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Elementary one-dimensional dynamics

One-dimensional map and its linearization

xn+1 = F(xn) δxn+1 = F ′(xn)δxn

ln |δxn+1| = ln |F ′(xn)|+ ln |δxn|

ln |δxT|− ln |δx0| =
T−1

∑
k=0

ln |F ′(xn)|

lim
T→∞

ln |δxT|− ln |δx0|

T
= lim

T→∞

1
T

T−1

∑
k=0

ln |F ′(xn)| = 〈ln |F ′(xn)|〉 = λ
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Matrix products and Oseledets theorem

In dimensions larger than one we have a product of matrices

δxn+1 = Mnδxn

Oseledets multiplicative ergodic theorem:

Lyapunov exponents = exponential asymptotic growth rates of vectors

χ+(v) = lim
T→∞

1
T

ln

∥

∥

∥

∥

∥

T−1

∏
k=0

Mkv

∥

∥

∥

∥

∥

are well defined a.e. and attain at most dimM different values. Further-

more, there is a Lyapunov decomposition into subspaces corresponding

to the vatious Lyapunov exponents, whose dimension defines the multi-

plicity of the corresponding exponent.
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Comparing to other characteristics of stability

Lyapunov exponents heavily rely on the existense of ergodic measure,

they describe stability in a statistical sense.

Remarkable: LEs are not realy needed for mathematical theory of hyper-

bolic systems

(in the book of Katok and Hasselblatt they appear only in an Appendix

devoted to non-uniform hyperbolicity)
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LEs as a main tool of exploring chaos

• sensitive dependence on initial conditions = positive Lyapunov expo-

nent

• KS-entropy = sum of positive LEs (Pesin theorem)

• independent of the metric used (but this is not true in infinite-dimensional

case!)

• invariant to smooth transformations of variables (diffeomorphisms)

(but not to general transformations – homeomorphisms!)
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Geometric picture

Lyapunov exponents are associated with Lyapunov vectors and with sta-

ble and unstable manifolds
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Numerical implementation

• Bennetin, Galgani, Giorgilli and Strelcyn (1980) algorithm: Gram-

Schmidt orthogonalization

• Eckmann and Ruelle (1985): QR-decomposition (may be numerically

preferable)

• Greene and Kim (1987): Calculation of LEs and Lyapunov directions

• Bridges and Reich (2001): A stable variant of continuous-time de-

composition
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Finite-time fluctuations of LEs

Calculation of LEs over a time interval T gives a distribution PT(Λ) for

which one assumes an ansatz

PT(Λ) ∝ eTS(Λ)

with an entropy function S(Λ) ≤ 0 that reaches the maximum at Λ = λ.

Another representation – via generalized exponents

L(q) = lim
T→∞

ln〈‖v‖q〉

T
λ =

dL(q)

dq

∣

∣

∣

∣

q=0
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Flinite-time fluctuations of negative LE and SNA

If the largest LE is negative but the entropy function S(Λ) has a tail at

positive Λ:

Stability in average but unstable trajectories are inserted in the attractor
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Coupling sensitivity of chaos

Lyapunov exponents in weakly coupled systems depend on the coupling

in a singular way
ε ∆λ ∼ 1

| logε|
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Repulsion of LEs in random systems
λ i  (

i=
1,

...
,8

)

Lyapunov exponents in noncoupled chaotic systems

τ

λ i  (
i=

1,
...

,8
)

avoided crossing at ε=10
−5
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Distribution of the “Lyapunov exponent spacing” has a strong depletion

for small ∆λ
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Conditional/transversal LEs and synchronization

conditions

Stability of symmetric sets with respect to particular perturbations that

break the symmetry is described by linear systems of the type v̇ =

M(t)v with a chaotically time-varying matrix M(t)
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Example: an ensemble of identical systems xk, k = 1, . . . ,N coupled

via mean fields g(x) and global variables y:

ẋk = F(xk,y,g;ε) , ẏ = G(y,g;ε) ,

Full synchrony xk = x is described by a low-order system

ẋ = F(x,y,g;ε) , ẏ = G(y,g;ε) ,

“Split” or “evaporation” LEs describing the stability of the synchronous

cluster are determined in thermodynamic limit N → ∞

dδx
dt

=
∂F
∂x

δx
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LEs in noisy systems and sycnhronization by common

noise

Lyapunov exponents in noisy systems characterize sensitivity to initial

conditions for the same realization of noise

Synchronization by common noise:

largest LE negative: synchronization to a common identical state

largest LE positive: desynchronization

Example: reliability of neurons under repititions of the same noise
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Nonlinear exponents

Fix the level of the perturbation ε = ‖v‖ and calculate the time to reach

the level 2ε:

This gives the level-dependent exponent λ(ε)
Typically λ(ε) decreases for large ε and λ(0) = λ
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Lyapunov Exponents in extended systems

• Take a large finite system of length L, calculate the LEs and look how

they change with increase of L:

A spectrum f of LEs λk = f (k/L) which defines the density of the

KS-entropy and of the Lyapunov dimension

• Take an infinite system: Different metrics are not equivalent

Physically: a perturbation may not simply grow but come from remote

parts of the system
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• Velocity-dependent exponent: Take a local perturbation v(x0,0) and

follow it along the constant-velocity rays: ‖v(x0+Vt, t)‖ ∝ etλ(V)

• Chronotopic Lyapunov analysis: Take a perturbation that is exponen-

tial in space v ∼ eµx and calculate its LE λ(µ). Velocity-dependent

exponent is the Legendre transform of the chronotopic one

• Lyapunov-Bloch exponent: Take a system of size L and calculate the

Lyapunov exponent λ(κ) of the perturbation v ∼ eiκx. It determines

stability of space-periodic states

• Statistics of Lyapunov vectors in extended systems may be nontrivial,

in many cases it seemingly belongs to a Kardar-Parisi-Zhang univer-

sality class


