Discrete Symmetry Reduction

Domenico Lippolis

February 8, 2022

Chaos Course 2022

Lorenz system

- Climate model

$$
\begin{align*}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =\rho x-y-x z \\
\dot{z} & =x y-b z \tag{1}
\end{align*}
$$

Lorenz system

- Climate model

$$
\begin{align*}
\dot{x} & =\sigma(y-x) \\
\dot{y} & =\rho x-y-x z \\
\dot{z} & =x y-b z \tag{1}
\end{align*}
$$

- gives rise to a double-lobed chaotic attractor $(\sigma=10, b=8 / 3, \rho=28)$

ChaosBook.org

Lorenz system

- As the shape of the attractor suggests, the system is equivariant under the \mathbf{Z}_{2} symmetry (π-rotation about the z-axis)

$$
\begin{equation*}
r(x, y, z)=(-x,-y, z) \tag{2}
\end{equation*}
$$

Lorenz system

- As the shape of the attractor suggests, the system is equivariant under the \mathbf{Z}_{2} symmetry (π-rotation about the z-axis)

$$
\begin{equation*}
r(x, y, z)=(-x,-y, z) \tag{2}
\end{equation*}
$$

- Equivariance means that given a symmetry operation g and the solution to the system $f^{t}(x)$,

$$
\begin{equation*}
f^{t}(g \mathbf{x})=g f^{t}(\mathbf{x}) \tag{3}
\end{equation*}
$$

Lorenz system

- As the shape of the attractor suggests, the system is equivariant under the \mathbf{Z}_{2} symmetry (π-rotation about the z-axis)

$$
\begin{equation*}
r(x, y, z)=(-x,-y, z) \tag{2}
\end{equation*}
$$

- Equivariance means that given a symmetry operation g and the solution to the system $f^{t}(x)$,

$$
\begin{equation*}
f^{t}(g \mathbf{x})=g f^{t}(\mathbf{x}) \tag{3}
\end{equation*}
$$

- Here $g(x, y, z)=r(x, y, z)$, and

$$
\begin{align*}
& \sigma(x-y) \\
& v(g \mathbf{x})=-\rho x+y+x z=g v(\mathbf{x}) \tag{4}\\
& x y-b z
\end{align*}
$$

Lorenz system

- As the shape of the attractor suggests, the system is equivariant under the \mathbf{Z}_{2} symmetry (π-rotation about the z-axis)

$$
\begin{equation*}
r(x, y, z)=(-x,-y, z) \tag{2}
\end{equation*}
$$

- Equivariance means that given a symmetry operation g and the solution to the system $f^{t}(x)$,

$$
\begin{equation*}
f^{t}(g \mathbf{x})=g f^{t}(\mathbf{x}) \tag{3}
\end{equation*}
$$

- Here $g(x, y, z)=r(x, y, z)$, and

$$
\begin{align*}
& \sigma(x-y) \\
& v(g \mathbf{x})=-\rho x+y+x z=g v(\mathbf{x}) \tag{4}\\
& x y-b z
\end{align*}
$$

- Then equivariance follows from $f^{t}(\mathbf{x})=\mathbf{x}_{0}+\int_{0}^{t} d \tau v[\mathbf{x}(\tau)]$

Lorenz system - symmetry reduction

- Intuitively, the two-lobe attractor would be reduced to one lobe-

Lorenz system - symmetry reduction

- Intuitively, the two-lobe attractor would be reduced to one lobe-

- given a Poincaré section parallel to the z-axis, the fundamental domain $\hat{\mathcal{M}}$ is the half-space between the viewer and the section. Then the full flow is captured by reinjecting back into $\hat{\mathcal{M}}$ every trajectory that exits it, by a π-rotation about the z-axis. But how to realize that?

Lorenz system - symmetry reduction

- Rewrite the Lorenz system in cylindrical coordinates (R, θ, z) :

$$
\begin{align*}
\dot{R} & =\frac{R}{2}[-\sigma-1+(\sigma+\rho-z) \sin 2 \theta+(1-\sigma) \cos 2 \theta] \\
\dot{\theta} & =\frac{1}{2}[-\sigma+\rho-z+(\sigma-1) \sin 2 \theta+(\sigma+\rho-z) \cos 2 \theta] \\
\dot{z} & =-b z+\frac{R^{2}}{2} \sin 2 \theta \tag{5}
\end{align*}
$$

Lorenz system - symmetry reduction

- Rewrite the Lorenz system in cylindrical coordinates (R, θ, z):

$$
\begin{align*}
\dot{R} & =\frac{R}{2}[-\sigma-1+(\sigma+\rho-z) \sin 2 \theta+(1-\sigma) \cos 2 \theta] \\
\dot{\theta} & =\frac{1}{2}[-\sigma+\rho-z+(\sigma-1) \sin 2 \theta+(\sigma+\rho-z) \cos 2 \theta] \\
\dot{z} & =-b z+\frac{R^{2}}{2} \sin 2 \theta \tag{5}
\end{align*}
$$

- Notably, everything depends on 2θ and not just θ. We have

$$
\begin{align*}
R & =\sqrt{x^{2}+y^{2}}=\sqrt{(-x)^{2}+(-y)^{2}} \tag{6}\\
\sin 2 \theta & =2 \cos \theta \sin \theta=2 \frac{x}{R} \frac{y}{R}=2 \frac{-x}{R} \frac{-y}{R} \tag{7}\\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta=\left(\frac{x}{R}\right)^{2}-\left(\frac{y}{R}\right)^{2}=\left(\frac{-x}{R}\right)^{2}-\left(\frac{-y}{R}\right)^{2} \tag{8}
\end{align*}
$$

Lorenz system - symmetry reduction

- we can infer that the coordinates (R, θ, z) quotient the \mathbf{Z}_{2} symmetry out of the Lorenz flow, that is

$$
\begin{equation*}
f^{t}[r(R, \theta, z)]=r\left(f^{t}[R, \theta, z]\right)=f^{t}(R, \theta, z) \tag{9}
\end{equation*}
$$

Lorenz system - symmetry reduction

- we can infer that the coordinates (R, θ, z) quotient the \mathbf{Z}_{2} symmetry out of the Lorenz flow, that is

$$
\begin{equation*}
f^{t}[r(R, \theta, z)]=r\left(f^{t}[R, \theta, z]\right)=f^{t}(R, \theta, z) \tag{9}
\end{equation*}
$$

- That's no reduction to the fundamental domain, yet. But due to the 2θ dependence we can now guess a set of coordinates

$$
\begin{equation*}
(V, W, z)=(R \cos 2 \theta, R \sin 2 \theta, z)=\left(\frac{x^{2}-y^{2}}{R}, \frac{2 x y}{R}, z\right) \tag{10}
\end{equation*}
$$

that will do the job (cf. exercise 11.5 chaosbook)

Van der Pol oscillator

- One doesn't need chaos to reduce symmetries. Consider the nonlinearly damped oscillator

$$
\begin{equation*}
\ddot{x}-\mu\left(1-x^{2}\right) \dot{x}+x=0 \tag{11}
\end{equation*}
$$

Van der Pol oscillator

- One doesn't need chaos to reduce symmetries. Consider the nonlinearly damped oscillator

$$
\begin{equation*}
\ddot{x}-\mu\left(1-x^{2}\right) \dot{x}+x=0 \tag{11}
\end{equation*}
$$

- or equivalently

$$
\begin{align*}
\dot{x} & =\mu\left(x-\frac{1}{3} x^{3}-y\right) \\
\dot{y} & =\frac{1}{\mu} x \tag{12}
\end{align*}
$$

Van der Pol oscillator

- One doesn't need chaos to reduce symmetries. Consider the nonlinearly damped oscillator

$$
\begin{equation*}
\ddot{x}-\mu\left(1-x^{2}\right) \dot{x}+x=0 \tag{11}
\end{equation*}
$$

- or equivalently

$$
\begin{align*}
\dot{x} & =\mu\left(x-\frac{1}{3} x^{3}-y\right) \\
\dot{y} & =\frac{1}{\mu} x \tag{12}
\end{align*}
$$

- The dynamics quickly ($\mu=3$) converges to a limit cycle

Van der Pol oscillator- symmetry reduction

- the Van der Pol oscillator is \mathbf{Z}_{2}-symmetric (or equivariant):

$$
v[r(x, y, z)]=\left[\begin{array}{c}
\mu\left(-x+\frac{1}{3} x^{3}+y\right) \tag{13}\\
\frac{1}{\mu}(-x)
\end{array}\right]=-v(x, y, z)
$$

Van der Pol oscillator- symmetry reduction

- the Van der Pol oscillator is \mathbf{Z}_{2}-symmetric (or equivariant):

$$
v[r(x, y, z)]=\left[\begin{array}{c}
\mu\left(-x+\frac{1}{3} x^{3}+y\right) \tag{13}\\
\frac{1}{\mu}(-x)
\end{array}\right]=-v(x, y, z)
$$

- in polar coordinates

$$
\begin{align*}
\dot{R} & =\frac{1}{R}\left[\mu R^{2} \cos ^{2} \theta-\frac{\mu}{3} R^{4} \cos ^{4} \theta+\left(\frac{1}{\mu}-\mu\right) R^{2} \sin 2 \theta\right] \\
\dot{\theta} & =\frac{1}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}\left[\frac{1}{\mu}-\frac{\mu}{\cos ^{2} \theta}\left(\frac{1}{2} \sin 2 \theta\left(1-\frac{1}{3} \cos ^{2} \theta\right)-\sin ^{2} \theta\right)\right] \tag{14}
\end{align*}
$$

Van der Pol oscillator- symmetry reduction

- the Van der Pol oscillator is \mathbf{Z}_{2}-symmetric (or equivariant):

$$
v[r(x, y, z)]=\left[\begin{array}{c}
\mu\left(-x+\frac{1}{3} x^{3}+y\right) \tag{13}\\
\frac{1}{\mu}(-x)
\end{array}\right]=-v(x, y, z)
$$

- in polar coordinates

$$
\begin{align*}
\dot{R} & =\frac{1}{R}\left[\mu R^{2} \cos ^{2} \theta-\frac{\mu}{3} R^{4} \cos ^{4} \theta+\left(\frac{1}{\mu}-\mu\right) R^{2} \sin 2 \theta\right] \\
\dot{\theta} & =\frac{1}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}\left[\frac{1}{\mu}-\frac{\mu}{\cos ^{2} \theta}\left(\frac{1}{2} \sin 2 \theta\left(1-\frac{1}{3} \cos ^{2} \theta\right)-\sin ^{2} \theta\right)\right] \tag{14}
\end{align*}
$$

- Again, that depends on 2θ and we can make the same change of coordinates as for the Lorenz system.
Exercise: plot the symmetry-reduced Van der Pol limit cycle

Transfer operator

- Alternatively to ODEs, one can follow as swarm of trajectories, obeying the Liouville equation

$$
\begin{equation*}
\partial_{t} \rho(x, t)+\nabla \cdot[\rho(x, t) v(x)]=0 \tag{15}
\end{equation*}
$$

Transfer operator

- Alternatively to ODEs, one can follow as swarm of trajectories, obeying the Liouville equation

$$
\begin{equation*}
\partial_{t} \rho(x, t)+\nabla \cdot[\rho(x, t) v(x)]=0 \tag{15}
\end{equation*}
$$

- or, equivalently, $\rho(x, t)$ is transported by the flow $f^{t}(x)$ via the Perron-Frobenius operator

$$
\begin{equation*}
\rho(x, t)=\left(\mathcal{L}^{t} \circ \rho\right)(x)=\int d x_{0} \delta\left(x-f^{t}\left(x_{0}\right)\right) \rho\left(x_{0}, 0\right) \tag{16}
\end{equation*}
$$

ChaosBook.org

Transfer operator

- Symmetry (commutation) condition

$$
\begin{equation*}
g f(x)=f(g x), \tag{17}
\end{equation*}
$$

Transfer operator

- Symmetry (commutation) condition

$$
\begin{equation*}
g f(x)=f(g x) \tag{17}
\end{equation*}
$$

- applied to the transfer operator

$$
\begin{equation*}
\mathcal{L}(y, x)=\int d x \delta(y-f(x)) \circ \tag{18}
\end{equation*}
$$

Transfer operator

- Symmetry (commutation) condition

$$
\begin{equation*}
g f(x)=f(g x) \tag{17}
\end{equation*}
$$

- applied to the transfer operator

$$
\begin{equation*}
\mathcal{L}(y, x)=\int d x \delta(y-f(x)) \circ \tag{18}
\end{equation*}
$$

- constraining densities on the orbit $y=f(x)$ so that for a g-symmetric flow

$$
\begin{equation*}
\mathcal{L}(g y, g x)=\int d g x \delta(g y-f(g x)) \circ=\int d g x \delta(g[y-f(x)]) \circ \tag{19}
\end{equation*}
$$

still constrains the dynamics on $y=f(x)$.

Transfer operator

- Moreover

$$
\begin{align*}
\mathcal{L}(g y, g x) \rho(x) & =\int d g x \delta(g y-f(g x)) \rho(x) \\
& =\int_{g(\mathbb{R})} d u \delta(g y-f(u)) \rho\left(f^{-1}(u)\right) \\
& =\sum \rho\left(g^{-1} f^{-1}(g y)\right)\left[g^{-1} f^{-1}(g y)\right]^{\prime} \\
& =\sum_{y=f^{-1}(x)} \frac{\rho\left(f^{-1}(y)\right)}{\left|f^{\prime}(y)\right|}=\mathcal{L}(y, x) \rho(x) \tag{20}
\end{align*}
$$

Transfer operator

- Moreover

$$
\begin{align*}
\mathcal{L}(g y, g x) \rho(x) & =\int d g x \delta(g y-f(g x)) \rho(x) \\
& =\int_{g(\mathbb{R})} d u \delta(g y-f(u)) \rho\left(f^{-1}(u)\right) \\
& =\sum^{\rho} \rho\left(g^{-1} f^{-1}(g y)\right)\left[g^{-1} f^{-1}(g y)\right]^{\prime} \\
& =\sum_{y=f^{-1}(x)} \frac{\rho\left(f^{-1}(y)\right)}{\left|f^{\prime}(y)\right|}=\mathcal{L}(y, x) \rho(x) \tag{20}
\end{align*}
$$

- Thus the symmetry condition $f(x)=g^{-1} f(g x)$ is equivalent to $\mathcal{L}(g y, g x)=\mathcal{L}(y, x)$

Example

- Consider a \mathbf{Z}_{2} symmetry operation C for a 2D map $x_{n+1}=f\left(x_{n}\right)$, such that

$$
f(C x)=C f(x), \quad C=\left(\begin{array}{rr}
-1 & 0 \tag{21}\\
0 & -1
\end{array}\right)
$$

Example

- Consider a \mathbf{Z}_{2} symmetry operation C for a 2D map $x_{n+1}=f\left(x_{n}\right)$, such that

$$
f(C x)=C f(x), \quad C=\left(\begin{array}{rr}
-1 & 0 \tag{21}\\
0 & -1
\end{array}\right)
$$

- The phase space can be decomposed into symmetric and antisymmetric spaces by means of the projectors

$$
\begin{equation*}
P_{A_{1}}=\frac{1}{2}(e+C), \quad P_{A_{2}}=\frac{1}{2}(e-C) \tag{22}
\end{equation*}
$$

Example

- Consider a \mathbf{Z}_{2} symmetry operation C for a 2D map $x_{n+1}=f\left(x_{n}\right)$, such that

$$
f(C x)=C f(x), \quad C=\left(\begin{array}{rr}
-1 & 0 \tag{21}\\
0 & -1
\end{array}\right)
$$

- The phase space can be decomposed into symmetric and antisymmetric spaces by means of the projectors

$$
\begin{equation*}
P_{A_{1}}=\frac{1}{2}(e+C), \quad P_{A_{2}}=\frac{1}{2}(e-C) \tag{22}
\end{equation*}
$$

- Applied to the transfer operator to obtain

$$
\begin{align*}
\mathcal{L}_{A_{1}} & =P_{A_{1}} \mathcal{L}(y, x)=\frac{1}{2}[\mathcal{L}(y, x)+\mathcal{L}(-y, x)] \tag{23}\\
\mathcal{L}_{A_{2}} & =P_{A_{2}} \mathcal{L}(y, x)=\frac{1}{2}[\mathcal{L}(y, x)-\mathcal{L}(-y, x)] \tag{24}
\end{align*}
$$

Transfer operator decomposition

- In general, consider the projector

$$
\begin{equation*}
P_{\alpha}=\frac{d_{\alpha}}{|G|} \sum_{h} \chi_{\alpha}(h) h^{-1} \tag{25}
\end{equation*}
$$

P Cvitanović and B Eckhardt, Nonlinearity 6, 277 (1993)

Transfer operator decomposition

- In general, consider the projector

$$
\begin{equation*}
P_{\alpha}=\frac{d_{\alpha}}{|G|} \sum_{h} \chi_{\alpha}(h) h^{-1} \tag{25}
\end{equation*}
$$

- with group characters

$$
\begin{equation*}
\chi_{\alpha}(h)=\operatorname{tr} D_{\alpha}(h) \tag{26}
\end{equation*}
$$

P Cvitanović and B Eckhardt, Nonlinearity 6, 277 (1993),

Transfer operator decomposition

- In general, consider the projector

$$
\begin{equation*}
P_{\alpha}=\frac{d_{\alpha}}{|G|} \sum_{h} \chi_{\alpha}(h) h^{-1} \tag{25}
\end{equation*}
$$

- with group characters

$$
\begin{equation*}
\chi_{\alpha}(h)=\operatorname{tr} D_{\alpha}(h) \tag{26}
\end{equation*}
$$

- The P_{α} 's split the transfer operator into a sum of irreducible space contributions, each

$$
\begin{equation*}
\mathcal{L}_{A_{\alpha}}(y, x)=\frac{d_{\alpha}}{|G|} \sum_{h \in G} \chi_{\alpha}(h) \mathcal{L}\left(h^{-1} y, x\right) \tag{27}
\end{equation*}
$$

[^0]
Transfer operator decomposition

- In the example, the \mathbf{Z}_{2} group has two irreps, such that

$$
\begin{aligned}
& \chi_{1}(e)=1, \quad \chi_{1}(C)=1 \\
& \chi_{2}(e)=1, \quad \chi_{2}(C)=-1
\end{aligned}
$$

which yields

$$
\begin{equation*}
P_{A_{1}}=\frac{1}{2}(e+C), \quad P_{A_{2}}=\frac{1}{2}(e-C) \tag{28}
\end{equation*}
$$

Transfer operator decomposition

- In the example, the \mathbf{Z}_{2} group has two irreps, such that

$$
\begin{aligned}
& \chi_{1}(e)=1, \quad \chi_{1}(C)=1 \\
& \chi_{2}(e)=1, \quad \chi_{2}(C)=-1
\end{aligned}
$$

which yields

$$
\begin{equation*}
P_{A_{1}}=\frac{1}{2}(e+C), \quad P_{A_{2}}=\frac{1}{2}(e-C) \tag{28}
\end{equation*}
$$

- Eigenvalues of the transfer operator are evaluated by means of traces, also in the fundamental domain as

$$
\begin{equation*}
\operatorname{tr} \mathcal{L}=\int_{M} d x \mathcal{L}(x, x)=\int_{\tilde{M}} d \tilde{x} \sum_{h} \operatorname{tr} D(h) \mathcal{L}\left(h^{-1} \tilde{x}, \tilde{x}\right) \tag{29}
\end{equation*}
$$

Transfer operator decomposition

- In the example, the \mathbf{Z}_{2} group has two irreps, such that

$$
\begin{aligned}
& \chi_{1}(e)=1, \quad \chi_{1}(C)=1 \\
& \chi_{2}(e)=1, \quad \chi_{2}(C)=-1
\end{aligned}
$$

which yields

$$
\begin{equation*}
P_{A_{1}}=\frac{1}{2}(e+C), \quad P_{A_{2}}=\frac{1}{2}(e-C) \tag{28}
\end{equation*}
$$

- Eigenvalues of the transfer operator are evaluated by means of traces, also in the fundamental domain as

$$
\begin{equation*}
\operatorname{tr} \mathcal{L}=\int_{M} d x \mathcal{L}(x, x)=\int_{\tilde{M}} d \tilde{x} \sum_{h} \operatorname{tr} D(h) \mathcal{L}\left(h^{-1} \tilde{x}, \tilde{x}\right) \tag{29}
\end{equation*}
$$

- Contributions to the trace come from periodic orbits

Three-disk scatterer

- Symmetry group is D_{3}, dihedral

$$
\begin{equation*}
D_{3}=\left\{e, r, r_{2}, s, s_{1}, s_{2}\right\} \tag{30}
\end{equation*}
$$

Three-disk scatterer

- Symmetry group is D_{3}, dihedral

$$
\begin{equation*}
D_{3}=\left\{e, r, r_{2}, s, s_{1}, s_{2}\right\} \tag{30}
\end{equation*}
$$

- in matrix representation

$$
\begin{gathered}
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad r=\left(\begin{array}{rr}
-1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & -1 / 2
\end{array}\right), \quad r_{2}=\left(\begin{array}{rr}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right) \\
s=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad s_{1}=\left(\begin{array}{rr}
-1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right), \quad s_{2}=\left(\begin{array}{rr}
-1 / 2 & -\sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right)
\end{gathered}
$$

D_{3} group properties

- D_{3} is not Abelian, for example

$$
\begin{equation*}
s \circ s_{1}=r \neq s_{1} \circ s=r_{2} \tag{31}
\end{equation*}
$$

D_{3} group properties

- D_{3} is not Abelian, for example

$$
\begin{equation*}
s \circ s_{1}=r \neq s_{1} \circ s=r_{2} \tag{31}
\end{equation*}
$$

- mulitiplication table

D_{3}	1	r	r_{2}	s	s_{1}	s_{2}
1	1	r	r_{2}	s	s_{1}	s_{2}
r	r	r_{2}	1	s_{2}	s	s_{1}
r_{2}	r_{2}	1	r	s_{1}	s_{2}	s
s	s	s_{1}	s_{2}	1	r	r_{2}
s_{1}	s_{1}	s_{2}	s	r_{2}	1	r
s_{2}	s_{2}	s	s_{1}	r	r_{2}	1

D_{3} group properties

- D_{3} is not Abelian, for example

$$
\begin{equation*}
s \circ s_{1}=r \neq s_{1} \circ s=r_{2} \tag{31}
\end{equation*}
$$

- mulitiplication table

D_{3}	1	\boldsymbol{r}	r_{2}	s	s_{1}	s_{2}
1	1	\boldsymbol{r}	r_{2}	s	s_{1}	s_{2}
r	r	r_{2}	1	s_{2}	s	s_{1}
r_{2}	r_{2}	1	r	s_{1}	s_{2}	s
s	s	s_{1}	s_{2}	1	r	r_{2}
s_{1}	s_{1}	s_{2}	s	r_{2}	1	r
s_{2}	s_{2}	s	s_{1}	r	r_{2}	1

- D_{3} has six subgroups...

$$
\begin{equation*}
\{e\},\{e, s\},\left\{e, s_{1}\right\},\left\{e, s_{2}\right\},\left\{e, r, r_{2}\right\} \tag{32}
\end{equation*}
$$

D_{3} group properties

- D_{3} is not Abelian, for example

$$
\begin{equation*}
s \circ s_{1}=r \neq s_{1} \circ s=r_{2} \tag{31}
\end{equation*}
$$

- mulitiplication table

D_{3}	1	\boldsymbol{r}	r_{2}	s	s_{1}	s_{2}
1	1	\boldsymbol{r}	r_{2}	s	s_{1}	s_{2}
r	r	r_{2}	1	s_{2}	s	s_{1}
r_{2}	r_{2}	1	r	s_{1}	s_{2}	s
s	s	s_{1}	s_{2}	1	r	r_{2}
s_{1}	s_{1}	s_{2}	s	r_{2}	1	r
s_{2}	s_{2}	s	s_{1}	r	r_{2}	1

- D_{3} has six subgroups...

$$
\begin{equation*}
\{e\},\{e, s\},\left\{e, s_{1}\right\},\left\{e, s_{2}\right\},\left\{e, r, r_{2}\right\} \tag{32}
\end{equation*}
$$

- ...And three classes

$$
\begin{equation*}
\{e\},\left\{s, s_{1}, s_{2}\right\},\left\{r, r_{2}\right\} \tag{33}
\end{equation*}
$$

Cycles and their symmetries

- The pinball is an open system, so everything escapes eventually. The transient chaotic dynamics is nailed by the trapped orbits.

Cycles and their symmetries

- The pinball is an open system, so everything escapes eventually. The transient chaotic dynamics is nailed by the trapped orbits.
- It is convenient to describe orbits by symbolic sequences

Cycles and their symmetries

- The pinball is an open system, so everything escapes eventually. The transient chaotic dynamics is nailed by the trapped orbits.
- It is convenient to describe orbits by symbolic sequences

- Then symmetry operations can be applied directly to symbols, e.g.

$$
\begin{equation*}
r(\overline{12})=\overline{23}, r(\overline{23})=\overline{31}, r(\overline{31})=\overline{12} \tag{34}
\end{equation*}
$$

Cycles and their symmetries

- More examples:

$$
s_{1}(\overline{123})=\overline{132}
$$

but also: $\overline{123}$ and $\overline{132}$ form a group of invariant cycles under C_{3} (rotations)

Cycles and their symmetries

- More examples:

$$
\begin{equation*}
s_{1}(\overline{123})=\overline{132} \tag{35}
\end{equation*}
$$

but also: $\overline{123}$ and $\overline{132}$ form a group of invariant cycles under C_{3} (rotations)

- cycles $\overline{1213}, \overline{1232}$ and $\overline{1323}$ are invariant under D_{1} (flips), e.g.

$$
s_{1}(\overline{1213})=\overline{1312}=\overline{1213}
$$

but also

$$
\begin{equation*}
r_{2}(\overline{1213})=\overline{1232}, r_{2}(\overline{1232})=\overline{1323} \tag{37}
\end{equation*}
$$

Cycles and their symmetries

- six-degenerate five-cycle $\overline{12123}$:

Cycles and their symmetries

- six-degenerate five-cycle $\overline{12123}$:

$$
\begin{equation*}
s(\overline{12123})=\overline{13132} \tag{38}
\end{equation*}
$$

- Besides D_{3}-symmetries, pinball has time-reversal- :

$$
\begin{equation*}
T(\overline{121212313})=\overline{121212323} \tag{39}
\end{equation*}
$$

Fundamental domain

- Reduce three symbols 123 to two: 0 (backward) and 1 (forward)

Fundamental domain

- Reduce three symbols 123 to two: 0 (backward) and 1 (forward)

- Restrict the dynamics to one disk + reflection off the symmetry axes:

$$
\begin{equation*}
\overline{23} \rightarrow \overline{0}, \overline{123} \rightarrow \overline{1}, \overline{1232} \rightarrow \overline{01} \tag{40}
\end{equation*}
$$

Fundamental domain

- Time-reversal nine-cycle

$$
\begin{equation*}
\overline{121212323} \equiv \overline{121212313} \rightarrow \overline{001} \tag{41}
\end{equation*}
$$

ChaosBook.org

Bunimovich stadium

- $C_{2 v}$ symmetry group

$$
C_{2 v}=\left\{e, s_{x}, s_{y}, C_{2}\right\}
$$

E G Vergini and G G Carlo, J. Phys. A: Math. Gen. 33, 4717 (2000)

Bunimovich stadium

- $C_{2 v}$ symmetry group

$$
C_{2 v}=\left\{e, s_{x}, s_{y}, C_{2}\right\}
$$

- s_{x}, s_{y} flips around $x-, y$-axes

E G Vergini and G G Carlo, J. Phys. A: Math. Gen. 33, 4717 (2000)

Bunimovich stadium

- $C_{2 v}$ symmetry group

$$
C_{2 v}=\left\{e, s_{x}, s_{y}, C_{2}\right\}
$$

- s_{x}, s_{y} flips around $x-, y$-axes
- C_{2} rotation by π

E G Vergini and G G Carlo, J. Phys. A: Math. Gen. 33, 4717 (2000)

Desymmetrization

E G Vergini and G G Carlo, J. Phys. A: Math. Gen. 33, 4717 (2000)

Desymmetrization

E G Vergini and G G Carlo, J. Phys. A: Math. Gen. 33, 4717 (2000)

Symbolic dynamics

- six symbols to avoid directional ambiguity

K T Hansen and P Cvitanović, chao-dyn/9502005 (1995); O. Biham and M Kvale, Phys. Rev. A 46, 6334 (1992)

Five-symbol dynamics

K T Hansen and P Cvitanović, chao-dyn/9502005 (1995)

Symmetry-reduced symbolic dynamics

s_{t}	$\sigma_{t-1} \sigma_{t}$	$\sigma_{t-n-1} 0^{n} \sigma_{t}$
a	11	
	22	
b	00	
c	10	
	20	
d	01	$-10^{n} 1_{-}$
	01	$-40^{n} 1_{-}$
	02	$-20^{n} 2_{-}$
	02	$-30^{n} 2_{-}$
ϵ	01	$-20^{n} 1_{-}$
	01	$-30^{n} 1_{-}$
	02	$-10^{n} 2_{-}$
	02	$-40^{n} 2_{-}$
f	34	
	43	

s_{t}	$\sigma_{t-1} \sigma_{t}$	$\sigma_{t-n-1} 0^{n} \sigma_{t}$
g	30	
	40	
h	03	$-20^{n} 3_{-}$
	03	$-30^{n} z_{-}$
	04	$-10^{n} 4_{-}$
	04	$-40^{n} 4_{-}$
i	03	$-10^{n} 3-$
	03	$-40^{n} 3_{-}$
	04	$-20^{2} 4_{-}$
	04	$-30^{n} 4_{-}$
j	23	
	14	
k	24	
	13	

Coupled Map Lattices

- Dynamical systems with discrete space and time and continuous state variables

$$
\begin{equation*}
\Phi_{n+1}^{(i)}=(1-a) f\left(\Phi_{n}^{(i)}\right)+\frac{a}{2}\left[g\left(\Phi_{n}^{(i+1)}\right)+g\left(\phi_{n}^{(i-1)}\right)\right] \tag{42}
\end{equation*}
$$

Coupled Map Lattices

- Dynamical systems with discrete space and time and continuous state variables

$$
\begin{equation*}
\Phi_{n+1}^{(i)}=(1-a) f\left(\Phi_{n}^{(i)}\right)+\frac{a}{2}\left[g\left(\Phi_{n}^{(i+1)}\right)+g\left(\Phi_{n}^{(i-1)}\right)\right] \tag{42}
\end{equation*}
$$

- It becomes a system of N coupled maps, e.g. $(N=2$, set $f=g)$

$$
\begin{align*}
& x_{n+1}=(1-a) f\left(x_{n}\right)+a f\left(y_{n}\right) \tag{43}\\
& y_{n+1}=(1-a) f\left(y_{n}\right)+a f\left(x_{n}\right) \tag{44}
\end{align*}
$$

Coupled Map Lattices

- Dynamical systems with discrete space and time and continuous state variables

$$
\begin{equation*}
\Phi_{n+1}^{(i)}=(1-a) f\left(\Phi_{n}^{(i)}\right)+\frac{a}{2}\left[g\left(\Phi_{n}^{(i+1)}\right)+g\left(\Phi_{n}^{(i-1)}\right)\right] \tag{42}
\end{equation*}
$$

- It becomes a system of N coupled maps, e.g. $(N=2$, set $f=g)$

$$
\begin{align*}
x_{n+1} & =(1-a) f\left(x_{n}\right)+a f\left(y_{n}\right) \tag{43}\\
y_{n+1} & =(1-a) f\left(y_{n}\right)+a f\left(x_{n}\right) \tag{44}
\end{align*}
$$

- $a=0$ yields uncoupled dynamics, that is every lattice site follows its own independent dynamics given by f

$$
\begin{align*}
x_{n+1} & =f\left(x_{n}\right) \tag{45}\\
y_{n+1} & =f\left(y_{n}\right) \tag{46}
\end{align*}
$$

Coupled Map Lattices

- Suppose f is chaotic, e.g. Bernoulli shifts $\left(x_{n+1}=2 x_{n} \bmod 1\right)$ or conjugated

Coupled Map Lattices

- Suppose f is chaotic, e.g. Bernoulli shifts $\left(x_{n+1}=2 x_{n} \bmod 1\right)$ or conjugated

- Take for example the periodic points of period $n_{p}=2$: the single map has

$$
\begin{array}{llll}
0 \tag{47}\\
0
\end{array}, \quad 0 \begin{aligned}
& 1 \\
& 1
\end{aligned}, \quad \begin{aligned}
& 1 \\
& 0
\end{aligned}
$$

Coupled Map Lattices

Then the two-dimensional map has $4^{2}=16$ periodic points classified as

- six prime orbits

| 00 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 01 |, | 00 |
| :--- | :--- |
| 01 |, | 10 |
| :--- |
| 11 |, | 01 |
| :--- |
| 10 |, | 00 |
| :--- |
| 10 |, | 11 |
| :--- |
| 11 |

Coupled Map Lattices

Then the two-dimensional map has $4^{2}=16$ periodic points classified as

- six prime orbits

| 00 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 01 |, | 00 |
| :--- | :--- |
| 01 |, | 10 |
| :--- |
| 11 |, | 01 |
| :--- |
| 10 |, | 00 |
| :--- |
| 10 |,\quad| 11 |
| :--- |

- their cyclic permutations

01	11	11	10	10	11
00	00	10	01	00	

Coupled Map Lattices

Then the two-dimensional map has $4^{2}=16$ periodic points classified as

- six prime orbits

$$
\begin{array}{llllll}
00 \tag{48}\\
01
\end{array}, \begin{aligned}
& 00 \\
& 01
\end{aligned}, \begin{aligned}
& 10 \\
& 11
\end{aligned}, \begin{aligned}
& 01 \\
& 10
\end{aligned}, \begin{aligned}
& 00 \\
& 10
\end{aligned}, \begin{aligned}
& 01 \\
& 11
\end{aligned}
$$

- their cyclic permutations

$$
\begin{array}{llllll}
01 \tag{49}\\
00
\end{array}, \begin{aligned}
& 11 \\
& 00
\end{aligned}, \begin{aligned}
& 11 \\
& 10
\end{aligned}, \begin{aligned}
& 10 \\
& 01
\end{aligned}, \begin{aligned}
& 10 \\
& 00
\end{aligned}, \begin{aligned}
& 11 \\
& 01
\end{aligned}
$$

- and four period-one repeated orbits

| 00 |
| :--- | :--- | :--- | :--- |
| 00 |, | 01 |
| :--- | :--- |
| 01 |, | 10 |
| :--- |
| 10 |, | 11 |
| :--- |
| 11 |

Coupled Map Lattices - symmetry reduction

- A symmetrically coupled lattice of N spatial sites has symmetry group D_{N} of order $2 N$ (spatial cyclic permutation + reflections)

Coupled Map Lattices - symmetry reduction

- A symmetrically coupled lattice of N spatial sites has symmetry group D_{N} of order $2 N$ (spatial cyclic permutation + reflections)
- If $N=2$, cyclic shift is the same as reflection and $D_{2}=C_{2}=\{e, s\}$. The prime orbits of period $n_{p}=2$ in the fundamental domain are classified as

Coupled Map Lattices - symmetry reduction

- A symmetrically coupled lattice of N spatial sites has symmetry group D_{N} of order $2 N$ (spatial cyclic permutation + reflections)
- If $N=2$, cyclic shift is the same as reflection and $D_{2}=C_{2}=\{e, s\}$. The prime orbits of period $n_{p}=2$ in the fundamental domain are classified as
- two asymmetric orbits of period two in the original dynamics

| 00 |
| :--- | :--- |
| 10 |, | 10 |
| :--- |
| 11 |

Coupled Map Lattices - symmetry reduction

- A symmetrically coupled lattice of N spatial sites has symmetry group D_{N} of order $2 N$ (spatial cyclic permutation + reflections)
- If $N=2$, cyclic shift is the same as reflection and $D_{2}=C_{2}=\{e, s\}$. The prime orbits of period $n_{p}=2$ in the fundamental domain are classified as
- two asymmetric orbits of period two in the original dynamics

| 00 |
| :--- | :--- |
| 10 |, | 10 |
| :--- |
| 11 |

- one boundary orbit $(x=y)$ originally of period two

00
11

Coupled Map Lattices - symmetry reduction

- and three symmetric orbits of original period four

00	01	10
01	01	11
00		
10	10	10

Coupled Map Lattices - symmetry reduction

- and three symmetric orbits of original period four

00	01	10
01	01	11
00	10	01
10	10	11

- Applying the flip $s:(x, y) \rightarrow(y, x)$, the orbits of the last group are all copies of the orbits of the first group, or repeated orbits, and we are left with

| 00 |
| :--- | :--- | :--- |
| 01 |,$\quad 01, \quad 00$

as prime cycles in the fundamental domain $x \geq y$

Coupled Map Lattices - symmetry reduction

- and three symmetric orbits of original period four

00	01	10
01	01	11
00	10	
10	10	01

- Applying the flip $s:(x, y) \rightarrow(y, x)$, the orbits of the last group are all copies of the orbits of the first group, or repeated orbits, and we are left with

| 00 |
| :--- | :--- | :--- |
| 01 |,$\quad 01,$| 00 |
| :--- |
| 11 |

as prime cycles in the fundamental domain $x \geq y$

- Exercise: desymmetrize period-two orbits for lattices with $N=3$ (hence for D_{3} symmetry group)

[^0]: P Cvitanović and B Eckhardt, Nonlinearity 6, 277 (1993),

