Intermittency, escape and periodic orbits

Per Dahlqgvist
Mechanics Department
Royal Institute of Technology, S-100 44 Stockholm, Sweden

October 15, 1999

Abstract

We prove that the survival probabilitiy of a class of open, nonuni-
formly hyperbolic maps can be bounded close to sums over periodic
orbit stabilities. The survival probabilitiy is the probality of of not es-
caping an open map during n steps, starting from an initially uniform
distribution. A crucial ingredient is an averaging procedure along the
periodic orbits, as bounds cannot be established for individual inter-
vals of the partitions, in contrast to expanding maps.

1 Introduction

The periodic orbit theory offers an intriguing possibility to compute proper-
ties like

1. Escape from repellers.
2. Chaotic averages, such as Lyapunov exponents, diffusion constants etc.

3. Decay of correlations, Ruelle resonances.

A firm link between the periodic orbits and their invariants on one side
and the desired quantities on the other has so far been established for quite
a restricted class of systems. The ideal situations is the existence of a finite



Markov partitions and uniform hyperbolicity. Heuristic arguments and nu-
merical experience suggest that periodic orbit theory is applicable to a much
wider class of systems, so, what is the limit of periodic orbit theories.

Above we grouped the chaotic properties according to increasing concep-
tual complexity in establishing a form link to periodic orbits.

Group one, that is the problem of escape, require only knowledge of the
measure (size) of dynamically generated partitions of phase space, and a
relation to certain periodic orbit sums.

Group two involve the concept of an invariant density, and the possibility
of expressing it in terms of periodic orbits.

Group three, correlation decay, is related to the rate at which the invariant
density is approached.

In this paper, we will restrict ourselves to escape, and show that, escape
from open system, not being uniformly hyperbolic, still can be related to
periodic orbits and their stabilities. More precisely, we will show this for a
class of 1-d maps, having a very simple Markov partition.

2 Escape and periodic orbits

Consider a 1-d map, defined on some interval I. The map consist of a (pos-
sibly infinite) number of monotone branches f,(x), where ¢ € A is a symbol
taken from an Alphabet A. Each branch f,(x) is defined on an interval ;. A
generating partition is then given by C1) = {I ;¢ € A}. We want the map to
admit an unrestricted symbolic dynamics. We therefore require all branches
to map their domain f,(I,) = I onto some interval I D C(Y) covering CV. A
trajectory escapes whenever some iterate of the map = ¢ C(V).

The n’th level partition C™ = {Ig;|Q| = n} can be constructed iter-
atively. Here @) are words of length |Q] = n. An interval is thus defined
recursively according to

Lir=f;'(Ir) , (1)
where ¢(@) is the concatenation of letter ¢ with word (). An initial point
surviving n iterations must be contained in C.

Starting from an initial (normalized) distribution we can express the frac-



tion that survives n iterations as
r, = (Z |IQ|) /1] (2)
|Ql=n

a quantity we will refer to as the survival probability or partition sum.
In I there is a point x¢ along the periodic orbit ), that is

[l zg) =2 xgely . (3)
Its stability is
dfo\Q\(x)
Ao = B — |le=2q (4)

Here S denotes the cyclic shift operator: S(Q = ¢1q2-..¢n) = @2 - .- ¢u@s.

If all branches are expanding, i.e. there is some number A,,;, such that
|fo(®)| > Amin, Yq, Yo € Iy, then one can bind the size of I, to the stability
e i i

I I
Ci— < |lg| < Co— 5
o, <Ml <G )
(Constants denoted by a calligraphic C are arbitrary, in the sense, that they
may vary from one place to another.) This implies that the survival fraction
can be bounded by a sum over periodic orbit according to

—<F <C 6
G2 Tl P Tl ©)

The periodic orbit sum in (6) will be denoted Z,

1

=7, . 7
1Q|=n |AQ| ( )

One can hardly expect to find a bound like (5), for non-uniformly hyper-
bolic systems, as we will see, any such attempt is doomed to fail. However,
this is no reason to distrust. The following bound is also sufficient to establish
(6)

I| Q] 1]

I <C
|Q|kz:1|5k| 2AQ

Here S denotes the cychc shift operator: S(p = q1g2 ... Gn) = S2- . - Gnq1-

e, | (8)
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3 Warmup, expanding map

For comparison, and for later use, we will begin with some considerations on
expanding maps. We thus consider maps obeying the following assumptions
(call assumption E as in Expanding).

1. The map is defined on an enumerable set of (non overlapping intervals)
I,. The branch of the map f restricted to I, is called f,.

2. Each branch is complete, f,(1,) = 1.

3. Each branch is expanding, i.e. there is a (positive) number A,,;, > 0
such that |dfq | > Apin-

4. The regularity of the mapping function is f, € C1HHeshitz)

Condition 3 and 4 implies

dfg(z1)  dfg(2) dfq(l“l)
Saen) St < o Se) o, — )
And equivalently for the inverse
dfy'(x1)  df; (a) 1(561)
o) Ho ) et g, (10)

where we refer to N as the nonlinearity. We add to assumption E:
5. The nonlinearity N, can be chosen independent on ¢: N, = N.

The existence of a minimal expansion rate immediately implies.
(| < 7 (11)

According to the mean value theorem one gets

dfqil(x)

— (12

[Igr| = |Ir] - |



for some x € Ir. We do not know x, but if we choose arbitrarily a reference
point = in Ig, we know that |z — z| < |Ig|, and we can estimate the error
induced by shifting x to &

dfy (%)
dzx

d -1
orl < Ig| | L+ Nl < 1] - |3 |1+NA| | a3)

dz |
min

and similarly

df, (@
ol > 1] 1 D)y 1L (1)

We get

-t |IR| Q-1 |[R|
1l T (1= V30 ) < loul <111+ RV TT (144730 ) 19
=0

min i=0 mm

where |Q| :
df 71(3%)

Note that /~\Q is computed along an arbitrary sequence of reference points
T € Iy.qr (if Q = q)g| - - - q1), and should not be confused with the stability
of of periodic orbit ), here denoted Ag.

The very useful inequality 1 + = < exp(z) enables us to write

min min —

Q-1 i o0

(17)
and we can state
Lemma 3.1
~ Amin ~ Amin
|IR| . |Aé1|67N|1R|Amm,1 < |]QR| < |I| ) |Aé1|6N‘1R‘Ami"71 (18)

As a special case we let R be the null string, and /NXQ = Ag, and get



Corollary 3.1

A Amin

7] |Aql ™M™t < |To] < 1] [l e elmi=r (1)

which we claimed before in eq. (5)
We make two immediate remarks

Remarks:

1.

2.

4

4.1

The bound closes up if N' — 0; the periodic orbit representation is exact if
fq (Vq) is linear.

The bound collapses if A, — 1, the requirement that the map is expanding
seems to be essential.

The intermittent map

Specification of the map

It is time to specify the particular class of maps we will consider in detail.
The map f obey assumption I (as in Intermittency) if

1.

2.

[=10,1].

The map has two branches, f; defined on Iy = [0, ¢[, and f; on [} =
[q1,1], where gy < ¢;. Both branches are monotone (positive slope) and

complete, that is fo(0) =0, fo(q) =1, fi(q1) =0 and fi(1) = 1.

The first branch can be written as fy(z) = z+rz' " 4+ u(z) where u(x)
where u(x) is subject to the Lipshitz-like condition |u'(z) — u/(y)| <
C (max(z,y))* """ |z—y|, where t > 0. The map has an neutral fixpoint
at © = 0: fj(0) =1, but fi(z) > 1 elsewhere (z > 0).

The second branch f; is expanding, |%§C’C)| > Apin > 1, and f; €
C'I—I—Lipshitz.
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Figure 1. Example of a map abeying assumption I. Below the map is also
shown the partitions CV) = {Iy, I}, C®® and C®®.
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Figure 2: The conjugate of the map in fig 1

Remark:
From the above requirement we immediately deduce that u/(z) = O(z*%!) and

u(x) — O(xs+t+1).

4.2 Conjugation of the map

It will show very convenient to consider a conjugation of the map & — ¢(&)

¢(§) =h""ofoh () (20)
given by the change of variables.
z =h(g) = (re)* (21)

Mapping functions and coordinates in the conjugate space will typically be
denoted by greek letters. Intervals in &- space will be denoted

iq ="h"(Ip) (22)

We will need the following elementary results later
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Lemma 4.2.1 (a) (h(§) — h(n))/h(€) < 2(n— &)/ if n > & we have.
(b) (h(€) = h(n)) /(&) = $(n = &)/& + O([(n — €)/€])

An example of a conjugated maps can be seen in fig. 2.

4.2.1 The intermittent branch

The main virtue of the conjugation is that the action of the intermittent
branch ¢g

(6o 1)™ME) =h"o(fo )" oh (€) (23)

will be very simple, as demonstrated by the following

Lemma 4.2.2 Under assumptions I on map f, we have the following result
for the intermattent branch f:

(a)
(60~ ")"(§) = €+ sn+ Bu(€) (24)

where
Bn(&) = O((&+sn)'™) v =min(1,t/s) (25)

(b) There exist constants C; Cy, —1 < C; < 1 < Cy < 00 such that

d(po )" (€)
d§

(c) The derivative of (¢o™")°" is subject to the Lipshitz condition

€1 < =1+ B/ (§) <Cy (26)

1+ B/ (n)

T BL©

—1]<Cn—¢ (27)

Remark: The bound on B, (§) is actually a bit pessimistic for small n, since
By(¢) = 0. However, a convenient form to express a) is

Ci(€ 4 sn) < &+ sn+ Bp(&) < Ca(€ + sn). (28)

o

'Don’t forget v = 1 case



First we need to express the action of the map ¢, (£) in a convenient
form

do (&) =&+ 5 +b(¢) (29)
e b(§) = O(1/¢)
=0(1/¢" ,
{ bE) > —s € € i(ly) (30)
The derivative of b(§) has a bound (ii)
(19200
and a Lipzhitz condition (iii)
L+W(n) b e i
| 1+ bl(f) 1 |< C[mm({, 77)]V+2 |§ 77| 57 nEi (32)

The proof is a straightforward calculation and is omitted.
Proof of (a): The function B, (&) fulfills the following recurrence relation

Bi1(§) = Bu(§) + b(§ + sn+ B,(§)) (33)
We now want to show that
1B.(§)| < D(E+sn)'™" €€ h™(Ip) (34)

by assuming
¢ -1
b(&)] < e C€h (Zo) (35)

We do this by induction, via eq (33). The statement is obviously true for
n = 0 since By(£) = 0. Assuming (34) is true for n, we get

Bus(©)] < |Ba(©)+ (e sntBa(€))] < D(Ersn)—+ ¢

[€ + sn — D(&+ sn)t—v]¥
(36)
So, given the constant, C', if we can find a constant D such that
C
[€ + sn — D(&+ sn)t=v]¥

D(&+ sn)' ™" + < D(é+sn+s) (37)
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holds for all £ € h~!(Iy), we are done. Refurnishing the above expression,
using the substitution z = 1/(£ + sn) (z is then subject to the condition
z < rqj) we get
Cc =z
D1—- Dz
This can actually be achieved, as follows from elementary analysis.
Proof of (b): Our task is to show that B/ (¢) is limited as n — oc:
—1<C <B,(§) < < o0.
Next we differentiate (33) to get

<(1T+s)" =1 (38)

B,1(€) = B, (&) + (1 + B, () (€ + sn + Bu(£)) (39)
By introducing the function A, (§) = In(1 + B;,(£)) we recast it into
Ani1(€) = An(§) +In(1 + V(€ + sn + Bu(€))) (40)

Since By(£) = 0, it is supplemented by the initial condition Ay(§) = 0 and

we get
n—1

An(§) = D In(1 + V(£ + sm + Bu(€))) (41)
m=0
It is straightforward to show that there is an upper and lower bound of the
sum above, which proves our assertion.
Now remains (¢). We begin by writing

!
L+ Bi() _ aw©-s.m) (42)
1+ B (¢)

where according to (41)

n

L1V (E+sm+ Bu(6))

An(§) — mZ::O 1+ V(€ + sm + Bp(€)) (43)
and by assuming 1 > &
n—1 1+ (& + sm+ B,,(€)) | (44)

A0(€) = Aalo)] <= 3 |

1L+ (n+ sm+ Bn(n))

n—1 1

<m2::0|ln(1+c(5+sm+3m(€))

2+ Bm(n) =& = Bu(8)]) |

11



1
<CZ (€+ s+ B(€))"?

According to (b)

7+ Bin(n)) — & — Bun(§)]

B.(n) = Ba©)] < [ 1BLI(€)1d' < Cl — € (45)
yielding

1
€+ sm + B ()]

[An(§) = Anlm)] < Cln — §|§: (46)

<Cln—¢|

since the sum converges. The last equation, together with (b) (saying that
1+ B/ (§) is bounded) implies the announced result (c).

4.2.2 The expanding branch

We will need one asymptotic result, concerning the conjugation of expanding
branch

o1 (§) =hT"o filoh (€) (47)

This function maps the interval i = [+, o[ to 4 = [+, i -] = [1, &)

Lemma 4.2.3 There are constants C;, Co (0 < Cy < Cy < 1) such that

&\ I &
G| = <& —¢p (§) <G (48)
§ €

where & = h™'(q1)

2

Zrewrite as O(...)
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4.3 The induced map

The induced version F': I — I; of the map f : [ — I is a restriction of the
map, to the interval I, achieved in the following way

f(x) = Fu(z) = (fo)™ o fi (z) x € Liom (49)

for n > 0.
Next we want to show that assumptions E are fulfilled by the map

D) =hoFoh(g) (50)

an in particular the inverse of branch n
®, () =h""oF T oh(§) =1t o (dp")" (51)
Lemma 4.3.1 (a) There are constants Cy, Co (0 < C; < Cy < 00) such that

1 ;' (§) 1
Y1+ rsn) i+ < d¢ <6 (14 rsn)t+t/s (52)

(b) There is a number N (independent of n) such that

d®,'(n) ,d®,* (&)

[ S ] < N ] (53)

This means that assumptions E apply on the induced map ¢ and the
results of sec 3

Proof:
Schematically
(o 1) ¢t
S Y (54)
€ € ign1 € t1on1
do;" () : 1 (§>/
—r > =(1+B — [ = 55
@~ B amEn ¢ (55)

) | ) e 1+1/s
=(1+ Bn(f))f{(h(f")) <§ + sn + Bn(€)>

13



Statement (a) now follows easily, from lemma ?7?b, properties of the expand-
ing branch f;, and the fact the & and " are bounded.
To show (b) we consider a neighboring orbit n — 7' — 1"

A9, () A9, (€) _ 1+ B(n) (€+sn+ Bul©) YN R
dn dg§ 1+ B (&) \n+sn+ Bu(n) §" fi(r(g")
(56)
We consider each of the four factors separately.
Lemma 4.2.2c¢ applies directly to the first factor:
1+ B! (n)
— 2~ _1|<Cln-— 57

To treat the second factor we apply lemma 4.2.2a and get

£+ sn+ B, &)\ 1
| <77+877,+Bn(77)> -1 |<O<1+rsn> I =<l (58)

To obtain a bound on the third factor we observe

do !
|77// . 5//| < sup | n (6)

—n Sy — 59
sup | T |~ ] (59)

1
- () -

according to (a). From the fact that £ is limited follows

"' 1+1/s 1
£ -1 cp =
| (é‘l!) |< O ((1 + TSTL)1+1/S> |77 §| (60)
Finally for the fourth factor
f{(h(n”) " " n "
-1 _ _ =

(61)
where we have used assumption 14, lemma 4.2.3, eq. (59) and the fact that £”
and 7" are bounded. Statement (b) can now be verified without difficulties.
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5 The main result

All periodic orbits (except 0) can be written on the form 10™~ ... 10m210™1.
Will be interested in few intervals I, , for a few cyclic permutations @, =
0™m~™R10™, where R = 10"~ ...10™2.

We will approach the result in several steps:

(¢61)0m ¢1—1 (b;;; ©...0 (I>7721 (62)
? — trRm +—— ligm — 1R10m
(95770 h
— ionl—leom — Ionl—leom
We begin with.
1
= |— 63
i [r’ oo (63)
Step 1: (¢p')°™
After m applications of ¢y ' we get
. 1 1
igm = [; + sm + Bm(;), o] (64)
Step 2: ¢;*
By applying ¢; ' we are thrown back to i
i = [§1 — A, & (65)
where
& =h" q) (66)
and
1 1
<A< Cg (67)

! (1 + srm)l/s (1+ srm)l/s
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Step 3: @;}}J 0...0 @;21
Being back to 7; we can apply the induced map
irwom = [§r — AR, &R (68)

Er <& (69)

(equality is R is the null string). Since assumption E is fulfilled we will be
able to use Lemma 3.1 in a slightly weakened version.

~ . Apin - . Apmin
[irom] - [Agtle NIRRT < Jigign| < firgm | - [AR eV T (70)

(weakened because in principle we could have had |ijom | instead of |i;] in the
exponent), or equivalently

1 1
Ci A— < AR <Cy A—— (71)
Ag| | Ag|
Combining the result so far we get
1 1 1 1

C

AR<C2

(72)

- < -
! |Ag| (1+ srm)1/s |Ag| (1+ srm)i/s

Step 4; (¢ )1~

It only remains to apply ¢y ' n, — m times

loni-m Rigm = Z'Qm
= [r —Ar+s(n1 —m) + Bn,—m(Er — Ar), Er + s(n1 — m) + Bn,—m(&r)]
1, €]

(73)
yielding
1 1 A 1 1
Ci— <CAR < lig, | =& =N <C3Ar < Cy—=
N L+ srm)i/s = 720k lign| =&~ <Calr Y Ag| (U srm)i/s
(74)
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Step 5: Finally back to x-space
Ig,, = [2,9] = [h(£), h(n)]

(75)

According to Lemma 4.2.1b |Io, | = Z[(€ — 1) /€ + O([(€ — 7)/€]?)] and since

(€ —7)/€ is limited we get

i ~

() < |Ton] < Co (€~ 1)
¢ £

and finally
1 1 1
RATN <\|Ip | <
' |Ag| (14 srm)t/s (1 + sr(ny —m))L+/s g, |
1 1 1
? |A~R| (1 + srm)Y/s (1 + sr(ny — m))itL/s
11 d®r(§)
Aol |Ag| dE

for some £ € 71, and due to Lemma 4.3.1a

1 (14 srny)ttl/s

CTAg T srm) e (L% sr(m = m)) 175

<|lg,| <

1 (14 srng)+Y/s
Aol (1 + srm)'/s (1 + sr(ng — m))t+1/s

The key idea is to average along a fraction of the periodic orbit

Co

nl + 1 Z | Qm
The relevant sum is
i 1
= (14 srm)t/s (14 sr(ng —m))t+1/s

{ (1+srn1_1/sc + O(W) s<1

1/SC+O( s>1

(1+srn1 1+srn )2/s )
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and is computed in the appendix. The result enables us to write

C <C
g <aa1 el <

which imply (8) and can state our main result

Theorem 5.1 For a map obeying assumption I, the partition sum

B ol
L= 2 7

Ql=n
Q# 0"
and the periodic orbit sum
Zn = Z L )
[Agl
Ql=n

Q#0"
obey the following bound
Gz, <, <CyZ,

for some constants 0 < C; < Cy < 0.

6 Discussion

6.1 Escape probabilities

(83)

(84)

(85)

We have chosen to focus on the survival probability, and its representation in
terms of periodic orbits, from which the escape probability can be deduced.

v, =1, - Fn—|—1

(86)

An (more dangerous) alternative is to consider a periodic orbit repre-
sentation of the escape probability directly. One would hen start from the

complement of the generating partition J = [g1, ¢2] and write

||

=2

18
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and the iterative rule

Jarw = I (Jr) (88)
In terms of periodic orbits one would get
|71
vV, ~-—2Z, (89)
1|

This formula should make us very suspicious, because if [',,, and thus Z,
asymptotically follows a power law '), ~ Z,, ~ n®, then we know from eq.
(86) that U ~ n®~! whereas eq. (89) would predict ¥ ~ n®. How can this
paradox be resolved.

An analysis similar to the one in section 5 givew

1 1 1 1

AT J Crr= 90
Rl Tt srmn — s < el < GGy )
or
1 1 1+1/s 1 1 14+1/s
C, (14 srny)) < o] <G (1+ srny)) (1)

|Ag| (14 sr(ng —m))t+1/s |Ag| (14 sr(ng —m))t+1/s

and there is no way of rescuing bounds by any averaging procedure.

Non uniform initial distribution

The contibutions to the sum (81) are very unevenly distributed. Therefore,
by starting from a nonuniform distribution, the bounds easily detoriate, and
may collaps alltogether. En example of such a collaps is the following. In-
stead of starting with a uniform distribution over the entire I/, we start with
a uniform disytribution only over [;. Call the corresponding survival prob-
ability I'7 . If, for simplicity, the expanding branch f; is strictly linear, then
I, =I,. But, it is not possible to bind the corresponding periodic orbit
sum )
Zn= 2. 1= (92)
Q:|QI=n—1 1€
close to I,.
The moral is that periodic orbit expression for escape from nonuniformly

hyperbolic systems is extremely fragile.
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Appendix
In this appendix we evaluate the sum

B i 1 1
2 (L4 srn)s (14 sr(N —n))t/s+t

= 51 + 52 (93)

asymptotically for large values of N. If N is odd we can write (the general-
ization to even N is trivial and omitted)

(N-1)/2 1 1

$1= 2 e (L sr (N = n)) /o (94)

n=0
and
(N—1)/2 1 1
Sy = 95
2 2::0 (1 + srn)Ystl (14 sr(N — n))/s (95)
To treat S; we use
e = Qg N20, 0<n<(N-1)/2  (96)
and get
L= Ol s> 1 (97)
(1+s7N)2/s S
To treat Sy we use
(1+sr(]\}fn))1/5 = (1+er))1/s + O(ﬁfﬁ/sﬂ); N>0, 0<n<(N-1)/2
(98)

and get

1 00 1
1/s 1/s+1 + O 1/s+1 s < 1
Sy = { (1+sr1\1f) / (1+sm) /s+ ( 1+er) 7577 (99)

00 1
(14srN)1/s &=n=0 (14grn)l/s+1 + O( 1—|—er)2/3) s> 1

Summing S; and S, we arrive at

1 o0
SZ{W OOWJFO(W) s<1 (100)
(1+srN)L/s Z 0 (1+4srn)t/s+1 + O(I—I—TN)Z/S) s>1
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