
Intermittency, escape and periodic orbitsPer DahlqvistMechanics DepartmentRoyal Institute of Technology, S-100 44 Stockholm, SwedenOctober 15, 1999AbstractWe prove that the survival probabilitiy of a class of open, nonuni-formly hyperbolic maps can be bounded close to sums over periodicorbit stabilities. The survival probabilitiy is the probality of of not es-caping an open map during n steps, starting from an initially uniformdistribution. A crucial ingredient is an averaging procedure along theperiodic orbits, as bounds cannot be established for individual inter-vals of the partitions, in contrast to expanding maps.1 IntroductionThe periodic orbit theory o�ers an intriguing possibility to compute proper-ties like1. Escape from repellers.2. Chaotic averages, such as Lyapunov exponents, di�usion constants etc.3. Decay of correlations, Ruelle resonances.A �rm link between the periodic orbits and their invariants on one sideand the desired quantities on the other has so far been established for quitea restricted class of systems. The ideal situations is the existence of a �nite1



Markov partitions and uniform hyperbolicity. Heuristic arguments and nu-merical experience suggest that periodic orbit theory is applicable to a muchwider class of systems, so, what is the limit of periodic orbit theories.Above we grouped the chaotic properties according to increasing concep-tual complexity in establishing a form link to periodic orbits.Group one, that is the problem of escape, require only knowledge of themeasure (size) of dynamically generated partitions of phase space, and arelation to certain periodic orbit sums.Group two involve the concept of an invariant density, and the possibilityof expressing it in terms of periodic orbits.Group three, correlation decay, is related to the rate at which the invariantdensity is approached.In this paper, we will restrict ourselves to escape, and show that, escapefrom open system, not being uniformly hyperbolic, still can be related toperiodic orbits and their stabilities. More precisely, we will show this for aclass of 1-d maps, having a very simple Markov partition.2 Escape and periodic orbitsConsider a 1-d map, de�ned on some interval I. The map consist of a (pos-sibly in�nite) number of monotone branches fq(x), where q 2 A is a symboltaken from an Alphabet A. Each branch fq(x) is de�ned on an interval Iq. Agenerating partition is then given by C(1) = fIq; q 2 Ag. We want the map toadmit an unrestricted symbolic dynamics. We therefore require all branchesto map their domain fq(Iq) = I onto some interval I � C(1) covering C(1). Atrajectory escapes whenever some iterate of the map x =2 C(1).The n'th level partition C(n) = fIQ; jQj = ng can be constructed iter-atively. Here Q are words of length jQj = n. An interval is thus de�nedrecursively according to IqR = f�1q (IR) ; (1)where qQ is the concatenation of letter q with word Q. An initial pointsurviving n iterations must be contained in C(n).Starting from an initial (normalized) distribution we can express the frac-2



tion that survives n iterations as�n = 0@ XjQj=n jIQj1A =jIj ; (2)a quantity we will refer to as the survival probability or partition sum.In IQ there is a point xQ along the periodic orbit Q, that isf �jQj(xQ) = xQ xQ 2 IQ : (3)Its stability is �Q = df �jQj(x)dx jx=xQ (4)Here S denotes the cyclic shift operator: S(Q = q1q2 : : : qn) = q2 : : : qnq1.If all branches are expanding, i.e. there is some number �min such thatjf 0q(x)j > �min, 8q, 8x 2 Iq, then one can bind the size of Iq to the stabilityof Q C1 jIj�Q < jIQj < C2 jIj�Q (5)(Constants denoted by a calligraphic C are arbitrary, in the sense, that theymay vary from one place to another.) This implies that the survival fractioncan be bounded by a sum over periodic orbit according toC1 XjQj=n 1j�Qj < �n < C2 XjQj=n 1j�Qj : (6)The periodic orbit sum in (6) will be denoted ZnXjQj=n 1j�Qj � Zn : (7)One can hardly expect to �nd a bound like (5), for non-uniformly hyper-bolic systems, as we will see, any such attempt is doomed to fail. However,this is no reason to distrust. The following bound is also su�cient to establish(6) C1 jIj�Q < 1jQj jQjXk=1 jISkQj < C2 jIj�Q (8)Here S denotes the cyclic shift operator: S(p = q1q2 : : : qn) = s2 : : : qnq1.3



3 Warmup, expanding mapFor comparison, and for later use, we will begin with some considerations onexpanding maps. We thus consider maps obeying the following assumptions(call assumption E as in Expanding).1. The map is de�ned on an enumerable set of (non overlapping intervals)Iq. The branch of the map f restricted to Iq is called fq.2. Each branch is complete, fq(Iq) = I.3. Each branch is expanding, i.e. there is a (positive) number �min > 0such that jdfq(x)dx j > �min.4. The regularity of the mapping function is fq 2 C1+Lipshitz.Condition 3 and 4 impliesjdfq(x1)dx1 � dfq(x2)dx2 j < Cjdfq(x1)dx1 j � jx2 � x1j (9)And equivalently for the inversejdf�1q (x1)dx1 � df�1q (x2)dx2 j < Nqjdf�1q (x1)dx1 j � jx2 � x1j (10)where we refer to N as the nonlinearity. We add to assumption E:5. The nonlinearity Nq can be chosen independent on q: Nq = N .The existence of a minimal expansion rate immediately implies.jIRj < jIj�jRjmin (11)According to the mean value theorem one getsjIqRj = jIRj � jdfq�1(x)dx j (12)4



for some x 2 IR. We do not know x, but if we choose arbitrarily a referencepoint ~x in IR, we know that jx � ~xj � jIRj, and we can estimate the errorinduced by shifting x to ~xjIqRj < jIRj � jdfq�1(~x)d~x j � j1 +NjIRjj < jIRj � jdfq�1(~x)d~x j � j1 +N jIj�jRjmin j (13)and similarly jIqRj > jIRj � jdfq�1(~x)d~x j � j1�N jIj�jRjmin j (14)We getjIRj � j~��1Q j jQj�1Yi=0  1�N jIRj�imin! < jIQRj < jIj � j~��1R j jQj�1Yi=0  1 +N jIRj�imin! (15)where ~��1Q = jQj�1Yi=0 jdfq�1(~xi)d~xi j (16)Note that ~�Q is computed along an arbitrary sequence of reference points~xi 2 Iqi:::q1R (if Q = qjQj : : : q1), and should not be confused with the stabilityof of periodic orbit Q, here denoted �Q.The very useful inequality 1 + x < exp(x) enables us to writejQj�1Yi=0  1 +N jIRj�imin! < eNjIRjPjQj�1i=0 1�imin < eNjIRjP1i=0 1�imin = eNjIRj �min�min�1(17)and we can stateLemma 3.1jIRj � j~��1Q je�NjIRj �min�min�1 < jIQRj < jIj � j~��1Q jeNjIRj �min�min�1 (18)As a special case we let R be the null string, and ~�Q = �Q, and get5



Corollary 3.1jIj � j�Qj�1e�NjIj �min�min�1 < jIQj < jIj � j�Qj�1eNjIQj �min�min�1 (19)which we claimed before in eq. (5)We make two immediate remarksRemarks:1. The bound closes up if N ! 0; the periodic orbit representation is exact iffq (8q) is linear.2. The bound collapses if �min ! 1, the requirement that the map is expandingseems to be essential.�4 The intermittent map4.1 Speci�cation of the mapIt is time to specify the particular class of maps we will consider in detail.The map f obey assumption I (as in Intermittency) if1. I = [0; 1].2. The map has two branches, f0 de�ned on I0 = [0; q0[, and f1 on I1 =[q1; 1], where q0 � q1. Both branches are monotone (positive slope) andcomplete, that is f0(0) = 0, f0(q0) = 1, f1(q1) = 0 and f1(1) = 1.3. The �rst branch can be written as f0(x) = x+ rx1+s+u(x) where u(x)where u(x) is subject to the Lipshitz-like condition ju0(x) � u0(y)j <C (max(x; y))s+t�1 jx�yj, where t > 0. The map has an neutral �xpointat x = 0: f 00(0) = 1, but f 00(x) > 1 elsewhere (x > 0).4. The second branch f1 is expanding, jdf1(x)dx j > �min > 1, and f1 2C1+Lipshitz. 6
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Figure 2: The conjugate of the map in �g 1Remark:From the above requirement we immediately deduce that u0(x) = O(xs+t) andu(x) = O(xs+t+1).�4.2 Conjugation of the mapIt will show very convenient to consider a conjugation of the map � 7! �(�)�(�) = h�1 � f � h (�) (20)given by the change of variables.x = h(�) = (r�)�1=s (21)Mapping functions and coordinates in the conjugate space will typically bedenoted by greek letters. Intervals in �- space will be denotediQ = h�1(IQ) (22)We will need the following elementary results later8



Lemma 4.2.1 (a) (h(�)� h(�))=h(�) < 1s(� � �)=� if � > � we have.(b) (h(�)� h(�))=h(�) = 1s(� � �)=� +O([(� � �)=�]2)An example of a conjugated maps can be seen in �g. 2.4.2.1 The intermittent branchThe main virtue of the conjugation is that the action of the intermittentbranch �0 (�0�1)�n(�) = h�1 � (f0�1)�n � h (�) (23)will be very simple, as demonstrated by the followingLemma 4.2.2 Under assumptions I on map f , we have the following resultfor the intermittent branch f :(a) (�0�1)�n(�) = � + sn +Bn(�) (24)where Bn(�) = O((� + sn)1��) � = min(1; t=s) (25)1(b) There exist constants C1 C2, �1 < C1 < 1 < C2 <1 such thatC1 < d(�0�1)�n(�)d� = 1 +B0n(�) < C2 (26)(c) The derivative of (�0�1)�n is subject to the Lipshitz conditionj 1 +B0n(�)1 +B0n(�) � 1 j< Cj� � �j (27)Remark: The bound on Bn(�) is actually a bit pessimistic for small n, sinceB0(�) = 0. However, a convenient form to express a) isC1(� + sn) < � + sn+Bn(�) < C2(� + sn): (28)�1Don't forget � = 1 case 9



First we need to express the action of the map �0�1(�) in a convenientform �0�1(�) = � + s+ b(�) (29)where (i) ( b(�) = O(1=��)b(�) > �s � 2 i(I0) (30)The derivative of b(�) has a bound (ii)( b0(�) = O(1=��+1)b0(�) > �1 � 2 i(I0) (31)and a Lipzhitz condition (iii)j 1 + b0(�)1 + b0(�) � 1 j< C 1[min(�; �)]�+2 j� � �j �; � 2 i0 (32)The proof is a straightforward calculation and is omitted.Proof of (a): The function Bn(�) ful�lls the following recurrence relationBn+1(�) = Bn(�) + b(� + sn+ Bn(�)) (33)We now want to show thatjBn(�)j < D(� + sn)1�� � 2 h�1(I0) (34)by assuming jb(�)j < C�� � 2 h�1(I0) (35)We do this by induction, via eq (33). The statement is obviously true forn = 0 since B0(�) = 0. Assuming (34) is true for n, we getjBn+1(�)j � jBn(�)j+jb(�+sn+Bn(�))j � D(�+sn)1��+ C[� + sn�D(� + sn)1��]�(36)So, given the constant, C, if we can �nd a constant D such thatD(� + sn)1�� + C[� + sn�D(� + sn)1��]� < D(� + sn+ s)1�� (37)10



holds for all � 2 h�1(I0), we are done. Refurnishing the above expression,using the substitution z = 1=(� + sn) (z is then subject to the conditionz < r qs0) we get CD z1�Dz� < (1 + sz)1�� � 1 (38)This can actually be achieved, as follows from elementary analysis.Proof of (b): Our task is to show that B0n(�) is limited as n ! 1:�1 < C1 < B0n(�) < C1 <1.Next we di�erentiate (33) to getB0n+1(�) = B0n(�) + (1 +B0n(�))b0(� + sn +Bn(�)) (39)By introducing the function �n(�) � ln(1 +B0n(�)) we recast it into�n+1(�) = �n(�) + ln(1 + b0(� + sn+Bn(�))) (40)Since B0(�) = 0, it is supplemented by the initial condition �0(�) = 0 andwe get �n(�) = n�1Xm=0 ln(1 + b0(� + sm +Bm(�))) (41)It is straightforward to show that there is an upper and lower bound of thesum above, which proves our assertion.Now remains (c). We begin by writing1 +B0n(�)1 +B0n(�) = e�n(�)��n(�) (42)where according to (41)�n(�)��n(�) = n�1Xm=0 ln 1 + b0(� + sm+Bm(�))1 + b0(� + sm+Bm(�)) (43)and by assuming � > �j�n(�)��n(�)j �= n�1Xm=0 j ln 1 + b0(� + sm +Bm(�))1 + b0(� + sm +Bm(�)) j (44)< n�1Xm=0 j ln(1 + C 1(� + sm +Bm(�))�+2 j� +Bm(�))� � � Bm(�)j) j11



< C n�1Xm=0 1(� + sm+Bm(�))�+2 j� +Bm(�))� � �Bm(�)jAccording to (b)jBm(�)� Bm(�)j � Z �� jB0mj(�0)jd�0 < Cj� � �j (45)yielding j�n(�)��n(�)j < Cj� � �j n�1Xm=0 1[� + sm +Bm(�)]�+2 (46)< Cj� � �jsince the sum converges. The last equation, together with (b) (saying that1 +B0n(�) is bounded) implies the announced result (c).4.2.2 The expanding branchWe will need one asymptotic result, concerning the conjugation of expandingbranch ��11 (�) = h�1 � f�11 � h (�) (47)This function maps the interval i = [1r ;1[ to i1 = [1r ; 1rqs0 ] � [1r ; �0].Lemma 4.2.3 There are constants C1, C2 (0 < C1 < C2 < 1) such thatC1  �1� !1=s < �1 � ��11 (�) < C2  �1� !1=s (48)where �1 = h�1(q1)2 2rewrite as O(...)
12



4.3 The induced mapThe induced version F : I1 7! I1 of the map f : I 7! I is a restriction of themap, to the interval I1, achieved in the following wayf(x) = Fn(x) � (f0)�n � f1 (x) x 2 I10n1 (49)for n � 0.Next we want to show that assumptions E are ful�lled by the map�(�) = h�1 � F � h (�) (50)an in particular the inverse of branch n��1n (�) = h�1 � F�1n � h(�) = ��11 � (��10 )�n (51)Lemma 4.3.1 (a) There are constants C1, C2 (0 < C1 < C2 <1) such thatC1 1(1 + rsn)1+1=s < d��1n (�)d� < C2 1(1 + rsn)1+1=s (52)(b) There is a number N (independent of n) such thatjd��1n (�)d� =d��1n (�)d� � 1j < Nj� � �j (53)This means that assumptions E apply on the induced map � and theresults of sec 3Proof:Schematically (��10 )�n ��11� 7�! �0 7�! �002 i1 2 i0n1 2 i10n1 (54)d��1n (�)d� = (1 +B0n(�)) 1f 01(h(�00))  �00�0 !1+1=s (55)= (1 +B0n(�)) 1f 01(h(�00))  �00� + sn+Bn(�)!1+1=s13



Statement (a) now follows easily, from lemma ??b, properties of the expand-ing branch f1, and the fact the � and �00 are bounded.To show (b) we consider a neighboring orbit � 7! �0 7! �00d��1n (�)d� =d��1n (�)d� = 1 +B0n(�)1 +B0n(�) � � + sn+Bn(�)� + sn+Bn(�)!1+1=s� �00�00!1+1=s�f 01(h(�00)f 01(h(�00)(56)We consider each of the four factors separately.Lemma 4.2.2c applies directly to the �rst factor:j 1 +B0n(�)1 +B0n(�) � 1 j< Cj� � �j (57)To treat the second factor we apply lemma 4.2.2a and getj  � + sn +Bn(�)� + sn +Bn(�)!1+1=s � 1 j< O � 11 + rsn� j� � �j (58)To obtain a bound on the third factor we observej�00 � �00j < sup�2i1 j d��1n (�)d� j �j� � �j (59)= O 1(1 + rsn)1+1=s! � j� � �jaccording to (a). From the fact that �00 is limited followsj  �00�00!1+1=s � 1 j< O 1(1 + rsn)1+1=s! � j� � �j (60)Finally for the fourth factorj f 01(h(�00)f 01(h(�00) � 1 j< jh(�00)� h(�00)j < j�00 � �00j < O 1(1 + rsn)1+1=s! � j� � �j(61)where we have used assumption I4, lemma 4.2.3, eq. (59) and the fact that �00and �00 are bounded. Statement (b) can now be veri�ed without di�culties.14



5 The main resultAll periodic orbits (except 0) can be written on the form 10mN : : : 10m210m1 .Will be interested in few intervals IQm for a few cyclic permutations Qm =0n1�mR10m, where R = 10mN : : : 10m2 .We will approach the result in several steps:(��10 )�m ��11 ��1nN � : : : � ��1n2i 7�! iRm 7�! i10m 7�! iR10m (62)(��10 )�(n1�m) h7�! i0n1�mR10m 7�! I0n1�mR10mWe begin with. i = [1r ;1[ (63)Step 1: (��10 )�mAfter m applications of ��10 we geti0m = [1r + sm+Bm(1r );1] (64)Step 2: ��11By applying ��11 we are thrown back to i1i10m = [�1 ��; �1] (65)where �1 = h�1(q1) (66)and C1 1(1 + srm)1=s < � < C2 1(1 + srm)1=s (67)
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Step 3: ��1nN � : : : � ��1n2Being back to i1 we can apply the induced mapiR10m = [�R ��R; �R] (68)�R � �1 (69)(equality is R is the null string). Since assumption E is ful�lled we will beable to use Lemma 3.1 in a slightly weakened version.ji10m j � j~��1R je�Nji1j �min�min�1 < jiR10m j < ji10m j � j~��1R jeNji1j �min�min�1 (70)(weakened because in principle we could have had ji10m j instead of ji1j in theexponent), or equivalentlyC1 � 1j ~�Rj < �R < C2 � 1j ~�Rj (71)Combining the result so far we getC1 1j ~�Rj 1(1 + srm)1=s < �R < C2 1j ~�Rj 1(1 + srm)1=s (72)Step 4; (��10 )�(n1�m)It only remains to apply ��10 n1 �m timesi0n1�mR10m = iQm= [�R ��R + s(n1 �m) +Bn1�m(�R ��R); �R + s(n1 �m) +Bn1�m(�R)]� [�̂; �̂] (73)yieldingC1 1j ~�Rj 1(1 + srm)1=s < C2�R < jiQm j = �̂ � �̂ < C3�R < C4 1j ~�Rj 1(1 + srm)1=s(74)
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Step 5: Finally back to x-spaceIQm = [x̂; ŷ] = [h(�̂); h(�̂)] (75)According to Lemma 4.2.1b jIQmj = x̂[(�̂ � �̂)=�̂ +O([(�̂� �̂)=�̂]2)] and since(�̂ � �̂)=�̂ is limited we getC1 x̂̂� (�̂ � �̂) < jIQmj < C2 x̂̂� (�̂ � �̂) (76)and �nally C1 1j ~�Rj 1(1 + srm)1=s 1(1 + sr(n1 �m))1+1=s < jIQmj < (77)C2 1j ~�Rj 1(1 + srm)1=s 1(1 + sr(n1 �m))1+1=s1j�Qj = 1j ~�Rj d��1n1 (�)d� (78)for some � 2 i1, and due to Lemma 4.3.1aC1 1j�Qj (1 + srn1)1+1=s(1 + srm)1=s (1 + sr(n1 �m))1+1=s < jIQmj < (79)C2 1j�Qj (1 + srn1)1+1=s(1 + srm)1=s (1 + sr(n1 �m))1+1=sThe key idea is to average along a fraction of the periodic orbit1n1 + 1 n1Xm=0 jIQmj (80)The relevant sum isn1Xm=0 1(1 + srm)1=s (1 + sr(n1 �m))1+1=s (81)= ( 1(1+srn1)1=sC +O( 1(1+srn1)1=s+1 ) s < 11(1+srn1)1=sC +O( 1(1+srn1)2=s ) s > 117



and is computed in the appendix. The result enables us to writeC1 1j�Qj < 1n1 + 1 n1Xm=0 jIQmj < C2 1j�Qj (82)which imply (8) and can state our main resultTheorem 5.1 For a map obeying assumption I, the partition sum�n = XjQj = nQ 6= 0n jIQjjIj : (83)and the periodic orbit sum Zn = XjQj = nQ 6= 0n 1j�Qj ; (84)obey the following bound C1Zn < �n < C2Zn (85)for some constants 0 < C1 < C2 <1.6 Discussion6.1 Escape probabilitiesWe have chosen to focus on the survival probability, and its representation interms of periodic orbits, from which the escape probability can be deduced.	n = �n � �n+1 (86)An (more dangerous) alternative is to consider a periodic orbit repre-sentation of the escape probability directly. One would hen start from thecomplement of the generating partition J = [q1; q2] and write	n = XjQj=n jJQjI (87)18



and the iterative rule JqR = f�1q (JR) (88)In terms of periodic orbits one would get	n � jJ jjIjZn (89)This formula should make us very suspicious, because if �n, and thus Znasymptotically follows a power law �n � Zn � n�, then we know from eq.(86) that 	 � n��1, whereas eq. (89) would predict 	 � n�. How can thisparadox be resolved.An analysis similar to the one in section 5 givewC1 1j ~�Rj 1(1 + sr(n1 �m))1+1=s < jJQmj < C2 1j ~�Rj 1(1 + sr(n1 �m))1+1=s (90)orC1 1j�Qj (1 + srn1))1+1=s(1 + sr(n1 �m))1+1=s < jJQmj < C2 1j�Qj (1 + srn1))1+1=s(1 + sr(n1 �m))1+1=s (91)and there is no way of rescuing bounds by any averaging procedure.Non uniform initial distributionThe contibutions to the sum (81) are very unevenly distributed. Therefore,by starting from a nonuniform distribution, the bounds easily detoriate, andmay collaps alltogether. En example of such a collaps is the following. In-stead of starting with a uniform distribution over the entire I, we start witha uniform disytribution only over I1. Call the corresponding survival prob-ability �0n. If, for simplicity, the expanding branch f1 is strictly linear, then�0n+1 = �n. But, it is not possible to bind the corresponding periodic orbitsum Z 0n = XQ:jQj=n�1 1�1Q (92)close to �0n.The moral is that periodic orbit expression for escape from nonuniformlyhyperbolic systems is extremely fragile.19



AppendixIn this appendix we evaluate the sumS = NXn=0 1(1 + srn)1=s 1(1 + sr(N � n))1=s+1 � S1 + S2 (93)asymptotically for large values of N . If N is odd we can write (the general-ization to even N is trivial and omitted)S1 = (N�1)=2Xn=0 1(1 + srn)1=s 1(1 + sr(N � n))1=s+1 (94)and S2 = (N�1)=2Xn=0 1(1 + srn)1=s+1 1(1 + sr(N � n))1=s (95)To treat S1 we use1(1+sr(N�n))1=s+1 = O( 1(1+srN))1=s+1 ); N � 0; 0 � n � (N � 1)=2 (96)and get S1 = ( O( 1(1+srN)1=s+1 ) s < 1O( 1(1+srN)2=s ) s > 1 (97)To treat S2 we use1(1+sr(N�n))1=s = 1(1+srN))1=s +O( 1+srn(1+srN))1=s+1 ); N � 0; 0 � n � (N � 1)=2(98)and get S2 = ( 1(1+srN)1=s P1n=0 1(1+srn)1=s+1 +O( 1(1+srN)1=s+1 ) s < 11(1+srN)1=s P1n=0 1(1+srn)1=s+1 +O( 1(1+srN)2=s ) s > 1 (99)Summing S1 and S2 we arrive atS = ( 1(1+srN)1=s P1n=0 1(1+srn)1=s+1 +O( 1(1+srN)1=s+1 ) s < 11(1+srN)1=s P1n=0 1(1+srn)1=s+1 +O( 1(1+srN)2=s ) s > 1 (100)20


