetries. In Section 4.1 we analyze the dynamics for the model
for a domain of length 4π and width 2π, which corresponds to the optimal domain
size for plane Couette flow for the formation of stationary coherent structures. This
is followed by an analysis for the shorter and narrower domain of length 1.75π and
width 1.2π, which corresponds to the minimum domain size, the minimal flow unit,
which can sustain turbulence for plane Couette flow, in Section 4.2. We conclude with
a few remarks in Section 5.

2. Sinusoidal Shear Flow: Equations and Symmetries. The geometry for
sinusoidal shear flow is shown in Figure 2.1. We take coordinates with x pointing
downstream, y in the direction of the shear, and z in the spanwise direction. The
characteristic velocity U0 is taken to be the laminar velocity arising due to the forcing
at a distance d/4 from the top wall, where d is the distance between the walls; see
(2.5) and (2.6) below. Then, nondimensionalizing lengths in units of d/2, velocities
in units of U0, time in units of (d/2)/U0, and pressure in units of U 20 ρ, where ρ is the
fluid density, the evolution equations are

∂u

∂t
= −(u · ∇)u−∇p+ 1

Re
∇2u + F(y), (2.1)
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with Reynolds number defined to be

Re =
U0d

2ν
, (2.2)

where ν is the kinematic viscosity. The fluid is assumed to be incompressible,

∇ · u = 0, (2.3)

and there are free-slip boundary conditions at the walls at y = ±1, i.e.,

uy|y=±1 = 0,
∂ux
∂y

∣

∣

∣

∣

y=±1
=

∂uz
∂y

∣

∣

∣

∣

y=±1
= 0. (2.4)

Finally, the flow is assumed periodic in the streamwise and spanwise directions, with
lengths Lx and Lz, respectively. Following [41], we take the nondimensionalized vol-
ume force to be

F(y) =

√
2π2

4Re
sin(πy/2)êx, (2.5)

so that the laminar profile is

U(y) =
√
2 sin(πy/2)êx. (2.6)

The laminar profile is inflectional, but it remains linearly stable for all Reynolds
numbers [13]. In the following, we let α = 2π/Lx, β = π/2, and γ = 2π/Lz, and
denote the domain 0 ≤ x ≤ Lx, −1 ≤ y ≤ 1, 0 ≤ z ≤ Lz by Ω.

The governing equations and boundary conditions are equivariant with respect to
the following symmetries

R · [(ux, uy, uz, p)(x, y, z, t)] = (ux, uy,−uz, p)(x, y,−z, t) (2.7)

T∆x,∆z · [(ux, uy, uz, p)(x, y, z, t)] = (ux, uy, uz, p)(x+∆x, y, z +∆z). (2.8)

Equivariance means that if there is a solution (u(x, t), p(x, t)) to (2.1), then the solu-
tion obtained by acting on this solution with any product of the actions of (2.7) and
(2.8) will also be a solution. Physically, R is a reflection about the plane z = 0, and
T∆x,∆z is a translation by ∆x in the streamwise direction and ∆z in the spanwise
direction.

3. A Low-Dimensional Model. In direct numerical simulations of turbulent
plane Couette flow [23] a ’self-sustaining cycle’ was identified. The cycle contains
streamwise vortices that cause streak formation, then the streaks break down to form
normal vortices, then the streamwise vortices regenerate through nonlinear interac-
tions and the process repeats. Waleffe proposed an eight mode model aimed at captur-
ing the essentials of this process for a sinusoidal shear flow in [41]. His model includes
modes describing the basic mean velocity profile, downstream vortices, streaks, and
instabilities of streaks. Our model is a nine mode generalization of Waleffe’s eight
mode model. The main difference is the inclusion of a mode which represents the
lowest order modification, with wave vector k = (0, 3π/2, 0), of the basic profile (2.6),
with wave vector k = (0, π/2, 0). Since, in general, if two modes with wave vectors
k1 and k2 enter into (u · ∇)u a mode with wave vector k1 + k2 results, generation
of such a modification of the basic profile requires modes with y-component of their
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wave vector equal to π. The extension of the existing modes to include such a wave
vector is the second modification to Waleffe’s modes.

Further discussion of our choice of modes and their interactions is given in [29].
Here we merely state that the modes for the model are: the basic profile

u1 =





√
2 sin(πy/2)

0
0



 , (3.1)

a streak mode, capturing spanwise variation of the streamwise velocity:

u2 =





4√
3
cos2(πy/2) cos(γz)

0
0



 , (3.2)

a downstream vortex mode:

u3 =
2

√

4γ2 + π2





0
2γ cos(πy/2) cos(γz)
π sin(πy/2) sin(γz)



 , (3.3)

and modes for spanwise flows:

u4 =





0
0

4√
3
cos(αx) cos2(πy/2)



 , (3.4)

and

u5 =





0
0

2 sin(αx) sin(πy/2)



 . (3.5)

Furthermore, we have the normal vortex modes:

u6 =
4
√
2

√

3(α2 + γ2)





−γ cos(αx) cos2(πy/2) sin(γz)
0

α sin(αx) cos2(πy/2) cos(γz)



 , (3.6)

and

u7 =
2
√
2

√

α2 + γ2





γ sin(αx) sin(πy/2) sin(γz)
0

α cos(αx) sin(πy/2) cos(γz)



 . (3.7)

The modes u5 and u7 are generated from the advection of u4 and u6, respectively,
by the basic profile u1; for example, (u1 · ∇)u4 ∼ u5. There is also a fully three-
dimensional mode:

u8 = N8





πα sin(αx) sin(πy/2) sin(γz)
2(α2 + γ2) cos(αx) cos(πy/2) sin(γz)
−πγ cos(αx) sin(πy/2) cos(γz)



 , (3.8)

with normalization constant

N8 =
2
√
2

√

(α2 + γ2)(4α2 + 4γ2 + π2)
, (3.9)
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and, finally, the modification of the basic profile:

u9 =





√
2 sin(3πy/2)

0
0



 . (3.10)

The modes are orthogonal, and, following [41], are normalized so that
∫∫∫

Ω

un · umd3x = 2(2π/α)(2π/γ)δnm . (3.11)

Each mode individually satisfies incompressibility and free-slip boundary conditions
at the walls.

Making the ansatz

u(x, t) =
∑

m

am(t)um(x) (3.12)

and performing a Galerkin projection, we obtain the amplitude equations

da1
dt

=
β2

Re
− β2

Re
a1 −

√

3

2

βγ

καβγ
a6a8 +

√

3

2

βγ

κβγ
a2a3, (3.13)

da2
dt

= −
(

4β2

3
+ γ2

)

a2
Re

+
5
√
2

3
√
3

γ2

καγ
a4a6 −

γ2√
6καγ

a5a7

− αβγ√
6καγκαβγ

a5a8 −
√

3

2

βγ

κβγ
a1a3 −

√

3

2

βγ

κβγ
a3a9, (3.14)

da3
dt

= −β2 + γ2

Re
a3 +

2√
6

αβγ

καγκβγ
(a4a7 + a5a6)

+
β2(3α2 + γ2)− 3γ2(α2 + γ2)√

6καγκβγκαβγ
a4a8, (3.15)

da4
dt

= −3α2 + 4β2

3Re
a4 −

α√
6
a1a5 −

10

3
√
6

α2

καγ
a2a6

−
√

3

2

αβγ

καγκβγ
a3a7 −

√

3

2

α2β2

καγκβγκαβγ
a3a8 −

α√
6
a5a9, (3.16)

da5
dt

= −α2 + β2

Re
a5 +

α√
6
a1a4 +

α2√
6καγ

a2a7

− αβγ√
6καγκαβγ

a2a8 +
α√
6
a4a9 +

2√
6

αβγ

καγκβγ
a3a6, (3.17)

da6
dt

= −3α2 + 4β2 + 3γ2

3Re
a6 +

α√
6
a1a7 +

√

3

2

βγ

καβγ
a1a8

+
10

3
√
6

α2 − γ2

καγ
a2a4 − 2

√

2

3

αβγ

καγκβγ
a3a5 +

α√
6
a7a9

+

√

3

2

βγ

καβγ
a8a9, (3.18)
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da7
dt

= −α2 + β2 + γ2

Re
a7 −

α√
6
(a1a6 + a6a9)

+
1√
6

γ2 − α2

καγ
a2a5 +

1√
6

αβγ

καγκβγ
a3a4, (3.19)

da8
dt

= −α2 + β2 + γ2

Re
a8 +

2√
6

αβγ

καγκαβγ
a2a5

+
γ2(3α2 − β2 + 3γ2)√

6καγκβγκαβγ
a3a4, (3.20)

da9
dt

= −9β2

Re
a9 +

√

3

2

βγ

κβγ
a2a3 −

√

3

2

βγ

καβγ
a6a8 , (3.21)

where

καγ =
√

α2 + γ2, κβγ =
√

β2 + γ2, καβγ =
√

α2 + β2 + γ2. (3.22)

These equations have a strong similarity to the equations for Waleffe’s eight mode
model [41], but because some modes differ slightly there are different O(1) factors
multiplying some terms, and several additional terms, including all terms depending
on a9. The laminar state in this model corresponds to the fixed point at a1 = 1,
a2 = · · · = a9 = 0, which is linearly stable for all Re.

One expects that equations (3.13)-(3.21) will inherit the symmetries (2.7) and (2.8)
of the full evolution equations; however, because we have ’pinned’ the spanwise and
streamwise locations of the modes, they do not inherit the full continuous translation
symmetries. Indeed, letting a = (a1, a2, a3, a4, a5, a6, a7, a8, a9), we find that (3.13)-
(3.21) are only equivariant under the actions

TLx/2 · a = (a1, a2, a3,−a4,−a5,−a6,−a7,−a8, a9), (3.23)

TLz/2 · a = (a1,−a2,−a3, a4, a5,−a6,−a7,−a8, a9). (3.24)

(Writing (3.13)-(3.21) as da/dt = f(a), we readily verify that f(γa) = γf(a) for
γ ∈ {TLx/2, TLz/2}. Then d(γa)/dt = γda/dt = γf(a) = f(γa), so if a is a solution, so
is γa.) Note that R has an identical action to TLx/2. The two translation symmetries
TLx/2 and TLz/2 generate the four element group {Id, TLx/2, TLz/2, TLx/2,Lz/2}, which
is isomorphic to the abstract group D2 (see, e.g., [28]). So if we find one fixed point
or periodic orbit for our model, there will also be three other symmetry-related fixed
points or periodic orbits obtained by the actions of this group, assuming the solution
does not live in a fixed point subspace of one of the group elements [20, 8]. For periodic
orbits there is the additional possibility that application of a symmetry shifts the orbit
by half a period, i.e., with a suitable choice of origin in time, the second half of an
orbit becomes the symmetric image of the first half [11].

4. Behavior of the Model. As shown in [29], both domains that we study
here - the moderately long and wide NBC-domain that has been shown by Nagata,
Busse and Clever to be optimal for the stationary orbits in plane Couette flow [32, 7],
and the shorter and narrower minimal flow unit (MFU) domain, the smallest domain
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which is able to sustain turbulence for plane Couette flow [23] - show qualitatively
similar behavior: at low Reynolds numbers the transition has a fractal dependence on
initial conditions, the turbulent state is a chaotic saddle, and the lifetime distributions
of the turbulent state are exponential, with a median lifetime that increases rapidly
with Reynolds number. We now describe a dynamical systems analysis of equations
(3.13-3.21) for these two domain sizes, including a bifurcation analysis of fixed points
and periodic orbits using AUTO [12].

In the following, the energy is defined to be the fluctuation energy with respect
to the laminar state, i.e.,

energy ≡ (1− a1)
2 +

9
∑

j=2

a2j ≡ E . (4.1)

4.1. NBC Domain. We first consider a moderate domain size with Lx = 4π
and Lz = 2π, a size which has been considered in many previous studies of shear flow
turbulence, including plane Couette flow [32, 7, 36, 31] and sinusoidal shear flow [36].
This corresponds to an optimal domain size for plane Couette flow in the sense that
the steady finite amplitude solutions appear at the smallest value of Re.

It is found that fixed points are born in a saddle-node bifurcation at Re = 308.16:
for lower Re there are no nontrivial fixed points, while for higher Re, there are two
sets of four nontrivial symmetry-related fixed points. The velocity field reconstruction
of one of the fixed points at the saddle-node bifurcation is shown in Figure 4.1. We
see that the fixed point corresponds to streamwise vortices and ’wavy’ streaks, and
resembles the steady, finite amplitude solutions found for plane Couette flow in [32,
6, 36].

Each of four of the symmetry-related fixed points undergoes a Hopf bifurcation
at Re = 310.34. The resulting periodic orbit branch bifurcates to lower Re, and
can be followed back to a saddle-node bifurcation at Re = 186.99, where it has
a period T = 46.80; the velocity field reconstruction for one of the four symmetry-
related periodic orbits at this bifurcation is shown in Figure 4.2 and the accompanying
movie. (For this and the other figures and movies, the frames show the reconstructed
velocity field as in Figure 4.1. Time is given as t/T , where T is the period of the
periodic orbit.) A period doubling bifurcation is also detected along this branch at
Re = 187.48. This is the beginning of an apparent period doubling cascade which is
numerically found to accumulate at Re ≈ 206. Note that all periodic orbits involved
with this cascade are unstable, so that the resulting chaotic set at the end of the
cascade is a saddle. See Figure 4.3 for the bifurcation diagram for these solutions; in
this and other bifurcation diagrams, open diamonds, open circles, solid squares, and
solid triangles indicate saddle-node, Hopf, period doubling, and symmetry-breaking
pitchfork bifurcations, respectively. Open circles on a periodic orbit branch correspond
to a ’Hopf bifurcation of periodic orbits,’ also called a torus bifurcation. Here a
quasiperiodic solution with an additional, independent frequency is created. Finally,
solid and dashed lines represent stable and unstable solutions, respectively. On the
vertical axis, we show the time-averaged fluctuation energy 〈E〉.

Other periodic orbits, not connected to the fixed point branch through a Hopf or
other bifurcation, were detected using a Newton-Raphson algorithm on numerically
calculated Poincaré maps. The stability and bifurcations of these periodic orbits were
then calculated using AUTO. For example, there is a periodic orbit which arises in
a saddle-node bifurcation at Re = 89.76 with period T = 54.70. This periodic orbit
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has the symmetry

a(t+ T/2) = TLx/2 · a(t), (4.2)

and is in fact stable over the small interval bracketing by torus bifurcations at 89.78
and Re = 90.72. The velocity field reconstruction for this periodic orbit at the saddle-
node bifurcation is shown in Figure 4.4 and the accompanying movie. This periodic
orbit appears at the lowest value of Re of any that we found. It undergoes a symmetry-
breaking bifurcation at Re = 240.26, giving rise to a branch of periodic orbits which
lack the symmetry given in (4.2), cf. [40]. This branch of periodic orbits undergoes
a saddle-node bifurcation at Re = 80.54, with period T = 42.87, and velocity field
reconstruction shown in Figure 4.5 and the accompanying movie. Figure 4.6 shows
the bifurcation diagram for these solutions.

The model was designed to capture the modes considered important for the tur-
bulent regeneration cycle. It is then natural to probe whether the evolution indeed
follows the cycle. As an indicator for the various elements we take the energy con-
tent in the vortex mode u3, the streak mode u2, and the sum of the energies in the
modes u4 through u8 as representative of the instability of the streak. For the lowest
periodic orbit in Fig. 4.5 we obtain the time evolution shown in Fig. 4.7. The time
evolution in the figure compares favorably with a regeneration cycle: up to a time of
about 0.4T the vortices are fairly stable and the streak builds up. During the interval
0.4T to 0.6T the streak breaks down in an rapid process, and during the remainder of
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orbit at the saddle-node bifurcation at Re = 186.99, with period T = 46.80. The layout of the frames
is as for Figure 4.1.
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Fig. 4.4. Frames showing velocity reconstruction at different phases of the unstable periodic
orbit at the saddle-node bifurcation at Re = 89.76, with period T = 54.70. The symmetry properties
of this periodic orbit are apparent.
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Fig. 4.5. Frames showing velocity reconstruction at different phases of the unstable periodic
orbit at the saddle-node bifurcation at Re = 80.54, with period T = 42.87.
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, dotted line) for the unstable

periodic orbit at its saddle-node bifurcation at Re = 80.54, Lx = 4π, Lz = 2π. The time evolution
of these energies is consistent with the self-sustaining process identified in [23].

the cycle the energy in the streak instability modes is fed back into the downstream
vortices.

However, there are other solutions where this is not nearly as clear, and where
the interpretation of the dynamics is much less obvious. An example is given in
Figure 4.8 for the energetics of the unstable periodic orbit shown in Figure 4.9. From
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line) for the unstable periodic orbit shown in Figure 4.9 at its saddle-node bifurcation at Re = 166.37,
Lx = 4π, Lz = 2π. The energetics for 0.5T < t < T are identical because of the symmetry properties
of the periodic orbit.

0.1T to 0.2T the evolution of the energy content in the modes is consistent with the
regeneration cycle identified in [23]. However, for other time intervals there is no clear
association to the phases of the regeneration cycle. A survey of our results suggests
that this situation is representative for most orbits.

We found many unstable periodic orbits which arise through saddle-node bifur-
cations at values of Re between 100 and 200. Some have symmetry properties, such
as the periodic orbit which is born in a saddle-node bifurcation at Re = 166.37 with
period T = 329.48, in which

a(t+ T/2) = TLz/2a(t); (4.3)

the velocity field reconstruction for this periodic orbit is shown in Figure 4.9 and the
accompanying movie. Other periodic orbits undergo a number of period doubling
bifurcations as the branch is followed, such as the periodic orbit which is born in a
saddle-node bifurcation at Re = 113.86 with period T = 99.45. While most periodic
orbit branches can be followed to at least Re = 1000, others are isolas in which the
branch closes on itself: for example, the periodic orbit which is born in a saddle-node
bifurcation at Re = 171.05 with period T = 228.75 lives on a branch which does not
exist beyond a saddle-node bifurcation at Re = 250.48. A sample of the periodic
orbits found are shown in Figure 4.10. We emphasize that, despite the complexity
of this figure, it does not contain many more periodic orbits known to exist, either
through our Newton-Raphson procedure or because a period doubling bifurcation was
detected. Figure 4.10 also shows mean and r.m.s. statistics for the turbulent state
obtained by summing over many trajectories for a ’total lifetime’ between 2×104 and
105 for each Re = 150, 160, . . . , 400. For such statistical computations, the parts of
the trajectories that correspond to the approach to and the decay from the chaotic
saddle are neglected. This is done approximately by cutting off the initial and final
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Fig. 4.9. Frames showing velocity reconstruction at different phases of the unstable periodic or-
bit at the saddle-node bifurcation at Re = 166.37, with period T = 329.48. The symmetry properties
of this periodic orbit are apparent.

3×Re time units. This strongly suggests that the chaotic transient trajectory involves
visits amongst the various unstable periodic orbits that we have found. Indeed, careful
examination of transient trajectories shows that such visits do occur, although visits
near a specific periodic orbit tend to be short-lived.

4.2. MFU Domain. We now analyze the dynamics of the model for a domain
of size Lx = 1.75π and Lz = 1.2π, the smallest domain for plane Couette flow that
was numerically found to sustain turbulence [23]. Previous models for shear flows for
this domain size include [39] for plane Couette flow; see also [34].

Fixed points are born in a saddle-node bifurcation at Re = 794.51, with velocity
field reconstruction at this bifurcation shown in Figure 4.11. Each of four of the
symmetry-related fixed points undergoes a Hopf bifurcation at Re = 795.12. The
resulting periodic orbit branch bifurcates to lower Re, and can be followed back to a
saddle-node bifurcation at Re = 452.99, where it has period T = 51.35. The velocity
field reconstruction for one of the symmetry-related periodic orbits at this bifurcation
is shown in Figure 4.12 and the accompanying movie. While this is qualitatively
similar to the situation for Lx = 4π and Lz = 2π described above, there are no
period doubling bifurcations detected along the branch of periodic orbits which arises
in the Hopf bifurcation. Hence there is no period doubling cascade to a chaotic saddle
associated with these periodic orbits.

Using the Newton-Raphson method, we find other periodic orbits not connected
to the fixed point branch through bifurcations. For example, there is a periodic
orbit which arises in a saddle-node bifurcation at Re = 83.43, with period T =
28.66, and symmetry given by (4.2). It undergoes a symmetry-breaking bifurcation
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Fig. 4.10. Bifurcation diagram for Lx = 4π, Lz = 2π showing a sample of the unstable periodic
orbits. The vertical bars indicate the range of the chaotic transient (mean ± r.m.s.).

at Re = 100.96, giving rise to a branch of periodic orbits which lack the symmetry
given by (4.2). This branch of periodic orbits undergoes a saddle-node bifurcation
at Re = 79.35, with period T = 22.62, and velocity field reconstruction shown in
Figure 4.13 and the accompanying movie. This periodic orbit appears at the lowest
value of Re of any that we have found for this domain size. Furthermore, a number
of period doubling bifurcations are detected as this branch is followed. Indeed, the
bifurcation structure described here is qualitatively similar to that found above for
the domain size Lx = 4π, Lz = 2π.

Other unstable periodic orbits found for this domain size include one born in
a saddle-node bifurcation at Re = 103.91 with period T = 91.62, one born in a
saddle-node bifurcation at Re = 148.68 with period T = 92.95, and one born in a
saddle-node bifurcation at Re = 168.43 with period T = 111.98. However, perhaps
most interesting is the unstable periodic orbit born in a saddle-node bifurcation at
Re = 122.37 with period T = 39.58 and symmetry given by (4.3). As this branch
is followed, a symmetry-breaking bifurcation is detected at Re = 226.26, and torus
bifurcations are detected at Re = 354.57 and Re = 507.40. Between these torus
bifurcations, the periodic orbit is stable. At Re = 400, the stable periodic orbit
has period T = 112.51. It shows signatures of the self-sustaining process identified
in [23], but the peak in the streak energy actually comes before the peak in the vortex
mode energy: see Figure 4.14, and the velocity reconstruction in Figure 4.15 and the
accompanying movie, all at Re = 400. A sample of the periodic orbits found for this
domain size is shown in Figure 4.16. As for the domain size Lx = 4π, Lz = 2π, this
strongly suggests that the chaotic transient makes visits amongst the various unstable
periodic orbits that we have detected.

We now explore the fate of the quasiperiodic solution which arises from the torus
bifurcation at ReT = 354.57. Some features are highlighted in Figs. 4.17-4.19, which
show Poincaré maps constructed by intersecting the flow on attractors with the hyper-
plane a2 = 0, only keeping points for which ȧ2 < 0. If such a map traces out a circle,
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bifurcation at Re = 794.51 for Lx = 1.75π, Lz = 1.2π.

as in Fig. 4.17(a), the corresponding solution to the full equations lies on a torus and
is quasiperiodic; on the other hand, if such a map traces out a discrete set of points,
as in Fig. 4.18, the corresponding solution to the full equations is periodic. Chaotic
behavior for the full equations is captured by more complicated Poincaré maps, as in
Fig. 4.19(b).

The transitions between periodic, quasiperiodic, and chaotic states are summa-
rized in Fig. 4.20. This shows the instantaneous value of a1 whenever the trajectory
pierces the Poincaré section defined above. This plot is generated by adiabatically
decreasing the value of Re from Re = 360, omitting transients; therefore, if coexisting
attractors exist, only one is shown. The line from Re = 360 to Re = ReT represents
the stable periodic orbit. For Re just below ReT , the plot shows a filled band, which
represents a stable quasiperiodic solution. The apparent discontinuous transition be-
tween periodic and quasiperiodic behavior near ReT suggests that the quasiperiodic
solution does not bifurcate supercritically from the periodic orbit branch. This is con-
firmed through direct integrations which show that the stable quasiperiodic solution
exists for Re as high as 356. Thus, apparently an unstable quasiperiodic solution
branch bifurcates (subcritically) from Re = ReT to higher values of Re, then turns
around in a saddle-node bifurcation at Re ≈ 356, giving a stable quasiperiodic solu-
tion for lower Re. That is, there is an interval of bistability between the periodic and
quasiperiodic orbits for ReT < Re < 356.

As Re decreases further, there is a transition from the quasiperiodic solution
to chaos, including the presence of periodic windows. Such transitions have been
observed experimentally [19, 3, 14, 26], in numerical studies of ordinary differential
equations [38, 18, 30], and in two-dimensional invertible maps [10, 1, 2]. The dynamics
for such a transition are organized by the approach of the quasiperiodic solution (the
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Fig. 4.12. Frames showing velocity reconstruction at different phases of the unstable periodic
orbit at the saddle-node bifurcation at Re = 452.99, with period T = 51.35.

invariant circle for the map) to a periodic solution (a fixed point for the map) [1].
This leads to the birth of periodic solutions in saddle-node bifurcations when an
Arnol’d tongue is entered and destruction again when the tongue is left. Inside and
far away from the tip of the Arnol’d tongue, the invariant circle becomes wrinkled (cf.
Fig. 4.17) due to tangencies of invariant manifolds of the periodic orbits which arise
at the saddle-node bifurcations at the edge of a tongue, which can produce chaotic
behavior inside the tongue (via associated period doubling cascades, cf. Fig 4.18) [1].
For the present problem, the attractor associated with the quasiperiodic solution
born at Re = ReT is destroyed in an apparent boundary crisis at Re ≈ 335. Such a
boundary crisis occurs when a chaotic attractor collides with the stable manifold of
an unstable periodic orbit [22, 21].

5. Conclusions. In this paper, we have undertaken a dynamical systems analy-
sis of fixed points and periodic orbits for a nine mode model for sinusoidal shear flow,
in which fluid between two free-slip walls experiences a sinusoidal body force. The
model is based on Fourier modes, and generalizes the eight mode model presented,
but not studied in detail from a dynamical systems perspective, in [41]. The present
paper complements the analysis in [29].

We have analyzed the stationary states and periodic orbits for the model for two
different domain sizes, namely the moderately long and wide NBC-domain that has
been shown by Nagata, Busse and Clever to be optimal for the stationary orbits in
plane Couette flow [32, 6], and the shorter and narrower minimal flow unit domain,
the smallest domain which is able to sustain turbulence for plane Couette flow [23].
Several kinds of bifurcations are identified, including saddle-node bifurcations, a pe-
riod doubling cascade, and Hopf bifurcations of the periodic orbits. For both domain
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Fig. 4.13. Frames showing velocity reconstruction at different phases of the unstable periodic
orbit at the saddle-node bifurcation at Re = 79.35, with period T = 22.62.

sizes, long-lived transient chaos appears to be associated with the presence of a large
number of unstable periodic orbits, which are hypothesized to form part of a chaotic
saddle. For the smaller minimal flow unit domain, it is found that a periodic solution
is stable over a range of Reynolds numbers, including Re = 400, and its bifurcations
lead to the existence of a chaotic attractor.

Interestingly, a stable periodic orbit is also found at Re = 400 for the minimal
flow unit domain for a recent model for turbulent plane Couette flow [39]. That
model was derived by Galerkin projection of the governing equations onto a set of
energetically optimal modes found from a proper orthogonal decomposition of direct
numerical simulation data. As an eleven-dimensional dynamical system, the model
is of comparable size to the present nine-dimensional model for sinusoidal shear flow.
In fact, the model in [39] can have stable periodic orbits with qualitatively different
physical manifestations, depending on the rate of energy transfer to modes neglected in
the truncation, as modeled by an eddy viscosity term. In the absence of such transfer,
one finds a stable flow structure which uniformly translates in the spanwise direction.
For higher transfer rates one finds a periodic solution for which the streamwise vortices
switch their sense of rotation every period. For yet higher transfer rates, one finds a
periodic solution for which the streamwise vortices maintain their sense of rotation
throughout each period. This final case best matches the behavior of full direct
numerical simulations for plane Couette flow [39]. For the present model, the stable
periodic solution has streamwise vortices which change their sense of rotation every
period, see Figure 4.15. We are unaware of any direct numerical simulation results
for sinusoidal shear flow for this domain size, but suspect that the stability is a
consequence of the small set of modes taken into account here.
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Fig. 4.15. Frames showing velocity reconstruction at different phases of the stable periodic orbit
at Re = 400, with period T = 112.51. The symmetry properties of the periodic orbit are apparent.
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Fig. 4.19. Poincaré maps as defined in the text for attractors at (a) Re = 350, (b) Re = 348,
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