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Overview
The career of a young theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction.

— Sidney Coleman

I am leaving the course notes here, not so much for the notes themselves –they
cannot be understood on their own, without viewing the recorded live lectures– but for
the hyperlinks to various source texts you might find useful later on in your research.

We change the topics covered year to year, in hope that they reflect better what a
graduate student needs to know. This year’s experiment is taking the course online.
Let’s work together to make it work for everyone in the course.

Course outline : An ode in 15 stanzas

Course policy

My teaching philosophy : Bologna

How does one pronounce ‘Euler’? ‘Cvitanović’?

After a while you might notice a pattern: Every week we start with something
obvious that you already know, let mathematics lead us on, and then veers off and ends
someplace amazing and highly non-intuitive.

http://YouTube.com/embed/L03DMzUXDaU 
http://YouTube.com/embed/rKhGR82aqxQ 
http://YouTube.com/embed/9p2R96zvPtY 
http://YouTube.com/embed/0Qc1Gq2aagA 
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mathematical methods - week 1

Linear algebra

Georgia Tech PHYS-6124
Homework HW #1 due Tuesday, August 25, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 1.1 Trace-log of a matrix 4 points
Exercise 1.2 Stability, diagonal case 2 points
Exercise 1.3 The matrix square root 4 points
Exercise 1.4 Exponential of a matrix of Jordan form 4 bonus points

Total of 10 points = 100 % score. Bonus points accumulate, can help you later if you
miss a few problems.

edited October 11, 2022
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http://ChaosBook.org/course2/exerWeek1.tex


8 MATHEMATICAL METHODS - WEEK 1. LINEAR ALGEBRA

Week 1 syllabus Tuesday, August 18, 2020

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

Anything prefixed by AWH, like “Kronecker product AWH eq. (2.55)” refers to
Arfken, Weber & Harris [2] Mathematical Methods for Physicists: A Comprehensive
Guide (Georgia Tech students can get it from GaTech Library). Light blue text in this
PDF is a live hyperlink. If you encounter a ChaosBook.org web login: all copyright-
protected references are on a password protected site. What password? If you are a
Georgia Tech student, I can help you with that.

This week’s lectures are related to AWH Chapter 2 Determinants and matrices
(click here), and Chapter 6 Eigenvalue problems (click here). The fastest way to watch
any week’s lecture videos is by letting YouTube run the

course playlist

• Sect. 1.2 Matrix-valued functions

AWH p. 113 Functions of Matrices

AWH Section 2.2 Matrices

Matrices : 2 kinds

Derivative of a matrix function

Exponential, logarithm of a matrix

AWH Example 2.2.6 Exponential of a diagonal matrix

Determinant is a volume

log det = tr log (updated Aug 18, 2020)

Multi-matrix functions (optional, for the QM inclined)

• Sect. 1.3 A linear diversion
There are two representations of exponential of constant matrix, the Taylor se-
ries and the compound interest (Euler product) formulas (1.10). If the matrix
(for example, the Hamiltonian) changes with time, the exponential has to be
time-ordered. The Taylor series generalizes to the nested integrals formula, and
the Euler product to time-ordered product (1.11). The first is used in formal
quantum-mechanical calculations, the second in practical, numerical calcula-
tions.

Linear differential equations

Nonlinear differential equations

• Sect. 1.4 Eigenvalues and eigenvectors
Hamilton-Cayley equation, projection operators (1.21), any matrix function is
evaluated by spectral decomposition (1.24). Work through example 1.3.

https://www.prairiehome.org/story/2003/11/29/guy-noir.html
http://ChaosBook.org/library/ArWeHa13chap2.pdf#section*.29
https://www.sciencedirect.com/book/9780123846549/mathematical-methods-for-physicists
http://ChaosBook.org/figs/cat.hammock.gif
http://ChaosBook.org/library/
http://ChaosBook.org/library/ArWeHa13chap2.pdf
http://ChaosBook.org/library/ArWeHa13chap6EigenvalueProbs.pdf
http://YouTube.com/watch?v=8r9sJVlkAR4&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=5
http://ChaosBook.org/library/ArWeHa13chap2.pdf#section*.30
http://YouTube.com/embed/8r9sJVlkAR4 
http://YouTube.com/embed/H0xnPhU6Sg4 
http://YouTube.com/embed/Lj1VzVylpdk 
http://YouTube.com/embed/-lds_86m3SA 
http://YouTube.com/embed/V6azICX_GP4 
http://YouTube.com/embed/RNxNuIvq_Jo 
http://YouTube.com/embed/09BZPDuANRo 
http://YouTube.com/embed/bnY9ogJjoJo 
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AWH Section 6.1 Eigenvalue Equations

Eigenvalues and eigenvectors

What’s the deal with Hamilton-Cayley?

Spectral decomposition

Spectral decomposition and completeness

Right, left eigenvectors

A projection operators workout

Jordan form

AWH p. 324 Defective matrices (optional, for QM inclined)

Are there Jordan form matrices in physics? (optional, for QM inclined)

1.1 Other sources
The subject of linear algebra is a vast and very alive research area, generates innumer-
able tomes of its own, and is way beyond what we can exhaustively cover here. A few
resources that you might find helpful going forward:

Linear operators and matrices reading (optional reading for week 1, not required
for this course):

Stone and Goldbart [13], Mathematics for Physics: A Guided Tour for Graduate
Students, Appendix A. This is an advanced summary where you will find almost
everything one needs to know.

In sect. 1.2 I make matrix functions appear easier than they really are. For an in-
exercise 1.3

depth discussion, consult Golub and Van Loan [7] Matrix Computations, chap. 9
Functions of Matrices (click here).

Petersen and Pedersen The Matrix Cookbook (click here).

Much more than you ever wanted to know about linear algebra: Axler [3] Down
with determinants! (click here).

Steve Trettel Linear Algebra and the Periodic Table is a gentle 53 min tour from
vectors to function spaces to quantum mechanics. True, what they teach you
as QM is 95% linear algebra, but Trettel does not mention that QM is 95% one
amazing experimental fact: ℏ is a nature-given constant. Mathematicians...

Grant Sanderson Essence of linear algebra ( 3Blue1Brown). Karan Shah likes
the geometrical explanations of linear algebra eigen-values / -vectors, recom-
mends it.

Sergey Loyka likes Aplevich [1] The Essentials of Linear State-space Systems
(2000).

http://YouTube.com/embed/8gm2dbIDk4M 
http://YouTube.com/embed/pBnpRxWl05A 
http://YouTube.com/embed/0p9l7-HdFB0 
http://YouTube.com/embed/-jMGivWDSrQ 
http://YouTube.com/embed/QcjUUhR1nRg 
http://YouTube.com/embed/bDS34rQQ3b0 
http://YouTube.com/embed/ewpqI_4-CPI 
http://YouTube.com/embed/yGWS0ypljGg
http://ChaosBook.org/course2/StGoAppA.pdf
http://ChaosBook.org/library/GoVanLo96.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.maa.org/sites/default/files/pdf/awards/Axler-Ford-1996.pdf
http://YouTube.com/embed/QFT7RGysvME
http://YouTube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.3blue1brown.com/
http://www.site.uottawa.ca/~sloyka/
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Question 1.1. Henriette Roux finds course notes confusing
Q Couldn’t you use one single, definitive text for methods taught in the course?
A It’s a grad school, so it is research focused - I myself am (re)learning the topics that we are
going through the course, using various sources. My emphasis in this course is on understanding
and meaning, not on getting all signs and 2π’s right, and I find reading about the topic from
several perspectives helpful. But if you really find one book more comfortable, nearly all topics
are covered in Arfken, Weber & Harris [2].

Other online math methods courses we liked:

Ilya Kuprov Mathematics for Chemists.

1.2 Matrix-valued functions
What is a matrix?

—Werner Heisenberg (1925)
What is The Matrix?

—-Keanu Reeves (1999)

(optional, for QM inclined)
Why should a working physicist care about linear algebra? Physicists were blissfully
ignorant of group theory until 1920’s, but with Heisenberg’s sojourn in Helgoland,
everything changed. Quantum Mechanics was formulated as

|ϕ(t)⟩ = Û t|ϕ(0)⟩ , Û t = e−
i
ℏ tĤ , (1.1)

where |ϕ(t)⟩ is the quantum wave function at time t, Û t is the unitary quantum evo-
lution operator, and Ĥ is the Hamiltonian operator. Fine, but what does this equation
mean? In the first lecture we deconstruct it, make Û t computationally explicit as a the
time-ordered product (1.12).

It would not be fair to students to expect a prior exposure to Heisenberg’s matrix
quantum mechanics (1.1), so if you do not ‘get’ the QM comments of this section, it’s
OK. It is not needed for what follows, and I’ll do it in the class only if you request me
to do it.

The matrices that have to be evaluated are very high-dimensional, in principle in-
finite dimensional, and the numerical challenges can quickly get out of hand. What
made it possible to solve these equations analytically in 1920’s for a few iconic prob-
lems, such as the hydrogen atom, are the symmetries, or in other words group theory,
a subject of another course, our group theory course.

Whenever you are confused about an “operator”, think “matrix”. Here we recapit-
ulate a few matrix algebra concepts that we found essential. The punch line is (1.27):
Hamilton-Cayley equation

∏
(M− λi1) = 0 associates with each distinct root λi of a

matrix M a projection onto ith vector subspace

Pi =
∏
j ̸=i

M− λj1

λi − λj
.

http://YouTube.com/playlist?list=PLpfFizdc4MPrdPYKOLGvKt2TW6G69OZhf
http://spindynamics.org/
http://birdtracks.eu/courses/PHYS-7143-19/schedule.html
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What follows - for this week - is a jumble of Predrag’s notes. If you understand the
examples, we are on the roll. If not, ask :)

How are we to think of the quantum operator (1.1)

Ĥ = T̂ + V̂ , T̂ = p̂2/2m, V̂ = V (q̂) , (1.2)

corresponding to a classical Hamiltonian H = T + V , where T is kinetic energy, and
V is the potential?

Expressed in terms of basis functions, the quantum evolution operator is an infinite-
dimensional matrix; if we happen to know the eigenbasis of the Hamiltonian, the prob-
lem is solved already. In real life we have to guess that some complete basis set is
good starting point for solving the problem, and go from there. In practice we truncate
such operator representations to finite-dimensional matrices, so it pays to recapitulate
a few relevant facts about matrix algebra and some of the properties of functions of
finite-dimensional matrices.

1.3 A linear diversion

(Notes based of ChaosBook.org/chapters/stability.pdf)

Linear fields are the simplest vector fields, described by linear differential equations
which can be solved explicitly, with solutions that are good for all times. The state
space for linear differential equations is M = Rd, and the equations of motion are
written in terms of a vector x and a constant stability matrix A as

ẋ = v(x) = Ax . (1.3)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

How do we solve the linear differential equation (1.3)? If instead of a matrix equa-
tion we have a scalar one, ẋ = λx , the solution is x(t) = etλx0 . In order to solve
the d-dimensional matrix case, it is helpful to rederive this solution by studying what
happens for a short time step δt. If time t = 0 coincides with position x(0), then

x(δt)− x(0)

δt
= λx(0) , (1.4)

which we iterate m times to obtain Euler’s formula for compounding interest

x(t) ≈
(
1 +

t

m
λ

)m

x(0) ≈ etλx(0) . (1.5)

http://ChaosBook.org/chapters/stability.pdf
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The term in parentheses acts on the initial condition x(0) and evolves it to x(t) by
taking m small time steps δt = t/m. As m → ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (1.4):

x(δt)− x(0)

δt
= Ax(0) . (1.6)

A representative point x is now a vector in Rd acted on by the matrix A, as in (1.3).
Denoting by 1 the identity matrix, and repeating the steps (1.4) and (1.5) we obtain
Euler’s formula

x(t) = J tx(0) , J t = etA = lim
m→∞

(
1+

t

m
A

)m

. (1.7)

We will find this definition for the exponential of a matrix helpful in the general case,
where the matrix A = A(x(t)) varies along a trajectory.

Now that we have some feeling for the qualitative behavior of a linear flow, we are
ready to return to the nonlinear case. Consider an infinitesimal perturbation of the
initial state, x0 + δx(x0, 0). How do we compute the exponential (1.7) that describes
linearized perturbation δx(x0, t)?

x(t) = f t(x0) , δx(x0, t) = J t(x0) δx(x0, 0) . (1.8)

The equations are linear, so we should be able to integrate them–but in order to make
sense of the answer, we derive this integration step by step. The Jacobian matrix is
computed by integrating the equations of variations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj (1.9)

Consider the case of a general, non-stationary trajectory x(t). The exponential of a
constant matrix can be defined either by its Taylor series expansion or in terms of the
Euler limit (1.7):

etA =

∞∑
k=0

tk

k!
Ak = lim

m→∞

(
1+

t

m
A

)m

. (1.10)

Taylor expanding is fine if A is a constant matrix. However, only the second, tax-
accountant’s discrete step definition of an exponential is appropriate for the task at
hand. For dynamical systems, the local rate of neighborhood distortion A(x) depends
on where we are along the trajectory. The linearized neighborhood is deformed along
the flow, and the m discrete time-step approximation to J t is therefore given by a
generalization of the Euler product (1.10):

J t = lim
m→∞

1∏
n=m

(1+ δtA(xn)) = lim
m→∞

1∏
n=m

eδtA(xn) (1.11)

= lim
m→∞

eδtA(xm)eδtA(xm−1) · · · eδtA(x2)eδtA(x1) ,
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where δt = (t− t0)/m, and xn = x(t0+nδt). Indexing of the products indicates that
the successive infinitesimal deformation are applied by multiplying from the left. The
m→ ∞ limit of this procedure is the formal integral

J t
ij(x0) =

[
Te

∫ t
0
dτA(x(τ))

]
ij
, (1.12)

where T stands for time-ordered integration, defined as the continuum limit of the suc-
cessive multiplications (1.11). This integral formula for J t is the finite time companion
of the differential definition

J̇(t) = A(t)J(t), (1.13)

with the initial condition J(0) = 1. The definition makes evident important properties
of Jacobian matrices, such as their being multiplicative along the flow,

J t+t′(x) = J t′(x′) J t(x), where x′ = f t(x0) , (1.14)

which is an immediate consequence of the time-ordered product structure of (1.11).
However, in practice J is evaluated by integrating differential equation (1.13) along
with the ODEs (3.6) that define a particular flow.

1.4 Eigenvalues and eigenvectors
10. Try to leave out the part that readers tend to skip.

— Elmore Leonard’s Ten Rules of Writing.

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M− λ1) =
∏

(λi − λ) = 0 . (1.15)

Given a nonsingular matrix M, detM ̸= 0, with all λi ̸= 0, acting on d-dimensional
vectors x, we would like to determine eigenvectors e(i) of M on which M acts by
scalar multiplication by eigenvalue λi

Me(i) = λie
(i) . (1.16)

If λi ̸= λj , e(i) and e(j) are linearly independent. There are at most d distinct eigen-
values, which we assume have been computed by some method, and ordered by their
real parts, Reλi ≥ Reλi+1.

If all eigenvalues are distinct e(j) are d linearly independent vectors which can be
used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e
(1) + x2 e

(2) + · · ·+ xd e
(d) . (1.17)

From (1.16) it follows that

(M− λi1) e
(j) = (λj − λi) e

(j) ,
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matrix (M−λj1) annihilates e(j), the product of all such factors annihilates any vector,
and the matrix M satisfies its characteristic equation

d∏
i=1

(M− λi1) = 0 . (1.18)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term from
this product, we find that the remainder projects x from (1.17) onto the corresponding
eigenspace: ∏

j ̸=i

(M− λj1)x =
∏
j ̸=i

(λi − λj)xie
(i) .

Dividing through by the (λi − λj) factors yields the projection operators

Pi =
∏
j ̸=i

M− λj1

λi − λj
, (1.19)

which are orthogonal and complete:

PiPj = δijPj , (no sum on j) ,
r∑

i=1

Pi = 1 , (1.20)

with the dimension of the ith subspace given by di = trPi . For each distinct eigenvalue
λi of M,

(M− λj1)Pj = Pj(M− λj1) = 0 , (1.21)

the colums/rows of Pi are the right/left eigenvectors e(k), e(k) of M which (provided
M is not of Jordan type, see example 1.1) span the corresponding linearized subspace.

The main take-home is that once the distinct non-zero eigenvalues {λi} are com-
puted, projection operators are polynomials in M which need no further diagonaliza-
tions or orthogonalizations. It follows from the characteristic equation (1.21) that λi is
the eigenvalue of M on Pi subspace:

MPi = λiPi (no sum on i) . (1.22)

Using M = M1 and completeness relation (1.20) we can rewrite M as

M = λ1P1 + λ2P2 + · · ·+ λdPd . (1.23)

Any matrix function f(M) takes the scalar value f(λi) on the Pi subspace, f(M)Pi =
f(λi)Pi , and is thus easily evaluated through its spectral decomposition (see AWH
Exercise 3.5.34)

remark 1.1
f(M) =

∑
i

f(λi)Pi . (1.24)

This, of course, is the reason why anyone but a fool works with irreducible reps: they
reduce matrix (AKA “operator”) evaluations to manipulations with numbers.
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By (1.21) every column of Pi is proportional to a right eigenvector e(i), and its
every row to a left eigenvector e(i). In general, neither set is orthogonal, but by the
idempotence condition (1.20), they are mutually orthogonal,

e(i) · e(j) = c δji . (1.25)

The non-zero constant c is convention dependent and not worth fixing, unless you feel
nostalgic about Clebsch-Gordan coefficients. We shall set c = 1. Then it is convenient
to collect all left and right eigenvectors into a single matrix.

Example 1.1. Degenerate eigenvalues. While for a matrix with generic real
elements all eigenvalues are distinct with probability 1, that is not true in presence of
symmetries, or spacial parameter values (bifurcation points). What can one say about
situation where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · = λi+dα−1?
Hamilton-Cayley (1.18) now takes form

r∏
α=1

(M− λα1)
dα = 0 ,

∑
α

dα = d . (1.26)

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (1.26) can be re-
placed by the minimal polynomial,

r∏
α=1

(M− λα1) = 0 , (1.27)

where the product includes each distinct eigenvalue only once. Matrix M acts multi-
plicatively

Me(α,k) = λie
(α,k) , (1.28)

on a dα-dimensional subspace spanned by a linearly independent set of basis eigen-
vectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case. Luckily, if the degeneracy is
due to a finite or compact symmetry group, relevant M matrices can always be brought
to such Hermitian, diagonalizable form.

M can only be brought to upper-triangular, Jordan form. This is the messy case,
so we only illustrate the key idea in example 1.2. (optional, for QM inclined)

Example 1.2. Decomposition of 2-dimensional vector spaces: Enumeration of ev-
ery possible kind of linear algebra eigenvalue / eigenvector combination is beyond what
we can reasonably undertake here. However, enumerating solutions for the simplest
case, a general [2×2] non-singular matrix

M =

[
M11 M12

M21 M22

]
.

takes us a long way toward developing intuition about arbitrary finite-dimensional matri-
ces. The eigenvalues

λ1,2 =
1

2
trM± 1

2

√
(trM)2 − 4 detM (1.29)
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are the roots of the characteristic (secular) equation (1.15):

det (M− λ1) = (λ1 − λ)(λ2 − λ)

= λ2 − trMλ+ detM = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

P1 =
M− λ21

λ1 − λ2
, P2 =

M− λ11

λ2 − λ1
, λ1 ̸= λ2 . (1.30)

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case. (b) M can be brought to Jordan form,
with zeros everywhere except for the diagonal, and some 1’s directly above it; for a [2×2]
matrix the Jordan form is (optional, for QM inclined)

M =

[
λ 1
0 λ

]
, e(1) =

[
1
0

]
, v(2) =

[
0
1

]
.

v(2) helps span the 2-dimensional space, (M − λ)2v(2) = 0, but is not an eigenvector,
as Mv(2) = λv(2) + e(1). For every such Jordan [dα ×dα] block there is only one
eigenvector per block. Noting that

Mm =

[
λm mλm−1

0 λm

]
,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etM
(
u

v

)
= etλ

(
u+ tv

v

)
(1.31)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring the
extra term into the exponent).

Example 1.3. Projection operator decomposition in 2 dimensions: Let’s illustrate
how the distinct eigenvalues case works with the [2×2] matrix

M =

[
4 1
3 2

]
.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (1.29):

det (M− λ1) = λ2 − 6λ+ 5 = (5− λ)(1− λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by ex-
plicit calculation:[

4 1
3 2

]2
− 6

[
4 1
3 2

]
+ 5

[
1 0
0 1

]
=

[
0 0
0 0

]
.
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Associated with each root λi is the projection operator (1.30)

P1 =
1

4
(M− 1) =

1

4

[
3 1
3 1

]
(1.32)

P2 =
1

4
(M− 5 · 1) =

1

4

[
1 −1

−3 3

]
. (1.33)

Matrices Pi are orthonormal and complete, The dimension of the ith subspace is given
by di = trPi ; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that Pi satisfies the eigenvalue equation MPi = λiPi . Two
consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1− 3)P2 =

[
58591 19531
58593 19529

]
.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {
[
1
1

]
,

[
1

−3

]
}

{e(1), e(2)} = {
[
3
1

]
,

[
1

−1

]
} ,

with overall scale arbitrary. The matrix is not symmetric, so {e(j)} do not form an orthog-
onal basis. The left-right eigenvector dot products e(j) · e(k), however, are orthogonal
as in (1.25), by inspection.

Example 1.4. Computing matrix exponentials. If A is diagonal (the system is un-
coupled), then etA is given by

exp


λ1t

λ2t

. . .
λdt

 =


eλ1t

eλ2t

. . .
eλdt

 .

If A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
An = (FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor se-
ries for ex gives eAt = FeDtF−1.

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2×2] matrices. For any
linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

B =

[
λ 0
0 µ

]
, B =

[
λ 1
0 λ

]
, B =

[
µ −ω
ω µ

]
.
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These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

eBt =

[
eλt 0
0 eµt

]
, eBt = eλt

[
1 t
0 1

]
, eBt = eat

[
cos bt − sin bt
sin bt cos bt

]
,

and eAt = UeBtU−1. What we have done is classify all [2×2] matrices as belonging to
one of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to Rd is called the Jordan normal form. (J. Halcrow)

Example 1.5. Determinants and traces.
The usual textbook expression for a determinant is the sum of products of all per-

mutations
detM =

∑
{π}

(−1)πM1,π1M2,π2 · · ·Mm,πm (1.34)

where M is a [m×m] matrix, {π} denotes the set of permutations of m symbols, πk

is the permutation π applied to k, and (−1)π = ±1 is the parity of permutation π. For
example, for a [2×2] matrix, the permutations are {πm} = {(1)(2), (12)} , so

detM = M11M22 −M12M21 , (1.35)

for a [3×3] matrix

M =

 M11 M12 M13

M21 M22 M23

M31 M32 M33


there are 6 = 3! permutations,

detM = M11M22M33 −M11M23M32 −M12M21M33 +M12M23M31

+M13M21M32 −M13M22M31 , (1.36)

and so on. Not very illuminating.
But if M = T − λ1, evaluation of the [2×2] case,

det (T − λ1) = (T11 − λ)(T22 − λ)−M12M21 = λ2 + (trT )λ+ detT , (1.37)

used in (1.29), offers a hint of better things to come. This way of computing determinants
is generalized to any [m×m] matrix in ref. [6], sect. 6.4 Determinants (click here).

The ln detM = tr lnM relation, valid for any square matrix M (even the infinite
dimensional ‘trace class’ operators M , as long as all |trMk| are bounded) offers a
powerful alternative, universally used, for evaluating determinants.

First, observe that both the determinant and the trace are invariant under similarity
transformations M̂ = S−1M S , detS ̸= 0:

det M̂ = det (S−1M S) = (detS−1) (detM) (detS) = detM

tr M̂k = trS−1M S · · ·S−1M S = trM S · · ·S−1M S S−1 = trMk , (1.38)

so any quantity, in particular the eigenvalues of M , expressed in terms of its traces and
its determinant is also invariant under all linear coordinate changes.

http://birdtracks.eu/version9.0/GroupTheory.pdf#section.6.4
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Next, consider the characteristic polynomial (1.15) of [m×m] matrix T , and change
the variable to z = 1/λ in det (T − λ1). The zeros zj = 1/λj of

det (1− zT ) = 0 (1.39)

now yield the non-zero eigenvalues λj of T . That λj = 0 eigenvalues are gone is
a blessing; nobody liked them anyway. By the determinant–trace relation ln det M =

exercise 1.1tr lnM , the determinant of M = 1− zT is always expressible as

det (1− zT ) = exp (tr ln(1− zT )) = e−
∑

n=1
zn

n
trTn

. (1.40)

We evaluate such formulas in two steps. First, expand exp(f(z)) as Taylor series in f(z)

det (1− zT ) =

∞∑
k=0

1

k!

(
−
∑
n=1

zn

n
trTn

)k

Then expand (· · · )k as series in zn and combine terms of order zn. The result is central
to much statistical physics and field theory, where it is known as the cumulant expansion:

det (1− zT ) = 1− z trT − z2

2

(
(trT )2 − trT 2)

−z3

3!

(
(trT )3 − 3 (trT ) trT 2 + 2 trT 3) (1.41)

−z4

4!

(
(trT )4 − 3 (2 (trT )2 − trT 2) trT 2 + 8 trT trT 3 − 6 trT 4)− . . .

If T is an [m×m] matrix, the characteristic polynomial is at most of order m, so the
infinity of coefficients of zn must vanish exactly for n > m! For example, for a [2×2]
matrix, the z2 coefficient in (1.41) is a traces expansion for the determinant (1.35),

det (T ) =
1

2

(
(trT )2 − trT 2) , (1.42)

and for a [3×3] matrix, the z3 coefficient in (1.41) is a traces expansion for the determi-
nant (1.36)

det (T ) =
1

3!

(
(trT )3 − 3 (trT ) trT 2 + 2 trT 3)

= M11M22M33 −M11M23M32 −M12M21M33 +M12M23M31

+M13M21M32 −M13M22M31 , (1.43)

as you can verify by hand, if you do not believe me (you should never believe anything
anyone over 30 says). If you still do not believe me, verify that the z4 coefficient vanishes

0 =
1

4!

(
−6(trT )2trT 2 + 8(trT )trT 3 + 3(trT 2)2 − 6trT 4 + (trT )4

)
for m = 1, 2, 3, but is a traces expansion for the determinant of a [4×4] matrix. If you
need to know more, these relations were noted by Albert Girard (1629), so they are
called Newton’s (1666) identities.

Note also that derivative of (1.40) relates the determinant to the resolvent,

−z
d

dz
ln det (1− zT ) = −tr

(
z
d

dz
ln(1− zT )

)
= tr

zT

1− zT
=

∞∑
k=1

zntr (Tn) , (1.44)

https://en.wikipedia.org/wiki/Newton%27s_identities
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a simple but very useful relation expressing a determinant in terms of traces.
What are all these relationships? Have a fresh look at the Hamilton-Cayley theorem

(1.18) that states that the matrix M satisfies its characteristic equation, and to be spe-
cific, look at the m = 3 case. The Hamilton-Cayley characteristic equation expanded in
terms of traces is

0 = T 3 − (trT )T 2 +
1

2

(
(trT )2 − trT 2)T − (detT )1 . (1.45)

This is the first 3 terms of the cumulant expansion (1.41), with λ restored by z → 1/λ,
i.e., the characteristic equation for A [3× 3] matrix, and the λ replaced by T . The
Hamilton-Cayley formula says that whenever you see [m×m] matrix Tm you can express
it in terms of Tm−1, Tm−1, · · · , T .

To be very specific and pedestrian, consider the [3×3] matrix

T =

 2 2 2
2 6 2
2 2 2

 , T 2 =

 12 20 12
20 44 20
12 20 12


trT = 10 , trT 2 = 68 . (1.46)

From the shape of T clearly detT = 0, so the characteristic equation is

0 =

(
T 2 − (trT )T +

1

2

(
(trT )2 − trT 2)1)T .

=

(
T 2 − 10T +

1

2
(100− 68)1

)
T

=
(
T 2 − 10T + 161

)
T = (T − 81)(T − 21)T , (1.47)

with eigenvalues {λ1, λ2, λ3} = {8, 2, 0}.
For the associated projection operators, see (2.30).

Commentary
Remark 1.1. Projection operators. The construction of projection operators given in
sect. 1.4 is taken from refs. [4, 5]. Sylvester [14] wrote down the spectral decomposition (1.24)
in 1883 in the form we use, but lineage certainly goes all the way back to 1795 Lagrange poly-
nomials [12], and Euler 1783. Often projection operators get drowned in sea of algebraic details.
Halmos [8] is a good early reference - but we like Harter’s exposition [9–11] best, for its multi-
tude of specific examples and physical illustrations. In particular, by the time we get to (1.21) we
have tacitly assumed full diagonalizability of matrix M. That is the case for the compact groups
we will study here (they are all subgroups of U(n)) but not necessarily in other applications. A
bit of what happens then (nilpotent blocks) is touched upon in example 1.2. Harter in his lecture
Harter’s lecture 5 (starts about min. 31 into the lecture) explains this in great detail - its well
worth your time.
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Exercises
1.1. Trace-log of a matrix. Prove that

det M = etr lnM .

for an arbitrary finite dimensional square matrix M , detM ̸= 0. (If you are not getting
it, see AWH(3.171).)

1.2. Stability, diagonal case. Verify that for a diagonalizable matrix A the exponential is
also diagonalizable

Jt = etA = U−1etADU , AD = UAU−1 . (1.48)

1.3. The matrix square root. Consider matrix

A =

[
4 10
0 9

]
.

Generalize the square root function f(x) = x1/2 to a square root f(A) = A1/2 of a
matrix A.
a) Which one(s) of these are the square root of A[

2 2
0 3

]
,

[
−2 10
0 3

]
,

[
−2 −2
0 −3

]
,

[
2 −10
0 −3

]
?

b) Assume that the eigenvalues of a [d× d] matrix are all distinct. How many square root
matrices does such matrix have?
c) Given a [2×2] matrix A with a distinct pair of eigenvalues {λ1, λ2}, write down a
formula that generates all square root matrices A1/2. Hint: one can do this using the 2
projection operators associates with the matrix A. 2 points

1.4. Exponential of a matrix of Jordan form. A matrix B with all eigenvalues degenerate
that cannot be diagonalized can always be brought to upper triangular Jordan form B =
λ1 + E, where E is its strictly upper bidiagonal part. As an example, consider [4×4]
matrix B, with

E =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 . (1.49)

a) Write down E, E2, E2, E3, . . .

b) Write down explicitly the exponential [4×4] matrix function exp(tE).

c) Bonus points, some assembly required: Work out the kth term in the Taylor expan-
sion of a [d× d] matrix function f(B), B = λ1+ E a [d× d] matrix,

f(B) =

∞∑
k=0

f (k)(x0)

k!
(B − x01)

k . (1.50)

.

A side remark to the masters of QM: E is a ‘raising operator’.
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Chapter 1 solutions: Linear algebra

Solution 1.1 - Trace-log of a matrix.
1) Consider M = expA.

detM = lim
n→∞

det
(
1+

1

n
A

)n

= lim
n→∞

(1+
1

n
trA+ . . .)n = exp(tr (lnM))

2) A rephrasing of the solution 1): evaluate d
dt

det
(
et lnM

)
by definition of derivative

in terms of infinitesimals. (Kasper Juel Eriksen)
3) Here is an example of wrong/incomplete answer, hiding behind fancier notation:

This identity makes sense for a matrix M ∈ Cn×n, if |
∏n

i=1 λi| < ∞ and {|λi| >
0, ∀i}, where {λi} is a set of eigenvalues of M . Under these conditions there exist
a nonsingular O : M = ODO−1, D = diag[{λi, i = 1, . . . , n}]. If f(M) is a matrix
valued function defined in terms of power series then f(M) = Of(D)O−1, and f(D) =
diag[{f(λi)}]. Using these properties and cyclic property of the trace we obtain

exp(tr (lnM)) = exp

(∑
i

lnλi

)
=
∏
i

λi = det (M)

What’s wrong about it? If a matrix with degenerate eigenvalues, λi = λj is of Jordan
type, it cannot be diagonalized, so a bit more of discussion is needed to show that the
identity is satisfied by upper-triangular matrices.

4) First check that this is true for any Hermitian matrix M . Then write an arbitrary
complex matrix as sum M = A+ zB, A, B Hermitian, Taylor expand in z and prove by
analytic continuation that the identity applies to arbitrary M . (David Mermin)

5) Suppose lnM = A, then eA = M . Let A = C−1JC, where J is the Jordan
canonical form of A, then we have eJ = CMC−1. J can be written as D+N , where D
is diagonal and N is nilpotent with diagonal elements be zero. So eJ has the same diag-
onal elements with eD, we have that the eigenvalues of J is the logarithm of eigenvalues
of CMC−1. J has the same eigenvalues with A, CMC−1 has the same eigenvalues
with M . So the eigenvalues of A is the logarithm of eigenvalues of M . Determinant of
a matrix is product of its all eigenvalues. Combine all these, we have detM = etr lnM .
(Lei Zhang)

Solution 1.2 - Stability, diagonal case.

Jt = etA =

∞∑
k=0

1

k!
(tA)k

=

∞∑
k=0

1

k!
tk(U−1ADU)k = U−1

∞∑
k=0

1

k!
tk(AD)kU

= U−1etADU .

(Han Liang)

Solution 1.2 - Stability, diagonal case. The relation (1.48) can be verified by noting
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that the defining Euler product can be rewritten as

etA =

(
UU−1 +

tUADU−1

m

)(
UU−1 +

tUADU−1

m

)
· · ·

= U

(
I +

tAD

m

)
U−1U

(
I +

tAD

m

)
U−1 · · · = UetADU−1 . (1.51)

Solution 1.3 - The matrix square root. .
a) It is easy to check that

A =

[
4 10
0 9

]
=
(
A

1/2
ij

)2
for the matrices

A
1/2
++ =

[
2 2
0 3

]
, A

1/2
+− =

[
−2 10
0 3

]
A

1/2
−− =

[
−2 −2
0 −3

]
, A

1/2
−+ =

[
2 −10
0 −3

]
(1.52)

Being upper-triangular, the eigenvalues of the four matrices can be read off their diag-
onals: there are four square root ± eigenvalue combinations {3,2}, {-3,2}, {3,-2}, and
{-3,-2}.

Associated with each set λi ∈ {λ1, λ2} is the projection operator (1.30)

P
(1)
ij =

1

λ1 − λ2
(A

1/2
ij − λ21) =

[
0 2
0 1

]
(1.53)

P
(2)
ij =

1

λ2 − λ1
(A

1/2
ij − λ11) =

[
1 −2
0 0

]
. (1.54)

This calculation reveals that all ‘square root’ matrices have the same projection opera-
tors / eigenvectors as the matrix A itself. We know {λ1, λ2} and P (α) for A, and the four
‘square root’ eigenvalues are clearly {±λ

1/2
1 ,±λ

1/2
2 }. That suggest finding the ‘square

root’ matrices by reverse-engineering (1.53), (1.54):

A
1/2
ij = (λ1 − λ2)P

(1)
ij + λ21 .

For example,

A
1/2
+− = (+3− (−2))

[
0 2
0 1

]
+ (−2)

[
1 0
0 1

]
.

b) If the eigenvalues of a [d × d] matrix are all distinct, the matrix is diagonalizable, so
the number of square root ± combinations is 2d. However, for general matrices things
can get crazy - there can be no, or some, or ∞ of ‘square root’ matrices.

Solution 1.4 - Exponential of a matrix of Jordan form. A matrix B with all eigenval-
ues degenerate of upper triangular Jordan form B = λ1+E. Consider [4×4] matrix B,
with

a) Write down E, E2, E2, E3, . . . :

E2 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , E3 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , , E4 = 0 . (1.55)

https://en.wikipedia.org/wiki/Square_root_of_a_matrix
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b) The Taylor expansion of the exponential matrix function f(E) = etE stops at the
4th term

etE = 1+ tE +
t2

2
E2 +

t3

6
E3 =


1 t t2

2
t3

6

0 1 t t2

2

0 0 1 t
0 0 0 1


c) Bonus points, some assembly required: Write down the formula for the exponen-

tial matrix function f(B), B = λ1 + E with a single eigenvalue, but of arbitrary
dimensions.

etB =

∞∑
k=0

tk

k!
Ak . (1.56)
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Week 2 syllabus Tuesday, August 25, 2020

If I had had more time, I would have written less
— Blaise Pascal, a remark made to a correspondent

Tuesday’s lecture is related to AWH Chapter 6 Eigenvalue problems (click here). The
fastest way to watch any week’s lecture videos is by letting YouTube run

the course playlist

• Please do not get intimated by the length of this week’s notes - they are here
more for me than for you, as notes on these topics for future reference. If you
understand the online lectures and can solve the exercises, you are good. The
notes you can quickly skim over...

◦ Sect. 2.2 Using symmetries

◦ Sect. 2.3 Normal modes: The free vibrations of systems, for undamped sys-
tems with total energy conserved for which the frequencies of oscillation
are real.

Normal modes

◦ Example 2.1 Vibrations of a classical CO2 molecule

A Hamiltonian with a symmetry (4:46 min)

CO2 molecule (4:07 min)

Projection operators (5:33 min)

(Anti)symmetric subspaces (3:04 min)

Zero mode (5:19 min)

AWH Example 6.2.3 Degenerate eigenproblem

AWH Example 6.5.2 Normal modes

• Matrix decompositions in data science

◦ Sect. 2.4 Singular Value Decomposition

Matrices: physics vs data science

Singular value decomposition (SVD)

SVD sample calculation

2.1 Other sources
Normal modes are important in aeronautical and mechanical engineering (optional
reading for week 2, not required for this course):

• MIT 16-07-dynamics is a typical mathematical methods in engineering course.
Normal modes are discussed here.

http://ChaosBook.org/library/ArWeHa13chap6EigenvalueProbs.pdf
http://YouTube.com/watch?v=_4C8NaOhGEI&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=21 
http://YouTube.com/embed/_4C8NaOhGEI
http://YouTube.com/embed/DLy5MGFEg5Y
http://YouTube.com/embed/dhmM_h7ofk
http://YouTube.com/embed/Ig4OEeroLZY
http://YouTube.com/embed/v3JYzTEF0I8
http://YouTube.com/embed/-SRJrkpBf0U
http://YouTube.com/embed/6MnArm8_qy0 
http://YouTube.com/embed/NWEfIC5qotA
http://YouTube.com/embed/XXX 
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec19.pdf
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◦ Example 2.2 pen & paper derivation of normal-modes of the ring ofN asymmet-
ric pairs of oscillators (from Gutkin lecture notes example 5.1 Cn symmetry).

◦ Srdjan Ostojić @ostojic_srdjan writes: The singular value decomposition (SVD)
course by @eigensteve is great: “These lectures go into depth on the sin-

gular value decomposition (SVD), one of the most widely used algorithms for
data processing, reduced-order modeling, and high-dimensional statistics, fol-
lowing Chapter 1 of Data-Driven Science and Engineering: Machine Learning,
Dynamical Systems, and Control by Brunton and Kutz [2], with databookuw
website and chapters.”

◦ We like the discussion of norms, least square problems, and differences between
singular value and eigenvalue decompositions in Trefethen and Bau [4], cited in
sect. 2.4.1.

◦ Andrew: In Understanding SVD Reza Bagheri develops SVD step-by-step,
starting with the concept of eigenvalues through eigenvalue decomposition and
then to SVD. I found it good to review some of the linear algebra I had forgotten.
It is long, but it takes time to develop each concept which is a style I find very
helpful.

◦ If you later need SVD in your research, Cline and Dhillon [3] Computation of
the singular value decomposition seems to be a handy cookbook.

◦ Eigen Grandito - u/cactus’s Principal Components Analysis of the Taco Bell
menu, an NumPy SVD exploration of the Onion (1998) classic on Taco Bell’s
revolutionary Grandito

ChaosBook sect. 6.1 explains the geometrical intuition behind matrix decompo-
sitions.

In ChaosBook remark 6.1. Lyapunov exponents are uncool Predrag claims that
SVD is the wrong thing in dynamics.

◦ If instead, bedside crocheting is your thing, click here.

2.2 Using symmetries
The big idea #1 of this is week is symmetry.

If our physical problem is defined by a (perhaps complicated) Hamiltonian H, another
matrix M (hopefully a very simple matrix) is a symmetry if it commutes with the
Hamiltonian

[M,H] = 0 . (2.1)

Than we can use the spectral decomposition (1.24) of M to block-diagonalize H into
a sum of lower-dimensional sub-matrices,

H =
∑
i

Hi , Hi = PiHPi , (2.2)

http://birdtracks.eu/courses/PHYS-7143-19/groups.pdf
https://twitter.com/ostojic_srdjan/status/1296748282765553669
http://https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://twitter.com/eigensteve
http://eigensteve.com
http://databookuw.com
http://databookuw.com/databook.pdf
https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d
http://www.cs.utexas.edu/~inderjit/public_papers/HLA_SVD.pdf
https://www.reddit.com/r/math/comments/k3ia4q/eigen_grandito_principal_components_analysis_of/
https://www.theonion.com/taco-bells-five-ingredients-combined-in-totally-new-way-1819564909
http://ChaosBook.org/chapters/ChaosBook.pdf#section.6.1
http://ChaosBook.org/chapters/ChaosBook.pdf#section.6.2
http://www.theiff.org/oexhibits/oe1e.html
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and thus significantly simplify the computation of eigenvalues and eigenvectors of H,
the matrix of physical interest.

2.3 Normal modes
The big idea #2 of this is week is : many body systems (molecules, neu-
ronal networks, ...) are ruled by collective modes, not individual particles
(atoms, neurons, ...).

In the linear, harmonic oscillator approximation, the classical dynamics of a molecule
is governed by the Hamiltonian

H =

N∑
i=1

mi

2
ẋ2i +

1

2

N∑
i,j=1

x⊤i Vijxj ,

where {xi} are small deviations from the equilibrium, resting points of the molecules
labelled i. Vij is a symmetric matrix, so it can be brought to a diagonal form by an
orthogonal transformation, to a set of N uncoupled harmonic oscillators or normal
modes of frequencies {ωi}.

x→ y = Ux, H =
N∑
i=1

mi

2

(
ẏ2i + ω2

i y
2
i

)
. (2.3)

2.4 Singular Value Decomposition
Everybody knows that the SVD is the best matrix decomposi-
tion !!!

— @Daniela_Witten, 21 July 2020

Daniela’s Twitter lecture (tweaked by Predrag): If you are in statistics or data sci-
ence, SVD is the #1 matrix decomposition, and likely the only one you will ever need.
And believe me: you are going to need it.

In data science, one often deals with a very large data setX that can be laid out as an
rectangular array, vertically arbitrarily high (n time measurements x1j , x2j , · · · , xnj ;
n faces), and horizontally relatively short (m neuronal voltages xk1, xk2, · · · , xkm; m
facial features).

What does the SVD do? You give me an [n ×m], n ≥ m rectangular matrix X ,
and I’ll give you back 3 matrices, an [n×m] rectangular matrix U , a diagonal [m×m]
matrix Σ, and unitary [m×m] matrix V that together “decompose” the matrix X:

X = UΣV T . (2.4)

U and V are orthogonal matrices (if X is complex, unitary matrices),

UTU = V TV = V V T = I[m×m] (2.5)

https://twitter.com/WomenInStat/status/1285610321747611653
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Σ is diagonal with nonnegative and decreasing elements:

σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 . (2.6)

Some terminology: the diagonal elements of Σ are the singular values, and the columns
of U and V are the left and right singular vectors uk, vj . Multiply (2.4) from right by
V . This implies that if I have the singular value σj and the short [m×1] singular vector
vj , I can multiply it with my data array X to compute the tall, [n × 1] singular vector
uj to

X vj = σjuj . (2.7)

How do I compute the singular eigenvalues? From (2.4) it follows that V is a rotation
that diagonalizes the symmetric XTX = {

∑
j xkjxjℓ} correlation matrix

XTX = V Σ2V T . (2.8)

So this gives us vk and σk (one always picks the positive root of σ2
k) which we label

by the decreasing eigenvalues convention (2.6), and evaluate uj using (2.7). Why σ2
k?

Rectangular matrix X is dimensionally a strange beast; it relates bricks to oranges, and
it’s transpose returns oranges to bricks. The result is an (hyper)ellipsoid, with singular
vectors as semiaxes, and singular values as lengths along the semiaxes.

Simple as that. What makes this decomposition special (and unique) is the particu-
lar set of properties of U , Σ, and V .

Don’t be fooled tho: UUT ̸= In×n !!!!!!! In layperson’s terms, the columns of U
and V are special: the squared elements of each column of U and V sums to 1, and
also the inner product (dot product) between each pair of columns in U equals 0. And
the inner product between each pair of columns of V equals 0.

First of all, let’s marvel that this decomposition is not only possible, but easily
computable, and even unique (up to sign flips of columns of U and V ). Like, why on
earth should every matrix X be decomposable in this way?

Magic, that’s why. OK, so, its existence is magic. But, is it also useful? Well, YES.
Suppose you want to approximateX with a pair of vectors: that is, a rank-1 approx.

Well, the world’s best rank-1 approximation to X , in terms of residual sum of squares,
is given by the first columns of U and V :

X ≈ σ1u1v
T
1 (2.9)

is literally the best you can do!!
OK, but what if you want to approximate X using two pairs of vectors (a rank-2

approximation)? Just calculate

X ≈ σ1u1v
T
1 + σ2u2v

T
2 , (2.10)

and call it a day.
Want an even better approximation, using rank-k? You literally can’t beat this one

X ≈ σ1u1v
T
1 + σ2u2v

T
2 + . . .+ σkukv

T
k (2.11)
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so please don’t bother trying.
OK, so, the SVD gives me the best possible way to approximate any matrix. What

is this good for??!!
Ever heard of principal components analysis (PCA)? This is just the SVD (after

centering columns of X to have mean 0). Columns of V are PC loading vectors.
Columns of U (up to scaling) are PC score vectors.

Bam!!!
How about if you want to impute missing values in your data matrixX? (In finance

‘impute’ means “to assign (a value) to something by inference from the value of the
products to which it contributes.) Assuming that the elements of X are randomly
missing (rather than, for instance, larger elements more likely to be missing), the SVD
gives you an effective and easy way to impute those values!!

First, fill in missing elements using (say) the column mean. Then, compute SVD
to get rank-k approx for (e.g.) k = 3. Replace the missing elements with the elements
of rank-k approx. Rinse and repeat until your answer stops changing.

Voila!! I am not making this up!! The SVD is like a matrix X-ray. For instance:

XTX = V Σ2V T , (XTX)−1 = V Σ−2V T (2.12)

X(XTX)−1XT = UUT . (2.13)

Take a minute to breathe this in. Formulas (2.12), (2.13) have no U ’s, and the 3rd (hat
matrix from least squares) has no V ’s or Σ’s!

Wowzers!
Now, you may ask “well what about the eigen-decomposition?” Well I can dis-

pense with that concern in 1 tweet. A symmetric matrix A (the only type worth eigen-
decomposing, IMO - internetese for “in my opinion”) is just A = XTX for some X .
And XTX = V Σ2V T by (2.12). SVD ≫ eigen-decomposition. QED

Not convinced? Need me to spell it out for u? Singular vectors are the eigenvectors
of A, and singular values are the square roots of the eigenvalues!!! So, the SVD gives
you the eigen-decomposition for free!!! Eigen-decomposition just got owned by the
SVD. That’s how it’s done!!!!!

The SVD is a great 1-stop shop for data analysis.
Need to know if X is multi-collinear, before fitting least squares? Check out the

singular values. If σ1/σm is huge then least squares is a bad idea.
If n > m, or if σm = 0 then bad news bears, X isn’t even invertible!! To know

if the matrix XTX is invertible, you just have to check whether the smallest singular
value is non-zero. Want to know the rank of X? It’s just # of non-zero singular values!

Want the Moore-Penrose pseudo-inverse (though please be careful — there are
better ways to approximate a matrix inverse)? That’s basically the rank-k approx from
earlier, but with 1/σk instead of σk!

And please don’t troll me with your comments about how you prefer the QR or LU
decompositions. I’m a working mom with 3 kids at home in the midst of a pandemic,
I know you don’t mean it, and I literally don’t have time for this. ( @SusCrockford,
March 12, 2020 concurs: “The next academic dude who posts about how much work
Isaac Newton or whoever got done at Cambridge during the plague I’m coming over to

https://twitter.com/SusCrockford/status/1238025028819697664
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their house with my snotty 4y and staying there to develop my genius while he deals
with the kid and then we’ll see who discovers laws of nature.”)

And if you prefer a specialty matrix decomposition, like NMF, then I’ve got news
for you: you got fooled, because that’s just a souped up SVD. Honest to god. If you
remain convinced that the NMF or any other decomposition discovered in the past 80
years can hold a candle to the SVD, then I can get you a great price on a Tesla-branded
vegan unicorn made out of CRISPR. I’ll send it to you as soon as you give me all your
Bitcoin.

The SVD is super magical and there’s so much I’ve left unsaid. While you can
compute it using a single line of code in R or any other halfway decent programming
language, it’s fun, easy, and safe to DIY with matrix multiplies!!!!

I hope that this thread has helped to grow your appreciation for this magical de-
composition. The more you learn about the SVD, the more you will love it. It will take
you far on your statistics and data science journey. Godspeed.

The rest is on YouTube.

2.4.1 Eigen values vs. singular values

It’s now more important to learn boring algebra than to practice
fun rock throwing. So you take your choice. If you choose hap-
piness over survival too consistently–well, then you die happy.
Or else, you thrive grumpily. It’s the tragedy of the human
condition. About time we changed it, in my humble opinion.

— Hans Moravec
Trefethen and Bau [4] Numerical Linear Algebra:

· · · not all matrices (even square ones) have an eigenvalue decomposition
[here week 1 and sect. 2.3], but all matrices (even rectangular ones) have a
singular value decomposition [here sect. 2.4]. In applications, eigenvalues
tend to be relevant to problems involving the behavior of iterated forms of
A, such as matrix powersAk or exponentials expA, whereas singular vec-
tors tend to be relevant to problems involving the magnitudes of elements
of A , or its inverse.

2.4.2 SVD in dynamical systems

Tosif Ahamed @_mlechha : There are lots of applications in recovering dynamics
from data. I’d also like to plug our own eigen-worms, using SVD to go from experi-
mental observations of moving worms to their periodic orbits (and more) arXiv:1911.10559.

On 2020-08-20 graduate student Daniel Dylewsky, U Washington, gave a good
presentation Koopman Approximations for Multiscale Nonlinear Physics using Dy-
namic Mode Decomposition, based on Daniel Dylewsky, Eurika Kaiser, Steven L.
Brunton and J. Nathan Kutz Principal Component Trajectories (PCT): Nonlinear dy-
namics as a superposition of time-delayed periodic orbits arXiv:2005.14321.

http://https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://www.youtube.com/playlist?list=PLMrJAkhIeNNSVjnsviglFoY2nXildDCcv
https://twitter.com/_mlechha
https://arXiv.org/abs/1911.10559
https://github.com/dylewsky
https://arXiv.org/abs/2005.14321
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2.4.3 SVD in rocket science

Steven L. Brunton et al. Data-Driven Aerospace Engineering: Reframing the Indus-
try with Machine Learning arXiv:2008.10740, a review: “· · · The aerospace industry
is poised to capitalize on big data and machine learning, which excels at solving the
types of multi-objective, constrained optimization problems that arise in aircraft design
and manufacturing. Indeed, emerging methods in machine learning may be thought of
as data-driven optimization techniques that are ideal for high-dimensional, non-convex,
and constrained, multi-objective optimization problems, and that improve with increas-
ing volumes of data.”

2.4.4 SVD in theoretical neuroscience

Srdjan Ostojić again: During my physics education, I have never heard of singular
value decomposition.

Almost all matrices in physics are symmetric, and in that case SVD reduces to
eigenvalue decomposition.

But for non-symmetric, or especially non-square matrices, SVD is the fundamental
tool. So over the recent years, part of the theoretical neuroscience community has been
rediscovering how useful SVD is.

For instance, basic results on perceptrons can be understood in a simple way us-
ing SVD. Dynamics of learning in deep networks can be understood based on SVD:
arXiv:1312.6120, on Pnas, arXiv:1809.10374. Non-linear dynamics in recurrent neu-
ral networks can be analyzed by starting from the SVD of the connectivity matrix, and
keeping dominant terms: arXiv:1711.09672, bioRxiv:350801v3, arXiv:2007.02062,
arXiv:1909.04358, bioRxiv:2020.07.03.185942v1. Non-normal transient dynamics in
recurrent networks: on sciencedirect, arXiv:1811.07592.

References
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2.5 Examples
Example 2.1. Vibrations of a classical CO2 molecule: Consider one carbon and
two oxygens constrained to the x-axis [1] and joined by springs of stiffness k, as shown

https://arXiv.org/abs/2008.10740
https://arXiv.org/abs/1312.6120
https://pnas.org/content/116/23/11537
https://arXiv.org/abs/1809.10374
https://arXiv.org/abs/1711.09672
https://biorxiv.org/content/10.1101/350801v3
https://arXiv.org/abs/2007.02062
https://arXiv.org/abs/1909.04358
https://biorxiv.org/content/10.1101/2020.07.03.185942v1
https://sciencedirect.com/science/article/pii/S0896627314003602
https://arXiv.org/abs/1811.07592
http://books.google.com/books?vid=ISBN9780123846549
http://books.google.com/books?vid=ISBN9780123846549
http://dx.doi.org/10.1017/9781108380690
http://dx.doi.org/10.1017/9781108380690
http://dx.doi.org/10.1201/9781420010572-45
http://dx.doi.org/10.1201/9781420010572-45
https://doi.org/10.1201/9781420010572-45
http://dx.doi.org/10.1137/1.9780898719574
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M  Mm

Figure 2.1: A classical colinear CO2 molecule [1].

in figure 2.1. Newton’s second law says

ẍ1 = − k

M
(x1 − x2)

ẍ2 = − k

m
(x2 − x3)−

k

m
(x2 − x1)

ẍ3 = − k

M
(x3 − x2) . (2.14)

The normal modes, with time dependence xj(t) = xj exp(itω) , are the common fre-
quency ω vibrations that satisfy (2.14),

Hx =

 A −A 0
−a 2 a −a
0 −A A

x1

x2

x3

 = ω2

x1

x2

x3

 , (2.15)

where a = k/m, A = k/M . Secular determinant det (H− ω21) = 0 now yields a cubic
equation for ω2.

You might be tempted to stick this [3×3] matrix into Mathematica or whatever, but
please do that in some other course. What would understood by staring at the output?
In this course we think.

First thing to always ask yourself is: does the system have a symmetry? Yes! Note
that the CO2 molecule (2.14) of figure 2.1 is invariant under x1 ↔ x3 interchange, i.e.,
coordinate relabeling by matrix σ that commutes with our law of motion H,

σ =

0 0 1
0 1 0
1 0 0

 , σH = Hσ =

 0 −A A
−a 2 a −a
A −A 0

 . (2.16)

We can now use the symmetry operator σ to simplify the calculation. As σ2 =
1, its eigenvalues are ±1, and the corresponding symmetrization, anti-symmetrization
projection operators (1.30) are

P+ =
1

2
(1+ σ) , P− =

1

2
(1− σ) . (2.17)

The dimensions di = trPi of the two subspaces are

d+ = 2 , d− = 1 . (2.18)

As σ and H commute, we can now use spectral decomposition (1.24) to block-diagonalize
H to a 1-dimensional and a 2-dimensional matrix.

On the 1-dimensional antisymmetric subspace, the trace of a [1×1] matrix equals
its sole matrix element equals it eigenvalue

λ− = HP− =
1

2
(trH− trHσ) = (a+A)− a =

k

M
,
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so the corresponding eigenfrequency is ω2
− = k/M . To understand its physical mean-

ing, write out the antisymmetric subspace projection operator (2.18) explicitly. Its non-
vanishing columns are proportional to the sole eigenvector

P− =
1

2

 1 0 −1
0 0 0
−1 0 1

 ⇒ e(−) =

 1
0

−1

 . (2.19)

In this subspace the outer oxygens are moving in opposite directions, with the carbon
stationary.

On the 2-dimensional symmetric subspace, the trace yields the sum of the remain-
ing two eigenvalues

λ+ + λ0 = trHP+ =
1

2
(trH+ trHσ) = (a+A) + a =

k

M
+ 2

k

m
.

We could disentangle the two eigenfrequencies by evaluating trH2P+, for example, but
thinking helps again.

There is still another, translational symmetry, so obvious that we forgot it; if we
change the origin of the x-axis, the three coordinates xj → xj − δx change, for any
continuous translation δx, but the equations of motion (2.14) do not change their form,

Hx = Hx+H δx = ω2x ⇒ H δx = 0 . (2.20)

So any translation e(0) = δx = (δx, δx, δx) is a nul, ‘zero mode’ eigenvector of H
in (2.16), with eigenvalue λ0 = ω2

0 = 0, and thus the remaining eigenfrequency is
ω2
+ = k/M + 2 k/m. As we can add any nul eigenvector e(0) to the corresponding

e(+) eigenvector, there is some freedom in choosing e(+). One visualization of the
corresponding eigenvector is the carbon moving opposite to the two oxygens, with total
momentum set to zero.

(Taken from AWH Example 6.2.3 Degenerate eigenproblem, but done here using
symmetries.)

Example 2.2. Vibrational spectra of molecules: Consider the ring of pair-wise
interactions of two kinds of molecules sketched in figure 2.2 (a), given by the potential

V (z) =
1

2

N∑
i=1

(
k1(xi − yi)

2 + k2(xi+1 − yi)
2) , zi =

(
xi

yi

)
, (2.21)

whose [2N×2N ] matrix form is (aside to the cognoscenti: this is a Toeplitz matrix):

Vij =
1

2



k1 + k2 −k1 0 0 0 . . . 0 0 −k2
−k1 k1 + k2 −k2 0 0 . . . 0 0 0
0 −k2 k1 + k2 −k1 0 . . . 0 0 0
0 0 −k1 k1 + k2 −k2 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . −k2 k1 + k2 −k1
−k2 0 0 0 0 . . . 0 −k1 k1 + k2


This potential matrix is a holy mess. How do we find an orthogonal transformation (2.3)
that diagonalizes it? Look at figure 2.2 (a). Molecules lie on a circle, so that suggests
we should use a Fourier representation. As the i = 1 labelling of the starting molecule
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(a)

X

X

X

Y

Y

Y

n

n
1

1

2

2

(b)

k

−n/2 n/2

acoustic

optical m−1

ω

(c)

x

y

y

x

y
x

1

1

2

2

3

3

Figure 2.2: (a) Chain with circular symmetry. (b) Dependance of frequency on the
representation wavenumber k. (c) Molecule with D3 symmetry. (B. Gutkin)

on a ring is arbitrary, we are free to relabel them, for example use the next molecule
pair as the starting one. This relabelling is accomplished by the [2N×2N ] permutation
matrix (or ‘one-step shift’, ‘stepping’ or ‘translation’ matrix) M of form


0 0 . . . 0 I
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0


︸ ︷︷ ︸

M


z1
z2
z3
...
zn

 =


zn
z1
z2
...

zn−1

 , I =

(
1 0
0 1

)
, zi =

(
xi

yi

)
(2.22)

Projection operators corresponding to M are worked out in example 10.1. They are N
distinct [2N×2N ] matrices,

Pk =



I λ̄I λ̄2I . . . λ̄N−2I λ̄N−1I
λI I λ̄I . . . λ̄N−3I λ̄N−2I
λ2I λI I . . . λ̄N−4I λ̄N−3I

...
...

...
. . .

...
...

λN−2I λN−3I λN−4I . . . I λ̄I
λN−1I λN−2I λN−2I . . . λI I


, λ = exp

(
2πi

N
k

)

(2.23)
which decompose the 2N -dimensional configuration space of the molecule ring into
a direct sum of N 2-dimensional spaces, one for each discrete Fourier mode k =
0, 1, 2, · · · , N − 1.

The system (2.21) is clearly invariant under the cyclic permutation relabelling M ,
[V,M ] = 0 (though checking this by explicit matrix multiplications might be a bit tedious),
so the Pk decompose the interaction potential V as well, and reduce its action to the kth
2-dimensional subspace. Thus the [2N×2N ] diagonalization (2.3) is now reduced to a
[2×2] diagonalization which one can do by hand. The resulting kth space is spanned
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by two 2N -dimensional vectors, which we guess to be of form:

η1 =
1√
n



1
0
λ
0
...

λn−1

0


, η2 =

1√
n



0
1
0
λ
...
0

λn−1


.

In order to find eigenfrequences we have to consider action of V on these two vectors:

V η1 = (k1 + k2)η1 − (k1 + k2λ)η2 , V η2 = (k1 + k2)η2 − (k1 + k2λ̄)η1 .

The corresponding eigenfrequencies are determined by the equation:

0 = det
((

k1 + k2 −(k1 + k2λ)
−(k1 + k2λ̄) k1 + k2

)
− ω2

2
I

)
=⇒

1

2
ω2
±(k) = k1 + k2 ± |k1 + k2λ

k| , (2.24)

one acoustic (ω(0) = 0), one optical, see figure 2.2 (b) and the acoustic and optical
phonons wiki. (B. Gutkin)

Example 2.3. An SVD hand calculation. Given a rectangular [n×m] = [4× 3] “data
matrix”

X =


0

√
2 0

1 2 1
1 0 1
0 0 0

 (2.25)

in this example we implement by hand its singular value decomposition

X = UΣV T . (2.26)

A side remark: by inspection, the 1st and 3rd rows of X are not independent from the
2nd, the rank of the data matrix X is 2, so expect one zero eigenvalue.

The ‘right’, [m×m] = [3×3] correlation matrix (see (2.7) and (2.8)) is

Cr = XTX =

 2 2 2
2 6 2
2 2 2

 . (2.27)

The zeroes of its characteristic polynomial

det (Cr − λ1) = (−8 + λ)(−2 + λ)λ = 0 (2.28)

yield eigenvalues
{λ1, λ2, λ3} = {8, 2, 0} (2.29)

You are free to find the corresponding eigenvectors any way you like. If you use projec-
tion operators, you will also need the matrix squared:

C2
r =

 12 20 12
20 44 20
12 20 12



https://en.wikipedia.org/wiki/Phonon#Acoustic_and_optical_phonons
https://en.wikipedia.org/wiki/Phonon#Acoustic_and_optical_phonons
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The associated projection operators are:

P1 =
(Cr − 2 · 1)(Cr − 0 · 1)

(8− 2)(8− 0)
=

1

6 · 8(C
2
r − 2Cr) =

1

6

 1 2 1
2 4 2
1 2 1

 (2.30)

P2 =
(Cr − 8 · 1)(Cr − 0 · 1)

(2− 8)(2− 0)
=

1

6 · 2(−C2
r + 8Cr) =

1

3

 1 −1 1
−1 1 −1
1 − 1


P3 =

(Cr − 8 · 1)(Cr − 2 · 1)
(0− 8)(0− 2)

=
1

8 · 2(C
2
r − 10Cr + (8 · 2) 1) = 1

2

 1 0 −1
0 0 0
−1 0 1


Each column of a projection operator is the same right eigenvector, with a different
prefactor, and its rows are likewise proportional to the same left eigenvector. SVD,
however, demands that the eigenvectors be normalized to unit length, for example

v1 =
1√
6

 1
2
1

 (2.31)

The three normalized right singular vectors, taken as the columns, form the rotation
matrix

V =
(

v1 v2 v3
)
=


1√
6

2√
6

1√
6

1√
3

− 2√
3

1√
3

− 1√
2

0
1√
2

 (2.32)

The “left”, “big” correlation matrix

Cl = XXT =


2 2

√
2 0 0

2
√
2 6 2 0

0 2 2 0
0 0 0 0

 (2.33)

characteristic polynomial has the same non-zero eigenvalues

det (Cl − λ1) = (−8 + λ)(−2 + λ)λ2 = 0 , (2.34)

but an extra zero eigenvalue. Going through the same algebra as for Cr, we find that Cl

(unnormalized) eigenvectors can be presented as columns of matrix

Û =


√
2 3 1 0

− 1√
2

0 1 0

0 0 0 1√
2 −1 1 0

 (2.35)

After normalization to unit length we refer to them as the left singular vectors.
The singular values are, by definition, the positive square roots of Cr or Cl eigen-

values
{σ1, σ2, σ3} = {2

√
2,
√
2, 0} (2.36)

so the diagonal singular values matrix is given by

Σ =


2
√
2 0 0

0
√
2 0

0 0 0
0 0 0

 (2.37)
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SVG decomposition (2.26) is of form X = UΣV T . Now that we have the right
eigenvectors matrix V , and the diagonal singular values matrix Σ, we could compute
the left eigenvectors matrix U = XV/Σ, as can be done in some of the examples in
exercise 2.2. But zero singular values make this a bit tricky, so here we compute instead
also U from the Cl eigenvalue equation, and verify that we indeed get the rectangular
data matrix exercise 2.25 back:

UΣV T =


0

√
2 0

1 2 1
1 0 1
0 0 0



A sanity check: Mathematica does all this in one line:
{U,Σ, V } = SingularValueDecomposition[X]{U,Σ, V } = SingularValueDecomposition[X]{U,Σ, V } = SingularValueDecomposition[X] ⇒

U =


1√
6

− 1√
3

0 1√
2√

3
2

0 0 − 1
2

1

2
√
3

√
2
3

0 1
2

0 0 1 0

 , Σ =


2
√
2 0 0

0
√
2 0

0 0 0
0 0 0

 (2.38)

V =


1√
6

1√
3

− 1√
2√

2
3

− 1√
3

0
1√
6

1√
3

1√
2

 (2.39)

verifying (2.32), (2.37), and (2.35).
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Figure 2.3: Three identical masses are constrained to move on a hoop, connected by
three identical springs such that the system wraps completely around the hoop. Find
the normal modes.

Exercises
2.1. Three masses on a loop. Three identical masses, connected by three identical springs,

are constrained to move on a circle hoop as shown in figure 2.3. Find the normal modes.
Hint: write down coupled harmonic oscillator equations, guess the form of oscillatory
solutions. Then use basic matrix methods, i.e., find zeros of a characteristic determinant,
find the eigenvectors, etc.. (Kimberly Y. Short)

2.2. Examples of singular value decomposition. Bring, by hand calculation, the following
matrices into SVD form:

A =

(
3 0
0 −2

)
, B =

(
2 0
0 3

)
, C =

0 2
0 0
0 0


D =

(
1 1
0 0

)
, E =

(
1 1
1 1

)
. (2.40)

The goal is to verify that any matrix, including these, has the unique SVD decomposition,
and (2.8), (2.6) and (2.7) should suffice for the job.
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Chapter 2 solutions: Eigenvalue problems
Solution 2.1 - Three masses on a loop. As the masses and springs are identical, the
equilibrium positions, x1, x2, and x3, of the masses are equally spaced on the hoop,
i.e., separated by 120◦ or 2π/3 rads. The equations of motion are

mẍ1 + k(x1 − x2) + k(x1 − x3) = 0

mẍ2 + k(x2 − x3) + k(x2 − x1) = 0

mẍ3 + k(x3 − x1) + k(x3 − x2) = 0 (2.41)

Anticipating oscillatory solutions, we introduce trial solutions of the form

x1 = A1e
iαt, x2 = A2e

iαt, x3 = A3e
iαt

Plugging these expressions into our system of equations yields−α2 + 2ω2 −ω2 −ω2

−ω2 −α2 + 2ω2 −ω2

−ω2 −ω2 −α2 + 2ω2

A1

A2

A3

 =

0
0
0

 (2.42)

Taking the determinant yields a cubic equation for α2:

−(α2)3 + 6(α2)2ω2 − 9(α2)ω4 = 0 (2.43)

The three solutions are

α2 = 0, α2 = 3ω2(multiplicity = 2)

Consider first the solution corresponding to α2 = 0 with eigenvector (1, 1, 1)⊤/
√
3. In

this case, the normal mode isx1

x2

x3

 =

1
1
1

 (At+B) (2.44)

where have absorbed the 1/
√
3 factor into the coefficients A and B. This normal mode

has zero frequency and corresponds to the masses sliding around the hoop, equally
spaced, at constant speed. The normal coordinates are simply x1 + x2 + x3.

The remaining two roots corresponding to α2 = 3ω2 describe oscillations. Any
vector of the form (a, b, c) satisfying a+ b+ c = 0 is a valid normal mode with frequency√
3ω. Here we have chosen vectors (0, 1,−1)⊤/

√
2 and (1, 0,−1)⊤/

√
2 as the basis for

the two-dimensional subspace of normal modes. Consequently, the normal modes may
be written as linear combinations of the vectorsx1

x2

x3

 = C1

 0
1
−1

 cos(
√
3ωt+ ϕ1) (2.45)

x1

x2

x3

 = C2

 1
0
−1

 cos(
√
3ωt+ ϕ2) (2.46)

with normal coordinates x1 − 2x2 + x3 and −2x1 + x2 + x3, respectively.
(Kimberly Y. Short)
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Solution 2.2 - Examples of singular value decomposition. The five matrices in SVD
form (LaTex generated by Mathematica SingularValueDecomposition[A]):

A =

(
3 0
0 −2

)
=

(
1 0
0 −1

)(
3 0
0 2

)(
1 0
0 1

)
B =

(
2 0
0 3

)
=

(
0 1
1 0

)(
3 0
0 2

)(
0 1
1 0

)

C =

0 2
0 0
0 0

 =

 1 0 0
0 0 1
0 1 0

 2 0
0 0
0 0

( 0 1
1 0

)

D =

(
1 1
0 0

)
=

(
1 0
0 1

)( √
2 0
0 0

)( 1√
2

− 1√
2

1√
2

1√
2

)

E =

(
1 1
1 1

)
=

(
1√
2

− 1√
2

1√
2

1√
2

)(
2 0
0 0

)( 1√
2

− 1√
2

1√
2

1√
2

)
. (2.47)

Matrix C is rank 1, so only the first u1 column matters, u2 and u3 are any 2 unit length
singular vectors that span the remaining 2 dimensions. The same for rank 1 matrices D
and E. The “data" has nothing to say about singular value σj = 0 singular vectors.
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Week 3 syllabus Tuesday, September 1, 2020

Typical ordinary differential equations course spends most of time teaching you
how to solve linear equations, and for those our spectral decompositions are very in-
structive. Nonlinear differential equations (as well as the differential geometry) are
much harder, but still (as we already discussed in sect. 1.3), linearizations of flows are
a very powerful tool.

This week’s lectures are related to AWH Chapter 7 Ordinary Differential Equations
(click here). The fastest way to watch any week’s lecture videos is by letting YouTube
run the course playlist.

Go with the linear flow : full Tuesday lecture

– Sect. 3.2 Linear flows

AWH Section 7.2 First-order equations

– Sect. 3.3 Stability of linear flows

Local stability: Stability matrix (already covered in the above full lecture

Go nonlinear : full Thursday lecture (includes the next 7 videos, but in Blue-
Jeans mangled resolution; still the lecture is more than the sum of the 7 clips)

Lorenz flow

Strange attractors

Strange attractors - Lorenz again

Lorenz again (apologies)

Roessler flow

Computing is like hygiene, personal

Dynamical systems : a summary

Mixed phase space; Jacques Laskar rant

Computing hygiene; the obligatory Gibson rant, take #2

3.1 Other sources
As every week, feel free to ignore extra reading and videos for this week. What I cover
in the online lecture is all that I hope you take home with you.

• Just as you had learned everything about linear ODEs, this tweet comes along :(

Dynamical systems
GaTech College of Unprofessional Education insisted on making me a talking
head in a GaTech branded video. I hated it. I fired them. They fired me. I do
not even know who “they” were, but I got to teach the rest of the course on a
blackboard. Until COVID-19 that reduced us all to talking heads.

http://ChaosBook.org/library/ArWeHa13chap7ODEs.pdf
http://YouTube.com/watch?v=ytDOzuCUkfc&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=26
http://YouTube.com/embed/ytDOzuCUkfc 
http://YouTube.com/embed/Lf3-atjcEhs 
http://YouTube.com/embed/MUZaPuhmQD8 
http://YouTube.com/embed/dZUH4xVbKQM 
http://YouTube.com/embed/PcQsSv2hzME 
http://YouTube.com/embed/qi1Lxl-wdBs 
http://YouTube.com/embed/_otr5ypzuK8 
http://YouTube.com/embed/hRZDhQmW-04 
http://YouTube.com/embed/9jfHKYgGrs4 
http://YouTube.com/embed/_OmlEEAP61Q 
http://YouTube.com/embed/TXq1FQfJTuU 
http://YouTube.com/embed/kTz3hRYiMb4 
https://twitter.com/Francis16833887/status/1300940915318681600
http://YouTube.com/embed/CER5Y7w7APQ 
https://chaosbook.blogspot.com/2014/12/nonlinear-dynamics-course-taken-off.html
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Trajectories

Equilibria

Orbits are time-invariant
I’m so happy. I’m divorced of Unprofessional Education, and free of their mo-
ronic PowerPoints! But if you must,

Do the course in the Power Point format

Long live Bologna!

John F Gibson solves the Navier-Stokes, take #1

Life in extreme dimensions: Fluttering flame front

Life in extreme dimensions: Constructing state spaces

Life in extreme dimensions: As visualized by dummies

What do these equations do?

• MIT 16-90 Computational methods is a typical mathematical methods in engi-
neering course. ODEs are discussed here.

• There are no doubt many online courses vastly better presented than this one -
here is a glimpse into our competition:
MIT 18.085 Computational Science and Engineering I .

• Optional reading: Sect. 3.4 Nonlinear flows

Optional reading: AWH Section 7.8 Nonlinear differential equations

• Sect. 3.5 Optional listening

3.2 Linear flows
Linear is good, nonlinear is bad.

—Jean Bellissard

(Notes based on ChaosBook Chapter 2 : Go with the flow).

A dynamical system is defined by specifying a state space M, and a law of motion,
typically an ordinary differential equation (ODE), first order in time,

ẋ = v(x) . (3.1)

The vector field v(x) can be any nonlinear function of x, so it pays to start with a
simple example. Linear dynamical system is the simplest example, described by linear
differential equations which can be solved explicitly, with solutions that are good for all

http://YouTube.com/embed/oPrmtd5U_UM 
http://YouTube.com/embed/cocPbUU8TMs 
http://YouTube.com/embed/g1Qj_eyiaaE 
https://www.edwardtufte.com/tufte/books_pp
http://YouTube.com/embed/zNwKIo_cXnQ
http://YouTube.com/embed/9p2R96zvPtY 
http://YouTube.com/embed/oAK3EBiVwYA 
https://ceps.unh.edu/person/john-gibson
http://YouTube.com/embed/BNR-idcCWAk 
http://YouTube.com/embed/S_l3r2T0wfE 
http://YouTube.com/embed/rlElreRmfeY 
http://YouTube.com/embed/2joYi7jVVl0 
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-90-computational-methods-in-aerospace-engineering-spring-2014/numerical-integration-of-ordinary-differential-equations/
http://www.youtube.com/watch?v=0oBJN8F616U
http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.2
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times. The state space for linear differential equations is M = Rd, and the equations
of motion are written in terms of a state space point x and a constant A as

ẋ = Ax . (3.2)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t) + by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant in
time, the space of solutions is a d-dimensional vector space, spanned by a basis of d
linearly independent solutions.

Solution of (3.2) is given by the exponential of a constant matrix

x(t) = J t x0 , (3.3)

usually defined by its series expansion (1.10)

J t = etA =

∞∑
k=0

tk

k!
Ak , A0 = 1 , (3.4)

and that is why we started the course by defining functions of matrices, and in par-
ticular the matrix exponential. As we discuss next, that means that depending on the
eigenvalues of the matrix A, solutions of linear ordinary differential equations are ei-
ther growing or shrinking exponentially (over-damped oscillators; cosh’s, sinh’s), or
oscillating (under-damped oscillators; cos’s, sin’s).

3.3 Stability of linear flows
The system of linear equations of variations for the displacement of the infinitesimally
close neighbor x + δx follows from the flow equations (3.2) by Taylor expanding to
linear order

ẋi + ˙δxi = vi(x+ δx) ≈ vi(x) +
∑
j

∂vi
∂xj

δxj .

The infinitesimal deviation vector δx is thus transported along the trajectory x(x0, t),
with time variation given by

d

dt
δxi(x0, t) =

∑
j

∂vi
∂xj

(x)

∣∣∣∣
x=x(x0,t)

δxj(x0, t) . (3.5)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation to x(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t) → δx in what follows. Taken together, the set of equations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj (3.6)

http://youtube.com/embed/Lf3-atjcEhs
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governs the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining the
d-dimensional tangent space δx ∈ TMx to every point x ∈ M in the d-dimensional
state space M ⊂ Rd. The stability matrix or velocity gradients matrix

Aij(x) =
∂

∂xj
vi(x) (3.7)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of x(t)
by the flow. In case at hand, the linear flow (3.2), with v(x) = Ax, the stability matrix

Aij(x) =
∂

∂xj
vi(x) = Aij (3.8)

is a space- and time-independent constant matrix.
Consider an infinitesimal perturbation of the initial state, x0+δx. The perturbation

δx(x0, t) evolves as x(t) itself, so

δx(t) = J t δx(0) . (3.9)

The equations are linear, so we can integrate them. In general, the Jacobian matrix J t

is computed by integrating the equations of variations

ẋi = vi(x) , ˙δxi =
∑
j

Aij(x)δxj , (3.10)

but for linear ODEs everything is known once eigenvalues and eigenvectors of A are
known.

Example 3.1. Linear stability of 2-dimensional flows: For a 2-dimensional flow
the eigenvalues λ1, λ2 of A are either real, leading to a linear motion along their eigen-
vectors, xj(t) = xj(0) exp(tλj), or form a complex conjugate pair λ1 = µ + iω , λ2 =
µ− iω , leading to a circular or spiral motion in the [x1, x2] plane, see example 3.2.

Figure 3.1: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node
(attracting), center (elliptic), in spiral.

These two possibilities are refined further into sub-cases depending on the signs of
the real part. In the case of real λ1 > 0, λ2 < 0, x1 grows exponentially with time, and x2

contracts exponentially. This behavior, called a saddle, is sketched in figure 3.1, as are
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saddle

××
6

-

out node

××
6

-

in node

××
6

-

center

×
×

6
-

out spiral

×
×

6
-

in spiral

×
×

6
-

Figure 3.2: Qualitatively distinct types of exponents {λ1, λ2} of a [2×2] Jacobian
matrix.

the remaining possibilities: in/out nodes, inward/outward spirals, and the center. The
magnitude of out-spiral |x(t)| diverges exponentially when µ > 0, and in-spiral contracts
into (0, 0) when µ < 0; whereas, the phase velocity ω controls its oscillations.

If eigenvalues λ1 = λ2 = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector, see example 1.1. We distinguish
two cases: (a) A can be brought to diagonal form and (b) A can be brought to Jordan
form, which (in dimension 2 or higher) has zeros everywhere except for the repeating
eigenvalues on the diagonal and some 1’s directly above it. For every such Jordan
[dα×dα] block there is only one eigenvector per block.

We sketch the full set of possibilities in figures 3.1 and 3.2.

Example 3.2. Complex eigenvalues: in-out spirals. As M has only real entries, it
will in general have either real eigenvalues, or complex conjugate pairs of eigenvalues.
Also the corresponding eigenvectors can be either real or complex. All coordinates used
in defining a dynamical flow are real numbers, so what is the meaning of a complex
eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2×2] sub-block M′ ⊂ M form
a complex conjugate pair, {λk, λk+1} = {µ + iω, µ − iω}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} →
{Re e(k), Im e(k)}. In this 2-dimensional real representation, M′ → A, the block A is
a sum of the rescaling×identity and the generator of rotations in the {Re e(1), Im e(1)}
plane.

A =

[
µ −ω
ω µ

]
= µ

[
1 0
0 1

]
+ ω

[
0 −1
1 0

]
. (3.11)

Trajectories of ẋ = Ax, given by x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-
directions)

Jt = etA = etµ
[

cos ωt − sin ωt
sin ωt cos ωt

]
, (3.12)

spiral in/out around (x, y) = (0, 0), see figure 3.1, with the rotation period T and the
radial expansion /contraction multiplier along the e(j) eigen-direction per a turn of the
spiral:

exercise 3.1
T = 2π/ω , Λradial = eTµ . (3.13)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000T, or 10−2T).
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(a) (b)

Figure 3.3: (a) The 2-dimensional vector field for the Duffing system (3.14), together
with a short trajectory segment. (b) The flow lines. Each ‘comet’ represents the same
time interval of a trajectory, starting at the tail and ending at the head. The longer the
comet, the faster the flow in that region. (From ChaosBook [1])

3.4 Nonlinear flows
While linear flows are prettily analyzed in terms of defining matrices and their eigen-
modes, understanding nonlinear flows requires many tricks and insights. These days,
we start by integrating them, by any numerical code you feel comfortable with: Matlab,
Python, Mathematica, Julia, c++, whatever.

Duffing flow of example 3.3 is a typical 2-dimensional flow, with a ‘nonlinear os-
cialltor’ limit cycle. Real fun only starts in 3 dimensions, with example 3.4 Lorenz
strange attractor.

For purposes of this course, it would be good if you coded the next two examples,
and just played with their visualizations, without further analysis (that would take us
into altogether different ChaosBook.org/course1).

Example 3.3. A 2-dimensional vector field v(x). A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15 y(t) + x(t)− x(t)3 (3.14)

plotted in figure 3.3. The 2-dimensional velocity vectors v(x) = (ẋ, ẏ) are drawn super-
imposed over the configuration coordinates (x, y) of state space M.

Example 3.4. Lorenz strange attractor. Lorenz equation

ẋ = v(x) =

 ẋ
ẏ
ż

 =

 σ(y − x)
ρx− y − xz
xy − bz

 (3.15)

has played a key role in the history of ‘deterministic chaos’ for many reasons that you
can read about elsewhere [1]. All computations that follow will be performed for the
Lorenz parameter choice σ = 10, b = 8/3, ρ = 28 . For these parameter values the
long-time dynamics is confined to the strange attractor depicted in figure 3.4.

http://ChaosBook.org/course1
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Figure 3.4: Lorenz “butterfly” strange attractor.
(From ChaosBook [1])
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3.5 Optional listening
If you do not know Emmy Noether, one of the great mathematicians of the 20th cen-
tury, the time to make up for that is now. All symmetries we will use in this course
are for kindergartners: flips, slides and turns. Noether, however, found a profound
connections between these and invariants of our world - masses, charges, elementary
particles. Then the powerful plutocrats of Germany made a clown the Chancellor of
German Reich, because they could easily control him. They were wrong, and that’s
why you are not getting this lecture in German. Noether lost interest in physics and
went on to shape much of what is today called pure mathematics.

References
[1] R. Mainieri, P. Cvitanović, and E. A. Spiegel, “Go with the flow”, in Chaos:

Classical and Quantum, edited by P. Cvitanović, R. Artuso, R. Mainieri, G.
Tanner, and G. Vattay (Niels Bohr Inst., Copenhagen, 2020).

https://photos.app.goo.gl/2cWxT6j4kRLytrCQ8
https://www.bbc.co.uk/programmes/m00025bw
https://www.youtube.com/watch?v=A5u6J8WugyU
http://ChaosBook.org/paper.shtml#flows
http://ChaosBook.org/paper.shtml#flows
http://ChaosBook.org/paper.shtml#flows
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Exercises
3.1. Rotations in a plane: In order to understand the role complex eigenvalues in exam-

ple 3.2 play, it is helpful to show by exponentiation Jt = exp(tA) =
∑∞

k=0 t
kAk/k!

with pure imaginary A in (3.11), that

A = ω

(
0 −1
1 0

)
,

generates a rotation in the {Re e(1), Im e(1)} plane,

Jt = eAt = cosωt

(
1 0
0 1

)
+ sinωt

(
0 −1
1 0

)
=

(
cosωt − sinωt
sinωt cosωt

)
. (3.16)

3.2. Visualizing 2-dimensional linear flows. Either sketch by hand, or use any integration
routine to integrate numerically and plot, or plot the analytic solution of the linear flow
(3.2) for all examples of qualitatively different eigenvalue pairs of figure 3.2. As noted in
(1.29), the eigenvalues

λ1,2 =
1

2
trA± 1

2

√
(trA)2 − 4 detA

depend only on trA and detA, so you can get two examples by choosing any A such
that trA = 0 (symplectic or Hamiltonian flow), vary detA. For other examples choose
A such that detA = 1, vary trA. Do your plots capture the qualitative features of the
examples of figure 3.1?

3.3. Visualizing Duffing flow. Use any integration routine to integrate numerically the
Duffing flow (3.14). Take a grid of initial points, integrate each for some short time δt.
Does your result look like the vector field of figure 3.3? What does a generic long-time
trajectory look like?

3.4. Visualizing Lorenz flow. Use any integration routine to integrate numerically the
Lorenz flow (3.15). Does your result look like the ‘strange attractor’ of figure 3.4?

3.5. A limit cycle with analytic Floquet exponent. There are only two examples of
nonlinear flows for which the Floquet multipliers can be evaluated analytically. Both are
cheats. One example is the 2-dimensional flow

q̇ = p+ q(1− q2 − p2)

ṗ = −q + p(1− q2 − p2) .

Determine all periodic solutions of this flow, and determine analytically their Floquet
exponents. Hint: go to polar coordinates (q, p) = (r cos θ, r sin θ). G. Bard Ermentrout
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Chapter 3 solutions: Go with the flow
Solution 3.1 - SO(2) rotations in a plane. To compute g(θ) = exp(θT ), expand it in a
Taylor series, noting that T is a real 2-dimensional representation of the imaginary unit
i, so the powers of Lie algebra element T satisfy

T =

(
0 −1
1 0

)
, T 2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0
0 −1

)
= −1 ,

so the terms in the expansion simplify to either T or 1 : T 3 = T 2T = −1T = −T ,
T 4 = (T )2 = 1 , T 5 = T 4T = T , etc. Hence,

eθT = 1+ θT +
1

2!
(θT )2 +

1

3!
(θT )3 +

1

4!
(θT )4 +

1

5!
(θT )5 + ...

= 1+ θT − 1

2!
θ21− 1

3!
θ3T +

1

4!
θ41+

1

5!
θ5T + ...

=

(
1− 1

2!
θ21+

1

4!
θ41− ...

)
+

(
θT − 1

3!
θ3T +

1

5!
θ5T − ...

)
=

(
1− θ2

2!
+

θ4

4!
− ...

)
1+

(
θ − θ3

3!
+

θ5

5!
− ...

)
T

= cos θ

(
1 0
0 1

)
+ sin θ

(
0 −1
1 0

)
=

(
cos θ − sin θ
sin θ cos θ

)
is a 2-dimensional rotation by angle θ.

Solution 3.4 - Visualizing Lorenz flow. You will probably want the matlab function
ode45 to do this. There are several others which perform better in different situations
(for example ode23 for stiff ODEs), but ode45 seems to be the best for general use.

To use ode45 you must create a function, say ’Lorenz’, which will take in a time and
a vector of [x,y,z] and return [xdot, ydot, zdot]. Then the command would be
something like

ode45([tmin, tmax], [x0 y0 z0], @Lorenz)

(Jonathan Halcrow)

Solution 3.5 - A limit cycle with analytic Floquet exponent. The 2-dimensional
flow is cooked up so that x(t) = (q(t), p(t)) is separable (check!) in polar coordinates
q = r cosϕ , p = r sinϕ :

ṙ = r(1− r2) , ϕ̇ = 1 . (3.17)

In the (r, ϕ) coordinates the flow starting at any r > 0 is attracted to the r = 1 limit cycle,
with the angular coordinate ϕ wrapping around with a constant angular velocity ω = 1.
The non–wandering set of this flow consists of the r = 0 equilibrium and the r = 1 limit
cycle.
Equilibrium stability: As the change of coordinates is defined everywhere except at the
equilibrium point (r = 0, any ϕ), the equilibrium stability matrix has to be computed in
the original (q, p) coordinates,

A =

[
1 1

−1 1

]
. (3.18)

The eigenvalues are λ = µ± i ω = 1± i , indicating that the origin is linearly unstable,
with nearby trajectories spiralling out with the constant angular velocity ω = 1. The
Poincaré section (p = 0, for example) return map is in this case also a stroboscopic
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map, strobed at the period (Poincaré section return time) T = 2π/ω = 2π. The radial
Floquet multiplier per one Poincaré return is |Λ| = eµT = e2π .
Limit cycle stability: From (3.17) the stability matrix is diagonal in the (r, ϕ) coordinates,

A =

[
1− 3r2 0

0 0

]
. (3.19)

The vanishing of the angular λ(θ) = 0 eigenvalue is due to the rotational invariance of the
equations of motion along ϕ direction. The expanding λ(r) = 1 radial eigenvalue of the
equilibrium r = 0 confirms the above equilibrium stability calculation. The contracting
λ(r) = −2 eigenvalue at r = 1 decreases the radial deviations from r = 1 with the radial
Floquet multiplier Λr = eµT = e−4π per one Poincaré return. This limit cycle is very
attracting.
Stability of a trajectory segment: Multiply (3.17) by r to obtain 1

2
ṙ2 = r2 − r4 , set r2 =

1/u, separate variables du/(1− u) = 2 dt , and integrate: ln(1− u)− ln(1− u0) = −2t .
Hence the r(r0, t) trajectory is

r(t)−2 = 1 + (r−2
0 − 1)e−2t . (3.20)

The [1×1] Jacobian matrix

J(r0, t) =
∂r(t)

∂r0

∣∣∣∣
r0=r(0)

. (3.21)

satisfies

d

dt
J(r, t) = A(r) J(r, t) = (1− 3r(t)2) J(r, t) , J(r0, 0) = 1 .

This too can be solved by separating variables d(ln J(r, t)) = dt−3r(t)2dt , substituting
(3.20) and integrating. The stability of any finite trajectory segment is:

J(r0, t) = (r20 + (1− r20)e
−2t)−3/2e−2t . (3.22)

On the r = 1 limit cycle this agrees with the limit cycle multiplier Λr(1, t) = e−2t, and
with the radial part of the equilibrium instability Λr(r0, t) = et for r0 ≪ 1.
(P. Cvitanović)

Solution 3.2 - Visualizing 2-dimensional linear flows.

Solution 3.3 - Visualizing Duffing flow.

Solution 3.4 - Visualizing Lorenz flow. My code is ugly, and I see that many of you
have code which is much clearer and prettier than mine... But just in case you don’t,
this is my code for these three problems. (Han Liang)

I found the easiest way to visualize the velocity field of the flows is using the
function "StreamPlot" in Mathematica. So for 3.2:

A = {{1, -1}, {1, 1}};
StreamPlot[A.{x, y}, {x, -10, 10}, {y, -10, 10}]

And for problem 3.3:
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Figure 3.5: (a) A 2-dimensional vector field for the linear flows. (b) The 2-dimension-
al vector field for the Duffing flow

StreamPlot[{y, -0.15 y + x - x^3}, {x, -3, 3}, {y, -5, 5}]

The plots figure 3.5 have the desired feature.
For problem 3.4, to integrate the Lorenz flow, my code in MATLAB is:

clear
x(1)=1;
y(1)=1;
z(1)=1;
for t = 0:0.01:50

dx=10*(y(end)-x(end));
dy=28*x(end)-y(end)-x(end)*z(end);
dz=x(end)*y(end)-8/3*z(end);
x(end+1)=x(end)+0.01*dx;
y(end+1)=y(end)+0.01*dy;
z(end+1)=z(end)+0.01*dz;

end
plot3(x,y,z)

The result I get is figure 3.6.
(Han Liang)
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Figure 3.6: Lorenz strange attractor.





mathematical methods - week 4

Complex differentiation

Georgia Tech PHYS-6124
Homework HW #4 due Thursday, September 17, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the exerWeek4.tex

Exercise 4.2 Complex arithmetic 10 (+3 bonus) points
Exercise 4.5 Circles and lines with complex numbers 3 points

Bonus points
Exercise 4.1 Complex arithmetic – principles 6 points

Total of 13 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 13, 2020

59

http://ChaosBook.org/course2/exerWeek4.tex


60 MATHEMATICAL METHODS - WEEK 4. COMPLEX DIFFERENTIATION

Week 4 syllabus Tuesday, September 8, 2020

This week’s lectures are related to Arfken, Weber & Harris [2] Chapter 11 Complex
variable theory (click here). For the 3 next weeks of lectures on complex analysis, I
am very much indebted to Paul Goldbart and his 1993 math methods lecture notes.
The fastest way to watch any week’s lecture videos is by letting YouTube run the
course playlist.

Complex variables; History; algebraic and geometric insights; De Moivre’s for-
mula; roots of unity; functions of complex variables as mappings (32 min; the
last 7 minutes were not in the live lecture)

AWH 11.1 Complex variables and functions

Cauchy-Riemann - differentiation of complex functions; Cauchy-Riemann con-
ditions; holomorphic (analytic) functions; conformal mappings (1h 9min, in-
cludes a conformal mapping clip that was not in the live lecture)

AWH 11.2 Cauchy-Riemann conditions

Everything is allowed in love and war (how to do problem sets)

Optional reading

• Grigoriev notes pages 2.1 - 2.3 (clean and concise)

• I personally am a big fan of Stone and Goldbart [4] (click here); our lectures on
complex numbers follow Paul Goldbart’s lectures.

SG 17.1 Cauchy-Riemann equations

SG 17.1.2 Conformal mapping

SG 17.3.3 Blasius and Kutta-Joukowski theorems (for the rocket scientists
among us)

SG 17.6.1 The point at infinity (Riemann sphere)

• Ahlfors [1] (click here)

• Needham [3] (click here)

Alex Kontorovich, Rutgers MAT 640:503 Complex Analysis. A wonderful lec-
turer, here he diverges into the story of Cardano and cubics. They are cube-ic for
a reason. Did you know people learned to use

√
−1 before they understood that

a number can be negative, like −1? Listen to his first lecture. Oh no! He just
made me solve the cubic, something I had avoided my entire life. So far. You’ll
love it.

http://ChaosBook.org/library/ArWeHa13chap11.pdf
http://YouTube.com/watch?v=7ysIbEwTiS0&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=30
http://YouTube.com/embed/Complex numbers
http://YouTube.com/embed/4PZtCYoAxzg 
https://twitter.com/AlexKontorovich/status/1304755927665512450
http://YouTube.com/embed/PcQsSv2hzME 
http://ChaosBook.org/course2/ln2.pdf
http://ChaosBook.org/library/StGoChap17.pdf
http://ChaosBook.org/library/Ahlfors53.pdf
http://ChaosBook.org/library/Needham97.pdf
https://sites.math.rutgers.edu/~alexk/2020F503/lectures.html
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Figure 4.1: A unit vector e multiplied by a real
number D traces out a circle of points in the
complex plane. Multiplication by the imaginary
unit i rotates a complex vector by 900, so De+
ite is a tangent to this circle, a line parametrized
by a real number t.

Question 4.1. Henriette Roux asks
Q You made us do exercise 4.5, but you did not cover this in class? I left it blank!
A Mhm. I told you that complex numbers can be understood as vectors in the complex plane,
vectors that can be added and multiplied by scalars. I told you that the multiplication by the
imaginary unit i rotates a complex vector by 900. I told you that in the polar representation,
complex numbers define circle parametrized by their argument (phase). For example, a line is
defined by its orientation e, and its shortest distance to the origin is along the vector De, of
length D, see figure 4.1.

The point of the exercise is that if you use your high school sin’s and cos’s, this simple
formula (and the other that have to do with circles) is a mess.

References
[1] L. V. Ahlfors, Complex Analysis, 3rd ed. (Mc Graw Hill, 1979).

[2] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physi-
cists: A Comprehensive Guide, 7th ed. (Academic, New York, 2013).

[3] T. Needham, Visual Complex Analysis (Oxford Univ. Press, Oxford UK, 1997).

[4] M. Stone and P. Goldbart, Mathematics for Physics: A Guided Tour for Graduate
Students (Cambridge Univ. Press, Cambridge UK, 2009).

http://books.google.com/books?vid=ISBN9780070006577
http://books.google.com/books?vid=ISBN9780123846549
http://books.google.com/books?vid=ISBN9780123846549
http://dx.doi.org/10.2307/3618747
http://dx.doi.org/10.1017/cbo9780511627040
http://dx.doi.org/10.1017/cbo9780511627040
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Exercises
4.1. Complex arithmetic – principles: (Ahlfors [1], pp. 1-3, 6-8)

(a) (bonus) Show that A+iB
C+iD

is a complex number provided that C2 +D2 ̸= 0. Show
that an efficient way to compute a quotient is to multiply numerator and denomina-
tor by the conjugate of the denominator. Apply this scheme to compute the quotient
A+iB
C+iD

.

(b) (bonus) By considering the equation (x + iy)2 = (A + iB) for real x, y, A and
B, compute the square root of A + iB explicitly for the case B ̸= 0. Repeat
for the case B = 0. (To avoid confusion it is useful to adopt he convention that
square roots of positive numbers have real signs.) Observe that the square root of
any complex number exists and has two (in general complex) opposite values.

(c) (bonus) Show that z1 + z2 = z̄1 + z̄2 and that z1 z2 = z̄1 z̄2. Hence show
that z1/z2 = z̄1/z̄2. Note the more general result that for any rational opera-
tion R applied to the set of complex numbers z1, z2, . . . we have R(z1, z2, . . .) =
R(z̄1, z̄2, . . .). Hence, show that if ζ solves anz

n + an−1z
n−1 + · · · + a0 = 0

then ζ̄ solves ānz
n + ān−1z

n−1 + · · ·+ ā0 = 0.

(d) (bonus) Show that |z1 z2| = |z1| |z2|. Note that this extends to arbitrary finite
products |z1 z2 . . .| = |z1| |z2| . . .. Hence show that |z1/z2| = |z1|/|z2|. Show
that |z1 + z2|2 = |z1|2 + |z2|2 + 2Re z1 z̄2 and that |z1 − z2|2 = |z1|2 + |z2|2 −
2Re z1 z̄2.

4.2. Complex arithmetic. (Ahlfors [1], pp. 2-4, 6, 8, 9, 11)

(a) Find the values of

(
1 + 2i

)3
,

5

−3 + 4i
,

(
2 + i

3− 2i

)
,

(
1 + i

)N
+
(
1− i

)N
for N = 1, 2, 3, . . . .

(b) If z = x+ iy (with x and y real), find the real and imaginary parts of

z4,
1

z
,

z − 1

z + 1
,

1

z2
.

(c) Show that, for all combinations of signs,(
−1± i

√
3

2

)3

= 1,

(
±1± i

√
3

2

)6

= 1.

(d) By using their Cartesian representations, compute
√
i,
√
−i,

√
1 + i and

√
1−i

√
3

2
.

(e) By using the Cartesian representation, find the four values of 4
√
−1.

(f) By using their Cartesian representations, compute 4
√
i and 4

√
−i.

(g) Solve the following quadratic equation (with real A, B, C and D) for complex z:

z2 + (A+ iB)z + C + iD = 0.
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(h) Show that the system of all matrices of the form[
A B

−B A

]
(with real A and B), when combined by matrix addition and matrix multiplication,
is isomorphic to the field of complex numbers.

(i) Verify by calculation that the values of z/
(
z2 + 1

)
for z = x+ iy and z = x− iy

are conjugate.

(j) Find the absolute values of

−2i
(
3 + i

)(
2 + 4i

)(
1 + i

)
,

(
3 + 4i

)(
− 1 + 2i

)(
− 1− i

)(
3− i

) .

(k) Prove that, for complex a and b, if either |a| = 1 or |b| = 1 then∣∣∣∣ a− b

1− āb

∣∣∣∣ = 1.

What exception must be made if |a| = |b| = 1?

(l) Show that there are complex numbers z satisfying |z − a| + |z + a| = 2|c| if and
only if |a| ≤ |c|. If this condition is fulfilled, what are the smallest and largest
values of |z|?

(m) Prove the complex form of Lagrange’s identity, viz., for complex {aj , bj}∣∣∣ n∑
j=1

aj bj

∣∣∣2 =

n∑
j=1

|aj |2
n∑

j=1

|bj |2 −
∑

1≤j<k≤n

∣∣aj b̄k − ak b̄j
∣∣2 .

4.3. Complex inequalities – principles: (Ahlfors [1], pp. 9-11)

(a) (bonus) Show that −|z| ≤ Re z ≤ |z| and that −|z| ≤ Im z ≤ |z|. When do the
equalities Re z = |z| or Im z = |z| hold?

(b) (bonus) Derive the so-called triangle inequality |z1 + z2| ≤ |z1| + |z2|. Note that
it extends to arbitrary sums: |z1 + z2 + · · ·| ≤ |z1| + |z2| + · · · . Under what
circumstances does the equality hold? Show that |z1 − z2| ≥

∣∣|z1| − |z2|
∣∣.

(c) (bonus) Derive Cauchy’s inequality, i.e., show that∣∣∣ n∑
j=1

wj zj

∣∣∣2 ≤
∣∣∣ n∑
j=1

∣∣wj

∣∣2 ∣∣∣ n∑
j=1

∣∣zj∣∣2.
4.4. Complex inequalities: (Ahlfors [1], p. 11)

(a) (bonus) Prove that, for complex a and b such that |a| < 1 and |b| < 1, we have
|(a− b)/(1− āb)| < 1.

(b) (bonus) Let {aj}nj=1 be a set of n complex variables and let {λj}nj=1 be a set of n
real variables.
If |aj | < 1, λj ≥ 0 and

∑n
j=1 λj = 1, show that

∣∣∑n
j=1 λj aj

∣∣ < 1.

4.5. Circles and lines with complex numbers: (Needham [3] p. 46)
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(a) If c is a fixed complex number and R is a fixed real number, explain with a picture
why |z − c| = R is the equation of a circle. Given that z satisfies the equation
|z + 3− 4i| = 2, find the minimum and maximum values of |z| and the corre-
sponding positions of z.

(b) Consider the two straight lines in the complex plane that make an angle (π/2) + ϕ
with the real axis and lie a distance D from the origin. Show that points z on the
lines satisfy one or other of Re

(
cosϕ− i sinϕ

)
z = ±D.

(c) Consider the circle of points obeying
∣∣z − (D +R)

(
cosϕ+ i sinϕ

)∣∣ = R. Give
the centre of this circle and its radius. Determine what happens to this circle in the
R → ∞ limit. (Note: In the extended complex plane the properties of circles and
lines are unified. For this reason they are sometimes referred to as circlines.)

4.6. Plane geometry with complex numbers: (Ahlfors [1], p. 15)

(a) Prove that if the points a1, a2 and a3 are the vertices of an equilateral triangle then
a1 a1 + a2 a2 + a3 a3 = a1 a2 + a2 a3 + a3 a1.

(b) Suppose that a and b are two vertices of a square in the complex plane. Find the
two other vertices in all possible cases.

(c) (bonus) Find the center and the radius of the circle that circumscribes the triangle
having vertices a1, a2 and a3. Express the result in symmetric form.

(d) (bonus) Find the symmetric points of the complex number z with respect to each of
the lines that bisect the coordinate axes.

4.7. More plane geometry with complex numbers: (Needham [3] p. 16)
Consider the quadrilateral having sides given by the complex numbers 2a1, 2a2, 2a3

and 2a4, and construct the squares on these sides. Now consider the two line-segments
joining the centres of squares on opposite sides of the quadrilateral. Show that these
line-segments are perpendicular and of equal length.

4.8. More plane geometry with complex numbers: (Ahlfors [1], p. 9, 17)

(a) Find the conditions under which the equation az + bz̄ + c = 0 (with complex a,
b and c) in one complex unknown z has exactly one solution, and compute that
solution. When does the equation represent a line?

(b) (bonus) Write the equation of an ellipse, hyperbola and parabola in complex form.

(c) (bonus) Show, using complex numbers, that the diagonals of a parallelogram bisect
each other.

(d) (bonus) Show, using complex numbers, that the diagonals of a rhombus are orthog-
onal.

(e) (bonus) Show that the midpoints of parallel chords to a circle lie on a diameter
perpendicular to the chords.

(f) (bonus) Show that all circles that pass through a and 1/a intersect the circle |z| = 1
at right angles.

4.9. Number theory with complex numbers: (Needham [3] p. 45)
Here is a basic fact that has many uses in number theory: If two integers can be expressed
as the sum of two squares then so can their product. Prove this result by considering∣∣(A+ iB)(C + iD)

∣∣2 for integers A, B, C and D.

4.10. Trigonometry with complex numbers: (Ahlfors [1], pp. 16-17)
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(a) Express cos 3ϕ, cos 4ϕ and sin 5ϕ in terms of cosϕ and sinϕ.

(b) Simplify 1 + cosϕ+ cos 2ϕ+ · · ·+ cosNϕ and sinϕ+ sin 2ϕ+ sin 3ϕ+ · · ·+
sinNϕ.

(c) Express the fifth and tenth roots of unity in algebraic form.

(d) (bonus) If ω is given by ω = cos
(
2π/N

)
+ i sin

(
2π/N

)
(for N = 0, 1, 2, . . .),

show that, for any integer H that is not a multiple of N , 1 + ωH + ω2H + · · · +
ω(N−1)H = 0. What is the value of 1− ωH + ω2H − · · ·+ (−1)N−1ω(N−1)H?
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Chapter 4 solutions: Complex differentiation
Solution 4.2 - Complex arithmetic.

Uploaded to Canvas as HW04.pdf.



mathematical methods - week 5

Complex integration

Georgia Tech PHYS-6124
Homework HW #5 due Sunday, September 27, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 5.1 More holomorphic mappings 10 (+6 bonus) points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 24, 2020
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Week 5 syllabus September 15, 2020

Arfken, Weber & Harris [1] (click here) Chapter 11 Complex variable theory. The
fastest way to watch any week’s lecture videos is by letting YouTube run the
course playlist.

• Complex integration : Tuesday lecture segments

AWH Sect. 11.3 Cauchy’s integral theorem

Holomorphic functions

Complex exponential, logarithm

Complex logarithm, take #2

Integration in the complex plane, part I

• Cauchy contour integral : Thursday lecture

Cauchy integration theorem

AWH Sect. 11.4 Cauchy’s integral formula

Optional reading

• Grigoriev pages 3.1 - 3.3 (Cauchy’s contour integral)

Riemann sphere by waving hands; Quaternions, octonions; bifurcations

Is conformal a 2D version of symplectic? David Finkelstein discovers Higgs
before Higgs; Why cannot colloquia speakers stop blabbing?

• Discussion continued, Andrew Wu:

– Conservative field in complex plane:
Cauchy’s theorem and conservative vector fields

– Cauchy-Riemann equations wikipedia sect. Harmonic vector field.
Predrag: Also the next sect. Preservation of complex structure is interest-
ing, points out that Cauchy–Riemann equation have symplectic structure,
the defining property of Hamilton’s equations. There is no clear path for-
ward to mechanics with more degrees of freedom, though.

Tuesday morning chit-chat

Thursday morning chit-chat : baseball, and getting humiliated by the 10 year
old Peter Serene

• Stone and Goldbart [2] (click here)

SG 17.2-3 Complex integration: Cauchy and Stokes

SG 17.2.2 Cauchy’s theorem

SG 17.2.3 The residue theorem

http://ChaosBook.org/library/ArWeHa13chap11.pdf
http://YouTube.com/watch?v=_8wNYAcCoZg&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=33
http://YouTube.com/embed/_8wNYAcCoZg 
http://YouTube.com/embed/wMtdhinxuw4 
http://YouTube.com/embed/-qJM-sA73zc 
http://YouTube.com/embed/GgH_Hwr975M 
http://YouTube.com/embed/7FIS8WYuohA 
http://ChaosBook.org/course2/ln3.pdf
http://YouTube.com/embed/J2dM00XpMvA 
http://YouTube.com/embed/-rA9YsOVHhw
https://math.stackexchange.com/questions/2048396/relationship-between-cauchy-goursat-theorem-and-conservative-vector-fields
https://en.wikipedia.org/wiki/Cauchy%E2%80%93Riemann_equations#Harmonic_vector_field
http://YouTube.com/embed/_gipGW8sJn4 
http://YouTube.com/embed/cHL5ZmzG-0U 
http://ChaosBook.org/library/StGoChap17.pdf
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Exercises
5.1. More holomorphic mappings. Needham, pp. 211-213

(a) (bonus) Use the Cauchy-Riemann conditions to verify that the mapping z 7→ z̄ is
not holomorphic.

(b) The mapping z 7→ z3 acts on an infinitesimal shape and the image is examined. It
is found that the shape has been rotated by π, and its linear dimensions expanded
by 12. Determine the possibilities for the original location of the shape, i.e., find all
values of the complex number z for which an infinitesimal shape at z is rotated by
π, and its linear dimensions expanded by 12. Hint: write z in polar form, first find
the appropriate r = |z|, then find all values of the phase of z such that arg(z3) = π.

(c) Consider the map z 7→ z̄2/z. Determine the geometric effect of this mapping. By
considering the effect of the mapping on two small arrows emanating from a typical
point z, one arrow parallel and one perpendicular to z, show that the map fails to
produce an amplitwist.

(d) The interior of a simple closed curve C is mapped by a holomorphic mapping into
the exterior of the image of C. If z travels around the curve counterclockwise, which
way does the image of z travel around the image of C?

(e) Consider the mapping produced by the function f(x+ iy) =
(
x2 + y2

)
+ i
(
y/x

)
.

(i) Find and sketch the curves that are mapped by f into horizontal and vertical
lines. Notice that f appears to be conformal.

(ii) Now show that f is not in fact a conformal mapping by considering the images
of a pair of lines (e.g. , one vertical and one horizontal).

(iii) By using the Cauchy-Riemann conditions confirm that f is not conformal.
(iv) Show that no choice of v(x, y) makes f(x + iy) =

(
x2 + y2

)
+ iv(x, y)

holomorphic.

(f) (bonus) Show that if f is holomorphic on some connected region then each of the
following conditions forces f to reduce to a constant:
(i) Re f(z) = 0; (ii) |f(z)| = const.; (iii) f̄(z) is holomorphic too.

(g) (bonus) Suppose that the holomorphic mapping z 7→ f(z) is expressed in terms of
the modulus R and argument Φ of f , i.e.,
f(z) = R(x, y) exp iΦ(x, y).
Determine the form of the Cauchy-Riemann conditions in terms of R and Φ.

(h) (i) By sketching the image of an infinitesimal rectangle under a holomorphic
mapping, determine the the local magnification factor for the area and com-
pare it with that for a infinitesimal line. Re-derive this result by examining the
Jacobian determinant for the transformation.

(ii) Verify that the mapping z 7→ exp z satisfies the Cauchy-Riemann conditions,
and compute

(
exp z

)′.
(iii) (bonus) Let S be the square region given by A − B ≤ Re z ≤ A + B and

−B ≤ Im z ≤ B with A and B positive. Sketch a typical S for which B < A
and sketch the image S̃ of S under the mapping z 7→ exp z.

(iv) (bonus) Deduce the ratio (area of S̃)/(area of S), and compute its limit as
B → 0+.

(v) (bonus) Compare this limit with the one you would expect from part (i).
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Chapter 5 solutions: Complex integration
Solution 5.1 - More holomorphic mappings.

Uploaded to Canvas as HW05.pdf





mathematical methods - week 6

Cauchy theorem at work

Georgia Tech PHYS-6124
Homework HW #6 due Thursday, October 1, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 6.1 Complex integration (a) 4; (b) 2; (c) 2; and (d) 3 points
Exercise 6.2 Fresnel integral 7 points

Bonus points
Exercise 6.4 Cauchy’s theorem via Green’s theorem in the plane 6 points

Total of 16 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited September 26, 2020
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Week 6 syllabus September 22, 2020

Mephistopheles knocks at Faust’s door and says, “Du mußt es
dreimal sagen!"
. “You have to say it three times"

— Johann Wolfgang von Goethe
. Faust I - Studierzimmer 2. Teil

Arfken, Weber & Harris [1] (click here) Chapter 11 Complex variable theory. The
fastest way to watch any week’s lecture videos is by letting YouTube run the
course playlist.

The essence of complex; Taylor, Laurent series; residue calculus part 1

AWH 11.5 Laurent expansion

AWH 11.6 Singularities

AWH 11.7 Calculus of residues

Calculus of residues. A few integrals, evaluated by Cauchy contours

AWH 11.8 Evaluation of definite integrals

• Grigoriev examples worked out in the lecture:

Meromorphic in upper half-plane

Singularity on the contour

Pole in upper half-plane

Singularity on the contour

Optional reading

Stone and Goldbart [2] (click here) Chapter 17

SG 17.4 Applications of Cauchy’s theorem

SG 17.4.2 Taylor and Laurent series

SG 17.4.3 Zeros and singularities

SG 17.4.4 Analytic continuation

Wolfram rant: the wunderkid vs. Gradshteyn and Ryzhik; opinions of blackest
reactionary professor on graduate educations (the kids are OK). Click on this at
your own risk - 30 minutes! Absolutely no science.

The meaning of the things complex rant: The power of visual thinking; Data and
dimension reduction; AI, hype and morality. Click on this at your own risk.

http://ChaosBook.org/library/ArWeHa13chap11.pdf
http://YouTube.com/watch?v=I2vBMFxD0vA&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=42
http://YouTube.com/embed/I2vBMFxD0vA 
http://YouTube.com/embed/4WVwJ35ESRE 
http://ChaosBook.org/course2/videos/week6/RGln3-4b.pdf
http://ChaosBook.org/course2/videos/week6/RGln3-5a.pdf
http://ChaosBook.org/course2/videos/week6/RGln3-5b.pdf
http://ChaosBook.org/course2/videos/week6/RGln3-5ba.pdf
http://ChaosBook.org/library/StGoChap17.pdf
http://YouTube.com/embed/x2KDLwabGIE 
http://YouTube.com/embed/6S16Nf3mP14 
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Exercises
6.1. Complex integration.

(a) Write down the values of
∮
C
(1/z) dz for each of the following choices of C:

(i) |z| = 1, (ii) |z − 2| = 1, (iii) |z − 1| = 2.
Then confirm the answers the hard way, using parametric evaluation.

(b) Evaluate parametrically the integral of 1/z around the square with vertices ±1± i.

(c) Confirm by parametric evaluation that the integral of zm around an origin centered
circle vanishes, except when the integer m = −1.

(d) Evaluate
∫ 3−2i

1+i
dz sin z in two ways: (i) via the fundamental theorem of (complex)

calculus, and (ii) (bonus) by choosing any path between the end-points and using
real integrals.

6.2. Fresnel integral.
We wish to evaluate the I =

∫∞
0

exp
(
ix2
)
dx. To do this, consider the contour inte-

gral IR =
∫
C(R)

exp
(
iz2
)
dz, where C(R) is the closed circular sector in the upper

half-plane with boundary points 0, R and R exp(iπ/4). Show that IR = 0 and that
limR→∞

∫
C1(R)

exp
(
iz2
)
dz = 0, where C1(R) is the contour integral along the circu-

lar sector from R to R exp(iπ/4). [Hint: use sinx ≥ (2x/π) on 0 ≤ x ≤ π/2.] Then,
by breaking up the contour C(R) into three components, deduce that

lim
R→∞

(∫ R

0

exp
(
ix2) dx− eiπ/4

∫ R

0

exp
(
− r2

)
dr

)
= 0

and, from the well-known result of real integration
∫∞
0

exp
(
− x2

)
dx =

√
π/2, deduce

that I = eiπ/4√π/2.

6.3. Fresnel integral.

(a) Derive the Fresnel integral

1√
2π

∫ ∞

−∞
dx e−

x2

2ia =
√
ia = |a|1/2ei

π
4

a
|a| .

Consider the contour integral IR =
∫
C(R)

exp
(
iz2
)
dz, where C(R) is the closed

circular sector in the upper half-plane with boundary points 0, R and R exp(iπ/4).
Show that IR = 0 and that limR→∞

∫
C1(R)

exp
(
iz2
)
dz = 0, where C1(R) is

the contour integral along the circular sector from R to R exp(iπ/4). [Hint: use
sinx ≥ (2x/π) on 0 ≤ x ≤ π/2.] Then, by breaking up the contour C(R) into
three components, deduce that

lim
R→∞

(∫ R

0

exp
(
ix2) dx− eiπ/4

∫ R

0

exp
(
− r2

)
dr

)
vanishes, and, from the real integration

∫∞
0

exp
(
− x2

)
dx =

√
π/2, deduce that∫ ∞

0

exp
(
ix2) dx = eiπ/4√π/2 .

Now rescale x by real number a ̸= 0, and complete the derivation of the Fresnel
integral.
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(b) In exercise 9.2 the exponent in the d-dimensional Gaussian integrals is real, so
the real symmetric matrix M in the exponent has to be strictly positive definite.
However, in quantum physics one often has to evaluate the d-dimenional Fresnel
integral

1

(2π)d/2

∫
ddϕe−

1
2i

ϕ⊤·M−1·ϕ+i ϕ·J ,

with a Hermitian matrix M . Evaluate it. What are conditions on its spectrum in
order that the integral be well defined?

6.4. Cauchy’s theorem via Green’s theorem in the plane. Express the integral
∮
C
dz f(z)

of the analytic function f = u+iv around the simple contour C in parametric form, apply
the two-dimensional version of Gauss’ theorem (a.k.a. Green’s theorem in the plane), and
invoke the Cauchy-Riemann conditions. Hence establish Cauchy’s theorem

∮
C
dz f(z) =

0.
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Chapter 6 solutions: Cauchy theorem at work
Solution 6.1 - Complex integration. Uploaded to Canvas as HW06-1.pdf

Solution 6.1 - Complex integration.

(a) Using Cauchy’s residue theorem, the curves (i) and (iii) enclose the origin but (ii)
does not:

(i) 2πi, (ii) 0, (iii) 2πi. With parametric integration:

(i) If we write z as reiθ, dz = ireiθ dθ (r = 1). Thus,
∫ 2π

0
ieiθ

eiθ
dθ = 2πi.

(ii) z is now reiθ + 2; dz is still ireiθdθ and r = 1. Our integral is now∮
C

1

z
dz =

∫ 2π

0

ieiθ

eiθ + 2
dθ

=

∫ 2π

θ=0

1

u
du (u ≡ eiθ + 2)

=
[
ln(eiθ + 2)

]2π
0

= 0 . (6.1)

(iii) Similar to part (ii), z = 2eiθ + 1; dz is now i2eiθdθ, so:∮
C

1

z
dz =

∫ 2π

0

2ieiθ

2eiθ + 1
dθ

=

∫ 2π

0

2ieiθ
′
− i

2eiθ′
dθ′ (2eiθ

′
≡ 2eiθ + 1)

=

∫ 2π

0

(
2ieiθ

′

2eiθ′
− i

2eiθ′
) dθ′

= 2πi−
[
−1

2
e−iθ′

]2π
0

= 2πi (6.2)

(b) We split the integral into 4 parts (the four parts of the square), with the four
paths: z1 = x+ i, z2 = −1 + iy, z3 = x− i, z4 = 1 + iy. Then,∮

1

1

z
dz =

∫ −1

1

1

x+ i
dx =

∫ −1

1

x− i

1 + x2
dx =

[
ln(1 + x2)− i tan−1(x)

]−1

1
= iπ/2∮

2

1

z
dz =

∫ −1

1

i

−1 + iy
dy =

∫ −1

1

−i+ y

1 + y2
dy =

[
ln(1 + y2)− i tan−1(y)

]−1

1
= iπ/2∮

3

1

z
dz =

∫ 1

−1

1

x− i
dx =

∫ 1

−1

x+ i

1 + x2
dx =

[
ln(1 + x2) + i tan−1(x)

]1
−1

= iπ/2∮
2

1

z
dz =

∫ 1

−1

i

1 + iy
dy =

∫ 1

−1

i+ y

1 + y2
dy =

[
ln(1 + y2) + i tan−1(y)

]1
−1

= iπ/2

Add the four integrals. All the messy terms cancel, leaving four iπ/2. Thus,∮
C

1
z
dz = 2πi.

(c) Write z as rieθ and use dz = ireiθ dθ.∮
C

zm dz =

∫ 2π

0

irm+1ei(m+1)θ dθ =

[
irm+1

i(m+ 1)
ei(m+1)θ

]2π
0

(6.3)
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ei(m+1)θ is periodic by 2π, thus if this term remains,
∮
C
zm dz = 0. To kill this

term we set m = −1 and
∮
C
zm dz turns into a singularity. We reevaluate

the integral for m = −1 and get
∮
C
z−1 dz =

∫ 2π

0
i dθ = 2πi.

(d)

(i) ∫
sin(z) dz =

∫
i

2
(e−iz − eiz) dz =

i

2
(ie−iz + ieiz) = − cos(z) (6.4)

Using the fundamental theorem of calculus,∫ 3−2i

1+i

sin(z) dz = [− cos(z)]3−2i
1+i

= − cos(3− 2i) + cos(1 + i)

=
−1

2
(ei(3−2i) + e−i(3−2i)) +

1

2
(ei(1+i) + e−i(1+i))

=
1

2

[
e−1ei + e1e−i − e2ei3 − e−2e−i3

]
= cosh(1) cos(1)− i sinh(1) sin(1)− cosh(2) cos(3)− i sinh(2) sin(3)

(ii) (bonus)

sin(z) =
i

2
(e−iz − eiz) =

i

2
(e−i(x+iy) − ei(x+iy))

=
i

2
(eye−ix − e−yeix)

=
1

2
(iey(cos(x)− i sin(x))− ie−y(cos(x) + i sin(x)))

=
1

2
(ey sin(x) + e−y sin(x) + iey cos(x)− e−ycos(x))

= sin(x) cosh(y) + i cos(x) sinh(y) (6.5)

We follow the two paths z = x+ i and z = 3 + iy.∫ 3−2i

1+i

sin(z) dz =

∫ 3

1

sin(x) cosh(1) + i cos(x) sinh(1) dx

+

∫ −2

1

sin(3) cosh(y) + i cos(3) sinh(y)i dy

= cosh(1)(− cos(3) + cos(1)) + i sinh(1)(sin(3)− sin(1))

+i sin(3)(sinh(−2)− sinh(1))− cos(3)(cosh(−2)− cosh(1))

= cosh(1)cos(1)− i sinh(1) sin(1)− i sinh(2) sin(3)− cosh(2) cos(3)

= what we previously got (rearranged) (6.6)

Arthur Lin

Solution 6.2 - Fresnel integral. Uploaded to Canvas as HW06-2.pdf

Solution 6.2 - Fresnel integral. We break the contour integral into three parts,
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z1(x) = x, z2(θ) = Reiθ, z3(r) = r eiπ/4:∮
C

eiz
2

dz =

∫ R

0

eix
2

dx+

∫ π/4

0

ei(Reiθ)2Rieiθ dθ +

∫ 0

R

ei(re
iπ/4)2eiπ/4dr

=

∫ R

0

eix
2

dx+ iR

∫ π/4

0

ei(R
2ei2θ)eiθ dθ +

∫ 0

R

eir
2(eiπ/2)eiπ/4dr

=

∫ R

0

eix
2

dx+ iR

∫ π/4

0

ei(R
2ei2θ)eiθ dθ − eiπ/4

∫ R

0

e−r2dr (6.7)

= 0 (there are no residues in this region).

We now take a closer look at the integral
∫ π/4

0
ei(R

2ei2θ)eiθ dθ.∫ π/4

0

ei(R
2ei2θ)eiθ dθ =

∫ π/4

0

ei(R
2 cos(2θ))e−(R2 sin(2θ))eiθ dθ

Both ei(R
2 cos(2θ)) and eiθ are always oscillatory terms while e−(R2 sin(2θ)) is decaying

with R. Noting that e−(R2 sin(2θ)) = 0 when R → ∞, we assume that this integral also
goes to 0 when R → ∞. Substituting these back into (6.7) and taking R → ∞,

lim
R→∞

(∫ R

0

eix
2

dx− eiπ/4

∫ R

0

e−r2dr

)
= 0 .

Taking the limit and rearranging we have:∫ ∞

0

eix
2

dx = eiπ/4

∫ ∞

0

e−r2 dr = eiπ/4√π/2 .

Arthur Lin

Solution 6.3 - Fresnel integral.
1. Predrag 2019-09-29 Uploaded to T-square: HW04-2.pdf Exercise 5.2 taken out

of HW12.pdf.
2. No solution available.

Solution 6.4 - Cauchy’s theorem via Green’s theorem in the plane.
Uploaded to Canvas as HW06-3.pdf

Solution 6.4 - Cauchy’s theorem via Green’s theorem in the plane.∮
C

f(z) dz =

∮
C

(u+ iv) d(x+ iy) =

∮
C

(u dx− v dy) + i

∮
C

(v dx+ u dy) (6.8)

Using Gauss’s Law, the integral becomes:∫
S

(
∂v

∂x
+

∂u

∂y

)
dx dy + i

∫
S

(
∂u

∂x
− ∂v

∂y

)
dx dy (6.9)

If the function is analytic, the Cauchy-Riemann conditions require

∂v

∂x
+

∂u

∂y
= 0 (6.10)

∂u

∂x
− ∂v

∂y
= 0. (6.11)

With both integrands equal to zero, the whole integral is also zero, thus
∮
C
f(z) dz = 0

for analytic functions. Arthur Lin
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Method of steepest descent
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== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 7.1 In high dimensions any two vectors are (nearly) orthogonal 16 points

Bonus points
Exercise 7.2 Airy function for large arguments 10 points

Total of 16 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.
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Week 7 syllabus September 29, 2020

Arfken, Weber & Harris [1] Chapter 12 Further Topics in Analysis (click here);
Chapter 13 Gamma function (click here). saddle point method; Gamma, Airy function
estimates; beta function is also often encountered. The fastest way to watch any week’s
lecture videos is by letting YouTube run the course playlist.

Asymptotic evaluation of integrals: perturbation expansions; Laplace, saddle,
steepest descent leading term. (1 hour)

AWH 12.6 Asymptotic series

AWH 12.7 Method of steepest descents

Grigoriev lecture notes

Steepest descent I: Gamma function, Sterling formula. (27 min)

Steepest descent II, for physicists: Zero-dimensional field theory - perturbation
expansion is an asymptotic series.

◦ Sect. 7.1 Saddle-point expansions are asymptotic

Steepest descent III, for data scientists: How tall is my graduate student?

◦ Exercise 7.1 In high dimensions any two vectors are (nearly) orthogonal

Optional reading

Steven Strogatz Asymptotics and perturbation methods (2021)

AWH 11.6 Singularities; Branch-cut integrals

If they only got the phase in the Fresnel integral right, QM would look different

Got problems? Do them like a journalist

I heard it through the grapevine: how to pick a tolerable adviser?

You think you are stressed? Try finishing your thesis

7.1 Saddle-point expansions are asymptotic
The first trial ground for testing our hunches about field theory is the zero-dimensional
field theory, the field theory of a lattice consisting of one point, in case of the “ϕ4

theory” given a humble 1-dimensional integral

Z[J ] =

∫
dϕ√
2π
e−ϕ2/2−gϕ4/4+ϕJ . (7.1)

http://ChaosBook.org/library/ArWeHa13chap12FurtherTopsAnalysis.pdf
http://ChaosBook.org/library/ArWeHa13chap13.pdf
http://YouTube.com/watch?v=IjzcYZJZKU0&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=48
http://YouTube.com/embed/IjzcYZJZKU0 
http://ChaosBook.org/course2/ln13.pdf
http://YouTube.com/embed/BugLWl9hQpI 
http://YouTube.com/embed/M-_uMldTN8Q 
http://YouTube.com/embed/C5N8sc7TjBg 
http://YouTube.com/playlist?list=PL5EH0ZJ7V0jV7kMYvPcZ7F9oaf_YAlfbI
http://YouTube.com/embed/Brq7w43mdPg 
http://YouTube.com/embed/UKMUhi-9sng 
http://YouTube.com/embed/AeYNlQMtSFo 
http://YouTube.com/embed/S49LedVJbMo 
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Figure 7.1: Plot of the saddle-point estimate of Zn vs. the exact result (7.2) for
g = 0.1, g = 0.02, g = 0.01.

The idea of the saddle-point expansions is to keep the Gaussian part ϕ2/2 (“free field”,
with a quadratic H0 “Hamiltonian”) as is, and expand the rest (HI “interacting Hamil-
tonian”) as a power series, and then evaluate the perturbative corrections using the
moments formula∫

dϕ√
2π

ϕne−ϕ2/2 =

(
d

dJ

)n

eJ
2/2

∣∣∣
J=0

= (n− 1)!! if n even, 0 otherwise .

In this zero-dimensional theory the n-point correlation is a number exploding combi-
natorially, as (n− 1)!!. And here our troubles start.

To be concrete, let us work out the exact zero-dimensional ϕ4 field theory in the
saddle-point expansion to all orders:

Z[0] =
∑
n

Zng
n ,

Zn =
(−1)n

n!4n

∫
dϕ√
2π
ϕ4ne−ϕ2/2 =

(−1)
n

16nn!

(4n)!

(2n)!
. (7.2)

The Stirling formula n! =
√
2π nn+1/2e−n yields for large n

gnZn ≈ 1√
nπ

(
4g

e
n

)n

. (7.3)

As the coefficients of the parameter gn are blowing up combinatorially, no matter how
small g might be, the perturbation expansion is not convergent! Why? Consider again
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(7.1). We have tacitly assumed that g > 0, but for g < 0, the potential is unbounded
for large ϕ, and the integrand explodes. Hence the partition function in not analytic at
the g = 0 point.

Is the whole enterprise hopeless? As we shall now show, even though divergent, the
perturbation series is an asymptotic expansion, and an asymptotic expansion can be ex-
tremely good [6]. Consider the residual error after inclusion of the first n perturbative
corrections:

Rn =

∣∣∣∣∣Z(g)−
n∑

m=0

gmZm

∣∣∣∣∣
=

∫
dϕ√
2π
e−ϕ2/2

∣∣∣∣∣e−gϕ4/4 −
n∑

m=0

1

m!

(
−g
4

)m

ϕ4m

∣∣∣∣∣
≤

∫
dϕ√
2π
e−ϕ2/2 1

(n+ 1)!

(
gϕ4

4

)n+1

= gn+1 |Zn+1| . (7.4)

The inequality follows from the convexity of exponentials, a generalization of the in-
equality ex ≥ 1 + x. The error decreases as long as gn |Zn| decreases. From (7.3) the
minimum is reached at 4g nmin ≈ 1, with the minimum error

gnZn|min ≈
√

4g

π
e−1/4g. (7.5)

As illustrated by the figure 7.1, a perturbative expansion can be, for all practical pur-
poses, very accurate. In Quantum ElectroDynamics, or QED, this argument had led
Dyson to suggest that the QED perturbation expansions are good to nmin ≈ 1/α ≈
137 terms. Due to the complicated relativistic, spinorial and gauge invariance structure
of perturbative QED, there is not a shred of evidence that this is so. The very best
calculations performed so far stop at n ≤ 5.

Predrag The truth is, perturbation theory as taught in all Quantum Mechanics text-
books is wrong, as one should also include the exponentially small contributions.
That goes by names ‘resurgence’, ‘Borel transforms’, ‘lateral Borel resumma-
tions’, ‘trans-series’, and is not an easy subject. I found the May 5, 2021 École
Normale Supŕieure lecture by Marcos Mariño the most accessible overview,
but I do not see it online. Perhaps the start of his lecture Resurgence, BPS
counting, and knot invariants has some of the ideas. His lectures on resurgence
in mathematics and physics are more technical, if you want to learn more.

Predrag I find Córdova, Heidenreich, Popolitov and Shakirov [4] Orbifolds and exact
solutions of strongly-coupled matrix models very surprising. The introduction
is worth reading. They compute analytically the matrix model (QFT in zero
dimensions) partition function for trace potential

S[X] = tr (Xr) , integer r ≥ 2 . (7.6)

Their “non-perturbative ambiguity” in the case of theN = 1 cubic matrix model
seem to amount to the Stokes phenomenon, i.e., choice of integration contour for
the Airy function.

https://www.marcosmarino.net
https://sites.google.com/view/ens-statistical-physics-forum
http://YouTube.com/embed/dM8Xlk-YHpg
https://www.marcosmarino.net/uploads/1/3/3/5/133535336/resurgence-diablerets.pdf
https://www.marcosmarino.net/uploads/1/3/3/5/133535336/resurgence-diablerets.pdf
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Unlike the weak coupling expansions, the strong coupling expansion of

Z =
1

2π

∫
dxe

− 1
2g2

x2−x4

, (7.7)

is convergent, not an asymptotic series.

There is a negative dimensions type dualityN → −N , their eq. (3.27). The loop
equations, their eq. (2.10), are also interesting - they seem to essentially be the
Dyson-Schwinger equations and Ward identities in my book’s [5] formulation of
QFT.

7.2 Notes on life in extreme dimensions
You can safely ignore this section, it’s “math methods,” as much as Predrag’s musings
about current research...

Exercise 7.1 is something that anyone interested in computational neuroscience [9]
and/or machine learning already knows. It is also something that many a contemporary
physicist should know; a daily problem for all of us, from astrophysics to fluid physics
to biologically inspired physics is how to visualize large, extremely large data sets.

Possibly helpful references:
Distribution of dot products between two random unit vectors. They denote Z =

⟨X,Y ⟩ =
∑
XiYi. Define

fZi
(zi) =

∫ ∞

−∞
fXi,Yi

(x,
zi
x
)
1

|x|
dx

then since Z =
∑
Zi,

fZ(z) =

∫ ∞

−∞
. . .

∫ ∞

−∞
fZ1,...,ZD

(z1, . . . , zd) δ(z −
∑

zi) dz1 . . . dzd .

There is a Georgia Tech paper on this [12]. See also cosine similarity and Mathworld.
There is even a python tutorial. scikit-learn is supposed to be ‘The de facto
Machine Learning package for Python’.

Remark 7.1. High-dimensional flows and their visualizations. Dynamicist’s vision of
turbulence was formulated by Eberhard Hopf in his seminal 1948 paper [11]. Computational
neuroscience grapples with closely related visualization and modeling issues [7, 8]. Much about
high-dimensional state spaces is counterintuitive. The literature on why the expectation value
of the angle between any two high-dimensional vectors picked at random is 90o is mostly about
spikey spheres: see the draft of the Hopcroft and Kannan [3] book and Ravi Kannan’s course;
lecture notes by Hermann Flaschka on Some geometry in high-dimensional spaces; Wegman
and Solka [13] visualizations of high-dimensional data; Spruill paper [12]; a lively mathover-
flow.org thread on “Intuitive crutches for higher dimensional thinking.”

The ‘good’ coordinates, introduced in ref. [10] are akin in spirit to the low-dimensional pro-
jections of the POD modeling [2], in that both methods aim to capture key features and dynamics
of the system in just a few dimensions. But the ref. [10] method is very different from POD in
a key way: we construct basis sets from exact solutions of the fully-resolved dynamics rather

http://stats.stackexchange.com/questions/85916/distribution-of-dot-products-between-two-random-unit-vectors-in-mathbbrd
http://en.wikipedia.org/wiki/Cosine_similarity
http://mathworld.wolfram.com/Hypersphere.html
http://pyevolve.sourceforge.net/wordpress/?p=2497
http://scikit-learn.org
http://research.microsoft.com/en-US/people/kannan/book-no-solutions-aug-21-2014.pdf
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/
http://math.arizona.edu/~flaschka/Topmatter/527files/concentration.pdf
http://sankhya.isical.ac.in/search/64a2/64a2031.pdf
http://sankhya.isical.ac.in/search/64a2/64a2031.pdf
http://mathoverflow.net/questions/25983/intuitive-crutches-for-higher-dimensional-thinking
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than from the empirical eigenfunctions of the POD. Exact solutions and their linear stability
modes (a) characterize the spatially-extended states precisely, as opposed to the truncated ex-
pansions of the POD, (b) allow for different basis sets and projections for different purposes and
different regions of state space, (c) these low-dimensional projections are not meant to suggest
low-dimensional ODE models; they are only visualizations, every point in these projections is
still a point the full state space, and (d) the method is not limited to Fourier mode bases.
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Exercises
7.1. In high dimensions any two vectors are (nearly) orthogonal. Among humble

plumbers laboring with extremely high-dimensional ODE discretizations of fluid and
other PDEs, there is an inclination to visualize the ∞-dimensional state space flow by
projecting it onto a basis constructed from a few random coordinates, let’s say the 2nd
Fourier mode along the spatial x direction against the 4th Chebyshev mode along the y
direction. It’s easy, as these are typically the computational degrees of freedom. As we
will now show, it’s easy but not smart, with vectors representing the dynamical states of
interest being almost orthogonal to any such random basis.
Suppose your state space M is a real 10 247-dimensional vector space, and you pick from
it two vectors x1, x2 ∈ M at random. What is the angle between them likely to be?
In the literature you might run into this question, formulated as the ‘cosine similarity’

cos(θ12) =
x1

⊤ · x2

|x1 | |x2 |
. (7.8)

Two vectors with the same orientation have a cosine similarity of 1, two vectors at 90o

have a similarity of 0, and two vectors diametrically opposed have a similarity of -1. By
asking for ‘angle between two vectors’ we have implicitly assumed that there exist is a
dot product

x1
⊤ · x2 = |x1 | |x2 | cos(θ12) ,

so let’s make these vectors unit vectors, |xj | = 1 . When you think about it, you would
be hard put to say what ‘uniform probability’ would mean for a vector x ∈ M = R10 247,
but for a unit vector it is obvious: probability that x direction lies within a solid angle dΩ
is dΩ/(unit hyper-sphere surface).
So what is the surface of the unit sphere (or, the total solid angle) in d dimensions? One
way to compute it is to evaluate the Gaussian integral

Id =

∫ ∞

−∞
dx1 · · · dxd e

− 1
2 (x

2
1+···+x2

d) (7.9)

in cartesian and polar coordinates. Show that

(a) In cartesian coordinates Id = (2π)d/2 .

(b) Show, by examining the form of the integrand in the polar coordinates, that for an
arbitrary, even complex dimension d ∈ C

Sd−1 = 2πd/2/Γ(d/2) . (7.10)

In QFT, or Quantum Field Theory, integrals over 4-momenta are brought to polar
form and evaluated as functions of a complex dimension parameter d. This proce-
dure is called the ‘dimensional regularization’.

(c) Recast the integrals in polar coordinate form. You know how to compute this inte-
gral in 2 and 3 dimensions. Show by induction that the surface Sd−1 of unit d-ball,
or the total solid angle in even and odd dimensions is given by

S2k =
2(2π)k

(2k − 1)!!
, S2k+1 =

2πk+1

k!
. (7.11)

However irritating to Data Scientists (these are just the Gamma function (7.10)
written out as factorials), the distinction between even and odd dimensions is not
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silly - in Cartan’s classification of all compact Lie groups, special orhtogonal groups
SO(2k) and SO(2k+1) belong to two distinct infinite families of special orthogonal
symmetry groups, with implications for physics in 2, 3 and 4 dimensions. For
example, by the hairy ball theorem, there can be no non-vanishing continuous
tangent vector field on even-dimensional d-spheres; you cannot smoothly comb
hair on a 3-dimensional ball.

(d) Check your formula for d = 2 (1-sphere, or the circle) and d = 3 (2-sphere, or the
sphere).

(e) What limit does Sd does tend to for large d? (Hint: it’s not what you think. Try
Sterling’s formula).

So now that we know the volume of a sphere, what is a the most likely angle between two
vectors x1, x2 picked at random? We can rotate coordinates so that x1 is aligned with the
‘z-axis’ of the hypersphere. An angle θ then defines a meridian around the ‘z-axis’.

(f) Show that probability P (θ)dθ of finding two vectors at angle θ is given by the area
of the meridional strip of width dθ, and derive the formula for it:

P (θ) =
1√
π

Γ(d/2)

Γ((d− 1)/2)
.

(One can write analytic expression for this in terms of beta functions, but it is un-
necessary for the problem at hand).

(g) Show that for large d the probability P (θ) tends to a normal distribution with mean
θ = π/2 and variance 1/d.

So, in d-dimensional vector space the two random vectors are nearly orthogonal, within
accuracy of θ = π/2± 1/d.
Null distribution: For data which can be negative as well as positive, the null distribution
for cosine similarity is the distribution of the dot product of two independent random unit
vectors. This distribution has a mean of zero and a variance of 1/d (where d is the number
of dimensions), and although the distribution is bounded between -1 and +1, as d grows
large the distribution is increasingly well-approximated by the normal distribution.

In high dimensions any two vectors are (nearly) orthogonal - If I am 2 meters tall,
how tall does a graduate student look to me, if grad students are randomly dis-
tributed in a million directions?

If you are a humble plumber simulating turbulence, and trying to visualize its state space
and the notion of a vector space is some abstract hocus-pocus to you, try thinking this
way. Your 2nd Fourier mode basis vector is something that wiggles twice along your
computation domain. Your turbulent state is very wiggly. The product of the two func-
tions integrated over the computational domain will average to zero, with a small leftover.
We have just estimated that with dumb choices of coordinate bases this leftover will be of
order of 1/10 247, which is embarrassingly small for displaying a phenomenon of order
≈ 1.
Several intelligent choices of coordinates for state space projections are described in
ChaosBook section 2.4, the web tutorial ChaosBook.org/tutorials, and Gibson et al. [10].

Sara A. Solla and P. Cvitanović

http://www.newscientist.com/blogs/nstv/2011/12/one-minute-math-why-you-cant-comb-a-hairy-ball.html
http://YouTube.com/embed/e2nJeuL3M94 
http://ChaosBook.org/chapters/ChaosBook.pdf#section.2.4
http://ChaosBook.org/tutorials
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7.2. Airy function for large arguments. Important contributions as stationary phase
points may arise from extremal points where the first non-zero term in a Taylor expansion
of the phase is of third or higher order. Such situations occur, for example, at bifurcation
points or in diffraction effects, such as waves near sharp corners, waves creeping around
obstacles, etc.. In such calculations, one meets Airy functions integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞
dy ei(xy−

y3

3
) . (7.12)

Calculate the Airy function Ai(x) using the stationary phase approximation. What hap-
pens when considering the limit x → 0? Estimate for which value of x the stationary
phase approximation breaks down.
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Chapter 7 solutions: Method of steepest descent
Solution 7.1 - In high dimensions any two vectors are (nearly) orthogonal.

(a) The d Gaussian integrals are independent and identical; compute one, raise it to
power d.

(b) There are two ways of writing the volume element dV . One of them is dx1....dxd,
as in (7.9). The other way is to note that as in polar coordinates

Id =

∫
dΩd

∫ ∞

0

drd−1e−
1
2
r2

the integrand depends only on r2, we can construct volume elements for which r
is constant, by considering the volume between two surfaces: one being the outer
shell of a sphere of radius r, and the next one being the outer shell of a sphere
of radius r + dr. What is the volume of the space between these two spheres? It
is the surface Sd−1 of the shell that bounds the sphere of radius r times dr (the
convention is that the surface of 3-dimensionalunit ball is the 2-dimensional, and
denoted S2). So: dV = Sd−1dr. What is Sd−1? By definition, the solid angle
Ωd = Sd−1/r

d−1. Thus, Sd−1 = Ωdr
d−1, and dV = Ωdr

d−1dr. With substitution
x = r2/2, the integral then becomes

Id = Ωd

∫ ∞

0

dr rd−1e−r2/2 = Ωd 2
d/2−1

∫ ∞

0

dxxd/2−1e−x = Ωd 2
d/2−1Γ(d/2) .

Equating the two expressions for Id:

(2π)d/2 = Ωd2
d/2−1 Γ(d/2) .

So the surface of the d-dimensional unit sphere, or the total solid angle for arbi-
trary, perhaps even complex dimension d ∈ C is

Sd−1 = 2πd/2/Γ(d/2) .

This derivation is much simpler than the double factorials (7.11), and having two
expressions, one for even d, one for odd d. The only tricky part, conceptually, is
recognizing that Ωd = Sd−1/r

d−1. But this is the very definition of a solid angle.

(c) You can Google for volumes of spheres. The point of this exercise is to illustrate
how much more elegant the solution is if you do not think of dimension as an
integer, as in part (b).

(d) Surface of the unit 1-sphere, i.e., perimeter of the unit circle is S1 = 2π . Surface
of the unit 2-sphere, i.e., surface of the unit 3-ball is S2 = 4π .

(e) The largest Sd turns out to be d = 7; for d larger than that, Sd tends to zero. For
an explanation, see, for example, Haber’s notes.

(f) As

Sd =

∫ π

0

Sd−1(sin θ)
d−1dθ , (7.13)

the probability P (θ) dθ of finding two vectors at an angle θ is

P (θ) dθ =
Sd−1

Sd
(sin θ)d−1dθ (7.14)

http://scipp.ucsc.edu/~haber/ph116A/volume_11.pdf
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Using the result from part (c),

P (θ) dθ =
(2π)

d−1
2

Γ( d−1
2

)

Γ( d
2
)

(2π)
d
2

(sin θ)d−2dθ

=
1√
π

Γ( d
2
)

Γ( d−1
2

)
(sin θ)d−2dθ (7.15)

In high dimensions sin θ → 1 (equivalently, cos θ → 0) and

P (θ) ≈ 1√
π

Γ( d
2
)

Γ( d−1
2

)
(7.16)

when d ≫ 1.

(g) Using the result from part (f),

P (θ) =
1√
π

Γ( d
2
)

Γ( d−1
2

)
(sin θ)d−2

For simplicity, we make a change of coordinates: θ′ ≡ θ − π/2 so that sin θ →
cos θ′. Then,

P (θ′) =
1√
π

Γ( d
2
)

Γ( d−1
2

)
(cos θ′)n (7.17)

where n ≡ d−2. Taylor expanding the cosine and considering the large dimension
limit n → ∞,

(cos θ′)n →
(
1− θ′2

2

)n

(7.18)

Recalling the binomial theorem,

(1 + x)n =

n∑
j=0

(
n

j

)
xj =

n∑
j=0

n!

j! (n− j)!
xj (7.19)

The cosine term can then be written as

(cos θ′)n →
n∑

j=0

n!

j! (n− j)!

(
−θ′2

2

)j

≈
n∑

j=0

nj

j!

(
−θ′2

2

)j

=

n∑
j=0

1

j!

(
−n

2
θ′2
)j

= exp (−n

2
θ′2) (7.20)

in the limit of large n.Thus, the probability is nearly Gaussian with mean µ = π/2
and the variance σ2 = 1/n = 1/(d− 2) ≈ 1/d, standard deviation ≈

√
d.

Sara A. Solla, Kimberly Y. Short, and P. Cvitanović

Solution 7.1 - In high dimensions any two vectors are (nearly) orthogonal.
(a) The exponential exp(− 1

2
(x2

1 + x2
2 + · · ·+ x2

d)) is a product of the exponentials of
independent coordinates:

∏d
n=1 exp(−x2

n/2). Gaussian integral we know how to
do:

d∏
n=1

∫ ∞

−∞
e−

1
2
x2
n dxn =

d∏
n=1

√
2π = (2π)

d
2
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(c) In polar coordinates, r2 = x2
1+· · ·x2

d. The integral is now
∫∞
0

∫max

min
e−

1
2
r2rd−1 dΩd−1 dr,

where Ω is the solid angle. The integral of dΩd−1 yields the surface area = Sd−1,
so ∫ max

min

dΩd−1

∫ ∞

0

e−
1
2
r2rd−1 dr = Sd−1

∫ ∞

0

e−
1
2
r2rd−1 dr = (2π)

d
2 . (7.21)

For the familiar 2- and 3-dimensional sphere, the surface area is 2π and 4π,
respectively:

S1

∫ ∞

0

e−
1
2
r2r dr = 2π ⇒

∫ ∞

0

e−
1
2
r2r dr = 1

S2

∫ ∞

0

e−
1
2
r2r2 dr = (2π)

3
2 ⇒

∫ ∞

0

e−
1
2
r2r2 dr =

√
2/π . (7.22)

In higher dimensions

Sd=even = 2(π)
d
2 /(d/2− 1)!

Sd=odd = 2
d
2
+ 1

2 (π)
d
2
− 1

2 /(d− 2)!!. (7.23)

Substituting d = 2k for even and d = 2k + 1 for odd:

S2k−1 = 2πk/(k − 1)!

S2k = 2(2π)k/(2k − 1)!!. (7.24)

(b) From (7.21):

Sd−1 =
(2π)

d
2∫∞

0
e−r2/2rd−1 dr

. (7.25)

Noting that
∫∞
0

e−
1
2
r2rd−1 dr can be rewritten as a gamma function by substitut-

ing 1
2
r2 for t:∫ ∞

0

e−
1
2
r2rd−1 dr =

∫ ∞

0

e−t
√
2t

d
dt = 2

d
2

∫ ∞

0

e−tt
d
2 dt

= 2
d
2
−1

∫ ∞

0

e−tt
d
2
−1 dt = 2

d
2
−1Γ(d/2) ,

and substituting back into (7.25) we get:

Sd−1 = 2π
d
2 /Γ(d/2) . (7.26)

(d) For d = 2: S1 = 2π/1 = 2π, and for d = 3: S2 = 2π
2
2 /

√
π/2 = 4π.

(e) (bonus) The Sterling’s formula says that Γ(x) ≈
√
2π xx−1/2e−x. Applied to (7.26),

it yields:

Sd→∞ =
2π

d
2

√
2π d

2

d
2
− 1

2 e−
d
2

=

√
2π

d
2
− 1

2

e−
d
2

d
2

d
2
− 1

2

=
√
2e

d
2

(
2π

d

) d
2
− 1

2

????? (7.27)

See the other solution.
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(f) See the other solution.

(g) See the other solution.

Arthur Lin

Solution 7.2 - Airy function for large arguments. We start with the integral form of
the Airy function:

Ai(x) =
1

2π

∫ ∞

−∞
ei(xy+y3/3) dy .

Rewrite the Airy function as a contour integral

Ai(x) =
1

2πi

∫
C

e(xt−t3/3) dt,

where t = iy is our new parameter, thus our contour goes from −i∞ to i∞. Apply the
steepest decent method by first finding the derivatives of f(t):

f(t) = tx− t3/3

f ′(t) = x− t2

f ′′(t) = −2t (7.28)

From the first derivative we find that the saddle points ts are at ±
√
x, which means that

we have to treat two cases separately. If x > 0, ts is real and if x < 0, ts is purely
imaginary.

(i) If x > 0: our contour would only pass through one saddle point, which we choose
to be ts = −

√
x, since going from −i∞ to i∞ naturally passes through −

√
x at

steepest decent. Then, our values of f(ts) and its derivatives at f(ts) are:

f(ts) = −x
3
2 + x

3
2 /3 = −2

3
x

3
2

f ′(ts) = 0

f ′′(ts) = 2x
1
2

f ′′′(ts) = −2 (7.29)

After a change of variable (t = x− 1
2 + ix− 1

4 τ ), the Taylor expansion of f(t) is
− 2

3
x

3
2 − τ2 − i

3
x− 3

4 τ3. We then separate terms of the exponent of f(t) and
Taylor expand the last term (under the condition that x− 3

4 is small or x is large):

Ai(x) =
1

2πi

∫ ∞

−∞
e(−

2
3
x

3
2 )e−τ2

e(−
i
3
x
− 3

4 τ3)ix− 1
4 dτ

=
e(−

2
3
x

3
2 )

2πx
1
4

∫ ∞

−∞
e−τ2

(1− i

3
x− 3

4 τ3 − 1

18
x− 3

2 τ6 + · · · ) dτ

All the odd terms in the Taylor expansion equal zero, and the integral becomes:

Ai(x > 0) =
e(−

2
3
x

3
2 )

2π
1
2 x

1
4

(1− 5

48
x− 3

2 + · · · )
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(ii) If x < 0: ts = ±
√
x = ±i

√
−x. The values of f(ts) and its derivatives at f(ts) are:

f(ts) = ±i
2

3
(−x)

3
2

f ′(ts) = 0

f ′′(ts) = ∓2i(−x)
1
2

f ′′′(ts) = −2 (7.30)

The Taylor expansion is now

f(x) = ±i
2

3
(−x)

3
2 ∓ 2i(−x)

1
2 (t∓ i

√
−x)2 − 2(t∓ i

√
−x)3 .

Following the same steps as the case x > 0, we arrive at the first order result:

Ai(x < 0)ts± =
e±i 2

3
(−x)

3
2

2π
√

±i
√
−x

∫
C

e−t2 dt =
e±i 2

3
(−x)

3
2

2
√
π
√

±i
√
−x

,

for each saddle point. The final value of the integral is the sum of the two saddle
points:

Ai(x < 0) =
ei

2
3
(−x)

3
2

2
√
π
√

i
√
−x

+
e−i 2

3
(−x)

3
2

2
√
π
√

−i
√
−x

=
sin( 2

3
(−x)

3
2 + π

4
)

√
π(−x)

1
4

.

Conclusion: As we can see from the derivation, our approximation depends on
|x| → ∞, and if x = 0 we get the value of ∞ for the integrals.

Arthur Lin



mathematical methods - week 8

Discrete Fourier representation

Georgia Tech PHYS-6124
Homework HW #8 due Thursday, October 15, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 8.1 Laplacian is a non-local operator 4 points
Exercise 8.2 Lattice Laplacian diagonalized 8 points

Total of 12 points = 100 % score.

edited October 13, 2020

95

http://ChaosBook.org/course2/exerWeek8.tex
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Week 8 syllabus Tuesday, October 5, 2020

Discretization of continuum, lattices, discrete derivatives, discrete Fourier representa-
tions.

The fastest way to watch any week’s lecture videos is by letting YouTube run
the course playlist.

Symmetry is your friend - overview. The power of thinking.

Applied math version: how to discretize derivatives:
ChaosBook Appendix A24 Deterministic diffusion
Sects. A24.1 to A24.1.1 Lattice Laplacian.

Lattice discretization, lattice state

Lattice derivative

Shift operator: the generator of discrete translations

Discussion: Shift matrix must have the periodic b.c.; Derivative being non-
local is easiest to grasp on discrete lattice. It’s so easy to make errors in
the continuum formulation.

Derivative is a linear operator

Lattice Laplacian

Derivative is a non-local operator

Discussion: Lattice discretization; What if geometry is not flat in all di-
rections, but spherical? What about General Relativity? Life’s persistent
questions, skated around.

Discussion: What is a derivative? Hypercubic lattice is a graph, with nodes
connected by links. Every graph has a notion of derivative associated with
it; in particular a Laplacian. I was not allowed to say "Laplacian" here, as
I have not gotten to defining it in my lecture at that point...

A periodic lattice as the simplest example of the theory of finite groups:
ChaosBook Sects. A24.1.2 to A24.3.1.
ChaosBook Example A24.2 Projection operators for discrete Fourier represen-
tation.
ChaosBook Example A24.3 ‘Configuration-momentum’ Fourier space duality.

Have symmetry? Use it!

Rant: Symmetrize you must. Karl Schwarzschild found his exact solution
in 1915, a month after the publication of Einstein’s theory of general rela-
tivity, while serving on a World War I front.

http://YouTube.com/watch?v=PHmRXocHKUk&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=57
http://YouTube.com/embed/ CZJfI1Lnp30
http://ChaosBook.org/chapters/ChaosBook.pdf#appendix.X
http://YouTube.com/embed/PHmRXocHKUk 
http://YouTube.com/embed/B2Jtjj7Zv1U 
http://YouTube.com/embed/Sl0TUzXnSfU 
http://YouTube.com/embed/n6uwWwhkZZk
http://YouTube.com/embed/7uoygUVReDA 
http://YouTube.com/embed/IAS0u8bTJsA 
http://YouTube.com/embed/ovLs-ZOCVoQ 
http://YouTube.com/embed/T0iJ3xM7-Nc 
http://YouTube.com/embed/8D_JZhNIilc 
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.1
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.6
http://YouTube.com/embed/PAjNpOIzK4g 
http://YouTube.com/embed/qrvvOUXgaKE
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Have symmetry? Go to "eigen"subspace! Fourier decomposition of a 2-sites
periodic lattice.

Periodic lattices

Fourier eigenvalues

Discrete Fourier representation

Laplacian in Fourier representation

Propagator in Fourier representation

A meta truth; We live in The Matrix; Fourier transformation is just a matrix

Optional reading

A theoretical physicist’s version of the above notes: Quantum Field Theory - a
cyclist tour, Chapter 1 Lattice field theory motivates discrete Fourier represen-
tations by computing a free propagator on a lattice.

Quantum Mechanics in a box: Sometimes it is simplest to impose the periodic
b.c. on a localized solution, than relax it towards the correct (infinite extent)
continuum solution.

Rocket science needs complex numbers; Why Fourier? Digital image process-
ing!

http://YouTube.com/embed/_Uiv2iH1lGw 
http://YouTube.com/embed/VbiSMUcTWe8 
http://YouTube.com/embed/ZtR81kaxblo 
http://YouTube.com/embed/81eVPiIU8o8 
http://YouTube.com/embed/ZGufG2x0ViA 
http://YouTube.com/embed/4sPILoJqHR0 
http://YouTube.com/embed/flCYpJJ6w4Q
http://ChaosBook.org/FieldTheory/QMlectures/lectQM.pdf#chapter.1
http://YouTube.com/embed/Gt4gCTvZsz0 
http://YouTube.com/embed/Keijpom4LX0
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Exercises
8.1. Laplacian is a non-local operator.

While the Laplacian is a simple tri-diagonal difference operator, its inverse (the “free”
propagator of statistical mechanics and quantum field theory) is a messier object. A way
to compute is to start expanding propagator as a power series in the Laplacian

1

m21−∆
=

1

m2

∞∑
n=0

1

m2n
∆n . (8.1)

As ∆ is a finite matrix, the expansion is convergent for sufficiently large m2. To get a
feeling for what is involved in evaluating such series, show that ∆2 is:

∆2 =
1

a4



6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6


. (8.2)

What ∆3, ∆4, · · · contributions look like is now clear; as we include higher and higher
powers of the Laplacian, the propagator matrix fills up; while the inverse propagator
is differential operator connecting only the nearest neighbors, the propagator is integral
operator, connecting every lattice site to any other lattice site.
This matrix can be evaluated as is, on the lattice, and sometime it is evaluated this way,
but in case at hand a wonderful simplification follows from the observation that the lattice
action is translationally invariant, exercise 8.2.

8.2. Lattice Laplacian diagonalized. Insert the identity
∑

P (k) = 1 wherever you
profitably can, and use the shift matrix eigenvalue equation to convert shift σ matrices
into scalars. If M commutes with σ, then (φ†

k · M · φk′) = M̃ (k)δkk′ , and the matrix
M acts as a multiplication by the scalar M̃ (k) on the kth subspace. Show that for the
1-dimensional lattice, the projection on the kth subspace is

(φ†
k ·∆ · φk′) =

2

a2

(
cos

(
2π

N
k

)
− 1

)
δkk′ . (8.3)

In the kth subspace the propagator is simply a number, and, in contrast to the mess gen-
erated by (8.1), there is nothing to evaluating it:

φ†
k · 1

m21−∆
· φk′ =

δkk′

m2 − 2
(ma)2

(cos 2πk/N − 1)
, (8.4)

where k is a site in the N -dimensional dual lattice, and a = L/N is the lattice spacing.
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Chapter 8 solutions: Discrete Fourier representation
Solution 8.1 - Laplacian is a non-local operator.
See Chapter 1 of http://ChaosBook.org/FieldTheory/QMlectures/lectQM.pdf

Solution 8.2 - Lattice Laplacian diagonalized.
See Chapter 1 of http://ChaosBook.org/FieldTheory/QMlectures/lectQM.pdf





mathematical methods - week 9

Fourier transform

Georgia Tech PHYS-6124
Homework HW #9 due Thursday, October 22, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 9.2 d-dimensional Gaussian integrals 5 points
Exercise 9.3 Convolution of Gaussians 5 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited November 2, 2020
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http://ChaosBook.org/course2/exerWeek9.tex
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Week 9 syllabus Tuesday, October 13, 2020

There is only one thing which interests me vitally now, and that
is the recording of all that which is omitted in books. Nobody,
as far as I can see, is making use of those elements in the air
which give direction and motivation to our lives.

— Henry Miller, Tropic of Cancer

This week’s lectures are related to AWH Chapter 19 Fourier Series (click here), but
I prefer Stone and Goldbart [3] (click here) Appendix B exposition, which I follow
closely in the online recorded lectures.

The fastest way to watch any week’s lecture videos is by letting YouTube run
the course playlist.

ChaosBook Sect. A24.4 Continuum field theory: Fourier transform as the limit
of a discrete Fourier transform.

Propagator in continuum limit

Stone and Goldbart (click here) Appendix B.1 Fourier Series

Fourier representation, circular Kronecker delta, take #2

Fourier series

Circular Dirac delta function

Stone and Goldbart (click here) Appendix B.2 Fourier integral transforms

Fourier integral transform

Persival identity

Fourier transform of a Gaussian

◦ Exercise 9.3 Convolution of Gaussians

Convolution of Gaussians

Covariance evolution

Cigar is sometimes just a cigar
◦ sect. 9.2 A bit of noise.

Noise : seminars and papers

The fearful power of symmetry - translational invariance

◦ example 9.1 Circulant matrices.

◦ example 9.2 Convolution theorem for matrices.

Optional reading

Rant: Introductory physics is the greatest con ever. Or, Brush up your
Gaussians, And they’ll all kow-tow

http://ChaosBook.org/library/ArWeHa13chap19.pdf
http://ChaosBook.org/library/StGoAppB.pdf
http://YouTube.com/watch?v=EjRrjE71dQo&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=77
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.4
http://YouTube.com/embed/EjRrjE71dQo
http://ChaosBook.org/library/StGoAppB.pdf
http://YouTube.com/embed/xmMWaybsOyQ
http://YouTube.com/embed/M6mW_yO_kGw
http://YouTube.com/embed/R6YnKEogfUc
http://ChaosBook.org/library/StGoAppB.pdf
http://YouTube.com/embed/841DAt79r9g
http://YouTube.com/embed/EkA6DYU4E7k
http://YouTube.com/embed/cOIH0U6n8Ds
http://YouTube.com/embed/i7RqJMt1jHc
http://YouTube.com/embed/KN8zhrJeGg4
http://ChaosBook.org/course2/videos/week9/cigar.pdf
http://ChaosBook.org/overheads/noise/index.html
http://YouTube.com/embed/rHdKmMSbhI8
http://YouTube.com/embed/m4D78sm2mXI
http://YouTube.com/embed/XJIpp2Jj8AQ
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Discussion: Verbotten! We will not prove Reimann Hypothesis, nor will we ex-
plain Wiles proof of Fermat Conjecture in this course. No other course offers
intuition. You do not know how lucky you are, boy. You could be back in US
back in US back in USSR. As a rule, I do not approve of abuse of children, but
Prof. Z is for your own good. Learning from your mistakes is the only way to
learn. Countable infinity of professorial opinions. Getting a beating from a class
in uprising.

Farazmand notes on Fourier transforms.

Grigoriev notes
4. Integral transforms, 4.3-4.4 square wave, Gibbs phenomenon;
5. Fourier transform: 5.1-5.6 inverse, Parseval’s identity, ..., examples

Roger Penrose [2] (click here) chapter on Fourier transforms is sophisticated, but
too pretty to pass up.

Alex Kontorovich, on the history of Fourier series: As often happens in mathe-
matics, Fourier was trying to do something completely unrelated when he stum-
bled on Fourier series. What was it? He was studying the propagation of heat in
a uniform medium.

Bernard Maurey, Fourier, One Man, Several Lives (2019).

Question 9.1. Henriette Roux asks
Q You usually explain operations by finite-matrix examples, but in exercise 9.3 you asked us
to show that the Fourier transform of the convolution corresponds to the product of the Fourier
transforms only for continuum integrals. The exercise gives me no intuition for what a convolu-
tion is.
A “Convolution” is a matrix multiplication for translationally invariant matrix operators. For
what that is for discrete Fourier transforms, and what is a “convolution theorem” for matrices,
see example 9.2 and The fearful power of symmetry - translational invariance.

9.1 Examples
Example 9.1. Circulant matrices. An [L×L] circulant matrix

C =



c0 cL−1 . . . c2 c1
c1 c0 cL−1 c2
... c1 c0

. . .
...

cL−2

. . .
. . . cL−1

cL−1 cL−2 . . . c1 c0

 , (9.1)

has eigenvectors (discrete Fourier modes) and eigenvalues Cvk = λkvk

vk =
1√
L
(1, ωk, ω2k, . . . , ωk(L−1))T , k = 0, 1, . . . , L − 1

λk = c0 + cL−1ω
k + cL−2ω

2k + . . .+ c1ω
k(L−1) , (9.2)

http://YouTube.com/embed/Nno0nOHdhMI
http://ChaosBook.org/course2/FourierLectFaraz.pdf
http://ChaosBook.org/course2/ln4.pdf
http://ChaosBook.org/course2/ln5.pdf
http://ChaosBook.org/library/Penr04-9.pdf
https://sites.math.rutgers.edu/~alexk
https://threadreaderapp.com/thread/1171519369089667072.html
https://www.ems-ph.org/journals/newsletter/pdf/2019-09-113.pdf#page=10
http://YouTube.com/embed/rHdKmMSbhI8
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where
ω = e2πi/L (9.3)

is a root of unity. The familiar examples are the one-lattice site shift matrix (c1 = 1, all
other ck = 0), and the lattice Laplacian □.

Example 9.2. Convolution theorem for matrices. Translation-invariant matrices
can only depend on differences of lattice positions,

Cij = Ci−j,0 (9.4)

All content of a translation-invariant matrix is thus in its first row Cn0, all other rows are
its cyclic translations, so translation-invariant matrices are always of the circulant form
(9.1). A product of two translation-invariant matrices can be written as

Aim =
∑
j

BijCjm ⇒ Ai−m,0 =
∑
j

Bi−j,0 Cj−m,0 ,

i.e., in the “convolution” form

An0 = (BC)n0 =
∑
ℓ

Bn−ℓ,0 Cℓ0 (9.5)

which only uses a single row of each matrix; N operations, rather than the matrix multi-
plication N2 operations for each of the N components An0.

A circulant matrix is constructed from powers of the shift matrix, so it is diagonalized
by the discrete Fourier transform, i.e., unitary matrix U . In the Fourier representation,
the convolution is thus simply a product of kth Fourier components (no sum over k):

UAU† = UBU†UCU† → Ãkk = B̃kkC̃kk . (9.6)

That requires only 1 multiplication for each of the N components An0.

9.2 A bit of noise
Fourier invented Fourier transforms to describe the diffusion of heat. How does that
come about?

Consider a noisy discrete time trajectory

xn+1 = xn + ξn , x0 = 0 , (9.7)

where xn is a d-dimensional state vector at time n, xn,j is its jth component, and ξn
is a noisy kick at time n, with the prescribed probability distribution of zero mean and
the covariance matrix (diffusion tensor) ∆,

⟨ξn,j⟩ = 0 , ⟨ξn,i ξTm,j⟩ = ∆ij δnm , (9.8)

where ⟨· · ·⟩ stands for average over many realizations of the noise. Each ‘Langevin’
trajectory (x0, x1, x2, · · · ) is an example of a Brownian motion, or diffusion.
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In the Fokker-Planck description individual noisy trajectories (9.7) are replaced by
the evolution of a density of noisy trajectories, with the action of discrete one-time step
Fokker-Planck operator on the density distribution ρ at time n,

ρn+1(y) = [Lρn](y) =

∫
dxL(y, x) ρn(x) , (9.9)

given by a normalized Gaussian (work through exercise 9.2)

L(y, x) = 1

N
e−

1
2 (y−x)T 1

∆ (y−x) , N = (2π)d/2
√

det (∆) , (9.10)

which smears out the initial density ρn diffusively by noise of covariance (9.8). The
covariance ∆ is a symmetric [d×d] matrix which can be diagonalized by an orthogonal
transformation, and rotated into an ellipsoid with d orthogonal axes, of different widths
(covariances) along each axis. You can visualise the Fokker-Planck operator (9.9) as
taking a δ-function concentrated initial distribution centered on x = 0, and smearing it
into a cigar shaped noise cloud.

As L(y, x) = L(y − x), the Fokker-Planck operator acts on the initial distribution
as a convolution,

[Lρn](y) = [L ∗ ρn](y) =

∫
dxL(y − x) ρn(x)

Consider the action of the Fokker-Planck operator on a normalized, cigar-shaped
Gaussian density distribution

ρn(x) =
1

Nn
e−

1
2x

T 1
∆n

x , Nn = (2π)d/2
√

det (∆n) . (9.11)

That is also a cigar, but in general of a different shape and orientation than the Fokker-
Planck operator (9.10). As you can check by working out exercise 9.3, a convolution
of a Gaussian with a Gaussian is again a Gaussian, so the Fokker-Planck operator maps
the Gaussian ρn(xn) into the Gaussian

ρn+1(x) =
1

Nn+1
e−

1
2x

T 1
∆n+∆ x , Nn+1 = (2π)d/2

√
det (∆n +∆) (9.12)

one time step later.
In other words, covariances ∆n add up. This is the d-dimensional statement of the

familiar fact that cumulative error squared is the sum of squares of individual errors.
When individual errors are small, and you are adding up a sequence of them in time,
you get Brownian motion. If the individual errors are small and added independently
to a solution of deterministic equations (so-called ‘drift’), you get the Langevin and the
Fokker-Planck equations.
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Exercises
9.1. Who ordered

√
π ? Derive the Gaussian integral

1√
2π

∫ ∞

−∞
dx e−

x2

2a =
√
a , a > 0 .

assuming only that you know to integrate the exponential function e−x. Hint, hint: x2 is
a radius-squared of something. π is related to the area or circumference of something.

9.2. d-dimensional Gaussian integrals. Show that the Gaussian integral in d-dimensions
is given by

Z[J ] =

∫
ddx e−

1
2
x⊤·M−1·x+x⊤·J

= (2π)d/2|detM |
1
2 e

1
2
J⊤·M·J , (9.13)

where M is a real positive definite [d × d] matrix, i.e., a matrix with strictly positive
eigenvalues, x and J are d-dimensional vectors, and (· · · )⊤ denotes the transpose.
This integral you will see over and over in statistical mechanics and quantum field the-
ory: it’s called ‘free field theory’, ‘Gaussian model’, ‘Wick expansion’, etc.. This is the
starting, ‘propagator’ term in any perturbation expansion.
Here we require that the real symmetric matrix M in the exponent is strictly positive def-
inite, otherwise the integral is infinite. Negative eigenvalues can be accommodated by
taking a contour in the complex plane [1], see exercise 6.3 Fresnel integral. Zero eigen-
values require stationary phase approximations that go beyond the Gaussian saddle point
approximation, typically to the Airy-function type stationary points, see exercise 7.2 Airy
function for large arguments.

9.3. Convolution of Gaussians.
(a) Show that the Fourier transform of the convolution

[f ∗ g](x) =
∫

ddy f(x− y)g(y)

corresponds to the product of the Fourier transforms

[f ∗ g](x) = 1

(2π)d

∫
ddk F (k)G(k)e+ik·x , (9.14)

where

F (k) =

∫
ddx

(2π)d/2
f(x) e−ik·x , G(k) =

∫
ddx

(2π)d/2
g(x) e−ik·x .

(b) Consider two normalized Gaussians

f(x) =
1

N1
e
− 1

2
x⊤· 1

∆1
·x
, N1 =

√
det (2π∆1)

g(x) =
1

N2
e
− 1

2
x⊤· 1

∆2
·x
, N2 =

√
det (2π∆2)

1 =

∫
ddk f(x) =

∫
ddk g(x) .
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Evaluate their Fourier transforms

F (k) =
1

(2π)d/2
e

1
2
k⊤·∆1·k , G(k) =

1

(2π)d/2
e

1
2
k⊤·∆2·k .

Show that the convolution of two normalized Gaussians is a normalized Gaussian

[f ∗ g](x) =
(2π)−d/2√

det (∆1 +∆2)
e
− 1

2
x⊤· 1

∆1+∆2
·x
.

In other words, covariances ∆j add up. This is the d-dimenional statement of the famil-
iar fact that cumulative error squared is the sum of squares of individual errors. When
individual errors are small, and you are adding up a sequence of them in time, you get
Brownian motion. If the individual errors are small and added independently to a solution
of a deterministic equation, you get Langevin and Fokker-Planck equations.



EXERCISES 109

Chapter 9 solutions: Fourier transform
Solution 9.1 - Who ordered

√
π ? No solution available.

Solution 9.2 - d-dimensional Gaussian integrals. Make a change of variables y =
Ax such that ATM−1A = Id. Then

I =
1

(2π)d/2

∫
dyd exp[−1

2

∑
i

(y2
i − 2(JA)iyi)]|detA|

Complete each term under in the sum in the exponent to a full square

y2
i − 2(JA)iyi = (yi − (JA)i)

2 − (JA)2i

and shift the origin of integration to JA/2, so that

I =
1

(2π)d/2
exp(

1

2
JTAATJ)|detA|

∫
dyd exp[−1

2

∑
i

y2
i ] .

Note that AATM−1AAT = AAT , therefore AAT = M and |detA| =
√

detM . The
remaining integral is equal to a Gaussian integral raised to the d-th power, i.e., (2π)d/2.
Hence:

I =
√

detM exp[
1

2
JTMJ ]

(R. Paškauskas)

Solution 9.2 - d-dimensional Gaussian integrals. We require that the matrix in the
exponent is nondegenerate (i.e. has no zero eigenvalues.) The converse may happen
when doing stationary phase approximations which requires going beyond the Gaussian
saddle point approximation, typically to the Airy-function type stationary points [1]. We
also assume that M is positive-definite, otherwise the integral is infinite.

Make a change of variables y = Ax such that ATM−1A = Id. Then

I =
1

(2π)d/2

∫
Rd

exp[−1

2

∑
i

(y2
i − 2(JA)iyi)]|detA|dy

Complete each term under in the sum in the exponent to a full square

y2
i − 2(JA)iyi = (yi − (JA)i)

2 − (JA)2i

and shift the origin of integration to JA/2, so that

I =
1

(2π)d/2
exp(

1

2
JTAATJ)|detA|

∫
Rd

exp[−1

2

∑
i

y2
i ]dy

Note that AATM−1AAT = AAT , therefore AAT = M and |detA| =
√

detM . The
remaining integral is equal to a Poisson integral raised to the d-th power, i.e. (2π)d/2.
Answer:

I =
√

detM exp[
1

2
JTMJ ]

(R. Paškauskas)

Solution 9.3 - Errors add up as sums of squares. In one dimension the Fourier
transform of f over x ∈ R is given by

F [f ](k) =
1√
2π

∫
Ω

dx f(x) e−ikx (9.15)
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and the transform of the convolution f ∗ g is

F [f ∗ g] = (2π)−d/2

∫
ddx

∫
ddyf(x− y)g(y) e−ikx

= (2π)−d/2

∫
ddx

∫
ddyf(x− y)g(y) e−ik(x−y) e−iky

= (2π)−d/2

∫
ddq e−ikqf(q)

∫
ddy e−ikyg(y)

= (2π)−d/2(2π)+d/2F (k) (2π)+d/2G(k)

F (k) and G(k) follow from (9.15):

F (k) = (2π)−d/2

∫
ddx f(x) e−ikx = (2π)−d/2

√
det (∆1) e

k†∆1k/2

⇒ F (k) =
√

det (∆1) e
k†∆1k/2 , ⇒ G(k) =

√
det (∆2) e

k†∆2k/2

Substituting F (k) and G(k) into the inverse transform of F [f ∗ g]:

f ∗ g ≡ (2π)−d/2
√

det (∆1)det (∆2)

∫
dk ek

†∆1k/2+k†∆2k/2+ikx

f ∗ g =

√
det (∆1)det (∆2)

det (∆1 +∆2)
e−x†(∆1+∆2)

−1x/2

(Chris Marcotte)



mathematical methods - week 10

Discrete symmetries

Georgia Tech PHYS-6124
Homework HW #10 due Thursday, October 29, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 10.1 1-dimensional representation of anything 1 point
Exercise 10.2 2-dimensional representation of S3 4 points
Exercise 10.3 D3: symmetries of an equilateral triangle 5 points

Bonus points
Exercise 10.4 (a), (b) and (c) Permutation of three objects 2 points
Exercise 10.5 3-dimensional representations of D3 3 points

Total of 10 points = 100 % score.

edited October 28, 2020
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Week 10 syllabus Tuesday, October 20, 2020

Tyger Tyger burning bright,
In the forests of the night:
What immortal hand or eye,
Dare frame thy fearful symmetry?

—William Blake, The Tyger

This week’s lectures are related to AWH Chapter 17 Group Theory (click here). The
fastest way to watch any week’s lecture videos is by letting YouTube run the
course playlist.

There is way too much material in this week’s notes. Watch the main sequence of
video clips, that and recommended reading should suffice to do the problems. The rest
is optional. You can glance through sect. 10.1 Group presentations, and sect. 10.3 Lit-
erature, but I do not expect you to understand this material.

Group theory and why I love 808,017,· · · ,000 is a great video on group theory
from 3Blue1Brown, writes Andrew Wu. I agree: Well worth of your time, more
motivational than my lectures. What it actually focuses on - the monster group -
is totally useless to us. My focus this week is narrow and technical:

1. theory of finite groups are a natural generalization of discrete Fourier rep-
resentations

2. it is all about class and character. “Character", in particular, I find very
surprising - one complex number suffices to characterize a matrix!

Hang in there! And relax. None of this will be on the test. As a matter of fact, there
will be no test.

• It’s all about class: Groups, permutations, D3
∼= C3v

∼= S3 symmetries of equi-
lateral triangle, rearrangement theorem, subgroups, cosets, classes.

Dresselhaus et al. [3] Chapter 1 Basic Mathematical Background: Intro-
duction (click here). The MIT course 6.734 online version contains much
of the same material.

ChaosBook Chapter 10. Flips, slides and turns

Clip 1 - discrete symmetry, an example: 3-disk pinball

Clip 2 - what is a group?

Clip 2a - discussion : permutations, symmetric group, simple groups,
Italian renaissance, French revolution, Galois

by Socratica:
a delightful introduction to group multiplication (or Cayley) tables.

Clip 3 - active, passive coordinate transformations

http://QMwNvzRKX64
http://ChaosBook.org/library/ArWeHa13chap17Group-Theory.pdf
http://YouTube.com/watch?v=3-IOimSbJV4&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=88
http://YouTube.com/embed/mH0oCDa74tE
http://ChaosBook.org/library/Dresselhaus07.pdf
http://stuff.mit.edu/afs/athena/course/6/6.734j/www/
http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.10
http://YouTube.com/embed/3-IOimSbJV4
http://YouTube.com/embed/AwqIddo0t_Y 
http://YouTube.com/embed/d7kW7uGV0D0
http://YouTube.com/embed/BwHspSCXFNM
https://www.youtube.com/playlist?list=PLi01XoE8jYoi3SgnnGorR_XOW3IcK-TP6
http://YouTube.com/embed/6YpzRNPMiAI 
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Clip 4 - following Mefisto: symmetry defined three (3) times

Clip 5 - subgroups, classes, group orbits, reduced state space

• Hard work builds character: Irreps, unitary reps, Schur’s Lemma.

Chapter 2 Representation Theory and Basic Theorems
Dresselhaus et al. [3], up to and including
Sect. 2.4 The Unitarity of Representations (click here)

Clip 6 - this requires character

Clip 7 - hard work builds character

Clip 8 - the symmetry group of a propeller

Clip 9 - irreps of C3

Clip 10 - rotation in the plane: irreps of D3

Clip 10a - Discussion : more symmetries, fewer invariant subspaces
Clip 10b - Discussion : abelian vs. nonabelian

• “Wonderful Orthogonality Theorem.”

In this course, we learn about full reducibility of finite and compact continuous
groups in two parallel ways. On one hand, I personally find the multiplicative
projection operators (1.19), coupled with the notion of class algebras (Harter [4]
(click here) appendix C) most intuitive - a block-diagonalized subspace for each
distinct eigenvalue of a given all-commuting matrix. On the other hand, the char-
acter weighted sums (here related to the multiplicative projection operators as
in ChaosBook Example A24.2 Projection operators for discrete Fourier trans-
form) offer a deceptively ‘simple’ and elegant formulation of full-reducibility
theorems, preferred by all standard textbook expositions:

Dresselhaus et al. [3] Sects. 2.5 and 2.6 Schur’s Lemma.
a first go at sect. 2.7

Clip 11 - irreps

Clip 12 - Frobenius character formula

Clip 13 - character orthogonality relations

Clip 14 - the summary: it is all about class and character

Clip 14a - discussion : class and character

Optional reading

For a deep dive into this material, here is your rabbit hole.

For deeper insights, read Roger Penrose [7] (click here).

http://YouTube.com/embed/jHHKK_T9Pg0 
http://YouTube.com/embed/Aqbs1mLnis4 
http://ChaosBook.org/library/Dresselhaus07sect2_4.pdf
http://YouTube.com/embed/qcLEygD6bvM
http://YouTube.com/embed/sYPaHIxpsJk
http://YouTube.com/embed/GQ2dwk5MgDk
http://YouTube.com/embed/bTFgKnpGas0
http://YouTube.com/embed/_nGw03fW2XU
http://YouTube.com/embed/2v87JIvcApE
http://YouTube.com/embed/tgZseakSGOc
http://ChaosBook.org/library/Harter78.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.6
http://YouTube.com/embed/yKT9DkiLfc0
http://YouTube.com/embed/r3VM1CD4obs
http://YouTube.com/embed/7Jklr-fBQEw
http://YouTube.com/embed/1Fvt8FMZSvM
http://YouTube.com/embed/FRRrRC3a8-Y
http://birdtracks.eu/courses/PHYS-7143-19/index.html
http://ChaosBook.org/library/Penr04-13.pdf
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For a typical (but for this course advanced) application see, for example, Stone
and Goldbart [10], Mathematics for Physics: A Guided Tour for Graduate Stu-
dents, Section 14.3.2 Vibrational spectrum of H2O (click here).

Harter’s Sect. 3.2 First stage of non-Abelian symmetry analysis
group multiplication table (3.1.1); class operators; class multiplication table (3.2.1b);
all-commuting or central operators;

Harter’s Sect. 3.3 Second stage of non-Abelian symmetry analysis
projection operators (3.2.15); 1-dimensional irreps (3.3.6); 2-dimensional irrep
(3.3.7); Lagrange irreps dimensionality relation (3.3.17)

An example: a 1-dimensional system with a symmetry

Fundamental domain

Tiling of state space by a finite group

Make the “fundamental tile" your hood

Symmetry-reduced dynamics

Regular representation of permuting tiles

Group theory voodoo

Tell no Lie to plumbers

Week 12 Clip 3 - Birdtracks (6 min)

◦ Sect. 10.1.1 Permutations in birdtracks

Discussion 1 - There might be many examples of it, but a ‘group’ itself is an
abstract notion. (3 min)

Discussion 2 - Fourier modes are so simple, that no one calls them irreps. But
add more symmetries, and there have to be fewer irreps. (11 min)

Discussion 3 - what are these "characters"? And why is there a Journal of Linear
Algebra, today? Inconclusive blah blah. (12 min)

Discussion 4 - Homework. (3 min)

It’s a matter of no small pride for a card-carrying dirt physics theorist to claim
full and total ignorance of group theory

ChaosBook Appendix A.6 Gruppenpest

There is no need to learn all these “Greek” words.

http://ChaosBook.org/library/StGo09.pdf
http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf
http://YouTube.com/embed/sI39jMdjxVM
http://YouTube.com/embed/0rrMJjqmh98
http://YouTube.com/embed/IBRJ_3jH41o
http://YouTube.com/embed/t5K5c0Omc0c
http://YouTube.com/embed/IwytdBvKW7M
http://YouTube.com/embed/SnBUkUqsWTU
http://YouTube.com/embed/k7Fakf51jGQ
http://YouTube.com/embed/uOkj1CaHrfA
http://YouTube.com/embed/Lzso7mNgxvY
http://YouTube.com/embed/Ymhl6S7zeJk
http://YouTube.com/embed/ILT3h_NYWxk
http://YouTube.com/embed/Tr94hW3hujY
http://YouTube.com/embed/2GQ3-Nq6ULc
http://YouTube.com/embed/CvuoY_yPZeM
http://ChaosBook.org/chapters/ChaosBook.pdf#section.A.6
http://www.theonion.com/articles/historians-admit-to-inventing-ancient-greeks,18209/
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D3 e C C2 σ(1) σ(2) σ(3)

e e C C2 σ(1) σ(2) σ(3)

C C C2 e σ(3) σ(1) σ(2)

C2 C2 e C σ(2) σ(3) σ(1)

σ(1) σ(1) σ(2) σ(3) e C C2

σ(2) σ(2) σ(3) σ(1) C2 e C
σ(3) σ(3) σ(1) σ(2) C C2 e

Table 10.1: The D3 group multiplication table.

Question 10.1. Henriette Roux asks
Q What are cosets good for?
A Apologies for glossing over their meaning in the lecture. I try to minimize group-theory
jargon, but cosets cannot be ignored.

Dresselhaus et al. [3] (click here) Chapter 1 Basic Mathematical Background: Introduction
needs them to show that the dimension of a subgroup is a divisor of the dimension of the group.
For example, C3 of dimension 3 is a subgroup of D3 of dimension 6.

In ChaosBook Chapter 10. Flips, slides and turns cosets are absolutely essential. The
significance of the coset is that if a solution has a symmetry, then the elements in a coset act on
the solution the same way, and generate all equivalent copies of this solution. Example 10.7.
Subgroups, cosets of D3 should help you understand that.

10.1 Group presentations
Group theory? It is all about class & character.

— Predrag Cvitanović, One minute elevator pitch

Group multiplication (or Cayley) tables, such as Table 10.1, define each distinct
discrete group, but they can be hard to digest. A Cayley graph, with links labeled
by generators, and the vertices corresponding to the group elements, has the same
information as the group multiplication table, but is often a more insightful presentation
of the group.

For example, the Cayley graph figure 10.1 is a clear presentation of the dihedral
group D4 of order 8,

D4 = (e, a, a2, a3, b, ba, ba2, ba3) , generators a4 = e , b2 = e . (10.1)

Quaternion group is also of order 8, but with a distinct multiplication table / Cayley
graph, see figure 10.2. For more of such, see, for example, mathoverflow Cayley graph
discussion.

Example 10.1. Projection operators for cyclic group CN .
Consider a cyclic group CN = {e, g, g2, · · · gN−1}, and let M = D(g) be a [2N×2N ]

representation of the one-step shift g. In the projection operator formulation (1.19),
the N distinct eigenvalues of M , the N th roots of unity λn = λn, λ = exp(i 2π/N),

http://ChaosBook.org/library/Dresselhaus07.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#chapter.10
https://en.wikipedia.org/wiki/Quaternion_group
https://mathoverflow.net/questions/244524/when-can-the-cayley-graph-of-the-symmetries-of-an-object-have-those-symmetries
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Figure 10.1: A Cayley graph presentation of
the dihedral group D4. The ‘root vertex’ of the
graph, marked e, is here indicated by the letter
F, the links are multiplications by two genera-
tors: a cyclic rotation by left-multiplication by
element a (directed red link), and the flip by b
(undirected blue link). The vertices are the 8
possible orientations of the transformed letter F.

Figure 10.2: A Cayley graph presentation of
the quaternion group Q8. It is also of order 8,
but distinct from D4.

n = 0, . . . N − 1, split the 2N -dimensional space into N 2-dimensional subspaces by
means of projection operators

Pn =
∏
m̸=n

M − λm I

λn − λm
=

N−1∏
m=1

λ−nM − λm I

1− λm
, (10.2)

where we have multiplied all denominators and numerators by λ−n. The numerator is
now a matrix polynomial of form (x − λ)(x − λ2) · · · (x − λN−1) , with the zeroth root
(x− λ0) = (x− 1) quotiented out from the defining matrix equation MN − 1 = 0. Using

1− xN

1− x
= 1 + x+ · · ·+ xN−1 = (x− λ)(x− λ2) · · · (x− λN−1)

we obtain the projection operator in form of a discrete Fourier sum (rather than the
product (1.19)),

Pn =
1

N

N−1∑
m=0

ei
2π
N

nm Mm .

This form of the projection operator is the simplest example of the key group theory tool,
projection operator expressed as a sum over characters,

Pn =
1

|G|
∑
g∈G

χ̄(g)D(g) .
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(B. Gutkin and P. Cvitanović)

10.1.1 Permutations in birdtracks
The text that follows is a very condensed extract of chapter 6 Permutations from Group
Theory - Birdtracks, Lie’s, and Exceptional Groups [2]. I am usually reluctant to use
birdtrack notations in front of graduate students indoctrinated by their professors in the
1890’s tensor notation, but I’m emboldened by the very enjoyable article on The new
language of mathematics by Dan Silver [9]. Your professor’s notation is as convenient
for actual calculations as -let’s say- long division using roman numerals. So leave
them wallowing in their early progressive rock of 1968, King Crimsons of their youth.
You chill to beats younger than Windows 98, to grime, to trap, to hardvapour, to
birdtracks.

In 1937 R. Brauer [1] introduced diagrammatic notation for the Kronecker δij op-
eration, in order to represent “Brauer algebra” permutations, index contractions, and
matrix multiplication diagrammatically. His equation (39)

(send index 1 to 2, 2 to 4, contract ingoing (3·4), outgoing (1·3)) is the earliest published
diagrammatic notation I know about. While in kindergarten (disclosure: we were too
poor to afford kindergarten) I sat out to revolutionize modern group theory [2]. But I
suffered a terrible setback; in early 1970’s Roger Penrose pre-invented my “birdtracks,”
or diagrammatic notation, for symmetrization operators [6], Levi-Civita tensors [8],
and “strand networks” [5]. Here is a little flavor of how one birdtracks:

We can represent the operation of permuting indices (d “billiard ball labels,” tensors
with d indices) by a matrix with indices bunched together:

σβ
α = σ

a1a2...aq

b1...bp
,dp...d1
cq...c2c1 . (10.3)

To draw this, Brauer style, it is convenient to turn his drawing on a side. For 2-index
tensors, there are two permutations:

identity: 1ab,
cd = δdaδ

c
b =

flip: σ(12)ab,
cd = δcaδ

d
b = . (10.4)

For 3-index tensors, there are six permutations:

1a1a2a3 ,
b3b2b1 = δb1a1

δb2a2
δb3a3

=

σ(12)a1a2a3
,b3b2b1 = δb2a1

δb1a2
δb3a3

=

σ(23) = , σ(13) =

σ(123) = , σ(132) = . (10.5)

http://birdtracks.eu/version9.0/GroupTheory.pdf#section.6.1
http://youtube.com/embed/Lrh8plsPhp4
https://www.youtube.com/watch?v=RqQGUJK7Na4
https://www.youtube.com/watch?v=i_kF4zLNKio
https://antifurdigital.bandcamp.com/album/hardvapour-2
https://www.youtube.com/watch?v=XMGbY1csVnI
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Here group element labels refer to the standard permutation cycles notation. There is
really no need to indicate the “time direction" by arrows, so we omit them from now
on.

The symmetric sum of all permutations,

Sa1a2...ap
,bp...b2b1 =

1

p!

{
δb1a1

δb2a2
. . . δbpap

+ δb1a2
δb2a1

. . . δbpap
+ . . .

}
S =

...

=
1

p!

{

...

+

...

+

...

+ . . .

}
, (10.6)

yields the symmetrization operator S. In birdtrack notation, a white bar drawn across
p lines [6] will always denote symmetrization of the lines crossed. A factor of 1/p! has
been introduced in order for S to satisfy the projection operator normalization

S2 = S
... = ... . (10.7)

You have already seen such “fully-symmetric representation,” in the discussion of
discrete Fourier transforms, ChaosBook Example A24.3 ‘Configuration-momentum’
Fourier space duality, but you are not likely to recognize it. There the average was not
over all permutations, but the zero-th Fourier mode ϕ̃0 was the average over only cyclic
permutations. Every finite discrete group has such fully-symmetric representation, and
in statistical mechanics and quantum mechanics this is often the most important state
(the ‘ground’ state).

A subset of indices a1, a2, . . . aq , q < p can be symmetrized by symmetrization
matrix S12...q

(S12...q)a1a2...aq...ap ,
bp...bq...b2b1 =

1

q!

{
δb1a1

δb2a2
. . . δbqaq

+ δb1a2
δb2a1

. . . δbqaq
+ . . .

}
δ
bq+1
aq+1 . . . δ

bp
ap

S12...q =

...
... ...

2
1

q . (10.8)

Overall symmetrization also symmetrizes any subset of indices:

SS12...q = S

...
......

...

... =

... ...

... ... . (10.9)

Any permutation has eigenvalue 1 on the symmetric tensor space:

σS = S

...

=

...

. (10.10)

http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.6
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Diagrammatically this means that legs can be crossed and uncrossed at will.
One can construct a projection operator onto the fully antisymmetric space in a

similar manner [2]. Other representations are trickier - that’s precisely what the theory
of finite groups is about.

10.2 It’s all about class
You might want to have a look at Harter [4] Double group theory on the half-shell
(click here). Read appendices B and C on spectral decomposition and class algebras.
Article works out some interesting examples.

See also remark 1.1 Projection operators and perhaps watch Harter’s online lecture
from Harter’s online course.

There is more detail than what we have time to cover here, but I find Harter’s
Sect. 3.3 Second stage of non-Abelian symmetry analysis particularly illuminating. It
shows how physically different (but mathematically isomorphic) higher-dimensional
irreps are constructed corresponding to different subgroup embeddings. One chooses
the irrep that corresponds to a particular sequence of physical symmetry breakings.

10.3 Literature
The exposition (or the corresponding chapter in Tinkham [11]) that we follow here
largely comes from Wigner’s classic Group Theory and Its Application to the Quantum
Mechanics of Atomic Spectra [12], which is a harder going, but the more group theory
you learn the more you’ll appreciate it. Eugene Wigner got the 1963 Nobel Prize in
Physics, so by mid 60’s gruppenpest was accepted in finer social circles.

The structure of finite groups was understood by late 19th century. A full list of
finite groups was another matter. The complete proof of the classification of all finite
groups takes about 3 000 pages, a collective 40-years undertaking by over 100 mathe-
maticians, read the wiki. Not all finite groups are as simple or easy to figure out as D3.
For example, the order of the Ree group 2F4(2)

′ is 212(26+ 1)(24− 1)(23+ 1)(2−
1)/2 = 17 971 200 .

From Emory Math Department: A pariah is real! The simple finite groups fit into
18 families, except for the 26 sporadic groups. 20 sporadic groups AKA the Happy
Family are parts of the Monster group. The remaining six loners are known as the
pariahs.

Question 10.2. Henriette Roux asks
Q What did you do this weekend?
A The same as every other weekend - prepared week’s lecture, with my helpers Avi the Little,
Edvard the Nordman, and Malbec el Argentino, under Master Roger’s watchful eye, see here.

http://ChaosBook.org/library/Harter78.pdf
https://www.youtube.com/watch?v=jLO7-Pks0QM
http://www.uark.edu/ua/modphys/markup/GTQM_TitlePage_2015.html
http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf
http://www.uark.edu/ua/modphys/markup/PSDS_UnitsForceDL.php?fname=PSDS_Ch.3_(4.22.10).pdf
https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
https://en.wikipedia.org/wiki/List_of_finite_simple_groups
http://www.concinnitasproject.org/portfolio/gallery.php?id=Bombieri_Enrico
https://cosmosmagazine.com/mathematics/moonshine-doughnut-maths-proves-pariahs-are-real
https://flic.kr/p/2hxYHTx
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Exercises
10.1. 1-dimensional representation of anything. Let D(g) be a representation of a group

G. Show that d(g) = detD(g) is one-dimensional representation of G as well.
(B. Gutkin)

10.2. 2–dimensional representation of S3.

(i) Show that the group S3 of permutations of 3 objects can be generated by two per-
mutations, a transposition and a cyclic permutation:

a =

(
1 2 3
1 3 2

)
, d =

(
1 2 3
3 1 2

)
.

(ii) Show that matrices:

D(e) =

(
1 0
0 1

)
, D(a) =

(
0 1
1 0

)
, D(d) =

(
z 0
0 z2

)
,

with z = ei2π/3, provide proper (faithful) representation for these elements and
find representation for the remaining elements of the group.

(iii) Is this representation irreducible?
One of those tricky questions so simple that one does not necessarily get them. If it
were reducible, all group element matrices could be simultaneously diagonalized.
A motivational (counter)example: as multiplication tables for D3 and S3 are the
same, consider D3. Is the above representation of its C3 subgroup irreducible?

(B. Gutkin)

10.3. D3: symmetries of an equilateral triangle. Consider group D3
∼= C3v

∼= S3, the sym-
metry group of an equilateral triangle:

1

2  3 .

(a) List the group elements and the corresponding geometric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements in them, guided by the geometric
interpretation of group elements. Verify your answer using the definition of a class.

(d) List the conjugacy classes of subgroups of D3. (continued as exercise 11.2 and
exercise 11.3)

10.4. Permutation of three objects. Consider S3, the group of permutations of 3 objects.

(a) Show that S3 is a group.

(b) List the equivalence classes of S3?
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(c) Give an interpretation of these classes if the group elements are substitution opera-
tions on a set of three objects.

(c) Give a geometrical interpretation in case of group elements being symmetry opera-
tions on equilateral triangle.

10.5. 3-dimensional representations of D3. The group D3 is the symmetry group of the
equilateral triangle. It has 6 elements

D3 = {E,C,C2, σ(1), σ(2), σ(3)} ,

where C is rotation by 2π/3 and σ(i) is reflection along one of the 3 symmetry axes.

(i) Prove that this group is isomorphic to S3

(ii) Show that matrices

D(E) =

 1 0 0
0 1 0
0 0 1

 , D(C) =

 z 0 0
0 1 0
0 0 z2

 , D(σ(1)) =

 0 0 1
0 −1 0
1 0 0

 ,

(10.11)
generate a 3-dimensional representation D(g) of D3. Hint: Calculate products for

representations of group elements and compare with the group table (see lecture).

(iii) Show that this is a reducible representation which can be split into one dimensional
A and two-dimensional representation Γ. In other words find a matrix R such that

RD(g)R−1 =

(
A(g) 0
0 Γ(g)

)
for all elements g of D3. (Might help: D3 has only one (non-equivalent) 2-dim
irreducible representation).

(B. Gutkin)
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Chapter 10 solutions: Discrete symmetries
Solution 10.1 - 1-dimensional representation of anything.

detD(g1) detD(g2) = det (D(g1)D(g2)) = detD(g1g2)

(detD(g))−1 = detD(g−1) (10.12)

(B. Gutkin)

Solution 10.2 - 2-dimensional representation of S3.
(i) It is straightforward to check that:

d2 =

(
1 2 3
3 1 2

)(
1 2 3
3 1 2

)
=

(
1 2 3
2 3 1

)
= f.

The 3 elements C3 = {e, d, g} provide the cyclic subgroup of S3. Since ae, ad, af are all
different and do not belong to C3 (otherwise, a would necessarily belong to C3) these
three elements together with C3 exhaust all S3.

(ii) First we need to check that representation matrices keep the same algebra as
group elements:

D(a)D(a) = D(a2) = D(e) , D(d)3 = D(d)−1 .

Indeed

D(d2) = D(d)D(d) =

(
z2 0
0 z

)
= D(d)−1 .

For other group elements:

D(b) = D(ad) = D(a)D(d) =

(
0 z2

z 0

)
, D(c) = D(af) = D(a)D(f) =

(
0 z
z2 0

)
(iii) Yes. Otherwise D(d) and D(a) would be diagonal and commute.

(B. Gutkin)

Solution 10.3 - D3: symmetries of an equilateral triangle.

(a) The group elements are {e, σ1, σ2, σ3, r1/3, r2/3}. They correspond to the identity,
flips which leave one element invariant but switch the other two, and rotations
which map the entire set onto itself with no invariants in 1/3 and 2/3 rotations.

(b) The subgroups of D3 are {e}, {e, r1/3, r2/3}, and {e, σi}i∈{1,2,3}, and D3. Rota-
tions by one-third of a circle are the inverse of rotations by two-thirds of a circle.
Flips from i → j can be inverted by the flip j → i.

(c) The classes of D3 are {e}, {r}, and {σ}, segmented by the identity, rotations,
and flips. Note that

∏
|c(D3)| = |D3|. The definition for a conjugacy class is

equivalent to ag = gb, for a and b. Each rotation can be “undone” by a flipping
sequence.

(d) The conjugacy to the subgroup {e, r1/3, r2/3} is the set {e, σi}i∈{1,2,3}, as all flips
change the action of the rotation but are their own inverse.

(Chris Marcotte)

Solution 10.3 - D3: symmetries of an equilateral triangle.
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(a) List the group elements and the corresponding geometric operations

• Identity e

• Reflection along line joining 1 → bisection of 2,3: σ12;
Other reflections σ13, σ23

• Rotation by 2π/3: Permutation (123): C1/3

• Rotation by 4π/3: Permutation (132): C2/3

(b) List the subgroups of D3

• {e}, D3

• {e, σ12}, {e, σ13}, {e, σ23}
• {e, C1/3, C2/3}

(c) Find the classes of D3 and the number of elements in them, guided by the geo-
metric interpretation of group elements. Verify your answer using the definition of
a class. We can think of D3 as two types of geometrical actions on the triangle:
reflect and rotate. We may consider a reflection such as σ12 and generate the
other reflections by rotating the labels into a new frame, performing the reflection,
and then transforming back. The same goes for a rotation except the conjugating
action is a reflection.

• Trivial class: {e}

• Reflections: {σ12, σ23, σ13}. σ23 =
(
C1/3

)−1

σ12C
1/3; σ13 =

(
C2/3

)−1

σ12C
2/3

• Rotations: {C1/3, C2/3}. C2/3 = σ12C
1/3σ12

(d) List the conjugacy classes of subgroups of D3 To begin, we make the following
definitions:

I = {e}
Σ12 = {e, σ12}
Σ13 = {e, σ13}
Σ23 = {e, σ23}

R = {e, C1/3, C2/3}

The conjugate of a subgroup H ⊂ G is g−1Hg for g ∈ G.

• The conjugate of I is I

• Since we may rotate a reflection into any other reflection, Σ12, Σ13, and Σ23

are mutually conjugate.

• Finally, since C1/3 and C2/3 are conjugate, R is only trivially conjugate to
R.

(Michael Dimitriyev)

Solution 10.3 - D3: symmetries of an equilateral triangle.

(a) D3 = {e, σ12, σ13, σ23, C
1/3, C2/3}

{σ12, σ13, σ23} are reflections across symmetry axes. {C1/3, C2/3} are rotations
by 2π/3 and 4π/3 respectively.
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(b) Subgroups are: {e}, {e, σ12},{e, σ13},{e, σ23}, {e, C1/3, C2/3}, D3 itself.

(c) The classes of D3 are {e},{σ12, σ23, σ13} and {C1/3, C2/3}.
The first class is just identity. The second class is all the reflections. The third
class contains all the rotations.

(d) The conjugate class of subgroup {e} is : {e}.
The conjugate class of subgroup {e, σ12} is : {e}, and {σ12} .
The conjugate class of subgroup {e, σ23} is : {e}, and {σ23} .
The conjugate class of subgroup {e, σ31} is : {e}, and {σ31} .
The conjugate class of subgroup {e, C1/3, C2/3} is : {e}, and {e, C1/3, C2/3}.
The conjugate class of subgroup D3 is : {e}, {e, C1/3, C2/3} and {σ12, σ23, σ31} .

(Xiong Ding)

Solution 10.4 - Permutation of three objects.

1. In order to show that S3 is a group, it must have (i) closure under its group oper-
ation; (ii) associativity; (iii) an identity element; and (iv) have an inverse.

S3 permutes a set of three objects. Let these three objects be a, b, c. We can then
define the identity E to be the ordered set that has not undergone any operations;
i.e., E ≡ [abc].
The group operation is the transposition of two objects, e.g., [abc] 7→ [bac]. A
matrix g that represents this operation is

g =

0 1 0
1 0 0
0 0 1

 (10.13)

since the operation of this matrix on the column vector [abc]T yields [bac]T , where
T denotes the transpose. We further note that

g2 =

0 1 0
1 0 0
0 0 1

0 1 0
1 0 0
0 0 1

 =

1 0 0
0 1 0
0 0 1

 = I (10.14)

where I is the 3× 3 identity matrix. This suggests that g = g−1 for this particular
group element. In fact, four of the six group elements of S3 are their own inverses:

I−1 = [abc]−1 = [abc] = I, [acb]−1 = [acb], [bac]−1 = [bac], [cba]−1 = [cba](10.15)

The remaining two elements are not their own inverses:

[bca]−1 = [cab], [cab]−1 = [bca] (10.16)

Closure can be shown by considering all permutations of the three objects. All
possible combinations of permutations yields one of the possible configurations;
that is, the group operation (the transposition of two objects) can generate all
six configurations of the objects (“group elements”), and all the elements can be
generated by the group operation.
Associativity is most readily proved when one represents the group as matrices
since matrix multiplication is associative (though, it must be pointed not, matrix
multiplication is not, in general, commutative).
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Figure 10.3: Permutation of two vertices of an equilateral triangle.

2. There are three conjugacy classes of S3: the identity E (in a class C1 by itself)
and two non-trivial classes.
The existence of two non-trivial classes was hinted at in the first part of the prob-
lem: there are four group elements that are their own inverses—which suggests
that these four elements could form a subgroup of S3—and two elements that are
not. Upon further inspection, we observe that the first non-trivial conjugacy class,
which we will call C2, corresponds to transpositions of 2 objects (i.e., permuta-
tions of 2 objects while keeping the remaining objects fixed); this class shares the
feature that each element is its own inverse.
The remaining conjugacy class C3 corresponds to the remaining two elements
that are inverses of each other, but are not inverses of themselves.

3. The three conjugacy classes may be interpreted as substitution operations of
three objects where the specific substitution operation may be transposition or
permutation. C1 is the class described by no substitution, permutation, or trans-
position; the original ordered set is unchanged. C2 is the class described by the
permutation of two of the three objects. C3 is the class described by the permuta-
tion of all three objects.

4. C1 corresponds to an unchanged configuration, e.g., an equilateral triangle whose
vertices are fixed in their original locations.
C2 transposes two vertices of an equilateral triangle; this is equivalent to a rotation
of π about an axis passing through the fixed vertex and the center of the triangle.
For example, consider [ABC] 7→ [ACB]. Transposing vertices B and C is equiv-
alent to flipping the triangle about the line connecting vertex A to the center (i.e.,
about an axis of rotation coplanar with the triangle). See figure 10.3.
C3 permutes all three vertices of the triangle. This operation is equivalent to
rotating the triangle by either 2π/3 or 4π/3 about an axis passing through the
center and normal to the plane of the triangle.

Solution 10.5 - 3-dimensional representations of D3. (i) Table 10.1, the group mul-
tiplication table for D3 is the same one as for S3.

(ii) Straightforward check, as in exercise 10.2.
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(iii) Since the group has only one 2-dimensional irreducible representation Γ should
be equivalent to one from exercise 10.2. We therefore can find a matrix R such that:

RD(C)R−1 = R

 z 0 0
0 1 0
0 0 z2

R−1 =

 α 0 0
0 z 0
0 0 z2

 ,

where second block in the right hand side is 2-dim representation from exercise 10.2,
and α some one dimensional irreducible representation of C. We find that:

R =

 0 1 0
1 0 0
0 0 1

 , α = 1.

Applying then R to other group elements we get a decomposition of D into irreducible
blocks. For example:

RD(σ(1))R−1 =

 −1 0 0
0 0 1
0 1 0


Note: do not panic (yet) if you got a different answer. There are plenty of equivalent
irreps.

(B. Gutkin)
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Continuous symmetries

Georgia Tech PHYS-6124
Homework HW #11 due Thursday, November 5, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 11.1 Decompose a representation of S3

(a) 2; (b) 2; (c) 3; and (d) 3 points
(e) 2 and (f) 3 points bonus points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited October 30, 2020
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Week 11 syllabus Tuesday, October 27, 2020

I have given up Twitter in exchange for Tacitus & Thucydides,
for Newton & Euclid; & I find myself much the happier.

— Thomas Jefferson to John Adams, 21 January 1812

Clip 1 - They still do not get it!

This week’s lectures are related to AWH Chapter 17 Group Theory, Sect. 17.7 Con-
tinuous groups (click here). The fastest way to watch any week’s lecture videos is by
letting YouTube run the course playlist.

◦ Lie groups, sect. 11.2:
Definition of a Lie group
Cyclic group CN → continuous SO(2) plane rotations
Infinitesimal transformations, SO(2) generator of rotations
SO(2) (group element) = exp(generator)

Clip 2 - What is a symmetry?

Clip 3 - Group element; transformation generator

Clip 4 - What is a symmetry group?

Clip 5 - What is a group orbit?

Clip 6 - What is dynamics?

Clip 7 - Group SO(2)

• The N → ∞ limit of CN gets you to the continuous Fourier transform as a
representation of SO(2), but from then on this way of thinking about continuous
symmetries gets to be increasingly awkward. A fresh restart is afforded by matrix
groups, and in particular the mother unitary group U(n) = U(1)⊗SU(n), which
contains all other compact groups, finite or continuous, as subgroups.

Clip 10 - Unitary groups are mothers of all finite / compact symmetries. (1 h 4
min)

Discussion 1 - How did we get the Lie algebra? Why is (almost) every
symmetry we care about a subgroup of an unitary group? (9 min)

Discussion 2 - How did we get the SO(2) generator? (2 min)

Optional viewing and reading

https://founders.archives.gov/documents/Jefferson/03-04-02-0334
http://YouTube.com/embed/3NeR6RqNA6g 
http://ChaosBook.org/library/ArWeHa13chap17Group-Theory.pdf
http://YouTube.com/watch?v=3NeR6RqNA6g&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=110
http://YouTube.com/embed/mwUvbUd0tik 
http://YouTube.com/embed/PLROav1OlbI 
http://YouTube.com/embed/ofeCGK5kVm0
http://YouTube.com/embed/XOmt4GgsrJo 
http://YouTube.com/embed/47OuHQAmVI0 
http://YouTube.com/embed/33Y9vQAnb1c
http://YouTube.com/embed/8-lx5OEAAMA
http://YouTube.com/embed/eDtLf4hNIb8
http://YouTube.com/embed/YIP3k_UDgWg
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• What’s the payback? While for you the geometrically intuitive representation is
the set of rotation [2×2] matrices, group theory says no! They split into pairs of 1-
dimensional irreps, and the basic building blocks of our 2-dimensional rotations
on our kitchen table (forget quantum mechanics!) are the U(1) [1×1] complex
unit vector phase rotations.

Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sects. 6.1-6.3 Irreps of SO(2).

Reading: C. K. Wong Group Theory notes, Chap 6 1D continuous groups,
Sect. 6.6 completes discussion of Fourier analysis as continuum limit of
cyclic groups Cn, compares SO(2), O(2), discrete translations group, and
continuous translations group.

Clip 8 - Infinitesimal symmetries: Lie derivative

Clip 9 - Symmetries of solutions. (18 min)

Clip 11 Special orthogonal group SO(n). (9 min)

Clip 12 Symplectic group Sp(n). (9 min)

Discussion 3 - Orthogonal and unitary transformations

Rant 1 - Is beauty symmetry? The first piece of art found in China is a perfect
disk carved out of jade. All of Bach is symmetries. (9 min)

Rant 2 - students find letter A beautifully symmetric, but Predrag finds zero ‘O’
the most beautiful grade. (1 min)

Rant 3 - SO(3) & SU(2) preview and a long rant - listen to it at your own risk.
Roger Penrose thoughts on quantum spacetime and quantum brain. Are laws of
physics time invariant? Waiting for dark energy to go away. Arrow of time. (17
min)

Rant 4 - SO(3) & SU(2) preview and a long rant - listen to it at your own risk.
Get this: math uses 2d complex vectors (spinors) to build our real 3d space. And
all we see - starlight, graphene, greenhouse effect, helioseismography, gravita-
tional wave detectors - it is all irreps! (12 min)

Rant 5 - Help me, I’m bullied by a mathematician. (3 min)

Rant 6 - you can always count on Prof. Z. (1/2 min)

Question 11.1. Henriette Roux, pondering exercise 11.1, writes
Q I want to make sure I understand the concept of irreducible representations. In the last
homework, we saw that

1. if a representation (which can be thought of as a sort of basis) is reducible, all group
element matrices can be simultaneously diagonalized. I want to be able to see how this
definition of reducibility matches with the notion of block diagonalizability of an overall
representation D(g).

http://ckw.phys.ncku.edu.tw/
http://ckw.phys.ncku.edu.tw/public/pub/Notes/Mathematics/GroupTheory/Tung/Powerpoint/6._1DContinuousGroups.ppt
http://ckw.phys.ncku.edu.tw/
http://ckw.phys.ncku.edu.tw/public/pub/Notes/Mathematics/GroupTheory/Tung/Powerpoint/6._1DContinuousGroups.ppt
http://YouTube.com/embed/Sh7mu253ExY 
http://YouTube.com/embed/e7OQihw-KYk
http://YouTube.com/embed/1Cp0KW4vc28
http://YouTube.com/embed/Sdf2ROB53PI
http://YouTube.com/embed/SKT5gBoeQ1k 
http://YouTube.com/embed/QeK_DUBSLLI
http://YouTube.com/embed/Jq17VmctxRE
http://YouTube.com/embed/Pdtz4nvaKVQ
http://YouTube.com/embed/fryt8SgDsnk
http://YouTube.com/embed/-LDdWVIJPno
http://YouTube.com/embed/2V7jp2975y0
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2. AWH p. 822-823 has a discussion of this, but I’m wondering if there’s an intuitive way to
connect these two definitions or if it’s just linear algebra.

3. We familiarized ourselves with the concept of (conjugacy) classes in the last homework.
Here, we now add in the concept of character, which, according to AWH, is just the trace
of any matrix in a given class (and every matrix of the same class will have the same trace
b/c of the properties of classes/traces).

4. So to find the characters for a given representation (part c), we just need to find the classes
and then take the trace of a matrix representation in each class?

5. My next and related question then concerns what character means conceptually. Does it
relate classes to other classes within a given representation, or different representations
(whether reducible or not), or both? AWH says that “the set of characters for all elements
and irreducible representations of a finite group defines an orthogonal finite-dimensional
vector space."

6. How does a vector space come about from a set of traces, each of which I normally think
of as just a number, like the determinant? And finally,

7. how can we use our knowledge of classes/character to find irreducible representations,
since that seems to be an important goal in examining a group.

8. exercise 11.1 (c) says to find the characters for this representation, which seems to imply
that character depends on representation. But I would’ve thought that character, which is
a trace of a matrix, is invariant under any similarity transform, which is how you get from
a reducible representation to an irreducible representation.

9. Also, this is more of a guess than anything, but do the multiplicities of irreducible rep-
resentations correspond to the multiplicity of characters (i.e. the number of elements in
each class)? If so, why? (Or if not, why not?)

10. Same thing for classes, correct?. Classes shouldn’t depend on representation b/c they
can be thought of as corresponding to a physical operation (e.g. transposition or cyclic
permutation), something which is independent of basis.

.
A Great framing for a discussion, thanks! I’ll probably reedit this post several times, every-
body’s input is very welcome. Items numbered as in above:

(2) My favorite step-by-step, pedagogical exposition are the chapters 2 Representation The-
ory and Basic Theorems and 3 Character of a Representation of Dresselhaus et al. [2].
There is too much material for our course, but if you want to understand it once for all
times, it’s worth your time.

(3) Correct.

(4) Correct. Note, however, that while every matrix representation has a trace, and thus a
character, you want to decompose this character into the sum of irrep characters, as it is
obvious after the block diagonalization has been attained.

(5) The unitary diagonalization matrix, whose entries are characters, takes character-weighted
sums of classes in order to project them onto irreps, just like what the Fourier representa-
tion does. The result, as we know from projection operators of weeks 1 & 2, are mutually
orthogonal sub-spaces.

(6) Whenever you do not understand something about finite groups, ask yourself - how does
it work for finite lattice Fourier representation?
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There the vector space comes via a unitary transformation from the configuration coor-
dinates (where each group element is represented by a full matrix) to the diagonalized,
irreducible subspaces coordinates (Fourier modes).
The unitary F matrix is full of ωij , ie, characters of the cyclic group Cn. That’s where
the characters come from.
Now mess up C3 by adding a reflection. Dihedral group D3, the group of rotations and re-
flections, has more symmetry constrains, it cannot have 6 irreps, as reflection invariance
mixes together the two senses of rotation. Now there are 3 classes, ie, kinds of things
the group does: nothing, flip, rotate. The unitary transformation that diagonalizes group
element matrices is now morally a smaller unitary [3×3] matrix from ‘classes’ in config-
uration space to ‘irreps’ in the diagonalized representation, where some sub-spaces must
have dimension higher than one.
The surprise, for me, is that the entries in the unitary diagonalization matrix can still be
written as traces of irreps, ie, characters. For me it is a calculation, a beautiful example
of mathematics leading us somewhere where our intuition falls short. If you find a good
intuitive explanation somewhere, please let us all know.

(7) That’s automatic, now. Each irrep has a projection operator associated with it. In weeks
1 & 2 we constructed it as a sub-product of factors in Hamilton-Cayley formula. Now we
know we can write it -just as we did with the Fourier representation- as sum over all class
group actions, each weighted by a the irrep’s character.

(8) Characters are elements of the unitary matrix with one index running over classes, the
other over irreps. So you expect character to differ from representation to representation;
very clear from D3 character table. As always, you already know that from the Fourier
representation example.

(9) Good question. The do not. Dresselhaus et al. [2] has the answer - enter it here once you
understand it.

(10) Correct.

11.1 Lie groups
In week 1 we introduced projection operators (1.20). How are they related to the char-
acter projection operators constructed in the group theory lectures? While the character
orthogonality might be wonderful, it is not very intuitive - it’s a set of solutions to a
set of symmetry-consistent orthogonality relations. You can learn a set of rules that en-
ables you to construct a character table, but it does not tell you what it means. Similar
thing will happen again when we turn to the study of continuous groups: all semisimple
Lie groups will be classified by Killing and Cartan by a more complex set of orthog-
onality and integer-dimensionality (Diophantine) constraints. You obtain all possible
Lie algebras, but have no idea what their geometrical significance is.

In my own Group Theory book [1] I (almost) get all simple Lie algebras using
projection operators constructed from invariant tensors. What that means is easier to
understand for finite groups, and here I like the Harter’s exposition [4] best. Harter
constructs ‘class operators’, shows that they form a basis for the algebra of ‘central’
or ‘all-commuting’ operators, and uses their characteristic equations to construct the
projection operators (1.21) from the ‘structure constants’ of the finite group, i.e., its

http://www.uark.edu/ua/modphys/markup/PSDS_Info.html
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class multiplication tables. Expanded, these projection operators are indeed the same
as the ones obtained from character orthogonality.

11.2 Continuous symmetries : unitary and orthogonal
This week’s lectures are not taken from any particular book, they are about basic
ideas of how one goes from finite groups to the continuous ones that any physicist
should know. We have worked one example out earlier, in week 9 and ChaosBook
Sect. A24.4. It gets you to the continuous Fourier transform as a representation of
U(1) ≃ SO(2), but from then on this way of thinking about continuous symmetries
gets to be increasingly awkward. So we need a fresh restart; that is afforded by matrix
groups, and in particular the unitary group U(n) = U(1) ⊗ SU(n), which contains all
other compact groups, finite or continuous, as subgroups.

The main idea in a way comes from discrete groups: the cyclic group CN is gen-
erated by the powers of the smallest rotation by ∆θ = 2π/N , and in the N → ∞
limit one only needs to understand the commutation relations among Tℓ, generators of
infinitesimal transformations,

D(∆θ) = 1 + i
∑
ℓ

∆θℓTℓ +O(∆θ2) . (11.1)

These thoughts are spread over chapters of my book Group Theory - Birdtracks,
Lie’s, and Exceptional Groups [1] that you can steal from my website, but the book
itself is too sophisticated for this course. If you ever want to learn some group theory
in depth, you’ll have to petition the School to offer it.

11.2.1 Lie groups for pedestrians
[...] which is an expression of consecration of angular momen-
tum.

— Mason A. Porter’s student

Definition: A Lie group is a topological group G such that (i) G has the structure of
a smooth differential manifold, and (ii) the composition map G × G → G : (g, h) →
gh−1 is smooth, i.e., C∞ differentiable.

Do not be mystified by this definition. Mathematicians also have to make a living.
The compact Lie groups that we will deploy here are a generalization of the theory of
SO(2) ≃ U(1) rotations, i.e., Fourier analysis. By a ‘smooth differential manifold’
one means objects like the circle of angles that parameterize continuous rotations in a
plane, figure 11.1, or the manifold swept by the three Euler angles that parameterize
SO(3) rotations.

By ‘compact’ one means that these parameters run over finite ranges, as opposed
to parameters in hyperbolic geometries, such as Minkowsky SO(3, 1). The groups we
focus on here are compact by default, as their representations are linear, finite-dimen-
sional matrix subgroups of the unitary matrix group U(d).

https://www.youtube.com/watch?v=3NeR6RqNA6g&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=109
http://ChaosBook.org/chapters/ChaosBook.pdf#section.X.4
http://birdtracks.eu/
http://youtube.com/embed/ofeCGK5kVm0
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Figure 11.1: Circle group S1 = SO(2), the symmetry group of a circle with directed
rotations, is a compact group, as its natural parametrization is either the angle ϕ ∈
[0, 2π), or the perimeter x ∈ [0, L).

Example 1. Circle group. A circle with a direction, figure 11.1, is invariant under rota-
tion by any angle θ ∈ [0, 2π), and the group multiplication corresponds to composition
of two rotations θ1 + θ2 mod 2π. The natural representation of the group action
is by a complex numbers of absolute value 1, i.e., the exponential eiθ. The composi-
tion rule is then the complex multiplication eiθ2eiθ1 = ei(θ1+θ2) . The circle group is
a continuous group, with infinite number of elements, parametrized by the continuous
parameter θ ∈ [0, 2π). It can be thought of as the n→ ∞ limit of the cyclic group Cn.
Note that the circle divided into n segments is compact, in distinction to the infinite
lattice of integers Z, whose limit is a line (noncompact, of infinite length).

An element of a [d×d] -dimensional matrix representation of a Lie group continu-
ously connected to identity can be written as

g(ϕ) = eiϕ·T , ϕ · T =
N∑

a=1

ϕaTa , (11.2)

where ϕ · T is a Lie algebra element, Ta are matrices called ‘generators’, and ϕ =
(ϕ1, ϕ2, · · · , ϕN ) are the parameters of the transformation. Repeated indices are summed
throughout, and the dot product refers to a sum over Lie algebra generators. Sometimes
it is convenient to use the Dirac bra-ket notation for the Euclidean product of two real
vectors x, y ∈ Rd, or the product of two complex vectors x, y ∈ Cd, i.e., indicate
complex x-transpose times y by

⟨x|y⟩ = x†y =
d∑
i

x∗i yi . (11.3)

Finite unitary transformations exp(iϕ · T ) are generated by sequences of infinitesimal
steps of form

g(δϕ) ≃ 1 + iδϕ · T , δϕ ∈ RN , |δϕ| ≪ 1 , (11.4)

http://youtube.com/embed/PLROav1OlbI
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(a) (b)

Manifold traced out by action of G
for all possible group elements g

xx’

g

Figure 11.2: (a) Lie algebra fields {t1, · · · , tN} span the tangent space of the group
orbit Mx at state space point x, see (11.6) (figure from WikiMedia.org). (b) A global
group transformation g : x → x′ can be pieced together from a series of infinitesimal
steps along a continuous trajectory connecting the two points. The group orbit of state
space point x ∈ Rd is the N -dimensional manifold of all actions of the elements of
group G on x.

where Ta, the generators of infinitesimal transformations, are a set of linearly indepen-
dent [d×d] hermitian matrices (see figure 11.2 (b)).

The reason why one can piece a global transformation from infinitesimal steps is
that the choice of the “origin” in coordinatization of the group manifold sketched in
figure 11.2 (a) is arbitrary. The coordinatization of the tangent space at one point on
the group manifold suffices to have it everywhere, by a coordinate transformation g,
i.e., the new origin y is related to the old origin x by conjugation y = g−1xg, so all
tangent spaces belong the same class, they are geometrically equivalent.

Unitary and orthogonal groups are defined as groups that preserve ‘length’ norms,
⟨gx|gx⟩ = ⟨x|x⟩, and infinitesimally their generators (11.4) induce no change in the
norm, ⟨Tax|x⟩+ ⟨x|Tax⟩ = 0 , hence the Lie algebra generators Ta are hermitian for,

T †
a = Ta . (11.5)

The flow field at the state space point x induced by the action of the group is given by
the set of N tangent fields

ta(x)i = (Ta)ijxj , (11.6)

which span the d-dimensional group tangent space at state space point x, parametrized
by δϕ.

For continuous groups the Lie algebra, i.e., the algebra spanned by the set ofN gen-
erators Ta of infinitesimal transformations, takes the role that the |G| group elements
play in the theory of discrete groups (see figure 11.2).
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Exercises

11.1. Decompose a representation of S3. Consider a reducible representation D(g), i.e.,
a representation of group element g that after a suitable similarity transformation takes
form

D(g) =


D(a)(g) 0 0 0

0 D(b)(g) 0 0

0 0 D(c)(g) 0

0 0 0
. . .

 ,

with character for class C given by

χ(C) = ca χ
(a)(C) + cb χ

(b)(C) + cc χ
(c)(C) + · · · ,

where ca, the multiplicity of the ath irreducible representation (colloquially called “ir-
rep”), is determined by the character orthonormality relations,

ca = χ(a)∗ χ =
1

h

class∑
k

Nkχ
(a)(C−1

k ) χ(Ck) . (11.7)

Knowing characters is all that is needed to figure out what any reducible representation
decomposes into!

As an example, let’s work out the reduction of the matrix representation of S3 permuta-
tions. The identity element acting on the three objects (a, b, c)⊤, arranged as components
of a 3-vector, is a [3×3] identity matrix,

D(E) =

1 0 0
0 1 0
0 0 1


Transposing the first and second object yields (b, a, c)⊤, represented by the matrix

D(A) =

0 1 0
1 0 0
0 0 1


since 0 1 0

1 0 0
0 0 1

a
b
c

 =

b
a
c


a) Find all six matrices for this representation.

b) Split this representation into its conjugacy classes.

c) Evaluate the characters χ(Cj) for this representation.

d) Determine multiplicities ca of irreps contained in this representation.

e) Construct explicitly all irreps.

f) Explain whether any irreps are missing in this decomposition, and why.



EXERCISES 139

11.2. Invariance under fractional rotations. Argue that if the discrete cyclic subgroup

CN = {e, C1/N , C2/N , · · · , (C1/N )N−1} , (C1/N )N = e

of SO(2) rotations about an axis (let’s say the ‘z-axis’) is a symmetry group of the ‘equa-
tions of motion’ ẋ = v(x),

C1/Nv(x) = v(C1/Nx) = v(x) ,

the only non-zero components of Fourier-transformed equations of motion are ajN for
j = 1, 2, · · · . Argue that the Fourier representation is then the ‘quotient map’ of the
dynamics, M/CN . (Hint: this sounds much fancier than what is - think first of how it
applies to the 2- and 3-disk pinballs.)

11.3. Characters of D3. (continued from exercise 10.3) D3
∼= C3v , the group of symmetries

of an equilateral triangle: has three irreducible representations, two one-dimensional and
the other one of multiplicity 2.

(a) All finite discrete groups are isomorphic to a permutation group or one of its sub-
groups, and elements of the permutation group can be expressed as cycles. Express
the elements of the group D3 as cycles. For example, one of the rotations is (123),
meaning that vertex 1 maps to 2, 2 → 3, and 3 → 1.

(b) Use your representation from exercise 10.3 to compute the D3 character table.

(c) Use a more elegant method from the group-theory literature to verify your D3 char-
acter table.

(d) Two D3 irreducible representations are one dimensional and the third one of multi-
plicity 2 is formed by [2×2] matrices. Find the matrices for all six group elements
in this representation.

(Hint: get yourself a good textbook, like Dresselhaus et al. [2], Tinkham [5] or Hamer-
mesh [3], and read up on classes and characters.)
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Chapter 11 solutions: Continuous symmetries
Solution 11.1 - Decompose a representation of S3

a) The six matrices1 0 0
0 1 0
0 0 1

 ,

0 1 0
1 0 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
0 1 0
1 0 0

 ,

0 0 1
1 0 0
0 1 0


correspond to permutations [a b c], [b a c], [a c b], [b c a], [c b a], [c a b] .

b) The conjugacy classes are the identity C1, transpositions C2 (the permutation of
two objects while keeping the remaining objects fixed), and 3-cycles C3 , such as
c → b → a → c.

c) The characters of this representation are

Class C1 C2 C3

χ(Cj) 3 0 1

d) The representation D may be decomposed into irreducible representations D(i)

as
D = c1D

(1) ⊕ c2D
(2) ⊕ c3D

(3)

where multiplicities ci are determined by the character orthonormality relations
(11.7):

c1 = χ(1)∗ χ

=
1

6
(1× 1× 3 + 2× 1× 0 + 3× 1× 1) = 1

c2 = χ(2)∗ χ

=
1

6
(1× 1× 3 + 2× 1× 0 + 3× (−1)× 1) = 0

c3 = χ(3)∗ χ

=
1

6
(1× 2× 3 + 2× (−1)× 0 + 3× 0× 1) = 1

Thus,
D = D(1) ⊕D(3)

We observe that D(2) is missing, but have no clue why.

e) The identity element is the only element in its conjugacy class C1, corresponding
to the irreducible “trivial” representation with χ(j)(C1) = 1. Thus the first row of
the character table 11.1 is [1 1 1].
The 2-cycles (ab), (ac), and (bc) in C2 conjugacy class have alternating character
χ = ±1, depending if the permutation is odd or even; this irreducible represen-
tation is sometimes called the “sign representation”. Thus the second row of the
character table is [1 − 1 1].
The 3-cycles (abc) and (acb) make up C3 conjugacy class. In order to fill out the
remaining row of the character table, we recall that the order of the group is equal
to the sum of the squares of the orders of its irreps; that is,

|S3| = 6 = 11 + 12 + f2
3 → f3 = χ(3)((1)) = 2 (11.8)
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(a) (ab) (abc)

χ(1) 1 1 1
χ(2) 1 -1 1
χ(3) 2 0 -1

Table 11.1: S3 character table.

Further, column orthogonality requires

0 =

3∑
i=1

fiχ
(i) ((ab)) = 1 · 1 + 1 · (−1) + 2 χ(3)((ab)) (11.9)

which forces χ(3)((ab)) = 0. Similarly,

0 =

3∑
i=1

fiχ
(i) ((abc)) = 1 · 1 + 1 · 1 + 2 χ(3)((ab)) (11.10)

yields χ(3)((abc)) = −1, and the full character table 11.1 for S3.

f) We observe that the character is equal to the number of points fixed by the per-
mutations. A transposition of any two objects (i.e., leading to a 2-cycle) in a
two-object set leaves no fixed points; consequently, χ(3)((ab)) = 0.

Solution 11.2 - Invariance under fractional rotations. Consider a system which
is equivariant with respect to SO(2) rotations about some axis, either all rotations, or
rotations by discrete angle 2π/m (a cyclic subgroup Cm ∈ SO(2)). Chose two of the
coordinates to be in a plane normal to the axis of rotation, and rewrite these variables
in terms of polar coordinates (r, ϕ). Take the Fourier transform the azimuthal angle ϕ.
The system we are considering has the discrete rotational symmetry

C1/mv(x) = v(C1/mx) = v(x), (C1/m)m = e. (11.11)

Because of this symmetry the velocity field v(x) is not only periodic with period 2π (as
required by continuity at ϕ = 0), it is also periodic with period 2π/m, hence it can
be represented by a Fourier expansion on the interval (0, 2π/m). This gives me a
complete representation of the function in terms of cos(2πmjx), sin(2πmjx), where j

is a nonnegative integer. If I Fourier transform the function on the full interval (0, 2π),
I can evaluate the resulting integrals using the series representation on the interval
(0, 2π/m). The orthonormality of the trigonometric polynomials guarantees that I will
get the same result as before. This means that the the non-vanishing coefficients will
only involve Fourier modes whose wave numbers are multiples of m. (J.M. Heninger)

Solution 11.3 - Characters of D3. No solution available.
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Week 12 syllabus Tuesday, November 3, 2020

This week’s lectures are related to AWH Chapter 3 Vector Analysis (click here) and
Chapter 16 Angular Momentum (click here). The fastest way to watch any week’s
lecture videos is by letting YouTube run the course playlist.

There is way too much material in this week’s notes. Watch the main sequence of
video clips, that and recommended reading should suffice. The rest is optional. You can
glance through sect. 12.2 Linear algebra, and sect. 12.3 SO(3) character orthogonality,
but I do not expect you to master this material.

Clip 1 - Rotations in 3 dimensions (30 min)

– OK, I see that formally SU(2) ≃ SO(3), but who ordered ”spin?”

Clip 4 - Rotations in 2 complex dimensions (42 min)

◦ Read sect. 12.4 SU(2) Pauli matrices

◦ Read sect. 12.5 SU(2) ≃ SO(3)

Optional reading

Clip 2 - Lie algebra (21 min)

Clip 3 - Birdtracks (6 min)

◦ Sect. 10.1.1 Permutations in birdtracks

For overall clarity and pleasure of reading, I like Schwichtenberg [8] (click
here) discussion best. If you read anything for this week’s lectures, read
Schwichtenberg.

Reading: Chen, Ping and Wang [2] Group Representation Theory for Physi-
cists, Sect 5.2 Definition of a Lie group, with examples (click here).

• Dirac belt trick applet

If still anxious, maybe this helps: Mark Staley, Understanding quaternions and
the Dirac belt trick arXiv:1001.1778.

I have enjoyed reading Mathews and Walker [7] Chap. 16 Introduction to groups
(click here). Goldbart writes that the book is ”based on lectures by Richard
Feynman at Cornell University.” Very clever. In particular, work through the
example of fig. 16.2: it is very cute, you get explicit eigenmodes from group
theory alone. The main message is that if you think things through first, you
never have to go through using explicit form of representation matrices - thinking
in terms of invariants, like characters, will get you there much faster.

Any book, of 100s available, like Cornwell [3] Group Theory in Physics: An
introduction that covers group theory might be more to your taste.

http://ChaosBook.org/library/ArWeHa13chap3.pdf
http://ChaosBook.org/library/ArWeHa13chap16.pdf
http://YouTube.com/watch?v=_i-e8GN5sI8&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=131
http://YouTube.com/embed/_i-e8GN5sI8
http://YouTube.com/embed/UuIp30Fw920
http://YouTube.com/embed/4tf_Lgpc0aI
http://YouTube.com/embed/Lzso7mNgxvY
http://ChaosBook.org/library/Schwicht15-2edited.pdf
http://ChaosBook.org/library/Schwicht15-2edited.pdf
http://ChaosBook.org/library/Chen5-2.pdf
https://www.gregegan.net/APPLETS/21/21.html
https://arXiv.org/abs/1001.1778
http://ChaosBook.org/library/MathWalk73.pdf
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Hamilton’s quaternions

Stone and Goldbart [9] (click here) Chapter 17 Sect 17.6 Analytic functions and
topology (wherein stereographic projection is revealed to be the geometric origin
of the spinor representations of the rotation group)

12.1 Nobel Prize in Physics 2020
Students –really, anybody who has learned some physics– often ask me: is space con-
tinuous or discrete?

We do not know, but this week’s SO(3) ≈ SU(2) correspondence is one of the
gateway drugs to speculations about quantum underpinnings of the observed spacetime.
It start’s with Hamilton’s quaternions - the discovery that the building blocks of our
apparent 3 Euclidian dimensions are 2-dimensional complex spin 1/2 ’spinors’, and it
leads different people to different theories of quantum spacetime - one direction is the
one taken by David Ritz Finkelstein, another one leads to Roger Penrose’s description
of Minkowski spacetime in terms of twistors.

In what follows, Erin Wells Bonning from Emory University and Predrag Cvi-
tanović from the Georgia Tech explain the 2020 Nobel Prize in physics in terms acces-
sible to all.

A half of the 2020 Nobel Prize in Physics was awarded to Roger Penrose, for
the discovery that black hole formation is a robust prediction of the general theory of
relativity. In 1957 Penrose, then a graduate student, met Georgia Tech’s late David
Ritz Finkelstein in a fateful meeting that changed both men’s lives forever after. It was
Finkelstein’s extension of the Schwarzschild metric which provided Penrose with an
opening into general relativity and set him on the path to his 1965 discovery celebrated
by this year’s prize.

A half of the 2020 Nobel Prize in Physics was awarded jointly to Reinhard Genzel
and Andrea Ghez for the discovery of –in Ghez’s words- ”The Monster at the heart of
the Milky Way," a black hole whose existence had been hypothesized since the early
1970s. In order to visually observe an object that famously does not emit any light,
precise measurements of stars moving in the black hole’s gravitational field had to be
carried out. The independent work of Genzel and Ghez mapping the positions of these
stars over many years has led to the clearest evidence yet that the center of our Milky
Way galaxy contains “The Monster”, that possibly every galaxy contains a black hole,
and that the environment near it looks nothing like what was expected.

Nobel Lecture: Roger Penrose, Nobel Prize in Physics 2020 (34 min)

Nobel Prize in Physics 2020 (56 min)

Abstract
Penrose slides for Predrag’s 1/2 of the presentation
2020 Nobel Prizes in Chemistry and Physics, Explained

Roger Penrose gets Nobel Prize. How David Ritz Finkelstein and Roger Penrose
met, and exchanged their lives’ paths.

http://YouTube.com/embed/yyVTtOUvvwM
http://ChaosBook.org/library/StGoChap17.pdf
http://YouTube.com/embed/DpPFn0qzYT0
http://YouTube.com/embed/XXX
http://CoS.gatech.edu/events/understanding-2020-nobel-prize-physics-qa-0
http://ChaosBook.org/course2/videos/week12/Penrose.pdf
https://cos.gatech.edu/news/2020-nobel-prizes-chemistry-and-physics-explained-genetic-scissors-black-holes-and-milky-ways
http://YouTube.com/embed/GmeiNedIH6o 
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Clip 6 - negative dimensions (6 min)

Andrea Ghez: ”The Monster at the Heart of our Galaxy"

Veritasium: ”The Infinite Pattern That Never Repeats"

Question 12.1. Predrag asks
Q You are graduate students now. Are you ready for The Talk?
A Henriette Roux: I’m ready!

12.1.1 Quaternionic speculations
Predrag: putting this here for a further re-examination - safely ignored:)

Marek Danielewski (AGH), December 29, 2020, and L. Sapa: Foundations of the
Quaternion Quantum Mechanics Foundations of the Quaternion Quantum Mechanics,
Entropy, 2020, 22, 1424:

”We show that quaternion quantum mechanics has well-founded mathematical roots
and can be derived from the model of the elastic continuum by Cauchy, i.e., it can be
regarded as representing the physical reality of elastic continuum. Starting from the
Cauchy theory (classical balance equations for isotropic Cauchy-elastic material) and
using the Hamilton quaternion algebra, we present a rigorous derivation of the quater-
nion form of the non- and relativistic wave equations. The family of the wave equations
and the Poisson equation are a straightforward consequence of the quaternion represen-
tation of the Cauchy model of the elastic continuum. This is the most general kind of
quantum mechanics possessing the same kind of calculus of assertions as conventional
quantum mechanics. The problem of the Schrödinger equation, where imaginary ’i’
should emerge, is solved. This interpretation is an attempt to describe the ontology of
quantum mechanics, and demonstrates that, besides Bohmian mechanics, the complete
ontological interpretations of quantum theory exists.”

It has a quack feel to it, but should be easy to work through...

For a different approach, straightforward, no quackery, see Pavel A. Bolokhov
Quaternionic wave function arXiv:1712.04795: “ quaternions form a natural lan-
guage for the description of quantum-mechanical wave functions with spin. We use
the quaternionic spinor formalism which is in one-to-one correspondence with the
usual spinor language. No unphysical degrees of freedom are admitted, in contrast
to the majority of literature on quaternions. We build a Dirac Lagrangian in the quater-
nionic form, derive the Dirac equation and take the nonrelativistic limit to find the
Schrödinger’s equation. We show that the quaternionic formalism is a natural choice to
start with, while in the transition to the noninteracting nonrelativistic limit, the quater-
nionic description effectively reduces to the regular complex wave function language.
We provide an easy-to-use grammar for switching between the ordinary spinor lan-
guage and the description in terms of quaternions. As an illustration of the broader
range of the formalism, we also derive the Maxwell’s equation from the quaternionic
Lagrangian of Quantum Electrodynamics. In order to derive the equations of motion,
we develop the variational calculus appropriate for this formalism. ”

http://YouTube.com/embed/5Vzt1ZQk6Lk
http://YouTube.com/embed/djajFc6hlB4
http://YouTube.com/embed/48sCx-wBs34
https://www.smbc-comics.com/comic/the-talk-3
https://scholar.google.com/citations?user=NqzBgYcAAAAJ&hl=en&oi=ao
https://doi.org/10.3390/e22121424
https://doi.org/10.1142/S0217751X19500015
https://arXiv.org/abs/1712.04795
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Commentary:

Manfried Faber, Richard Gill Quaternions were invented by Benjamin Olinde Ro-
drigues, before Hamilton. (He is also known for Rodrigues formula for Legendre
polynomials.) In 1840 he published a result on transformation groups,[4] which
applied Leonhard Euler’s four squares formula, a precursor to the quaternions of
William Rowan Hamilton, to the problem of representing rotations in space.[5]
In 1846 Arthur Cayley acknowledged[6] Euler’s and Rodrigues’ priority describ-
ing orthogonal transformations.

Manfried Faber MathsHistory.st-andrews: In 1840 he published a mathematical pa-
per which contains the second result for which he is known today, namely his
work on transformation groups where he derived the formula for the composi-
tion of successive finite rotations by an entirely geometric method. Rodrigues’
composition of rotations is basically the composition of unit quaternions. The pa-
per appeared in volume five of the Annales de mathématique pures et appliquées
which was perhaps better known as Annales de Gergonne and is described in
detail in [4].

Predrag I teach my students that SU(2) is double cover of SO(3) and do not do more
with quaternions. Octonions is another story...

Richard Gill According to Stigler’s law of eponomy, everything worth remembering
is associated with the name of someone we want to remember, who did some-
thing else.

12.2 Linear algebra
In this section we collect a few basic definitions. A sophisticated reader might prefer
skipping straight to the definition of the Lie product (12.8), the big difference between
the group elements product used so far in discussions of finite groups, and what is
needed to describe continuous groups.

Vector space. A set V of elements x,y, z, . . . is called a vector (or linear) space
over a field F if

(a) vector addition ”+” is defined in V such that V is an abelian group under addi-
tion, with identity element 0;

(b) the set is closed with respect to scalar multiplication and vector addition

a(x+ y) = ax+ ay , a, b ∈ F , x,y ∈ V

(a+ b)x = ax+ bx

a(bx) = (ab)x

1x = x , 0x = 0 . (12.1)

https://en.wikipedia.org/wiki/Olinde_Rodrigues
https://en.wikipedia.org/wiki/Olinde_Rodrigues
https://mathshistory.st-andrews.ac.uk/Biographies/Rodrigues/
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Here the field F is either R, the field of reals numbers, or C, the field of complex
numbers. Given a subset V0 ⊂ V , the set of all linear combinations of elements of V0,
or the span of V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset of V whose span is V.
The number of basis elements d is the dimension of the vector space V.

Dual space, dual basis. Under a general linear transformation g ∈ GL(n,F), the
row of basis vectors transforms by right multiplication as e(j) =

∑
k(g

−1)jk e
(k), and

the column of xa’s transforms by left multiplication as x′ = gx. Under left multiplica-
tion the column (row transposed) of basis vectors e(k) transforms as e(j) = (g†)j

ke(k),
where the dual rep g† = (g−1)⊤ is the transpose of the inverse of g. This observation
motivates introduction of a dual representation space V̄ , the space on which GL(n,F)
acts via the dual rep g†.
Definition. If V is a vector representation space, then the dual space V̄ is the set of all
linear forms on V over the field F.
If {e(1), · · · , e(d)} is a basis of V , then V̄ is spanned by the dual basis {e(1), · · · , e(d)},
the set of d linear forms e(k) such that

e(j) · e(k) = δkj ,

where δkj is the Kronecker symbol, δkj = 1 if j = k, and zero otherwise. The compo-
nents of dual representation space vectors ȳ ∈ V̄ will here be distinguished by upper
indices

(y1, y2, . . . , yn) . (12.2)

They transform under GL(n,F) as

y′a = (g†)aby
b . (12.3)

For GL(n,F) no complex conjugation is implied by the † notation; that interpretation
applies only to unitary subgroups U(n) ⊂ GL(n,C). In the index notation, g can be
distinguished from g† by keeping track of the relative ordering of the indices,

(g)ba → ga
b , (g†)ba → gba . (12.4)

Algebra. A set of r elements tα of a vector space T forms an algebra if, in addition
to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication T · T → T , so that for any two
elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =
r−1∑
γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (12.5)
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(b) the multiplication operation is distributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbers ταβγ are called the structure constants. They form a matrix rep of
the algebra,

(tα)β
γ ≡ ταβ

γ , (12.6)

whose dimension is the dimension r of the algebra itself.
Depending on what further assumptions one makes on the multiplication, one ob-

tains different types of algebras. For example, if the multiplication is associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)ca = (tα)
b
a(tβ)

c
b , tα ∈ V ⊗ V̄ , (12.7)

and the Lie product

(tα · tβ)ca = (tα)
b
a(tβ)

c
b − (tα)

b
c(tβ)

a
b , tα ∈ V ⊗ V̄ (12.8)

which defines a Lie algebra.

12.3 SO(3) character orthogonality
In 3 Euclidean dimensions, a rotation around z axis is given by the SO(2) matrix

R3(φ) =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 = expφ

0 −1 0
1 0 0
0 0 0

 . (12.9)

An arbitrary rotation in R3 can be represented by

Rn(φ) = e−iφn·L L = (L1, L2, L3) , (12.10)

where the unit vector n determines the plane and the direction of the rotation by angle
φ. Here L1, L2, L3 are the generators of rotations along x, y, z axes respectively,

L1 = i

0 0 0
0 0 1
0 −1 0

 , L2 = i

 0 0 1
0 0 0
−1 0 0

 , L3 = i

0 −1 0
1 0 0
0 0 0

 ,

(12.11)
with Lie algebra relations

[Li, Lj ] = iεijkLk . (12.12)
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All SO(3) rotations by the same angle θ around different rotation axis n are conjugate
to each other,

eiϕn2·Leiθn1·Le−iϕn2·L = eiθn3·L , (12.13)

with eiϕn2·L and e−iθn2·L mapping the vector n1 to n3 and back, so that the rotation
around axis n1 by angle θ is mapped to a rotation around axis n3 by the same θ. The
conjugacy classes of SO(3) thus consist of rotations by the same angle about all distinct
rotation axes, and are thus labelled the angle θ. As the conjugacy class depends only on

exercise 12.3
θ, the characters can only be a function of θ. For the 3-dimensional special orthogonal
representation, the character is

χ = 2 cos(θ) + 1 . (12.14)

For an irrep labeled by j, the character of a conjugacy class labeled by θ is

χ(j)(θ) =
sin(j + 1/2)θ

sin(θ/2)
(12.15)

To check that these characters are orthogonal to each other, one needs to define
the group integration over a parametrization of the SO(3) group manifold. A group
element is parametrized by the rotation axis n and the rotation angle θ ∈ (−π, π] ,
with n a unit vector which ranges over all points on the surface of a unit ball. Note
however, that a π rotation is the same as a −π rotation (n and −n point along the
same direction), and the n parametrization of SO(3) is thus a 2-dimensional surface of
a unit-radius ball with the opposite points identified.

The Haar measure for SO(3) requires a bit of work, here we just note that after the
integration over the solid angle (characters do not depend on it), the Haar measure is

dg = dµ(θ) =
dθ

2π
(1− cos(θ)) =

dθ

π
sin2(θ/2) . (12.16)

With this measure the characters are orthogonal, and the character orthogonality the-
exercise 12.4

orems follow, of the same form as for the finite groups, but with the group averages
replaced by the continuous, parameter dependant group integrals

1

|G|
∑
g∈G

→
∫
G

dg .

The good news is that, as explained in ChaosBook.org Chap. Relativity for cyclists
(and in Group Theory - Birdtracks, Lie’s, and Exceptional Groups [5]), one never needs
to actually explicitly construct a group manifold parametrizations and the correspond-
ing Haar measure.

12.4 SU(2) Pauli matrices
A lightning, bullet points review.

• U(n): unitary transformation U = eiH

http://birdtracks.eu/courses/PHYS-7143-19/continuous.pdf


12.5. SU(2) AND SO(3) 151

• Unitarity: U†U = 1 ⇒ H† = H , the generator is hermitian.

• SU(n): special unitary transformation detU = 1

• Must know: ln det = tr ln for any matrix, so the generator is traceless
ln detU = tr lnU = trH = 0

• SU(2) : H =

(
a c
e b

)
, a, b, c, e ∈ C , eight real numbers in all.

• H is hermitian: H =

(
a c+ id

c− id b

)
, a, b, c, d ∈ R ,

• H is traceless: 0 = trH ⇒ a+ b = 0 , three real rotation parameters in all, so

H = cσx + dσy + aσz

= c

(
0 1
1 0

)
+ d

(
0 −i
i 0

)
+ a

(
1 0
0 −1

)
(12.17)

where σj are known as Pauli matrices.

12.5 SU(2) and SO(3)
K. Y. Short

An element of SU(2) can be written as

Un(ϕ) = eiϕ σ·n̂/2 (12.18)

where σj is a Pauli matrix and ϕ is a real number. What is the significance of the 1/2
factor in the argument of the exponential?

Consider a generic position vector x = (x, y, z) and construct a Hermitian matrix
of the form

σ · x = σxx+ σyy + σzz

=

(
0 x
x 0

)
+

(
0 −iy
iy 0

)
+

(
z 0
0 −z

)
=

(
z x− iy

x+ iy −z

)
(12.19)

Its determinant

det
(

z x− iy
x+ iy −z

)
= −(x2 + y2 + z2) = −x2 (12.20)

gives the length of a vector. Consider a SU(2) transformation (12.18) of this matrix,
U†(σ · x)U . Taking the determinant, we find the same expression as before:

detU(σ · x)U† = detU det (σ · x) detU† = det (σ · x) . (12.21)
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Just as SO(3), SU(2) preserves the lengths of vectors.
To make the correspondence between SO(3) and SU(2) more explicit, consider a

SU(2) transformation on a complex two-component spinor

ψ =

(
α
β

)
(12.22)

related to x by

x =
1

2
(β2 − α2), y = − i

2
(α2 + β2), z = αβ (12.23)

Check that a SU(2) transformation of ψ is equivalent to a SO(3) transformation on x.
From this equivalence, one sees that a SU(2) transformation has three real parameters
that correspond to the three rotation angles of SO(3). If we label the ”angles” for the
SU(2) transformation by α, β, and γ, we observe, for a ”rotation” about x̂

Ux(α) =

(
cosα/2 i sinα/2
i sinα/2 cosα/2

)
, (12.24)

for a ”rotation” about ŷ,

Uy(β) =

(
cosβ/2 sinβ/2
− sinβ/2 cosβ/2

)
, (12.25)

and for ”rotation” about ẑ,

Uz(γ) =

(
eiγ/2 0
0 e−iγ/2

)
. (12.26)

Compare these three matrices to the corresponding SO(3) rotation matrices:

Rx(ζ) =

1 0 0
0 cos ζ sin ζ
0 − sin ζ cos ζ

 , Ry(ϕ) =

 cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ


Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (12.27)

They’re equivalent! Result: Half the rotation angle generated by SU(2) corresponds
to a rotation generated by SO(3).

What does this mean? At this point, probably best to switch to Schwichtenberg [8]
(click here) who explains clearly that SU(2) is a simply-connected group, and thus the
”mother" or covering group, or the double cover of SO(3). This means there is a two-
to-one map from SU(2) to SO(3); an SU(2) turn by 4π corresponds to an SO(3) turn
by 2π. So, the building blocks of your 3-dimensional world are not 3-dimensional real
vectors, but the 2-dimensional complex spinors! Quantum mechanics chose electrons
to be spin 1/2, and there is nothing Fox Channel can do about it.

http://ChaosBook.org/library/Schwicht15-2edited.pdf
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Question 12.2. Henriette Roux asks
Q Why is this complex 2-dimensional vector called a ’spinor’?
A Historical, as Arfken, Weber & Harris [1] explain: ”It turns out that half-integral angular mo-
mentum states are needed to describe the intrinsic angular momentum of the electron and many
other particles. Since these particles also have magnetic moments, an intuitive interpretation is
that their charge distributions are spinning about some axis; hence the term spin. It is now un-
derstood that the spin phenomena cannot be explained consistently by describing these particles
as ordinary charge distributions undergoing rotational motion, [...] ”

Schwichtenberg [8]: ”[...] spinors have properties that usual vectors do not have. For in-
stance, the factor 1/2 in the exponent. This factor shows us that a spinor1 is after a rotation by
2π not the same, but gets a minus sign. This is a pretty crazy property, because all objects we
deal with in everyday life are exactly the same after a rotation by 360o = 2π.

Question 12.3. Henriette Roux asks
Q What’ relation of Pauli exclusion principle to the spinor 2π rotation amounting to overall
minus sign?
A I think of fermion/Grassmann statistics as Archimedes principle + linearity, see my Field
Theory [4] chap. 4 Fermions. Basically, usually a constraint is imposed by eliminating a vari-
able, for example, given the constraint is x2 + y2 + z2 = 1, one gets rid of z by replacing
it everywhere with z →

√
1− x2 − y2. This makes a fully symmetric theory asymmetric and

ugly. In linear setting, another option is to keep all the variables and the symmetry, but add a new
variable which by construction subtracts a degree of freedom, what I call [6] a ”negative dimen-
sion”. In quantum field theory such variable is called a ’ghost’; it needs to be anti-commuting or
Grassmann.

12.6 What really happened

They do not make Norwegians as they used to. In his brief biographical sketch of So-
phus Lie, Burkman writes: ”I feel that I would be remiss in my duties if I failed to
mention avery interesting event that took place in Lie’s life. Klein (a German) and Lie
had moved to Paris in the spring of 1870 (they had earlier been working in Berlin).
However, in July 1870, the Franco-Prussian war broke out. Being a German alien in
France, Klein decided that it would be safer to return to Germany; Lie also decided to
go home to Norway. However (in a move that I think questions his geometric abilities),
Lie decided that to go from Paris to Norway, he would walk to Italy (and then presum-
ably take a ship to Norway). The trip did not go as Lie had planned. On the way, Lie
ran into some trouble–first some rain, and he had a habit of taking off his clothes and
putting them in his backpack when he walked in the rain (so he was walking to Italy
in the nude). Second, he ran into the French military (quite possibly while walking
in the nude) and they discovered in his sack (in addition to his hopefully dry clothing)
letters written to Klein in German containing the words ’lines’ and ’spheres’ (which the
French interpreted as meaning ’infantry’ and ’artillery’). Lie was arrested as a (insane)
German spy. However, due to intervention by Gaston Darboux, he was released four
weeks later and returned to Norway to finish his doctoral dissertation.”

http://chaosbook.org/FieldTheory/04-Fermions.pdf
http://math.hawaii.edu/home/talks/burkman_master_talk.pdf
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Question 12.4. Henriette Roux asks
Q
A This is a math methods course. Why are you not teaching us Bessel functions?

Blame Feynman: On May 2, 1985 my stay at Cornell was to end, and Vinnie
of college town Italian Kitchen made a special dinner for three of us regulars. Das
Wunderkind noticed Feynman ambling down Eddy Avenue, kidnapped him, and here
we were, two wunderkinds, two humans.

Feynman was a very smart, forever driven wunderkind. He naturally bonded with
our very smart, forever driven wunderkind, who suddenly lurched out of control, and
got very competive about at what age who summed which kind of Bessel function
series. Something like age twelve, do not remember which one did the Bessels first.
At that age I read ” Palle Alone in the World,” while my nonwunderkind friend, being
from California, watched television 12 hours a day.

When Das Wunderkind taught graduate E&M, he spent hours crafting lectures
about symmetry groups and their representations as various eigenfunctions. Students
were not pleased.

So, fuggedaboutit! if you have not done your Bessels yet, they are eigenfunctions,
just like your Fourier modes, but for a spherical symmetry rather than for a translation
symmetry; wiggle like a cosine, but decay radially.

When you need them you’ll figure them out. Or sue me.
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[5] P. Cvitanović, Group Theory: Birdtracks, Lie’s and Exceptional Groups (Prince-
ton Univ. Press, Princeton NJ, 2008).
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Exercises
12.1. Irreps of SO(2). Matrix

T =

[
0 −i
i 0

]
(12.28)

is the generator of rotations in a plane.

(a) Use the method of projection operators to show that for rotations in the kth Fourier
mode plane, the irreducible 1D subspaces orthonormal basis vectors are

e(±k) =
1√
2

(
±e

(k)
1 − i e

(k)
2

)
.

How does T act on e(±k)?

(b) What is the action of the [2×2] rotation matrix

D(k)(θ) =

(
cos kθ − sin kθ
sin kθ cos kθ

)
, k = 1, 2, · · ·

on the (±k)th subspace e(±k)?

(c) What are the irreducible representations characters of SO(2)?

12.2. Conjugacy classes of SO(3): Show that all SO(3) rotations (12.10) by the same angle
θ around any rotation axis n are conjugate to each other:

eiϕn2·Leiθn1·Le−iϕn2·L = eiθn3·L (12.29)

Check this for infinitesimal ϕ, and argue that from that it follows that it is also true for
finite ϕ. Hint: use the Lie algebra commutators (12.12).

12.3. The character of SO(3) 3-dimensional representation: Show that for the 3-dimen-
sional special orthogonal representation (12.10), the character is

χ = 2 cos(θ) + 1 . (12.30)

Hint: evaluate the character explicitly for Rx(θ), Ry(θ) and Rz(θ), then explain what is
the intuitive meaning of ‘class’ for rotations.

12.4. The orthonormality of SO(3) characters: Verify that given the Haar measure (12.16),
the characters (12.15) are orthogonal:

⟨χ(j)|χ(j′)⟩ =
∫
G

dg χ(j)(g−1)χ(j′)(g) = δjj′ . (12.31)
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Chapter 12 solutions: SO(3) and SU(2)

Solution 12.1 - Irreps of SO(2). Read D. Vvedensky group theory notes, chapter 8,
sects. 8.1 and 8.2.

Solution 12.1 - Irreps of SO(2) .
(a) The generator T has two eigenvalues +1 and −1, corresponding to eigenvectors
e+ = {1, i} and e− = {1,−i} respectively. Since e+ and e− are the eigenvectors of T:

Te(±) = ±1e(±)

(b) Since Dk(θ) = eiθkT,
Dk(θ)e(±) = e±iθke(±)

(c) The SO(2) group is an Abelian group. So it will only have one-dimensional ir-
reps. The kth irreducible representation of a rotation by angle θ is eikθ, where k can
be any integer. And this is also the character of the representations since they are
one-dimensional.

(Han Liang)

Solution 12.1 - Irreps of SO(2) .
(a) We instead find eigenvalues of a generic SO(2) matrix with period k ∈ Z:(

cos kθ − sin kθ
sin kθ cos kθ

)
.

These are easily worked out to be λ± = cos kθ ± i sin kθ. The projection operators are
therefore

P+ =
1

2i sin kθ

[(
cos kθ − sin kθ
sin kθ cos kθ

)
− (cos kθ − i sin kθ)

(
1 0
0 1

)]
=

1

2

(
1 i
−i 1

)
,

and

P− = − 1

2i sin kθ

[(
cos kθ − sin kθ
sin kθ cos kθ

)
− (cos kθ + i sin kθ)

(
1 0
0 1

)]
=

1

2

(
1 −i
i 1

)
.

Therefore, the irreducible 1D subspaces orthonormal basis vectors are

e(±k) =
1√
2

(
e
(k)
1 ∓ ie

(k)
2

)
, e1 = (1, 0)T , e2 = (0, 1)T ,

and these are the same as the ones given in the problem statement up to a sign. The
action of T on e(±k) is given by

Te(±k) =
1√
2

(
Te

(k)
1 ∓ iTe

(k)
2

)
=

1√
2

(
−ie

(k)
2 ± e

(k)
1

)
=

1√
2

(
±e

(k)
1 − ie

(k)
2

)
= ±e(±k).

In other words, T leaves the subspaces invariant.

http://ChaosBook.org/course2/VvedenskyCh8.pdf
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(b) We compute the action as follows:

D(k)(θ)e(±k) =
1√
2

(
D(k)(θ)e

(k)
1 ∓ iD(k)(θ)e

(k)
2

)
=

1√
2

(
cos (kθ)e

(k)
1 + sin (kθ)e

(k)
2 ± i sin (kθ)e

(k)
1 ∓ i cos (kθ)e

(k)
2

)
= cos (kθ)e(±k) ± i sin (kθ)e(±k)

= [cos (kθ)± i sin (kθ)] e(±k).

We could also have just note that the e(±k) are the complex eigenvectors of D(k)(θ).
(c) Since SO(2) is abelian and, hence, irreps are 1-dimensional, the characters and the
irreps are the same things. Any irrep χ : SO(2) → C will vary smoothly with the rotation
parameter θ and must satisfy χ(θ + θ′) = χ(θ)χ(θ′). We must also have χ(0) = 1 and
χ(θ + 2π). The only solution to these constraints are the functions

χ(m)(θ) = eimθ, m ∈ Z.

Therefore, we find that there are infinitely many one-dimensional irreps of SO(2), la-
belled by the integers.

(T. Forrest Kieffer)

Solution 12.2 - Conjugacy classes of SO(3). See SO3ConjClasses.pdf.

Solution 12.2 - Conjugacy classes of SO(3). We take as our generators

Lx =

 0 0 0
0 0 −1
0 1 0

 , Ly =

 0 0 1
0 0 0
−1 0 0

 , Lz =

 0 −1 0
1 0 0
0 0 0

 .

We do this to rid ourselves of the imaginary unit i in what follows. The commutation
relations are [Li, Lj ] = ϵijkLk. We may represent a rotation about the axis n through
the angle θ as Rn(θ) = eθn·L. We note that

eθn·L = I + (n · L) sin (θ) + 2(n · L)2 sin2 (θ/2).

Given real unit vectors n1 and n3, and an angle θ ∈ [0, 2π) we aim to construct a
real unit vector n2 and an angle ϕ ∈ [0, 2π) so that

eϕn2·Leθn1·Le−ϕn2·L = eθn3·L.

We will frequently use the identity

(n2 · L)(n1 · L) = ni
1n

j
2LiLj = (n2 · L)(n1 · L) + ϵijkn

i
1n

j
2Lk = (n1 · L)(n2 · L)− (n1 × n2) · L.

Using the above formulas we find

eϕn2·Leθn1·L

=
(
I + (n2 · L) sin (ϕ) + 2(n2 · L)2 sin2 (ϕ/2)

) (
I + (n1 · L) sin (θ) + 2(n1 · L)2 sin2 (θ/2)

)
= I + (n1 · L) sin (θ) + 2(n1 · L)2 sin2 (θ/2) + (n2 · L) sin (ϕ) + (n2 · L)(n1 · L) sin (θ) sin (ϕ)

+ 2(n2 · L)(n1 · L)2 sin (ϕ) sin2 (θ/2) + 2(n2 · L)2 sin2 (ϕ/2) + 2(n2 · L)2(n1 · L) sin (θ) sin2 (ϕ/2)

+ 4(n2 · L)2(n1 · L)2 sin2 (ϕ/2) sin2 (θ/2),

http://ChaosBook.org/course2/SO3ConjClasses.pdf
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and we compare this with

eθn3·Leϕn2·L

=
(
I + (n3 · L) sin (θ) + 2(n3 · L)2 sin2 (θ/2)

) (
I + (n2 · L) sin (ϕ) + 2(n2 · L)2 sin2 (ϕ/2)

)
= I + (n2 · L) sin (ϕ) + 2(n2 · L)2 sin2 (ϕ/2) + (n3 · L) sin (θ) + (n3 · L)(n2 · L) sin (ϕ) sin (θ)

+ 2(n3 · L)(n2 · L)2 sin (θ) sin2 (ϕ/2) + 2(n3 · L)2 sin2 (θ/2) + 2(n3 · L)2(n2 · L) sin (ϕ) sin2 (θ/2)

+ 4(n3 · L)2(n2 · L)2 sin2 (ϕ/2) sin2 (θ/2).

We choose n2 to be the unit vector, orthogonal to n1, so that n2×n1 = n3 and ϕ = π/2.
Using the commutation relation above and taking the difference we find

eϕn2·Leθn1·L − eθn3·Leϕn2·L

= ((n1 · L)− (n3 · L)) sin (θ) + 2
(
(n1 · L)2 − (n3 · L)2

)
sin2 (θ/2)

+ ((n2 · L)(n1 · L)− (n3 · L)(n2 · L)) sin (ϕ) sin (θ)

+ 2
(
(n2 · L)(n1 · L)2 − (n3 · L)2(n2 · L)

)
sin (ϕ) sin2 (θ/2)

+ 2
(
(n2 · L)2(n1 · L)− (n3 · L)(n2 · L)2

)
sin (θ) sin2 (ϕ/2)

+ 4
(
(n2 · L)2(n1 · L)2 − (n3 · L)2(n2 · L)2

)
sin2 (ϕ/2) sin2 (θ/2)

=
(
(n1 · L) + (n1 · L)(n2 · L) + (n1 · L)(n2 · L)2 + (n2 · L)(n3 · L)− (n3 · L)(n2 · L)2

)
sin (θ)

+ 2
(
(n1 · L)2 − (n3 · L)2 + (n1 · L)2(n2 · L) + (n1 · L)(n3 · L) + (n3 · L)(n1 · L)

−(n3 · L)2(n2 · L) + (n2 · L)2(n1 · L)2 − (n3 · L)2(n2 · L)2
)
sin2 (θ/2).

After a long computation using commutators and vector identities, we find that the above
expression can be made identically zero. (T. Forrest Kieffer)

Solution 12.3 - The character of SO(3) 3-dimensional representation: Pick n along
z axis, take the trace of R3(θ), given in (12.9).

Solution 12.3 - The character of SO(3) 3-dimensional representation: Let us com-
pute the eigenvalues of n · L = n1L1 + n2L2 + n3L3. We compute the roots of
det (n · L− λI) to find the eigenvalues of 0 and ±1 (we used the fact that n is a unit
vector). Hence,

χ(θ) = tr e−iθn·L = e−iθ·0 + e−iθ + eiθ = 1 + 2 cos θ.

(T. Forrest Kieffer)

Solution 12.4 - The orthonormality of SO(3) characters: With the Haar measure
(12.16) the characters are orthogonal by the standard orthogonality of trigonometric
functions:

⟨χ(j)|χ(j′)⟩ =
∫ 2π

0

dθ

π
sin2(θ/2)

sin[(j + 1/2)θ]

sin(θ/2)

sin[(j′ + 1/2)θ]

sin(θ/2)
= δjj′ . (12.32)
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Solution 12.4 - The orthonormality of SO(3) characters: If j ̸= j′ we have:

⟨χ(j)|χ(j′)⟩ =
∫
G

dgχ(j)(g−1)χ(j′)(g) =
1

π

∫ 2π

0

sin2 (θ/2)
sin [(j + 1/2)θ]

sin (θ/2)

sin [(j′ + 1/2)θ]

sin (θ/2)
dθ

=
1

2π

∫ 2π

0

(
cos
(
(j − j′)θ

)
− cos

(
(j + j′ + 1)θ

))
dθ

=
1

2π

(
1

j − j′
sin
(
(j − j′)θ

)
− 1

j + j′ + 1
sin
(
(j + j′ + 1)θ

)) ∣∣∣2π
0
dθ = 0.

If j = j′ we have:

⟨χ(j)|χ(j)⟩ =
∫
G

dgχ(j)(g−1)χ(j)(g) =
1

π

∫ 2π

0

sin2 (θ/2)
sin [(j + 1/2)θ]

sin (θ/2)

sin [(j + 1/2)θ]

sin (θ/2)
dθ

=
1

2π

∫ 2π

0

(1− cos ((2j + 1)θ)) dθ

=
1

2π

(
2π − 1

2j + 1
sin ((2j + 1)θ)

) ∣∣∣2π
0
dθ = 1.

(T. Forrest Kieffer)





mathematical methods - week 13

Probability

Georgia Tech PHYS-6124
Homework HW #13 due Thursday, November 19, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Bonus points
Exercise 13.1 Lyapunov equation 12 points

This week there are no required exercises. Whatever you do, you get bonus points.

edited November 12, 2020
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162 MATHEMATICAL METHODS - WEEK 13. PROBABILITY

Week 13 syllabus November 10, 2020

This week’s lectures are related to AWH Chapter 23 Probability and Statistics (click
here). The fastest way to watch any week’s lecture videos is by letting YouTube run

the course playlist.

• A summary of key concepts

– ChaosBook appendix A20.1 Moments, cumulants

Clip 1 - Averages, moments (45 min)

Clip 2 - Why a Gaussian? It’s the maximum entropy distribution (8 min)

• Why Gaussians again?

– ChaosBook 33.2 Brownian diffusion

Clip 3 - diffusion; Fokker-Planck density evolution (43 min)

– ChaosBook 33.3 Noisy trajectories

Clip 4 - I don’t like Langevin equation (3 min)

• A glimpse of Orstein-Uhlenbeck, the “harmonic oscillator" of the theory of
stochastic processes. And the one “Lyapunov" thing Lyapunov actually did:)

– Noise is your friend

– ChaosBook 33.4 Noisy maps

– ChaosBook 33.5 All nonlinear noise is local

Clip 5 - noise is your friend (23 min)

Optional reading

Discussion 1 - Density is evaluated in configuration space, but the Laplacian
is diagonalized in the Fourier space; a random walk from stochastic to quantum
mechanics; Wiener path integrals; Schrödinger harmonic oscillator is imaginary
time relative of the Ornstein-Uhlenbeck; Liouville theorem; Predrag’s lecturing
is a Gaussian process - on average you learn zero. (20 min)

13.1 Other sources
• MIT 16-90 Computational methods is a typical mathematical methods in engi-

neering course. Probabilistic methods and optimization are discussed here.

Really going into the Ornstein-Uhlenbeck equation might take too much of your
time, so this week we skip doing exercises, and if you are curious, and want to try
your hand at solving exercise 13.1 Lyapunov equation, you probably should first skim
through our lectures on the Ornstein-Uhlenbeck spectrum, Sect. 4.1 and Appen. B.1

http://ChaosBook.org/library/ArWeHa13chap23.pdf
http://ChaosBook.org/library/ArWeHa13chap23.pdf
http://YouTube.com/watch?v=yxixfl__vv8&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=137
http://ChaosBook.org/chapters/ChaosBook.pdf#section.T.1
http://YouTube.com/embed/yxixfl__vv8
http://YouTube.com/embed/FHdgxQDx67w
http://ChaosBook.org/chapters/ChaosBook.pdf#section.33.2
http://YouTube.com/embed/n7bPp3znFZE
http://ChaosBook.org/chapters/ChaosBook.pdf#section.33.3
http://YouTube.com/embed/OunobZy6Y6c
http://ChaosBook.org/course2/noiseURfriend.pdf
http://ChaosBook.org/chapters/ChaosBook.pdf#section.33.4
http://YouTube.com/embed/PUaVwgNBHBw
http://YouTube.com/embed/GUQQRrzY9rU
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-90-computational-methods-in-aerospace-engineering-spring-2014/probabilistic-methods-and-optimization/
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here. Finally! we get something one expects from a math methods course, an example
of why orthogonal polynomials are useful, in this case the Hermite polynomials :) .

The reason why I like this example is that again the standard ‘physics’ intuition
misleads us. Brownian noise spreads with time as

√
t, but the diffusive dynamics

of nonlinear flows is fundamentally different - instead of spreading, in the Ornstein-
Uhlenbeck example the noise contained and balanced by the nonlinear dynamics.

• D. Lippolis and P. Cvitanović [4], How well can one resolve the state space of a
chaotic map?; arXiv:0902.4269

• P. Cvitanović and D. Lippolis [1], Knowing when to stop: How noise frees us
from determinism; arXiv:1206.5506

• J. M. Heninger, D. Lippolis and P. Cvitanović [3], Neighborhoods of periodic or-
bits and the stationary distribution of a noisy chaotic system; arXiv:1507.00462

Question 13.1. Henriette Roux asks
Q What percentage score on problem sets is a passing grade?
A That might still change, but currently it looks like 60% is good enough to pass the course.
70% for C, 80% for B, 90% for A. Very roughly - will alert you if this changes. Here is the
percentage score as of week 10 in the 2019 course.

Question 13.2. Henriette Roux asks
Q How do I subscribe to the nonlinear and math physics and other seminars mailing lists?
A click here

References
[1] P. Cvitanović and D. Lippolis, Knowing when to stop: How noise frees us from

determinism, in Let’s Face Chaos through Nonlinear Dynamics, edited by M.
Robnik and V. G. Romanovski (2012), pp. 82–126.

[2] Z. Gajić and M. Qureshi, Lyapunov Matrix Equation in System Stability and
Control (Academic, New York, 1995).

[3] J. M. Heninger, P. Cvitanović, and D. Lippolis, “Neighborhoods of periodic or-
bits and the stationary distribution of a noisy chaotic system”, Phys. Rev. E 92,
062922 (2015).

[4] D. Lippolis and P. Cvitanović, “How well can one resolve the state space of a
chaotic map?”, Phys. Rev. Lett. 104, 014101 (2010).

[5] H. Rome, “A direct solution to the linear variance equation of a time-invariant
linear system”, IEEE Trans. Automatic Control 14, 592–593 (1969).
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Exercises
13.1. Lyapunov equation. Consider the following system of ordinary differential equations,

Q̇ = AQ+QA⊤ +∆ , (13.1)

in which {Q,A,∆} = {Q(t), A(t),∆(t)} are [d×d] matrix functions of time t through
their dependence on a deterministic trajectory, A(t) = A(x(t)), etc., with stability matrix
A and noise covariance matrix ∆ given, and density covariance matrix Q sought. The
superscript ( )⊤ indicates the transpose of the matrix. Find the solution Q(t), by taking
the following steps:

(a) Write the solution in the form Q(t) = J(t)[Q(0) + W (t)]J⊤(t), with Jacobian
matrix J(t) satisfying

J̇(t) = A(t) J(t) , J(0) = 1 , (13.2)

with 1 the [d×d] identity matrix. The Jacobian matrix at time t

J(t) = T̂ e

t∫
0
dτ A(τ)

, (13.3)

where T̂ denotes the ‘time-ordering’ operation, can be evaluated by integrating
(13.2).

(b) Show that W (t) satisfies

Ẇ =
1

J
∆

1

J⊤ , W (0) = 0 . (13.4)

(c) Integrate (13.1) to obtain

Q(t) = J(t)

Q(0) +

t∫
0

dτ
1

J(τ)
∆(τ)

1

J⊤(τ)

 J⊤(t) . (13.5)

(d) Show that if A(t) commutes with itself throughout the interval 0 ≤ τ ≤ t then
the time-ordering operation is redundant, and we have the explicit solution J(t) =

exp

{
t∫
0

dτ A(τ)

}
. Show that in this case the solution reduces to

Q(t) = J(t) Q(0) J(t)⊤ +

t∫
0

dτ ′ e

t∫
τ′

dτ A(t)

∆(τ ′) e

t∫
τ′

dτ A⊤(t)

. (13.6)

(e) It is hard to imagine a time dependent A(t) = A(x(t)) that would be commuting.
However, in the neighborhood of an equilibrium point x∗ one can approximate the
stability matrix with its time-independent linearization, A = A(x∗). Show that in
that case (13.3) reduces to

J(t) = et A ,

and (13.6) to what?



EXERCISES 165

Chapter 13 solutions: Probability
Solution 13.1 - Lyapunov equation. The continuous Lyapunov equation is given by

Q̇(t) = AQ+QA⊤ +∆ ,

where {Q,A,∆} = {Q(t), A(t),∆(t)} are [d×d] matrix functions of time t through their
dependence on a deterministic trajectory, A(t) = A(x(t)), etc., with stability matrix A
and noise covariance matrix ∆ given, and density covariance matrix Q sought. The
solution is given by the initial covariance Q(0) transported by the linearized flow, plus
the noise experienced at any intermediate time, transported by the linearized flow,

Q(t) = J(t, t0)Q(0) J(t, t0)
⊤ +

t∫
,t0

dτ J(t, τ)∆(τ) J(t, τ)⊤ ,

That this is indeed a solution is verified by differentiating both sides and using the equa-
tion for Jacobian matrix J(t) in terms of the stability matrix A,

J̇(t) = A(t) J(t) , J(0) = 1 ,

and 1 is the [d×d] identity matrix. The solution exists for any finite time, as long as ∆(τ)
and A(τ) are matrices of bounded functions; the t → ∞ limit, independent of the initial
Q(0), exists if A is strictly contracting, A < 0.

If the flow is evaluated in the linearized neighborhood of an equilibrium point xq,
the stability matrix A is a time-independent constant matrix, and the Jacobian matrix is
simply J(t, t0) = exp((t − t0)A) . In that case it is possible to write an analytic, explicit
formula [5] for Q(t) in terms of stability exponents (eigenvalues of A). See Gajić and M.
Qureshi [2] Differential Lyapunov Equation, Chapter 4 for this solution, and a discussion
of numerical methods to solve time-dependent Lyapunov equations.





mathematical methods - week 14

Math for experimentalists

Georgia Tech PHYS-6124
Homework HW #14 due Tuesday, November 24, 2020

== show all your work for maximum credit,
== put labels, title, legends on any graphs
== acknowledge study group member, if collective effort
== if you are LaTeXing, here is the source code

Exercise 14.1 A “study” of stress and life satisfaction a) to d) 10 points

Bonus points
Exercise 14.1 A “study” of stress and life satisfaction e) 4 points
Exercise 14.2 Unbiased sample variance 5 points
Exercise 14.3 Standard error of the mean 5 points
Exercise 14.4 Bayesian statistics, by Sara A. Solla 10 points

Total of 10 points = 100 % score. Extra points accumulate, can help you later if you
miss a few problems.

edited November 25, 2020
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168MATHEMATICAL METHODS - WEEK 14. MATH FOR EXPERIMENTALISTS

Week 14 syllabus November 17, 2020

For this week’s lectures read about the binomial theorem, Poisson and Gaussian distri-
butions in AWH Chapter 23 Probability and statistics (click here). The fastest way to
watch any week’s lecture videos is by letting YouTube run the course playlist.

Sara A Solla: Linear and nonlinear dimensionality reduction: applications to
neural data, or - The unreasonable effectiveness of linear algebra. (1:08 hour)

Sara A. Solla’s lecture notes: Neural recordings; Principal Components Analysis
(PCA); Singular Value Decomposition (SVD); ISOMAP nonlinear dimensional-
ity reduction; Multidimensional scaling.

Clip 2 Ignacio Taboada- Probability, Uncertainty, probability density functions,
error matrix (20 min)

Ignacio Taboada — lecture notes.

Clip 3 Distributions: binomial, normal, uniform, moments, quantiles. Monte
Carlo (why you need the uniform distribution) (19 min)

Ignacio Taboada — lecture notes.

Clip 4 central limit theorem (why you need normal dist) (2 min)

Clip 5 Multi-dimensional PDFs (13 min)

Clip 6 Error propagation: Covariances add! Covariances add! Covariances
add! Three times :) (18 min)

Ignacio Taboada — lecture notes.

Optional reading

Discussion 1, Sara A Solla: A physicist turns neuroscientist. You can do any-
thing. Progress in brain science. What is consciousness. What we know. The
rest is speculation. Much speculation. (57 min)

Rant - This is a kindergarten course. A professional should teach it, so I can
teach you stuff that nobody teaches you here. (4 min)

Sermon - Thanksgiving is upon us, don’t be stupid (3 min)

http://ChaosBook.org/library/ArWeHa13chap23.pdf
http://YouTube.com/watch?v=fWf3YwDYriY&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=144
http://YouTube.com/embed/fWf3YwDYriY
https://www.feinberg.northwestern.edu/faculty-profiles/az/profile.html?xid=16584
http://ChaosBook.org/course2/GATech_111720.pdf
http://YouTube.com/embed/HAlgrIAtBJc
http://www.taboada.gatech.edu/
http://ChaosBook.org/course2/Probability_and_uncertainty_1.pdf
http://YouTube.com/embed/cv24SriEFiE
http://ChaosBook.org/course2/Distributions.pdf
http://YouTube.com/embed/Jo2LtKCtF0s
http://YouTube.com/embed/R0bEoAW7Y2Q
http://YouTube.com/embed/6LE9PPgn1e8
http://ChaosBook.org/course2/Multi-Dpdf.pdf
http://YouTube.com/embed/K_UBs9j2c-E
http://YouTube.com/embed/3yH-2Aekqa4
http://YouTube.com/embed/CjKKaYdEMvk
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14.1 Optional reading: Bayesian statistics
Sara A. Solla

Natural sciences aim at abstracting general principles from the observation of natural
phenomena. Such observations are always affected by instrumental restrictions and
limited measurement time. The available information is thus imperfect and to some
extent unreliable; scientists in general and physicists in particular thus have to face the
task of extracting valid inferences from noisy and incomplete data. Bayesian proba-
bility theory provides a systematic framework for quantitative reasoning in the face of
such uncertainty.

In this lecture (not given in the Fall 2020 course) we will focus on the problem
of inferring a probabilistic relationship between a dependent and an independent vari-
able. We will review the concepts of joint and conditional probability distributions, and
justify the commonly adopted Gaussian assumption on the basis of maximal entropy
arguments. We will state Bayes’ theorem and discuss its application to the problem of
integrating prior knowledge about the variables of interest with the information pro-
vided by the data in order to optimally update our knowledge about these variables.
We will introduce and discuss Maximum Likelihood (ML) and Maximum A Posteri-
ori (MAP) for optimal inference. These methods provide a solution to the problem of
specifying optimal values for the parameters in a model for the relationship between
independent and dependent variables. We will discuss the general formulation of this
framework, and demonstrate that it validates the method of minimizing the sum-of-
squared-errors in the case of Gaussian distributions.

• A quick but superficial read: Matthew R. Francis, So what’s all the fuss about
Bayesian statistics?

• Reading: Lyons [3], Bayes and Frequentism: a particle physicist’s perspective
(click here)

14.2 Statistics for experimentalists: desiderata
I have solicited advice from my experimental colleagues. You tell me how to cover this
in less than two semesters :)

2012-09-24 Ignacio Taboada Cover least squares. To me, this is the absolute most
basic thing you need to know about data fitting - and usually I use more advanced
methods.

For a few things that particle and astroparticle people do often for hypothesis
testing, read Li and Ma [2], Analysis methods for results in gamma-ray astron-
omy, and Feldman and Cousins [1] Unified approach to the classical statistical
analysis of small signals. Both papers are too advanced to cover in this course,
but the idea of hypothesis testing can be studied in simpler cases.

2012-09-24 Peter Dimon thoughts on how to teach math methods needed by experi-
mentlists:

http://galileospendulum.org/2013/06/07/so-whats-all-the-fuss-about-bayesian-statistics/
http://galileospendulum.org/2013/06/07/so-whats-all-the-fuss-about-bayesian-statistics/
http://ChaosBook.org/library/Lyons13.pdf
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1. Probability theory

(a) Inference
(b) random walks
(c) Conditional probability
(d) Bayes rule (another look at diffusion)
(e) Machlup has a classic paper on analysing simple on-off random spec-

trum. Hand out to students. (no Baysians use of information that you
do not have) (Peter takes a dim view)

2. Fourier transforms

3. power spectrum - Wiener-Kitchen for correlation function

(a) works for stationary system
(b) useless on drifting system (tail can be due to drift only)
(c) must check whether the data is stationary

4. measure: power spectrum, work in Fourier space

(a) do this always in the lab

5. power spectra for processes: Brownian motion,

(a) Langevin → get Lorenzian
(b) connect to diffusion equation

6. they need to know:

(a) need to know contour integral to get from Langevin power spectrum,
to the correlation function

7. why is power spectrum Lorenzian - look at the tail 1/ω2

(a) because the cusp at small times that gives the tails
(b) flat spectrum at origin gives long time lack of correlation

8. position is not stationary

(a) diffusion

9. Green’s function

(a) δ fct → Gaussian + additivity

10. Nayquist theorem

(a) sampling up to a Nayquist theorem (easy to prove)

11. Other processes:

(a) what signal you expect for a given process

12. Fluctuation-dissipation theorem

(a) connection to response function (lots of them measure that)
(b) for Brownian motion power spectrum related to imaginary part of re-

sponse function

13. Use Numerical Recipes (stupid on correlation functions)
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(a) zillion filters (murky subject)
(b) Kalman (?)

14. (last 3 lecturs)

(a) how to make a measurement
(b) finite time sampling rates (be intelligent about it)

PS: Did I suggest all that? I thought I mentioned, like, three things.

Did you do the diffusion equation? It’s an easy example for PDEs, Green’s
function, etc. And it has an unphysically infinite speed of information, so you
can add a wave term to make it finite. This is called the Telegraph Equation (it
was originally used to describe damping in transmission lines).

What about Navier-Stokes? There is a really cool exact solution (stationary) in
two-dimensions called Jeffery-Hamel flow that involves elliptic functions and
has a symmetry-breaking. (It’s outlined in Landau and Lifshitz, Fluid Dynam-
ics).

2012-09-24 Mike Schatz .

1. 1D bare minimum:

(a) temporal signal, time series analysis
(b) discrete Fourier transform, FFT in 1 and 2D - exercises
(c) make finite set periodic

2. Image processing:

(a) Fourier transforms, correlations,
(b) convolution, particle tracking

3. PDEs in 2D (Matlab): will give it to Predrag (Predrag is still waiting)
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Participant Stress score (X) Life Satisfaction (Y)
1 11 7
2 25 1
3 19 4
4 7 9
5 23 2
6 6 8
7 11 8
8 22 3
9 25 3
10 10 6

Table 14.1: Stress vs. satisfaction for a sample of 10 individuals.

Exercises
14.1. A “study” of stress and life satisfaction.

Participants completed a measure on how stressed they were feeling (on a 1 to 30 scale)
and a measure of how satisfied they felt with their lives (measured on a 1 to 10 scale).
Participants’ scores are given in table 14.1.
You can do this homework with pencil and paper, in Excel, Python, whatever:

a) Calculate the average stress and satisfaction.

b) Calculate the variance of each.

c) Plot Y vs. X.

d) Calculate the correlation coefficient matrix and indicate the value of the covariance.

e) Bonus: Read the article on “The Economist” (if you can get past the paywall), or,
more seriously, D. Kahneman and A. Deaton -the 2002 Nobel Memorial Prize in
Economic Sciences- about the correlation between income and happiness. Report
on your conclusions.

14.2. Unbiased sample variance. Empirical estimates of the mean µ̂ and the variance σ̂2 are
said to be “unbiased” if their expectations equal the exact values,

E[µ̂] = µ , E[σ̂2] = σ2 . (14.1)

(a) Verify that the empirical mean

µ̂ =
1

N

N∑
i=1

ai (14.2)

is unbiased.
(b) Show that the naive empirical estimate for the sample variance

σ̄2 =
1

N

N∑
i=1

(ai − µ̂)2 =
1

N

N∑
i=1

a2
i −

1

N2

(
N∑
i=1

ai

)2

https://www.economist.com/graphic-detail/2013/05/02/money-can-buy-happiness
https://www.pnas.org/content/107/38/16489.full
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is biased. Hint: note that in evaluating E[· · · ] you have to separate out the diagonal terms
in (

N∑
i=1

ai

)2

=

N∑
i=1

a2
i +

N∑
i̸=j

aiaj . (14.3)

(c) Show that the empirical estimate of form

σ̂2 =
1

N − 1

N∑
i=1

(ai − µ̂)2 , (14.4)

is unbiased.
(d) Is this empirical sample variance unbiased for any finite sample size, or is it unbiased
only in the n → ∞ limit?

Sara A. Solla

14.3. Standard error of the mean.
Now, estimate the empirical mean (14.2) of observable a by j = 1, 2, · · · , N attempts to
estimate the mean µ̂j , each based on M data samples

µ̂j =
1

M

M∑
i=1

ai . (14.5)

Every attempt yields a different sample mean.
(a) Argue that µ̂j itself is an idd random variable, with unbiased expectation E[µ̂] = µ.
(b) What is its variance

Var[µ̂] = E[(µ̂− µ)2] = E[µ̂2]− µ2

as a function of variance expectation (14.1) and N , the number of µ̂j estimates? Hint;
one way to do this is to repeat the calculations of exercise 14.2, this time for µ̂j rather
than ai.
(c) The quantity

√
Var[µ̂] = σ/

√
N is called the standard error of the mean (SEM); it

tells us that the accuracy of the determination of the mean µ. How does SEM decrease as
the N , the number of estimate attempts, increases?

Sara A. Solla

14.4. Bayes. Bayesian statistics.

http://ChaosBook.org/course2/HW15Solla.pdf
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Chapter 14 solutions: Math for experimentalists
Solution 14.1 - A “study” of stress and life satisfaction.
(a) The average stress and satisfaction:

µ̂X =
1

10

10∑
i=1

Xi = 15.9 , µ̂Y =
1

10

10∑
i=1

Yi = 5.1 .

(b) The unbiased variances and standard deviations:

σ̂2
X =

1

10− 1

10∑
i=1

(Xi − µX)2 = 58.1 , σ̂X = 7.6 .

σ̂2
Y =

1

10− 1

10∑
i=1

(Yi − µY )2 = 8.1 , σ̂Y = 2.8 .

(c)

10 15 20 25
0

2

4

6

8

The averages (a) are misleading - the subjects are either unhappy or happy, there
is nobody in between. The standard deviations (b) of such bimodal distribution are not
helpful either, as they are measuring deviations from the non-existent average partici-
pant. However, the linear fit

Y = 11− .36X (14.6)

is pretty good.

(d) The stressed / the satisfied covariance is

VXY =
1

10− 1

10∑
i=1

(Xi − σ̂X)(Yi − σ̂Y ) = −20.8 .

The ellipsoid given by the covariance matrix

V =

(
σ̂2
X VXY

VXY σ̂2
Y

)
singular values (square roots of eigenvalues) and eigenvectors

{σ1, σ2} = {8.10, 0.76} : e(1) = (0.94,−0.34) , e(2) = (0.34, 0.94)
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gives a pretty good description of the data, aligned along e(1) (of slope close to the
linear fit (14.6)), with small fluctuations along e(2). The only problem is that we are
plotting lemons vs. roses.

For that reason one considers instead correlation coefficients matrix

Corr(X,Y ) =

(
1 ρXY

ρXY 1

)
,

where
ρXY =

VXY

σ̂X σ̂Y
= −0.9573 .

Its singular values, eigenvectors are a dimensionless least-squares fit to the data, with
the ellipsoid’s principal axes along the diagonals

{σ1, σ2} = {1.40, 0.207} : e(1) = (1/
√
2,−1/

√
2) , e(2) = (1/

√
2, 1/

√
2) .

The transformation from the covariance matrix to the correlations matrix is not a simi-
larity transformation, so I do not see why is it legal to describe the data covariances by
the correlation matrix singular values.

P. Cvitanović

Solution 14.2 - Unbiased sample variance. See ChaosBook Example A20.3

Solution 14.3 - Standard error of the mean. See ChaosBook Example A20.4

Solution 14.4 - Bayes. No solution available.

http://ChaosBook.org/chapters/ChaosBook.pdf#section.T.2
http://ChaosBook.org/chapters/ChaosBook.pdf#section.T.2
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Week 15 syllabus Tuesday, November 24, 2020

The fastest way to watch any week’s lecture videos is by letting YouTube run
the course playlist.

Clip 1 - what is ‘chaos’? how an applied mathematicians thinks about it (12
min)

Clip 2 - chaos for field theorists, 3rd millennium, lattice formulation: exponen-
tially many distinct walks through Bernoullistan. (22 min)

Clip 3 - periodic orbit theory. How come Hill determinant counts periodic
points? (12 min)

Clip 4 - chaos for a field theorist : think globally, act locally (6 min)

coin toss

Optional reading

Spatiotemporal cat and the end of time (2 min)

Spatiotemporal cat - a chaotic field theory (55 min seminar)

Herding cats: a chaotic field theory (1h 10 min seminar)

Turbulence in spacetime : website, talks

Rutgers seminar Q & A - Harper’s model; why periodic boundary conditions;
Spatiotemporal chaos for continuous theories; chaos as anti-integrability. (7
min)

Rant - E&M exam traumatized; on the necessity of E&M exams; Bologna and the
necessity of child abuse, generation to generation; no Jonestown Colony, please;
Jaques Laskar’s miracle - we are here because we have our Moon; working for
the “industry", by intimidating children with zeta functions; working for orga-
nized crime AKA hedge funds. (23 min)

http://YouTube.com/watch?v=P0RfcoEsHLA&list=PLVcaOb64gCp-J115RvfOhE1Yb4s584Mho&index=153
http://YouTube.com/embed/P0RfcoEsHLA
http://YouTube.com/embed/nYgypMUFmrs
http://YouTube.com/embed/3fSktM1WaJU
http://YouTube.com/embed/dt0mjGtW_tk
http://ChaosBook.org/overheads/spatiotemporal/Bernoulli.pdf
http://YouTube.com/embed/PwAwOx_tokc
http://YouTube.com/embed/9r7wJroEVSA
http://YouTube.com/embed/ehARdkDR0mQ 
http://ChaosBook.org/overheads/spatiotemporal/index.html
http://YouTube.com/embed/qzsBtAm5FHc
http://YouTube.com/embed/r6b-w4c2UhQ
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The epilogue, and what next?

If I had had more time, I would have written less
— Blaise Pascal, a remark made to a correspondent

Student evaluations November 2019: 11 out of 21 students filled in the question-
naire, with a bimodal distribution, typically 4 at the “Exceptional” end, and 4 at the
other, “Very Poor” end.

Positive evaluations along lines of “This course’s best aspect was the breadth of
material covered,” “This expended effort for this course was proportional to the amount
of material I wanted to learn,” are not included in what follows; we focus on criticisms,
and how to improve the course for the future students.

Several students have written in depth about the problems with the course. These
valuable comments are merged (for student privacy) and addressed below, to assist
future instructors in preparing this annual physics Fall course aimed at the incoming
graduate students.

Structure of the course comments :

The course is taught as a very rushed sweep of complicated mathematical con-
cepts, trying to go much more in-depth with the topics than we had time for,
and, as result, I understood almost nothing. The beginning of the course was
on topics some had seen in other physics or math courses, but from the start the
course often felt inaccessible if you did not already have some familiarity with
whichever topic was being lectured on. By the last third, we faced quite ad-
vanced math topics that only a student with a degree in mathematics would have
possibly seen, so attempting to research these topics without any background or
any semblance of a direction to start was mind-numbingly frustrating at best, and
a complete waste of time at worst.

There is no consistent textbook for the course. The recommended multiple texts
for each individual topic lead to a disorienting mess of information hunting that
ends up with the student cutting their losses and giving up.

The homework was extremely abstractly related to the lecture and did not touch
upon the aspects we talked about in class. Homework problems varied between

179



180MATHEMATICAL METHODS - WEEK 16. THE EPILOGUE, AND WHAT NEXT?

very easy to wildly difficult (or difficultly worded). One had to research for
hours to figure out the material necessary to do the homework, as it was never
addressed in class nor was there any dedicated textbook on which to rely.

The most important issue of this course is consistency, the severe lack of cor-
relation between lecture, study, and homework. Lectures are inconsistent with
homework assignments, and often one finds that the information required to do
a problem is revealed the same day the homework is due, maybe even days later.

The workload for this course was not appropriate for a pass/fail class. It was
unclear what grade constitutes a pass until about 2/3 through the course. The
best part of the course was that it was pass/fail. This reduced the overall stress
of the ineffectiveness of the course, so it did not impact my other courses at all.

With the lecturing to the board, many minutes can pass with your hand up
before the instructor turns to the class to notice you might have a question.

If I’m getting next to nothing of value from lecture and have to do all this re-
search on my own just to stand a chance at completing a homework problem,
why show up? I was so lost in this course almost all the time that I eventually
found it useless to attend class, and learned much more by reading textbooks
not assigned by the course, in order to hopefully glean something useful to solve
the esoteric problems. These severe issues encouraged skipping class; minimal
practice/learning was actually achieved.

Action :

In the first semester of graduate school, and as a required course, the incoming
class of graduate students needs a traditional, clearly structured textbook course,
with clearly spelled out expectations for each learning step, and much better
learning practices than what this version of the course offered.

Use one consistent textbook that guides the entire course (lecture, study, and
homework).

Assign homework directly relevant to what students learned in class (the lecture
taking place before the homework is due), and requiring no outside research.
Have someone read over the homework questions before they are assigned to
make sure that what is being asked is clear. For advanced topics, make home-
work optional.
State on course homepage the grade required for a pass.

Keep the course pass/fail if it remains a required course. (However, starting
Fall 2020 Math Methods will no longer be required for all 1st year physics grad
students. It will be an elective, letter grade course, not pass/fail.)

Have a deep look at how this course was taught and what students found dif-
ficult; try to relate to the average learner. Understand better what a student is
asking. To facilitate that, at the beginning of a class go through a bullet-point list
of concepts covered in the previous class, ask for questions related to each. On
the days the homework is due, go through problems, ask what difficulties were
there with each one.
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Integrate the students into teaching by asking them more questions. Allow for
more time to fully discuss the topics. Give clear explanations, not slowing down
but actually taking ideas step by step, with students contributing.

Instructor comment :

This is one of the first graduate school courses encountered by incoming stu-
dents, of vastly different backgrounds. Not only should I have not assumed a
high level of prior knowledge, but at this point students do not need to be taught
in a style that reflects the ways knowledge is acquired in actual research, involv-
ing multiple sources, approaches, and notations.

Advanced approach is better suited to second or later years of graduate study.
Indeed, the School of Physics plans to offer such research oriented course (PHYS
4740/6740, to be initially taught by Grigoriev) as an advanced elective.

Course content comments :

The course topics were very interesting, and it is a shame that there was not
enough time to explore them in depth. Great balance on the wide scope and
enough difficulty of the course. Such a class is very useful and I would still be
interested to learn more about the topics covered.

Cover less group theory.

Dedicate one week to the calculus of variations.

Action :

Teach fewer topics; spend more time on each topic.

Instructor comment :

There were no detailed students comments on course content, except the two
listed above.

The choice of course topics was quite different from what is covered in tradi-
tional mathematical methods courses, in order to reflect the current research in
the School of Physics and in the engineering schools; fewer topics preparatory
to E&M and QM courses, more topics related to physics of living systems, soft
condensed matter and the analysis of experimental data. I am not aware of any
textbook that covers this ground.
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