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We analyze unfoldings of a codimension two, steady-state/steady-state modal interaction possessing 0(2) symmetry. At 
the degenerate bifurcation point there are two zero eigenvalues, each of multiplicity two. The spatial wavenumbers of the 
critical modes k i are assumed to satisfy k 2 = 2k 1. We base our analysis on a detailed study of the third order truncation of the 
resulting equivariant normal form, which is a four-dimensional vector field. We find that heteroclinic cycles and modulated 
travelling waves exist for open sets of parameter values near the codimension two bifurcation point. We provide conditions on 
parameters which guarantee existence and uniqueness of such solutions and we investigate their stability types. We argue that 
such motions will be prevalent in continuum systems having the symmetry of translation and reflection with respect to one (or 
more) spatial directions. 

1. Introduction 

This paper  extends the analysis of Dangelmayr [1] and Dangelmayr and Armbruster  [2]. Related work, 

in which the spatial wavenumbers k i satisfy k 2 = k x rather than k 2 = 2kl,  as in this paper, has been done 
by  Guckenheimer  [3] and Dangelmayr and Knobloch [4]; however, the nature of the present system and 
the methods and results obtained are very different in character. In particular, our linearized system is 

diagonalizable while the 1 : 1 systems referred t o h a v e  a nilpotent linear component.  Independently of our 
work, Jones and Proctor [5] and Proctor and Jones [6] have obtained many similar results in the context of 
convection problems. 

Our interest in these systems was motivated by the study of turbulent fluid boundary layers in the wall 
region (Aubry et al. [7]). Numerical investigations of models for the dynamics of fluctuations in the 
boundary  layer reveal the presence of intermittent solutions (" bursts") that are persistent over a range of 
parameter  values in the model and that correspond to heteroclinic cycles in the model equations. Since 
homoclinic and heteroclinic trajectories are destroyed by generic perturbations we wish to determine 
whether the intermittent solutions of the model are accidental or an essential feature. Our conclusion is 
that  the heteroclinic cycles present in this model arise as a natural feature in the context of evolution 
equations which are translation and reflection invariant with respect to a spatial direction. Heteroclinic 
cycles also occur in simpler situations (Guckenheimer and Holmes [8]). In this paper  we describe the 
dynamical  systems analysis which underlies this conclusion. 
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The vector fields we study are defined on R 4 = R 2 X ~ 2 = C X C by the complex equations 

Za = £1z2 + zl(/'tl + elllZtl 2 + e121z212), 

Z" 2 = ± Z ?  "b Z 2 ( ~ 2  "b e21[zl l  2 + e221z212), 
(1.a) 

where/~j and %, are real parameters. 
These equations are preserved (equivariant) with respect to the symmetry operations (z 1, z2) 

(eiezl, e2iOz2) and (z 1, z2)--'(£1, £2). The main body of this paper gives a thorough analysis of the 
dynamics of this system. The derivation of these equations from a translation and reflection invariant 
system of partial differential equations yields a context within which they occur naturally in applications. 
We summarize this derivation here, but the discussion of the dynamics of (1.1) is independent of this 
derivation, apart from motivating the nomenclature we use for different solutions. 

Consider an evolution equation of the form u, = F(u) with u(x, .) dependent upon a spatial variable x 
(and perhaps other variables as well). We assume that the equation is symmetric with respect to 
translations and reflections in x and that periodic boundary conditions in x of period D are imposed. For 
example, F(u) might be a nonlinear differential operator with constant coefficients in which each term 

1 2 involves an even number of differentiations of x (e.g. F ( u ) = - U x x x x - U x x - ~ ( u x )  the Kuramoto-  
Sivashinsky operator). Under these conditions, the translations together with the reflections induce an 
action of O(2), the 2 × 2 orthogonal group. If F(O) = 0, then the linearization of F at this trivial solution 
will have subspaces that are invariant under a representation of the symmetry group. In concrete terms, u 
can be expanded in a Fourier series, Ek~-  ~ak exp (2"rrkxi/D) in the variable x, and the linearization of F 
preserves the space of objects associated to each Fourier mode exp (±  2~kxi/D). Typically, one can expect 
that bifurcation in a family u t = Fx(u ) will occur in the simplest way compatible with the symmetry. For 
non-zero wavenumbers with respect to x, the symmetry group acts in such a way that the simplest 
bifurcation will have a zero eigenvalue of multiplicity two. If there is a second parameter in the problem 
that varies (e.g., the length scale D), then for certain parameter values, it may happen that there is 
simultaneous marginal stability of modes with wavenumbers k and l. A reduced description of the 
dynamics associated with such a "codimension two" bifurcation leads to the study of equations of the 
form 

dl = f a ( z l ,  z2), (1.2) 

Z2 = f 2 ( Z l ,  Z2) ,  

which are equivariant with respect to a (k, 1) representation of 0(2). Explicitly 

and 

d I = e - i k O f l ( e i k O z l , e i t O z 2 ) ,  

z2  = e - i l ° f 2 ( e i k ° z l , e i t ° z 2 )  , 

Z1 --~-/1(£1 ' £ 2 ) '  

22 =L(£1, £2). 

(1.3) 

The most general equations of this form can be written in the form 

d 1 = PI(Et,  Ez, M)z t  + Qt(E1, E2, M)£~-az k 2,  

z2 = P2(E1, E2, M)z2 + Q2(E1, E2, M~zt£k-1 ] 1 2 , 

(1.4) 
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with 

Ej= ]zjl 2, j 1,2 and M=z~5~  + -t k -~- Z1Z 2 . 

In this paper, we restrict attention to the case k = 1, l = 2 corresponding to simultaneous bifurcation of 
modes whose periods in x are D and D/2.  For (partial) studies of the general case, see Dangelmayr [1] 
and Dangelmayr and Armbruster [2]. Near a point of (1, 2) codimension two bifurcation, we seek to 
understand the nonlinear dynamics of small amplitude solutions. For systems with well-behaved operators 
F(u) ,  center manifold theory (Carr [9], Guckenheimer and Holmes [10]) gives the basis for a reduction to a 
four-dimensional system of the form described above. The system (1.1) then represents the first few terms 
in the Taylor expansion of the reduced system at the point of codimension two bifurcation: i.e., after 
rescaling it is the most general vector field, up to cubic terms, compatible with the group action. Regarding 
(t~l, tt2) as parameters in (1.1), dynamical features of this system which persist under symmetric 
perturbations of (1.1) can be expected to be general features of (1, 2) bifurcation of the system u t = F(u).  
In particular, the persistent stable homoclinic cycles that we find represent solutions which linger near a 
2-mode equilibrium, then undergo an event after which the 2-mode equilibrates again in a position which 
is shifted by half a period, or D/4 .  

The phase portraits of (1.1) near the origin fall into a small number of classes giving different stability 
diagrams as (/~1,/x2) are varied. Much of the structure of the phase portraits is related to the presence of 
invariant subspaces whose existence can be deduced from the symmetry properties of the vector field. Up 
to conjugation by the symmetry group, there are three invariant subspaces for (1.1): (1) the real subspace 
defined by Im (zl) = Im (z2) = 0 and fixed by complex conjugation regarded as an element of O(2), (2) the 
2-subspace defined by z 1 = 0 and fixed by the action of the group element e i'~, and (3) the x 2 = Re(z2) axis 
which is the intersection of (1) and (2). The group 0(2) leaves the 2-subspace invariant, but there is an 
sl-family of conjugates of the real subspace. Note that two of these conjugate subspaces pass through each 
point of the x2-axis, a crucial fact in understanding the homoclinic cycles of the system. In the next 
sections, we describe the dynamics in these invariant subspaces. Although the system (1.1) may have 
equilibria that do not approach the origin as/z 1, ~2 ~ 0, we use perturbation arguments to focus attention 
on the small amplitude behavior. In the real plane, there are also mixed mode steady solutions (both x 1 
and x2 are non-zero) that bifurcate to limit cycles through Hopf bifurcation. The limit cycles are called 
standing waves. This part of our work is essentially a review of Dangelmayr's results. 

To understand the phase portrait of (1.1) outside its invariant subspaces, we introduce polar coordinates 
z 1 = rl ei0t, z 2 ~--- r2e i02 and observe that the equations for r 1, r 2 and q~ = 201 - 02 separate from the fourth 
variable due to the symmetry of the vector field. There is a new family of equilibria of the reduced system 
that yields travelling waves, periodic solutions that correspond, for one-dimensional partial differential 
equations, to waves drifting at constant speed in evolution equations such as that described above. A 
scaling in terms of a small parameter e is then introduced in an effort to obtain an integrable limit from 
which perturbations can be analyzed. This goal is achieved by noting that the system 

Z1 = Z 1 Z 2  , 

Z 2  ~--- - -  Z ? ,  

has the pair of integrals E = [zll z + Iz2[ 2 -- r~ + r~ and L = (1 /2 i ) [z~  2 - i~z2] = r~r 2 sin~. Along the 
level curves of the reduced system in polar coordinates, we use the method of averaging to compute, to first 
order in e, the average variation of E and L along a trajectory of the integrable system. We prove that 
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there is a region of parameters (/~1, ~2)  in which the reduced system has a unique limit cycle and hence the 
system (1.1) has an invariant toms. These solutions we call modulated travelling waves, see section 2, below. 
For  fixed E, we follow the modulated waves lying close to various values of L from birth in a Hopf 
bifurcation to their termination at heteroclinic cycles. These cycles involve two distinct 2-mode equilibria 
that are translates of each other by D/4 ,  half a 2-period. At each of these equilibria, there are two 
invariant " rea l"  subspaces as noted above. The subspaces associated to each of the two equilibria in the 
cycle are the same, and the cycle contains one heteroclinic trajectory in each of the two subspaces. For 
general vector fields, the stability of a heteroclinic cycle involving nondegenerate saddles is determined by 
the magnitudes of the eigenvalues associated to the saddles. Here, cycles that are predicted to be unstable 
according to these eigenvahies are actually stable as a result of the symmetry of the system. 

The rest of the paper is organized as follows. In the next section we introduce the equations to be 
studied, discuss the limit case noted above, and review some elementary bifurcation results from the works 
listed above. Section 3 contains results on non-existence and existence of heteroclinic cycles. We discuss 
modulated travelling waves in the limit of small amplitude Izjl = d~(e) and very small parameters 
I#j[ = O(e2) in section 4 and show that the unique branch of such waves limits on the heteroclinic cycle at 
one end and collapses onto the branch of travelling waves in a Hopf  bifurcation at the other. Stability of 
heteroclinic cycles and modulated travelling waves is discussed in section 5 and section 6 contains some 
examples of unfoldings and bifurcation diagrams for specific cases. 

2. Normal form and scaling 

As shown by Buzano and Russo [11] and Dangelmayr [1] (cf. Dangelmayr and Armbruster [2]) and 
outlined above, the normal form for an 0(2) equivariant vector field involving two modes can be written in 
the complex form as 

- / - 1  k 
zl = z i P 1 +  qlzl z2' (2.1) 

- z l 2 k - 1  22 = z 2 P 2  + q2 1 2 , 

where the Pi, qi are smooth real functions of the invariants ]gll 2, Iz2l 2 and z~£g + zlz~ . - I  k Specializing to the 
case of interest k = 1, l = 2, (2.1) becomes 

E 1 ~--- Z1(~1 + d n l z l l  2 + d121z212) + cl2z1z2 

z2 = z2(#2 + d211zll 2 + d221z212) + CllZ? 
+ 0(4) ,  (2.2) 

where 0 (4) represents terms of order I zjl 4 which will not be explicitly included henceforth, cik, djk are real 
coefficients and #1,/~2 are unfolding parameters. Assuming that c12, Cll ~ 0, we can rescale, reversing time 
if necessary, to obtain 

21 = YlZ2 + Zl (/-t 1 + elllZll 2 + e12]z212), 

2 2 = _+z 2 + z2(kt 2 + e211Zll 2 + e221z212), 
(2.3) 

where e n = d l l  / Icncl21, e12 = d12/c22, e21 = d21 / ]C11C121 and e22 = d22/c22. (One can normalize one 
cubic coefficient to + 1 by a further time scale change; moreover, by nonlinear coordinate changes, it is 
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possible to further eliminate one of the cubic coefficients [1]. However, there is no advantage for our 
discussion in performing these coordinate changes.) 

Letting z s = rj ei°;, (2.3) may conveniently be rewritten as 

t~l = rtr2cos dP + r l(~ 1 + e t l r ?  + e12r2), 

~2 = + r ? c o s +  + r2(/x 2 + e2trt z + e+2r22), (2.4) 

<~= - ( 2 r  2 + r2/r2)sineo, 

where q~ = 20 t - 0 2 .  The emergence of the phase difference q, and reduction to three (real) dimensions is a 
consequence of the 0(2) symmetry discussed above and we remark that this phase translation invariance is 
a characteristic of the full (non-truncated) O(2)-equivariant system (1.4). This is important in our 
discussion of quasiperiodic motions below. However, since the transformation is singular when q,  r E = 0 it 
is also necessary to use the real Cartesian form 

21 = XtX2 + YlY2 + Xl(~tl + e n r l  2 + elzr22), 

Yl  = X l Y 2 - -  y lX2 + Yt(Izt + e l l r?  + e12r22), (2.5) 

22= + _ ( x ~ - y ? )  + x2(,a 2 + e21r 2 +  e22r2), 

92 = + 2 x l y  1 + y2(Ix2 + e21r 2 + e22r22), 

where rj 2= x } + y2. This will be especially useful in our discussion of heteroclinic cycles in section 3. 
Reflection symmetry implies that the purely real system (Yl--Y2 = 0) is invariant, as is any q-invariant 
rotation of it, for example the YI, x2 system (x x =Y2 = 0). This will also be used in section 3. 

Finally, the scaling ~) = esj, /,j = •2/.,j and ( ' )  = e( )' transforms the polar system to 

s t =  sxs2 cos tO + esl(v 1 + ens21 + etEs22 ), 

s~ = _ s ?  cos qS + es2( v = + e21s ? + e22s2~), (2.6) 

• '=  - ( 2 s  2 _+ se/s2)s ineo,  

and reveals two integrals for the limit e = 0. These are 

E = s 2 -T- s~ (2.7) 

and 

L = s2s2 s ine.  (2.8) 

We note that the existence of these integrals was observed independently by Jones and Proctor [5] and that 
they also use them in their analysis. The integrals play a crucial role in our analysis of modulated travelling 
waves in section 4. 

It is appropriate at this point to discuss various classes of solutions exhibited by eqs. (2.3), (2.4) and 
(2.6). It is important here to recognize that the individual phase equations 

and 
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have been suppressed in writing (2.4). With this in mind, steady solutions or fixed points of (2.3) 
correspond to fixed points of (2.4) or (2.6) with ~ = 0 or ~r. In addition to the trivial solution r 1 = r 2 = 0, we 
have pure modes (q  = 0, r 2 4= 0) and mixed  modes, rl, r 2 4: O. Fixed points of (2.4), (2.6) with q~ 4: 0, ~r 
correspond to travelling waves of (2.3) in which the phase difference remains constant, but 01 and 02 both 
increase or both decrease linearly with time (such solutions only occur in the ' - '  case, and also require 
2r22 = r ( so that 2/~ 1 = t~2). Periodic orbits of (2.4)-(2.6) on the subspace ~ = 0, ~r correspond to singly 
periodic standing waves of (2.3) while periodic orbits with q~ 4= 0, ~r correspond to doubly periodic modulated 

travelling waves of (2.3). Since ~ --- 201 -02  is the only combination of phase variables that appears in the 
full normal form equations (1.4) such an isolated two-toms will not be subject to phase locking. Along a 
cross-section defined by 4~ = constant, the points (rl, r2, 01, 02) and (rl, r2, 01 + a, 02 + 2a) evolve so that 
they are always separated by the rotation by angles (a ,2a)  in C X C. The cross-section can be 
parametrized by a and its return map is then a rigid rotation of this coordinate. Here we explicitly see how 
the SO(2) c O(2)-equivariance prevents phase locking; for a more general analysis, see Rand [12]. Finally, 
a quasiperiodic solution of (2.4)-(2.6) corresponds to a triply periodic modulated travelling wave of (2.3). 
These statements are all elementary deductions from the equations and the polar coordinate transforma- 
tions. 

Before starting our analysis of the dynamics, it is convenient to collect some facts about steady solutions 
of (2.3)-(2.5). The origin is always a steady solution with eigenvalues/~1,/~2, each of multiplicity 2. Other 
branches of nontrivial fixed points lie in subspaces that are fixed by subgroups of 0(2). Rotation by "rr fixes 
the subspace z I = 0, and (2.3) reduces to the equation 

22= z2(/~ 2 + e22]z212) 

on this subspace. When ~2/e22 < 0, there are equilibria (pure modes) along the circles I z2[ = (- /~ 2//e22) 1/2- 
T h e  eigenvalues of these equilibria are 0 and - -2~2 within the plane z I = 0  and /x 1 -- /xEe12//e22 -] - 
(--/.t2//e22) 1/2 normal to the plane z I =0 .  Note that the zero locus for the normal eigenvalues has 
quadratic contact with the parabola eE2/,t 2 -b ~2 = 0. There is also a family of planes invariant under the 
reflections in 0(2). These are all rotations of the "real" subspace Yl =Y2 = 0. The restriction of (2.5) to the 
real subspace gives 

.~1 --'~ X1X2 q- Xl (]-t 1 -}-ellX? + el2x~), 

f¢2 = +W X? "b X2(I~2 q- e21x? + e22x2Z). 
(2.9) 

The system (2.9) is still quite complicated as/.tl, ~2 ---) 0 ;  there may be equilibria that do not tend to the 
origin. However, these equilibria play no role in our local analysis and by using the rescaling employed in 
the transformation (2.5) to (2.6), we obtain the system 

e 2 (1 ~l~2"4-e~l(Pl + e l l ~  2q- 12~2), 

(2 = q_~2 + e~2(v2 + e21~2 + e22~2), 
(2.10) 

that can be studied in terms of power series in e. Since e~ - x~, phenomena associated with (2.10) are local 
for our problem if they are O(e ~) with a > - 1. 

Non-zero equilibria of (2.10) satisfy either ~x = 0 and ~2 = 2 - v2/e22 or they satisfy ~1 4: 0. The equilibria 
on the ~2 axis have already been discussed, while the equilibria with ~1 v~ 0 satisfy "l-/) 1 -'1- ( . .1_£-1  "l- ee21vl 

--ee11~,2)~2 q-(e21 ___ e12)~2 + e[e l2e21-  e11e22]~23 = 0 and hence solutions which are O(e ~) with a > - 1  
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satisfy ~2 = --~Vl -- E3(e12 v2 ---b e11/.,1/.,2) + o(83),  ~2 = -t-E2Vll.,2 -t-z~(E2). These  equilibria correspond to mixed  

modes and the linearization of the equations at them has eigenvalues e(v2/2 +_ (v2/4 -T- riVE) 1/2) + o(e) in 
the real plane (~ = 0, ~r). Since 412 -- -t- eEvlV2 > 0 for existence of the mixed mode, zero eigenvalues cannot 
occur. For pure imaginary eigenvalues P2 must be o(e). Further calculations yield 

p2 = -- 3e2e22 v2 + o (82)  

or  

p.2 = -3e22~t 2 + o ( ~ ) ,  (2.11) 

in terms of the original parameters. The eigenvalues in the direction normal to the real subspace are 
e(2v 1 + v2)+o(e)  and 0, the latter having its eigenvector tangent to the circle of equilibria obtained by 
rotation of the equilibria in the real subspace Yl = Y2 = 0 by the symmetry group. 

Elementary bifurcation computations show that the mixed modes bifurcate from the trivial solution 
when ~1 = 0 and from the pure modes r 2 = (-~t2/e22) 1/2, ~ = "~ (resp. ¢ = 0) on the curves 

P'l - P'2elz/e22 + (-/*2/e22) 1/z = O, (2.12) 

respectively. 
We have already noted that travelling waves are equilibria of (2.4) or (2.6) with ~ ,  0, ~r. Such solutions 

always come in pairs and do not correspond to equilibria of (2.5), but rather to periodic orbits that are left 
invariant by the symmetry group. The travelling waves must satisfy 2r 2 + r~ z = 0, showing that they can 
only exist in the ' - '  case, when they are given by 

r22 = _ (2/~ 1 + /x2) / (4e  n + 2e12 + 2e21 + e22), 

r 2 = 2r22, 

/x2(2ela + e12 ) --/.tl(2e21 + e22 ) 
COS ~ = 

[ -  (2~1 +/x2)(4e n + 2e12 + 2e2, + e=)] ~/~" 

(2.13a) 

(2.13b) 

(2.13c) 

The stability of the travelling waves is discussed in section 5. Travelling waves bifurcate from the mixed 
mode when eqs. (2.13) are simultaneously satisfied with Icosq, I = 1, so that they exist in the region of 
parameter space defined by 

[/~2(2en + e12) - ~1(2e21 + e22)12 < - (2/* 1 +/~2)(4en + 2e12 + 2e21+ e22 ). (2.14) 

Alternatively, we may write the bifurcation set as 

( 2e21 + e22 ) 4 e l i +  2 ( e 1 2 + e 1 2 ) + e 2 2 [ ( 1 - - 4 ( 2 e 1 1 + e 1 2 ) t , 1 )  1 / 2 -  11 
/I2 = 2 e n  + e12 II/'1 '1- 2(2e n "Jr- e12) 2 

= -- 2/,1 - (4e l l  + 2(e12 + e21 ) + e22)~ 2 + o(/.t 2 ). (2 .15)  

We remark that if we treat the truncated system (2.3), (2.4) without restricting discussion to "local" 
solutions, with I~jl and I zsl small, then additional mixed modes can occur and interaction between 
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bi furca t ion  to travelling waves and standing waves becomes possible. Dropp ing  the condi t ion that  
~2 = -evl+O(e3), ~1 = +_e2vlV2+o(e2), it is possible for the mixed mode  to have a second zero 

e igenvalue with eigenvector normal  to the zero subspace,  corresponding to a bifurcat ion to travelling 

waves.  The  eigenvalues of  the (possibly non-local)  mixed mode  x I = ~1, x2 = ~2 on the real subspace are 
- ( 2 Y ~  _+ "~?)/X2, 0 and the roots of 

2~2_ T ~ + D = 0 ,  

T =  2(e11.~ ? + e22.~ 2) 7+- x? / /x2 ,  

D = 4( e11e22- e lEeE1)XEx 2 - 2X2(eE1Y 2 + 2e12X 2 + 1 _+ ellY21/X2). 

(2.16) 

Thus,  for  coincident  H o p f  bifurcat ion to s tanding waves and pi tchfork bifurcat ion to travelling waves we 

require  that  (2.13a, b) and (2.15) hold and the trace T of  (2.16) be zero simultaneously.  Solving for Yl and 

~2, we find that  the critical mixed mode  lies at 

ffl = -+ 2 ~ 2 ,  x 2 =  - 1 / ( 2 e n  +e22)  (2.17) 

and  the b i furca t ion  point  is given by  

e22 -- e12 4e l l  + 2e21 + 3e22 (2.18) 

/-tl = (2e l  I + e22)2, /~2 = -- (2el  1 + e22)2 

Since this implies  that  the/~j  and  xj are of  O(1), it goes beyond  a strict local analysis, and we will not  
discuss it in this paper .  Proctor  and Jones [6] discuss this mult iple bi furcat ion point  further.  

In  the fol lowing analysis we somet imes restrict ourselves to the case of  e i j <  0, so that  the system is 
g lobal ly  stable. (It  is easy to see that  the funct ion E = r 2 + r ff decreases on solution curves for  E 

sufficiently large in this situation.) 

3. Existence and non-existence of heteroclinic cycles 

W e  start  by  showing that  no heteroclinic cycles exist in the ' + '  case. In  fact we have more:  

Proposition 3.1. I f  Cxx and c12 have the same sign then all solutions of  (2.2) are asympto t ic  to the set 
(dp = 201 -- 02 = 0)  k.) (dp = Ir }. NO travelling waves, modula ted  travelling waves, or heteroclinic cycles exist 

in this case. 

Proof. In  this si tuation the "no rma l i zed"  phase  equat ion (2.4) is q~ = - ( 2 r  2 + r2/rz)sinep and since the 
quan t i ty  in parenthesis  is non-negat ive we find that  ~ < 0 for  ~ ~ (0, "~) and q~ > 0 for  q~ ~ (~,  2~)  and 
r 2 4: 0. Thus  q~(t) ---, 0 = 2~r unless solutions start  with ~(0)  = at. We  note  that  the coordinate  singularity at 
r 2 = 0 does not  compl ica te  matters:  solutions passing through r 2 = 0 near  q~ = ~r emerge near  q~ = 0, 2~r, but ,  
since ~2 = rx zcos  q' for r 2 = 0, solutions near  q5 = 0, 2"~ cannot  reach r 2 = 0 again. They  must  therefore go to 
oo or  a p p r o a c h  the ' pu r e '  mode  r 2 = ( - #  2/e22)1/2 or approach  a mixed mode,  which m a y  be s ta t ionary  or 

periodic.  [] 
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In contrast, in the ' - '  case we have: 

Theorem 3.2. If en,  e22 < O, e12 q- e21 < 2(elle22) 1/2, /.tl, ~2 > O, ~1 --/-t2e12/e22 -- (--/-t2/e22) 1/2 < 0 < ~1 -- 
/~2e12/e22 + ( - /x2/e22)  1/2 and no mixed modes exist, then there is a heteroclinic cycle connecting each 

diametrically opposite pair of points r 2 = r2 = ( - ~ 2 / e 2 2 )  1/2~ 02 = 02, rl = 0 and r 2 = r2, 02 = 02 + ~r, r 1 = 0 
on the circle of pure modes. 

Proof. For e22•0  <~2 there is a circle of pure modes r2=(--ld,2/e22) 1/2, I" 1 --0. Without loss of 
generality we restrict our attention to the two members of this circle lying in the real subspace y~ =Y2 = 0. 

def 
These fixed points are (x 1, Yl, x2, Y2) = (0, 0, +_ (-/.tE/eE2) 1/2, 0) -- r +, r -  with eigenvalues/~1 - / - t  2elE//e22 

- t - ( - / . t 2 / / eE2)  1/2, - 2 ~ 2  , 0, respectively, and eigenvectors (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1) for 
r + and (0,1, 0, 0), (1, 0, 0, 0), (0, 0,1, 0), (0, 0, 0,1) for r - .  Under the hypotheses of the theorem, the first two 
eigenvalues are positive and negative, respectively, and the third is negative. To establish the existence of a 
heteroclinic cycle it is necessary to show that the (one-dimensional) unstable manifold of r +, WU(r+), 
intersects the two-dimensional stable manifold of r - ,  WS(r-) ,  and that W~(r -) intersects WS(r+). 
However, since the Cartesian equations (2.5) are invariant under the transformation (x 1, Yl, x2, Y2) 
(Yl ,  --X1, - -X2,  --Y2) (or  7,j--~2j e iJ'~/2), it suffices to prove the existence of the first of these connections: 
the second is obtained from the first by applying an element of the symmetry group. 

The eigenvector computations above show that the unstable manifold Wl~(r +) is tangent to the plane 
Yl =Y2 = 0 and, since this plane is invariant for (2.5) the global manifold WU(r +) similarly lies in this 
plane. Our problem therefore reduces to showing that the real planar system 

:tl = x1(/ 1 +enX2 + e12x22 + x2) '  (3.1) 

has an orbit connecting the saddle (X1, X 2 ) = ( 0 ,  q-(--~2//e22) 1/2) to the sink (0,--(--/.t2//e22)l/2). 
Furthermore,  since (3.1) is invariant under x 1 ~ - x  1 we may confine our attention to the positive half 

plane H =  ((Xl, XE)lX 1 >0} .  Now the unstable manifold WU(r +) enters H, and since the x 2 axis is 
invariant, the to limit set of WU(r +) must lie in H (possibly at o¢) or on the x 2 axis itself. The 
nonexistence of mixed modes implies, via index arguments and the Poincar6-Bendixson theorem, that 
there are no limit sets such as closed loops or periodic orbits contained in H and the conditions 
ell  , e22 < 0 and e12 -t- e21 < 2(e l l e22)  1/2 imply that solutions cross the semicircle E = x 2 + x~ inwards for 

2 2 4 E sufficiently large (dE/dt = 2[~1 x2 +/.t2 x2 q- ell x4 + (e12 q- e 2 1 ) x l x  2 + e22x2]).  T h u s  to(H/U(r+)) C 
{x 1 =0} .  Now there are only three fixed points r +, r -  and (0,0) on X l = 0  and, since x l = x 2 = 0  is a 
source for/~1, ~2 > 0, we conclude that to(WU(r+)) = r - ,  as claimed. See fig. la.  [] 

Remarks. The nonexistence of mixed modes is not necessary for heteroclinic connections. However, 
stating specific conditions for existence in the presence of mixed modes is awkward. Here is an example of 
the kind of statements one can make for the planar system (3.1): 

L e m m a  3.3. I f  eij< 0 V 0", /12 > 0, /.t 1 --/ . t2e12/e22 -- (--/ . t2//e22) 1/2 < 0 </ . t  1 -- ~2e12//e22 q- (/.~2//e22) 1/2 a n d  
either /~2-/-tleE1//ell > 0 and I/~iI is small or #1 > 0, then all solutions starting in the quarter plane 
Q = ( (x  x, x2) lx  1 > 0, x 2 _< 0) approach the sink at (x 1, x2) = (0, -- (--~2//e22)1/2). 
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X 2 

X 1 

a) b) 
X 2 

X 1 

c) 

X 1 

Fig. 1. Heteroclinic connections in the real subspace. (a) No mixed modes; (b) with a mixed mode; (c) a mixed mode obstructs a 
connection. Note  the stable standing wave (periodic orbit). 

Proof. Simultaneously setting kl = ~2 = 0 with x~ ~ 0 in (3.1) leads to the conditions 

2 x def 
X ? =  - - ( ~ 1  "4- X 2 +el2x2)/ell = f ~ l ( x 2 ) ,  

x? = [ ( e  e22 - e,2e x)x  - e21x  + -  1e 1] x J e .  

def 
= gp,,, ~ ,2 (x2) .  

(3.2) 

While a single cubic for x2 can dearly be derived (cf. section 2), it is convenient to consider (3.2) 
geometrically and interpret mixed modes as intersections of the graphs of f and g in the upper (x2, Xl 2) 
half plane. The conditions of the theorem guarantee that such solutions only occur in the quarter plane 
x 2 > 0, x I > 0. Thus no fixed points exist in Q and, as in the proof above, this implies that no other limit 
sets exist in Q. 

Since x2 = - x ~  on x 2 = 0, solutions starting on the boundary x 2 = 0 enter Q. This, together with the 
fact that solutions cannot escape to oo (dE/dt < 0 for large E)  implies that all solutions reaching or 
starting in Q are asymptotic to the sink, as claimed. [] 

I f  the hypotheses of lemma 3.3 are met, then we need only show that the unstable manifold WU(r ÷) 
meets the x 2 axis transversely at some point x 1 > 0 to conclude that it must therefore limit on the sink. 
Such a condition can be checked by numerical integration or careful construction of invariant domains. 
See figs. lb ,  c. We will return to examples such as these in our discussion of specific unfoldings in sec- 
tion 6. 



D. A rmbruster et a L /  Heteroclinic cycles and modulated travelling waves 267 

4. The ' - '  ease: modulated travelling waves 

We now turn to the scaled equations (2.6) in the case that q2 and c~1 of (2.2) have opposite signs. The 
main result is: 

Theorem 4.1. If c12 and c n have opposite signs, the quantity e = 4e n + 2e12 + 2e21 + e22 4:0 and e > 0 is 
sufficiently small, then eq. (2.6) possesses at most one periodic orbit. The family of periodic orbits 
(modulated travelling waves) obtained by varying v~ and v 2 limits on the travelling wave solutions 

s 2 = 2s22 = - 2(2v 1 + v 2 ) / e  , ~b = ~/2,  3~r/2 when v 2 = Vl[1 + 9 ( e 2 2  - e l 2 ) / ( e  - 3 ( e 2 2  - e12 ) )  ] and limits on 
the heteroclinic cycle at v 2 = vle22/e12. 

Proof. For e = 0, the functions E and L defined by (2.7) and (2.8) are constant on solutions of (2.6). The 
phase space of (2.6) is the product of a circle S 1 (varying ~) with the positive quadrant of the (Sl, s2) 
plane. Note, however, that the boundary of the phase space is not invariant under the flow, and that the 
points (sl, 0, ~) and (sl, 0, ~ + or) should be identified so that a trajectory exiting the boundary at (sl, 0, ~) 
re-enters at the point (Sl, 0, ~ + ~r). The intersections of E and L are transverse except on (1) the boundary 
of the phase space given by sis 2 = 0, and (2) the rays defined by s 1 = v~-s 2 and cos e# = 0. On these rays, we 
have 4E 3 - 27L 2 = 0, and each ray is surrounded by a family of closed orbits formed by the intersections 
of E = const, and L --- const., see fig. 2. Note that 4E 3 - 27L 2 > 0 throughout the phase space. Behavior in 
the region ~ ~ (~r, 2~r) is identical to that in (0, ~r), with L replaced by - L ,  so henceforth we implicitly 
restrict our discussion to ~ ~ [0, ~r ]. 

Letting p = s 2, unperturbed (i.e. e = 0) solutions of (2.6) may be expressed in terms of elliptic integrals 
[13]. A simple computation shows that 

( p,)2 = (2s2s~)2 = 4[ s4s 2 cos 2 • ] = 4( P( E - p )2 _ L 2 ), (4.1) 

since E = s~ + p and L = s2s2 sin q~. Evolution equations for E and L for the perturbed solutions may 

L = const. 

r 

, / - ~ ' /  S2=2S1 , ~ = T c / 2  
S 2 

0 = ~  

, = o-~-.~ 
Sl 

Fig. 2. Level sets of the integrals E and L, showing a family of unperturbed closed orbits on a surface E = const, 
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then be written in terms of p: 

E '  = 2e[(v,  + e u E )  E + (v 2 - v t + ( e12 + e21 --  2en)  e ) p  + ( ell + e=2 - (et2 + e2t ))p2], 

L ' = e L [ ( 2 v  I + rE) + (2e n + e2a)E + ((2e12 + e22 ) - (2el1 + e=J)p]. 
(4.2a) 

(4.2b) 

We wish to compute conditions under which a given solution p(t), parametrized by E and L, will be 
"almost"  preserved under the perturbation. More precisely, the method of averaging implies that for small 
e > 0 periodic solutions of (2.6) will be found near the unperturbed closed orbit E = E0, L = L o when the 
pair of functions 

A E  = fo T(E°' L°)E' dt ,  A L = fo T( E°' L°)L' dt (4.3) 

has a nondegenerate zero (here T(Eo, L0) is the period of the unperturbed closed orbit), cf. Hale [14], 
Guckenheimer and Holmes [10, chapter 4]. 

Using (4.1) and (4.2), the system (4.3) has the form 

AL 

2 [¢  a + tip + TO 2 
do (p(p))l/2 

up 
( e ( p ) ) l / 2  

(4.4) 

where b = b(E,  L )  and c = c(E, L )  are the middle and smallest roots of the cubic P(p)  = p3 _ 2Ep2 + 
E2p - L 2 and a, t ,  ~/, 6, X are functions of E alone given by the coefficients in (4.2): 

a = (vl  + e n E ) E ,  

-~- (P2 --  P1) "1- ( e l 2  4- e21 --  2 e n ) E  , 

T = ( e l l  -t- e22 ) --  ( e l 2  + e21) ,  

8 = ( 2 p  1 + lp2) + ( 2 e l 1  + e 2 , ) E ,  

~. = (2e12  + e22 ) --  ( 2 e l l  + e21 ) .  

We now wish to use classic reduction procedures for elliptic integrals to find the zeros and the Jacobian 
derivative of the mapping F(E,  L )  = (AE,  AL).  Because we are integrating around closed curves in (4.3), 
the integral of any exact differential will be zero. In particular, 

P'(P) dp= } f 3p2-4Ep+ E2 O=fd((P(P))l/2)=½f (e(p))l/2 -(-~p))~7e dp 

Thus 

p2 E 2 
f (p(p))l/~ dp=.~ f Ep dp- ½ f up (4.5) 
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Substituting (4.5) into (4.4) and writing I i = f ( p i / ( P ( o ) ) l / 2 )  do, (4.4) becomes 

= 2 . ( 4 . 6 )  

AL [_ L8 LX 11 

[,o] 
Now (4.6) has non-trivial zeros if and only if the determinant of the matrix is zero and lies in the 

11 
kernel of the matrix. For non-zero L, this gives an equation depending only on E, namely 

X ( a -  ½E2~,) - 8 ( f l  + -~E~,) =0  (4.7a) 

and an equation for the ratio of the elliptic integrals (which do depend implicitly on L via the roots b, c of 
P(P)). 

S~ a 
I o a" (4.78) 

Since (4.7a) is independent of L, a solution of the system (4.7) will be non-singular provided that the 
partial derivatives of (4.7a) with respect to E and (4.7b) with respect to L are non-zero: 

~-~(X(a  - ]EZ) 'y  - 8( f l  + 4E.I)  ) q= O, (4.8a) 

I ~o ] 4: 0. (4.8b) 

Once again, the classical reduction procedure of Legendre for elliptic integrals [13] can be used to 
re-express (4.8) in terms of I 0, 11. We have 

a (i, 1 ai,  ;talo ]/,2  tToj =[( Io- -6-£I ~t as~ ]ll :o, 

and define 

do-- S-,>' (s>(. ) )  do • 

Now 

S, = f P'~'(P) 4+3 -- 2 ~ + 2  + E24+i - L24, 
(p(p l )  -3/2 

0= fd (p-~)~l~] --(i+ 1)4--~[3a,+3-4EJ,+~ + e~4+d, 

(4.9) 
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and 

0 =  ½ 1 3 4 -  4EJ  1 + E2Jo]. 

From (4.9) for i = 0,1 together with the final equation, we obtain 5 equations for I0, 11, J0, J1, J2, J3, J4 
which can be used to express Jo and Ja as functions of I o and 11. We finally obtain 

L2(4E 3 - 27L 2) 

9L22 3 lr,ol 

l[J (4.10) 
12EL 2 - 2 E  4 2E 3 - 9 L  2 11 

Using (4•10), we evaluate 

a [11 -~-f t f~o ) = ( IoJ1- llJo)/l~ 

a s  

O L ( / ~ ) =  L 2 ( 4 E 3 1 2 7 L  2) (12EL2-2E4)+2(2Ea-9L2)( /~)-2E2(  I1/2] Tojl- (4.11) 

The discriminant of the quadratic expression for (11/lo) in (4.11) is 3L2(27L 2 - 4E3), and this is negative 
away from the boundary of the phase space and the ray of singular points given by s I = v~-s 2. We 
conclude that (4.11) can never be zero in the interior of the family of dosed orbits of the unperturbed 
system and hence that (4.8b) is satisfied. 

Next, we examine (4.8a). To begin with, evaluation of (4.7a), the condition for the matrix of (4.6) to be 
singular, yields 

x v ( ~ -  }e  ~) - a ( ¢  + l e v )  

= ~(v 1 -  v2 + ( e l z - e 2 2 ) E ) ( 6 v 1 +  3v 2+ (4e n + 2e12+ 2e21+ e22)E ). 
(4.12) 

We denote the roots of (4.12) E M and E T, respectively, since they correspond to the desired modulated 
travelling waves and the travelling waves themselves• The vanishing of (4.8a) simultaneously with (4.7a) 
requires that (4.12) have a double zero; i.e., both factors of (4•12) must vanish simultaneously. Now the 
root of (4.12) with 

- 3 ( 2 v  I + v2) 
E = E T = 4 e  n + 2e12 + 2e21 + e22 

(4.13a) 

yields a value for 1t/1 o of 

I 1 - (2v I + v2) 
I0 4el1 + 2e12 + 2e21 q- e22 

E 
= --j-. (4.13b) 

This value of 11/10 corresponds to the value for L with L 2= 4E3/27  realized at the travelling wave 
equilibrium solutions. On a nonsingular orbit of the unperturbed equation, we conclude that (4.8a) is 
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satisfied. Therefore, the variation is a nonsingular function of on the nonsingular orbits of the 
AL 

unper turbed equation. Our analysis implicitly assumes that the quantity e = 4e H + 2ex2 + 2e m + e22, of 
the theorem, is non-zero. If  this condition fails, then the vector field is highly degenerate: for example, 

there is a whole curve of equilibrium solutions that occur when 2vx + v 2 = 0. 
Since the derivative of the mapping obtained from (4.6-7) is triangular and nonsingular, the mean value 

theorem implies that, if e ~ 0, eq. (4.4) has at most one zero for each set of parameter  values. This 
establishes that there is at most one modulated travelling wave solution in ,/, ~ (0, "~) for each set of 
parameter  values. 

To  complete the proof we compute the bifurcation point at which the two roots E M and E T of (4.12) 
coincide: 

EM = v2 - vl - 3(2Vl + P2) ~_ ET ; 
e12 -- e22 4exl + 2e12 + 2e21 + e22 

thus 

9 ( e22 -  e12) ] (4.14) 
v 2 = v  1 1 +  4 e l l + 5 e 1 2 + 2 e 2 1 _ 2 e 2 2  . 

This coalescence of modulated travelling wave and travelling wave corresponds to a Hopf  bifurcation, as 
an elementary calculation with (2.6) linearized at the approximate fixed point shows (cf. section 5 below). 
At the other limit we choose E M = s 2 + s 2 = 0 + ( ( -  v2/e22)l/2) 2 = -v2/e22,  the level set corresponding to 
the saddle points s 2 = + (-v2/e22)l /2Sl  = 0, to obtain 

EM 
P2--Pl  P2 

el2 - e22 e22 

or  

v2 = vle2Jex2.  (4.15) 

We remark  that  the two bifurcation equations coincide when el2 = e22 or  2el l  + e21 = 2e12 + e22. [] 

5. Stability of heteroclinic cycles and modulated travelling waves 

We start with a general result on asymptotic stability of the heteroclinic cycles discussed in section 3. 

Proposition 5.1. If  the hypotheses of theorem 3.2 or of lemma 3.3 are met, a heteroclinic cycle exists and if, 
in addition 

m i n { 2 / ~ 2 , - ( / ~ 1 -  ~2e12/e22 - ( -  ~2//e22)1/2)} > P l -  ~2e12//e22 q'- ( - -~2 /e22)  1/2 

then the heteroclinic cycle is locally asymptotically stable. 
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Proof. We consider the behavior of solutions arbitrarily close to the heteroclinic loop, so that the time 
taken for one circuit near the loop is dominated by the periods spent in the neighborhoods of the saddle 
points, where the linear terms are dominant. Straightforward estimates of the type performed in Silnikov 
[15] (cf. Guckenheimer and Holmes [10, chapters 6.1, 6.5]) then show that, if the positive eigenvalue of the 
saddle hu =/~1-/-t2e12/e22 + ( - ~ 2 / e 2 2 )  1/2 is smaller than the magnitude IXs[ of its weakest negative 
eigenvalue, then solutions entering a &neighborhood U of the saddle at a distance d I < 3 from the stable 
manifold exit at distance 

d 2 < 3(~-x,/Xo)dlXJxoq[1 + 0 (3 ) ]  (5.1) 

from the unstable manifold. Here ?ts = rain(2/,2, -(/*x - ~2e12//e22 - ( - / - t 2 / e 2 2 ) l / 2 ) }  is the weakest stable 
eigenvalue and (5.1) is obtained by integrating the flow in "normal  coordinates" near the saddle: 

= ( x u  +fu(x))Xu, 
2 s = ( A  s +fs(x))Xs. 

(5.2) 

where A s is a matrix of negative eigenvalues, the weakest being Xs, x u and x S lie in the (local) stable and 
unstable manifolds, respectively, and fu, s = O(I x l) are the nonlinear terms, which are 0 (3) in U. 

Thus the rate of attraction to the cycle in the neighborhood of a saddle point is controlled by the ratio of 
the unstable and weakest stable eigenvalues. If I~s/?%l > 1 then, for sufficiently small 3, d 2 < d I and 
solutions in U are attracted to the cycle. 

The time taken for solutions to pass through U becomes unbounded as d 1 ~ 0, in fact 

t -  ~ In , (5.3) 

while the time for solutions to pass from saddle to saddle is independent of d 1, d 2. Gronwall estimates 
then show that, while solutions may drift away from the cycle as they pass between saddles, the attraction 
near the saddles dominates. 

The present situation is potentially complicated by the existence of a zero eigenvalue and associated 
center manifold. However, the fact that this is due to the 0(2) group action implies that there is no motion 
in the direction corresponding to this eigenvector. [] 

We now turn to the question of stability of the travelling and modulated travelling waves. Here it is 
convenient to consider the scaled equations (2.6), as in section 4. The travelling wave fixed point is given 
by (2.13). Expressed in terms of the scaled variables sj = 5 / e  and parameters vj = ~j//e 2, we have 

s 2 = _ (2v 1 + v2) /e ,  s 2 = 2s 2 

and 

S2COS*  = - - e ( V  1 -t- e l l s  ? + e12s2 ) ,  

v2(2e n + e12 ) - vl(2e21 + e22 ) 
COS ~ -= E 

( - ( 2 v  a + v2)e) 1/2 

(5.4) 
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where  e = 4elx + 2e12 + 2e21 + e22 (assumed 4: 0) is the quant i ty  occurring in theorem 4.1. We conclude 
that  sin q~ = 1 + O(e2). Linearizing (2.6) at this fixed point,  we obtain the matr ix 

I 
- 4ee l lP  ~-e[2e12P - e t ]  7r2-P 

M = 7~-e[2e21 p + 2Pl1 2e[e22 p - P1] 2p 

_2V~- - 4  0 

+ (5.5) 

where  P1 = vl + (2el l  + el2)P and p = s 2 = - ( 2 p  x + t,2)//e. The characteristic polynomial  for (5.5) is, to 
order  e, 

X 3 - 2e((e22 - e12)P -/- '1) ~ 2 + 12pX -- 8eep 2 = O, 

giving eigenvalues to order  e: 

[ 1'2-- Pl ) 
h i = -  (2vl + 1,2) , h 2 , 3 = e ~ + ( e E E - e 1 2 ) p  _+ 2vc3i. (5.6) 

Subst i tut ing in (5.6) for p, we conclude that the travelling wave fixed points are stable, for  sufficiently 
small e, if 

2p 1 + v 2 > 0 and v2 - vl (21'1 + ~'2)(e22 - e12) < 0. (5.7) 
3 e 

N o t e  that the second condit ion becomes an equality precisely when (4.14) is satisfied, when the branch of 
modu la ted  travelling waves meets the branch of travelling waves. This leads us to: 

Theorem 5.2. A Hopf  bifurcation to modula ted  travelling waves occurs f rom the branch of travelling 
waves of  the scaled system (2.6) at 

[ 9(e22--e12 ) ]def 
v2=v 1 1 + e - -3 - -~22-e12  ) =via" (5.8) 

Moreover ,  if e22, e12 < 0 and e = 4e H + 2e12 + 2e21 + e22 < 0, the travelling waves are stable for v 2 < via 
and unstable  saddles (with complex conjugate eigenvalues with positive real part)  for  v 2 > l, la. If, 
fur thermore ,  

9( e22 ~ e12 A e22 ( e22 / 
a = 1 + e - 3(e22 - e12 ) < --e12 resp. > e12 ] '  (5.9) 

then the modula ted  travelling waves exist for  P2//~1 ~ (a ,  e22//e12) (resp. (e22/e12 , a))  and are stable (resp. 
of  saddle type) for  11,2- plal sufficiently small. 

Proof. The  computa t ions  of eigenvalues above allow us to check all hypotheses of the Hopf  theorem 
except  the sign of the leading nonlinear  term (Guckenheimer  and Holmes [10, chapter  3.4]). However,  
pe r tu rba t ion  calculations of section 4 obviate the need to do this; the condit ions used in the proposi t ion 
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determine on which side of the bifurcation point (5.8) the modulated waves occur (cf. eqs. (4.14), (4.15)) 
and the stability conclusions can be drawn from center manifold theory applied at the bifurcation point. [] 

Remark .  Similar results can be given if e > 0, but in that case, since existence of travelling waves requires 
that - (2 / )  1 + v 2 ) / e >  O, we have (2v 1 +/)2) < 0  and both travelling waves and modulated waves are 
unstable. 

The bifurcation and stability results of theorem 5.2 and theorem 4.1 are given in terms of the scaled 
coefficients vj = / * J e  2. In terms of/*j, recalling that the analysis is accurate only to order O(e), we have the 
Hopf  bifurcation set 

9(e22- e12 ) ] 
/.2 =/*1 1 + e - 3-~22 - el2 ) + ~ ( e ) ,  (5.10) 

and the coalescence of the modulated travelling wave with the heteroclinic orbit at 

/*2 = /*le22//e12 + O(e)" (5.11) 

An interesting fact emerges here. If - 2 / , 2  < /*1 --/*2e12//e22 -- (--/ .2/e22)1/2 < 0, then the eigenvalue 
ratio ),s/),u of the proof of proposition 5.1 is controlled by the quantity/*a-/*2ea2/e22: specifically, if 
/*1 - -  /*2e12/e22 < 0 (resp. > 0) then )~s/),u > 1 (resp. < 1). Thus, for/*2 >/*le22/e12 we have an attracting 
heteroclinic cycle and for /*2 </*le22//e12 a non-attracting cycle. The bifurcation value /*2 =/*ae22/e12 
coincides with the leading term of (5.11): the stability type of the heteroclinic cycle changes when the 
branch of modulated waves reaches it. But there is a complication. In the small e limit of the scaled 
equations the eigenvalues of the saddle points in the heteroclinic loop are 

- e ( - v 2 / e 2 2 )  1/2 + e2(/) 1 - / )2e l Je22)  < - 2e2v2 < 0 < e(- / )2/e22)  1/2 + e2(vl  - v2el2/e22 ) 

and consequently, even when /)2 > Ple22/e12, we do not necessarily have asymptotic stability, since the 
weakest stable eigenvalue is O(e 2) and the unstable eigenvalue O(e). 

However, the special structure of our 0(2) symmetric problem comes to the rescue here: the fact that the 
planes q~ = 0, ¢r (and s 1 = 0) are invariant for (2.6) is crucial. This in turn implies that the set L = 0 is 
invariant for the slowly varying perturbation equations (4.2). We will use this fact to show that L ( t )  ~ 0 
for solutions near the heteroclinic cycle. 

The family of unperturbed heteroclinic cycles for (2.6) with e = 0 is given by solutions of (4.1) with 
L - - 0 :  

p ' =  2~rp( E -  p)  

and may be written as 

p ( t )  = E tanh 2 (7tE-t + c) 

for solutions based at p(0) = E tanh 2 (c). 
The following lemmas show that the heteroclinic orbit is asymptotically stable in the limit e ---, 0. 

(5.12) 

L e m m a  5.3. If /)1,/)2 ~" 0 and /)1 - -  /)2e12//e22 < 0 then L ( t )  ~ 0 as t --+ + oo for solutions of (2.6) lying in a 
neighborhood of the heteroclinic cycle connecting the saddles at s 2 = (- /)2/e22) 1/2, s 1 = 0, q5-~ 0, "rr. 
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Proof. Existence of the heteroclinic cycle is guaranteed by theorem 3.2 since in the limit e ~ 0 eq. (2.6) has 
no mixed modes for 1"1, u2 < 0. We set E = - 1"2/e22 + F, the constant corresponding to the level set on 
which the saddle points lie. After substitution of p(t)  from (5.12), the evolution equation (4.26) for L then 
becomes 

= eL [2(I, 1 --  1"2e12/e22) L' 

+ ( (2en  + e21 ) - (2e12 + e22)) ( ~ ) s e c h 2 ( ( - v 2 / e 2 2 ) l / 2 t ) ] +  O(LF), 

which implies that the linearized equation satisfies 

fL L(t,dL =e ft( A + Bsech2v/--Ct)dt=e[A(t - to)+ Bv/-C(tanh v/C-t - tanh f C t 0 )  ] 
(to) L "to 

o r  

L( t ) = L(O)exp(e[  A( t -  to) + D( t, to)l) .  (5.13) 

H e r e  A = 2(u 1 - 1"2e12//e22), B = ( 2 e l l  + e21 ) - (2e12  + e22),  C = -p2,/e22 a n d  s i n c e  D(t, to) = 
BvrC-(tanh v ~ t  - tanh vrC-t0) is uniformly bounded by 2 B v ~  we conclude that, provided A < 0, L(t) --, 0 
as t---, oo. [] 

Lemma 5.4. If 1"2 > 0 then E(t) -~ v2/e22 as t + + m for solutions of (2.6) lying in a neighborhood of the 
heteroclinic cycle. 

Proof. The computation proceeds much as that above. Linearizing the evolution equation (4.2a) for E 
about  the unperturbed heteroclinic orbit given by (5.12), letting F = 1'2/e22 + E, we obtain 

F'=2eF{--1"2+ [1"1q-1"2-- 21"2(e12-be21-e22)]sech2((-1"2,/e22) 

2V2e22 [(ell  + e22 ) - (e12 + e21)1 sech 4 ((-v2/e22)l/2t)} + 0 ( F 2 ) ,  

which, as above, implies that, for the linear system 

F(t)  = F(0)exp  ( 2 e l -  1 '2( t -  to) + D( t ,  to)]) ,  (5.14) 

where D(t, t o) is uniformly bounded, since it contains terms of the form const. × tanh ( -  lp2 / / e22) l /2 / )  and 
const. × tanh 3 ( - 1"2//e22)l/2t). We conclude that F(t) -~ 0 as t ~ + ~ for F(0) sufficiently small, provided 
1"2 > 0. This in turn implies that E(t) ~ -1"2/e= and thus that nearby solutions approach the unperturbed 
heteroclinic cycle. [] 

Remark. The time spent by solutions in the neighborhood of the saddle points at s 2 = (--1"2//e22) 1/2, 
s 1 = 0, ~ = 0, ~r dominates the behavior of E and L in these computations. The same feature leads to 
logarithmic singularities in the elliptic function computations of section 4. 
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These two lemmas imply that theorem 5.2 can be extended to the scaled system for e small: 

Theorem 5.5. If  a heteroclinic cycle exists for the scaled equations (2.6) then for e :~ 0 sufficiently small 

and /)2 > 0 ,  1)1 - -  /)2e12/e22 < 0 ,  the cycle is locally asymptotically stable. If, moreover 

a = l +  
9(e22 - e12) 

e -  3 ( e 22 -  e12 ) 
< e2---~2 (resp • > e2---g2 ) e l  2 e12 

then the modulated travelling waves which exist in a neighborhood of the homoclinic cycle for P2//)1 < 

ez2/e12 (resp. > eE2/e12 ) and 1/)1 - v2elz/e221 small are asymptotically stable (resp. of saddle type). 

Proof. The first assertion follows directly from lemmas 5.3 and 5.4. To establish the second assertion, 
observe that the perturbation calculations of section 4 show that the modulated travelling wave is the only 
limit set of (2.6) which lies in a neighborhood of the heteroclinic orbit (when Iv1 -/)2ea2/e221 is small) and 
that it exists only under the conditions specified. Consider a Poincar6 return map defined on a cross 

section Z in (E,  L )  space near the cycle E=/)2/e22,  L = 0 ,  with domain L ~  [0,3), E ~  ( - - / ) 2 / e 2 2 - -  

8 ,  - -  P 2 / e 2 2  -1- 8 ) .  (Although solutions on L = 0 flow into the saddle point and hence do not return, we shall 
think of the heteroclinic cycle as a fixed point of the map 0. The computations of (5.13), (5.14) show that 

the heteroclinic fixed point in Z is a sink for /)2 > O, //1 --/)2e12/e22 < 0 and a saddle for /)2 > O, 

/ )1 -  e12/e22 > O. It then follows from index theory arguments that the additional modulated travelling 
wave fixed point in Z has the stability properties claimed. [] 

We note that the local stability results for the modulated travelling wave of theorem 5.2 and 5.5 extend 

to the entire branch of waves, which are therefore stable if a < e22/e12 and unstable if a > ez2/e12. This 
follows from the fact that the Jacobian matrix of the linearization of the slow evolution equations (4.2) for 
the quantities E and L has triangular form and is nonsingular, as was pointed out in section 4. 

6. Examples 

To illustrate the theory developed above, we will discuss two examples. In each case we fix the 
coefficients eij of the cubic terms and present a bifurcation set in (#1,/~2) space along with a bifurcation 
diagram showing how nontrivial solutions of various types branch from the trivial solution and from each 
other, as parameter  values traverse a closed path around the origin in (/~1,/~2) space. In the first case we 
also show some phase portraits to illustrate the standing and travelling waves, heteroclinic orbits, and 
modulated travelling waves. We start with the ' - '  case. 

Example 1. " - "  case: eal = - 4, el2 = - -  1, e21 = - -  2, e22 = - 2. Here e = 4e n + 2(e12 + e21 ) -k- e22  = 

- 2 4  < 0, e22/e12 = 2 and a = 1 + 9(e22 - e12)/(e - 3(e22 - ca2)) = 10/7,  so that a < e22/e12. Thus, by 
theorems 5.2 and 5.5, the branch of modulated travelling wave is stable. Fig. 3 shows the bifurcation set, 
the bifurcation of mixed from pure modes, of travelling waves from mixed modes and the Hopf  and 
homoclinic bifurcations to modulated waves being computed from eqs. (2.12), (2.14), (5.10) and (5.11), 
respectively (thus the Hopf  bifurcation curve for modulated travelling waves is accurate only in the scaling 
limit e ---> 0 (eq. (2.6)). Note that the other Hopf  bifurcation curve, for standing waves from the mixed 
mode  fixed point (eq. (2.11)), is tangent at/~1 =/~2 = 0 to the curve on which the mixed modes themselves 
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Ig2MM, ~///TWH MTWHopf 

/ /  // / /  MM ° ~ SWHopI 

\~ MM 
PM ~ ~ n PM 

\ 
"l'Wrt 

MM'~ 

Fig. 3. Bifurcation set for eq. (1.1), ' - '  case: e n = - 4 ,  e12 = - - 1 ,  e21 = - - 2 ,  e22 = - - 2 .  PM: bifurcation of pure mode from trivial 
solution: M M  o, M M , :  bifurcation of mixed modes from pure modes with ff = 0 (resp. ~); SWH, SWHopf: heteroclinic and Hopf  
bifurcation to s tanding waves; TW 0, TW. bifurcation to travelling waves from mixed mode on q~ = 0 (resp. q~ = "~); MTWH,  
MTWHopf :  heteroclinic and Hopf bifurcation to modulated waves from travelling waves; MM~), MM~,: bifurcation to mixed mode 
from trivial solution on q~ = 0 (resp. ~ = ~r) 

bifurcate from the pure mode (cf. the discussion in section 2). There is a third curve tangent to these two in 
which the standing waves vanish in a heteroclinic loop bifurcation (cf. Guckenheimer and Holmes [10, 
chapter 7.4]), which we have not attempted to compute asymptotically. This curve is shown in dashes in 
fig. 3. : 

The corresponding bifurcation diagram is shown in fig. 4 and fig. 5 displays a sequence of phase 
portraits and two-dimensional projections of solutions for the example. The way in which the (globally) 
attracting heteroclinic cycles of theorem 3.2 are "released" by the heteroclinic loop bifurcation to the 
standing wave is made clear in figs. 5b, c, d. For these particular parameter waves the latter is unstable, 
and a stable mixed mode coexists with the attracting heteroclinic cycle. The parameter values correspon- 
ding to these phase points are indicated on fig. 3. Note the characteristic Lissajous figure for 1 : 2 resonance 
of the (x 1, x2) projection in fig. 5f: this feature is still present in the modulated wave of fig. 5e. 

We have fixed specific parameter values eij for the system illustrated here. While similar pictures are 
obtained for any e i j<  0, the relative position and sequence of Hopf and heteroclinic bifurcation to 
standing waves and modulated travelling waves can change (cf. theorems 5.2, 5.5). 

SWH MTWH + 

Fig. 4. Bifurcation diagram for eq. (1.1) ' - '  case: (~t,  ~2) follows a closed path around (/~1,/z2) = (0,0)). See fig. 3 for key. Stable 
solutions indicated by heavy lines, / / / / / / d e n o t e s  attracting lieteroclinic cycles and ' + '  denotes an eigenvalue with positive real part. 
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~ i ing wove) 
/ Stoble mixed 

mode Xl 

/ 
C) d) 

I / 
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XZ~tunstobte mixed 
. ; Y 7  mo e x, 

J 
Fig .  5. Phase portraits corresponding to points a - f  of fig. 3, ,I/'2 = 0.2 a l l  cases .  (a)  /~1 = - 0 . 0 4 ;  (b) ,I/. 1 = - 0 . 0 3 3 ;  (c) / h  = - 0 . 0 3 0 ;  

(d)  / h  = - 0 . 0 1 ;  (e)  /~1 = 0.135;  (f) /x 1 = 0.2. Note unstable standing wave coexists with (stable) heteroclinic cycle in (c) and note 
modulated travelling wave in (e). The six panels in (e) and (f) show projections of the solutions into various planes. 

Example 2. " + "  case: eij < 0, V 0'- In the " + "  case, by proposition 3.1 there exist no travelling or 
modulated travelling waves and we have only to deal with pure and mixed modes and (possibly) standing 
waves. The bifurcation set corresponding to the choice of all cubic coefficients negative irrespective of 
magnitude, is shown in fig. 6. In this case the local mixed mode is always of saddle type and thus Hopf 
bifurcations to standing waves cannot occur. However, the existence of a non-local mixed mode is 
important, since, with all eij < 0, the flow is directed inwards for large E = Izll 2 + Iz212 and there is always 
a compact attracting set. At the same time, there are parameter values (#1, #2) for which the fixed points 
near the origin are all unstable. This apparent paradox is resolved by the existence of a stable, non-local 
mixed mode, indicated in the bifurcation diagram of fig. 7. 
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Fig. 5. Continued 

In the " + "  case, the precise values of  the cubic coefficients eij play a less important role than in the 
" - "  case. In view of proposition 3.1, we can restrict our attention to a study of the reduced system (2.4) 
with @ = 0 or @ = ~r. Collectively, this is equivalent to studying the purely real system in Cartesian 
coordinates: 

~, = x,x2 + x , (~ ,  + e~,x? + e,2x~), 

~2=  ~? + ~ ( ~ 2  + e~ + e~x~) .  
(6.1) 

Local bifurcation analysis via center manifold theory or Liapunov-Schmidt  reduction at the trivial 
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Fig. 5. Continued. 

solution x 1 = X 2 = 0 leads to the bifurcation equations 

(el - 
in the case/.t I = O,  and 

( =/x2~ + e22~ 3 + 0(1~1 a) (6.3) 

in the case #2 = 0. (cf. Guckenheimer and Holmes [10, chapter 3]). Eq. (6.2) describes bifurcations to 
mixed modes from (0, 0) and eq. (6.3) describes bifurcations to pure modes from (0, 0). Similar equations 
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PM 

MM o 

~x 2 

M M "  

, MMo 

~ MM~z 

PM 

Fig. 6. Bifurcation set for eq. (1.1), " + "  case, eij < 0 Vij.  PM: bifurcation to pure modes from trivial solution; MM0, MM, :  
bifurcation of mixed modes from pure modes with ¢ = 0 (resp. ¢ = "~); MM~, MM; :  bifurcation of mixed modes from trivial solution 
with q, = 0 (resp. 4' = ~r). 

++ ~lMo PM ++ MM'~ ++ ++ PM ++ 

Fig. 7. Bifurcation diagram for eq. (1.1), " + "  case :  (~1, ]~2) follows a closed path around (/~1, ]L2) = (0 ,0) .  See fig. 6 for key. Stable 
solutions are indicated by heavy lines; non-local (stable) mixed mode by dashed ones; + denotes an eigenvalue with positive real 
part. 

can be written for bifurcations to mixed modes from the pure modes (Xl,  X 2) = (0, q" ( - - ~  2 / e 2 2 ) 1 / 2 )  They 
ai 'e  

= p_+~ + c_+~ 3 + 0(1~14), (6.4) 

where 

i0_+ ~--- ~1 ~ ~2e12 /e22  -{- ( - - ] -L2/e22)  1/2 

and 

1(1 c+ = ell + "~2  + (2e12 + e21)( -  p,2/ez2) 1/2 2/x2e12e21 1 
_ --  e2 2 ] 

respectively, i n  t h e  c a s e s  x 2 = ( - / , t 2 / e 2 2 )  1/2 ( ~  = O) a n d  x2 = - ( - / ,L2 / / e22 )  1/2 (dp -~ 'IT). 

If we are concerned only with the local behavior, so that the I/aj] are small, then 1//.t 2 in (6.2) and in c,+ 
in (6.4) is large and the cubic coefficients in both of these equations are determined by the sign of #2, 
irrespective of the signs and relative magnitudes of eij. Of course, we require #2 and e22 to have opposite 
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sign for the e x i s t e n c e  of pure  modes  x 2 = +(/t2//e22)). Thus,  if e22 < 0, we have/-£2 > 0 in (6.4) and  the 
cubic  coefficient c+ is positive for small ~2- In  (6.2) the cubic coefficient is negative for  ~t 2 > 0 and posit ive 
f o r / t  2 < 0. Equ ipped  with this informat ion,  the bifurcat ion d iagram of fig. 7 can be sketched. To  check the 
condi t ions  for  existence of local and non-local  mixed m o d e  branches,  it is helpful to refer to the pair  of  
equat ions  analogous  to (3.2) for the " + "  case. 

In  the b i furca t ion  diagrams,  we have also indicated the stabili ty of  branches  by  the n u m b e r  of  
eigenvalues with posit ive real pa r t  (denoted by  + ,  + + ,  etc.). These  assignments  differ f rom the usual 
ones,  due to the degeneracy forced by 0(2)  invariance. They  can be unders tood  in the following way: every 
b i fu rca t ion  poin t  on the trivial b ranch  is degenerate:  i.e. two eigenvalues change sign. On the bifurcating,  
non- t r iv ia l  branch,  one of these becomes  the zero eigenvalue, with eigenvector tangent  to the group orbit, 

the o ther  obeys  the usual exchange of stability arguments.  Bifurcation f rom non-tr ivial  branches  occurs in 
the usual  way.  

7. Conclusion 

W e  conclude  with brief remarks  on the implicat ions of  our  analysis of  the t runcated system (2.3) for  the 
full sys tem (1.4). We have already observed that, since the full vector  field is O(2)-equivariant ,  the 
(hyperbol ic)  invar iant  toil  carrying " l inear"  flow, found in (2.3), persist  for (1.4) and that  no frequency 
locking will occur. Perhaps more  strikingly, since the heteroclinic cycles are formed f rom structural ly 
s table  s a d d l e - s i n k  connections within each two-dimensional  invar iant  subspace ( ~ - - 2 8 1  - 0 2  = 0, I t ) ,  
they also persis t  for the full problem,  just  as in the simpler si tuation considered by  Guckenhe imer  and 
H o l m e s  [8]. Thus  the structure of  the heteroclinic cycles and modula ted  traveling waves c a n n o t  be 
des t royed  u n l e s s  the 0(2)  symmet ry  is broken.  The  persistence of simpler structures (fixed points,  periodic 
orbi ts)  and  codimens ion  one local bifurcat ions ( sadd le -nodes ,  pi tchforks,  Hopfs )  for the full system 
follows f rom the usual stability arguments ,  cf. Guckenhe imer  and Holmes  [10]. 
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