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résumé 80 commentary 81 exercises 83 references 84

4 Local stability 86
4.1 Flows transport neighborhoods . . . . . . . . . . . . . . . . . . . 86
4.2 Computing the Jacobian . . . . . . . . . . . . . . . . . . . . . . 90
4.3 A linear diversion . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4 Stability of flows . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Stability of maps . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ii



CONTENTS iii
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résumé 563 commentary 564 exercises 567 references 568

24 Intermittency 570
24.1 Intermittency everywhere . . . . . . . . . . . . . . . . . . . . . . 571
24.2 Intermittency for pedestrians . . . . . . . . . . . . . . . . . . . . 574
24.3 Intermittency for cyclists . . . . . . . . . . . . . . . . . . . . . . 586
24.4 BER zeta functions . . . . . . . . . . . . . . . . . . . . . . . . . 593
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résumé 676 commentary 677 exercises 679 references 680

28 Universality in transitions to chaos 684
28.1 Onset of turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 685
28.2 Onset of chaos in a numerical experiment . . . . . . . . . . . . . 687
28.3 What does all this have to do with fishing? . . . . . . . . . . . . . 690
28.4 A universal equation . . . . . . . . . . . . . . . . . . . . . . . . 692
28.5 The unstable manifold . . . . . . . . . . . . . . . . . . . . . . . 698
28.6 Cookie-cutter’s universality . . . . . . . . . . . . . . . . . . . . . 702
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résumé 922 commentary 922 references 923

42 Quantum pinball 926
42.1 Spectral determinant for two-dimensional systems . . . . . . . . . 928
42.2 Semiclassical zeta function . . . . . . . . . . . . . . . . . . . . . 928
42.3 Three-disk pinball . . . . . . . . . . . . . . . . . . . . . . . . . . 928
42.4 Classical pinball . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
42.5 Quantum pinball . . . . . . . . . . . . . . . . . . . . . . . . . . 932
résumé 943 commentary 944 references 944

43 Helium atom 949
43.1 Classical dynamics of collinear helium . . . . . . . . . . . . . . . 950
43.2 Chaos, symbolic dynamics and periodic orbits . . . . . . . . . . . 951
43.3 Local coordinates, Jacobian matrix . . . . . . . . . . . . . . . . . 956
43.4 Getting ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957
43.5 Semiclassical quantization of collinear helium . . . . . . . . . . . 959
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résumé 988 commentary 989 exercises 990 references 991

46 Uniform approximations 994
46.1 Bifurcations and catastrophes . . . . . . . . . . . . . . . . . . . . 994
46.2 Periodic orbits near bifurcations . . . . . . . . . . . . . . . . . . 997
46.3 Closed orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
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Part I

Geometry of chaos

1



2

We start out with a recapitulation of the basic notions of dynamics. Our aim is
narrow; we keep the exposition focused on prerequisites to the applications to
be developed in this text. We assume that the reader is familiar with dynamics

on the level of the introductory texts mentioned in remark 1.1, and concentrate here on
developing intuition about what a dynamical system can do. It will be a coarse brush
sketch–a full description of all possible behaviors of dynamical systems is beyond human
ken. While for a novice there is no shortcut through this lengthy detour, a sophisticated
traveler might bravely skip this well-trodden territory and embark upon the journey at
chapter 15.

The fate has handed you a flow. What are you to do about it?

1. Define your dynamical system (M, f ): the space of its possible states M, and the
law f t of their evolution in time.

2. Pin it down locally–is there anything about it that is stationary? Try to determine its
equilibria / fixed points (Chapter 2).

3. Slice it, represent as a map from a section to a section (Chapter3).

4. Explore the neighborhood by linearizing the flow–check the linear stability of its
equilibria / fixed points, their stability eigen-directions (Chapter4).

5. Go global: train by partitioning the state space of 1-dimensional maps. Label the
regions by symbolic dynamics (Chapter 11).

6. Now venture global distances across the system by continuing eigenvectors into
stable / unstable manifolds. Their intersections partition the state space in a dy-
namically invariant way (Chapter 12).

7. Guided by this topological partition, compute a set of periodic orbits up to a given
topological length (Chapter 13).

Along the way you might want to learn about dynamical invariants (chapter5), Lyapunov
exponents (chapter 6), classical mechanics (chapter 7), billiards (chapter 8), and discrete
(chapter 9) and continuous (chapter 10) symmetries of dynamics.
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Chapter 1

Overture

If I have seen less far than other men it is because I have
stood behind giants.

—Edoardo Specchio

TEST:

Rereading classic theoretical physics textbooks leaves a sense that there are
holes large enough to steam a Eurostar train through them. Here we learn
about harmonic oscillators and Keplerian ellipses - but where is the chap-

ter on chaotic oscillators, the tumbling Hyperion? We have just quantized hydro-
gen, where is the chapter on the classical 3-body problem and its implications for
quantization of helium? We have learned that an instanton is a solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory have
turbulent solutions? How are we to think about systems where things fall apart;
the center cannot hold; every trajectory is unstable? 1 2

This chapter offers a quick survey of the main topics covered in the book.
Throughout the book 3

⇓PRIVATE

⇓ indicates that the text up to ⇑ is still only a draft, not visible in the web
version ⇑PRIVATE

indicates that the section is on a pedestrian level - you are expected to
know/learn this material

indicates that the section is on a somewhat advanced, cyclist level
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CHAPTER 1. OVERTURE 4

indicates that the section requires a hearty stomach and is probably best
skipped on first reading

fast track points you where to skip to

tells you where to go for more depth on a particular topic

[exercise 1.2] on margin links to an exercise that might clarify a point in the text

indicates that a figure is still missing–you are urged to fetch it

We start out by making promises–we will right wrongs, no longer shall you suffer
the slings and arrows of outrageous Science of Perplexity. We relegate a historical
overview of the development of chaotic dynamics to appendixA, and head straight
to the starting line: A pinball game is used to motivate and illustrate most of the
concepts to be developed in ChaosBook. 4 5

This is a textbook, not a research monograph, and you should be able to follow
the thread of the argument without constant excursions to sources. Hence there are
no literature references in the text proper, all learned remarks and bibliographical
pointers are relegated to the “Commentary” section at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with sci-
ence, we acquire a firmer hold over the vicissitudes of life
and meet them with greater calm, but in reality we have
done no more than to find a way to escape from our sor-
rows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics are complex beyond
belief, systems which are locally unstable (almost) everywhere but globally recur-
rent. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were it not for the fact that this
determinant that we are to compute is fashioned out of infinitely many infinitely
small pieces. The feel is of statistical mechanics, and that is how the problem
was solved; in the 1960’s the pieces were counted, and in the 1970’s they were

4Predrag: soften out eyep.ps
5Predrag: Gatto Nero reference to Science of Perplexity
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CHAPTER 1. OVERTURE 5

brain, rat
Poincar“’e, H.

weighted and assembled in a fashion that in beauty and in depth ranks along with
thermodynamics, partition functions and path integrals amongst the crown jewels
of theoretical physics.

This book is not a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically invariant
compact sets (equilibria, periodic orbits, partially hyperbolic invariant tori) and
the global long-time evolution of densities of trajectories. Chaotic dynamics is
generated by the interplay of locally unstable motions, and the interweaving of
their global stable and unstable manifolds. These features are robust and acces-
sible in systems as noisy as slices of rat brains. Poincaré, the first to understand
deterministic chaos, already said as much (modulo rat brains). Once this topology
is understood, a powerful theory yields the observable consequences of chaotic
dynamics, such as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not know
this material, so you are on your own. We will teach you how to evaluate a deter-
minant, take a logarithm–stuff like that. Ideally, this should take 100 pages or so.
Well, we fail–so far we have not found a way to traverse this material in less than
a semester, or 200-300 page subset of this text. Nothing to be done. 6

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats: The Second Coming

The study of chaotic dynamics is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic,’ have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations–an
expectation tempered by our recently acquired ability to numerically scan the state
space of non-integrable dynamical systems. The initial impression might be that
all of our analytic tools have failed us, and that the chaotic systems are amenable
only to numerical and statistical investigations. Nevertheless, a beautiful theory
of deterministic chaos, of predictive quality comparable to that of the traditional
perturbation expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are used as zeroth-order ap-
proximations to physical systems, and weak nonlinearities are then accounted for

6Predrag: hyperlink to Waiting for Godot
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CHAPTER 1. OVERTURE 6

Figure 1.1: A physicist’s bare bones game of pinball.

perturbatively. For strongly nonlinear, non-integrable systems such expansions
fail completely; at asymptotic times the dynamics exhibits amazingly rich struc-
ture which is not at all apparent in the integrable approximations. However, hidden
in this apparent chaos is a rigid skeleton, a self-similar tree of cycles (periodic or-
bits) of increasing lengths. The insight of the modern dynamical systems theory
is that the zeroth-order approximations to the harshly chaotic dynamics should be
very different from those for the nearly integrable systems: a good starting ap-
proximation here is the stretching and folding of baker’s dough, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling for how
and why unstable cycles come about, we start by playing a game of pinball. The
reminder of the chapter is a quick tour through the material covered in ChaosBook.
Do not worry if you do not understand every detail at the first reading–the intention
is to give you a feeling for the main themes of the book. Details will be filled out
later. If you want to get a particular point clarified right now, [section1.4] on the

section 1.4
margin points at the appropriate section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the intro-
duction of [ChaosBook]. However, in order to understand
the introduction you will first have to read the rest of the
book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who has tried
pool, billiards or snooker–the game is about beating chaos–so we start our story
about what chaos is, and what to do about it, with a game of pinball. This might
seem a trifle, but the game of pinball is to chaotic dynamics what a pendulum is
to integrable systems: thinking clearly about what ‘chaos’ in a game of pinball
is will help us tackle more difficult problems, such as computing the diffusion
constant of a deterministic gas, the drag coefficient of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed

intro - 9apr2009 boyscout version14.4, Mar 19 2013
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Figure 1.2: Sensitivity to initial conditions: two pin-
balls that start out very close to each other separate ex-
ponentially with time.
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to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
figure 1.1. 7 A physicist’s pinball is free, frictionless, point-like, spin-less, per-
fectly elastic, and noiseless. Point-like pinballs are shot at the disks from random
starting positions and angles; they spend some time bouncing between the disks
and then escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz was
confident that given the initial conditions one knew everything a deterministic
system would do far into the future. He wrote [2], anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant an intelligence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [. . . ] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretell and calculate
how they will rebound and what course they will take after the impact. Very
simple laws are followed which also apply, no matter how many spheres
are taken or whether objects are taken other than spheres. From this one
sees then that everything proceeds mathematically–that is, infallibly–in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of phys-
ical system that we shall use here as a paradigm of ‘chaos.’ His claim is wrong in a
deep and subtle way: a state of a physical system can never be specified to infinite
precision, and by this we do not mean that eventually the Heisenberg uncertainty
principle kicks in. In the classical, deterministic dynamics there is no way to take
all the circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

7Predrag: remove “WIN IF ...” in figure 1.1
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Figure 1.3: Unstable trajectories separate with time.
  x(0)δ

  x(t)δ

x(t)x(0)

1.3.1 What is ‘chaos’?

I accept chaos. I am not sure that it accepts me.
—Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully deter-
mined by its initial conditions.

In contrast, radioactive decay, Brownian motion and heat flow are examples
of stochastic systems, for which the initial conditions determine the future only
partially, due to noise, or other external circumstances beyond our control: the
present state reflects the past initial conditions plus the particular realization of
the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling the deterministic from the
stochastic is the main challenge in many real-life settings, from stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?

In a game of pinball, any two trajectories that start out very close to each other
separate exponentially with time, and in a finite (and in practice, a very small)
number of bounces their separation δx(t) attains the magnitude of L, the charac-
teristic linear extent of the whole system, figure 1.2. This property of sensitivity
to initial conditions can be quantified as

|δx(t)| ≈ eλt |δx(0)|

where λ, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy δx = |δx(0)| of the initial data, the

chapter 6
dynamics is predictable only up to a finite Lyapunov time8

TLyap ≈ −
1
λ

ln |δx/L| , (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that rule
the pinball motion. 9

8Predrag: redefine as? “τp = 1/λp is the Lyapunov time of cycle p, that is the mean time it takes
for the density of neighboring trajectories in an arbitrarily small ball centered around a point on the
trajectory to decrease by factor 1/e.” The Lyapunov time has nothing to do with the period of the
particular cycle.
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Figure 1.4: Dynamics of a chaotic dynamical sys-
tem is (a) everywhere locally unstable (positive
Lyapunov exponent) and (b) globally mixing (pos-
itive entropy). (A. Johansen)

(a) (b)

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajecto-
ries would only separate, never to meet again. What is also needed is mixing, the
coming together again and again of trajectories. While locally the nearby trajec-
tories separate, the interesting dynamics is confined to a globally finite region of
the state space and thus the separated trajectories are necessarily folded back and
can re-approach each other arbitrarily closely, infinitely many times. For the case
at hand there are 2n topologically distinct n bounce trajectories that originate from
a given disk. More generally, the number of distinct trajectories with n bounces
can be quantified as

section 15.1

N(n) ≈ ehn

where h, the growth rate of the number of topologically distinct trajectories, is
called the “topological entropy” (h = ln 2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deterministic dynam-
ics there is no chaos in the everyday sense of the word; everything proceeds
mathematically–that is, as Baron Leibniz would have it, infallibly. When a physi-
cist says that a certain system exhibits ‘chaos,’ he means that the system obeys
deterministic laws of evolution, but that the outcome is highly sensitive to small
uncertainties in the specification of the initial state. The word ‘chaos’ has in this
context taken on a narrow technical meaning. If a deterministic system is locally
unstable (positive Lyapunov exponent) and globally mixing (positive entropy)–
figure 1.4–it is said to be chaotic. 10

While mathematically correct, the definition of chaos as ‘positive Lyapunov
+ positive entropy’ is useless in practice, as a measurement of these quantities is
intrinsically asymptotic and beyond reach for systems observed in nature. More
powerful is Poincaré’s vision of chaos as the interplay of local instability (unsta-
ble periodic orbits) and global mixing (intertwining of their stable and unstable
manifolds). In a chaotic system any open ball of initial conditions, no matter how
small, will in finite time overlap with any other finite region and in this sense
spread over the extent of the entire asymptotically accessible state space. Once
this is grasped, the focus of theory shifts from attempting to predict individual
trajectories (which is impossible) to a description of the geometry of the space
of possible outcomes, and evaluation of averages over this space. How this is
accomplished is what ChaosBook is about. ⇓PRIVATE

10Predrag: double the green line in figure 1.4. DB finds it unintelligible as drawn
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hyperchaos
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ODEs
turbulence

Even a baby nonlinear problem can bedevil the smoothest dynamicist, and
thus there is much squabbling about naming different kinds of complex dynamics
exhibited by nonlinear flows. In practice, “chaos” tends to refer to unstable 3d
flows (2d maps). If the dimension is higher, new names are made up. For example,
if most orbits of a system are unstable to perturbations in two real eigendirections,
the complex motion exhibited is termed “hyperchaos.” A waste of a good word
that could have been used to describe a phenomenon of a greater generality than
number 2.

Flows described by partial differential equations [PDEs] are said to be infinite
dimensional because if one writes them down as a set of ordinary differential equa-
tions [ODEs], a set of infinitely many ODEs is needed to represent the dynamics
of one PDE. Even though their state space is thus ‘infinite-dimensional,’ the long-
time dynamics of viscous flows, such as Navier-Stokes, and PDEs modeling them,
such as Kuramoto-Sivashinsky, exhibits, when dissipation is high and the system
spatial extent small, apparent ‘low-dimensional’ dynamical behaviors. For some
of these the asymptotic dynamics is known to be confined to a finite-dimensional
inertial manifold, though the rigorous upper bounds on this dimension are not of
much use in the practice.

For large spatial extent the complexity of the spatial motions also needs to be
taken into account. The systems whose spatial correlations decay sufficiently fast,
and the attractor dimension and number of positive Lyapunov exponents diverges
with system size are said to be extensively, ‘spatio-temporally chaotic’ or ‘weakly
turbulent.’ Spatio-temporally chaotic systems are characterized by creation / an-
nihilation of ‘defects.’ They are extensive; if you increase the spatial extent in
a given direction by a factor of two, you will need twice as many ‘degrees of
freedom’ to describe it to the same accuracy. Conversely, for small system sizes
the accurate description might require a large set of coupled ODEs, but dynamics
can still be ‘low-dimensional’ in the sense that it is characterized with one or a
few positive Lyapunov exponents. There is no wide range of scales involved, nor
decay of spatial correlations, and the system is in this sense only ‘chaotic.’ ⇑PRIVATE

A definition of ‘turbulence’ is even harder to come by. Can you recognize
turbulence when you see it? The word comes from ‘tourbillon,’ French for ‘vor-
tex,’ and intuitively it refers to irregular behavior of spatially extended system
described by deterministic equations of motion–say, a bucket of sloshing water
described by the Navier-Stokes equations. But in practice the word ‘turbulence’
tends to refer to messy dynamics which we understand poorly. As soon as a ⇓PRIVATE

chapter 27

⇑PRIVATE

phenomenon is understood better, it is reclaimed and renamed: ‘a route to chaos’,
‘spatiotemporal chaos’, and so on.

⇓PRIVATEFor a subset of physicists and mathematicians who study idealized ‘fully de-
veloped,’ ‘homogenous’ turbulence the generally accepted usage is that the ‘tur-
bulent’ fluid is characterized by a range of scales and an energy cascade describ-
able by statistic assumptions. What experimentalists, engineers, geophysicists,
astrophysicists actually observe looks nothing like a ‘fully developed turbulence.’
In the physically driven wall-bounded shear flows, the turbulence is dominated by
unstable coherent structures, that is, localized recurrent vortices, rolls, streaks and
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CHAPTER 1. OVERTURE 11

like. The statistical assumptions fail, and a dynamical systems description from
first principles is called for.

Here comes our quandary. If we ban the words ‘turbulence’ and ‘spatiotem-
poral chaos’ from our study of small extent systems, the relevance of what we
do to larger systems is obscured. The exact unstable coherent structures we deter-
mine pertain not only to the spatially small ‘chaotic’ systems, but also the spatially
large ‘spatiotemporally chaotic’ and the spatially very large ‘turbulent’ systems.
The key aspect we study here - continuous spatial symmetry of the system - is
pertinent to all these systems, independent of their size. So, for the lack of more
precise nomenclature, we take the liberty of using the terms ‘chaos,’ ‘spatiotem-
poral chaos,’ and ‘turbulence’ interchangeably.

We return to these painful questions in chapter27. ⇑PRIVATE

In ChaosBook we shall develop a theory of chaotic dynamics for low dimens-
ional attractors visualized as a succession of nearly periodic but unstable motions.
In the same spirit, we shall think of turbulence in spatially extended systems in
terms of recurrent spatiotemporal patterns. Pictorially, dynamics drives a given
spatially extended system (clouds, say) through a repertoire of unstable patterns;
as we watch a turbulent system evolve, every so often we catch a glimpse of a
familiar pattern: 11

=⇒ other swirls =⇒

For any finite spatial resolution, a deterministic flow follows approximately for a
finite time an unstable pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space of such
patterns. In ChaosBook we recast this image into mathematics.

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical frac-
tals.

— Richard P. Taylor [4, 5]

When should we be mindful of chaos? 12 The solar system is ‘chaotic’, yet we
have no trouble keeping track of the annual motions of planets. The rule of thumb

11Predrag: replace by the color original
12Predrag: expand using my lectures
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is this; if the Lyapunov time (1.1)–the time by which a state space region initially
comparable in size to the observational accuracy extends across the entire acces-
sible state space–is significantly shorter than the observational time, you need to
master the theory that will be developed here. 13 That is why the main successes
of the theory are in statistical mechanics, quantum mechanics, and questions of
long term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory,’ so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable only
to systems of a low intrinsic dimension – the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent (a descrip-
tion of its long time dynamics requires a space of high intrinsic dimension) we are
out of luck. Hence insights that the theory offers in elucidating problems of fully
developed turbulence, quantum field theory of strong interactions and early cos-
mology have been modest at best. Even that is a caveat with qualifications. There

⇓PRIVATE

chapter 27
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are applications–such as spatially extended (non-equilibrium) systems, plumber’s
turbulent pipes, etc.,–where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to the very
noisy systems so important in the life sciences and in economics. Even though
we are often interested in phenomena taking place on time scales much longer
than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmental noise has been very hard.

In 1980’s something happened that might be without parallel; this is an area
of science where the advent of cheap computation had actually subtracted from
our collective understanding. The computer pictures and numerical plots of frac-
tal science of the 1980’s have overshadowed the deep insights of the 1970’s, and
these pictures have since migrated into textbooks. By a regrettable oversight,
ChaosBook has none, so ‘Untitled 5’ of figure 1.5 will have to do as the illustra-
tion of the power of fractal analysis. Fractal science posits that certain quantities

remark 1.7
(Lyapunov exponents, generalized dimensions, . . . ) can be estimated on a com-
puter. While some of the numbers so obtained are indeed mathematically sensible
characterizations of fractals, they are in no sense observable and measurable on
the length-scales and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature is
circumstantial [7], in studies of probabilistically assembled fractal aggregates we
know of nothing better than contemplating such quantities. In deterministic sys-
tems we can do much better.

1.4 A game of pinball

13Predrag: cite Gaspard numbers
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Figure 1.5: Katherine Jones-Smith, ‘Untitled 5,’ the
drawing used by K. Jones-Smith and R.P. Taylor to test
the fractal analysis of Pollock’s drip paintings [6].

Formulas hamper the understanding.

—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat belts
and turn off all electronic devices. But first, a disclaimer: If you understand the
rest of this chapter on the first reading, you either do not need this book, or you are
delusional. If you do not understand it, it is not because the people who figured
all this out first are smarter than you: the most you can hope for at this stage is to
get a flavor of what lies ahead. If a statement in this chapter mystifies/intrigues,
fast forward to a section indicated by [section ...] on the margin, read only the
parts that you feel you need. Of course, we think that you need to learn ALL of it,
or otherwise we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis pro-
ceeds in three stages; I. diagnose, II. count, III. measure. First, we determine
the intrinsic dimension of the system–the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent we are,
at present, out of luck. We know only how to deal with the transitional regime
between regular motions and chaotic dynamics in a few dimensions. That is still
something; even an infinite-dimensional system such as a burning flame front can
turn out to have a very few chaotic degrees of freedom. In this regime the chaotic

⇓PRIVATE
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dynamics is restricted to a space of low dimension, the number of relevant param-
eters is small, and we can proceed to step II; we count and classify all possible

chapter 11

chapter 15

topologically distinct trajectories of the system into a hierarchy whose successive
layers require increased precision and patience on the part of the observer. This
we shall do in sect. 1.4.2. If successful, we can proceed with step III: investigate
the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, II: diagnose,
count. We shall return to step III–measure–in sect. 1.5. The three sections that

chapter 20
follow are highly technical, they go into the guts of what the book is about. If
today is not your thinking day, skip them, jump straight to sect.1.7.
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Figure 1.6: Binary labeling of the 3-disk pinball tra-
jectories; a bounce in which the trajectory returns to
the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

Figure 1.7: The 3-disk pinball cycles 1232 and
121212313.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck–it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the
three disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a
sequence of labels indicating the order in which the disks are visited; for example,
the two trajectories in figure 1.2 have itineraries 2313 , 23132321 respectively.

exercise 1.1
section 2.1Such labeling goes by the name symbolic dynamics. As the particle cannot collide

two times in succession with the same disk, any two consecutive symbols must
differ. This is an example of pruning, a rule that forbids certain subsequences
of symbols. Deriving pruning rules is in general a difficult problem, but with the
game of pinball we are lucky–for well-separated disks there are no further pruning
rules.

chapter 12

The choice of symbols is in no sense unique. For example, as at each bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, figure1.6. A clever
choice of an alphabet will incorporate important features of the dynamics, such as
its symmetries.

section 11.6

Suppose you wanted to play a good game of pinball, that is, get the pinball
to bounce as many times as you possibly can–what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks–if you managed to shoot it so it starts out in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there for-
ever. Your game would be just as good if you managed to get it to keep bouncing
between the three disks forever, or place it on any periodic orbit. The only rub
is that any such orbit is unstable, so you have to aim very accurately in order to
stay close to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important–they form the skeleton onto which all
trajectories trapped for long times cling.

intro - 9apr2009 boyscout version14.4, Mar 19 2013
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Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitting
two disks in a sequence requires a much sharper aim,
with initial conditions that hit further consecutive disks
nested within each other, as in Fig. 1.9.

1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall sometimes refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated–an example is drawn in
figure 1.7–but it is rather hard to perceive the systematics of orbits from their con-
figuration space shapes. In mechanics a trajectory is fully and uniquely specified
by its position and momentum at a given instant, and no two distinct state space
trajectories can intersect. Their projections onto arbitrary subspaces, however,
can and do intersect, in rather unilluminating ways. In the pinball example the
problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional subspace, the configuration space. A clearer
picture of the dynamics is obtained by constructing a set of state space Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces–the ball just travels at constant velocity along a straight line–
so we can reduce the 4-dimensional flow to a 2-dimensional map P that takes the
coordinates of the pinball from one disk edge to another disk edge. The trajectory
just after the moment of impact is defined by sn, the arc-length position of the
nth bounce along the billiard wall, and pn = p sin φn the momentum component
parallel to the billiard wall at the point of impact, see figure1.9. Such section of a
flow is called a Poincaré section. In terms of Poincaré sections, the dynamics is

example 3.9
reduced to the set of six maps Psk←s j : (sn, pn) �→ (sn+1, pn+1), with s ∈ {1, 2, 3},
from the boundary of the disk j to the boundary of the next disk k.

chapter 8

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories orig-
inating from one disk can hit either of the other two disks, or escape without
further ado. We label the two strips M12, M13. Embedded within them there
are four strips M121, M123, M131, M132 of initial conditions that survive for two
bounces, and so forth, see figures 1.8 and 1.9. Provided that the disks are suffi-
ciently separated, after n bounces the survivors are divided into 2n distinct strips:
the Mith strip consists of all points with itinerary i = s1s2s3 . . . sn, s = {1, 2, 3}.
The unstable cycles as a skeleton of chaos are almost visible here: each such patch
contains a periodic point s1s2s3 . . . sn with the basic block infinitely repeated. Pe-
riodic points are skeletal in the sense that as we look further and further, the strips
shrink but the periodic points stay put forever. 14

14Predrag: Include fig. 15 from LNN.
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Figure 1.9: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x0 = (s0, p0) . (a) Strips of initial points M12,
M13 which reach disks 2, 3 in one bounce, respec-
tively. (b) Strips of initial points M121, M131 M132

andM123 which reach disks 1, 2, 3 in two bounces,
respectively. The Poincaré sections for trajectories
originating on the other two disks are obtained by
the appropriate relabeling of the strips. Disk ra-
dius : center separation ratio a:R = 1:2.5. (Y.
Lan)
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We see now why it pays to utilize a symbolic dynamics; it provides a naviga-
tion chart through chaotic state space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by 12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
out as 12 . . . either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate
example 17.4

What is a good physical quantity to compute for the game of pinball? Such a sys-
tem, for which almost any trajectory eventually leaves a finite region (the pinball
table) never to return, is said to be open, or a repeller. The repeller escape rate
is an eminently measurable quantity. An example of such a measurement would
be an unstable molecular or nuclear state which can be well approximated by a
classical potential with the possibility of escape in certain directions. In an ex-
periment many projectiles are injected into a macroscopic ‘black box’ enclosing
a microscopic non-confining short-range potential, and their mean escape rate is
measured, as in figure 1.1. The numerical experiment might consist of injecting
the pinball between the disks in some random direction and asking how many
times the pinball bounces on the average before it escapes the region between the
disks.

exercise 1.2

For a theorist, a good game of pinball consists in predicting accurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how periodic
orbit theory accomplishes this for us. Each step will be so simple that you can
follow even at the cursory pace of this overview, and still the result is surprisingly
elegant.

Consider figure 1.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total area
that remains at a given time is the sum of the areas of the strips, so that the fraction
of survivors after n bounces, or the survival probability is given by

Γ̂1 =
|M0|
|M|

+
|M1|
|M|

, Γ̂2 =
|M00|
|M|

+
|M10|
|M|

+
|M01|
|M|

+
|M11|
|M|

,
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escape rate
Poincar“’e, H.Γ̂n =

1
|M|

(n)∑
i

|Mi| , (1.2)

where i is a label of the ith strip, |M| is the initial area, and |Mi| is the area of
the ith strip of survivors. i = 01, 10, 11, . . . is a label, not a binary number. Since
at each bounce one routinely loses about the same fraction of trajectories, one
expects the sum (1.2) to fall off exponentially with n and tend to the limit

chapter 22

Γ̂n+1/Γ̂n = e−γn → e−γ. (1.3)

The quantity γ is called the escape rate from the repeller.

1.5 Chaos for cyclists

15 Étant données des équations ... et une solution particuliére
quelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vrai, étre
trés longue), telle que la différence entre les deux solu-
tions soit aussi petite qu’on le veut, pendant un temps aussi
long qu’on le veut. D’ailleurs, ce qui nous rend ces solu-
tions périodiques si précieuses, c’est qu’elles sont, pour
ansi dire, la seule bréche par où nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

16

We shall now show that the escape rate γ can be extracted from a highly conver-
gent exact expansion by reformulating the sum (1.2) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape rate
is roughly γ = 0.4103384077693464893384613078192 . . ., you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Of course, we can prove all these results directly from
Eq. (17.26) by pedestrian mathematical manipulations,
but that only makes it harder to appreciate their physical
significance.

— Rick Salmon, “Lectures on Geophysical Fluid Dy-
namics”, Oxford Univ. Press (1998)

15Predrag: move this to a later section?
16Predrag: provide translation
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Figure 1.10: The Jacobian matrix Jt maps an infinites-
imal displacement δx at x0 into a displacement Jt(x0)δx
finite time t later.

δ  x(t) = J tδ  x(0)

  x(0)δ

x(0)

x(t)

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size. As a trajectory evolves,
it carries along and distorts its infinitesimal neighborhood. Let

x(t) = f t(x0)

denote the trajectory of an initial point x0 = x(0). Expanding f t(x0 + δx0) to
linear order, the evolution of the distance to a neighboring trajectory xi(t) + δxi(t)
is given by the Jacobian matrix J:

δxi(t) =
d∑

j=1

Jt(x0)i jδx0 j , Jt(x0)i j =
∂xi(t)
∂x0 j

. (1.4)

A trajectory of a pinball moving on a flat surface is specified by two position co-
ordinates and the direction of motion, so in this case d = 3. Evaluation of a cycle
Jacobian matrix is a long exercise - here we just state the result. The Jacobian

section 8.2
matrix describes the deformation of an infinitesimal neighborhood of x(t) along
the flow; its eigenvectors and eigenvalues give the directions and the correspond-
ing rates of expansion or contraction, figure1.10. The trajectories that start out in
an infinitesimal neighborhood separate along the unstable directions (those whose
eigenvalues are greater than unity in magnitude), approach each other along the
stable directions (those whose eigenvalues are less than unity in magnitude), and
maintain their distance along the marginal directions (those whose eigenvalues
equal unity in magnitude).

In our game of pinball the beam of neighboring trajectories is defocused along
the unstable eigen-direction of the Jacobian matrix J.

As the heights of the strips in figure 1.9 are effectively constant, we can con-
centrate on their thickness. If the height is ≈ L, then the area of the ith strip is
Mi ≈ Lli for a strip of width li.

Each strip i in figure 1.9 contains a periodic point xi. The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip
of width li is well-approximated by the contraction around the periodic point xi
within the interval,

li = ai/|Λi| , (1.5)
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mixing
hyperbolicity

assumption

where Λi is the unstable eigenvalue of the Jacobian matrix Jt(xi) evaluated at
the ith periodic point for t = Tp, the full period (due to the low dimensionality,
the Jacobian can have at most one unstable eigenvalue). Only the magnitude of
this eigenvalue matters, we can disregard its sign. The prefactors ai reflect the
overall size of the system and the particular distribution of starting values of x. As
the asymptotic trajectories are strongly mixed by bouncing chaotically around the
repeller, we expect their distribution to be insensitive to smooth variations in the
distribution of initial points.

section 16.4

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors ai ≈ O(1) are overwhelmed by the exponential growth of
Λi, so we neglect them. If the hyperbolicity assumption is justified, we can replace

section 18.1.1|Mi| ≈ Lli in (1.2) by 1/|Λi| and consider the sum

Γn =

(n)∑
i

1/|Λi| ,

where the sum goes over all periodic points of period n. We now define a gener-
ating function for sums over all periodic orbits of all lengths:

Γ(z) =
∞∑

n=1

Γnzn . (1.6)

Recall that for large n the nth level sum (1.2) tends to the limit Γn → e−nγ, so the
escape rate γ is determined by the smallest z = eγ for which (1.6) diverges:

Γ(z) ≈
∞∑

n=1

(ze−γ)n
=

ze−γ

1 − ze−γ
. (1.7)

This is the property of Γ(z) that motivated its definition. Next, we devise a formula
for (1.6) expressing the escape rate in terms of periodic orbits:

Γ(z) =
∞∑

n=1

zn
(n)∑
i

|Λi|−1

=
z
|Λ0|
+

z
|Λ1|
+

z2

|Λ00|
+

z2

|Λ01|
+

z2

|Λ10|
+

z2

|Λ11|

+
z3

|Λ000|
+

z3

|Λ001|
+

z3

|Λ010|
+

z3

|Λ100|
+ . . . (1.8)

For sufficiently small z this sum is convergent. The escape rate γ is now given by
section 18.3

the leading pole of (1.7), rather than by a numerical extrapolation of a sequence of
γn extracted from (1.3). As any finite truncation n < ntrunc of (1.8) is a polyno-
mial in z, convergent for any z, finding this pole requires that we know something
about Γn for any n, and that might be a tall order.
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We could now proceed to estimate the location of the leading singularity of
Γ(z) from finite truncations of (1.8) by methods such as Padé approximants. How-
ever, as we shall now show, it pays to first perform a simple resummation that
converts this divergence into a zero of a related function.

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is Λr
p. A

prime cycle p is a single traversal of the orbit; its label is a non-repeating symbol
string of np symbols. There is only one prime cycle for each cyclic permutation
class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but 0101 = 01 is not.
By the chain rule for derivatives the stability of a cycle is the same everywhere

exercise 15.2
section 4.5along the orbit, so each prime cycle of length np contributes np terms to the sum

(1.8). Hence (1.8) can be rewritten as

Γ(z) =
∑

p

np

∞∑
r=1

(
znp

|Λp|

)r

=
∑

p

nptp

1 − tp
, tp =

znp

|Λp|
(1.9)

where the index p runs through all distinct prime cycles. Note that we have re-
summed the contribution of the cycle p to all times, so truncating the summation
up to given p is not a finite time n ≤ np approximation, but an asymptotic, infinite
time estimate based by approximating stabilities of all cycles by a finite number of
the shortest cycles and their repeats. The npznp factors in (1.9) suggest rewriting
the sum as a derivative 17

Γ(z) = −z
d
dz

∑
p

ln(1 − tp) .

Hence Γ(z) is a logarithmic derivative of the infinite product

1/ζ(z) =
∏

p

(1 − tp) , tp =
znp

|Λp|
. (1.10)

This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1/ζ(z). This is the
prototype formula of periodic orbit theory. The zero of 1/ζ(z) is a pole of Γ(z),
and the problem of estimating the asymptotic escape rates from finite n sums
such as (1.2) is now reduced to a study of the zeros of the dynamical zeta function
(1.10). The escape rate is related by (1.7) to a divergence of Γ(z), and Γ(z) diverges

section 22.1
whenever 1/ζ(z) has a zero.

section 19.4

17John G: suggest adding Γ(z) = −z d
dz log 1

ζ(z) to specify meaning of logarithmic derivative and to
make relation of Γ(z) to 1/ζ(z) explicit, so that upcoming pole ↔ zero discussion is easier to follow.
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Easy, you say: “Zeros of (1.10) can be read off the formula, a zero

zp = |Λp|1/np

for each term in the product. What’s the problem?” Dead wrong! 18

1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
such as the Newton method searches for periodic solutions; we shall assume that
the numerics are under control, and that all short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical

chapter 13
optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped–including cycles longer than the shortest
omitted does not improve the accuracy (unless exponentially many more cycles
are included). The result of such numerics is a table of the shortest cycles, their
periods and their stabilities.

section 33.3

Now expand the infinite product (1.10), grouping together the terms of the
same total symbol string length

1/ζ = (1 − t0)(1 − t1)(1 − t10)(1 − t100) · · ·
= 1 − t0 − t1 − [t10 − t1t0] − [(t100 − t10t0) + (t101 − t10t1)]

−[(t1000 − t0t100) + (t1110 − t1t110)

+(t1001 − t1t001 − t101t0 + t10t0t1)] − . . . (1.11)

The virtue of the expansion is that the sum of all terms of the same total length
chapter 20

n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

section 20.1

The calculation is now straightforward. We substitute a finite set of the eigen-
values and lengths of the shortest prime cycles into the cycle expansion (1.11),
and obtain a polynomial approximation to 1/ζ. We then vary z in (1.10) and de-
termine the escape rate γ by finding the smallest z = eγ for which (1.11) vanishes.
19

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points 0,
1 and the 2-cycle 10) already yield the pinball escape rate to 3-4 significant digits!
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Figure 1.11: Approximation to a smooth dynamics
(left frame) by the skeleton of periodic points, together
with their linearized neighborhoods, (right frame). In-
dicated are segments of two 1-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

Figure 1.12: A longer cycle p′′ shadowed by a pair of
shorter cycles p and p′.

p

p"
p’

We have omitted an infinity of unstable cycles; so why does approximating the
section 20.2.2

dynamics by a finite number of the shortest cycle eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a conse-
quence of the smoothness and analyticity of the underlying flow. Intuitively, one
can understand the convergence in terms of the geometrical picture sketched in
figure 1.11; the key observation is that the long orbits are shadowed by sequences
of shorter orbits.

A typical term in (1.11) is a difference of a long cycle {ab}minus its shadowing
approximation by shorter cycles {a} and {b} (see figure1.12),

tab − tatb = tab(1 − tatb/tab) = tab

(
1 −

∣∣∣∣∣ Λab

ΛaΛb

∣∣∣∣∣) , (1.12)

where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (tp = znp ), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in such combinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits 0, 1 and 01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around all three, tracing out an
equilateral triangle. The cycle 01 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2 and so on, so its
itinerary is 2321. In terms of the bounce types shown in figure1.6, the trajectory is
alternating between 0 and 1. The incoming and outgoing angles when it executes

18Predrag: point to the section
19Predrag: back to physics here: explain escape = Lyap-entropy
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these bounces are very close to the corresponding angles for 0 and 1 cycles. Also
the distances traversed between bounces are similar so that the 2-cycle expanding
eigenvalue Λ01 is close in magnitude to the product of the 1-cycle eigenvalues
Λ0Λ1.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as a
tessellation (a tiling) of the dynamical system, with smooth flow approximated by
its periodic orbit skeleton, each ‘tile’ centered on a periodic point, and the scale
of the ‘tile’ determined by the linearization of the flow around the periodic point,
as illustrated by figure 1.11.

The orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo
orbit’ {a}{b}, lie close to each other in state space; long shadowing pairs have to
start out exponentially close to beat the exponential growth in separation with
time. If the weights associated with the orbits are multiplicative along the flow
(for example, by the chain rule for products of derivatives) and the flow is smooth,
the term in parenthesis in (1.12) falls off exponentially with the cycle length, and
therefore the curvature expansions are expected to be highly convergent.

chapter 23

1.6 Change in time

MEN are deplorably ignorant with respect to natural
things and modern philosophers as though dreaming in the
darkness must be aroused and taught the uses of things the
dealing with things they must be made to quit the sort of
learning that comes only from books and that rests only
on vain arguments from probability and upon conjectures.

— William Gilbert, De Magnete, 1600

The above derivation of the dynamical zeta function formula for the escape rate
has one shortcoming; it estimates the fraction of survivors as a function of the
number of pinball bounces, but the physically interesting quantity is the escape
rate measured in units of continuous time. For continuous time flows, the escape
rate (1.2) is generalized as follows. Define a finite state space region M such
that a trajectory that exits M never reenters. For example, any pinball that falls
of the edge of a pinball table in figure 1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initial x whose trajectories remain
within M at time t is expected to decay exponentially

Γ(t) =

∫
M dxdy δ(y − f t(x))∫

M dx
→ e−γt .

The integral over x starts a trajectory at every x ∈ M. The integral over y tests
whether this trajectory is still in M at time t. The kernel of this integral

Lt(y, x) = δ
(
y − f t(x)

)
(1.13)
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is the Dirac delta function, as for a deterministic flow the initial point x maps
into a unique point y at time t. For discrete time, fn(x) is the nth iterate of the
map f . For continuous flows, f t(x) is the trajectory of the initial point x, and it
is appropriate to express the finite time kernel Lt in terms of A, the generator of
infinitesimal time translations

Lt = etA ,
section 16.6

⇓PRIVATE

chapter 38

⇑PRIVATE

very much in the way the quantum evolution is generated by the Hamiltonian H,
the generator of infinitesimal time quantum transformations.

As the kernel L is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as the evolution operator for a d-dimensional
map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle length
(in the case at hand, as 2n). As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a matter of fact, all our compu-
tations will be carried out in the n → ∞ limit. Though a quick look at long-time
density of trajectories might reveal it to be complex beyond belief, this distribution
is still generated by a simple deterministic law, and with some luck and insight,
our labeling of possible motions will reflect this simplicity. If the rule that gets us
from one level of the classification hierarchy to the next does not depend strongly
on the level, the resulting hierarchy is approximately self-similar. We now turn
such approximate self-similarity to our advantage, by turning it into an operation,
the action of the evolution operator, whose iteration encodes the self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert

20 Recasting dynamics in terms of evolution operators changes everything. So
far our formulation has been heuristic, but in the evolution operator formalism
the escape rate and any other dynamical average are given by exact formulas,
extracted from the spectra of evolution operators. The key tools are trace formulas
and spectral determinants.

⇓PRIVATE

⇑PRIVATEThe trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.13) for Lt(x, y) enables us to evaluate the trace. Identify y with x
and integrate x over the whole state space. The result is an expression for trLt as
a sum over neighborhoods of prime cycles p and their repetitions

section 18.2

trLt =
∑

p

Tp

∞∑
r=1

δ(t − rTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (1.14)

20Predrag: remove top 2 lines of figure 1.13
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Figure 1.13: The trace of an evolution operator is con-
centrated in tubes around prime cycles, of length Tp

and thickness 1/|Λp|r for the rth repetition of the prime
cycle p.

Figure 1.14: Replaces first part of figure 1.13. Tubes
still to be drawn

where Tp is the period of prime cycle p, and the monodromy matrix Mp is the
flow-transverse part of Jacobian matrix J (1.4). This formula has a simple geo-
metrical interpretation sketched in figure 1.13. After the rth return to a Poincaré
section, the initial tube Mp has been stretched out along the expanding eigen-

directions, with the overlap with the initial volume given by 1/
∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ →
1/|Λp|, the same weight we obtained heuristically in sect. 1.5.1.

The ‘spiky’ sum (1.14) is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hand side is the smooth eigen-
value sum tr eAt =

∑
esαt, while the right-hand side equals zero everywhere ex-

cept for the set t = rTp. 21 A Laplace transform smooths the sum over Dirac
delta functions in cycle periods and yields the trace formula for the eigenspec-
trum s0, s1, · · · of the classical evolution operator:

chapter 18

∫ ∞

0+
dt e−st trLt = tr

1
s −A

=

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (1.15)

The beauty of trace formulas lies in the fact that everything on the right-hand-
side–prime cycles p, their periods Tp and the eigenvalues of Mp–is an invariant
property of the flow, independent of any coordinate choice.

21Niall: Inconsistent notation of eigenvalues compared to the previous figure.
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1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities

exercise 4.1

d
ds

ln det (s −A) = tr
d
ds

ln(s − A) = tr
1

s −A , (1.16)

and integrating over s. In this way the spectral determinant of an evolution oper-
ator becomes related to the traces that we have just computed:

chapter 19

det (s −A) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

e−sTpr∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (1.17)

The 1/r factor is due to the s integration, leading to the replacement Tp → Tp/rTp

in the periodic orbit expansion (1.15).
section 19.5

⇓PRIVATE
The motivation for recasting the eigenvalue problem in this form is sketched

in figure 1.15; exponentiation improves analyticity and trades in a divergence of
the trace sum for a zero of the spectral determinant. We have now retraced the ⇑PRIVATE
heuristic derivation of the divergent sum (1.7) and the dynamical zeta function
(1.10), but this time with no approximations: formula (1.17) is exact. The com-
putation of the zeros of det (s − A) proceeds very much like the computations of
sect. 1.5.3. 22

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

23 The replacement of individual trajectories by evolution operators which prop-
agate densities feels like a bit of mathematical voodoo. Nevertheless, something
very radical and deeply foundational has taken place. Understanding the distinc-
tion between evolution of individual trajectories and the evolution of the densities
of trajectories is key to understanding statistical mechanics–this is the conceptual
basis of the second law of thermodynamics, and the origin of irreversibility of the
arrow of time for deterministic systems with time-reversible equations of motion:
reversibility is attainable for distributions whose measure in the space of density
functions goes exponentially to zero with time.

22Predrag: figure 1.15 misses complex phase beyond the first zero
23Predrag: find a Boltzmann suicide quote
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Figure 1.15: Spectral determinant is preferable to the
trace as it vanishes smoothly at the leading eigenvalue,
while the trace formula diverges.

Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white and pure red; there
would be no pink. What is more, if we reversed the stirring, we would return to
the perfect white/red separation. However, that cannot be–in a very few turns of
the stirring stick the thickness of the layers goes from centimeters to Ångströms,
and the result is irreversibly pink.

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics, and
already at the level of a few degrees of freedom the evolution of densities is irre-
versible. Furthermore, the theory that we shall develop here generalizes notions of
‘measure’ and ‘averaging’ to systems far from equilibrium, and transports us into
regions hitherto inaccessible with the tools of equilibrium statistical mechanics.

⇓PRIVATE

24 By going to a description in terms of the asymptotic time evolution oper- ⇑PRIVATE
ators we give up tracking individual trajectories for long times, but trade in the
uncontrollable trajectories for a powerful description of the asymptotic trajectory
densities. This will enable us, for example, to give exact formulas for transport
coefficients such as the diffusion constants without any probabilistic assumptions.

chapter 26
The classical Boltzmann equation for evolution of 1-particle density is based on
stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle col-
lision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cy-
cle averaging formulas such as the cycle expansion for the diffusion constant
2dD = limT→∞

〈
x(T )2

〉
/T of a particle diffusing chaotically across a spatially-

periodic array,
section 26.1

D =
1

2d
1
〈T〉ζ

∑′
(−1)k+1 (n̂p1 + · · · + n̂pk )2

|Λp1 · · ·Λpk |
, (1.18)

where n̂p is a translation along one period of a spatially periodic ‘runaway’ tra-
jectory p. Such formulas are exact; the issue in their applications is what are
the most effective schemes of estimating the infinite cycle sums required for their
evaluation. Unlike most statistical mechanics, here there are no phenomenological
macroscopic parameters; quantities such as transport coefficients are calculable to
any desired accuracy from the microscopic dynamics.

24Predrag: remove f 1 07 2
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hyperbolic!non-
Lyapunov!time

Figure 1.16: (a) Washboard mean velocity, (b)
cold atom lattice diffusion, and (c) AFM tip drag
force. (Y. Lan)

(a)
Θ

(b) ωsin(   t)

(c) velocity

frequency Ω

The concepts of equilibrium statistical mechanics do help us, however, to un-
derstand the ways in which the simple-minded periodic orbit theory falters. A
non-hyperbolicity of the dynamics manifests itself in power-law correlations and

chapter 24
even ‘phase transitions.’ 25

⇓PRIVATE

section 34.1

⇑PRIVATE

1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is un-
happy in its own way.

— Anna Karenina, by Leo Tolstoy

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is predictable
only up to the finite Lyapunov time (1.1), TLyap ≈ λ−1 ln |L/δx| . Beyond that,
chaos rules. And so the most successful applications of ‘chaos theory’ have so far
been to problems where observation time is much longer than a typical ‘turnover’
time, such as statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics, where the notion of tracking accurately a
given state of the system is nonsensical.

So what is chaos good for? Transport! Though superficially indistinguishable
from the probabilistic random walk diffusion, in low dimensional settings the de-
terministic diffusion is quite recognizable, through the fractal dependence of the

25Predrag: add neurosciences section
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Burnett coefficientsdiffusion constant on the system parameters, and perhaps through non-Gaussion
relaxation to equilibrium (non-vanishing Burnett coefficients).

section 26.2.1

Several tabletop experiments that could measure transport on macroscopic
scales are sketched in figure 1.16 (each a tabletop, but an expensive tabletop). Fig-
ure 1.16 (a) depicts a ‘slanted washboard;’ a particle in a gravity field bouncing
down the washboard, losing some energy at each bounce, or a charged particle in
a constant electric field trickling across a periodic condensed-matter device. The
interplay between chaotic dynamics and energy loss results in a terminal mean ve-
locity/conductance, a function of the washboard slant or external electric field that
the periodic theory can predict accurately. Figure1.16 (b) depicts a ‘cold atom lat-
tice’ of very accurate spatial periodicity, with a dilute cloud of atoms placed onto
a standing wave established by strong laser fields. Interaction of gravity with gen-
tle time-periodic jiggling of the EM fields induces a diffusion of the atomic cloud,
with a diffusion constant predicted by the periodic orbit theory. Figure 1.16 (c)
depicts a tip of an atomic force microscope (AFM) bouncing against a periodic
atomic surface moving at a constant velocity. The frictional drag experienced
is the interplay of the chaotic bouncing of the tip and the energy loss at each
tip/surface collision, accurately predicted by the periodic orbit theory. None of

ChaosBook.org/projects
these experiments have actually been carried out, (save for some numerical exper-
imentation), but are within reach of what can be measured today.

Given microscopic dynamics, periodic orbit theory predicts observable macro-
scopic transport quantities such as the washboard mean velocity, cold atom lattice
diffusion constant, and AFM tip drag force. But the experimental proposal is sex-
ier than that, and goes into the heart of dynamical systems theory.

remark A.2

Smale 1960s theory of the hyperbolic structure of the non–wandering set
(AKA ‘horseshoe’) was motivated by his ‘structural stability’ conjecture, which -
in non-technical terms - asserts that all trajectories of a chaotic dynamical system
deform smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in figure1.16 (a) is
easy to see for a cyclist. Take a trajectory which barely grazes the tip of one of the
groves. An arbitrarily small change in the washboard slope can result in loss of
this collision, change a forward scattering into a backward scattering, and lead to
a discontinuous contribution to the mean velocity. You might hold out hope that
such events are rare and average out, but not so - a loss of a short cycle leads to a
significant change in the cycle-expansion formula for a transport coefficient, such
as (1.18).

When we write an equation, it is typically parameterized by a set of parameters
by as coupling strengths, and we think of dynamical systems obtained by a smooth
variation of a parameter as a ‘family.’ We would expect measurable predictions to
also vary smoothly, i.e., be ‘structurally stable.’

But dynamical systems families are ‘families’ only in a name. That the struc-
tural stability conjecture turned out to be badly wrong is, however, not a blow for
chaotic dynamics. Quite to the contrary, it is actually a virtue, perhaps the most

section 12.2
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structural stabilitydramatic experimentally measurable prediction of chaotic dynamics.

As long as microscopic periodicity is exact, the prediction is counterintuitive
for a physicist - transport coefficients are not smooth functions of system parame-

section 26.2
ters, rather they are non-monotonic, nowhere differentiable functions. Conversely,
if the macroscopic measurement yields a smooth dependence of the transport on
system parameters, the periodicity of the microscopic lattice is degraded by impu-
rities, and probabilistic assumptions of traditional statistical mechanics apply. So
the proposal is to –by measuring macroscopic transport– conductance, diffusion,
drag –observe determinism on nanoscales, and –for example– determine whether
an atomic surface is clean. ⇓PRIVATE

chapter 27

⇑PRIVATE
The signatures of deterministic chaos are even more baffling to an engineer:

a small increase of pressure across a pipe exhibiting turbulent flow does not nec-
essarily lead to an increase in the mean flow; mean flow dependence on pressure
drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statistical mechanics? No - deter-
ministic chaos predictions are valid in settings where a few degrees of freedom are
important, and chaotic motion time and space scales are commensurate with the
external driving and spatial scales. Further degrees of freedom act as noise that
smooths out the above fractal effects and restores a smooth functional dependence
of transport coefficients on external parameters.

1.9 What is not in ChaosBook

There is only one thing which interests me vitally now,
and that is the recording of all that which is omitted in
books. Nobody, as far as I can see, is making use of those
elements in the air which give direction and motivation to
our lives.

— Henry Miller, Tropic of Cancer

This book offers everyman a breach into a domain hitherto reputed unreachable,
a domain traditionally traversed only by mathematical physicists and mathemati-
cians. What distinguishes it from mathematics is the insistence on computability
and numerical convergence of methods offered. A rigorous proof, the end of the
story as far as a mathematician is concerned, might state that in a given setting,
for times in excess of 1032 years, turbulent dynamics settles onto an attractor of
dimension less than 600. Such a theorem is of a little use to an honest, hard-
working plumber, especially if her hands-on experience is that within the span of
a few typical ‘turnaround’ times the dynamics seems to settle on a (transient?)
attractor of dimension less than 3. If rigor, magic, fractals or brains is your thing,
read remark 1.4 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if unchecked: the

intro - 9apr2009 boyscout version14.4, Mar 19 2013



CHAPTER 1. OVERTURE 31

curvature!expansion
dynamical

system!smooth
smooth!dynamics

nuts and bolt of the theory include ODEs, PDEs, stochastic ODEs, path integrals,
group theory, coding theory, graph theory, ergodic theory, linear operator theory,
quantum mechanics, etc.. We include material into the text proper on ‘need-to-
know’ basis, relegate technical details to appendices, and give pointers to further
reading in the remarks at the end of each chapter. 26 27

Résumé

This text is an exposition of the best of all possible theories of deterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses on
describing the geometry of the space of possible outcomes, and evaluating av-
erages over this space, rather than attempting the impossible: precise prediction
of individual trajectories. The dynamics of densities of trajectories is described
in terms of evolution operators. In the evolution operator formalism the dynami-
cal averages are given by exact formulas, extracted from the spectra of evolution
operators. The key tools are trace formulas and spectral determinants.

The theory of evaluation of the spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a few fundamental cycles. These short cycles
capture the skeletal topology of the motion on a strange attractor/repeller in the
sense that any long orbit can approximately be pieced together from the nearby pe-
riodic orbits of finite length. This notion is made precise by approximating orbits
by prime cycles, and evaluating the associated curvatures. A curvature measures
the deviation of a longer cycle from its approximation by shorter cycles; smooth-
ness and the local instability of the flow implies exponential (or faster) fall-off for
(almost) all curvatures. Cycle expansions offer an efficient method for evaluating
classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the hy-
perbolicity assumption, i.e., the assumption of exponential shrinkage of all strips
of the pinball repeller. By dropping the ai prefactors in (1.5), we have given up on
any possibility of recovering the precise distribution of starting x (which should
anyhow be impossible due to the exponential growth of errors), but in exchange
we gain an effective description of the asymptotic behavior of the system. The
pleasant surprise of cycle expansions (1.10) is that the infinite time behavior of an
unstable system is as easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of cycles
and their curvatures by a pinball game, but topics covered in ChaosBook – un-
stable flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning,

26Predrag: point to quote on 17?
27Predrag: add to OUPbook.tex and book.tex Resume links to ChaosBook appendices, extras,

overheads
Give the same title to a chapter and its appendix
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averaging
weight!multiplicative

discrete symmetries, periodic orbits, averaging over chaotic sets, evolution oper-
ators, dynamical zeta functions, spectral determinants, cycle expansions, quantum
trace formulas, zeta functions, and so on to the semiclassical quantization of he-
lium – should give the reader some confidence in the broad sway of the theory.
The formalism should work for any average over any chaotic set which satisfies
two conditions:

1. the weight associated with the observable under consideration is multiplica-
tive along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities characterizing
chaotic systems, such as the escape rates, Lyapunov exponents, transport coeffi-
cients and quantum eigenvalues. A big surprise is that the semi-classical quantum
mechanics of systems classically chaotic is very much like the classical mechanics
of chaotic systems; both are described by zeta functions and cycle expansions of
the same form, with the same dependence on the topology of the classical flow.28

28Predrag: add Santa Barbara talk section here - generic lack of structural stability is is a mea-
surable signature of chaos
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Roux, Henriette
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But the power of instruction is seldom of much efficacy,
except in those happy dispositions where it is almost su-
perfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts. This text aims to bridge the gap between the
physics and mathematics dynamical systems literature. The intended audience is Hen-
riette Roux, the perfect physics graduate student with a theoretical bent who does not
believe anything he is told. As a complementary presentation we recommend Gaspard’s
monograph [8] which covers much of the same ground in a highly readable and scholarly
manner.

As far as the prerequisites are concerned–ChaosBook is not an introduction to non-
linear dynamics. Nonlinear science requires a one semester basic course (advanced un-
dergraduate or first year graduate). A good start is the textbook by Strogatz [ 9], an in-
troduction to the applied mathematician’s visualization of flows, fixed points, manifolds,
bifurcations. It is the most accessible introduction to nonlinear dynamics–a book on dif-
ferential equations in nonlinear disguise, and its broadly chosen examples and many ex-
ercises make it a favorite with students. It is not strong on chaos. There the textbook
of Alligood, Sauer and Yorke [10] is preferable: an elegant introduction to maps, chaos,
period doubling, symbolic dynamics, fractals, dimensions–a good companion to Chaos-
Book. Introduction more comfortable to physicists is the textbook by Ott [ 11], with the
baker’s map used to illustrate many key techniques in analysis of chaotic systems. Ott is
perhaps harder than the above two as first books on nonlinear dynamics. Sprott [ 12] and
Jackson [13] textbooks are very useful compendia of the ’70s and onward ‘chaos’ liter-
ature which we, in the spirit of promises made in sect. 1.1, tend to pass over in silence.
29

An introductory course should give students skills in qualitative and numerical anal-
ysis of dynamical systems for short times (trajectories, fixed points, bifurcations) and
familiarize them with Cantor sets and symbolic dynamics for chaotic systems. For the
dynamical systems material covered here in chapters 2 to 4, as well as for the in-depth
study of bifurcation theory we warmly recommend Kuznetsov [ 14]. A good introduction
to numerical experimentation with physically realistic systems is Tufillaro, Abbott, and
Reilly [15]. Korsch and Jodl [16] and Nusse and Yorke [17] also emphasize hands-on
approach to dynamics. With this, and a graduate level-exposure to statistical mechan-
ics, partial differential equations and quantum mechanics, the stage is set for any of the
one-semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses. The courses taught so far (for a listing,
consult ChaosBook.org/courses) start out with the introductory chapters on qualita-
tive dynamics, symbolic dynamics and flows, and then continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace formulas, zeta func-
tions, cycle expansions, Lyapunov exponents, billiards, transport coefficients, thermody-
namic formalism, period doubling, renormalization operators. A graduate level introduc-
tion to statistical mechanics from the dynamical point view is given by Dorfman [ 18]; the

29Mason: Guckenheimer-Holmes? Lichtenberg-Lieberman? PC: I have not found them useful
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Gaspard monograph [8] covers the same ground in more depth. Driebe monograph [ 19]
offers a nice introduction to the problem of irreversibility in dynamics. The role of ‘chaos’
in statistical mechanics is critically dissected by Bricmont in his highly readable essay
“Science of Chaos or Chaos in Science?” [20]. 30

Spatiotemporal dynamical systems. Partial differential equations for dissipative sys-
tems, weak amplitude expansions, normal forms, symmetries and bifurcations, pseu-
dospectral methods, spatiotemporal chaos, turbulence. Holmes, Lumley and Berkooz [ 6]
offer a delightful discussion of why the Kuramoto-Sivashinsky equation deserves study as
a staging ground for a dynamical approach to study of turbulence in full-fledged Navier-
Stokes boundary shear flows (consult chapter 27).

⇓PRIVATE

⇑PRIVATEQuantum chaos. Semiclassical propagators, density of states, trace formulas, semiclassi-
cal spectral determinants, billiards, semiclassical helium, diffraction, creeping, tunneling,
higher-order � corrections. For further reading on this hot topic, hop to the quantum chaos

⇓PRIVATE
introduction, chapter 35.

⇑PRIVATE

Remark 1.3 Periodic orbit theory. This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbook. The role of unstable periodic
orbits was already fully appreciated by Poincaré [22, 23], who noted that hidden in the
apparent chaos is a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cycles should be the key to chaotic dy-
namics. Periodic orbits have been at core of much of the mathematical work on the theory
of the classical and quantum dynamical systems ever since. We refer the reader to the
reprint selection [24] for an overview of some of that literature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough,
you should turn to the mathematics literature. We give a short shrift to the theory of
bifurcations, and the KAM (Kolmogorov-Arnol’d-Moser) tori make only a tangential ap-
pearance. We recommend Robinson’s advanced graduate level exposition of dynamical
systems theory [25] from Smale perspective. The most extensive reference is the treatise
by Katok and Hasselblatt [26], an impressive compendium of modern dynamical systems
theory. The fundamental papers in this field, all still valuable reading, are Smale [ 27],
Bowen [28] and Sinai [29]. Sinai’s paper is prescient and offers a vision and a program
that ties together dynamical systems and statistical mechanics. It is written for readers
versed in statistical mechanics. For a dynamical systems exposition, consult Anosov and
Sinai [30]. Markov partitions were introduced by Sinai in ref. [ 31]. The classical text
(though certainly not an easy read) on the subject of dynamical zeta functions is Ruelle’s
Statistical Mechanics, Thermodynamic Formalism [32]. In Ruelle’s monograph transfer
operator technique (or the ‘Perron-Frobenius theory’) and Smale’s theory of hyperbolic
flows are applied to zeta functions and correlation functions. The status of the theory from
Ruelle’s point of view is compactly summarized in his 1995 Pisa lectures [33]. Further
excellent mathematical references on thermodynamic formalism are Parry and Pollicott’s
monograph [34] with emphasis on the symbolic dynamics aspects of the formalism, and
Baladi’s clear and compact reviews of the theory of dynamical zeta functions [ 35, 36].

30Niall: There is a neat little book by Ruelle on the same topic. Unfortunately I gave it away so
can’t give the reference. PC: I have it, but have only skimmed through
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sensitivity to initial
conditions

butterfly effect
diffusion!limited

aggregates
DLA
fractal
brain, rat

Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical
magic such as spaces of constant negative curvature, Poincaré tilings, modular domains,
Selberg Zeta functions, Riemann hypothesis, . . . Why? While this beautiful mathematics
has been very inspirational, especially in studies of quantum chaos, almost no powerful
method in its repertoire survives a transplant to a physical system that you are likely to
care about.

Remark 1.6 Grasshoppers vs. butterflies. The ’sensitivity to initial conditions’
was discussed by Maxwell, then 30 years later by Poincaré. In weather prediction, the
Lorenz’ ‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopper Effect’ in a book
review by W. S. Franklin [16]. In 1963 Lorenz ascribed a ‘seagull effect’ to an unnamed
meteorologist, and in 1972 he repackaged it as the ‘Butterfly Effect’. 31

Remark 1.7 Sorry, no schmactals! ChaosBook skirts mathematics and empirical
practice of fractal analysis, such as Hausdorff and fractal dimensions. Addison’s intro-
duction to fractal dimensions [37] offers a well-motivated entry into this field. While in
studies of probabilistically assembled fractals such as diffusion limited aggregates (DLA)
better measures of ‘complexity’ are lacking, for deterministic systems there are much
better, physically motivated and experimentally measurable quantities (escape rates, dif-
fusion coefficients, spectrum of helium, ...) that we focus on here.

Remark 1.8 Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, there is a line of research in neu-
ronal dynamics that focuses on possible unstable periodic states, described for example in
refs. [38, 39, 40, 41].

31Predrag: find Maxwell ref
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A guide to exercises

God can afford to make mistakes. So can Dada!

—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try to
work through the essential exercises. As not to fragment the text, the exercises are
indicated by text margin boxes such as the one on this margin, and collected at the

exercise 20.2
end of each chapter. By the end of a (two-semester) course you should have com-
pleted at least three small projects: (a) compute everything for a 1-dimensional
repeller, (b) compute escape rate for a 3-disk game of pinball, (c) compute a part
of the quantum 3-disk game of pinball, or the helium spectrum, or if you are
interested in statistical rather than the quantum mechanics, compute a transport
coefficient. The essential steps are:

• Dynamics

1. count prime cycles, exercise 1.1, exercise 9.6, exercise 11.1

2. pinball simulator, exercise 8.1, exercise 13.5

3. pinball stability, exercise 13.8, exercise 13.5

4. pinball periodic orbits, exercise 13.6, exercise 13.7

5. helium integrator, exercise 2.10, exercise 13.12

6. helium periodic orbits, exercise 13.13

• Averaging, numerical

1. pinball escape rate, exercise 17.2 ⇓PRIVATE
2. Lyapunov exponent, exercise O.2, or pressure, exercise ?? or exer-

cise ?? ⇑PRIVATE

• Averaging, periodic orbits

1. cycle expansions, exercise 20.1, exercise 20.2

2. pinball escape rate, exercise 20.4, exercise 20.5

3. cycle expansions for averages, exercise 20.1, exercise 22.3

4. cycle expansions for diffusion, exercise 26.1 32

5. pruning, transition graphs, exercise 15.6 33

6. desymmetrization exercise 21.1

7. intermittency, phase transitions, exercise 24.6
⇓PRIVATE

8. semiclassical quantization exercise 40.3

9. ortho-, para-helium, lowest eigen-energies exercise43.7
⇑PRIVATE

The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worth a publication. 34 Solutions to some of ⇓PRIVATE

32Predrag: make appendix T.2 into exercise
33Predrag: add more
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sensitivity to initial
conditions

the problems are given in appendix S. A clean solution, a pretty figure, or a nice
⇑PRIVATEexercise that you contribute to ChaosBook will be gratefully acknowledged. Often

going through a solution is more instructive than reading the chapter that problem
is supposed to illustrate. 35

Exercises boyscout

1.1. 3-disk symbolic dynamics. As periodic trajectories will
turn out to be our main tool to breach deep into the realm
of chaos, it pays to start familiarizing oneself with them
now by sketching and counting the few shortest prime cy-
cles (we return to this in sect. 15.4). Show that the 3-disk
pinball has 3 · 2n−1 itineraries of length n. List periodic
orbits of lengths 2, 3, 4, 5, · · ·. Verify that the shortest
3-disk prime cycles are 12, 13, 23, 123, 132, 1213, 1232,
1323, 12123, · · ·. Try to sketch them. (continued in
exercise 12.7)

1.2. Sensitivity to initial conditions. Assume that two pin-

ball trajectories start out parallel, but separated by 1 Ångström,
and the disks are of radius a = 1 cm and center-to-center
separation R = 6 cm. Try to estimate in how many bounces
the separation will grow to the size of system (assum-
ing that the trajectories have been picked so they remain
trapped for at least that long). Estimate the Who’s Pin-
ball Wizard’s typical score (number of bounces) in a game
without cheating, by hook or crook (by the end of chap-
ter 20 you should be in position to make very accurate
estimates).
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Villars, Paris 1892-99)

[1.23] For a very readable exposition of Poincaré’s work and the development of
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dynamical system

Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...] The
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanović and E.A. Spiegel)

We define a dynamical system (M, f ), classify its solutions as equilibria,
periodic, and aperiodic, refine the ‘aperiodic’ into wandering and non-
wandering sets, decompose the non-wandering into chain-recurrent sets,

and illustrate various cases with concrete examples, the Rössler and Lorenz sys-
tems. 1 2

fast track:

chapter 16, p. 389

2.1 Dynamical systems

3 In a dynamical system we observe the world as it evolves with time. We express
our observations as numbers and record how they change; given sufficiently de-
tailed information and understanding of the underlying natural laws, we see the

1Predrag: this chapter essentially finished
2Benny: improve language toward end of chapter–too “kort for hovedet”
3Predrag: to Benny: “mirror” alludes to the Leibnitz quote
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state space
phase space
representative point
deterministic

dynamics
dynamics!deterministic

Figure 2.1: A trajectory traced out by the evolution
rule f t. Starting from the state space point x, after a
time t, the point is at f t(x).

f (x)f (x)
t

x

future in the present as in a mirror. The motion of the planets against the celestial
section 1.3

firmament provides an example. Against the daily motion of the stars from East
to West, the planets distinguish themselves by moving among the fixed stars. An-
cients discovered that by knowing a sequence of planet’s positions–latitudes and
longitudes–its future position could be predicted.

For the solar system, tracking the latitude and longitude in the celestial sphere
suffices to completely specify the planet’s apparent motion. All possible values for
positions and velocities of the planets form the phase space of the system. More
generally, a state of a physical system, at a given instant in time, can be represented
by a single point in an abstract space called state space M (mnemonic: curly ‘M’
for a ‘manifold’). As the system changes, so does the representative point in state
space. We refer to the evolution of such points as dynamics, and the function ft

which specifies where the representative point is at time t as the evolution rule.
remark 2.1

If there is a definite rule f that tells us how this representative point moves in
M, the system is said to be deterministic. For a deterministic dynamical system,
the evolution rule takes one point of the state space and maps it into exactly one
point. However, this is not always possible. For example, knowing the tempera-
ture today is not enough to predict the temperature tomorrow; knowing the value
of a stock today will not determine its value tomorrow. The state space can be en-
larged, in the hope that in a sufficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state of the atmosphere, mea-
sured over many points over the entire planet should be sufficient to determine the
temperature tomorrow. Even that is not quite true, and we are less hopeful when
it comes to stocks.

For a deterministic system almost every point has a unique future, so trajecto-
ries cannot intersect. We say ‘almost’ because there might exist a set of measure
zero (tips of wedges, cusps, etc.) for which a trajectory is not defined. We may

chapter 12
think such sets a nuisance, but it is quite the contrary–they will enable us to parti-
tion state space, so that the dynamics can be better understood.

Locally, the state space M looks like Rd, meaning that a dynamical evolu-
tion is an initial value problem, with d numbers sufficient to determine what will
happen time t later. The local Euclidean structure at any given state space point
x ∈ M is described by a ‘chart’. Globally, the state space may be a more compli-
cated manifold such as a torus, a cylinder, or some other smooth geometric object.
By manifold we mean a smooth differentiable d-dimensional space which looks
like Rd only locally. For example, the state space of an autonomous Hamiltonian
system the flow is confined to a constant energy hyper-surface. When we need to
stress that the dimension d of M is greater than one, we may refer to the point
x ∈ M as xi where i = 1, 2, 3, . . . , d. If the dynamics is described by a set of PDEs

flows - 11mar2013 boyscout version14.4, Mar 19 2013
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dynamical system
state space
PDEs
manifold
chart
dynamical

system!smooth
smooth!dynamics
flow
iteration
map
spatial profile
profile, spatial
flow!map
trajectory
initial!point $“xInit$
initial!state $“xInit$

Figure 2.2: The evolution rule f tcan be used to map a
region Mi of the state space into the region f t(Mi).
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ff (     )Mi

(partial differential equations), the state space is the infinite dimensional function
space. The evolution rule ft : M → M tells us where a point x is in M after a
time interval t.

The pair (M, f ) constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule ft can be differentiated as many
times as needed. Its action on a point x is sometimes indicated by f (x, t) to re-
mind us that f is really a function of two variables: the time and a point in state
space. Note that time is relative rather than absolute, so only the time interval is
necessary. This follows from the fact that a point in state space completely de-
termines all future evolution, and it is not necessary to know anything else. The
time parameter can be a real variable (t ∈ R), in which case the evolution is called
a flow, or an integer (t ∈ Z), in which case the evolution advances in discrete
steps in time, given by iteration of a map. The evolution parameter need not be
the physical time; for example, a time-stationary solution of a partial differential
equation is parameterized by spatial variables. In such situations one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest them-
selves through their trajectories: given a state x0 at initial time t0, the flow map

f t : x0 → x(x0, t)

yields the state x(t) time t later. This evolution rule traces out a sequence of
points x(t) = f t(x0), the trajectory through the point x0 = x(0). We shall usually
omit the x0 label from x(x0, t). By extension, we can also talk of the evolution
of a region Mi of the state space. The language of continuum mechanics is quite
helpful in visualizing such deformations, not only in 3-dimensional space, but also
in state spaces of arbitrary dimension. Consider a motion f from the undeformed
(reference or initial) region (a ‘body’) Mi to the deformed (current or final) region
M f = f t(Mi). We may write the motion as a map

f t : Mi →M f , (2.1)

flows - 11mar2013 boyscout version14.4, Mar 19 2013
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orbit
periodic!orbit
orbit!periodic
periodic!point

Figure 2.3: A periodic point returns to the initial point
after a finite time, x = f Tp (x). Periodic orbit p is the
set of periodic points p =Mp = {x1, x2, · · ·} swept out
by the trajectory of any one of them in the finite time
Tp.

x1
x(T) = x(0)

x2

x3

such that every x0 in Mi is mapped to an x = f t(x0) in M f , as in figure 2.2, where
by x we denote the state in the deformed region, and x0 represents the state in the
initial, undeformed region.

exercise 2.1

The subset of points Mx0 ⊂ M that belong to the infinite-time trajectory
of a given point x0 is called the orbit of x0; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous
curve; for a map, it is a sequence of points. ‘Trajectory’ refers to a set of points or
a curve segment traced out by x(t) up to time instant t. ‘Orbit’ refers to the totality
of states that can be reached from x0, with state space M foliated into a union of
such orbits (each Mx0 labeled by a single point belonging to the set, x0 = x(0)
for example). Under time evolution a trajectory segment is mapped into another
trajectory segment, but points within an orbit are only shifted; the orbit considered
as a set is unchanged. Hence an orbit is a dynamically invariant notion.

The central idea of ChaosBook is to replace the complicated, ergodic, asymp-
totic t → ∞ dynamics by a systematic hierarchy of compact time-invariant sets or
compact orbits (equilibria, periodic orbits, invariant tori, · · ·). 4

2.1.1 A classification of possible motions?

What kinds of orbits are there? This is a grand question, and there are many
answers, the chapters to follow offering some. Here is the first attempt to classify
all possible orbits:

stationary: f t(x) = x for all t
periodic: f t(x) = f t+Tp (x) for a given minimum period Tp

aperiodic: f t(x) � f t′ (x) for all t � t′ .

A periodic orbit (or a cycle) p is the set of points Mp ⊂ M swept out by a
trajectory that returns to the initial point in a finite time. We refer to a point on a
periodic orbit as a periodic point, see figure2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rational numbers are a set of zero
measure on the unit interval.

chapter 5
4Predrag: define ergodic trajecotry / orbit. Christov says: “Ergodicity means material points

“spread out” enough so that the long-time “average color” (for our mixing example) computed at a
given location in space should equal the average color over the entire domain at some given time.

flows - 11mar2013 boyscout version14.4, Mar 19 2013
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quasiperiodicity
torus
incommensurate
wandering point
point!wandering
transient
recurrence
point!non-wandering
non-wandering set
contracting!flow
flow!contracting
Lyapunov!functional
functional!Lyapunov
basin of attraction
attractor!basin
attractor!strange
strange attractor

Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamics can also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are the M-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the superposition of M incommen-
surate frequencies) motion on a smooth torus, and families of solutions related
by a continuous symmetry. Further examples are afforded by stable / unstable
manifolds (a semi-infinite curve originating at an equilibrium along each stabil-
ity eigenvector), and, the most mysterious of all invariant orbits, the infinite time
ergodic orbits. 5

section 12.1

The ancients tried to make sense of all dynamics in terms of periodic motions,
epicycles, integrable systems. The embarrassing truth is that for a generic dynam-
ical systems almost all motions are aperiodic. So we refine the classification by
dividing aperiodic motions into two subtypes: those that wander off, and those
that keep coming back.

A point x ∈ M is called a wandering point, if there exists an open neighbor-
hood M0 of x to which the trajectory never returns

f t(x) �M0 for all t > tmin . (2.2)

In physics literature, the dynamics of such state is often referred to as transient.

Wandering points do not take part in the long-time dynamics, so your first task
is to prune them from M as well as you can. What remains envelops the set of the
long-time trajectories, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity, and replace it by the notion of recurrence. A point
is recurrent or non-wandering if for any open neighborhood M0 of x and any time
tmin there exists a later time t, such that

f t(x) ∈ M0 . (2.3)

In other words, the trajectory of a non-wandering point reenters the neighborhood
M0 infinitely often. We shall denote by Ω the non–wandering set of f , i.e., the
union of all the non-wandering points of M. The set Ω, the non–wandering set of
f , is the key to understanding the long-time behavior of a dynamical system; all
calculations undertaken here will be carried out on non–wandering sets. 6

So much about individual trajectories. What about clouds of initial points? If
there exists a connected state space volume that maps into itself under forward
evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flow is globally contracting

5Predrag: draw a quasi periodic motion on a torus
6Predrag: consider using ‘recurrent set’ or ‘chain-recurrent set’
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sink
limit cycle
cycle!limit
transitive
chain-recurrent
repeller
flow

onto a subset of M which we shall refer to as the attractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point (a sink), a periodic orbit
(a limit cycle), aperiodic, or any combination of the above. The most interesting
case is that of an aperiodic recurrent attractor, to which we shall refer loosely as a
strange attractor. We say ‘loosely’, as will soon become apparent that diagnosing

example 2.3
and proving existence of a genuine, card-carrying strange attractor is a highly
nontrivial undertaking; it requires explaining notions like “transitive” and “chain-
recurrent” that we will be ready to discuss only in sect.14.1. 7

Conversely, if we can enclose the non–wandering set Ω by a connected state
space volume M0 and then show that almost all points within M0, but not in Ω,
eventually exitM0, we refer to the non–wandering setΩ as a repeller. An example
of a repeller is not hard to come by–the pinball game of sect.1.3 is a simple chaotic
repeller. Ω, the non–wandering set of f , is the union of all of the above, separately
invariant sets: attracting/repelling fixed points, strange attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we have given up the ancients’
fixation on periodic motions. Nothing could be further from truth. As longer and
longer cycles approximate more and more accurately finite segments of aperiodic
trajectories, we shall establish control over non–wandering sets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non–wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows in a little
more depth.

2.2 Flows

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rule ft is a family
of mappings of M → M parameterized by t ∈ R. Because t represents a time
interval, any family of mappings that forms an evolution rule must satisfy: 8

exercise 2.2

(a) f 0(x) = x (in 0 time there is no motion)

(b) f t( f t′(x)) = f t+t′ (x) (the evolution law is the same at all times)

(c) the mapping (x, t) �→ f t(x) from M× R into M is continuous.

7Mason: do you distinguish strange chaotic attractor strange non-chaotic attractor, in spirit of
Merry Landia? PC: no.

8Predrag: this excludes billiards?
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functional!composition
irreversibility
dynamics!irreversible
semigroup!dynamical
group!dynamical
Lyapunov!time
reversible!dynamics
dynamics!reversible
vector!field

We shall often find it convenient to represent functional composition by ‘◦ :’
appendix K.1

f t+s = f t ◦ f s = f t( f s) . (2.4)

The family of mappings f t(x) thus forms a continuous (forward semi-) group.
Why ‘semi-’group? It may fail to form a group if the dynamics is not reversible,
and the rule f t(x) cannot be used to rerun the dynamics backwards in time, with
negative t; with no reversibility, we cannot define the inverse f−t( f t(x)) = f 0(x) =
x , in which case the family of mappings ft(x) does not form a group. In ex-
ceedingly many situations of interest–for times beyond the Lyapunov time, for
asymptotic attractors, for dissipative partial differential equations, for systems

⇓PRIVATE

section 27.1

⇑PRIVATE

with noise, for non-invertible maps–the dynamics cannot be run backwards in
time, hence, the circumspect emphasis on semigroups. On the other hand, there
are many settings of physical interest, where dynamics is reversible (such as finite-
dimensional Hamiltonian flows), and where the family of evolution maps ft does
form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory, a smooth curve embedded in the state space as

x(t + τ) = f t+τ(x0) = f ( f (x0, t), τ) (2.5)

and express the tangent to the curve at point x(t) as
exercise 2.3

dx
dτ

∣∣∣∣∣
τ=0
= ∂τ f ( f (x0, t), τ)|τ=0 = ẋ(t) , (2.6)

the time derivative of the evolution rule, a vector evaluated at the point x(t). By
considering all possible trajectories, we obtain the vector ẋ(t) at any point x ∈ M.
This vector field is a (generalized) velocity field:

remark 10.3

ẋ(t) = v(x) . (2.7)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-
cedures for obtaining a set of differential equations for the vector field v(x) that
describes the evolution of a mechanical system. Equations of mechanics may ap-
pear different in form from (2.7), as they are often involve higher time derivatives,
but an equation that is second or higher order in time can always be rewritten as a
set of first order equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field (2.7). At each point of the
state space a vector indicates the local direction in which the trajectory evolves.
The length of the vector |v(x)| is proportional to the speed at the point x, and the
direction and length of v(x) changes from point to point. When the state space is a

flows - 11mar2013 boyscout version14.4, Mar 19 2013
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tangent!bundle
fibre
fibre bundle
Duffing oscillator
flow!autonomous
flow!stationary
autonomous flow
stationary!flow
equilibrium!point
standing wave
wave, standing

Figure 2.4: (a) The 2-dimensional vector field for
the Duffing system (2.8), together with a short tra-
jectory segment. (b) The flow lines. Each ‘comet’
represents the same time interval of a trajectory,
starting at the tail and ending at the head. The
longer the comet, the faster the flow in that region.

(a) (b)

complicated manifold embedded in Rd, one can no longer think of the vector field
as being embedded in the state space. Instead, we have to imagine that each point
x of state space has a different tangent plane TMx attached to it. The vector field
lives in the union of all these tangent planes, a space called the tangent bundle

TM =
⋃
x∈M

TMx .

TMx is called a fibre at x, hence the whole thing is called the fibre bundle. Locally
a fibre bundle looks like the product of two Rd spaces. Relax: we’ll do our best
not to use such words again.

Example 2.1 A 2-dimensional vector field v(x): A simple example of a flow is
afforded by the unforced Duffing system

ẋ(t) = y(t)

ẏ(t) = −0.15 y(t) + x(t) − x(t)3 (2.8)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configura-
tion coordinates (x(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle TM.

The instantaneous velocity vector v is tangent to the trajectory, except at the
equilibrium points, where it vanishes.

If v(xq) = 0 , (2.9)

xq is also referred to as a stationary, fixed, critical, invariant, rest, stagnation
point, zero of the vector field v, standing wave, stationary solution, or steady
state. Our usage will be ‘equilibrium’ for a flow, ‘fixed point’ for a map. The
trajectory remains forever stuck at xq. Otherwise the trajectory passing through
x0 at time t = 0 can be obtained by integrating the equations (2.7):

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (2.10)

flows - 11mar2013 boyscout version14.4, Mar 19 2013
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Figure 2.5: Lorenz “butterfly” strange attractor. (J.
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We shall consider here only autonomous flows, i.e., flows for which the velocity
field vi is stationary, not explicitly dependent on time. A non-autonomous system

dy
dτ
= w(y, τ) , (2.11)

can always be converted into a system where time does not appear explicitly.
exercise 2.4
exercise 2.5To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining

x = {y, τ}, with a stationary vector field

v(x) =

[
w(y, τ)

1

]
. (2.12)

The new flow ẋ = v(x) is autonomous, and the trajectory y(τ) can be read off x(t)
by ignoring the last component of x.

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation

ẋ = v(x) =

⎡⎢⎢⎢⎢⎢⎢⎣ ẋ
ẏ
ż

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ σ(y − x)
ρx − y − xz

xy − bz

⎤⎥⎥⎥⎥⎥⎥⎦ (2.13)

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed σ = 10, b = 8/3,
and varied the “Rayleigh number” ρ. For 0 < ρ < 1 the equilibrium EQ0 = (0, 0, 0) at the
origin is attractive. At ρ = 1 it undergoes a pitchfork bifurcation into a pair of equilibria
at

remark 2.3

xEQ1,2 = (±
√

b(ρ − 1),±
√

b(ρ − 1), ρ − 1) , (2.14)

We shall not explore the Lorenz flow dependence on the ρ parameter in what follows,
but here is a brief synopsis: the EQ0 1-dimensional unstable manifold closes into a
homoclinic orbit at ρ = 13.56 . . .. Beyond that, an infinity of associated periodic orbits
are generated, until ρ = 24.74 . . ., where EQ1,2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
σ = 10, b = 8/3, ρ = 28 . For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.5, and the positions of its equilibria are
marked in figure 9.5. (continued in example 3.4) 9
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Figure 2.6: A trajectory of the Rössler flow at time
t = 250. (G. Simon) -10
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Example 2.3 Rössler strange attractor: The Duffing flow of figure 2.4 is bit of
a bore–every trajectory ends up in one of the two attractive equilibrium points. Let’s
construct a flow that does not die out, but exhibits a recurrent dynamics. Start with a
harmonic oscillator

ẋ = −y , ẏ = x . (2.15)

The solutions are reit, re−it, and the whole x-y plane rotates with constant angular
velocity θ̇ = 1, period T = 2π. Now make the system unstable by adding

ẋ = −y , ẏ = x + ay , a > 0 , (2.16)

or, in radial coordinates, ṙ = ar sin2 θ, θ̇ = 1+ (a/2) sin 2θ. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to ∞, kick it into 3rd dimension when x reaches some value c
by adding

ż = b + z(x − c) , c > 0 . (2.17)

As x crosses c, z shoots upwards exponentially, z � e(x−c)t. In order to bring it back,
start decreasing x by modifying its equation to

ẋ = −y − z .

Large z drives the trajectory toward x = 0; there the exponential contraction by e−ct

kicks in, and the trajectory drops back toward the x-y plane. This frequently studied
example of an autonomous flow is called the Rössler flow

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c) , a = b = 0.2 , c = 5.7 (2.18)

(for definitiveness, we fix the parameters a, b, c in what follows). The system is as
exercise 2.8

simple as they get–it would be linear, were it not for the sole bilinear term zx. Even for
so ‘simple’ a system the nature of long-time solutions is far from obvious.

9Predrag: figure 2.5 .eps still too big
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There are two repelling equilibrium points (2.9): 10

x± = (
1
2
±

1
2

√
1 − 4ab/c2)(c,−c/a, c/a)

x− ≈ (ab/c,−b/c, b/c) , x+ ≈ (c,−c/a, c/a)

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 )

(x+, y+, z+) = ( 5.6929, −28.464, 28.464 ) (2.19)

One is close to the origin by construction. The other, some distance away, exists be-
cause the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical in-
tegration. A typical numerically integrated long-time trajectory is sketched in figure 2.6
(see also figure 11.10). 11 Trajectories that start out sufficiently close to the origin seem
to converge to a strange attractor. We say ‘seem’ as there exists no proof that such

exercise 6.4
an attractor is asymptotically aperiodic–it might well be that what we see is but a long
transient on a way to an attractive periodic orbit. For now, accept that figure 2.6 and
similar figures in what follows are examples of ‘strange attractors.’ (continued in
exercise 2.8 and example 3.3) (R. Paškauskas)

The Rössler flow is the simplest flow which exhibits many of the key aspects
of chaotic dynamics; we shall use it and the 3-pinball (see chapter 8) systems
throughout ChaosBook to motivate introduction of Poincaré sections, return maps,
symbolic dynamics, cycle expansions, and much else. Rössler flow is integrated
in exercise 2.7, its equilibria are determined in exercise 2.8, its Poincaré sections
constructed in exercise 3.1, and the corresponding return Poincaré map computed
in exercise 3.2. Its volume contraction rate is computed in exercise 4.4, its topol-
ogy investigated in exercise 4.5, the shortest Rössler flow cycles are computed and
tabulated in exercise 13.11, and its Lyapunov exponents evaluated in exercise6.5.

2.2.1 Lagrangian and Eulerian viewpoints

Continuum mechanics offers two profoundly different but mathematically equiva-
lent ways to represent a given state space flow, the ‘Lagrangian’ and the ‘Eulerian’
viewpoints. From the Eulerian perspective one only cares about what is the state
of system here and now; think of a field of grass, each grass blade the local ve-
locity vector. From the Lagrangian viewpoint one cares about where a state space
point come fromand where is it going to; think of the state space foliated into a
bowl of linguini, each noodle an orbit, marked with a label x0 somewhere along
it. In the Eulerian formulation the flow is defined by specifying (2.7), the velocity
field v(x). In the Lagrangian formulation it is given by the finite time flow (2.10),
i.e., the totality of the trajectories x(t) comprising the deformed region, labeled by
their origin x0 in the initial undeformed region. If we mark the trajectory x(t) by
its initial point x0, we are describing the flow in the Lagrangian coordinates. The
Eulerian velocity v(x) at a fixed state space position x is equal to the Lagrangian
velocity v(x(t)) at the trajectory passing through x at the instant t. Because ft is

10Predrag: not right - recheck
11Predrag: change to sect 3.2

figure 2.6 Fig/RosslAtr.ps is way too big 0.35MB
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a single-valued function, any point on the trajectory can be used to label the tra-
jectory. The transport of the ‘material point’ x0 at t = 0 to its value at the current
point x(t) = f t(x0) is a coordinate transformation from the Lagrangian coordinates
to the Eulerian coordinates. 12

In numerical work we are given the equations of motion (the local Eulerian
velocity field v(x)), but we care about the solutions of these equations (the global
Lagrangian flow). Conversely, in experimental work we observe ensembles of
Lagrangian trajectories from which we then extract the velocity field (in fluid
dynamics this is achieved by particle image velocimetry (PIV)). Once an Eulerian
velocity field has been specified or extracted from the observational data, it is
straightforward to compute the Lagrangian trajectories, objects of great practical
interest in studies of long time dynamics, mixing, and transport. 13

fast track:

chapter 3, p. 64

2.3 Changing coordinates

14 Problems are handed down to us in many shapes and forms, and they are not
always expressed in the most convenient way. In order to simplify a given prob-
lem, one may stretch, rotate, bend and mix the coordinates, but in doing so, the
vector field will also change. The vector field lives in a (hyper)plane tangent to
state space and changing the coordinates of state space affects the coordinates of
the tangent space as well, in a way that we will now describe.

Denote by h the conjugation function which maps the coordinates of the initial
state space M into the reparameterized state space M′ = h(M), with a point
x ∈ M related to a point y ∈ M′ by

y = h(x) = (y1(x), y2(x), . . . , yd(x)) .

The change of coordinates must be one-to-one and span both M and M′, so given
any point y we can go back to x = h−1(y). For smooth flows the reparameterized
dynamics should support the same number of derivatives as the initial one. If h is
a (piecewise) analytic function, we refer to h as a smooth conjugacy.

The evolution rule gt(y0) on M′ can be computed from the evolution rule
f t(x0) on M by taking the initial point y0 ∈ M′, going back to M, evolving, and
then mapping the final point x(t) back to M′:

y(t) = gt(y0) = h ◦ f t ◦ h−1(y0) . (2.20)

12Predrag: once P. J. Morrison reduction is in chapter 10 put a pointer to that remark here
13Predrag: say continuum vision continues in sect. 32.1
14Predrag: 2013-03-20 move this section to flows.tex
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Here ‘◦’ stands for functional composition h ◦ f (x) = h( f (x)), so (2.20) is a
shorthand for y(t) = h( ft(h−1(y0))). 15

The vector field ẋ = v(x) is locally tangent to the flow ft; it is related to the
flow by differentiation (2.6) along the trajectory. The vector field ẏ = w(y), y ∈ M′

locally tangent to gt, follows by the chain rule: 16
exercise B.2

w(y) =
dgt

dt
(y)

∣∣∣∣∣∣
t=0

=
d
dt

(
h ◦ f t ◦ h−1(y)

)∣∣∣∣∣
t=0

= h′(h−1(y)) v(h−1(y)) = h′(x) v(x) . (2.21)

In order to rewrite the right-hand side as a function of y, note that the ∂y differen-
tiation of h(h−1(y)) = y implies

∂h
∂x

∣∣∣∣∣
x
· ∂h−1

∂y

∣∣∣∣∣∣
y

= 1 → ∂h
∂x

(x) =

[
∂h−1

∂y
(y)

]−1

, (2.22)

so the equations of motion in the transformed coordinates, with the indices rein-
stated, are

ẏi = wi(y) =

[
∂h−1

∂y
(y)

]−1

i j
v j(h

−1(y)) . (2.23)

Imagine the state space as a rubber sheet with the flow lines drawn on it.
A coordinate change h corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersections of the distorted rubber
sheet. Trajectories that are closed loops in M will remain closed loops in the
new manifold M′, but their shapes will change. Globally, h deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears the
tangent field by the Jacobian matrix ∂jhi, yielding the simple transformation law
(2.21) for the velocity fields.

Time itself is a parametrization of points along flow lines, and it can also
be reparameterized, s = s(t), with the concomitant modification of (2.23). An
example is the 2-body collision regularization of the helium Hamiltonian (7.8), to
be undertaken in appendix B.2 below.
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flow—)2.4 Computing trajectories

On two occasions I have been asked [by members of Par-
liament], ’Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ I am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

Ronnie: expand

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, you need to implement
some finite time-step prescription for integration of the equations of motion (2.7).
The simplest is the Euler integrator which advances the trajectory by δτ× velocity
at each time step: 17

xi → xi + vi(x) δτ . (2.24)

This might suffice to get you started, but as soon as you need higher numerical ac-
curacy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If you are interested in Hamiltonian flows you might want ⇓PRIVATE
to implement a symplectic integrator of type discussed in appendixI.2.1. 18 If a

⇑PRIVATE

exercise 2.6
‘sophisticated’ integration routine takes days and gobbles up terabits of memory,
you are using brain-damaged high level software. Try writing a few lines of your
own Runge-Kutta code in some mundane everyday language. While you abso-

exercise 2.7
lutely need to master the requisite numerical methods, this is neither the time nor
the place to expound upon them; how you learn them is your business. And if you

exercise 2.9
have developed some nice routines for solving problems in this text or can point
another student to some, let us know.

exercise 2.10

⇓PRIVATE
In chapter 27 we shall dispose of the fear of ‘infinite-dimensional’ dynamical

systems–you might prefer to skip the section on first reading. 19 20

⇑PRIVATE

Résumé

21 Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-
cession of nearly periodic but unstable motions. In the same spirit, turbulence in
spatially extended systems can be described in terms of recurrent spatiotemporal

15Mason: present KAM theorem here?
16Predrag: do this in maps.tex as well
17Predrag: add figure
18Predrag: perhaps quote Numerical Recipes
19Predrag: list all Lorenz exercises here
20Predrag: read Jeremy Gray: Linear Differential Equations for history
21Predrag: totally misplaced: use in the maps.tex instead
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patterns. Pictorially, dynamics drives a given spatially extended system through
a repertoire of unstable patterns; as we watch a turbulent system evolve, every so
often we catch a glimpse of a familiar pattern. For any finite spatial resolution
and finite time the system follows approximately a pattern belonging to a finite
repertoire of possible patterns, and the long-term dynamics can be thought of as
a walk through the space of such patterns. Recasting this image into mathematics
is the subject of this book.

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In ChaosBook we denote by the term
state space the set of admissible states of a general d- or ∞-dimensional dynamical sys-
tem, and reserve the term phase space to Hamiltonian 2D-dimensional state spaces, where
D is the number of Hamiltonian degrees of freedom. If the state space is a continuous
smooth manifold much of the literature [?, 12] refers to it as ‘phase space,’ but we find
the control engineering usage sharper: in the state space (or ‘time-domain’) description of
an autonomous physical system, the state of the system is represented as a vector within
the ‘state space,’ space whose axes are the state variables, and the evolution of a state
is given by differential equations which are first-order in time. Hopf [ 11] would refer to
such a state as an ‘instantaneous phase’ of the system obeying a ‘differential law of the
phase motion’. The distinction made here is needed in a text where one treats determin-
istic dynamical systems, stochastic systems and quantum-mechanical systems. The term
‘phase’ has a precise meaning in wave mechanics, quantum mechanics and dynamics of
integrable systems at the heart of Hamilton’s formulation of Newtonian mechanics (see ⇓PRIVATEchapter 38), while ‘state space’ is more descriptive of the way the notion is used in the

⇑PRIVATEgeneral theory of dynamical systems. Further confusion arises when prefix spatio- as
in ‘spatiotemporal’ is used in reference to states extended in the (1, 2, or 3-dimensional)
physical configuration space. They may exhibit spatial wave-like behaviors, but their state
space is ∞-dimensional.

Much of the literature denotes the vector field in a first order differential equation
(2.7) by f (x) or F(x) or even X(x), and its integral for time t by the ‘time-t forward map’
or ‘flow map’ x(x0, t) = Φ(x0, t), or φt(x0), or something else. As we shall treat here
maps and flows on equal footing, and need to save Greek letters for matters quantum-
mechanical, we reserve the notation f t(x) for maps such as (2.10), and refer to a state
space velocity vector field as v(x). We come to regret this choice very far into the text,
only by the time we delve into Navier-Stokes equations.

Remark 2.2 Rössler and Duffing flows. The Duffing system (2.8) arises in the study
of electronic circuits [4]. The Rössler flow (2.18) is the simplest flow which exhibits many
of the key aspects of chaotic dynamics. It was introduced in ref. [ 5] as a set of equations
describing no particular physical system, but capturing the essence of Lorenz chaos in a
simplest imaginable smooth flow. Otto Rössler, a man of classical education, was inspired
in this quest by that rarely cited grandfather of chaos, Anaxagoras (456 B.C.). This, and
references to earlier work can be found in refs. [6, 7, 8]. We recommend in particular
the inimitable Abraham and Shaw illustrated classic [9] for its beautiful sketches of the
Rössler and many other flows. Timothy Jones [10] has a number of interesting simulations
on a Drexel website. Check out, compare with Rössler wiki and Rössler scholarpedia. ⇓PRIVATE

flows - 11mar2013 boyscout version14.4, Mar 19 2013

http://www.scholarpedia.org/article/Rossler_attractor


CHAPTER 2. GO WITH THE FLOW 56

heteroclinic!orbit
chaos!diagnostics
frequency analysis

Axenides and Floratos [38] have many observations and references of interest.
⇑PRIVATE

Remark 2.3 Lorenz equation. The Lorenz equation (2.13) is the most celebrated
early illustration of “deterministic chaos” [12] (but not the first - the honor goes to Dame
Cartwright [13]). Lorenz’s paper, which can be found in reprint collections refs. [ 14, 15],
is a pleasure to read, and is still one of the best introductions to the physics motivating such
models. For a geophysics derivation, see Rothman course notes [ 16]. The equations, a set
of ODEs in R3, exhibit strange attractors. W. Tucker [17, 18, 19] has proven rigorously
via interval arithmetic that the Lorenz attractor is strange for the original parameters (no
stable orbits), and has a long stable periodic orbit for the slightly different parameters.
In contrast to the hyperbolic strange attractors such as the weakly perturbed cat map,
the Lorenz attractor is structurally unstable. Frøyland [20] has a nice brief discussion
of Lorenz flow. Frøyland and Alfsen [21] plot many periodic and heteroclinic orbits of
the Lorenz flow; some of the symmetric ones are included in ref. [ 20]. Guckenheimer-
Williams [22] and Afraimovich-Bykov-Shilnikov [23] offer in-depth discussion of the
Lorenz equation. The most detailed study of the Lorenz equation was undertaken by
Sparrow [24]. For a physical interpretation of ρ as “Rayleigh number.” see Jackson [ 25]
and Seydel [26]. Lorenz truncation to 3 modes is so drastic that the model bears no relation
to the geophysical hydrodynamics problem that motivated it. For a detailed pictures of
Lorenz invariant manifolds consult Vol II of Jackson [25]. Lorenz attractor is a very thin
fractal – as we saw, stable manifold thickness is of order 10−4 – whose fractal structure has
been accurately resolved by D. Viswanath [27, 28]. If you wander what analytic function
theory has to say about Lorenz, check ref. [29]. Refs. [30, 31] might also be of interest.

(continued in remark 9.2)

Remark 2.4 Diagnosing chaos. 22 In sect. 1.3.1 we have stated that a determin-
istic system exhibits ‘chaos’ if its trajectories are locally unstable (positive Lyapunov
exponent) and globally mixing (positive entropy). In sect. 6.2 we shall define Lyapunov
exponents, and discuss their evaluation, but already at this point it would be handy to
have a few quick numerical methods to diagnose chaotic dynamics. Laskar’s frequency
analysis method [32] is useful for extracting quasi-periodic and weakly chaotic regions of
state space in Hamiltonian dynamics with many degrees of freedom. For pointers to other
numerical methods, see ref. [33].

Remark 2.5 Dynamical systems software: J.D. Meiss [34] has maintained for many
years Sci.nonlinear FAQ which is now in part superseded by the SIAM Dynamical Sys-
tems website www.dynamicalsystems.org. The website glossary contains most of
Meiss’s FAQ plus new ones, and a up-to-date software list [35], with links to DSTool,
xpp, AUTO, etc.. Springer on-line Encyclopaedia of Mathematics maintains links to dy-
namical systems software packages on eom.springer.de/D/d130210.htm. Kuznetsov [14]
Appendix D.9 gives an exhaustive overview of software available in 2004. (see also
remark 12.1) 23

22Predrag: move this to Hamiltonian chapter
23Predrag: dig up Guckenheimer SIAM reference on AUTO
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The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars.

Exercises boyscout

2.1. Trajectories do not intersect. A trajectory in the state
space M is the set of points one gets by evolving x ∈ M
forwards and backwards in time:

Cx = {y ∈ M : f t(x) = y for t ∈ R} .

Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as a group. The trajectory evolution f t is a
one-parameter semigroup, where (2.4)

f t+s = f t ◦ f s .

Show that it is a commutative semigroup.

In this case, the commutative character of the semigroup
of evolution functions comes from the commutative char-
acter of the time parameter under addition. Can you think
of any other semigroup replacing time?

2.3. Almost ODE’s.

(a) Consider the point x on R evolving according ẋ =
eẋ . Is this an ordinary differential equation?

(b) Is ẋ = x(x(t)) an ordinary differential equation?

(c) What about ẋ = x(t + 1) ?

2.4. All equilibrium points are fixed points. Show that
a point of a vector field v where the velocity is zero is a
fixed point of the dynamics f t.
24

2.5. Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an aux-
iliary function, the ‘potential’ φ

ẋ = −∇φ(x)

where x ∈ Rd, and φ is a function from that space to the
reals R.

(a) Show that the velocity of the particle is in the direc-
tion of most rapid decrease of the function φ.

24Mason: Make up Poincaré-Benedixon and Lasaller’s theorem exercises
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(b) Show that all extrema of φ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for the
system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

2.6. Runge-Kutta integration. Implement the fourth-order
Runge-Kutta integration formula (see, for example, ref. [ 36])
for ẋ = v(x):

xn+1 = xn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(δτ5)

k1 = δτ v(xn) , k2 = δτ v(xn + k1/2)

k3 = δτ v(xn + k2/2)

k4 = δτ v(xn + k3) .

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

2.7. Rössler flow. Use the result of exercise 2.6 or some
other integration routine to integrate numerically the Rössler
flow (2.18). Does the result look like a ‘strange attrac-
tor’?

2.8. Equilibria of the Rössler flow.

(a) Find all equilibrium points (xq, yq, zq) of the Rössler
system (2.18). How many are there?

(b) Assume that b = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise in
this system. In order to understand their size, intro-
duce parameters

ε = a/c , D = 1 − 4ε2 , p± = (1 ±
√

D)/2 .

25 Express all the equilibria in terms of (c, ε,D, p±),
expand to the first order in ε, and evaluate for a =
b = 0.2, c = 5.7 in (2.18). In the case studied
ε ≈ 0.03, so these estimates are quite accurate. .
(continued in exercise 3.1)

(Rytis Paškauskas)

2.9. Can you integrate me? Integrating equations numeri-
cally is not for the faint of heart. It is not always possible
to establish that a set of nonlinear ordinary differential
equations has a solution for all times and there are many
cases were the solution only exists for a limited time in-
terval, as, for example, for the equation ẋ = x 2 , x(0) = 1 .

(a) For what times do solutions of

ẋ = x(x(t))

exist? Do you need a numerical routine to answer
this question?

25Predrag: really (c, ε,D, p±)?
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helium!collinear(b) Let’s test the integrator you wrote in exercise 2.6.
The equation ẍ = −x with initial conditions x(0) =
2 and ẋ = 0 has as solution x(t) = e−t(1 + e2 t) .
Can your integrator reproduce this solution for the
interval t ∈ [0, 10]? Check you solution by plotting
the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

...
x +0.6ẍ + ẋ − |x| + 1 = 0 ,

which can be checked–numerically–to be chaotic.
As initial conditions we will always use ẍ(0) = ẋ(0) =
x(0) = 0 . Can you reproduce the result x(12) =
0.8462071873(all digits are significant)? Even though
the equation being integrated is chaotic, the time
intervals are not long enough for the exponential
separation of trajectories to be noticeable (the ex-
ponential growth factor is ≈ 2.4).

(d) Determine the time interval for which the solution
of ẋ = x2, x(0) = 1 exists. Ronnie: Check this

Lyapunov

2.10. Classical collinear helium dynamics. In order to apply
periodic orbit theory to quantization of helium we shall
need to compute classical periodic orbits of the helium
system. In this exercise we commence their evaluation
for the collinear helium atom (7.8)

H =
1
2

p2
1 +

1
2

p2
2 −

Z
r1
− Z

r2
+

1
r1 + r2

.

The nuclear charge for helium is Z = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics can
be visualized as a motion in the (r1, r2), ri ≥ 0 quad-
rant. In (r1, r2)-coordinates the potential is singular for
ri → 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in sect. B.2. In the transformed coordi-
nates (x1, x2, p1, p2) the Hamiltonian equations of motion
take the form

Ṗ1 = 2Q1

⎡⎢⎢⎢⎢⎣2 − P2
2

8
− Q2

2(1 +
Q2

2

R4
)

⎤⎥⎥⎥⎥⎦
Ṗ2 = 2Q2

⎡⎢⎢⎢⎢⎣2 − P2
1

8
− Q2

1(1 +
Q2

1

R4
)

⎤⎥⎥⎥⎥⎦
Q̇1 =

1
4

P1Q2
2 , Q̇2 =

1
4

P2Q2
1 . (2.25)

where R = (Q2
1 + Q2

2)1/2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A conve-
nient way to visualize the 3-dimensional state space
orbit is by projecting it onto the 2-dimensional (r 1(t), r2(t))
plane. (continued in exercise 3.4)
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[2.6] J. Peinke, J. Parisi, O. E. Rössler, and R. Stoop, Encounter with Chaos.
Self-Organized Hierarchical Complexity in Semiconductor Experiments
(Springer, Berlin 1992).

[2.7] R. Gilmore and M. Lefranc, The Topology of Chaos (Wiley, New York
2002).

[2.8] J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos (Wi-
ley, New York 2002).

[2.9] R. H. Abraham, C. D. Shaw, Dynamics–The Geometry of Behavior
(Addison-Wesley, Redwood, Ca, 1992).

[2.10] T. Jones, Symmetry of Chaos Animations,
lagrange.physics.drexel.edu/flash.

[2.11] E. Hopf, Statistical hydromechanics and functional calculus, J. Rat. Mech.
Anal. 1, 87 (1952).

[2.12] E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130
(1963).

[2.13] M. L. Cartwright and J. E. Littlewood, “On nonlinear differential equations
of the second order,” J. London Math. Soc. 20, 180 (1945).
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Chapter 3

Discrete time dynamics

Gentles, perchance you wonder at this show; But wonder
on, till truth make all things plain.

— W. Shakespeare, A Midsummer Night’s Dream

The time parameter in the definition of a dynamical system can be either con-
tinuous or discrete. Discrete time dynamical systems arise naturally from

section 2.1
flows. In general there are two strategies for replacing a continuous-time

flow by iterated mappings; by cutting it by Poincaré sections, or by strobing it
at a sequence of instants in time. Think of your partner moving to the beat in a
disco: a sequence of frozen stills. While ‘strobing’ is what any numerical inte-
grator does, by representing a trajectory by a sequence of time-integration step
separated points, strobing is in general not a reduction of a flow, as the sequence
of strobed points still resides in the full state space M, of dimensionality d. An
exception are non-autonomous flows that are externally periodically forced. In
that case it might be natural to observe the flow by strobing it at time intervals
fixed by the external forcing, as in example 7.8 where strobing of a periodically
forced Hamiltonian leads to the ‘standard map.’

In the Poincaré section method one records the coordinates of a trajectory
whenever the trajectory crosses a prescribed trigger. This triggering event can be
as simple as vanishing of one of the coordinates, or as complicated as the trajectory
cutting through a curved hypersurface. A Poincaré section (or, in the remainder
of this chapter, just ‘section’) is not a projection onto a lower-dimensional space:
rather, it is a local change of coordinates to a direction along the flow, and the
remaining coordinates (spanning the section) transverse to it. No information
about the flow is lost by reducing it to its set of Poincaré section points and the
return maps connecting them; the full space trajectory can always be reconstructed
by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré section is a powerful vi-
sualization tool. But, the method of sections is more than visualization; it is also
a fundamental tool of dynamics - to fully unravel the geometry of a chaotic flow,

64
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Poincar“’e section—(
Lagrangian!coordinates
Eulerian coordinates
Botox
section, Poincar“’e
map!return
Poincar“’e return map
first return time

Figure 3.1: A trajectory x(t) that intersects a Poincaré
section P at times t1, t2, t3, t4, and closes a cycle
(x̂1, x̂2, x̂3, x̂4), x̂k = x(tk) ∈ P of topological length
4 with respect to the section. In general, the intersec-
tions are not normal to the section. Note also that the
crossing z does not count, as it in the wrong direction.
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one has to quotient all of its symmetries, and evolution in time is one of these
(This delphic piece of hindsight while be illuminated in chapter10).

3.1 Poincaré sections

A continuous time flow decomposes the state space into Lagrangian ‘spaghetti’ of
figure 2.2, a union of non-intersecting 1-dimensional orbits. Any point on an orbit
can be used to label the orbit, with the state space thus reduced to a ‘skew-product’
of a (d−1)-dimensional space P of labeling points x̂j ∈ P and the corresponding
1-dimensional orbit curves Mj on which the flow acts as a time translation. How-
ever, as orbits can be arbitrary complicated and, if unstable, uncontrollable for
times beyond the Lyapunov time (1.1), in practice it is necessary to split the orbit
into finite trajectory segments, with time intervals corresponding to the shortest re-
currence times on a non-wondering set of the flow, finite times for which the flow
is computable. 1 A particular prescription for picking the orbit-labeling points
in called a Poincaré section. In introductory texts Poincaré sections are treated
as pretty visualizations of a chaotic flows, akin to plastic surgery and Botox, but
their dynamical significance is much deeper than that. Once a section is defined,

chapter 10
a ‘Lagrangian’ description of the flow (discussed above, page 51) is replaced by
the ‘Eulerian’ formulation, with the trajectory-tangent velocity field v(x̂) , x̂ ∈ P
enabling us to go freely between the time-quotiened space P and the full state
space M. The dynamically important transverse dynamics –description of how
nearby trajectories attract / repeal each other– is encoded in mapping of P → P
induced by the flow - dynamics along orbits is of secondary importance.

Successive trajectory intersections with a Poincaré section, a (d−1)-dimension-
al hypersurface embedded in the d-dimensional state space M, figure3.1, define
the Poincaré return map P(x̂), a (d−1)-dimensional map of form 2

x̂′ = P(x̂) = f τ(x̂)(x̂) , x̂′, x̂ ∈ P . (3.1)

Here the first return function τ(x̂)–sometimes referred to as the ceiling function–is
the time of flight to the next section for a trajectory starting at x̂. The choice of
the section hypersurface P is altogether arbitrary. It is rarely possible to define

1Predrag: to Predrag - write that one can always make the return time much shorter than the
Lyapunov time, by taking sufficiently many Poincaré sections (or ‘multi-shooting’)

2Predrag: in figure 3.1 x → x̂
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a single section that cuts across all trajectories of interest. Fortunately, one often
needs only a local section, a finite hypersurface of codimension 1 intersected by
a swarm of trajectories near to the trajectory of interest (the case of several sec-
tions is discussed in sect. 3.4). Such hypersurface can be specified implicitly by a
single condition, through a function U(x) that is zero whenever a point x is on the
Poincaré section,

x̂ ∈ P iff U(x̂) = 0 . (3.2)

The gradient of U(x) evaluated at x̂ ∈ P serves a two-fold function. First, the
flow should pierce the hypersurface P, rather than being tangent to it. A nearby
point x̂ + δx is in the hypersurface P if U(x̂ + δx) = 0. A nearby point on the
trajectory is given by δx = vδt, so a traversal is ensured by the transversality
condition

(v · ∇U) =
d∑

j=1

v j(x̂) ∂ jU(x̂) � 0 , ∂ jU(x̂) =
∂

∂x̂ j
U(x̂) , x̂ ∈ P . (3.3)

Second, the gradient ∇U defines the orientation of the hypersurface P. The flow
is oriented as well, and a periodic orbit can pierce P twice, traversing it in either
direction, as in figure 3.1. Hence the definition of Poincaré return map P(x̂) needs
to be supplemented with the orientation condition

x̂n+1 = P(x̂n) , U(x̂n+1) = U(x̂n) = 0 , n ∈ Z+
d∑

j=1

v j(x̂n) ∂ jU(x̂n) > 0 . (3.4)

In this way the continuous time t flow x(t) = ft(x) is reduced to a discrete time n
sequence x̂n of successive oriented trajectory traversals of P.

chapter 17

With a sufficiently clever choice of a Poincaré section or a set of sections, any
orbit of interest intersects a section. Depending on the application, one might need
to convert the discrete time n back to the continuous flow time. This is accom-
plished by adding up the first return function times τ(x̂n), with the accumulated
flight time given by

tn+1 = tn + τ(x̂n) , t0 = 0 , xn ∈ P . (3.5)

Other quantities integrated along the trajectory can be defined in a similar manner,
and will need to be evaluated in the process of evaluating dynamical averages.

A few examples may help visualize this.

maps - 16mar2012 boyscout version14.4, Mar 19 2013



CHAPTER 3. DISCRETE TIME DYNAMICS 67

Poincaré
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Rossler@Rössler!flow
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tor!Rossler@Rössler
flow

Example 3.1 A template and the associated hyperplane Poincaré section:
The simplest choice of a Poincaré section is a plane P specified by a ‘template’ point
(located at the tip of the vector x̂′) and a normal vector n̂ perpendicular to the plane. A
point x̂ is in this plane if it satisfies the linear condition

U(x̂) = (x̂ − x̂′) · n̂ = 0 for x̂ ∈ P . (3.6)

Consider a circular periodic orbit centered at x̂′, but not lying in P. It pierces
the hyperplane twice; the v · n̂ > 0 traversal orientation condition (3.4) ensures that the
first return time is the full period of the cycle. (continued in example 12.1) 3

What about smooth, continuous time flows, with no obvious surfaces that
would be good Poincaré sections?

Example 3.2 Pendulum: The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.4. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré section y = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a piece
of paper. The next example (as well as example 27.3) 4 offers a better illustration

⇓PRIVATE

⇑PRIVATE
of the utility of visualization of dynamics by means of Poincaré sections.

Example 3.3 Rössler flow: (continued from example 2.3) Consider figure 2.6, a
typical trajectory of the 3-dimensional Rössler flow (2.18). The strange attractor wraps

exercise 3.1
around the z axis, so one choice for a Poincaré section is a plane passing through the
z axis. A sequence of such Poincaré sections placed radially at increasing angles with
respect to the x axis, figure 3.2, illustrates the ‘stretch & fold’ action of the Rössler flow,
by assembling these sections into a series of snapshots of the flow. 5 A line segment
in (a), traversing the width of the attractor at y = 0, x > 0 section, starts out close to
the x-y plane, and after the stretching (a) → (b) followed by the folding (c) → (d), the
folded segment returns (d) → (a) close to the initial segment, strongly compressed. In
one Poincaré return the interval is thus stretched, folded and mapped onto itself, so the
flow is expanding. It is also mixing, as in one Poincaré return a point from the interior
of the attractor can map onto the outer edge, while an edge point lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return map
(3.1), as in figure 3.3. Cases (a) and (d) are examples of nice 1-to-1 return maps. While
(b) and (c) appear multimodal and non-invertible, they are artifacts of projecting a 2-

exercise 3.2
dimensional return map (rn, zn) → (rn+1, zn+1) onto a 1-dimensional subspace rn → rn+1.
(continued in example 3.5) 6

3Predrag: draw concentric circles and a spiral
4Predrag: check this link!
5Predrag: Move this discussion to chapter 11?
6Predrag: remember unstable manifold return map!
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Figure 3.2: (Right:) A sequence of Poincaré sec-
tions P = {r, z} of the Rössler strange attractor,
defined by planes through the z axis, oriented at
angles (a) −60o (b) 0o, (c) 60o, (d) 120o, in the x-
y plane. (Left:) A side and the x-y plane views
of a typical trajectory with the Poincaré sections
superimposed. (R. Paškauskas)
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Figure 3.3: Return maps for the rn → rn+1 ra-
dial distance Poincaré sections of figure 3.2. The
‘multi-valuedness’ of (b) and (c) is only appar-
ent: the full return map is 2-dimensional, {r′, z′} =
P{r, z}. (R. Paškauskas)
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fast track:

sect. 3.3, p. 73

The above examples illustrate why a Poincaré section gives a more informative
snapshot of the flow than the full flow portrait. For example, while the full flow
portrait of the Rössler flow figure 2.6 gives us no sense of the thickness of the
attractor, we see clearly in the Poincaré sections of figure3.2 that even though the
return maps are 2-dimensional → 2-dimensional, the flow contraction is so strong
that for all practical purposes it renders the return maps 1-dimensional. (We shall
quantify this claim in example 4.5.)

3.1.1 Section border

How far does the neighborhood of a template extend along the hyperplane (3.6)?
A section captures faithfully neighboring orbits as long as it cuts them transver-
sally; it fails the moment the velocity field at point x̂∗ fails to pierce the section.
At this location the velocity is tangent to the section and, thus, orthogonal to the
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chart
border@“poincBord

template normal n̂,

n̂ · v(x̂∗) = 0 , x̂∗ ∈ S , (3.7)

i.e., v⊥(x̂), component of the v(x̂) normal to the section, vanishes at x̂∗. For a
smooth flow such points form a smooth (d−2)-dimensional section border S ⊂ P,
encompassing the open neighborhood of the template characterized by qualita-
tively similar flow. We shall refer to this region of the section hyperplane as the
(maximal) chart of the template neighborhood for a given hyperplane (3.6).

If the template point is an equilibrium xq, there is no dynamics exactly at this
point as the velocity vanishes (v(xq) = 0 by the definition of equilibrium) and
cannot be used to define a normal to the section. Instead, we use the local lin-
earized flow to construct the local Poincaré section P. We orient P so the unsta-
ble eigenvectors are transverse to the section, and at least the slowest contracting
eigenvector is tangent to the section, as in figure4.7. This ensures that the flow is
transverse to P in an open neighborhood of the template xq.

exercise 3.7

Visualize the flow as a smooth 3-dimensional steady fluid flow cut by a 2-
dimensional sheet of light. Lagrangian particle trajectories either cross, are tan-
gent to, or fail to reach this plane; the 1-dimensional curves of tangency points de-
fine the section border. An example is offered by the velocity field of the Rössler
flow of figure 4.6. Pick a Poincaré section hyperplane so it goes through both equi-
librium points. The section might be transverse to a large neighborhood around
the inner equilibrium x−, but dynamics around the outer equilibrium x+ is totally
different, and the competition between the two types of motion is likely to lead
to vanishing of v⊥(x̂), component of the v(x̂) normal to the section, someplace
in-between the two equilibria. A section is good up to the section border, but be-
yond it an orbit infinitesimally close to x̂∗ generically does not cross the section
hyperplane, at least not infinitesimally close to S.

For 3-dimensional flows, the section border S is a 1-dimensional closed curve
in the section 2-dimensional P, and easy to visualize. In higher dimensions, the
section border is a (d−2)-dimensional manifold, not easily visualized, and the
best one can do is to keep checking for change of sign (3.4) at Poincaré section
returns of nearby trajectories close to the section border hypersurface S; (3.7) will
be positive inside, negative immediately outside S. 7

Thus for a nonlinear flow, with its complicated curvilinear invariant manifolds,
a single section rarely suffices to capture all of the dynamics of interest.

3.1.2 What is the best Poincaré section?

In practice, picking sections is a dark and painful art, especially for high-dimens-
ional flows where the human visual cortex falls short. It helps to understand why
we need them in the first place.

7Predrag: draw a 3-dimensional flow figure
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quotient!statespace@“statesp
gauge fixing
Lorenz flow
equilibrium!Lorenz

flow

Whenever a system has a continuous symmetry G, any two solutions related
by the symmetry are equivalent. We do not want to keep recomputing these over
and over. We would rather replace the whole continuous family of solutions by
one solution in order to be more efficient. This approach replaces the dynamics
(M, f ) with dynamics on the quotient state space (M/t, f̂ ). For now, we only

chapter 10
remark that constructing explicit quotient state space flow f̂ is either extremely
difficult, impossible, or generates unintelligible literature. Our solution (see chap-
ter 10) will be to resort to the method of slices.

Time evolution itself is a 1-parameter Lie group, albeit a highly nontrivial one
(otherwise this book would not be much of a doorstop). The invariants of the flow
are its infinite-time orbits; particularly useful invariants are compact orbits such
as equilibrium points, periodic orbits, and tori. For any orbit it suffices to pick a
single state space point x ∈ Mp, the rest of the orbit is generated by the flow.

Choice of this one ‘labeling’ point is utterly arbitrary; in dynamics this is
called a ‘Poincaré section’, and in theoretical physics this goes by the excep-
tionally uninformative name of ‘gauge fixing’. The price is that one generates
‘ghosts’, or, in dynamics, increases the dimensionality of the state space by addi-
tional constraints (see sect. 13.4). It is a commonly deployed but inelegant proce-
dure where symmetry is broken for computational convenience, and restored only
at the end of the calculation, when all broken pieces are reassembled.

With this said, there are a few rules of thumb to follow: (a) You can pick as
many sections as convenient, as discussed in sect. 3.4. We shall even pick in-

⇓PRIVATEfinitely many. (b) For ease of computation, pick linear sections (3.6) when possi-
⇑PRIVATEble. (c) If equilibria play important role in organizing a flow, pick sections that go

through them (see example 3.4). In that case, try to place contractor eigenvectors
inside the hyperplane, see Lorenz figure3.4. Remember, the stability eigenvectors
are never orthogonal to each other, unless that is imposed by some symmetry. (d)
If you have a global discrete or continuous symmetry, pick sections left invariant

chapter 9
by the symmetry (see example 9.14). For example, setting the normal vector n̂ in
(3.6) at x to be the velocity v(x) is natural and locally transverse. (e) If you are
solving a local problem, like finding a periodic orbit, you do not need a global
section. Pick a section or a set of (multi-shooting) sections on the fly, requiring
only that they are locally transverse to the flow (see sect. F.2.1). (f) If you have

⇓PRIVATE

⇑PRIVATE
another rule of thumb dear to you, let us know.

Example 3.4 Sections of Lorenz flow: (continued from example 2.2) The plane
P fixed by the x = y diagonal and the z-axis depicted in figure 3.4 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilib-
ria, xEQ0 = (0, 0, 0) and the (2.14) pair xEQ1 , xEQ2 . A section has to be supplemented
with the orientation condition (3.4): here points where flow pierces into the section are
marked by dots.

8 Equilibria xEQ1 , xEQ2 are centers of out-spirals, and close to them the section
is transverse to the flow. However, close to EQ0 trajectories pass the z-axis either
by crossing the section P or staying on the viewer’s side. We are free to deploy as

8Predrag: figure 3.4 (b): generate .eps from lorenz2Poinc2D.pdf, this is the old version. Raise it
a bit.

maps - 16mar2012 boyscout version14.4, Mar 19 2013



CHAPTER 3. DISCRETE TIME DYNAMICS 71

Figure 3.4: (a) Lorenz flow figure 2.5 cut by y = x
Poincaré section plane P through the z axis and
both EQ1,2 equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near the EQ0 equilibrium, the flow
is cut by the second Poincaré section, P′, through
y = −x and the z axis. (b) Poincaré sections P and
P′ laid side-by-side. The singular nature of these
sections close to EQ0 will be elucidated in exam-
ple 4.6 and figure 11.8 (b). (E.
Siminos)

(a) (b)

many sections as we wish: in order to capture the whole flow in this neighborhood
we add the second Poincaré section, P′, through the y = −x diagonal and the z-axis.
Together the two sections, figure 3.4 (b), capture the whole flow near EQ0. In contrast
to Rössler sections of figure 3.2, these appear very singular. We explain this singularity
in example 4.6 and postpone construction of a Poincaré return map until example 9.14.
9 (E. Siminos and J. Halcrow)

3.2 Computing a Poincaré section

(R. Mainieri)

For almost any flow of physical interest a Poincaré section is not available in
analytic form, so one tends to determine it crudely, by numerically bracketing
the trajectory traversals of a section and iteratively narrowing the bracketing time
interval. We describe here a smarter method, which you will only need when

remark 3.2
you seriously look at a strange attractor, with millions of points embedded in a
high(er)-dimensional Poincaré section - so skip this section on the first reading.

Consider the system (2.7) of ordinary differential equations in the vector vari-
able x = (x1, x2, . . . , xd)

dxi

dt
= vi(x, t) , (3.8)

where the flow velocity v is a vector function of the position in state space x and
the time t. In general, the map fτn (xn) = xn +

∫
dτ v(x(τ)) cannot be integrated

analytically, so we will have to resort to numerical integration to determine the
trajectories of the system. Our task is to determine the points at which the numer-
ically integrated trajectory traverses a given hypersurface. The hypersurface will
be specified implicitly through a function U(x) that is zero whenever a point x is
on the Poincaré section, such as the hyperplane (3.6).

9Predrag: Should I mention that P′ contains contracting eigenvector?
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Poincar“’e section—)If we use a tiny step size in our numerical integrator, we can observe the value
of U as we integrate; its sign will change as the trajectory crosses the hypersurface.
The problem with this method is that we have to use a very small integration time
step. However, there is a better way to land exactly on the Poincaré section.

Let ta be the time just before U changes sign, and tb the time just after it
changes sign. The method for landing exactly on the Poincaré section will be to
convert one of the space coordinates into an integration variable for the part of the
trajectory between ta and tb. Using

dxk

dx1

dx1

dt
=

dxk

dx1
v1(x, t) = vk(x, t) (3.9)

we can rewrite the equations of motion (3.8) as

dt
dx1
=

1
v1
, · · · , dxd

dx1
=

vd

v1
. (3.10)

Now we use x1 as the ‘time’ in the integration routine and integrate it from x1(ta) to
the value of x1 on the hypersurface, determined by the hypersurface intersection
condition (3.6). This is the end point of the integration, with no need for any
interpolation or backtracking to the surface of section. The x1–axis need not be
perpendicular to the Poincaré section; any xi can be chosen as the integration
variable, provided the xi-axis is not parallel to the Poincaré section at the trajectory
intersection point. If the section crossing is transverse (3.3), v1 cannot vanish in
the short segment bracketed by the integration step preceding the section, and the
point on the Poincaré section. 10

Example 3.5 Computation of Rössler flow Poincaré sections. (continued from
example 3.3) Convert Rössler equation (2.18) to cylindrical coordinates:

ṙ = υr = −z cos θ + ar sin2 θ

θ̇ = υθ = 1 +
z
r

sin θ +
a
2

sin 2θ

ż = υz = b + z(r cos θ − c) . (3.11)

Poincaré sections of figure 3.2 are defined by the fixing angle U(x) = θ − θ0 = 0. In
principle one should use the equilibrium x+ from (2.19) as the origin, and its eigen-
vectors as the coordinate frame, but here original coordinates suffice, as for parameter
values (2.18), and (x0, y0, z0) sufficiently far away from the inner equilibrium, θ increases
monotonically with time. Integrate

dr
dθ
= υr/υθ ,

dt
dθ
= 1/υθ ,

dz
dθ
= υz/υθ (3.12)

from (rn, θn, zn) to the next Poincaré section at θn+1, and switch the integration back to
(x, y, z) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)

10Mason: nonlinear ∞-dimensional systems: compare PDEs, coupled map lattices, CLMs etc.;
they run the gamut from everything (time,space, field variable) continuous to everything discrete;
can then discuss when each setting is appropriate. PC: I am all for it, as long as it makes ChaosBook
shorter.
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map—(
trajectory!discrete
map!iteration
iteration!map

Figure 3.5: A flow x(t) of figure 3.1 represented by a
Poincaré return map that maps points in the Poincaré
section P as x̂n+1 = f (x̂n) . In this example the orbit of
x̂1 is periodic and consists of the four periodic points
(x̂1, x̂2, x̂3, x̂4).
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3.3 Mappings

Do it again!
—Isabelle, age 3

Though we have motivated discrete time dynamics by considering sections of a
continuous flow and reduced the continuous-time flow to a family of maps P(x̂)
mapping points x̂ from a section to a section, there are many settings in which
dynamics is inherently discrete, and naturally described by repeated iterations of
the same map 11

remark 3.1

f : M→M ,

or sequences of consecutive applications of a finite set of maps, a different map,
fA, fB, . . ., for points in different regions {MA,MB, · · · ,MZ},

{ fA, fB, . . . fZ} : M→M , (3.13)

for example maps relating different sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applications of the map or maps.
As writing out formulas involving repeated applications of a set of maps explicitly
can be awkward, we streamline the notation by denoting the (non-commutiative)
map composition by ‘◦’

fZ(· · · fB( fA(x))) · · ·) = fZ ◦ · · · fB ◦ fA(x) , (3.14)

and the nth iterate of map f by

f n(x) = f ◦ f n−1(x) = f
(

f n−1(x)
)
, f 0(x) = x .

12 The trajectory of x is the finite set of points
section 2.1{

x, f (x), f 2(x), . . . , f n(x)
}
,

11Predrag: rewrite
12Predrag: ref to figure 2.2 or better?
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orbit
Poincar“’e return

map!polynomial
Henon@Hénon map
map!Hénon

traversed in time n, and Mx, the orbit of x, is the subset of all points of M that
can be reached by iterations of f . A periodic point (cycle point) xk belonging to a
periodic orbit (cycle) of period n is a real solution of

f n(xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (3.15)

For example, the orbit of x̂1 in figure 3.5 is a set of four cycle points, (x̂1, x̂2, x̂3, x̂4) .

The functional form of such Poincaré return maps P as figure 3.3 can be ap-
proximated by tabulating the results of integration of the flow from x̂ to the first
Poincaré section return for many x̂ ∈ P, and constructing a function that inter-
polates through these points. 13 If we find a good approximation to P(x̂), we can
get rid of numerical integration altogether, by replacing the continuous time tra-
jectory f t(x̂) by iteration of the Poincaré return map P(x̂). Constructing accurate
P(x̂) for a given flow can be tricky, but we can already learn much from approxi-
mate Poincaré return maps. Multinomial approximations 14 15

Pk(x̂) = ak +

d∑
j=1

bk j x̂ j +

d∑
i, j=1

cki j x̂i x̂ j + . . . , x̂ ∈ P (3.16)

to Poincaré return maps

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x̂1,n+1

x̂2,n+1

. . .

x̂d,n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1(x̂n)
P2(x̂n)
. . .

Pd(x̂n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , x̂n, x̂n+1 ∈ P

motivate the study of model mappings of the plane, such as the Hénon map.

Example 3.6 Hénon map: The map

xn+1 = 1 − ax2
n + byn

yn+1 = xn (3.17)

is a nonlinear 2-dimensional map frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence relation

xn+1 = 1 − ax2
n + bxn−1 . (3.18)

16 An n-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

13Predrag: add exercise
14Predrag: refer to Wisdom’s approach in remarks
15Mason: I can contribute some nice Poincaré map figures
16Predrag: replace figure 3.6 by one without 7-cycle, move this fig to a symbolic dynamics

chapter
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stretch & fold
Lozi map
map!Lozi

Figure 3.6: The strange attractor and an unstable pe-
riod 7 cycle of the Hénon map (3.17) with a = 1.4,
b = 0.3. The periodic points in the cycle are connected
to guide the eye. (from K.T. Hansen [2])
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The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics
of return maps such as Rössler’s, figure 3.2. It can be obtained by a truncation of a
polynomial approximation (3.16) to a Poincaré return map (3.16) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.6), is obtained by picking an arbitrary starting point and iterating
(3.17) on a computer.

Always plot the dynamics of such maps in the (xn, xn+1) plane, rather than in the
(xn, yn) plane, and make sure that the ordinate and abscissa scales are the same, so
xn = xn+1 is the 45o diagonal. There are several reasons why one should plot this way:
(a) we think of the Hénon map as a model return map xn → xn+1, and (b) as parameter
b varies, the attractor will change its y-axis scale, while in the (xn, xn+1) plane it goes to
a parabola as b → 0, as it should.

exercise 3.5
As we shall soon see, periodic orbits will be key to understanding the long-time

dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 33.1, 17 and the periodic point labels 0111010, 1110100, · · · in sect. 12.2.

Example 3.7 Lozi map: Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.17) given by 18

xn+1 = 1 − a|xn| + byn

yn+1 = xn . (3.19)

Though not realistic as an approximation to a smooth flow, the Lozi map is a very⇓PRIVATE

example 14.10

⇑PRIVATE

helpful tool for developing intuition about the topology of a large class of maps of the
‘stretch & fold’ type.

19

What we get by iterating such maps is–at least qualitatively–not unlike what
we get from Poincaré section of flows such as the Rössler flow figure 3.3. For
an arbitrary initial point this process might converge to a stable limit cycle, to a

17Predrag: recheck this refsect
18Predrag: need figure of Lozi strange attractor
19Predrag: move example 3.7 to chapter 11
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quadratic map
map!quadratic
injective
surjective
Bourbaki, N.
map—)

strange attractor, to a false attractor (due to roundoff errors), or diverge. In other
words, mindless iteration is essentially uncontrollable, and we will need to resort
to more thoughtful explorations. As we shall explain in due course, strategies for

exercise 6.4
systematic exploration rely on stable/unstable manifolds, periodic points, saddle-
straddle methods and so on. 20

Example 3.8 Parabola: 21 For sufficiently large value of the stretching parameter a,
one iteration of the Hénon map (3.17) stretches and folds a region of the (x, y) plane
centered around the origin, as will be illustrated in figure 12.4. The parameter a controls
the amount of stretching, while the parameter b controls the thickness of the folded
image through the ‘1-step memory’ term bxn−1 in (3.18). In figure 3.6 the parameter b is
rather large, b = 0.3, so the attractor is rather thick, with the transverse fractal structure
clearly visible. 22 For vanishingly small b the Hénon map reduces to the 1-dimensional
quadratic map

xn+1 = 1 − ax2
n . (3.20)

exercise 3.6
By setting b = 0 we lose determinism, as on reals the inverse of map (3.20) has two
real preimages {x+n−1, x−n−1} for most xn. If Bourbaki is your native dialect: the Hénon
map is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still,
this 1-dimensional approximation is very instructive. (continued in example 11.5)

As we shall see in sect. 11.3, an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the qualitative dynamics of many
higher-dimensional dynamical systems. For this reason many expositions of the
theory of dynamical systems commence with a study of 1-dimensional maps. We
prefer to stick to flows, as that is where the physics is.

appendix K.9

23 2425

⇓PRIVATE

⇑PRIVATE

fast track:

sect. 4, p. 86

3.4 Charting the state space

In simple examples, such as the Rössler example 3.3, a single Poincaré section
suffices, but this is rarely the case for flows of physical interest. In this section
(skip it on first reading) we commence a discussion of the general case.

20Predrag: that we shall discuss in chapters 12 and 13
21Predrag: motivate ala Henon
22Predrag: use Biham figures
23Predrag: insert here Tanner’s mixed phase space, standard map
24Predrag: find L.-S. Young reference, genuflect to Carleson
25Predrag: Give the example of (xy)2 elliptic island, highlight Dahlqvist-Russberg [17]; “found

the island of stability that disproved the long-standing conjecture that x2y2 (with E = 0 in your case)
potential is fully ergodic. ”// construct the example or exercise for the (xy)2 elliptic island.
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atlas
chart

Figure 3.7: Reduction of a continuous-time flow (left
frame) to a set of Poincaré maps (right frame), with a
point on 1-cycle and the two cycle points of a 2-cycle
used as template points.

A Poincaré section is constructed by picking a ‘template’ point x̂′ within a
state space region of interest, and defining a hypersurface (3.2) that goes through
the template point. In theory, this Poincaré section could be any (d−1)-dimensional
manifold. In practice, a hyperplane (3.6) is the most convenient, the natural choice
for the vector normal to the section being n̂ = v(x̂′), the velocity field at the
template point x̂′. This Poincaré section x̂ ∈ P is a hyperplane,

appendix 13.4

v′ · (x̂ − x̂′) = 0 , v′ = v(x̂′) , (3.21)

normal to the flow direction v′ at the template point x̂′. Such section cuts the
nearby trajectories transversally, and is a good description of solutions similar to
the given template.

So one hyperspace P will, in general, not suffice. A more insightful picture
of the dynamics is obtained by partitioning the state space into N qualitatively
distinct regions {M1,M2, . . . ,MN} and constructing a Poincaré section per re-
gion, global atlas of the state space composed of N local Poincaré sections P( j)

section 11.1
or charts, each one capturing a neighborhood of a qualitatively prominent state
x̂′( j) ∈ S . We shall refer to these states as templates, each represented in the state
space M of the system by a template point {x̂′(1), x̂′(2), · · · , x̂′(N)}.

Our Poincaré section is a hyperplane. If we pick another template point
x̂′(2), it comes along with its own section hyperplane. The (d−1)-dimensional
Poincaré sections for an adjacent pair of template intersects in a ‘ridge’ (‘bound-
ary,’ ‘edge’), a (d−2)-dimensional hyperplane, easy to compute. Follow an ant
(the sequence of Poincaré map iterates) as it progresses along the Poincaré sec-
tion P(1). The moment (x̂(1)(τ) − x̂′(2)) · n̂(2) changes sign, the ant has crossed the
ridge, we switch the Poincaré section, and the ant continues its merry stroll now
confined to the P(2) section. Each Poincaré section P( j), provides a local chart
at x̂′( j) for a neighborhood of an important, qualitatively distinct class of solu-
tions; together they ‘Voronoi’ tessellate the curved manifold in which the reduced
dynamics is replaced by a finite set of mappings between hyperplane tiles. An ex-
ample is the periodic-orbit implementation of the idea of state space tessellation
by neighborhoods of recurrent points, so dear to professional cyclists, illustrated
in figure 3.7.

For a given dynamical flow, the physical task is to pick a minimal set of qual-
itatively distinct templates. The state space might be filled by all kinds of highly
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gauge!invariance
section, Poincar“’e
map!return
Poincar“’e return map
first return time
Poincar“’e section
section, Poincar“’e

unstable, never revisited equilibria and relative periodic orbits. The choice of
templates should reflect the dynamically prominent states seen in the long-time
simulations of system’s dynamics. We have only vague advice on how to pick a
single Poincaré section (see sect. 3.1.2), and no advice on how to systematically
pick a set of ‘good’ templates, other than that the associated section tiles should
be as large as possible, but still sufficiently small to exclude orbit tangencies, i.e.,
stop before crossing their section borders (3.7). Ideally, one wold like to pick as
few templates as possible in figure 3.7. Once templates are picked, the rest is ge-
ometry of hyperplanes, so checking whether the section border is on the far side
of the tile edge (ridge between two sections) is a fast, linear computation.

There is a rub, though - you need to know how to pick the neighboring tem-
plates. Perhaps a glance at figure 3.7 helps visualize the problem; imagine that
the tiles belong to the Poincaré sections through template points on these orbits.
One could slide templates along their trajectories until the pairs of straight line
segments connecting neighboring template points are minimized, but that seems
a bit arbitrary. At this time we have no advice as how to ‘synchronize’ the tem-
plates relative to each other. The astute reader will instantly recognize this as the
problem of ‘local gauge invariance’ or ‘gauge fixing’ of Quantum Field Theory
and General Relativity.

3.4.1 Navigating the Poincaré-charted state space

Our goal now is to replace the continuous-time dynamics by a set of Poincaré
maps between a set of hyperplane sections, as in figure 3.7. The flat hyperplane
(3.6) is an ad hoc construct; one Poincaré section rarely suffices to capture all
of the dynamics of interest. Instead we chart the state space by partitioning it
into N qualitatively distinct regions {M1,M2, . . . ,MN}. Successive trajectory
intersections with the set of (d−1)-dimensional hypersurfaces Ps embedded in the
d-dimensional state space M, define the set of (d−1) → (d−1) Poincaré maps 26

section 11.1

x̂n+1 = Psn+1sn(x̂n) = f τ(x̂n)(x̂n) (3.22)

x̂n+1 ∈ Psn+1 , x̂n ∈ Psn , s ∈ {1, 2, . . . ,N} .

The d-dimensional continuous time flow is thus reduced to discrete time compo-
sition

Ps0s1···sn = Psnsn−1 ◦ · · · ◦ Ps2s1 ◦ Ps1s0

of a set of Poincaré maps (3.22) that map the coordinates of Poincaré section Psn

to those of Psn+1 , the next section traversed by a given trajectory.

If a trajectory traverses regions Ms0 → Ms1 → · · · → Msn , the sequence
s0s1 · · · sn = sn ← · · · ← s1 ← s0 is said to be admissible. The return map

section 11.6
26Predrag: draw figure
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Figure 3.8: Some examples of 3-disk cycles: (a)
12123 and 13132 are mapped into each other by the
flip across 1 axis. Similarly (b) 123 and 132 are related
by flips, and (c) 1213, 1232 and 1323 by rotations. (d)
The cycles 121212313 and 121212323 are related by
rotation and time reversal. These symmetries are dis-
cussed in chapter 9. (From ref. [1])

Ps0 from section Ps0 to itself has a contribution from any admissible returning
(periodic, sn = s0) sequence of compositions

Ps0s1···sn−1s0 = Ps0sn−1 ◦ · · · ◦ Ps2s1 ◦ Ps1s0 (3.23)

The next example offers an unambiguous set of such Poincaré sections which
chapter 11

do double duty, providing us both with an exact representation of dynamics in
terms of maps, and with a symbolic dynamics, a subject that we will return to in
chapter 11.

Example 3.9 Pinball game, Poincaré dissected. (continued from sect. 1.4) A
phase-space orbit is fully specified by its position and momentum at a given instant,
so no two distinct phase-space trajectories can intersect. The configuration space
trajectories, however, can and do intersect, in rather unilluminating ways, as e.g. in
figure 3.8 (d), 27 and it can be rather hard to perceive the systematics of orbits from
their configuration space shapes. The problem is that we are looking at the projections
of 4-dimensional state space trajectories onto a 2-dimensional configuration subspace.
A much clearer picture of the dynamics is obtained by constructing a set of Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its posi-
tion and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces–the ball just travels at constant velocity along a straight line–so
we can reduce the 4-dimensional flow to a 2-dimensional map Pσk←σ j that maps the
coordinates (Poincaré section P1) of the pinball from one disk edge to another. Just
after the moment of impact the trajectory is defined by sn, the arc-length position of the
nth bounce along the billiard wall, and pn = p sinφn the outgoing momentum compo-
nent parallel to the billiard wall at the point of impact, figure 3.9 (a). These coordinates

exercise 8.6
(due to Birkhoff) are smart, as they conserve the phase-space volume. Trajectories

27Predrag: narrow text, broaden figure in figure 3.8
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itineraryFigure 3.9: (a) Poincaré section coordinates for
the 3-disk game of pinball. (b) Collision sequence
(s1, p1) �→ (s2, p2) �→ (s3, p3) from the boundary
of a disk to the boundary of the next disk is coded
by the Poincaré maps sequence P3←2P2←1.

(a)

s1

φ1

s2

a

φ1

(b)

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

originating from one disk can hit either of the other two disks, or escape without further
ado. We label the survivor state space regions P12, P13. In terms of the three Poincaré
sections, one for each disk, the dynamics is reduced to the set of six maps 28

(sn+1, pn+1) = Pσn+1←σn (sn, pn) , σ ∈ {1, 2, 3} (3.24)

from the boundary of a disk to the boundary of the next disk, figure 3.9 (b). The explicit
form of this map is easily written down, see example 8.1, but much more economical
is the symmetry quotiented version of chapter 9 which replaces the above 6 forward

chapter 9
maps by a return map pair P0, P1. 29 (continued in chapter 8) 30

chapter 8

Billiard dynamics is exceptionally simple - free flight segments, followed by
specular reflections at boundaries, with billiard boundaries the obvious choice as
Poincaré sections. For a general flow one is never so lucky. Also, so far we have
discussed only flows with a 1 continuous parameter (the time). The general case
of N-parameter continuous symmetries we postpone to chapter10.

Résumé

In recurrent dynamics a trajectory exits a region in state space and then reenters
it infinitely often, with finite return times. If the orbit is periodic, it returns after
a full period. So, on average, nothing much really happens along the trajectory–
what is important is behavior of neighboring trajectories transverse to the flow.
This observation motivates a replacement of the continuous time flow by iterative
mapping, the Poincaré maps. A visualization of a strange attractor can be greatly
facilitated by a felicitous choice of Poincaré sections, and the reduction of flow
to Poincaré maps. This observation motivates in turn the study of discrete-time
dynamical systems generated by iterations of maps.

28Predrag: thicken arrows, fonts put also the ‘conventional’ arrow on particle trajectory in fig-
ure 3.9 (a), or replace by Grigo soluFlows.tex plot.

29Predrag: Is figure 1.9 still misnumbered?
30Predrag: Include fig. 15 from LNN.
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A particularly natural application of the Poincaré section method is the reduc-
tion of a billiard flow to a boundary-to-boundary return map, described in chap-
ter 8. As we shall show in appendix B, further simplification of a Poincaré return

chapter 8

appendix B
map, or any nonlinear map, can be attained through rectifying these maps locally
by means of smooth conjugacies.

In truth, as we shall see in chapter 10, the reduction of a continuous time
flow by the method of Poincaré sections is not a convenience, but an absolute
necessity - to make sense of an ergodic flow, all of its continuous symmetries
must be reduced, evolution in time being one of these symmetries.

Commentary

Remark 3.1 Functions, maps, mappings. In mathematics, ‘mapping’ is a noun,
‘map’ is a verb. Nevertheless, ‘mapping’ is often shortened to ‘map’ and is often used
as a synonym for ‘function.’ ‘Function’ is used for mappings that map to a single point
in R or C, while a mapping which maps to Rd would be called a ‘mapping,’ and not a
‘function.’ Likewise, if a point maps to several points and/or has several pre-images, this
is a ‘many-to-many’ mapping, rather than a function. In his review [ 27], Smale refers to
iterated maps as ‘diffeomorphisms’, in contradistinction to ‘flows’, which are 1-parameter
groups of diffeomorphisms. In the sense used here, in the theory of dynamical systems,
dynamical evolution from an initial state to a state finite time later is a (time-forward)
map.

Remark 3.2 Determining a Poincaré section. The trick described in sect. 3.2 is due
to Hénon [3, 4, 5]. The idea of changing the integration variable from time to one of the
coordinates, although simple, avoids the alternative of having to interpolate the numerical
solution to determine the intersection.

Remark 3.3 Hénon, Lozi maps. The Hénon map is of no particular physical im-
port in and of itself–its significance lies in the fact that it is a minimal normal form for
modeling flows near a saddle-node bifurcation, and that it is a prototype of the stretching
and folding dynamics that leads to deterministic chaos. It is generic in the sense that it
can exhibit arbitrarily complicated symbolic dynamics and mixtures of hyperbolic and
non–hyperbolic behaviors. Its construction was motivated by the best known early ex-
ample of ‘deterministic chaos,’ the Lorenz equation, see example 2.2 and remark 2.3.
Y. Pomeau’s studies of the Lorenz attractor on an analog computer, and his insights into
its stretching and folding dynamics motivated Hénon [ 6] to introduce the Hénon map in
1976. Hénon’s and Lorenz’s original papers can be found in reprint collections refs. [ 7, 8].
They are a pleasure to read, and are still the best introduction to the physics motivating
such models. Hénon [6] had conjectured that for (a, b) = (1.4, 0.3) Hénon map a generic
initial point converges to a strange attractor. Its existence has never been proven. While
for all practical purposes this is a strange attractor, it has not been demonstrated that long
time iterations are not attracted by some long attracting limit cycle. Indeed, the pruning
front techniques that we describe below enable us to find stable attractors arbitrarily close

exercise 6.4
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section 12.5
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by in the parameter space, such as the 13-cycle attractor at (a, b) = (1.39945219, 0.3). A
rigorous proof of the existence of Hénon attractors close to 1-dimensional parabola map is
due to Benedicks and Carleson [9]. A detailed description of the dynamics of the Hénon
map is given by Mira and coworkers [10, 11, 12], as well as very many other authors. The
Lozi map (3.19) is particularly convenient in investigating the symbolic dynamics of 2-
dimensional mappings. Both the Lorenz and Lozi [13] systems are uniformly expanding
smooth systems with singularities. The existence of the attractor for the Lozi map was
proven by M. Misiurewicz [14], and the existence of the SRB measure was established by
L.-S. Young [15]. 31

section 16.1

31Predrag: ref. [?] probably history
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Exercises boyscout

3.1. Poincaré sections of the Rössler flow. (continuation of
exercise 2.8) Calculate numerically a Poincaré section
(or several Poincaré sections) of the Rössler flow. As the
Rössler flow state space is 3D, the flow maps onto a 2D
Poincaré section. Do you see that in your numerical re-
sults? How good an approximation would a replacement
of the return map for this section by a 1-dimensional map
be? More precisely, estimate the thickness of the strange
attractor. (continued as exercise 4.5)

(R. Paškauskas)

3.2. A return Poincaré map for the Rössler flow. (contin-
uation of exercise 3.1) That Poincaré return maps of fig-
ure 3.3 appear multimodal and non-invertible is an artifact
of projections of a 2-dimensional return map (R n, zn) →
(Rn+1, zn+1) onto a 1-dimensional subspace Rn → Rn+1.

Construct a genuine sn+1 = f (sn) return map by parame-
terizing points on a Poincaré section of the attractor fig-
ure 3.2 by a Euclidean length s computed curvilinearly
along the attractor section.

This is best done (using methods to be developed in what
follows) by a continuation of the unstable manifold of the
1-cycle embedded in the strange attractor, figure 13.2 (b).

(P. Cvitanović)

3.3. Arbitrary Poincaré sections. We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equation U(x) = 0.

(a) Start by modifying your integrator so that you can
change the coordinates once you get near the Poincaré
section. You can do this easily by writing the equa-
tions as

dxk

ds
= κ fk , (3.25)

with dt/ds = κ, and choosing κ to be 1 or 1/ f1.
This allows one to switch between t and x1 as the
integration ’time.’

(b) Introduce an extra dimension xn+1 into your system
and set

xn+1 = U(x) . (3.26)

How can this be used to find a Poincaré section?

3.4. Classical collinear helium dynamics.

(continuation of exercise 2.10) Make a Poincaré surface
of section by plotting (r1, p1) whenever r2 = 0: Note that

exerMaps - 29jan2012 boyscout version14.4, Mar 19 2013
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for r2 = 0, p2 is already determined by (7.8). Compare
your results with figure B.3 (b).

(Gregor Tanner, Per Rosenqvist)

3.5. Hénon map fixed points. Show that the two fixed points
(x0, x0), (x1, x1) of the Hénon map (3.17) are given by

x0 =
−(1 − b) −

√
(1 − b)2 + 4a

2a
,

x1 =
−(1 − b) +

√
(1 − b)2 + 4a

2a
. (3.27)

3.6. Fixed points of maps. A continuous function F is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity of F to show that a 1-dimensional
contraction F of the interval [0, 1] has at least one
fixed point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than one, |F ′| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

3.7. Section border for Rössler. (continuation of ex-
ercise 3.1) Determine numerically section borders (3.7)
for several Rössler flow Poincaré sections of exercise 3.1
and figure 3.2, at least for angles

(a) −60o , (b) 0o, and

(c) A Poincaré section hyperplane that goes through
both equilibria, see (2.19) and figure 4.6. Two points
only fix a line: think of a criterion for a good ori-
entation of the section hyperplane, perhaps by de-
manding that the contracting eigenvector of the ’in-
ner’ equilibrium x− lies in it.

(d) (Optional) Hand- or computer-draw a visualization
of the section border as 3-dimensional fluid flow
which either crosses, is tangent to, or fails to cross
a sheet of light cutting across the flow.

As the state space is 3-dimensional, the section borders
are 1-dimensional, and it should be easy to outline the
border by plotting the color-coded magnitude of v ⊥(x̂),
component of the v(x̂) normal to the section, for a fine
grid of 2-dimensional Poincaré section plane points. For
sections that go through the z-axis, the normal velocity
v⊥(x̂) is tangent to the circle through x̂, and vanishes for
θ̇ in the polar coordinates (3.11), but that is not true for
other Poincaré sections, such as the case (c).

(P. Cvitanović)32

32Predrag: move exercise 3.7 up on the list.
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Chapter 4

Local stability

(R. Mainieri and P. Cvitanović)

So far we have concentrated on description of the trajectory of a single initial
point. Our next task is to define and determine the size of a neighborhood
of x(t). We shall do this by assuming that the flow is locally smooth, and

describe the local geometry of the neighborhood by studying the flow linearized
around x(t). Nearby points aligned along the stable (contracting) directions re-
main in the neighborhood of the trajectory x(t) = ft(x0); the ones to keep an eye
on are the points which leave the neighborhood along the unstable directions. As
we shall demonstrate in chapter 18, in hyperbolic systems what matters are the
expanding directions. The repercussion are far-reaching: As long as the num-
ber of unstable directions is finite, the same theory applies to finite-dimensional
ODEs, state space volume preserving Hamiltonian flows, and dissipative, volume
contracting infinite-dimensional PDEs.

In order to streamline the exposition, in this chapter all examples are collected
in sect. 4.8; you can get to them and back to the text by clicking on the [example]
links, such as

example 4.8

p. 99

4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best un-
derstood by considering a trajectory originating near x0 = x(0) with an initial
infinitesimal displacement δx(0), and letting the flow transport the displacement
δx(zeit) along the trajectory x(x0, t) = f t(x0).
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Figure 4.1: A swarm of neighboring points of x(t) is
instantaneously sheared by the action of the stability
matrix A. It is a tensorial field, so it is a bit hard (if not
impossible) to draw.

δ t

4.1.1 Instantaneous shear

The system of linear equations of variations for the displacement of the infinites-
imally close neighbor x + δx follows from the flow equations (2.7) by Taylor
expanding to linear order

ẋi + δ̇xi = vi(x + δx) ≈ vi(x) +
∑

j

∂vi

∂x j
δx j .

The infinitesimal displacement δx is thus transported along the trajectory x(x0, t),
with time variation given by

d
dt
δxi(x0, t) =

∑
j

∂vi

∂x j
(x)

∣∣∣∣∣∣
x=x(x0 ,t)

δx j(x0, t) . (4.1)

As both the displacement and the trajectory depend on the initial point x0 and the
time t, we shall often abbreviate the notation to x(x0, t) → x(t) → x, δxi(x0, t) →
δxi(t) → δx in what follows. Taken together, the set of equations

ẋi = vi(x) , δ̇xi =
∑

j

Ai j(x)δx j (4.2)

governs the dynamics in the tangent bundle (x, δx) ∈ TM1 obtained by adjoining
the d-dimensional tangent space δx ∈ TMx to every point x ∈ M in the d-dim-
ensional state space M ⊂ Rd. The stability matrix (velocity gradients matrix)
2

Ai j(x) =
∂vi(x)
∂x j

(4.3)

describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow, figure 4.1. 3

⇓PRIVATE

⇑PRIVATE

example 4.1

p. 99

1Predrag: fix notation: (T)M?
2Predrag: is it worth defining here the Cartesian decomposition into symmetric stretching ma-

trix (volume, shape changes) D = (A + A�)/2 and antisymmetric spin matrix (rigid body rotations)
Ω = (A − A�)/2?

3Predrag: 2012-01-25 figure 4.1 is hopeless, give up on it. Perhaps use Mainieri vector field.
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Figure 4.2: A local frame is transported along the or-
bit and deformed by Jacobian matrix Jt. As Jt is not
self-adjoint, initial orthogonal frame is mapped into a
non-orthogonal one.

x(0)

x(t)

Jt

v(0)
v(t)

4.1.2 Finite time linearized flow

Taylor expanding a finite time flow to linear order,

f t
i (x0 + δx) = f t

i (x0) +
∑

j

∂ f t
i (x0)

∂x0 j
δx j + · · · , (4.4)

one finds that the linearized neighborhood is transported by the Jacobian matrix
remark 4.1

δx(t) = Jt(x0)δx0 , Jt
i j(x0) =

∂xi

∂x0 j

∣∣∣∣∣∣
x=x(t)

, J0(x0) = 1 . (4.5)

For example, in 2 dimensions the Jacobian matrix for change from initial to final
coordinates is

Jt = (∇x)� =
∂(x , y )
∂(x0, y0)

=

⎛⎜⎜⎜⎜⎜⎝ ∂x
∂x0

∂x
∂y0

∂y
∂x0

∂y
∂y0

⎞⎟⎟⎟⎟⎟⎠ .
The map f t is assumed invertible and differentiable so that Jt exists. For a con-
tinuous time flow, for short times Jt remains close to 1, so det Jt > 0, and, by
continuity, det Jt is positive for any finite time t. However, for discrete time maps,
det Jt can have either sign.

4.1.3 Covariant frames

J describes the deformation of an infinitesimal neighborhood at finite time t in
the co-moving frame of x(t), or, in the language of sect.2.2.1, the Jacobian matrix
maps the initial, Lagrangian coordinate frame into the current, Eulerian coordinate
frame. This deformation of an initial frame at x0 into a non-orthogonal frame at
x(t) is described by the eigenvectors and eigenvalues of the Jacobian matrix of the
linearized flow (see figure 4.2),

Jt e( j) = Λ j e( j) , j = 1, 2, · · · , d . (4.6)

Throughout this text the symbol Λk will always denote the kth eigenvalue (some-
times referred to as the multiplier) of the finite time Jacobian matrix Jt. Symbol
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λ(k) will be reserved for the kth stability or characteristic exponent, or character-
istic value, with real part μ(k) and phase ω(k):

Λk = etλ(k)
λ(k) = μ(k) + iω(k) . (4.7)

As Jt is a real matrix, its eigenvalues are either real, or come in complex pairs,

{Λk,Λk+1} = {en(μ(k)+iω(k)), en(μ(k)−iω(k))} ,

with magnitude |Λk|, and phase ω which describes the rotation velocity in the
plane defined by the corresponding pair of real orthogonal eigenvectors, {Re e(k), Im e(k)},
with one period of rotation given by T = 2π/ω .

example 4.4

p. 101

Jt(x0) depends on the initial point x0 and the elapsed time t. For notational
brevity we omitted this dependence, but in general both the eigenvalues and the
eigenvectors, Λ j = Λ j(x0, t) , · · · , e( j) = e( j)(x0, t) , also depend on the trajectory
traversed and the choice of coordinates. In the t → ∞ limit eigenvectors e( j) are
sometimes referred to as ‘covariant Lyapunov vectors’ or ‘Lyapunov vectors’, yet
another case where Lyapunov has nothing to do with the object named after him.

Nearby trajectories separate along the unstable directions, approach each other
along the stable directions, and change their distance along the marginal direc-
tions at a rate slower than exponential, corresponding to the eigenvalues of the
Jacobian matrix with magnitude larger than, smaller than, or equal 1. In the lit-
erature adjectives neutral, indifferent, center are often used instead of ‘marginal,’
(attracting) stable directions are sometimes called ‘asymptotically stable,’ and so
on. 4

One of the preferred directions is what one might expect, the direction of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight time δt: δx0 = f δt(x0) − x0 = v(x0)δt . By the semigroup
property of the flow, f t+δt = f δt+t, where

f δt+t(x0) =
∫ δt+t

t
dτ v(x(τ)) + f t(x0) = δt v(x(t)) + f t(x0) .

Expanding both sides of ft( f δt(x0)) = f δt( f t(x0)), keeping the leading term in
δt, and using the definition of the Jacobian matrix (4.5), we observe that Jt(x0)
transports the velocity vector at x0 to the velocity vector at x(t) (see figure 4.2):

v(x(t)) = Jt(x0) v(x0) . (4.8)

4Predrag: redraw figure 4.2
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4.2 Computing the Jacobian

As we started by assuming that we know the equations of motion, from (4.3) we
also know stability matrix A, the instantaneous rate of shear of an infinitesimal
neighborhood δxi(t) of the trajectory x(t). What we do not know is the finite time
deformation (4.5), so our next task is to relate the stability matrix A to Jacobian
matrix Jt. On the level of differential equations the relation follows by taking the
time derivative of (4.5) and replacing δ̇x by (4.2)

d
dt
δx(t) =

dJt

dt
δx0 = A δx(t) = AJt δx0 .

Hence the d2 matrix elements of Jacobian matrix satisfy ‘tangent linear equations,’
the linearized equations (4.1)

d
dt

Jt(x0) = A(x) Jt(x0) , x = f t(x0) , initial condition J0(x0) = 1 . (4.9)

5 For autonomous flows, the matrix of velocity gradients A(x) depends only on
x, not time, while Jt depends on both the state space position and time. Given a
numerical routine for integrating the equations of motion, evaluation of the Jaco-
bian matrix requires minimal additional programming effort; one simply extends
the d-dimensional integration routine and integrates concurrently with ft(x0) the
d2 elements of Jt(x0). The qualifier ‘simply’ is perhaps too glib. Integration will
work for short finite times, but for exponentially unstable flows one quickly runs
into numerical over- and/or underflow problems. For high-dimensional flows the
analytical expressions for elements of A might be so large that it fits on no com-
puter. Further thought will have to go into implementation this calculation.

chapter 27

So now we know how to compute Jacobian matrix Jt given the stability matrix
A, at least when the d2 extra equations are not too expensive to compute. Mission
accomplished.

fast track:

chapter 7, p. 137

And yet... there are mopping up operations left to do. We persist until we de-
rive the integral formula (4.18) for the Jacobian matrix, an analogue of the finite-
time ‘Green’s function’ or ‘path integral’ solutions of other linear problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a suf-
ficiently small neighborhood it is essentially linear. Hence the next section, which
might seem an embarrassment (what is a section on linear flows doing in a book
on nonlinear dynamics?), offers a firm stepping stone on the way to understanding
nonlinear flows. Linear charts are the key tool of differential geometry, general

5Predrag: left, right eigenvectors
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relativity, etc., so we are in good company. If you know your eigenvalues and
eigenvectors, you may prefer to fast forward here.

fast track:

sect. 4.4, p. 93

4.3 A linear diversion

Linear is good, nonlinear is bad.

—Jean Bellissard

Linear fields are the simplest vector fields, described by linear differential equa-
tions which can be solved explicitly, with solutions that are good for all times.
The state space for linear differential equations is M = Rd, and the equations of
motion (2.7) are written in terms of a vector x and a constant stability matrix A as

ẋ = v(x) = Ax . (4.10)

Solving this equation means finding the state space trajectory

x(t) = (x1(t), x2(t), . . . , xd(t))

passing through a given initial point x0. If x(t) is a solution with x(0) = x0 and
y(t) another solution with y(0) = y0, then the linear combination ax(t)+ by(t) with
a, b ∈ R is also a solution, but now starting at the point ax0 + by0. At any instant
in time, the space of solutions is a d-dimensional vector space, spanned by a basis
of d linearly independent solutions.

How do we solve the linear differential equation (4.10)? If instead of a matrix
equation we have a scalar one, ẋ = λx , the solution is x(t) = etλx0 . In order
to solve the d-dimensional matrix case, it is helpful to rederive this solution by
studying what happens for a short time step δt. If at time t = 0 the position is x(0),
then

x(δt) − x(0)
δt

= λx(0) , (4.11)

which we iterate m times to obtain Euler’s formula for compounding interest

x(t) ≈
(
1 +

t
m
λ
)m

x(0) ≈ etλx(0) . (4.12)

⇓PRIVATE

exercise N.1

⇑PRIVATE
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flow!stability

The term in parentheses acts on the initial condition x(0) and evolves it to x(t) by
taking m small time steps δt = t/m. As m → ∞, the term in parentheses converges
to etλ. Consider now the matrix version of equation (4.11):

x(δt) − x(0)
δt

= Ax(0) . (4.13)

A representative point x is now a vector in Rd acted on by the matrix A, as in
(4.10). Denoting by 1 the identity matrix, and repeating the steps (4.11) and (4.12)
we obtain Euler’s formula for the exponential of a matrix:

x(t) = Jt x(0) , Jt = etA = lim
m→∞

(
1 +

t
m

A
)m

. (4.14)

We will find this definition the exponential of a matrix helpful in the general case,
where the matrix A = A(x(t)) varies along a trajectory.

How do we compute the exponential (4.14)?

example 4.2

p. 100

fast track:

sect. 4.4, p. 93
⇓PRIVATE

in depth:

appendix N.2, p. 1204
⇑PRIVATE

section 5.2.2

⇓PRIVATEHenriette Roux: So, computing eigenvalues and eigenvectors seems like a good
thing. But how do you really do it? 6

A: Any text on numerics of matrices discusses how this is done. We like the eco-
nomical description of neighborhoods of equilibria and periodic orbits afforded
by projection operators. The requisite linear algebra is standard, but usually not
phrased in language of projection operators. As this is a bit of sidetrack that you
will find confusing at the first go, it is relegated to appendixE. ⇑PRIVATE

⇓PRIVATEHenriette Roux: In my 61,506/dmn/ computation of an equilibrium I generated
about 30 eigenvectors before I wanted to move on. How many of these eigenvec-
tors are worth generating for a particular solution and why?

chapter ??

A: A rule of the thumb is that you need all equilibrium eigenvalues / periodic orbit
Floquet exponents with positive real parts, and at least those negative exponents
whose magnitude is less or comparable to the largest expanding eigenvalue. More
precisely; keep adding the next least contracting eigenvalue to the sum of the
preceding ones as long as the sum is positive (Kaplan-Yorke criterion). Then, just
to be conservative, double the number of eigenvalues you keep. You do not need to
worry about the remaining (60 thousand!) eigen-directions for which the negative
eigenvalues are of larger magnitude, as they always contract: nonlinear terms
cannot mix them up in such a way that expansion in some directions overwhelms
the strongly contracting ones.

⇑PRIVATE
6Predrag: try student questions in italics?
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Now that we have some feeling for the qualitative behavior of eigenvectors
and eigenvalues of linear flows, we are ready to return to the nonlinear case.

4.4 Stability of flows

7 How do you determine the eigenvalues of the finite time local deformation Jt for
a general nonlinear smooth flow? The Jacobian matrix is computed by integrating
the equations of variations (4.2)

x(t) = f t(x0) , δx(x0, t) = Jt(x0) δx(x0, 0) . (4.15)

The equations are linear, so we should be able to integrate them–but in order to
make sense of the answer, we derive this integral step by step.

Consider the case of a general, non-stationary trajectory x(t). The exponential
of a constant matrix can be defined either by its Taylor series expansion, or in
terms of the Euler limit (4.14):

⇓PRIVATE

appendix N.1

⇑PRIVATE
etA =

∞∑
k=0

tk

k!
Ak = lim

m→∞

(
1 +

t
m

A
)m

. (4.16)

Taylor expanding is fine if A is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for the
task at hand, as for a dynamical system the local rate of neighborhood distortion
A(x) depends on where we are along the trajectory. The linearized neighborhood
is multiplicatively deformed along the flow, and the m discrete time-step approx-
imation to Jt is therefore given by a generalization of the Euler product (4.16):

Jt = lim
m→∞

1∏
n=m

(1 + δtA(xn)) = lim
m→∞

1∏
n=m

eδt A(xn) (4.17)

= lim
m→∞

eδt A(xm)eδt A(xm−1) · · · eδt A(x2)eδt A(x1) ,

where δt = (t − t0)/m, and xn = x(t0+nδt). Indexing of the products indicates that
the successive infinitesimal deformation are applied by multiplying from the left.
The m → ∞ limit of this procedure is the formal integral 8

⇓PRIVATE

appendix I

⇑PRIVATEJt
i j(x0) =

[
Te

∫ t
0 dτA(x(τ))

]
i j
, (4.18)

where T stands for time-ordered integration, defined as the continuum limit of
the successive left multiplications (4.17). This integral formula for Jt is the ⇓PRIVATE

appendix J.1

⇑PRIVATE
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main conceptual result of this chapter, the finite time companion of the differential
definition (4.9). The definition makes evident important properties of Jacobian
matrices, such as that they are multiplicative along the flow,

Jt+t′(x) = Jt′(x′) Jt(x), where x′ = f t(x0) , (4.19)

an immediate consequence of time-ordered product structure of (4.17). However,
in practice J is evaluated by integrating (4.9) along with the ODEs that define a
particular flow.

4.5 Stability of maps

The transformation of an infinitesimal neighborhood of a trajectory under the iter-
ation of a map follows from Taylor expanding the iterated mapping at finite time
n to linear order, as in (4.4). The linearized neighborhood is transported by the
Jacobian matrix evaluated at a discrete set of times n = 1, 2, . . .,

Jn
i j(x0) =

∂ f n
i (x)

∂x j

∣∣∣∣∣∣
x=x0

. (4.20)

As in the finite time case (4.7), we denote by Λk the kth eigenvalue or multiplier
of the finite time Jacobian matrix Jn . There is really no difference from the con-
tinuous time case, other than that now the Jacobian matrix is evaluated at integer
times.

example 4.10

p. 105

The formula for the linearization of nth iterate of a d-dimensional map

Jn(x0) = J(xn−1) · · · J(x1)J(x0) , x j = f j(x0) , (4.21)

in terms of single time steps Jjl = ∂ f j/∂xl follows from the chain rule for func-
tional composition,

∂

∂xi
f j( f (x)) =

d∑
k=1

∂ f j(y)

∂yk

∣∣∣∣∣∣
y= f (x)

∂ fk(x)
∂xi

.

If you prefer to think of a discrete time dynamics as a sequence of Poincaré sec-
tion returns, then (4.21) follows from (4.19): Jacobian matrices are multiplicative
along the flow.

exercise 6.4
7Predrag: check Frøyland’s book.
8Predrag: need integration exercises for (4.18)
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Figure 4.3: If x(t) intersects the Poincaré section
P at time τ, the nearby x(t) + δx(t) trajectory inter-
sects it time τ + δt later. As (U ′ · v′δt) = −(U ′ ·
J δx), the difference in arrival times is given by δt =
−(U′ · J δx)/(U′ · v′).
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x(t)

v’ tδ
x’

U(x)=0

x

x(t)+δ x(t)

Jδ

U’

example 4.11

p. 105

fast track:

chapter 7, p. 137

4.6 Stability of Poincaré return maps

(R. Paškauskas and P. Cvitanović)

We now relate the linear stability of the Poincaré return map P : P → P defined
in sect. 3.1 to the stability of the continuous time flow in the full state space.

The hypersurface P can be specified implicitly through a function U(x) that is
zero whenever a point x is on the Poincaré section. A nearby point x+ δx is in the
hypersurface P if U(x+δx) = 0, and the same is true for variations around the first
return point x′ = x(τ), so expanding U(x′) to linear order in variation δx restricted
to the Poincaré section, and applying the chain rule leads to the condition9

d∑
i=1

∂U(x′)
∂xi

dx′i
dx j

∣∣∣∣∣∣P = 0 . (4.22)

In what follows Ui = ∂ jU is the gradient of U defined in (3.3), unprimed quantities
refer to the starting point x = x0 ∈ P, v = v(x0), and the primed quantities to the
first return: x′ = x(τ), v′ = v(x′), U′ = U(x′). For brevity we shall also denote
the full state space Jacobian matrix at the first return by J = Jτ(x0). Both the first
return x′ and the time of flight to the next Poincaré section τ(x) depend on the
starting point x, so the Jacobian matrix 10

Ĵ(x)i j =
dx′i
dx j

∣∣∣∣∣∣P (4.23)

with both initial and the final variation constrained to the Poincaré section hyper-
surface P is related to the continuous flow Jacobian matrix by

dx′i
dx j

∣∣∣∣∣∣P = ∂x′i
∂x j
+

dx′i
dτ

dτ
dxj
= Ji j + v′i

dτ
dxj

.

9Predrag: replace Ui by normal to the surface ni =
∂U(x)
∂xi

, x ∈ P
10Predrag: replace Ĵ by M when monodromy gets defined
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jacobianThe return time variation dτ/dx, figure 4.3, is eliminated by substituting this ex-
pression into the constraint (4.22),

0 = ∂iU
′ Ji j + (v′ · ∂U′)

dτ
dxj

,

11 yielding the projection of the full space d-dimensional Jacobian matrix to the
Poincaré map (d−1)-dimensional Jacobian matrix:

Ĵi j =

(
δik −

v′i ∂kU′

(v′ · ∂U′)

)
Jk j . (4.24)

Substituting (4.8) we verify that the initial velocity v(x) is a zero-eigenvector of Ĵ

Ĵv = 0 , (4.25)

so the Poincaré section eliminates variations parallel to v, and Ĵ is a rank (d−1)-
dimensional matrix, i.e., one less than the dimension of the continuous time flow.
12 1314

4.7 Neighborhood volume

section 6.2
remark 6.2

Consider a small state space volume ΔV = dd x centered around the point x0 at
time t = 0. The volume ΔV′ around the point x′ = x(t) time t later is 15

ΔV ′ =
ΔV ′

ΔV
ΔV =

∣∣∣∣∣det
∂x′

∂x

∣∣∣∣∣ΔV =
∣∣∣det Jt(x0)

∣∣∣ΔV , (4.26)

so the |det J| is the ratio of the initial and the final volumes. The determinant
det Jt(x0) =

∏d
i=1Λi(x0, t) is the product of the Jacobian matrix eigenvalues. We

shall refer to this determinant as the Jacobian of the flow. The Jacobian is easily
exercise 4.1

evaluated. Take the time derivative, use the J evolution equation (4.9) and the
matrix identity ln det J = tr ln J: 16

d
dt

lnΔV(t) =
d
dt

ln det J = tr
d
dt

ln J = tr
1
J

J̇ = tr A = ∂ivi .

11Predrag: redraw figure
12Predrag: find Thiffeault [24] reference
13Predrag: write out Ĵ in matrix form?
14Predrag: find Thiffeault [24] reference
15Predrag: bring here Jacobian identities from QM discussions
16Predrag: explain that eigenvalue 1 along the flow requires ‘gauge fixing,’ choice of arbitrary

starting point
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(Here, as elsewhere in this book, a repeated index implies summation.) Integrate
both sides to obtain the time evolution of an infinitesimal volume

det Jt(x0) = exp

[∫ t

0
dτ tr A(x(τ))

]
= exp

[∫ t

0
dτ ∂ivi(x(τ))

]
. (4.27)

As the divergence ∂ivi is a scalar quantity, the integral in the exponent (4.18) needs
no time ordering. So all we need to do is evaluate the time average

∂ivi = lim
t→∞

1
t

∫ t

0
dτ

d∑
i=1

Aii(x(τ))

=
1
t

ln

∣∣∣∣∣∣∣
d∏

i=1

Λi(x0, t)

∣∣∣∣∣∣∣ =
d∑

i=1

λ(i)(x0, t) (4.28)

along the trajectory. If the flow is not singular (for example, the trajectory does
not run head-on into the Coulomb 1/r singularity), the stability matrix elements
are bounded everywhere, |Ai j| < M , and so is the trace

∑
i Aii. The time integral

in (4.28) thus grows at most linearly with t, ∂ivi is bounded for all times, and
numerical estimates of the t → ∞ limit in (4.28) are not marred by any blowups.

example 4.8

p. 104

Even if we were to insist on extracting ∂ivi from (4.17) by first multiplying
Jacobian matrices along the flow, and then taking the logarithm, we can avoid ex-
ponential blowups in Jt by using the multiplicative structure (4.19), det Jt′+t(x0) =
det Jt′(x′) det Jt(x0) to restart with J0(x′) = 1 whenever the eigenvalues of Jt(x0)
start getting out of hand. In numerical evaluations of Lyapunov exponents defined

section 6.2
as λi = limt→∞ μ

(i)(x0, t), the sum rule (4.28) can serve as a helpful check on the
accuracy of the computation. 17

The divergence ∂ivi characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. If ∂ivi < 0, the flow is locally con-
tracting, and the trajectory might be falling into an attractor. If ∂ivi(x) < 0 , for
all x ∈ M, the flow is globally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state space M. If ∂ivi = 0, the flow
preserves state space volume and det Jt = 1. A flow with this property is called
incompressible. An important class of such flows are the Hamiltonian flows
considered in sect. 7.3.

But before we can get to that, Henriette Roux, the perfect student and always
alert, pipes up. She does not like our definition of the Jacobian matrix in terms of
the time-ordered exponential (4.18). Depending on the signs of multipliers, the ⇓PRIVATE

section 37.2

⇑PRIVATE

left hand side of (4.27) can be either positive or negative. But the right hand side

17Predrag: fix - these are not Lyapunov exponents
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is an exponential of a real number, and that can only be positive. What gives? As
we shall see much later on in this text, in discussion of topological indices arising
in semiclassical quantization, this is not at all a dumb question. ⇓PRIVATE

section 38.3.2

in depth:

appendix N.1, p. 1202

in depth:

appendix E.4, p. 1093
⇑PRIVATE

Résumé

A neighborhood of a trajectory deforms as it is transported by a flow. In the
linear approximation, the stability matrix A describes the shearing / compression
/ expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite time t is described by the Jacobian matrix

Jt(x0) = Te
∫ t

0 dτA(x(τ)) ,

where T stands for the time-ordered integration, defined multiplicatively along
the trajectory. For discrete time maps this is multiplication by time-step Jacobian
matrix J along the n points x0, x1, x2, . . ., xn−1 on the trajectory of x0,

Jn(x0) = J(xn−1)J(xn−2) · · · J(x1)J(x0) ,

with J(x) the single discrete time-step Jacobian matrix. In ChaosBook Λk denotes
the kth eigenvalue of the finite time Jacobian matrix Jt(x0), μ(k) the real part of kth
eigen-exponent, and ω(k) its phase,

Λ = et(μ+iω) .

For complex eigenvalue pairs the ‘angular velocity’ ω describes rotational motion
in the plane spanned by the real and imaginary parts of the corresponding pair of
complex eigenvectors.

The eigenvalues and eigen-directions of the Jacobian matrix describe the de-
formation of an initial infinitesimal cloud of neighboring trajectories into a dis-
torted cloud a finite time t later. Nearby trajectories separate exponentially along
unstable eigen-directions, approach each other along stable directions, and change
slowly (algebraically) their distance along marginal, or center directions. The Ja-
cobian matrix Jt is in general neither symmetric, nor diagonalizable by a rotation,
nor do its (left or right) eigenvectors define an orthonormal coordinate frame.
Furthermore, although the Jacobian matrices are multiplicative along the flow, in
dimensions higher than one their eigenvalues in general are not. This lack of mul-

⇓PRIVATE

appendix J.1

⇑PRIVATE

tiplicativity has important repercussions for both classical and quantum dynamics.
18

⇓PRIVATE

chapter 42
Use Eckmann and Ruelle [?] discussion of characteristic exponents.

⇑PRIVATE
18Predrag: remember to incorporate JacobianHist.doc
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Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.3 we only sketch, and in appendix E recapitulate a few facts that our
narrative relies on: a useful reference book is [1]. The basic facts are presented at length
in many textbooks. Frequently cited linear algebra references are Golub and Van Loan [ 2],
Coleman and Van Loan [3], and Watkins [4, 5]. The standard references that exhaus-
tively enumerate and explain all possible cases are Hirsch and Smale [6] and Arnol’d [7].
A quick overview is given by Izhikevich [8]; for different notions of orbit stability see
Holmes and Shea-Brown [9]. For ChaosBook purposes, we enjoyed the discussion in
chapter 2 Meiss [10], chapter 1 of Perko [11] and chapters 3 and 5 of Glendinning [12],
and liked the discussion of norms, least square problems, and differences between sin-
gular value and eigenvalue decompositions in Trefethen and Bau [ 13]. Truesdell [2] and
Gurtin [3] are excellent references for the continuum mechanics perspective on state space
dynamics. We enjoyed Christov et al. [1] easy introduction to parallels between dynami-
cal systems and continuum mechanics.

The nomenclature tends to be a bit confusing. Jacobian matrix ( 4.5) is sometimes
referred to as the fundamental solution matrix or simply fundamental matrix, a name in-
herited from the theory of linear ODEs, or the Fréchet derivative of the nonlinear mapping
f t(x). In continuum mechanics it is called the deformation gradient, or transplacement
gradient. It is often denoted D f , but for our needs (we shall have to sort through a plethora
of related Jacobian matrices) matrix notation J is more economical. Single discrete time-
step Jacobian J jl = ∂ f j/∂xl in (4.21) is referred to as the ‘tangent map’ by Skokos [15, 16].
In referring to velocity gradients matrix A defined in ( 4.3) as the ‘stability matrix’ we fol-
low Tabor [14]. Goldhirsch, Sulem, and Orszag [17] call it the ‘Hessenberg matrix’. 19

Sometimes A, which describes the instantaneous shear of the neighborhood of x(x 0, t), is
referred to as the ‘Jacobian matrix,’ a particularly unfortunate usage when one consid-
ers linearized stability of an equilibrium point (5.1). A is not a Jacobian matrix, just as
a generator of SO(2) rotation is not a rotation; A is a generator of an infinitesimal time
step deformation, Jδt � 1 + Aδt . What Jacobi had in mind in his 1841 fundamental pa-
per [18] on the determinants today known as ‘jacobians’ were transformations between
different coordinate frames. These are dimensionless quantities, while dimensionally A i j

is 1/[time]. More unfortunate still is referring to the Jacobian matrix J t = exp(tA) as an
‘evolution operator,’ which here (see sect. 17.2) refers to something altogether different.
In this book Jacobian matrix J t always refers to (4.5), the linearized deformation after a
finite time t, either for a continuous time flow, or a discrete time mapping.

4.8 Examples

The reader is urged to study the examples collected here. To return back to the
main text, click on [click to return] pointer on the margin.

Example 4.1 Rössler and Lorenz flows, linearized: (continued from example 3.5) For

19Predrag: this seems wrong: “Arnold [1] calls it the ‘matrix of variations’.”
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Figure 4.4: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node (at-
tracting), center (elliptic), in spiral.

the Rössler (2.18) and Lorenz (2.13) flows the stability matrices are, respectively

ARoss =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 −1 −1
1 a 0
z 0 x − c

⎞⎟⎟⎟⎟⎟⎟⎠ , ALor =

⎛⎜⎜⎜⎜⎜⎜⎝ −σ σ 0
ρ − z −1 x

y x −b

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.29)

(continued in example 4.5)
click to return: p. 87

Example 4.2 Jacobian matrix eigenvalues, diagonalizable case: Should we be
so lucky that A = AD happens to be a diagonal matrix with eigenvalues (λ(1), λ(2), . . . , λ(d)),
the exponential is simply

Jt = etAD =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
etλ(1) · · · 0

. . .

0 · · · etλ(d)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (4.30)

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form AD = U−1AU. Then J can also be brought to a diagonal form (insert
factors 1 = UU−1 between the terms of the product (4.14)):

exercise 4.2

Jt = etA = UetAD U−1 . (4.31)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of J t, and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

We recapitulate the basic facts of linear algebra in appendixE. The following
2-dimensional example serves well to highlight the most important types of linear
flows:

Example 4.3 Linear stability of 2-dimensional flows: For a 2-dimensional flow the
eigenvalues λ(1), λ(2) of A are either real, leading to a linear motion along their eigen-
vectors, x j(t) = x j(0) exp(tλ( j)), or a form a complex conjugate pair λ(1) = μ + iω , λ(2) =

μ − iω , leading to a circular or spiral motion in the [x1, x2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case of real λ(1) > 0, λ(2) < 0, x1 grows exponentially
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in/out nodes
inward/outward

spirals
center
saddle
SO(2)@SO(2)
turnover time
time!turnover
Rossler@Rössler!equilibria
equilibrium!Rössler

flow

Figure 4.5: Qualitatively distinct types of expo-
nents {λ(1), λ(2)} of a [2×2] Jacobian matrix.
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with time, and x2 contracts exponentially. This behavior, called a saddle, is sketched in
figure 4.4, as are the remaining possibilities: in/out nodes, inward/outward spirals, and
the center. The magnitude of out-spiral |x(t)| diverges exponentially when μ > 0, and
in-spiral contracts into (0, 0) when the μ < 0, whereas the phase velocity ω controls its
oscillations.

If eigenvalues λ(1) = λ(2) = λ are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [dα×dα] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.4 and 4.5, and work out in
detail the most important cases in appendix E, example E.3. 20

click to return: p. 92

Example 4.4 In-out spirals. Consider an equilibrium whose stability exponents
{λ(1), λ(2)} = {μ + iω, μ − iω} form a complex conjugate pair. The corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(1), e(2)} →
{Re e(1), Im e(1)}. The 2-dimensional real representation (E.36),

⇓PRIVATE

⇑PRIVATE(
μ −ω
ω μ

)
= μ

(
1 0
0 1

)
+ ω

(
0 −1
1 0

)
consists of the identity and the generator of SO(2) rotations in the {Re e(1), Im e(1)} plane.
Trajectories x(t) = Jt x(0), where (omitting e(3), e(4), · · · eigen-directions)

Jt = eAqt = etμ
( cos ωt − sin ωt

sin ωt cos ωt

)
, (4.32)

spiral in/out around (x, y) = (0, 0), see figure 4.4, with the rotation period T , and con-
traction/expansion radially by the multiplier Λradial, and by the multiplier Λ j along the
e( j) eigen-direction per a turn of the spiral:

exercise E.1

T = 2π/ω , Λradial = eTμ , Λ j = eTμ( j)
. (4.33)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000 T, or 10−2T ). Λ j multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane. 21
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Lorenz flow

Figure 4.6: Two trajectories of the Rössler flow initi-
ated in the neighborhood of the ‘+’ or ‘outer’ equilib-
rium point (2.19). (R. Paškauskas)
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Example 4.5 Stability of equilibria of the Rössler flow. (continued from ex-
ample 4.1) The Rösler system (2.18) has two equilibrium points (2.19), the inner

exercise 4.5
exercise 2.8

equilibrium (x−, y−, z−), and the outer equilibrium point (x+, y+, z+). Together with their
exponents (eigenvalues of the stability matrix), the two equilibria yield quite detailed
information about the flow. Figure 4.6 shows two trajectories which start in the neigh-
borhood of the outer ‘+’ equilibrium. Trajectories to the right of the equilibrium point ‘+’
escape, and those to the left spiral toward the inner equilibrium point ‘−’, where they
seem to wander chaotically for all times. The stable manifold of outer equilibrium point
thus serves as the attraction basin boundary. Consider now the numerical values for
eigenvalues of the two equilibria

(μ(1)
− , μ

(2)
− ± iω(2)

− ) = (−5.686, 0.0970 ± i 0.9951 )
(μ(1)
+ , μ

(2)
+ ± iω(2)

+ ) = ( 0.1929, −4.596 × 10−6 ± i 5.428 )
(4.34)

Outer equilibrium: The μ(2)
+ ± iω(2)

+ complex eigenvalue pair implies that neighborhood
of the outer equilibrium point rotates with angular period T+ ≈

∣∣∣2π/ω(2)
+

∣∣∣ = 1.1575. The
multiplier by which a trajectory that starts near the ‘+’ equilibrium point contracts in the
stable manifold plane is the excruciatingly slow multiplier Λ+2 ≈ exp(μ(2)

+ T+) = 0.9999947
per rotation. For each period the point of the stable manifold moves away along the
unstable eigen-direction by factorΛ+1 ≈ exp(μ(1)

+ T+) = 1.2497. Hence the slow spiraling
on both sides of the ‘+’ equilibrium point.

Inner equilibrium: The μ(2)
− ± iω(2)

− complex eigenvalue pair tells us that neighbor-
hood of the ‘−’ equilibrium point rotates with angular period T − ≈

∣∣∣2π/ω(2)
−

∣∣∣ = 6.313,
slightly faster than the harmonic oscillator estimate in (2.15). The multiplier by which
a trajectory that starts near the ‘−’ equilibrium point spirals away per one rotation is
Λradial ≈ exp(μ(2)

− T−) = 1.84. The μ(1)
− eigenvalue is essentially the z expansion cor-

recting parameter c introduced in (2.17). For each Poincaré section return, the trajec-
tory is contracted into the stable manifold by the amazing factor of Λ1 ≈ exp(μ(1)

− T−) =
10−15.6 (!).

Suppose you start with a 1 mm interval pointing in the Λ1 eigen-direction. After
one Poincaré return the interval is of order of 10−4 fermi, the furthest we will get into sub-
nuclear structure in this book. Of course, from the mathematical point of view, the flow
is reversible, and the Poincaré return map is invertible. (continued in example 11.3)

(R. Paškauskas)

Example 4.6 Stability of Lorenz flow equilibria: (continued from example 4.1) A
glance at figure 3.4 suggests that the flow is organized by its 3 equilibria, so lets have
a closer look at their stable/unstable manifolds.

22 The EQ0 equilibrium stability matrix (4.29) evaluated at xEQ0 = (0, 0, 0) is
block-diagonal. The z-axis is an eigenvector with a contracting eigenvalue λ(2) = −b.

remark 9.14
20Predrag: add mathworld list?
21Predrag: link to Rössler and Lorenz attractors.
22Predrag: ChaosBook: add pointer
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turnover time
time!turnover

Figure 4.7: (a) A perspective view of the lin-
earized Lorenz flow near EQ1 equilibrium, see fig-
ure 3.4 (a). The unstable eigenplane of EQ1 is
spanned by Re e(1) and Im e(1). The stable eigen-
vector e(3). (b) Lorenz flow near the EQ0 equi-
librium: unstable eigenvector e(1), stable eigen-
vectors e(2), e(3). Trajectories initiated at distances
10−8 · · · 10−12, 10−13 away from the z-axis exit fi-
nite distance from EQ0 along the (e(1), e(2)) eigen-
vectors plane. Due to the strong λ(1) expansion, the
EQ0 equilibrium is, for all practical purposes, un-
reachable, and the EQ1 → EQ0 heteroclinic con-
nection never observed in simulations such as fig-
ure 2.5. (E. Siminos; continued in figure 11.8.)
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From (4.40) it follows that all [x, y] areas shrink at rate −(σ + 1). Indeed, the [x, y]
submatrix

A− =

(
−σ σ
ρ −1

)
(4.35)

has a real expanding/contracting eigenvalue pair λ(1,3) = −(σ+1)/2±
√

(σ − 1)2/4 + ρσ,
with the right eigenvectors e(1), e(3) in the [x, y] plane, given by (either) column of the
projection operator 23

Pi =
A− − λ( j)1
λ(i) − λ( j)

=
1

λ(i) − λ( j)

(
−σ − λ( j) σ

ρ −1 − λ( j)

)
, i � j ∈ {1, 3} . (4.36)

EQ1,2 equilibria have no symmetry, so their eigenvalues are given by the roots
of a cubic equation, the secular determinant det (A − λ1) = 0:

λ3 + λ2(σ + b + 1) + λb(σ + ρ) + 2σb(ρ − 1) = 0 . (4.37)

For ρ > 24.74, EQ1,2 have one stable real eigenvalue and one unstable complex con-
jugate pair, leading to a spiral-out instability and the strange attractor depicted in fig-
ure 2.5.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz
parameter choice σ = 10, b = 8/3, ρ = 28 , we note the values of these eigenvalues for
future reference,

EQ0 : (λ(1), λ(2), λ(3)) = ( 11.83 , − 2.666, −22.83 )
EQ1 : (μ(1) ± iω(1), λ(3)) = ( 0.094 ± i 10.19, −13.85 ) ,

(4.38)

as well as the rotation period TEQ1 = 2π/ω(1) about EQ1, and the associated expan-
sion/contraction multipliers Λ(i) = exp(μ( j)TEQ1 ) per a spiral-out turn:

TEQ1 = 0.6163 , (Λ(1),Λ(3)) = ( 1.060 , 1.957× 10−4 ) . (4.39)

We learn that the typical turnover time scale in this problem is of order T ≈ T EQ1 ≈ 1
(and not, let us say, 1000, or 10−2). Combined with the contraction rate (4.40), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ≈ 10−4 per
mean turnover time.

23Predrag: ChaosBook: give refeq here
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Lorenz flow
heteroclinic!orbit
Lorenz flow

In the EQ1 neighborhood the unstable manifold trajectories slowly spiral out,
with very small radial per-turn expansion multiplier Λ(1) � 1.06, and very strong con-
traction multiplierΛ(3) � 10−4 onto the unstable manifold, figure 4.7 (a). This contraction
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface evi-
dent in the section figure 3.4. 24 25

In the xEQ0 = (0, 0, 0) equilibrium neighborhood the extremely strong λ (3) �
−23 contraction along the e(3) direction confines the hyperbolic dynamics near EQ0 to
the plane spanned by the unstable eigenvector e(1), with λ(1) � 12, and the slowest
contraction rate eigenvector e(2) along the z-axis, with λ(2) � −3. In this plane the strong
expansion along e(1) overwhelms the slow λ(2) � −3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQ0, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.4, and the empirical scarcity of trajectories close to EQ0. (continued in
example 4.8)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait. (continued from example 4.6) As the
EQ1 unstable manifold spirals out, the strip that starts out in the section above EQ1 in
figure 3.4 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQ0. 26

How? As in the neighborhood of the EQ0 equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQ0, continue analytically to a small distance beyond EQ0, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e(1)

direction, and those to the right along −e(1). As along the e(1) direction xy > 0, the
nonlinear term in the ż equation (2.13) bends both branches of the EQ0 unstable man-
ifold Wu(EQ0) upwards. Then . . . - never mind. Best to postpone the completion of
this narrative to example 9.14, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9.14)

(E. Siminos and J. Halcrow)

Example 4.8 Lorenz flow state space contraction: (continued from exam-
ple 4.6) It follows from (4.29) and (4.28) that Lorenz flow is volume contracting,

∂ivi =

3∑
i=1

λ(i)(x, t) = −σ − b − 1 , (4.40)

24Predrag: ChaosBook: develop this text from steady.tex: “For an unstable complex pair λ(n,n+1)

of equilibrium EQ, let Wmn f ldu(n, n + 1)EQ denote the orbit of a circle of infinitesimal radius in
the plane about EQ spanned by e(n)

r , e(n)
i . This part of the EQ unstable manifold is 2-dimensional; its

shape can be traced out by computing a set of trajectories with initial conditions EQ + ε(e(n)
r cos θ+

e(n)
i sin θ) for a set of values of θ.

25Predrag: remember to delete halcrow/figs/hyperb.* ??
26Predrag: This needs more explaining. As EQ0 has 2 contracting dimensions (and fluids will

have 50,000), whole volumes get scrunched into EQ0, not just 1-dimensional heteroclinic orbits.
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Henon@Hénon
map!stability

jacobian!Hénon map

Figure 4.8: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.
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xn

110
01

011

10

101
0

1

at a constant, coordinate- and ρ-independent rate, set by Lorenz to ∂ivi = −13.66 . As
for periodic orbits and for long time averages there is no contraction/expansion along
the flow, λ(‖) = 0, and the sum of λ(i) is constant by (4.40), there is only one independent
exponent λ(i) to compute. (continued in example 4.7)

click to return: p. 97
⇓PRIVATE

Example 4.9 Rössler flow state space contraction: 27
click to return: p. 97
⇑PRIVATE

Example 4.10 Stability of a 1-dimensional map: Consider the orbit {. . . , x−1, x0, x1, x2, . . .}
of a 1-dimensional map xn+1 = f (xn). Since point xn is carried into point xn+1, in study-
ing linear stability (and higher derivatives) of the map it is often convenient to deploy
a local coordinate systems za centered on the orbit points xa, together with a notation
for the map, its derivative, and, by the chain rule, the derivative of the kth iterate f k

evaluated at the point xa,

x = xa + za , fa(za) = f (xa + za)

f ′a = f ′(xa)

Λ(x0, k) = f k
a
′ = f ′a+k−1 · · · f ′a+1 f ′a , k ≥ 2 . (4.41)

Here a is the label of point xa, and the label a+1 is a shorthand for the next point b on
the orbit of xa, xb = xa+1 = f (xa). For example, a period-3 periodic point in figure 4.8
might have label a = 011, and by x110 = f (x011) the next point label is b = 110.

click to return: p. 94

Example 4.11 Hénon map Jacobian matrix: For the Hénon map (3.17) the Jaco-
bian matrix for the nth iterate of the map is

Mn(x0) =
1∏

m=n

(
−2axm b

1 0

)
, xm = f m

1 (x0, y0) . (4.42)

The determinant of the Hénon one time-step Jacobian matrix (4.42) is constant,

det M = Λ1Λ2 = −b (4.43)

so in this case only one eigenvalue Λ1 = −b/Λ2 needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a
map of this particular form. 28

click to return: p. 95
27Predrag: use classroom solutions - sections are better than flow, because in each Poincare

section return flow contracts and explodes insanely.
28Predrag: explain Henon = normal form in conjug.tex
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covariant Lyapunov
vector

Lyapunov!covariant
vector

contracting!state
space, Rössler

29 30

Exercises boyscout

4.1. Trace-log of a matrix. Prove that

det M = etr ln M .

for an arbitrary nonsingular finite dimensional matrix M,
det M � 0. 31

4.2. Stability, diagonal case. Verify the relation (4.31)

Jt = etA = U−1etAD U , AD = UAU−1 .

⇓PRIVATE
4.3. Transport of local eigenframes. (a) Derive (4.8).

(b) More generally, consider the eigenvectors e ( j) of Jt(x)
(sometimes referred to as ‘covariant Lyapunov vectors,’
or, for periodic orbits, as ‘Floquet vectors’)

Jt(x) e( j)(x(t)) = Λ j(t) e( j)(x(t)) , (4.44)

and show that time t′ they are transported into eigenvec-
tors e( j)(x(t + t′)) of Jt+t′ (x). (P.
Cvitanović) ⇑PRIVATE

4.4. State space volume contraction.

(a) Compute the Rössler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous ∂ ivi along a
typical trajectory on the Rössler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of ∂ ivi. If you see regions
of local expansion, explain them.

(c) (optional) color-code the points on the trajectory by
the sign (and perhaps the magnitude) of ∂ ivi − ∂ivi.

(d) Compute numerically the average contraction rate
(4.28) along a typical trajectory on the Rössler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state space d = 3.

(f) (optional) Start some trajectories on the escape side
of the outer equilibrium, color-code the points on
the trajectory. Is the flow volume contracting?

29Predrag: insert Rossler discussion here
30Predrag: ask Christov et al. [1] for permission to include exercise 6.1, exercise 6.2, and exer-

cise 6.3.
31Predrag: move to a better place - like count.tex - it is not used in this chapter
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Rossler@Rössler!flow
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map!dissipative
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dissipative!map

(continued in exercise 20.12)

4.5. Topology of the Rössler flow. (continuation of exer-
cise 3.1)

(a) Show that equation |det (A − λ1)| = 0 for Rössler
flow in the notation of exercise 2.8 can be written
as

λ3+λ2c (p∓−ε)+λ(p±/ε+1−c2εp∓)∓c
√

D = 0(4.45)

(b) Solve (4.45) for eigenvalues λ± for each equilib-
rium as an expansion in powers of ε. Derive

λ−1 = −c + εc/(c2 + 1) + o(ε)
λ−2 = εc

3/[2(c2 + 1)] + o(ε2)
θ−2 = 1 + ε/[2(c2 + 1)] + o(ε)
λ+1 = cε(1 − ε) + o(ε3)
λ+2 = −ε

5c2/2 + o(ε6)
θ+2 =

√
1 + 1/ε (1 + o(ε))

(4.46)

Compare with exact eigenvalues. What are dynam-
ical implications of the extravagant value of λ−1 ?
(continued as exercise 13.11)

(R. Paškauskas)

4.6. Time-ordered exponentials. Given a time dependent
matrix V(t) check that the time-ordered exponential

U(t) = Te
∫ t

0
dτV(τ)

may be written as

U(t) =
∞∑

m=0

∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tm−1

0
dtmV(t1) · · ·V(tm)

and verify, by using this representation, thatU(t) satisfies
the equation

U̇(t) = V(t)U(t),

with the initial conditionU(0) = 1.

4.7. A contracting baker’s map. Consider a contract-
ing (or ‘dissipative’) baker’s map, acting on a unit square
[0, 1]2 = [0, 1] × [0, 1], defined by(

xn+1
yn+1

)
=

(
xn/3
2yn

)
yn ≤ 1/2

(
xn+1
yn+1

)
=

(
xn/3 + 1/2

2yn − 1

)
yn > 1/2 .

This map shrinks strips by a factor of 1/3 in the x-direction,
and then stretches (and folds) them by a factor of 2 in the
y-direction.

By how much does the state space volume contract for
one iteration of the map? (continued in exercise 11.3) ⇓PRIVATE

⇑PRIVATE
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Cycle stability

Topological features of a dynamical system –singularities, periodic orbits,
and the ways in which the orbits intertwine– are invariant under a general
continuous change of coordinates. Equilibria and periodic orbits are flow-

invariant sets, in the sense that the flow only shifts points along a periodic orbit,
but the periodic orbit as the set of periodic points remains unchanged in time. Sur-
prisingly, there also exist quantities that depend on the notion of metric distance
between points, but nevertheless do not change value under a smooth change of
coordinates. Local quantities such as the eigenvalues of equilibria and periodic
orbits, and global quantities such as Lyapunov exponents, metric entropy, and
fractal dimensions are examples of properties of dynamical systems independent
of coordinate choice.

We now turn to the first, local class of such invariants, linear stability of equi-
libria and periodic orbits of flows and maps. This will give us metric information
about local dynamics, as well as the key concept, the concept of a neighborhood
of a point x: its size is determined by the number of expanding directions, and the
rates of expansion along them: contracting directions play only a secondary role
(see sect. 5.6).

If you already know that the eigenvalues of periodic orbits are invariants of a
flow, skip this chapter.

fast track:

chapter 7, p. 137

As noted on page 45, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodic–nevertheless, equilibria and
periodic orbits turn out to be the key to unraveling chaotic dynamics. Here we
note a few of the properties that make them so precious to a theorist. 1

1Mason: does not jive with relative equilibria in a 3-body problem? This must be rephrased
more carefully. PC: a step at a time - discussed in the continuous symmetries chapter 10.
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5.1 Equilibria

For a start, consider the case where xq is an equilibrium point (2.9). Expanding
around the equilibrium point xq, using the fact that the stability matrix A = A(xq)
in (4.2) is constant, and integrating, ft(x) = xq + eAt(x − xq) + · · · , we verify that
the simple formula (4.14) applies also to the Jacobian matrix of an equilibrium
point,

Jt
q = eAqt , Jt

q = Jt(xq) , Aq = A(xq) . (5.1)

As an equilibrium point is stationary, time plays no role, and the eigenvalues and
the eigenvectors of stability matrix Aq evaluated at the equilibrium point xq,

Aq e( j) = λ
( j)
q e( j) , (5.2)

describe the linearized neighborhood of the equilibrium point, with stability expo-
nents λ( j)

p = μ
( j)
p ± iω( j)

p . The eigenvectors are also the eigenvectors of the Jacobian

matrix, Jt
q e( j) = exp(tλ( j)

q ) e( j) .

• If all μ( j) < 0, then the equilibrium is stable, or a sink.

• If some μ( j) < 0, and other μ( j) > 0, the equilibrium is hyperbolic, or a
saddle.

• If all μ( j) > 0, then the equilibrium is repelling, or a source.

• If some μ( j) = 0, think again (you have a symmetry or a bifurcation).

5.2 Periodic orbits

An obvious virtue of periodic orbits is that they are topological invariants: a
fixed point remains a fixed point for any choice of coordinates, and similarly a
periodic orbit remains periodic in any representation of the dynamics. Any re-
parametrization of a dynamical system that preserves its topology has to preserve
topological relations between periodic orbits, such as their relative inter-windings
and knots. So the mere existence of periodic orbits suffices to partially organize
the spatial layout of a non–wandering set. No less important, as we shall now
show, is the fact that cycle eigenvalues are metric invariants: they determine the
relative sizes of neighborhoods in a non–wandering set. 2

We start by noting that due to the multiplicative structure (4.19) of Jacobian
matrices, the Jacobian matrix for the rth repeat of a prime cycle p of period T is

JrT (x) = JT ( f (r−1)T (x)) · · · JT ( f T (x))JT (x) = Jp(x)r , (5.3)

2Predrag: give references to templates, praise Gilmore

invariants - 17mar2013 boyscout version14.4, Mar 19 2013
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covariant Lyapunov
vector
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vector
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Floquet!theorem

where Jp(x) = JT (x) is the Jacobian matrix for a single traversal of the prime
cycle p, x ∈ Mp is any point on the cycle, and frT (x) = x as f t(x) returns to x
every multiple of the period T . Hence, it suffices to restrict our considerations to
the stability of prime cycles.

fast track:

sect. 5.3, p. 115

5.2.1 Floquet theory

When dealing with periodic orbits, some of the quantities already introduced in
chapter 4 inherit names from the Floquet theory of differential equations with
time-periodic coefficients. Consider the equation of variations (4.2) evaluated on
a periodic orbit p of period T , at point x(t) ∈ Mp,

δ̇x = A(t) δx , A(t) = A(t + T) ,

with A(t) = A(x(t)). The periodicity of the stability matrix implies that if δx(t)
is a solution, then also δx(t + T) satisfies the same equation: moreover the two
solutions are related by (4.5)

δx(t + T) = Jp(x) δx(t) , x ∈ Mp . (5.4)

Even though the Jacobian matrix Jp(x) depends upon x (the ‘starting’ point of the
periodic orbit), we shall show in sect. 5.3 that its eigenvalues do not, so we may
write the eigenvalue equation as

Jp(x) e( j)(x) = Λ j e( j)(x) , (5.5)

where Λ j are independent of x, and eigenvectors e( j) are sometimes referred to as
‘covariant Lyapunov vectors,’ or, for periodic orbits, as ‘Floquet vectors’.

Expand δx in the (5.5) eigenbasis, δx(t) =
∑
δx j(t) e( j) , e( j) = e( j)(x(0)) .

Taking into account (5.4), we get that δxj(t) is multiplied by Λj per each period

δx(t + T) =
∑

j

δx j(t + T) e( j) =
∑

j

Λ j δx j(t) e( j) .

We can absorb this exponential growth / contraction by rewriting the coefficients
δx j(t) as δx j(t) = exp(λ( j)t) uj(t) , uj(0) = δxj(0) . Thus each solution of the
equation of variations (4.2) may be expressed in the Floquet form,

δx(t) =
∑

j

eλ
( j) t u j(t) e( j) , uj(t + T) = uj(t) , (5.6)

invariants - 17mar2013 boyscout version14.4, Mar 19 2013
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inverse!hyperbolic

Figure 5.1: For a prime cycle p, Floquet matrix
Jp returns an infinitesimal spherical neighborhood of
x0 ∈ Mp stretched into an ellipsoid, with overlap ra-
tio along the eigendirection e( j) of Jp(x) given by the
Floquet multiplier |Λ j |. These ratios are invariant un-
der smooth nonlinear reparametrizations of state space
coordinates, and are intrinsic property of cycle p.

J

+   x δ

δp

x0

0x +      x

with uj(t) periodic with period T . The exp(λ( j)t) factor is not an eigenvalue of the
Jacobian matrix Jt, it is only an interpolation between x and fT (x). The contin-
uous time t in (5.6) does not imply that eigenvalues of the Jacobian matrix enjoy
any multiplicative property for t � rT : exponents λ( j) refer to a full traversal of
the periodic orbit. Indeed, while uj(t) describes the variation of δx(t) with respect
to the stationary eigen-frame fixed by eigenvectors at the point x(0), the object of
dynamical significance is the co-moving eigen-frame defined below in (5.13). 3

5.2.2 Cycle stability

The time-dependent T-periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hence from now on we shall
refer to a Jacobian matrix evaluated on a periodic orbit p either as a [d×d] Floquet
matrix Jp or a [(d−1) × (d−1)] monodromy matrix Mp, to its eigenvalues Λj as
Floquet multipliers (5.5), and to λ

( j)
p = μ

( j)
p + iω( j)

p as Floquet or characteristic
exponents. The stretching/contraction rates per unit time are given by the real
parts of Floquet exponents

μ
( j)
p =

1
Tp

ln
∣∣∣Λp, j

∣∣∣ . (5.7)

The factor 1/Tp in the definition of the Floquet exponents is motivated by its form
for the linear dynamical systems, for example (4.30), as well as the fact that expo-
nents so defined can be misinterpreted as Lyapunov exponents (6.12) evaluated on
the prime cycle p. When Λj is real, we do care about σ( j) = Λ j/|Λ j| ∈ {+1,−1} ,
the sign of the jth Floquet multiplier. If σ( j) = −1 and |Λ j| � 1, the corresponding

section 7.3
eigen-direction is said to be inverse hyperbolic. Keeping track of this by case-
by-case enumeration is an unnecessary nuisance, so most of our formulas will
be stated in terms of the Floquet multipliers Λj rather than in the terms of the
multiplier signs σ( j), exponents μ( j) and phases ω( j). 4

3Predrag: study Floquet theory: the punch line is that it reduces cycle stability to a fixed point
stability, but I do not get it... Reread Anishchenko, Dynamica Chaos - Basic Concepts (Teubner,
Leipzig 1987)

4Predrag: Update reference to (6.12). Contrast Floquet vs. singular values - Lyapunov expo-
nents [15, 16]
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Figure 5.2: An unstable periodic orbit repels every
neighboring trajectory x′(t), except those on its center
and stable manifolds.

x’ x=x(T)

x’(T)

In dynamics the expanding directions, |Λe| > 1, have to be taken care of first,
while the contracting directions |Λc| < 1 tend to take care of themselves, hence we
always order multipliers Λk in order of decreasing magnitude |Λ1| ≥ |Λ2| ≥ . . . ≥
|Λd | . Since |Λ j| = etμ( j)

, this is the same as ordering by μ(1) ≥ μ(2) ≥ . . . ≥ μ(d) .We
sort the Floquet multipliers {Λp,1, Λp,2, . . ., Λp,d} of the Floquet matrix evaluated
on the p-cycle into three sets {e,m, c}

expanding: {Λ}e = {Λp, j :
∣∣∣Λp, j

∣∣∣ > 1}

{λ}e = {λ( j)
p : μ( j)

p > 0}
marginal: {Λ}m = {Λp, j :

∣∣∣Λp, j

∣∣∣ = 1} (5.8)

{λ}m = {λ( j)
p : μ( j)

p = 0}
contracting: {Λ}c = {Λp, j :

∣∣∣Λp, j

∣∣∣ < 1}

{λ}c = {λ( j)
p : μ( j)

p < 0} .

In what follows, the volume of expanding manifold will play an important role.
We denote by Λp (no jth eigenvalue index) the product of expanding Floquet
multipliers

Λp =
∏

e

Λp,e . (5.9)

As Jp is a real matrix, complex eigenvalues always come in complex conjugate
pairs, Λp,i+1 = Λ

∗
p,i, so the product (5.9) is always real. 5 6 7

A periodic orbit of a continuous-time flow, or of a map, or a fixed point of a
map is

p. 111

• stable, a sink or a limit cycle if all |Λj| < 1 (real parts of all of its Floquet
exponents, other than the vanishing longitudinal exponent for perturbations
tangent to the cycle, see sect. 5.3.1, are strictly negative, 0 > μ(1) ≥ μ( j)).

5Predrag: explain figure 5.1 true for singular vectors, cite Lorenz
6Predrag: define center manifold
7Predrag: For what to tabulate for a given periodic orbit, see appendix E.3.
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• hyperbolic or a saddle, unstable to perturbations outside its stable manifold
if some |Λ j| > 1, and other |Λ j| < 1 (a set of μ( j) ≥ μmin > 0 is strictly
positive, the rest is strictly negative).

• elliptic, neutral or marginal if all |Λj| = 1 (μ( j) = 0).

• partially hyperbolic, if μ( j) = 0 for a subset of exponents (other than the
longitudinal one).

• repelling, or a source, unstable to any perturbation if all |Λj| > 1 (all Flo-
quet exponents, other than the vanishing longitudinal exponent, are strictly
positive, μ( j) ≥ μ(d) > 0).

The region of system parameter values for which a periodic orbit p is stable is
called the stability window of p. The set of initial points that are asymptotically
attracted to Mp as t → +∞ (for a fixed set of system parameter values) is called
the basin of attraction of limit cycle p. 8 Repelling and hyperbolic cycles are
unstable to generic perturbations, and thus said to be unstable, see figure5.2.

section 7.4

If all Floquet exponents (other than the vanishing longitudinal exponent) of
all periodic orbits of a flow are strictly bounded away from zero, the flow is
said to be hyperbolic. Otherwise the flow is said to be nonhyperbolic. A con-
fined smooth flow or map is generically nonhyperbolic, with partial ellipticity or
marginality expected only in presence of continuous symmetries, or for bifurca-
tion parameter values. As we shall see in chapter 10, in presence of continuous
symmetries equilibria and periodic orbits are not likely solutions, and their role
is played by higher-dimensional, toroidal, relative equilibria and relative periodic
orbits. For Hamiltonian flows the Sp(d) symmetry (Liouville phase-space volume
conservation, Poincaré invariants) leads to a proliferation of elliptic and partially
hyperbolic tori. 9 10

section 7.5

example 5.1

p. 123

5.3 Floquet multipliers are invariant

⇓PRIVATE

⇑PRIVATE

If the stability matrix A is computed on a flow-invariant equilibrium point q,

⇓PRIVATEAq = A(xq) , (5.10)

8Predrag: refer to where that is defined
9Predrag: comment on continuous.tex

10Mason: for infinite dimensional flows one cannot have λmin; in my thesis have a sequence
|λi| → 0, and all |λi| � 0.
PC: I think you are mixing up stability eigenvalues Λ with Floquet exponents λ in this and the next
comment. My λmin is a lower bound on |λi|, not λi, so I’m OK unless I have eigenvalues arbitrarily
close to 0; but then the flow is not hyperbolic.

invariants - 17mar2013 boyscout version14.4, Mar 19 2013
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semigroup!dynamical
co-moving frame
Lagrangian!frame

Figure 5.3: The parallelepiped spanned by Floquet
eigenvectors (’covariant vectors’, ’covariant Lyapunov
vectors’) is transported along the orbit and deformed
by Jacobian matrix. After a period of a periodic or-
bit, the eigenframe maps into itself (up to rescaling by
Λ j along each eigendirection e( j)). As Jacobian matrix
is not self-adjoint, the eigenvectors are not orthogonal;
the eigenframe is ‘non-normal’.

e(1)

e(2)
x(0)

x(τ)
Jτ

e(1)
e(2)

its eigenvalues λ(k)
q = λ

(k)(xq) are flow-invariant, so we label them by q, omit (xq).

⇑PRIVATE

The 1-dimensional map Floquet multiplier (5.25) is a product of derivatives
over all points around the cycle, and is therefore independent of which periodic
point is chosen as the initial one. In higher dimensions the form of the Floquet
matrix Jp(x0) in (5.3) does depend on the choice of coordinates and the initial
point x0 ∈ Mp. Nevertheless, as we shall now show, the cycle Floquet multipliers
are intrinsic property of a cycle in any dimension. Consider the ith eigenvalue,
eigenvector pair (Λj, e( j)) computed from Jp evaluated at a periodic point x, 11

Jp(x) e( j)(x) = Λ j e( j)(x) , x ∈ Mp . (5.11)

Consider another point on the cycle at time t later, x′ = f t(x) whose Floquet
matrix is Jp(x′). By the semigroup property (4.19), JT+t = Jt+T , and the Jacobian
matrix at x′ can be written either as

JT+t(x) = JT (x′) Jt(x) = Jp(x′) Jt(x) ,

or Jt(x) Jp(x). Multiplying (5.11) by Jt(x), we find that the Floquet matrix evalu-
ated at x′ has the same Floquet multiplier,

Jp(x′) e( j)(x′) = Λ j e( j)(x′) , e( j)(x′) = Jt(x) e( j)(x) , (5.12)

but with the eigenvector e( j) transported along the flow x → x′ to e( j)(x′) =
Jt(x) e( j)(x). Hence, in the spirit of the Floquet theory (5.6) one can define time-
periodic eigenvectors (in a co-moving ‘Lagrangian frame’)

e( j)(t) = e−λ
( j)t Jt(x) e( j)(0) , e( j)(t) = e( j)(x(t)) , x(t) ∈ Mp . (5.13)

Jp evaluated anywhere along the cycle has the same set of Floquet multipliers
{Λ1,Λ2, · · · , 1, · · · ,Λd−1}. As quantities such as tr Jp(x), det Jp(x) depend only
on the eigenvalues of Jp(x) and not on the starting point x, in expressions such as
det

(
1 − Jr

p(x)
)

we may omit reference to x,

det
(
1 − Jr

p

)
= det

(
1 − Jr

p(x)
)

for any x ∈ Mp . (5.14)

11Predrag: fix scale in figure 5.3, refer to it
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invariance!of flows
nonhyperbolic!flow
cycle!marginal

stability
marginal!stability!cycle

Figure 5.4: Any two points along a periodic orbit
p are mapped into themselves after one cycle period
T , hence a longitudinal displacement δx = v(x0)δt is
mapped into itself by the cycle Jacobian matrix Jp.

δ  x
x(T) = x(0)

We postpone the proof that the cycle Floquet multipliers are smooth conjugacy
invariants of the flow to sect. 5.4; time-forward map (5.12) is the special case of
this general property of smooth manifolds and their tangent spaces.

5.3.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either a continuous symmetry of the
flow (which one should immediately exploit to simplify the problem), or a non-
hyperbolicity of a flow (a source of much pain, hard to avoid). In that case (typical
of parameter values for which bifurcations occur) one has to go beyond linear
stability, deal with Jordan type subspaces (see example4.3), and sub-exponential
growth rates, such as tα. For flow-invariant solutions such as periodic orbits, the
time evolution is itself a continuous symmetry, hence a periodic orbit of a flow
always has a marginal Floquet multiplier, as we now show.

chapter 24

exercise 5.2

⇓PRIVATE
12 The Jacobian matrix Jt(x) transports the velocity field v(x) by (4.8), v(x(t)) =

exercise 4.3

⇑PRIVATE

Jt(x0) v(x0) . In general the velocity at point x(t) does not point in the same direc-
tion as the velocity at point x0, so this is not an eigenvalue condition for Jt; the
Jacobian matrix computed for an arbitrary segment of an arbitrary trajectory has
no invariant meaning. However, if the orbit is periodic, x(T) = x(0), after a com-
plete period

Jp(x) v(x) = v(x) , x ∈ Mp . (5.15)

Two successive points on the cycle initially distance δx = x′(0) − x(0) apart, are
separated by the exactly same distance after a completed period δx(T) = δx, see
figure 5.4, hence for a periodic orbit of a flow the velocity field v at any point
along cycle is an eigenvector e(‖)(x) = v(x) of the Jacobian matrix Jp with the unit
Floquet multiplier, zero Floquet exponent

Λ‖ = 1 , λ(‖) = 0 . (5.16)

exercise B.3

The continuous invariance that gives rise to this marginal Floquet multiplier is
the invariance of a cycle (the set Mp) under a time translation of its points along

12Predrag: Currently exercise 4.3 appears too early?
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the cycle. As we shall see in sect. 5.5, this marginal stability direction can be
eliminated by cutting the cycle by a Poincaré section and replacing the continuous
flow Floquet matrix by the Floquet matrix of the Poincaré return map.

If the flow is governed by a time-independent Hamiltonian, the energy is con-
served, and that leads to an additional marginal Floquet multiplier (we shall show
in sect. 7.4 that due to the symplectic invariance (7.31) real eigenvalues come in
pairs). For the collinear helium of sect. B.2 this marginal Floquet multiplier is

⇓PRIVATEmade explicit in appendix E.5. Further marginal eigenvalues arise in presence of
⇑PRIVATEcontinuous symmetries, as discussed in chapter 10.

5.4 Floquet multipliers are metric invariants

In sect. 5.3 we established that for a given flow, the Floquet multipliers are intrin-
sic to a given cycle, independent of the starting point along the cycle. Now we
prove a much stronger statement: cycle Floquet multipliers are smooth conjugacy
or metric invariants of the flow, the same in any representation of the dynamical
system. That follows by elementary differential geometry considerations: 13

If the same dynamicals is given by a map f in x coordinates, and a map g
in the y = h(x) coordinates, then f and g (or any other good representation) are
related by a smooth conjugacy, a reparameterization and a coordinate transforma-
tion g = h◦ f ◦h−1 which maps nearby points of f into nearby points of g. As both
f and g are arbitrary representations of the dynamical system, the explicit form
of the conjugacy h is of no interest, only the properties invariant under any trans-
formation h are of general import. Furthermore, a good representation should not
mutilate the data; the mapping h must be a smooth conjugacy which maps nearby
points of f into nearby points of g.

This smoothness guarantees that the cycles are not only topological invariants,
but that their linearized neighborhoods are also metric invariants. For a fixed point
f (x) = x of a 1-dimensional map this follows from the chain rule for derivatives,

g′(y) = h′( f ◦ h−1(y)) f ′(h−1(y))
1

h′(x)

= h′(x) f ′(x)
1

h′(x)
= f ′(x) . (5.17)

In d dimensions the relationship between the maps in different coordinate rep-
resentations is again g ◦ h = h ◦ f . The chain rule now relates M′, the Jacobian
matrix of the map g, to the Jacobian matrix of map f :

M′(y)i j = Γ( f (x))ik M(x)klΓ(x)−1
l j , (5.18)

13Predrag: explain someplace the intuitive idea: smooth conjugacy is like stretching rubber -
local length ratios are preserved. Move text after (2.23) to here?
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where 14

Γ(x)ik =
∂yi

∂xk
and Γ(x)−1

ik =
∂xi

∂yk
.

If x is an equilibrium point, x = f (x), Γ is the matrix inverse of Γ−1, and (5.18) is
a similarity transformation and thus preserves eigenvalues. It is easy to verify that
in the case of period np cycle M′

p(y) and Mp(x) are again related by a similarity
transformation. (Note, though, that this is not true for Mr(x) with r � np). As
stability of a flow can always be reduced to stability of a Poincaré return map, a
Floquet multiplier of any cycle, for a flow or a map in arbitrary dimension, is a
metric invariant of the dynamical system. 15 16 17

exercise B.3

The ith Floquet (multiplier, eigenvector) pair (Λi, e(i)) are computed from M
evaluated at a periodic point x, M(x) e(i)(x) = Λi e(i)(x) , x ∈ Mp . Multiplying
by Γ(x) from the left, and inserting 1 = Γ(x)−1Γ(x), we find that the monodromy
matrix evaluated at y = h(x) has the same Floquet multiplier,

M′
p(y) e(i)(y)′ = Λi e(i)(y)′ , (5.19)

but with the eigenvector e(i)(x) mapped to e(i)(y)′ = Γ(x) e(i)(x).

5.5 Stability of Poincaré map cycles

(R. Paškauskas and P. Cvitanović)

If a continuous flow periodic orbit p pierces the Poincaré section P once, the
section point is a fixed point of the Poincaré return map P with stability (4.24)

Ĵi j =

(
δik −

vi Uk

(v · U)

)
Jk j , (5.20)

with all primes dropped, as the initial and the final points coincide, x′ = f T (x) = x.
If the periodic orbit p pierces the Poincaré section n times, the same observation
applies to the nth iterate of P.

We have already established in (4.25) that the velocity v(x) is a zero eigen-
vector of the Poincaré section Floquet matrix, Ĵ v = 0. Consider next (Λα, e(α)),
the full state space αth (eigenvalue, eigenvector) pair (5.11), evaluated at a peri-
odic point on a Poincaré section,

J(x) e(α)(x) = Λα e(α)(x) , x ∈ P . (5.21)
14Predrag: might need to derive (2.22) here?
15Roberto: Exercise? Maybe contained in linear algebra supplementary material..
16Predrag: argue det → tr can be waste of time
17Predrag: add d-dimensional case
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monodromy matrix
neighborhood

Multiplying (5.20) by e(α) and inserting (5.21), we find that the full state space
Floquet matrix and the Poincaré section Floquet matrix Ĵ have the same Floquet
multiplier

Ĵ(x) ê(α)(x) = Λα ê(α)(x) , x ∈ P , (5.22)

where ê(α) is a projection of the full state space eigenvector onto the Poincaré
section: 18

(ê(α))i =

(
δik −

vi Uk

(v ·U)

)
(e(α))k . (5.23)

Hence, Ĵp evaluated on any Poincaré section point along the cycle p has the same
set of Floquet multipliers {Λ1,Λ2, · · ·Λd} as the full state space Floquet matrix Jp,
except for the marginal unit Floquet multiplier (5.16).

As established in (4.25), due to the continuous symmetry (time invariance) Ĵp

is a rank d−1 matrix. We shall refer to the rank [(d−1−N)× (d−1−N)] submatrix
with N−1 continuous symmetries quotiented out as the monodromy matrix Mp

(from Greek mono- = alone, single, and dromo = run, racecourse, meaning a
single run around the stadium). Quotienting continuous symmetries is discussed
in chapter 10 below. 19

5.6 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood of x(t),
and that is why we care about the Floquet multipliers, and especially the unstable
(expanding) ones.

Nearby points aligned along the stable (contracting) directions remain in the
neighborhood of the trajectory x(t) = ft(x0); the ones to keep an eye on are the
points which leave the neighborhood along the unstable directions: all chaos arises
from flights along these these directions. The sub-volume |Mx0 | =

∏e
i Δxi of the

set of points which get no further away from ft(x0) than L, the typical size of the
system, is fixed by the condition that ΔxiΛi = O(L) in each expanding direction
i. Hence the neighborhood size scales as |Mx0 | ∝ O(Lde )/|Λp| ∝ 1/|Λp| where Λp

is the product of expanding Floquet multipliers (5.9) only; contracting ones play
a secondary role. Discussion of sect. 1.5.1, figure 1.9, and figure 5.1 illustrate
intersection of initial volume with its return, and chapters12 and 18 illustrate the
key role that the unstable directions play in systematically partitioning the state
space of a given dynamical system. The contracting directions are so secondary ⇓PRIVATE
that even infinitely many of them (for example, the infinity of contracting eigen-
directions of the spatiotemporal dynamics of Chapter27) will not matter. ⇑PRIVATE

18Predrag: note: normalization not preserved; replace ê(α) by def.tex macros
19Predrag: 2013-03-17 merge this: “ In case of a periodic orbit, fnp (x) = x, we shall refer to this

Jacobian matrix as the monodromy matrix Mp = Jnp . ”
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cycle!stability—)So the dynamically important information is carried by the expanding sub-
volume, not the total volume computed so easily in (4.28). That is also the reason
why the dissipative and the Hamiltonian chaotic flows are much more alike than
one would have naively expected for ‘compressible’ vs. ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding directions. Whether the
contracting eigenvalues are inverses of the expanding ones or not is of secondary
importance. As long as the number of unstable directions is finite, the same theory
applies both to the finite-dimensional ODEs and infinite-dimensional PDEs. 20

Résumé

Periodic orbits play a central role in any invariant characterization of the dynam-
ics, because (a) their existence and inter-relations are a topological, coordinate-
independent property of the dynamics, and (b) their Floquet multipliers form an
infinite set of metric invariants: The Floquet multipliers of a periodic orbit remain
invariant under any smooth nonlinear change of coordinates f → h ◦ f ◦ h−1 . Let
us summarize the linearized flow notation used throughout the ChaosBook.

Differential formulation, flows: Equations

ẋ = v , δ̇x = A δx

govern the dynamics in the tangent bundle (x, δx) ∈ TM obtained by adjoining the
d-dimensional tangent space δx ∈ TMx to every point x ∈ M in the d-dimension-
al state spaceM ⊂ Rd. The stability matrix A = ∂v/∂x describes the instantaneous
rate of shearing of the infinitesimal neighborhood of x(t) by the flow.

Finite time formulation, maps: A discrete sets of trajectory points {x0, x1, · · · ,
xn, · · ·} ∈ M can be generated by composing finite-time maps, either given as
xn+1 = f (xn), or obtained by integrating the dynamical equations

xn+1 = f (xn) = xn +

∫ tn+1

tn
dτ v(x(τ)) , Δtn = tn+1 − tn , (5.24)

for a discrete sequence of times {t0, t1, · · · , tn, · · ·}, specified by some criterion such
as strobing or Poincaré sections. In the discrete time formulation the dynamics in
the tangent bundle (x, δx) ∈ TM is governed by

xn+1 = f (xn) , δxn+1 = J(xn) δxn , J(xn) = JΔtn(xn) ,

20Predrag: H.H. Rugh and Christiansen chose the Lorenz attractor as demonstration in their
Gram-Schmidt/Lyapunov paper, not the Rössler. In Lorenz the eigenvalue is also quite small - the
Lyapunov exponent is of order of -14, but there is a nice check since the sum of the exponents is
given by the equations. “ Christiansen believes that for the Rössler system he got a result accurate
to machine precision and concluded that the eigenvalue was at least as small as that. If Christiansen
finds the time, he might stuff the Rëssler equation into the Gram-Schmidt program. ” (ha, ha)
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periodic!orbit
cycle
limit cycle
cycle!limit

where J(xn) = ∂xn+1/∂xn =
∫

dτ exp (A τ) is the 1-time step Jacobian matrix.

Stability of invariant solutions: The linear stability of an equilibrium v(xq) = 0
is described by the eigenvalues and eigenvectors {λ( j), e( j)} of the stability matrix
A evaluated at the equilibrium point, and the linear stability of a periodic orbit
f T (x) = x, x ∈ Mp,

Jp(x) e( j)(x) = Λ j e( j)(x) , Λ j = σ
( j)eλ

( j)T ,

by its Floquet multipliers, vectors and exponents {Λj, e( j)}, where λ( j) = μ( j) ±
iω( j) For every continuous symmetry there is a marginal eigen-direction, with
Λ j = 1, λ( j) = 0. With all 1 + N continuous symmetries quotiented out (Poincaré
sections for time, slices for continuous symmetries of dynamics, see sect. 10.4)
linear stability of a periodic orbit (and, more generally, of a partially hyperbolic
torus) is described by the [(d-1-N)× (d-1-N)] monodromy matrix, all of whose
Floquet multipliers |Λ j| � 1 are generically strictly hyperbolic,

Mp(x) e( j)(x) = Λ j e( j)(x) , x ∈ Mp/G .

We shall show in chapter 11 that extending the linearized stability hyperbolic
eigen-directions into stable and unstable manifolds yields important global infor-
mation about the topological organization of state space. What matters most are
the expanding directions. The physically important information is carried by the
unstable manifold, and the expanding sub-volume characterized by the product of
expanding Floquet multipliers of Jp. As long as the number of unstable directions
is finite, the theory can be applied to flows of arbitrarily high dimension.

in depth:

appendix E, p. 1080

fast track:

chapter 9, p. 175

Commentary

Remark 5.1 Periodic orbits vs. ‘cycles’. Throughout this text, the terms ‘periodic
orbit’ and ‘cycle’ (which has many other uses in mathematics) are used interchangeably;
while ‘periodic orbit’ is more precise, ‘pseudo-cycle’ is easier on the ear than ‘pseudo-
periodic-orbit.’ In Soviet times obscure abbreviations were a rage, but here we shy away
from acronyms such as UPOs (Unstable Periodic Orbits). Lost in the mists of time is
the excitement experienced by the first physicist to discover that there are periodic orbits
other than the limit cycles reached by mindless computation forward in time (many a
mathematician starting with Poincaré had appreciated that); but once one understands that
there are at most several stable limit cycles (SPOs?) as opposed to the Smale horseshoe
infinities of unstable cycles (UPOs?), what is gained by prefix ’U’? It is like calling all
bicycles ’unstable bicycles’ rather than ‘bicycles’.
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Remark 5.2 Periodic orbits and Floquet theory. Study of time-dependent and T-
periodic vector fields is a classical subject in the theory of differential equations [ 1, 2]. In
physics literature Floquet exponents often assume different names according to the context
where the theory is applied: they are called Bloch phases in the discussion of Schrödinger
equation with a periodic potential [3], or quasi-momenta in the quantum theory of time-
periodic Hamiltonians. For further reading on periodic orbits, consult Moehlis and K.
Josić [4] Scholarpedia.org article. 21 22

5.7 Examples

The reader is urged to study the examples collected here. To return back to the
main text, click on [click to return] pointer on the margin.

Example 5.1 Stability of cycles of 1-dimensional maps: The stability of a prime
cycle p of a 1-dimensional map follows from the chain rule (4.41) for stability of the npth
iterate of the map

Λp =
d

dx0
f np (x0) =

np−1∏
m=0

f ′(xm) , xm = f m(x0) . (5.25)

Λp is a property of the cycle, not the initial periodic point, as taking any periodic point
in the p cycle as the initial one yields the same Λp.

A critical point xc is a value of x for which the mapping f (x) has vanishing
derivative, f ′(xc) = 0. A periodic orbit of a 1-dimensional map is stable if∣∣∣Λp

∣∣∣ = ∣∣∣ f ′(xnp ) f ′(xnp−1) · · · f ′(x2) f ′(x1)
∣∣∣ < 1 ,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope Λp of the nth iterate f n(x) evaluated
on a periodic point x (fixed point of the nth iterate) lies between −1 and 1. If

∣∣∣Λp

∣∣∣ > 1,
p-cycle is unstable.

Example 5.2 Stability of cycles for maps: No matter what method one uses to
determine unstable cycles, the theory to be developed here requires that their Floquet
multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated by
picking any periodic point as a starting point, running once around a prime cycle, and
multiplying the individual periodic point Jacobian matrices according to (4.21). For
example, the Floquet matrix Mp for a prime cycle p of length np of the Hénon map
(3.17) is given by (4.42),

Mp(x0) =
1∏

k=np

(
−2axk b

1 0

)
, xk ∈ Mp ,

21Predrag: add quasi-momenta reference
22Predrag: mkbook did not print the next page - It always seems to skip two pages. Why?
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and the Floquet matrix Mp for a 2-dimensional billiard prime cycle p of length n p

Mp = (−1)np

1∏
k=np

(
1 τk
0 1

) (
1 0
rk 1

)

follows from (8.11) of chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond
to multiplication from the left, Mp(x1) = M(xnp ) · · ·M(x1). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see
exercise 13.14. 23

click to return: p. 115

23Predrag: add exercise for by-hand fixed point, 2-cycle for Hénon
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stability!exact

Exercises boyscout

⇓PRIVATE

5.1. Driven damped harmonic oscillator limit cycle. Driven
damped harmonic oscillator equations of motion are:

⇑PRIVATE
5.2. A limit cycle with analytic Floquet exponent. There

are only two examples of nonlinear flows for which the
Floquet multipliers can be evaluated analytically. Both
are cheats. One example is the 2-dimensional flow

q̇ = p + q(1 − q2 − p2)

ṗ = −q + p(1 − q2 − p2) .

Determine all periodic solutions of this flow, and deter-
mine analytically their Floquet exponents. Hint: go to
polar coordinates (q, p) = (r cos θ, r sin θ). G. Bard
Ermentrout

5.3. The other example of a limit cycle with analytic Flo-
quet exponent. What is the other example of a non-
linear flow for which the Floquet multipliers can be eval-
uated analytically? Hint: email G.B. Ermentrout.

5.4. Yet another example of a limit cycle with analytic Flo-
quet exponent. Prove G.B. Ermentrout wrong by
solving a third example (or more) of a nonlinear flow for
which the Floquet multipliers can be evaluated analyti-
cally.
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odique,” Ann. Ecole Norm. Ser. 2, 12, 47 (1883).

[5.2] E. L. Ince, Ordinary Differential Equations (Dover, New York 1953).

[5.3] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and
Winston, New York 1976). ⇓PRIVATE

[5.4] J. Moehlis and K. Josić, “Periodic orbit,”
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Chapter 6

Lyapunov exponents

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

Let us apply the newly acquired tools to the fundamental diagnostics in this
subject: Is a given system ‘chaotic’? And if so, how chaotic? If all points

example 2.3
in a neighborhood of a trajectory converge toward the same trajectory, the

attractor is a fixed point or a limit cycle. However, if the attractor is strange, any
section 1.3.1

two trajectories x(t) = f t(x0) and x(t) + δx(t) = f t(x0 + δx0) that start out very
remark 6.2

close to each other separate exponentially with time, and in a finite time their
separation attains the size of the accessible state space.

This sensitivity to initial conditions can be quantified as

|δx(t)| ≈ eλt |δx0| (6.1)

where λ, the mean rate of separation of trajectories of the system, is called the
leading Lyapunov exponent. As it so often goes with easy ideas, it turns out that
Lyapunov exponent are not natural for study of dynamics, and we would have
passed them over in silence, were it not for so much literature that talks about
them. So in a textbook we are duty bound to explain what all the excitement is
about. 1 2

6.1 Stretch and twirl

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

1Predrag: remember to move Henrietta McNutt close to p. 100
2Predrag: 2013-0320 remember to correct en.wikipedia.org/wiki/Lyapunov exponent
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matrix!positive
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positive definite
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matrix!negative
definite

negative definite
matrix

singular values

Figure 6.1: The linearized flow maps a swarm of
initial points in an infinitesimal spherical neighbor-
hood of squared radius δx2 at x0 into an ellipsoid
δx�(J�J) δx at x(t) finite time t later, rotated and
stretched/compressed along the principal axes by sin-
gular values {σ j} .
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In general the Jacobian matrix Jt is neither diagonal, nor diagonalizable, nor con-
stant along the trajectory. What is a geometrical meaning of the mapping of a
neighborhood by J? Here the continuum mechanics insights are helpful, in par-
ticular the polar decomposition which affords a visualization of the linearization
of a flow as a mapping of the initial ball into an ellipsoid (figure6.1).

First, a few definitions: A symmetric [d × d] matrix Q is positive definite,
Q > 0, if x�Qx > 0 for any nonzero vector x ∈ Rd. Q is negative definite,
Q < 0, if x�Qx < 0 for any nonzero vector x. Alternatively, Q is a positive
(negative) definite matrix if all its eigenvalues are positive (negative). A matrix
R is orthogonal if R�R = 1, and proper orthogonal if det R = +1. Here the
superscript � denotes the transpose. For example, (x1, · · · , xd) is a row vector,
(x1, · · · , xd)� is a column vector.

remark 6.1

By the polar decomposition theorem, a deformation J can be factored into a
rotation R and a right / left stretch tensor U / V ,

J = RU = VR , (6.2)

where R is a proper-orthogonal matrix and U, V are symmetric positive definite
matrices with strictly positive real eigenvalues {σ1, σ2, · · · , σd} called principal
stretches (singular values), and with orthonormal eigenvector bases,

Uu(i) = σiu(i) , {u(1), u(2), · · · , u(d)}
Vv(i) = σiv(i) , {v(1), v(2), · · · , v(d)} . (6.3)

σi > 1 for stretching and 0 < σi < 1 for compression along the direction u(i)

or v(i). {u( j)} are the principal axes of strain at the initial point x0; {v( j)} are the
principal axes of strain at the present placement x. From a geometric point of
view, J maps the unit sphere into an ellipsoid, figure 6.1, the singular values are
then the lengths of the semiaxes of this ellipsoid. The rotation matrix R carries the
initial axes of strain into the present ones, V = RUR� . The eigenvalues of the 3

right Cauchy-Green strain tensor: J�J = U2

left Cauchy-Green strain tensor: J J� = V2 (6.4)
3Predrag: In spirit of sect. 2.2.1: Lagrangian=co-moving, Eulerian=external ‘reference’ coor-

dinate frame: “the columns of the matrix V are the principal axes ei of stretching in the Lagrangian
coordinate frame, and the orthogonal matrix R gives the orientation of the ellipse in the Eulerian
coordinates.
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are {σ2
j}, the squares of principal stretches.

Stretches {σ j} are not related to the the Jacobian matrix Jt eigenvalues {Λ j}
in any simple way: the eigenvectors {u( j)} of strain tensor J�J that determine the
orientation of the principal axes, are distinct from the Jacobian matrix J eigenvec-
tors {e( j)}, and strain tensor J�J satisfies no semigroup property such as (4.19). To
emphasize this distinction, the Jacobian matrix eigenvectors {e( j)} are sometimes
called ‘covariant’ or ‘covariant Lyapunov vectors’. Under time evolution the co-
variant vectors map forward as e( j) → Je( j) (transport of the velocity vector (4.8)
is an example), In contrast, the principal axes have to be recomputed from the
scratch for each time t. 4 5 6

Eigenvectors / eigenvalues are suited to study of iterated forms of a matrix,
such as Jacobian matrix Jt or exponential exp(tA), and are thus a natural tool for
study of dynamics. Principal vectors are not, they are suited to study of the matrix
Jt itself. The polar (singular value) decomposition is convenient for numerical
work (any matrix, square or rectangular, can be brought to such form), as a way
of estimating the effective rank of matrix J by separating the large, significant
singular values from the small, negligible singular values.

example 6.2

p. 134

6.2 Lyapunov exponents

(J. Mathiesen and P. Cvitanović)

The mean growth rate of the distance |δx(t)|/|δx0| between neighboring trajec-
tories (6.1) is given by the The leading Lyapunov exponent can be estimated for
long (but not too long) time t as

λ � 1
t

ln |δx(t)|/|δx0| (6.5)

(For notational brevity we shall often suppress the dependence of quantities such
as λ = λ(x0), δx(t) = δx(x0, t) on the initial point x0). One can take (6.5) as is, take
a small initial separation δx0, track the distance between two nearby trajectories
until |δx(t1)| gets significantly bigger, then record t1λ1 = ln(|δx(t1)|/|δx0|), rescale
δx(t1) by factor |δx0|/|δx(t1)|, and continue add infinitum, as in figure 6.2, with the

4Predrag: fix this: figure 4.2 is for J, figure 6.1 is for J�J
5Predrag: Make Trevisan [12] 2D example an exercise (with given answers). Discuss transient

growth.
6Predrag: replace the tensors by the invariants - then the relations between {Λj} and {σ j} should

be immediate?
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error correlation
matrix

Figure 6.2: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.
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leading Lyapunov exponent given by

λ = lim
t→∞

1
t

∑
i

tiλi . (6.6)

Deciding what is a safe ’linear range’ before the separation vector δx(t) should be
rescaled is a dark art.

We can start out with a small δx and try to estimate the leading Lyapunov ex-
ponent λ from (6.6), but now that we have quantified the notion of linear stability
in chapter 4, we can do better. The problem with measuring the growth rate of the
distance between two points is that as the points separate, the measurement is less
and less a local measurement. In the study of experimental time series this might
be the only option, but if we have equations of motion, a better way is to measure
the growth rate of vectors transverse to a given orbit.

Given the equations of motion, for infinitesimal δx we know the δxi(t)/δx j(0)
ratio exactly, as this is by definition the Jacobian matrix

lim
δx(0)→0

δxi(t)
δx j(0)

=
∂xi(t)
∂x j(0)

= Jt
i j(x0) ,

so the leading Lyapunov exponent can be computed from the linearization (4.15)

λ(x0) = lim
t→∞

1
t

ln

∣∣∣Jt(x0)δx0

∣∣∣
|δx0|

= lim
t→∞

1
2t

ln
(
n̂�Jt�Jtn̂

)
. (6.7)

In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector n̂ = δx0/|δx0| matters. As we do not
care about the orientation of the separation vector between a trajectory and its per-

turbation, but only its magnitude, we can interpret
∣∣∣Jt(x0)δx0

∣∣∣2 = δx0
�(Jt�Jt)δx0 ,

as the error correlation matrix. In the continuum mechanics language, (6.4), or
the right Cauchy-Green strain tensor J�J is the natural object to describe how
linearized neighborhoods deform. Stretches of continuum mechanics are called
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Figure 6.3: A numerical computation of the loga-
rithm of the stretch n̂�(Jt�Jt)n̂ in formula (6.10) for the
Rössler flow (2.18), plotted as a function of the Rössler
time units. The slope is the leading Lyapunov exponent
λ ≈ 0.09. The exponent is positive, so numerics lends
credence to the hypothesis that the Rössler attractor is
chaotic. The big unexplained jump illustrates perils of
Lyapunov exponents numerics. (J. Mathiesen)

0 5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

t

the finite-time Lyapunov or characteristic exponents in the theory of dynamical
systems,

λ(x0, n̂; t) =
1
t

ln ‖Jtn̂‖ = 1
2t

ln
(
n̂�Jt�Jtn̂

)
. (6.8)

They depend on the initial point x0 and on the direction of the unit vector n̂,
|n̂| = 1 at the initial time. If this vector is aligned along the ith principal stretch,
n̂ = u(i) , then λi = lnσi/t. If u(1) is the direction of the largest principal stretch,
the corresponding finite-time Lyapunov exponent is given by the largest stretch:7

λ1(x0; t) = λ(x0, u(1); t) =
1
t

lnσ1(x0; t). (6.9)

The leading Lyapunov exponent is given by 8

λ(x0, n̂) = lim
t→∞

1
t

ln ‖Jtn̂‖ = lim
t→∞

1
2t

ln
(
n̂�Jt�Jtn̂

)
. (6.10)

9 Expanding the initial orientation in the strain tensor eigenbasis (6.3), n̂ =
∑

(n̂ ·
u(i))u(i) , we have 10

n̂�Jt�Jtn̂ =
d∑

i=1

(n̂ · u(i))2σ2
i = (n̂ · u(1))2σ2

1

(
1 + O(σ2

2/σ
2
1)
)
,

with stretches ordered by decreasing magnitude, σ1 > σ2 ≥ σ3 · · ·. For long
times the largest stretch dominates exponentially (6.7), provided the orientation n̂
of the initial separation was not chosen perpendicular to the dominant expanding
eigen-direction u(1). The Lyapunov exponent is 11 12

λ(x0) = lim
t→∞

1
t

{
ln |n̂ · u(1)| + ln |Λ1(x0, t)| + O(e−2(λ1−λ2)t)

}
=

1
t

ln |Λ1(x0, t)| , (6.11)

7Predrag: make Trevisan [12], original Lorenz 3D Lorenz model singular vectors exerBox here
8Predrag: Rates of stretching?
9Predrag: why do they say: “Extending this relation to the case of a position-dependent defor-

mation gradient requires the notion of simultaneous diagonalization?” Read ref. [26]
10Predrag: wrong, need to prove the Λ1 dominance
11Predrag: prove this
12John G: Notation for eigenvalue on LHS should match that on LHS of (6.7).
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Lyapunov!exponent!numerical
Rossler@R“”ossler!flow
Lyapunov!exponent—)

where Λ1(x0, t) is the leading eigenvalue of Jt(x0). By choosing the initial dis-
placement such that n̂ is normal to the first (i-1) eigen-directions we can define
not only the leading, but all Lyapunov exponents as well: 13 14

λi(x0) = lim
t→∞

1
t

ln |Λi(x0, t)| , i = 1, 2, · · · , d . (6.12)

The leading Lyapunov exponent now follows from the Jacobian matrix by numer-
ical integration of (4.9). The equations can be integrated accurately for a finite
time, hence the infinite time limit of (6.7) can be only estimated from plots of
1
2 ln(n̂�Jt�Jtn̂) as function of time, such as figure 6.3 for the Rössler flow (2.18).
15

As the local expansion and contraction rates vary along the flow, the temporal
dependence exhibits small and large humps. The sudden fall to a low level is
caused by a close passage to a folding point of the attractor, an illustration of why
numerical evaluation of the Lyapunov exponents, and proving the very existence
of a strange attractor is a difficult problem. 16 The approximately monotone part
of the curve can be used (at your own peril) to estimate the leading Lyapunov
exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (6.11) directly. First of all, the state
space is dense with atypical trajectories; for example, if x0 happens to lie on a
periodic orbit p, λ would be simply ln |Λp|/Tp, a local property of cycle p, not
a global property of the dynamical system. 17 Furthermore, even if x0 happens
to be a ‘generic’ state space point, it is still not obvious that ln |Λ(x0, t)|/t should
be converging to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectory gets captured in the neigh-
borhood of an elliptic island every so often and can stay there for arbitrarily long
time; as there the orbit is nearly stable, during such episode ln |Λ(x0, t)|/t can dip
arbitrarily close to 0+. For state space volume non-preserving flows the trajec-
tory can traverse locally contracting regions, and ln |Λ(x0, t)|/t can occasionally
go negative; even worse, one never knows whether the asymptotic attractor is ⇓PRIVATE

section 45.2

⇑PRIVATE

periodic or ‘chaotic’, so any finite estimate of λ might be dead wrong. 18

exercise 6.4

Résumé

A neighborhood of a trajectory deforms as it is transported by a flow. In the
linear approximation, the stability matrix A describes the shearing / compression

13Predrag: edit figure 6.3
14Predrag: make problem set, mention rescaling to avoid overflows
15John G: Figure 6.3 must be for a fixed, finite δx0. If you integrated Mt

i j(x) along with f t(x) as
described in early chapters, you would’t get the drop-off, right? PC: do not know...

16Predrag: who knows? recompute
17Predrag: correct this
18Mason: there is a good Matlab module that computes a Lyapunov exp - will provide a reference
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singular value
decomposition

polar decomposition
multiplicative ergodic

theorem
ergodic!theorem!multiplicative
Oseledec ergodic

theorem
Lyapunov!exponent!numerical

/ expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite time t is described by [...]

Furthermore, although the Jacobian matrices are multiplicative along the flow,
in dimensions higher than one their eigenvalues in general are not. This lack ⇓PRIVATE

appendix J.1

⇑PRIVATE

of multiplicativity has important repercussions for both classical and quantum
dynamics. 19

⇓PRIVATE

chapter 42
Use Eckmann and Ruelle [?] discussion of characteristic exponents.

⇑PRIVATE

Commentary

Remark 6.1 Matrix decompositions of the Jacobian matrix. A ‘polar decomposition’
of a matrix or linear operator is a generalization of the factorization of complex number
into the polar form, z = r exp(φ). Matrix polar decomposition is explained in refs. [ 25, 2,
3, 26]. One can go one step further than the polar decomposition ( 6.2) into a product of a
rotation and a symmetric matrix, diagonalize the symmetric matrix by a second rotation,
and express any matrix with real elements in the singular value decomposition (SVD)
form

J = R1DR2
� , (6.13)

where D is diagonal and real, and R1, R2 are orthogonal matrices, unique up to permuta-
tions of rows and columns. The diagonal elements {σ1, σ2, . . . , σd} of D are the singular
values of J.

Though singular values decomposition provides geometrical insights into how tan-
gent dynamics acts, many popular algorithms for asymptotic stability analysis (computing
Lyapunov spectrum) employ another standard matrix decomposition: the QR scheme [ 1],
through which a nonsingular matrix J is (uniquely) written as a product of an orthogonal
and an upper triangular matrix J = QR. This can be thought as a Gram-Schmidt decom-
position of the column vectors of J. The geometric meaning of QR decomposition is that
the volume of the d-dimensional parallelepiped spanned by the column vectors of J has a
volume coinciding with the product of the diagonal elements of the triangular matrix R,
whose role is thus pivotal in algorithms computing Lyapunov spectra [ 21, 22, 16]. 20

Remark 6.2 Lyapunov exponents. The Multiplicative Ergodic Theorem of Oseledec [6,⇓PRIVATE7] states that the limits (??–??) exist for almost all points x0 and all tangent vectors n̂.
⇑PRIVATEThere are at most d distinct values of λ as we let n̂ range over the tangent space. These

are the Lyapunov exponents [1] λi(x0). Moreover there is a fibration of the tangent space ⇓PRIVATETxM, L1(x) ⊂ L2(x) ⊂ · · · ⊂ Lr(x) = TxM, such that if n̂ ∈ Li(x) \ Li−1(x) the limit (??)
equals λi(x). ⇑PRIVATE

We are doubtful of the utility of Lyapunov exponents as means of predicting any
observables of physical significance, but that is the minority position - in the literature

19Predrag: remember to incorporate JacobianHist.doc
20Predrag: credit Lorenz 1965, 1984; Yoden and Nomura 1993 for introducing singular vectors
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covariant Lyapunov
vector

Lyapunov!covariant
vector

one encounters many provocative speculations, especially in the context of foundations of
statistical mechanics (‘hydrodynamic’ modes) and the existence of a Lyapunov spectrum
in the thermodynamic limit of spatiotemporal chaotic systems.

There are volumes of literature on numerical computation of the Lyapunov exponents,
see for example refs. [24, 5, 6, 8]. Citiulike.org search yields a ton of references. ⇓PRIVATEFor early numerical methods to compute Lyapunov vectors, see refs. [ 7, 8]. The draw-

⇑PRIVATEback of the Gram-Schmidt method is that the vectors so constructed are orthogonal by
fiat, whereas the stable / unstable eigenvectors of the Jacobian matrix are in general not
orthogonal. Hence the Gram-Schmidt vectors are not covariant, i.e., the linearized dy-
namics does not transport them into the eigenvectors of the Jacobian matrix computed
further downstream. For computation of covariant Lyapunov vectors, see refs. [ 9, 11]. 21

⇓PRIVATE

Probably not worth mentioning: a chaotic attractor characterized by more than one
positive Lyapunov exponent: hyperchaos, with a ‘thick’ chaotic attractor (12,15).
12: H. Haken, Phys. Lett. A 94 (1983) 71.
13: S. Hayes, C. Gerbogi, E. Ott, Phys. Rev. Lett. 70 (1993) 3031.
14: M.P. Kennedy, IEEE Trans. Circuits Syst. I 41 (1994) 771.
15: E. Lindberg, A. Tamasevicius, A. Cenys, G. Mykolaitis, A. Namajunas, Hyperchaos
via X Diode, in: Proceedings of the 6th International Specialist Workshop on Nonlinear
Dynamics of Electronic Systems, Budapest, 1998, pp. 125 to 128. 22 24

⇑PRIVATE

6.3 Examples

The reader is urged to study the examples collected here. To return back to the
main text, click on [click to return] pointer on the margin.

Example 6.1 Lyapunov exponent. Given a 1-dimensional map, consider observable
λ(x) = ln | f ′ (x)| and integrated observable

An(x0) =
n−1∑
k=0

ln | f ′(xk)| = ln

∣∣∣∣∣∣∣
n−1∏
k=0

f
′
(xk)

∣∣∣∣∣∣∣ = ln
∣∣∣∣∣∂ f n

∂x
(x0)

∣∣∣∣∣ .
The Lyapunov exponent is the average rate of the expansion

λ(x0) = lim
n→∞

1
n

n−1∑
k=0

ln | f ′ (xk)| .

See sect. 6.2 for further details.

21Predrag: read Skokos [10] review
22John G: Can let Λi > 0 without loss of generality; no need for abs val signs throughout.

PC: no, Λi can be real with either sign, or come in complex pairs. Would have to write Λ∗1Λ1. 23

24Predrag: Trevisan [12] “the Floquet eigenvectors have the desired properties of being indepen-
dent of the definition of the norm.” “The leading Lyapunov vectors, as well as the asymptotic final
singular vectors, are tangent to the attractor, while the leading initial singular vectors, in general,
point away from it. Perturbations that are on the attractor and maximize growth should be consid-
ered in applications. These perturbations can be found in the subspace of the leading Lyapunov
vectors.” While Euclidean norm might seem ‘natural’, what is a good norm if you are trying to
define Lyapunov exponents for PDEs? General relativity?
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singular values
polar decomposition
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exponent
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25

Example 6.2 Singular values and geometry of deformations: Suppose we are
in three dimensions, and the Jacobian matrix J is not singular, so that the diagonal
elements of D in (6.13) satisfy σ1 ≥ σ2 ≥ σ3 > 0. Consider how J maps the unit
ball S = {x ∈ R3 | x2 = 1}. V is orthogonal (rotation/reflection), so V�S is still the unit
sphere: then D maps S onto ellipsoid S̃ = {y ∈ R3 | y2

1/σ
2
1 + y2

2/σ
2
2 + y2

3/σ
2
3 = 1} whose

principal axes directions - y coordinates - are determined by V. Finally the ellipsoid is
further rotated by the orthogonal matrix U. The local directions of stretching and their
images under J are called the right-hand and left-hand singular vectors for J and are
given by the columns in V and U respectively: it is easy to check that Jvk = σkuk, if
vk, uk are the k-th columns of V and U.

click to return: p. 128

26

⇓PRIVATE

remark 6.1

⇑PRIVATE

boyscout

6.1. Principal stretches. Consider dx = f (x0+dx0)− f (x0),
and show that dx = Mdx0+ higher order terms when
‖dx0‖ � 1. (Hint: use Taylor’s theorem for a vector func-
tion.) Here, ‖dx0‖ ≡

√
dx0 · dx0 is the norm induced by

the usual Euclidean dot (inner) product. Then let dx 0 =

(d�)ei and show that ‖dx0‖ = d� and ‖dx‖ = σid�. (Chris-
tov et al. [1])

6.2. Eigenvalues of the Cauchy-Green strain tensor. Show
that κi = σ

2
i using the definition of C, the polar decompo-

sition theorem, and the properties of eigenvalues. (Chris-
tov et al. [1])

6.3. ??. Derive (??) using the Rayleigh–Ritz theorem from
linear algebra [26]. Hint: write out the norm in the def-
inition of λ as a dot product and re-arrange terms. Also,
you are allowed to bring the max inside any logarithm or
square root because these functions are monotonically in-
creasing. 27 (Christov et
al. [1])

6.4. How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent λ by
iterating some 100,000 times or so the Hénon map[

x′

y′

]
=

[
1 − ax2 + y
bx

]
for a = 1.4, b = 0.3.

25Predrag: 2012-07-17: for some reason the edits of June 29 seem to have vanished. Reinstated
example 6.1, make sure it is meant to be here?

26Predrag: give 2-dimensional example of ellipsoid explicitly
27Predrag: read up on Rayleigh–Ritz theorem
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Rossler@Rössler!Lyapunov
exponent

(b) Would you describe the result as a ’strange attrac-
tor’? Why?

(c) How robust is the Lyapunov exponent for the Hénon
attractor? Evaluate numerically the Lyapunov ex-
ponent by iterating the Hénon map for a = 1.39945219,
b = 0.3. How much do you now trust your result
for part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to es-
timate the length of typical transient before the dy-
namics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-
tor’? Do you still have confidence in claims such as
the one made for the part (b) of this exercise?

6.5. Rössler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponent λe of the Rössler attractor (2.18).

(b) Plot your own version of figure 6.3. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure 4.4.)

(c) Give your best estimate of λe. The literature gives
surprisingly inaccurate estimates - see whether you
can do better.

(d) Estimate the contracting Lyapunov exponentλ c. Even
though it is much smaller than λe, a glance at the
stability matrix (4.29) suggests that you can prob-
ably get it by integrating the infinitesimal volume
along a long-time trajectory, as in (4.28).
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Chapter 7

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite different from those within
the class of all smooth vector fields: the system always
has a first integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in
their energy level.

— John Guckenheimer

You might think that the strangeness of contracting flows, flows such as the
Rössler flow of figure 2.6 is of concern only to chemists or biomedical
engineers or the weathermen; physicists do Hamiltonian dynamics, right?

Now, that’s full of chaos, too! While it is easier to visualize aperiodic dynam-
ics when a flow is contracting onto a lower-dimensional attracting set, there are
plenty examples of chaotic flows that do preserve the full symplectic invariance of
Hamiltonian dynamics. The whole story started with Poincaré’s restricted 3-body
problem, a realization that chaos rules also in general (non-Hamiltonian) flows
came much later.

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamiltonian
flows. If your eventual destination are applications such as chaos in quantum
and/or semiconductor systems, read this chapter. If you work in neuroscience
or fluid dynamics, skip this chapter, continue reading with the billiard dynamics
of chapter 8 which requires no incantations of symplectic pairs or loxodromic
quartets.

fast track:

chapter 8, p. 159

137
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Hamiltonian!flow
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level set

7.1 Hamiltonian flows

(P. Cvitanović and L.V. Vela-Arevalo)

1 An important class of flows are Hamiltonian flows, given by a Hamiltonian
appendix E

H(q, p) together with the Hamilton’s equations of motion
remark 2.1

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (7.1)

with the d = 2D phase-space coordinates x split into the configuration space
coordinates and the conjugate momenta of a Hamiltonian system with D degrees
of freedom (dof): ⇓PRIVATE

section 38.1.1

⇑PRIVATEx = (q, p) , q = (q1, q2, . . . , qD) , p = (p1, p2, . . . , pD) . (7.2)

The equations of motion (7.1) for a time-independent, D-dof Hamiltonian can be
written compactly as 2

ẋi = ωi jH, j(x) , H, j(x) =
∂

∂x j
H(x) , (7.3)

where x = (q, p) ∈ M is a phase-space point, and the a derivative of (·) with
respect to xj is denoted by comma-index notation (·), j,

ω =

(
0 I
−I 0

)
, (7.4)

is an antisymmetric [d×d] matrix, and I is the [D×D] unit matrix.

The energy, or the value of the time-independent Hamiltonian function at the
state space point x = (q, p) is constant along the trajectory x(t),

d
dt

H(q(t), p(t)) =
∂H
∂qi

q̇i(t) +
∂H
∂pi

ṗi(t)

=
∂H
∂qi

∂H
∂pi

− ∂H
∂pi

∂H
∂qi
= 0 , (7.5)

so the trajectories lie on surfaces of constant energy, or level sets of the Hamilto-
nian {(q, p) : H(q, p) = E}. For 1-dof Hamiltonian systems this is basically the
whole story.

1Predrag: revert to (q, p) order throughout the book
2Predrag: use O. de Almeida book [9] argument here?
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Duffing oscillator
integrable system
helium!collinear

Figure 7.1: Phase plane of the unforced, undamped
Duffing oscillator. The trajectories lie on level sets of
the Hamiltonian (7.6).
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Figure 7.2: A typical collinear helium trajectory in
the [r1, r2] plane; the trajectory enters along the r1-axis
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case along the r2-
axis. In this example the energy is set to H = E = −1,
and the trajectory is bounded by the kinetic energy = 0
line.
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Example 7.1 Unforced undamped Duffing oscillator: When the damping term
is removed from the Duffing oscillator (2.8), the system can be written in Hamiltonian
form,

H(q, p) =
p2

2
−

q2

2
+

q4

4
. (7.6)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).
The Hamilton’s equations (7.1) are

q̇ = p , ṗ = q − q3 . (7.7)

For 1-dof systems, the ‘surfaces’ of constant energy (7.5) are curves that foliate the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1. 3

Thus all 1-dof systems are integrable, in the sense that the entire phase plane
is foliated by curves of constant energy, either periodic, as is the case for the
harmonic oscillator (a ‘bound state’), or open (a ‘scattering trajectory’). Add one

example B.1
more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In chapter 43 we shall apply the periodic orbit
⇓PRIVATE

⇑PRIVATE
theory to the quantization of helium. In particular, we will study collinear helium, a
doubly charged nucleus with two electrons arranged on a line, an electron on each
side of the nucleus. The Hamiltonian for this system is 4

⇓PRIVATE

chapter 43

⇑PRIVATE
H =

1
2

p2
1 +

1
2

p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (7.8)

3Predrag: trajectories need arrows, label font too small in figure 7.1
4Mason: mention briefly ‘transition state’
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conservation!phase-
space
volume

Liouville!theorem
phase space
state space
symplectic!2-form
Darboux basis

Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which energy
conservation foliates by 3-dimensional constant energy hypersurfaces. In order to vi-
sualize it, we often project the dynamics onto the 2-dimensional configuration plane,
the (r1, r2), ri ≥ 0 quadrant, figure 7.2. It looks messy, and, indeed, it will turn out to
be no less chaotic than a pinball bouncing between three disks. As always, a Poincaré
section will be more informative than this rather arbitrary projection of the flow. The
difference is that in such projection we see the flow from an arbitrary perspective, with
trajectories crisscrossing. In a Poincaré section the flow is decomposed into intrinsic
coordinates, a pair along the marginal stability time and energy directions, and the rest
transverse, revealing the phase-space structure of the flow.

Note an important property of Hamiltonian flows: if the Hamilton equations
(7.1) are rewritten in the 2D phase-space form ẋi = vi(x), the divergence of the
velocity field v vanishes, namely the flow is incompressible, ∇·v = ∂ivi = ωiH,i j =

0. The symplectic invariance requirements are actually more stringent than just
the phase-space volume conservation, as we shall see in sect.7.3.

Throughout ChaosBook we reserve the term ‘phase space’ to Hamiltonian
flows. A ‘state space’ is the stage on which any flow takes place. ’Phase space’
is a special but important case, a state space with symplectic structure, preserved
by the flow. For us the distinction is necessary, as ChaosBook covers dissipative,
mechanical, stochastic and quantum systems, all as one happy family.

7.2 Symplectic group

Either you’re used to this stuff... or you have to get used
to it.

—Maciej Zworski

A matrix transformation g is called symplectic,

g�ωg = ω , (7.9)

if it preserves the symplectic bilinear form 〈x̂|x〉 = x̂�ωx, where g� denotes the
transpose of g, and ω is a non-singular [2D×2D] antisymmetric matrix which
satisfies

remark 7.3

ω� = −ω , ω2 = −1 . (7.10)

While these are defining requirements for any symplectic bilinear form, ω is often
conventionally taken to be of form (7.4).

Example 7.3 Symplectic form for D = 2: For two degrees of freedom the phase
space is 4-dimensional, x = (q1, q2, p1, p2) , and the symplectic 2-form is

ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (7.11)
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The symplectic bilinear form 〈x(1)|x(2)〉 is the sum over the areas of the parallelepipeds
spanned pairwise by components of the two vectors,

〈x(1)|x(2)〉 = (x(1))�ω x(2) = (q(1)
1 p(2)

1 − q(2)
1 p(1)

1 ) + (q(1)
2 p(2)

2 − q(2)
2 p(1)

2 ) . (7.12)

It is this sum over oriented areas (not the Euclidean distance between the two vectors,
|x(2) − x(1)|) that is preserved by the symplectic transformations.

If g is symplectic, so is its inverse g−1, and if g1 and g2 are symplectic, so
is their product g2g1. Symplectic matrices form a Lie group called the symplec-
tic group Sp(d). Use of the symplectic group necessitates a few remarks about
Lie groups in general, a topic that we study in more depth in chapter 10. A Lie
group is a group whose elements g(φ) depend smoothly on a finite number N of
parameters φa. In calculations one has to write these matrices in a specific basis,
and for infinitesimal transformations they take form (repeated indices are summed
throughout this chapter, and the dot product refers to a sum over Lie algebra gen-
erators):

g(δφ) � 1 + δφ · T , δφ ∈ RN , |δφ| � 1 , (7.13)

where {T1,T2 · · · ,TN}, the generators of infinitesimal transformations, are a set
of N linearly independent [d×d] matrices which act linearly on the d-dimensional
phase space M. The infinitesimal statement of symplectic invariance follows by
substituting (7.13) into (7.9) and keeping the terms linear in δφ,

Ta
�ω + ωTa = 0 . (7.14)

This is the defining property for infinitesimal generators of symplectic transfor-
mations. Matrices that satisfy (7.14) are sometimes called Hamiltonian matrices.
A linear combination of Hamiltonian matrices is a Hamiltonian matrix, so Hamil-
tonian matrices form a linear vector space, the symplectic Lie algebra sp(d). By
the antisymmetry of ω,

(ωTa)� = ωTa . (7.15)

is a symmetric matrix. Its number of independent elements gives the dimen-
sion (the number of independent continuous parameters) of the symplectic group
Sp(d),

N = d(d + 1)/2 = D(2D + 1) . (7.16)

The lowest-dimensional symplectic group Sp(2), of dimension N = 3, is isomor-
phic to SU(2) and SO(3). The first interesting case is Sp(3) whose dimension is
N = 10. 5

5Predrag: recheck that this is not isomorphic to something else?
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symplectic!distance
distance!symplectic
matrix!positive

definite
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It is easily checked that the exponential of a Hamiltonian matrix

g = eφ·T (7.17)

is a symplectic matrix; Lie group elements are related to the Lie algebra elements
by exponentiation. ⇓PRIVATE

Example 7.4 So near, and yet so far 6 The notion of distance has no meaning
for Sp(d). Under symplectic action areas are mapped into equal areas of different
shapes, so the Euclidean distance between two points has no invariant meaning, it can
be mapped into any other separation under a symplectic transformation. Consider the
sum of oriented areas (a sophisticate would say the ‘action’), as in (7.12)

S (x, x̂′) = 〈x|x̂′〉 =
D∑

j=1

(q(1)
j p(2)

j − q(2)
j p(1)

j )

spanned by a pair of vectors joined by the symplectic 2-form.

Think of one of the patterns (represented by a point x̂′ in the phase space M)
as a ‘template’ or a ‘reference state’ and act with elements of the symplectic group
Sp(d) on it, x̂′ → g(φ) x̂′, until its ‘distance’ to the second pattern (a point x in the phase
space),

S (x, g(φ) x̂′) = S (x̂, x̂′) (7.18)

is extremized. Here x̂ is the point on the group orbit of x (the set of all points that x is
mapped to under the group actions),

x = g(φ) x̂ , g ∈ G . (7.19)

Unlike the Euclidean length, the symplectic bilinear form is not positive definite
(see (7.12)), and this ‘distance’ is emphatically not a Euclidean distance, but it is -by
the definition- invariant under symplectic transformations, S (gx, gx̂′) = S (x, x̂′). If x̂′ is
on the group orbit of x, the form can be made to exactly vanish by its antisymmetry,
〈x̂′|x̂′〉 = 0, so nearby group orbits do have a small minimal ‘distance’ |S (x̂, x̂ ′)| which
satisfies the extremum conditions

∂

∂φa
〈x|g(φ) x̂′〉 = 〈x̂|t′a〉 = 0 , g(φ) x̂ = x , t′a = Ta x̂′ . (7.20)

The closest group orbit points thus lie in a (d−N)-dimensional hyperplane M̂ =M/G,
the set of vectors x̂ ∈ M̂ orthogonal to the template tangent space in the symmetric
(ωTa) norm

x̂i(ωTa)i j x̂
′
j = 0 . (7.21)

In what follows we shall refer to this hyperplane as a slice, and to (7.20) as the slice
conditions. The slice reduces the symplectic symmetry, with the reduced state space
of (negative !) dimension d − N = d − d(d + 1)/2 = −d(d − 1)/2.

6Predrag: For ChaosBook; use Sophus Lie’s mug and Sonya Kovaleskaya pretty face as tem-
plates, Wiener as the state observed in the evolution
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Dream student Henriette Roux: “Something is amiss here... The group orbit of
x ∈ M is embedded into M, so it cannot be of a higher dimension than d, but
the dimension of the tangent space of the most general action of the group is
N ∝ d2 (I’m thinking of U(d), SO(d) and Sp(d) now), so I cannot fit all of it in a
d-dimensional phase space. What gives?”

A: “not sure...”

We make an attempt in sect. 38.1. ⇑PRIVATE

7.3 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of equa-
tions of motion can affect the dynamics. In the case at hand, the symplectic in-
variance will reduce the number of independent Floquet multipliers by a factor of
2 or 4. 7

7.3.1 Canonical transformations

The evolution of Jt (4.5) is determined by the stability matrix A, (4.9):

d
dt

Jt(x) = A(x)Jt(x) , Ai j(x) = ωik H,k j(x) , (7.22)

where the symmetric matrix of second derivatives of the Hamiltonian, H,kn =

∂k∂nH, is called the Hessian matrix. From (7.22) and the symmetry of H,kn it
follows that for Hamiltonian flows (7.3)

A�ω + ωA = 0 . (7.23)

This is the defining property (7.14) for infinitesimal generators of symplectic (or
canonical) transformations.

Consider now a smooth nonlinear coordinate change form yi = hi(x) (see
sect. 2.3 for a discussion), and define a ‘Kamiltonian’ function K(x) = H(h(x)).
Under which conditions does K generate a Hamiltonian flow? In what follows we
will use the notation ∂ j̃ = ∂/∂y j, si, j = ∂hi/∂x j. By employing the chain rule we
have that

K, j = H,l̃ sl̃, j (7.24)

7Gregor: One could argue that it is always only a factor of 2; complex numbers have twice as
much information than real numbers.
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Figure 7.3: Stability exponents of a Hamiltonian equi-
librium point, 2-dof.

complex saddle saddle−center

degenerate saddle

(2)(2)

real saddle

generic center degenerate center

(2)
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(Here, as elsewhere in this book, a repeated index implies summation.) By virtue
of (7.1), ∂̃lH = −ωlmẏm, so that, again by employing the chain rule, we obtain

ωi j∂ jK = −ωi j s j,lωlmsm,n ẋn (7.25)

The right hand side simplifies to ẋi (yielding Hamiltonian structure) only if

− ωi j sl, jωlmsm,n = δin (7.26)

or, in compact notation, 8

− ω(∂h)�ω(∂h) = 1 (7.27)

which is equivalent to the requirement (7.9) that ∂h is symplectic. h is then called
a canonical transformation. We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonical transformation h is very

example B.1
cleverly chosen, the flow in new coordinates might be considerably simpler than
the original flow. Second, Hamiltonian flows themselves are a prime example of
canonical transformations.

Dream student Henriette Roux: “I hate these sm,n. Can’t you use a more sensible
notation?” A: “Be my guest.”

Example 7.5 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.23) that d

dt

(
J�ωJ

)
= 0, and since at the initial time J 0(x0) = 1, Jacobian matrix

is a symplectic transformation (7.9). This equality is valid for all times, so a Hamiltonian
flow f t(x) is a canonical transformation, with the linearization ∂ x f t(x) a symplectic trans-
formation (7.9): 9 10 For notational brevity here we have suppressed the dependence

8Predrag: continue exercise B.1: verify that −ω(h′)�ωh′ = 1 .
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on time and the initial point, J = J t(x0). By elementary properties of determinants it fol-
lows from (7.9) that Hamiltonian flows are phase-space volume preserving, |det J| = 1 .
The initial condition (4.9) for J is J0 = 1, so one always has

det J = +1 . (7.28)

7.3.2 Stability of equilibria of Hamiltonian flows

For an equilibrium point xq the stability matrix A is constant. Its eigenvalues
describe the linear stability of the equilibrium point. A is the matrix (7.23) with
real matrix elements, so its eigenvalues (the Floquet exponents of (5.1)) are either
real or come in complex pairs. In the case of Hamiltonian flows, it follows from
(7.23) that the characteristic polynomial of A for an equilibrium xq satisfies 11

section 5.1
exercise 7.4
exercise 7.5det (A − λ1) = det (ω−1(A − λ1)ω) = det (−ωAω − λ1)

= det (A� + λ1) = det (A + λ1) . (7.29)

That is, the symplectic invariance implies in addition that if λ is an eigenvalue,
then −λ, λ∗ and −λ∗ are also eigenvalues. Distinct symmetry classes of the Floquet
exponents of an equilibrium point in a 2-dof system are displayed in figure7.3.
12 It is worth noting that while the linear stability of equilibria in a Hamiltonian
system always respects this symmetry, the nonlinear stability can be completely
different. 13 14

7.4 Symplectic maps

So far we have considered only the continuous time Hamiltonian flows. As dis-
cussed in sect. 4.4 for finite time evolution mappings, and in sect. 4.5 the iterated
discrete time mappings, the stability of maps is characterized by eigenvalues of

9Gregor: Related to Fig 7.3, discuss marginal directions.
PC: can you continue sect. 5.3.1 here, replace there the obscure Hamiltonian remark by reference
to text here, harmonize the two discussions? We will need to refer to this Hamiltonian case in
chapter 13. Problem is linear flow of exposition - I had to discuss cycle stability after introducing
linear stability, putting chapter 5 after chapter 7 postpones that too far.

10Predrag: can you make this into a problem set? Argument might be that at the initial time
det M = 1 and evolution cannot change that - in our example - or - probably the real reason:
S p(2D) is defined only in even dimensions, unless you continue them into odd dimension by the
dimensional trickery in the style of birdtracks.eu.

11Gregor: dimA is even, so no − sign in front of determinant.
12Predrag: need to replace figure 4.5 (a) by edited version of figure 7.3
13Predrag: Luz, give references in a remark
14Gregor: Transition from flows to maps a bit abrupt here; discuss in particular that flows always

have a pair of Eigenvalues 1 related to energy and time. This pair is usually lost when going to
Poincaré map.
PC: yes. It would be good to expand here the Hamiltonian case of stability of Poincaré map cycles,
sect. 5.5, to motivate “Symplectic maps.”

newton - 18jan2012 boyscout version14.4, Mar 19 2013

http://www.birdtracks.eu/


CHAPTER 7. HAMILTONIAN DYNAMICS 146

conservation!phase-
space
volume

Liouville!theorem
loxodromic!quartet
Henon@Hénon
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mapFigure 7.4: Stability of a symplectic map in R4.
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their Jacobian matrices, or ‘multipliers.’ A multiplier Λ = Λ(x0, t) associated to
a trajectory is an eigenvalue of the Jacobian matrix J. As J is symplectic, (7.9)
implies that 15

J−1 = −ωJ�ω , (7.30)

so the characteristic polynomial is reflexive, namely it satisfies

det (J − Λ1) = det (J� − Λ1) = det (−ωJ�ω − Λ1)

= det (J−1 − Λ1) = det (J−1) det (1 − ΛJ)

= Λ2D det (J − Λ−11) . (7.31)

16 17 Hence if Λ is an eigenvalue of J, so are 1/Λ, Λ∗ and 1/Λ∗. Real eigenvalues
always come paired as Λ, 1/Λ. The Liouville conservation of phase-space vol-
umes (7.28) is an immediate consequence of this pairing up of eigenvalues. The
complex eigenvalues come in pairs Λ, Λ∗, |Λ| = 1, or in loxodromic quartets Λ,
1/Λ, Λ∗ and 1/Λ∗. These possibilities are illustrated in figure 7.4.

Example 7.6 Hamiltonian Hénon map, reversibility: By (4.43) the Hénon
map (3.17) for b = −1 value is the simplest 2-dimensional orientation preserving area-
preserving map, often studied to better understand topology and symmetries of Poincaré
sections of 2 dof Hamiltonian flows. We find it convenient to multiply (3.18) by a and
absorb the a factor into x in order to bring the Hénon map for the b = −1 parameter
value into the form

xi+1 + xi−1 = a − x2
i , i = 1, ..., np , (7.32)

15Predrag: shouldn’t monodromy matrix be reserved for periodic, relative periodic etc values of
the Jacobian matrix? mono-dromos means once around the stadium, i.e., periodic... RA: ok

16Gregor: Would take out the two degenerate cases - confuses more than being helpful
17Gregor: Mention EVs 1 of flow somewhere.
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The 2-dimensional Hénon map for b = −1 parameter value

xn+1 = a − x2
n − yn

yn+1 = xn . (7.33)

is Hamiltonian (symplectic) in the sense that it preserves area in the [x, y] plane.

For definitiveness, in numerical calculations in examples to follow we shall fix
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guarantee
that all roots of 0 = f n(x) − x (periodic points) are real. 18

exercise 8.6

Example 7.7 2-dimensional symplectic maps: In the 2-dimensional case the
eigenvalues (5.8) depend only on tr Mt

Λ1,2 =
1
2

(
tr Mt ±

√
(tr Mt − 2)(tr Mt + 2)

)
. (7.34)

Greene’s residue criterion states that the orbit is (i) elliptic if the stability residue |tr M t |−
2 ≤ 0, with complex eigenvalues Λ1 = eiθt, Λ2 = Λ

∗
1 = e−iθt. If |tr Mt | − 2 > 0, λ is real,

and the trajectory is either

(ii) hyperbolic Λ1 = eλt , Λ2 = e−λt , or (7.35)

(iii) inverse hyperbolic Λ1 = −eλt , Λ2 = −e−λt . (7.36)

Example 7.8 Standard map. Given a smooth function g(x), the map

xn+1 = xn + yn+1

yn+1 = yn + g(xn) (7.37)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.20) is

Mn(x0, y0) =
1∏

k=n

(
1 + g′(xk) 1

g′(xk) 1

)
. (7.38)

The map preserves areas, det M = 1, and one can easily check that M is symplectic.
In particular, one can consider x on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map is
thus the cylinder S 1 × R (S 1 stands for the 1-torus, which is fancy way to say “circle”):
by taking (7.37) mod 1 the map can be reduced on the 2-torus S 2. 19

The standard map corresponds to the choice g(x) = k/2π sin(2πx). When k = 0,
yn+1 = yn = y0, so that angular momentum is conserved, and the angle x rotates with
uniform velocity

xn+1 = xn + y0 = x0 + (n + 1)y0 mod 1 .

The choice of y0 determines the nature of the motion (in the sense of sect. 2.1.1): for
y0 = 0 we have that every point on the y0 = 0 line is stationary, for y0 = p/q the motion

18Predrag: link to next exer
19Predrag: July 2008 recheck: Vlad Bezuglyy (a PhD student), Mehling, Wilkinson (?) refer to

state space regions with complex finite time Lyapunovs as ‘gyres’
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winding numberFigure 7.5: Phase portrait for the standard map

for (a) k = 0: symbols denote periodic orbits, full
lines represent quasiperiodic orbits. (b) k = 0.3,
k = 0.85 and k = 1.4: each plot consists of 20
random initial conditions, each iterated 400 times.

(a) (b)

is periodic, and for irrational y0 any choice of x0 leads to a quasiperiodic motion (see
figure 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its
dynamics for arbitrary values of the nonlinear parameter k is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
figure 7.5 (a), while, when k is sufficiently large, single trajectories wander erratically on
a large fraction of the phase space, as in figure 7.5 (b). 20

This gives a glimpse of the typical scenario of transition to chaos for Hamilto-
nian systems.

Note that the map (7.37) provides a stroboscopic view of the flow generated by
a (time-dependent) Hamiltonian

H(x, y; t) =
1
2

y2 +G(x)δ1(t) (7.39)

where δ1 denotes the periodic delta function

δ1(t) =
∞∑

m=−∞
δ(t − m) (7.40)

and

G′(x) = −g(x) . (7.41)

Important features of this map, including transition to global chaos (destruction
of the last invariant torus), may be tackled by detailed investigation of the stability of
periodic orbits. A family of periodic orbits of period Q already present in the k = 0 rota-
tion maps can be labeled by its winding number P/Q 21 The Greene residue describes
the stability of a P/Q-cycle: 22

RP/Q =
1
4

(
2 − tr MP/Q

)
. (7.42)

If RP/Q ∈ (0, 1) the orbit is elliptic, for RP/Q > 1 the orbit is hyperbolic orbits, and for
RP/Q < 0 inverse hyperbolic. ⇓PRIVATE

remark 7.5

⇑PRIVATE

23 For k = 0 all points on the y0 = P/Q line are periodic with period Q, winding
number P/Q and marginal stability RP/Q = 0. As soon as k > 0, only a 2Q of such

20Predrag: temporarily replaced sm1.eps by a bad resolution reduced file, please produce a better
one by saving raster file from your program, then generate .eps of 100KB max

21Predrag: either we do it later in the book, refer here to where we do it, or we shut up? By the
way, circle maps are discussed at length in chapter 30, so that should also be cross-referenced.

22Predrag: refer to where it is defined first - once before in this chapter, (7.34)
23Predrag: much of this belongs to a later chapter. Presumably you want to move this to chap-

ter 13, either as examples or a separate section. we have barely defined a periodic orbit so far.
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orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, and half
hyperbolic. 24 If we further vary k in such a way that the residue of the elliptic Q-cycle
goes through 1, a bifurcation takes place, and two or more periodic orbits of higher
period are generated. 25

⇓PRIVATE

Example 7.9 Hamiltonian Hénon map, reversibility: The Hénon map (7.33) is
reversible, with its inverse interchanging the roles of x and y:

xn−1 = yn

yn−1 = a − y2
n − xn , (7.43)

hence the dynamics is symmetric in the [x, y] plane: a trajectory maps into a trajectory
under the flip across the x = y diagonal

(
y x

)
= R

(
x y

)
=

(
0 1
1 0

) (
x y

)
(7.44)

and time reversal. The reversor R is orientation reversing, det [∂R] = −1, and is an
involution, R2 = 11. In other words, the Hamiltonian Hénon map is conjugate to its
inverse f◦R = R◦ f −1, and can be factored into a pair of orientation reversing involutions,
f = ( f R) ◦ R = T ◦ R, with

T
(

x y
)
=

(
x a − x2 − y

)
. (7.45)

Equivalently, writing f = S ◦ (S f ) = S ◦U, the reversor

U
(

x y
)
=

(
a − y2 − x y

)
(7.46)

factorizes the Hénon map as f = S T .

⇑PRIVATE

7.5 Poincaré invariants

Let C be a region in phase space and V(0) its volume. Denoting the flow of the
Hamiltonian system by f t(x), the volume of C after a time t is V(t) = ft(C), and
using (7.28) we derive the Liouville theorem:

V(t) =
∫

f t(C)
dx =

∫
C

∣∣∣∣∣∣det
∂ f t(x′)
∂x

∣∣∣∣∣∣ dx′∫
C

det (J)dx′ =
∫

C
dx′ = V(0) , (7.47)

Hamiltonian flows preserve phase-space volumes.

24Predrag: need to write a remark about Poincaré-Birkhoff
25Predrag: what about going through RP/Q < 0?
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The symplectic structure of Hamilton’s equations buys us much more than
the ‘incompressibility,’ or the phase-space volume conservation. Consider the
symplectic product of two infinitesimal vectors

〈δx|δx̂〉 = δx�ωδx̂ = δpiδq̂i − δqiδ p̂i

=

D∑
i=1

{
oriented area in the (qi, pi) plane

}
. (7.48)

Time t later we have

〈δx′|δx̂′〉 = δx�J�ωJδx̂ = δx�ωδx̂ .

This has the following geometrical meaning. Imagine that there is a reference
phase-space point. Take two other points infinitesimally close, with the vectors δx
and δx̂ describing their displacements relative to the reference point. Under the
dynamics, the three points are mapped to three new points which are still infinites-
imally close to one another. The meaning of the above expression is that the area
of the parallelepiped spanned by the three final points is the same as that spanned
by the initial points. The integral (Stokes theorem) version of this infinitesimal
area invariance states that for Hamiltonian flows the sum of D oriented areas Vi

bounded by D loops ΩVi, one per each (qi, pi) plane, is conserved:

∫
V

dp ∧ dq =
∮
ΩV

p · dq = invariant . (7.49)

One can show that also the 4, 6, · · · , 2D phase-space volumes are preserved. The
phase space is 2D-dimensional, but as there are D coordinate combinations con-
served by the flow, morally a Hamiltonian flow is D-dimensional. Hence for
Hamiltonian flows the key notion of dimensionality is D, the number of the de-
grees of freedom (dof), rather than the phase-space dimensionality d = 2D.

Dream student Henriette Roux: “Would it kill you to draw some pictures here?”
A: “Be my guest.”

in depth:

appendix E.4, p. 1093

Résumé

Physicists do Lagrangians and Hamiltonians. Many know of no world other
than the perfect world of quantum mechanics and quantum field theory in which
the energy and much else is conserved. From the dynamical point of view, a
Hamiltonian flow is just a flow, but a flow with a symmetry: the stability matrix
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Ai j = ωik H,k j(x) of a Hamiltonian flow ẋi = ωi jH, j(x) satisfies A�ω+ωA = 0. Its
integral along the trajectory, the linearization of the flow J that we call the ‘Jaco-
bian matrix,’ is symplectic, and a Hamiltonian flow is thus a canonical transforma-
tion in the sense that the Hamiltonian time evolution x′ = f t(x) is a transformation
whose linearization (Jacobian matrix) J = ∂x′/∂x preserves the symplectic form,
J�ωJ = ω . This implies that A are in the symplectic algebra sp(2D), and that the
2D-dimensional Hamiltonian phase-space flow preserves D oriented infinitesimal
volumes, or Poincaré invariants. The Liouville phase-space volume conservation
is one consequence of this invariance.

While symplectic invariance enforces |Λ| = 1 for complex eigenvalue pairs
and precludes existence of attracting equilibria and limit cycles typical of dissipa-
tive flows, for hyperbolic equilibria and periodic orbits |Λ| > 1, and the pairing
requirement only enforces a particular value on the 1/Λ contracting direction.
Hence the description of chaotic dynamics as a sequence of saddle visitations is
the same for the Hamiltonian and dissipative systems. You might find symplec-
ticity beautiful. Once you understand that every time you have a symmetry, you

chapter 10
should use it, you might curse the day [26] you learned to say ‘symplectic’.

Commentary

In theory there is no difference between theory and prac-
tice. In practice there is.

—Yogi Berra

Remark 7.1 Hamiltonian dynamics, sources. If you are reading this book, in theory
you already know everything that is in this chapter. In practice you do not. Try this:
Put your right hand on your heart and say: “I understand why nature prefers symplectic
geometry.” Honest? We make an attempt in sect. 38.1. ⇓PRIVATE

⇑PRIVATEWhere does the skew-symmetric ω come from? Newton f = ma law for a motion in
a potential is mq̈ = −∂V . Rewrite this as a pair of first order ODEs, q̇ = p/m , ṗ = −∂V ,
define the total energy H(q, p) = p2/2m+V(q) , and voila, the equation of motion take on
the symplectic form (7.3). What makes this important is the fact that the evolution in time
(and more generally any canonical transformation) preserves this symplectic structure, as
shown in sect. 7.3.1. Another way to put it: a gradient flow ẋ = −∂V(x) contracts a state
space volume into a fixed point. When that happens, V(x) is a ’Lyapunov function’, and
the equilibrium x = 0 is ‘Lyapunov asymptotically stable’. In contrast, the ‘−’ sign in the
symplectic action on (q, p) coordinates, ṗ = −∂V induces a rotation, and conservation of
phase-space areas: for a symplectic flow there can be no volume contraction.

Out there there are centuries of accumulated literature on Hamilton, Lagrange, Jacobi
etc. formulation of mechanics, some of it excellent. In context of what we will need here,
we make a very subjective recommendation–we enjoyed reading Percival and Richards [ 3]
and Ozorio de Almeida [4]. Exposition of sect. 7.2 follows Dragt [15]. There are two con-
ventions in literature for what the integer argument of Sp(· · ·) stands for: either Sp(D) or
Sp(d) (used, for example, in refs. [15, 17]), where D = dof, and d = 2D. As explained
in Chapter 13 of ref. [17], symplectic groups are the ‘negative dimensional,’ d → −d
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dimension!symplectic
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sisters of the orthogonal groups, so only the second notation makes sense in the grander
scheme of things. Mathematicians can even make sense of the d =odd-dimensional case,
see Proctor [18, 19], by dropping the requirement that ω is non-degenerate, and defining
a symplectic group Sp(M, ω) acting on a vector space M as a subgroup of Gl(M) which
preserves a skew-symmetric bilinear form ω of maximal possible rank. The odd sym-
plectic groups Sp(2D + 1) are not semisimple. If you care about group theory for its own
sake (the dynamical systems symmetry reduction techniques of chapter 10 are still too
primitive to be applicable to Quantum Field Theory), chapter 14 of ref. [ 17] is fun, too.

Referring to the Sp(d) Lie algebra elements as ‘Hamiltonian matrices’ as one some-
times does [15, 20] conflicts with what is meant by a ‘Hamiltonian matrix’ in quantum
mechanics: the quantum Hamiltonian sandwiched between vectors taken from any com-
plete set of quantum states. We are not sure where this name comes from; Dragt cites
refs. [21, 22], and chapter 17 of his own book in progress [ 16]. Fulton and Harris [21] use
it. Certainly Van Loan [23] uses in 1981, and Taussky in 1972. 26 Might go all the way
back to Sylvester?

Dream student Henriette Roux wants to know: “Dynamics equals a Hamiltonian plus a
bracket. Why don’t you just say it?” A: “It is true that in the tunnel vision of atomic
mechanicians the world is Hamiltonian. But it is much more wondrous than that. This
chapter starts with Newton 1687: force equals acceleration, and we always replace a
higher order time derivative with a set of first order equations. If there are constraints, or
fully relativistic Quantum Field Theory is your thing, the tool of choice is to recast New-
ton equations as a Lagrangian 1788 variational principle. If you still live in material but
non-relativistic world and have not gotten beyond Heisenberg 1925, you will find Hamil-
ton’s 1827 principal function handy. The question is not whether the world is Hamiltonian
- it is not - but why it is so often profitably formulated this way. For Maupertuis 1744 vari-
ational principle was a proof of God’s existence; for Lagrange who made it mathematics,
it was just a trick. Our sect. 38.1.1 “Semiclassical evolution” is an attempt to get inside 17
year old Hamilton’s head, but it is quite certain that he did not get to it the way we think
about it today. He got to the ‘Hamiltonian’ by studying optics, where the symplectic struc-
ture emerges as the leading WKB approximation to wave optics; higher order corrections
destroy it again. In dynamical systems theory, the densities of trajectories are transported
by Liouville evolution operators, as explained here in sect. 16.6. Evolution in time is a
one-parameter Lie group, and Lie groups act on functions infinitesimally by derivatives.
If the evolution preserves additional symmetries, these derivatives have to respect them,
and so ‘brackets’ emerge as a statement of symplectic invariance of the flow. Dynamics
with a symplectic structure are just a special case of how dynamics moves densities of tra-
jectories around. Newton is deep, Poisson brackets are technology and thus they appear
naturally only by the time we get to chapter 16. Any narrative is of necessity linear, and
putting Poisson ahead of Newton [1] would be a disservice to you, the student. But if you
insist: Dragt and Habib [24, 15] offer a concise discussion of symplectic Lie operators
and their relation to Poisson brackets. ”

Remark 7.2 Symplectic. The term symplectic –Greek for twining or plaiting together–
was introduced into mathematics by Hermann Weyl. ‘Canonical’ lineage is church-
doctrinal: Greek ‘kanon,’ referring to a reed used for measurement, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of ω. The overall sign of ω, the symplectic invariant
in (7.3), is set by the convention that the Hamilton’s principal function (for energy con-

serving flows) is given by R(q, q′, t) =
∫ q′

q
pidqi −Et. With this sign convention the action

26Predrag: add Taussky reference
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along a classical path is minimal, and the kinetic energy of a free particle is positive. Any
finite-dimensional symplectic vector space has a Darboux basis such that ω takes form
(7.9). Dragt [15] convention for phase-space variables is as in (7.2). He calls the dynam-
ical trajectory x0 → x(x0, t) the ‘transfer map,’ something that we will avoid here, as it
conflicts with the well established use of ‘transfer matrices’ in statistical mechanics.

Remark 7.4 Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired as Λ, 1/Λ, and complex eigenvalues come either in Λ, Λ ∗ pairs, |Λ| = 1, or
Λ, 1/Λ, Λ∗, 1/Λ∗ loxodromic quartets. As most maps studied in introductory nonlinear
dynamics are 2d, you have perhaps never seen a loxodromic quartet. How likely are
we to run into such things in higher dimensions? According to a very extensive study of
periodic orbits of a driven billiard with a four dimensional phase space, carried in ref. [ 28],
the three kinds of eigenvalues occur with about the same likelihood.

Remark 7.5 Standard map. Standard maps model free rotors under the influence
of short periodic pulses, as can be physically implemented, for instance, by pulsed opti-
cal lattices in cold atoms physics. 27 On the theoretical side, standard maps illustrate a
number of important features: small k values provide an example of KAM perturbative
regime (see ref. [11]), while larger k’s illustrate deterministic chaotic transport [9, 10],
and the transition to global chaos presents remarkable universality features [ 5, 12, 7].
The quantum counterpart of this model has been widely investigated, as the first example
where phenomena like quantum dynamical localization have been observed [ 13]. Stabil-
ity residue was introduced by Greene [12]. For some hands-on experience of the standard
map, download Meiss simulation code [14].

⇓PRIVATE

Flotsam: Predrag 16jan2012 Left this text out of sect. 7.2: “ 28 In a linearized
neighborhood of a given group element,

g(φ + δφ) � g(φ) +
N∑

a=1

δφa
∂g(φ)
∂aφ

,

the [d×d] matrices ∂g(φ)/∂aφ span the tangent space at g(φ). With an application
of the inverse of a group element g−1, this neighborhood can be mapped into a
neighborhood g(δφ) of the identity g(0) = 1, so the local structure of Lie groups
can be understood by studying the tangent space near the identity element, gener-
ated by

g(δφ) � 1 +
N∑

a=1

δφa g(φ)−1 ∂g(φ)
∂aφ

∣∣∣∣∣
φ=0

.

{T1,T2 · · · ,TN}, the generators of infinitesimal transformations, are a set of N
linearly independent [d×d] matrices which span the tangent space and act linearly

27Predrag: add references
28Predrag: Motivation: We only need to say that for a continuous group (compact or not) we

can linearize the flow , and that the tangent space is spanned by the Lie algebra, without too much
jargon about double covers and what-not.
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on the d-dimensional phase space M. As we shall see in sect.10.1.1, they endow
the tangent space with a Lie algebra structure. Globally different Lie groups may
have the same local structure: for example, near the identity the rotation group
SO(n) and the rotations + inversion group O(n) have the same Lie algebra so(n).

Hamiltonian matrices form a linear vector space, the symplectic Lie algebra
sp(d), or, in the Cartan-Killing classification of simple Lie algebras, Lie algebra
CD.

29 Symplectic matrices are by definition linear transformations that leave the
(antisymmetric) quadratic form xiωi jy j invariant. This immediately implies that
any symplectic matrix satisfies

Q�ωQ = ω , (7.50)

and – when Q is close to the identity Q = 1 + δtA – it follows that that A must
satisfy (7.23).

In mathematical literature the Lie operator : f : is sometimes referred to as
ad( f ) where ad is shorthand for adjoint. Dragt uses the : f : notation instead of
ad( f ) because ‘it facilitates the writing of complicated expressions.’

30 The book is more extreme than even ChaosBook.org: 1872 pages. But
considerably more repetitive.

section 38.1.1

”
⇑PRIVATE

29Predrag: This paragraph seems to be a repeat of the first paragraph of sect. 7.3.1?
30Predrag: incorporate this into the Liouville operator discussion in ChaosBook.org
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Exercises boyscout

7.1. Complex nonlinear Schrödinger equation. Consider
the complex nonlinear Schrödinger equation in one spa-
tial dimension [26]:

i
∂φ

∂t
+
∂2φ

∂x2
+ βφ|φ|2 = 0, β � 0.

(a) Show that the function ψ : R → C defining the
traveling wave solution φ(x, t) = ψ(x− ct) for c > 0
satisfies a second-order complex differential equa-
tion equivalent to a Hamiltonian system in R4 rel-
ative to the noncanonical symplectic form whose
matrix is given by

wc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1
−1 0 0 −c
0 −1 c 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(b) Analyze the equilibria of the resulting Hamiltonian

system in R4 and determine their linear stability
properties.

(c) Let ψ(s) = eics/2a(s) for a real function a(s) and
determine a second order equation for a(s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits for β < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrödinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic vs. Hamiltonian matrices. In the language
of group theory, symplectic matrices form the symplectic
Lie group Sp(d), while the Hamiltonian matrices form the
symplectic Lie algebra sp(d), or the algebra of generators
of infinitesimal symplectic transformations. This exercise
illustrates the relation between the two:

(a) Show that if a constant matrix A satisfy the Hamil-
tonian matrix condition (7.14), then J(t) = exp(tA) ,
t ∈ R, satisfies the symplectic condition (7.9), i.e.,
J(t) is a symplectic matrix.

(b) Show that if matrices Ta satisfy the Hamiltonian
matrix condition (7.14), then g(φ) = exp(φ · T) ,
φ ∈ RN , satisfies the symplectic condition (7.9),
i.e., g(φ) is a symplectic matrix.

(A few hints: (i) expand exp(A) , A = φ · T , as a power
series in A. Or, (ii) use the linearized evolution equation
(7.22). )

exerNewton - 13jun2008 boyscout version14.4, Mar 19 2013



REFERENCES 156

7.3. When is a linear transformation canonical?

(a) Let A be a [n × n] invertible matrix. Show that the
map φ : R2n → R2n given by (q, p) �→ (Aq, (A−1)�p)
is a canonical transformation.

(b) If R is a rotation in R3, show that the map (q, p) �→
(R q,R p) is a canonical transformation.

(Luz V. Vela-Arevalo)

7.4. Determinants of symplectic matrices. Show that
the determinant of a symplectic matrix is +1, by going
through the following steps:

(a) use (7.31) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that the joint multiplicity of λ = ±1 is even,

(c) show that the multiplicities of λ = 1 and λ = −1
cannot be both odd. (Hint: write

P(λ) = (λ − 1)2m+1(λ + 1)2l+1Q(λ)

and show that Q(1) = 0).

7.5. Cherry’s example. What follows refs. [25, 27] is
mostly a reading exercise, about a Hamiltonian system
that is linearly stable but nonlinearly unstable. Consider
the Hamiltonian system on R4 given by

H =
1
2

(q2
1 + p2

1) − (q2
2 + p2

2) +
1
2

p2(p2
1 − q2

1) − q1q2 p1.

(a) Show that this system has an equilibrium at the ori-
gin, which is linearly stable. (The linearized system
consists of two uncoupled oscillators with frequen-
cies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constant τ:

q1 = −
√

2
cos(t − τ)

t − τ , q2 =
cos 2(t − τ)

t − τ ,

p1 =
√

2
sin(t − τ)

t − τ
, p2 =

sin 2(t − τ)
t − τ

.

These solutions clearly blow up in finite time; how-
ever they start at t = 0 at a distance

√
3/τ from the

origin, so by choosing τ large, we can find solutions
starting arbitrarily close to the origin, yet going to
infinity in a finite time, so the origin is nonlinearly
unstable.

(Luz V. Vela-Arevalo)
⇓PRIVATE

7.6. Symplectic volume preservation. Check that the se-
quence of mappings (I.15) is volume preserving, det Û =
1. ⇑PRIVATE
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Chapter 8

Billiards

The dynamics that we have the best intuitive grasp on, and find easiest to grap-
ple with both numerically and conceptually, is the dynamics of billiards.
For billiards, discrete time is altogether natural; a particle moving through

a billiard suffers a sequence of instantaneous kicks, and executes simple motion
in between, so there is no need to contrive a Poincaré section. We have already
used this system in sect. 1.3 as the intuitively most accessible example of chaos.
Here we define billiard dynamics more precisely, anticipating the applications to
come. 1

8.1 Billiard dynamics

A billiard is defined by a connected region Q ⊂ RD, with boundary ∂Q ⊂ RD−1

separating Q from its complement RD \ Q. The region Q can consist of one com-
pact, finite volume component (in which case the billiard phase space is bounded,
as for the stadium billiard of figure 8.1), or can be infinite in extent, with its
complement RD \ Q consisting of one or several finite or infinite volume compo-
nents (in which case the phase space is open, as for the 3-disk pinball game in
figure 1.1). In what follows we shall most often restrict our attention to planar
billiards. 2

A point particle of mass m and momentum pn = mvn moves freely within the
billiard, along a straight line, until it encounters the boundary. There it reflects
specularly (specular = mirrorlike), 3 with no change in the tangential component
of momentum, and instantaneous reversal of the momentum component normal to
the boundary,

p
′
= p − 2(p · n̂)n̂ , (8.1)

1Predrag: Do in detail the disk scattering dynamics; LiversageFig.1
2Predrag: put arrows everywhere on figure 8.1, denote ball position by (sn, φn, τn)
3Predrag: check OED
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Figure 8.1: The stadium billiard is a 2-
dimensional domain bounded by two semi-circles
of radius d = 1 connected by two straight walls of
length 2a. At the points where the straight walls
meet the semi-circles, the curvature of the border
changes discontinuously; these are the only sin-
gular points of the flow. The length a is the only
parameter.
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Figure 8.2: (a) A trajectory of a general billiard
is fixed by specifying the perimeter wall arclength,
the outgoing wall-normal momentum, and the out-
going wall-parallel momentum (s, p‖, p⊥). For γ <
1 the ball loses its bounce, φ+ < φ−. [REDRAW]
(b) [REPLACE by a perspective 3-dimensional
section.]
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np = sin
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(a) (b)
−4−6 −2 0

s
2 4 6

(s,p)
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��

φ

φ

with n̂ the unit vector normal to the boundary ∂Q at the collision point. The angle
of incidence equals the angle of reflection, as illustrated in figure8.3. A billiard is
a Hamiltonian system with a 2D-dimensional phase space x = (q, p) and potential
V(q) = 0 for q ∈ Q, V(q) = ∞ for q ∈ ∂Q.

remark 2.1

⇓PRIVATE4

⇑PRIVATE

5 A billiard flow has a natural Poincaré section defined by Birkhoff coordinates
sn, the arc length position of the nth bounce measured along the billiard boundary,
and pn = |p| sin φn, the momentum component parallel to the boundary, where
φn is the angle between the outgoing trajectory and the normal to the boundary.
We measure both the arc length s, and the parallel momentum p counterclockwise
relative to the outward normal (see figure 8.3 as well as figure 3.9 (a)). In D = 2,
the Poincaré section is a cylinder (topologically an annulus), figure 8.4, where
the parallel momentum p ranges for −|p| to |p|, and the s coordinate is cyclic
along each connected component of ∂Q. 6 The volume in the full phase space is
preserved by the Liouville theorem (7.47). The Birkhoff coordinates x = (s, p) ∈

exercise 8.6P, are the natural choice, because with them the Poincaré return map preserves
the phase-space volume of the (s, p) parameterized Poincaré section (a perfectly
good coordinate set (s, φ) does not do that).

exercise 8.6
section 8.2

4Predrag: Smilansky teaches: generating function; canonical transformations; action angle vari-
ables. Problem: prove reflection law by minimization of action

5Predrag: move 1, -1 on the p axis of figure 8.3 inward
6Predrag: label the two areas Q1, Q2 in figure 8.4. Draw corresponding rectangles?
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billiard!map
three-disk@3-

disk!pinballFigure 8.3: (a) A planar billiard trajectory is fixed
by specifying the perimeter length parametrized
by s and the outgoing trajectory angle φ, both mea-
sured counterclockwise with respect to the out-
ward normal n̂. (b) The Birkhoff phase-space co-
ordinate pair (s, p) fully specifies the trajectory,
where p = |p| sinφ is the momentum component
tangential to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the pin-
ball mass and the magnitude of the pinball mo-
mentum are customarily set to m = |p| = 1.
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Figure 8.4: In D = 2 the billiard Poincaré section
is a cylinder, with the parallel momentum p ranging
over p ∈ {−1, 1}, and with the s coordinate is cyclic
along each connected component of ∂Q. The rectangle
figure 8.3 (b) is such cylinder unfolded, with periodic
boundary conditions glueing together the left and the
right edge of the rectangle.
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Without loss of generality we set m = |v| = |p| = 1. Poincaré section condition
eliminates one dimension, and the energy conservation |p| = 1 eliminates another,
so the Poincaré section return map P is (2D − 2)-dimensional.

The dynamics is given by the Poincaré return map

P : (sn, pn) �→ (sn+1, pn+1) (8.2)

from the nth collision to the (n+1)st collision. 7 8 The discrete time dynamics map
P is equivalent to the Hamiltonian flow (7.1) in the sense that both describe the
same full trajectory. Let tn denote the instant of nth collision. Then the position
of the pinball ∈ Q at time tn + τ ≤ tn+1 is given by 2D − 2 Poincaré section
coordinates (sn, pn) ∈ P together with τ, the distance reached by the pinball along
the nth section of its trajectory (as we have set the pinball speed to 1, the time of
flight equals the distance traversed). 9 10

Example 8.1 3-disk game of pinball: 11 In the case of bounces off a circular disk,
the position coordinate s = rθ is given by angle θ ∈ [0, 2π]. For example, for the 3-disk
game of pinball of figure 1.6 and figure 3.9 (a) we have two types of collisions:

exercise 8.1

P0 :

{
φ′ = −φ + 2 arcsin p
p′ = −p + a

R sin φ′
back-reflection (8.3)

7Predrag: replace the reference to figure 3.9 (a) by ?
8Mason: Poincare sections cannot handle flows like Shilnikov. Mention exceptional case, like

when the section cannot decipher the type of the trajectory
9Predrag: emphasize that the discrete/continuous time averages are the same

10Predrag: draw from FigSrc/jpeg/3diskPinb.jpg
11Predrag: add figures from my lectures
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12

P1 :

{
φ′ = φ − 2 arcsin p + 2π/3
p′ = p − a

R sin φ′
reflect to 3rd disk . (8.4)

13 Here a = radius of a disk, and R = center-to-center separation. Actually, as in this
example we are computing intersections of circles and straight lines, nothing more than
high-school geometry is required. There is no need to compute arcsin - one only needs
to compute one square root per each reflection, and the simulations can be very fast.
14

exercise 8.2
Trajectory of the pinball in the 3-disk billiard is generated by a series of P0’s and

P1’s. At each step one has to check whether the trajectory intersects the desired disk
(and no disk in-between). With minor modifications, the above formulas are valid for
any smooth billiard as long as we replace a by the local curvature of the boundary at
the point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard systems. In-
finitesimal equations of variations (4.2) do not apply, but the multiplicative struc-
ture (4.19) of the finite-time Jacobian matrices does. As they are more physical
than most maps studied by dynamicists, let us work out the billiard stability in
some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However, one
dimension can be eliminated by energy conservation, and the other by the fact
that the magnitude of the speed is constant. We shall now show how going to a
local frame of motion leads to a [2×2] Jacobian matrix. In sect. 8.2.1 we show ⇓PRIVATE
that due to the symplectic invariance the situation is even simpler; the stability of
a 2-dimensional billiard flow is given by a single number, the Sinai-Bunimovich
curvature. ⇑PRIVATE

Consider a 2-dimensional billiard with phase-space coordinates x = (q1, q2, p1, p2).
Let tn be the instant of the nth collision of the pinball with the billiard boundary,
and t±n = tn ± ε, ε positive and infinitesimal. With the mass and the speed equal to
1, the momentum direction can be specified by angle θ: x = (q1, q2, sin θ, cos θ).
Now parametrize the 2-dimensional neighborhood of a trajectory segment by
δx = (δz, δθ), where 15

⇓PRIVATE

⇑PRIVATE
δz = δq1 cos θ − δq2 sin θ , (8.5)

δθ is the variation in the direction of the pinball motion. Due to energy conserva-
tion, there is no need to keep track of δq‖, variation along the flow, as that remains

12Predrag: replace this by a smarter formula!
13Predrag: make int exercise!
14Predrag: rewrite this section in the way we really compute - this impact parameter stuff is not

the right thing!
15Predrag: draw the figure!
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Figure 8.5: Variations in the phase-space coordinates
of a pinball between the (n− 1)th and the nth collision.
(a) δqn variation away from the direction of the flow.
(b) δzn angular variation transverse to the direction of
the flow. (c) δq‖ variation in the direction of the flow is
conserved by the flow.

constant. (δq1, δq2) is the coordinate variation transverse to the kth segment of
the flow, figure 8.5. From the Hamilton’s equations of motion for a free particle, ⇓PRIVATE

⇑PRIVATE
dqi/dt = pi, dpi/dt = 0, we obtain the equations of motion (4.1) for the linearized
neighborhood

d
dt
δθ = 0,

d
dt
δz = δθ . (8.6)

Let δθn = δθ(t+n ) and δzn = δz(t+n ) be the local coordinates immediately after the
nth collision, and δθ−n = δθ(t

−
n ), δz−n = δz(t−n ) immediately before. Integrating the

free flight from t+n−1 to t−n we obtain 16

δz−n = δzn−1 + τnδθn−1 , τn = tn − tn−1

δθ−n = δθn−1 , (8.7)

and the Jacobian matrix (4.18) for the nth free flight segment is

MT (xn) =

(
1 τn
0 1

)
. (8.8)

At incidence angle φn (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse variation δz−n projects onto an
arc on the billiard boundary 17 of length δz−n / cos φn. The corresponding incidence
angle variation δφn = δz−n /ρn cos φn, ρn = local radius of curvature, increases the
angular spread to

δzn = −δz−n

δθn = − δθ−n −
2

ρn cos φn
δz−n , (8.9)

16Predrag: draw figure
17Predrag: doodle a little picture here - then the relation becomes obvious, it is a ‘footprint” of

flashlight shining on a surface at an angle.
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volume preservation

Figure 8.6: Defocusing of a beam of nearby trajecto-
ries at a billiard collision. (A. Wirzba)

ϕθ

18 so the Jacobian matrix associated with the reflection is

MR(xn) = −
(

1 0
rn 1

)
, rn =

2
ρn cos φn

. (8.10)

The full Jacobian matrix for np consecutive bounces describes a beam of tra-
jectories defocused by MT along the free flight (the τn terms below) and defo-
cused/refocused at reflections by MR (the rn terms below) 19 20

exercise 8.4

Mp = (−1)np

1∏
n=np

(
1 τn
0 1

) (
1 0
rn 1

)
, (8.11)

where τn is the flight time of the kth free-flight segment of the orbit, rn = 2/ρn cos φn

is the defocusing due to the kth reflection, and ρn is the radius of curvature of
the billiard boundary at the nth scattering point (for our 3-disk game of pinball,
ρ = 1). As the billiard dynamics is phase-space volume preserving, det M = 1,
and the eigenvalues are given by (7.34). 21

This is an example of the Jacobian matrix chain rule (4.21) for discrete time
systems (the Hénon map stability (4.42) is another example). Stability of every
flight segment or reflection taken alone is a shear with two unit eigenvalues,

det MT = det

(
1 τn
0 1

)
, det MR = det

(
1 0
rn 1

)
, (8.12)

but acting in concert in the interwoven sequence (8.11) they can lead to a hyper-
bolic deformation of the infinitesimal neighborhood of a billiard trajectory.

exercise 13.8

As a concrete application, consider the 3-disk pinball system of sect.1.3. An-
alytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles follow
from elementary geometrical considerations. Longer cycles require numerical

exercise 13.9
exercise 8.3evaluation by methods such as those described in chapter13.
chapter 1318Predrag: Tanner changed signs here, Predrag changed them back

19Predrag: replace np fundamental domain - count symmetry wall reflections
20Predrag: 2008-09-16 someone said: ”this is analog to matrix optics (see e.g. Hecht
21Predrag: replace figure 8.6
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Bunimovich

Figure 8.7: A horocycle.

22

23

⇓PRIVATE

8.2.1 Sinai-Bunimovich curvatures

Imagine a set of projectiles leaving a point (q1, q2) in all directions, parameterize
by angle θ; they generate a ‘horocycle’ in the configuration space, a set of all
points reached by time t, see figure 8.7. A δθ wedge of angles stretches into a
horocycle arc δz = tδθ, and κ = δθ/δz = 1/t is the local curvature of the horocycle.
24

Eqs. (8.7) and (8.9) can be rewritten as

δz−n
δθ−n

=
δzn−1

δθn−1
+ τn

δθn

δzn
=

δθ−n
δz−n
+

2
ρn cos φn

, (8.13)

leading to the continued fraction recursion for the curvature κ immediately after
the nth bounce

κn = rn +
1

τn − 1
κn−1

, κn = −
δθn

δzn
. (8.14)

25 26

⇑PRIVATE

⇓PRIVATE
22Predrag: explain that Liouville holds, but phase space is lost thorugh escape
23Predrag: add the billiard mean-time of flight section from Sune article
24Predrag: need to draw a figure of a horocycle!
25Predrag: Somehow this came out backwards in time?
26Predrag: add exercise relating M and κ
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8.3 General billiard flows

Consider a trajectory x(t) obtained by integrating vector field v(x)

x−n = T (xn−1) = xn−1 +

∫ t−n

t+n−1

dτ v(x(τ)) . (8.15)

Here t+n = tn + ε denotes the time infinitesimally after the instant of the kth kick,
t−n = tn − ε the time infinitesimally before it, and x−n = x(t−n ) , xn = x(t+n ). The
trajectory is smooth almost all of the time, except for a sequence of instantaneous
kicks (such as hard wall billiard collisions),

xn = R(x−n ) . (8.16)

Map T is the integral (8.15) of the smooth flow evolution between two consecu-
tive kicks, from t+n−1 to t−n . R describes the instantaneous kick change of velocity
at time t−n to velocity at t+n . The discrete ‘time’ k is an integer, the number of ap-
plications of the R ◦ T map, where we streamline the notation by denoting a map
composition by ‘◦’

xn = R ◦ T · · ·R ◦ T (x0) = (R ◦ T )n(x0) . (8.17)

Example 8.2 When the ball loses its bounce. A point particle with position and
momentum x(t) = (q(t), p(t)) moves within the billiard, along a given integrable trajec-
tory (free flight, gravity, constant electric or magnetic field, harmonic oscillator, . . .) until
it encounters a boundary. 27 There it reflects following the Newton’s law of restitution,
with no change in the tangential component of momentum, and instantaneous reversal
of the momentum component normal to the boundary, in the p, n̂ plane:

R :

{
q = q−

p = p− − (1 + γ)(p− · n̂)n̂
, 0 < γ ≤ 1 , (8.18)

with n̂ the unit vector normal to the billiard boundary ∂Q at the collision point, and γ the
restitution coefficient.

To avoid confusion: for Hamiltonian flight segments, the flow field v in (8.15)
combines the Newtonian velocities and accelerations, v(x) = (q̇(x), ṗ(x)).

Due to the collisional loss of energy, an inelastic billiard is not a Hamiltonian
system. For γ < 1 the phase-space volume is not preserved, the Liouville theo-
rem (7.47) does not apply, and sustaining motion requires an external driving mech-
anism that can compensate for the collisional energy loss. Poincaré section condition
eliminates one dimension, hence a 3-dimensional Poincaré section for a plane billiard
flow can be defined by marking sn, the arc length position of the nth kick measured
along the billiard boundary, and the outgoing wall-normal and wall-parallel momenta
(sn, p⊥,n, p‖,n). Alternatively, on can can keep track of the wall-parallel momentum p‖,n
and the energy shell En = p2

n/2m + V(qn) that the particle is on after nth billiard wall
reflection.

27Predrag: is “Consider a D = 2 planar billiard’ needed?
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We turn next to the question of local stability of a general billiard flow.

If x(t) reaches the wall at time tn, a neighboring trajectory (see figure 4.3)
reflects off the billiard wall time δt later, following the reflection law (8.18):

x(t+n + δt) + δx(t+n + δt) = R(x(t−n + δt) + δx(t−n + δt)) .

To linear order

x+n +
dx(t+n )

dt
δt + δx+n = R

(
x−n +

dx(t−n )
dt

δt + δx−n

)
= x+n +

∂R(x−n )
∂x

(δx−n + v−n δt) , .

Hence

δx+n = MR(x−n )δx−n −
(
v+n − MR(x−n )v−n

)
δt (8.19)

where

MR(x−n ) =
∂R(x−n )

∂x
, v+n = v(x+n ) , v−n = v(x−n ) .

If you wish, you can compute the extra flight time δt by elementary geometry,
from figure 4.3, as in (4.24). However, MR(x−) is a Jacobian matrix like any other;
you can think of it as a limit of a smooth flow where the trajectory is strongly
deflected over a time interval 2ε, ε → 0. According to (4.8), a Jacobian matrix
transports the velocity vector at x0 to the velocity vector at x(t) at time t:

v(x(t)) = Jt(x0) v(x0) ,

hence the prefactor of δt in (8.19) vanishes. Another way to think of this is as in
sect. 4.6, where we have proven that the spectrum of transverse eigenvalues of a
Jacobian matrix for a continuous flow is independent of the choice of a transverse
Poincaré sections, with different choices differing by such δt’s contributions along
the direction of the flow.

The cycle Jacobian matrix for np consecutive bounces describes a beam of
trajectories defocused by MT along the flight segments and defocused/refocused
at kicks by MR

Mp =

1∏
n=np

MR(x−n+1)MT (xn) . (8.20)
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The product limits are a reminder that the product is time-ordered, with later times
corresponding to multiplication from the left, as in (4.21) and (4.42).

To summarize: we have shown that the time delay contributes only along
the direction of the flow, and by (4.8) the longitudinal part does not contribute
computation of Floquet multipliers of a cycle. ⇓PRIVATE

Guys, what am I missing? If you do no believe me, why does the Hamilto-
nian linearized stability for particles bouncing in gravity not require this δt term?
There are accelerations...

The generalized billiard dynamics is not phase-space volume preserving; for
impact normal to the billiard wall det M = γ2. 28 29

⇑PRIVATE

⇑PRIVATE

Résumé

A particulary natural application of the Poincaré section method is the reduction
of a billiard flow to a boundary-to-boundary return map.

Commentary

Remark 8.1 Billiards. The 3-disk game of pinball is to chaotic dynamics what a
pendulum is to integrable systems; the simplest physical example that captures the essence
of chaos. Another contender for the title of the ‘harmonic oscillator of chaos’ is the baker’s
map which is used as the red thread through Ott’s introduction to chaotic dynamics [ 11].
The baker’s map is the simplest reversible dynamical system which is hyperbolic and
has positive entropy. We will not have much use for the baker’s map here, as due to its
piecewise linearity it is so nongeneric that it misses all of the subtleties of cycle expansions
curvature corrections that will be central to this treatise.

chapter 20

That the 3-disk game of pinball is a quintessential example of deterministic chaos
appears to have been first noted by B. Eckhardt [1]. The model was studied in depth
classically, semiclassically and quantum mechanically by P. Gaspard and S.A. Rice [ 3],
and used by P. Cvitanović and B. Eckhardt [4] to demonstrate applicability of cycle ex-
pansions to quantum mechanical problems. It has been used to study the higher order �
corrections to the Gutzwiller quantization by P. Gaspard and D. Alonso Ramirez [ 5], con-
struct semiclassical evolution operators and entire spectral determinants by P. Cvitanović
and G. Vattay [6], and incorporate the diffraction effects into the periodic orbit theory by
G. Vattay, A. Wirzba and P.E. Rosenqvist [7]. The full quantum mechanics and semiclas- ⇓PRIVATEsics of scattering systems is developed here in the 3-disk scattering context in chapter 40.
30 Gaspard’s monograph [8], which we warmly recommend, utilizes the 3-disk system in ⇑PRIVATEmuch more depth than will be attained here. For further links check ChaosBook.org.

A pinball game does miss a number of important aspects of chaotic dynamics: generic
bifurcations in smooth flows, the interplay between regions of stability and regions of

28Predrag: fix this
29Predrag: start with Sinai (convex), then Bunimovich (concave)
30Predrag: repeat/move this remark to QC part of ChaosBook
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chaos, intermittency phenomena, and the renormalization theory of the ‘border of order’
between these regions. To study these we shall have to face up to much harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smooth potentials. The game of pinball
may be thought of as the infinite potential wall limit of a smooth potential, and pinball
symbolic dynamics can serve as a covering symbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically relax an unstable cycle onto the
corresponding one for the potential under investigation. If things go well, the cycle will

section 33.1
remain unstable and isolated, no new orbits (unaccounted for by the pinball symbolic
dynamics) will be born, and the lost orbits will be accounted for by a set of pruning rules.
The validity of this adiabatic approach has to be checked carefully in each application, as
things can easily go wrong; for example, near a bifurcation the same naive symbol string
assignments can refer to a whole island of distinct periodic orbits.

Remark 8.2 Stability analysis. The chapter 1 of Gaspard monograph [ 8] is rec-
ommended reading if you are interested in Hamiltonian flows, and billiards in particular.
A. Wirzba has generalized the stability analysis of sect. 8.2 to scattering off 3-dimensional
spheres (follow the links in ChaosBook.org/extras). A clear discussion of linear sta-
bility for the general d-dimensional case is given in Gaspard [ 8], sect. 1.4. ⇓PRIVATE

Knauff’s 31 scattering problem is surprising in this context, as it is Anosov flow that
resembles a billiard. (continued in exercise 11.3)

⇑PRIVATE
⇓PRIVATE

Remark 8.3 Impact oscillators. Relate sect. 8.3 to the elastic impact oscillator litera-
ture, refs. [12, 13, 14, 15].

Remark 8.4 Restitution coefficients. (From Ref. [16]): In the normal direction,
the restitution laws mostly used are those given by Newton and by Poisson. Newton’s
is a purely kinematical law, Poisson’s is dynamical and Begin-Boulanger uses energy
consideration.

The coefficient of restitution given by Newton considers the normal relative velocities
pre and post-collision.

The coefficient of restitution given by Poisson is the ratio between the normal impulse
in the expansion phase and the normal impulse in the compression phase. This coefficient
of restitution takes into consideration the dynamics of the system in the virtual process of
collision.

The coefficient of restitution given by Beghin-Boulanger considers the relation be-
tween the kinetic energies in the expansion phase and compression phases. This coeffi-
cient of restitution considers the exchange of energy during the virtual process of collision.

When friction is not considered all three coefficients of restitution are equivalent
(ref. [3] in Ref. [16]).

γt = coefficient of tangential restitution

⇑PRIVATE

31Predrag: find Knauff scattering reference
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Exercises boyscout

8.1. A pinball simulator. Implement the disk → disk maps
to compute a trajectory of a pinball for a given starting
point, and a given R:a = (center-to-center distance):(disk
radius) ratio for a 3-disk system. As this requires only
computation of intersections of lines and circles together
with specular reflections, implementation should be within
reach of a high-school student. Please start working on
this program now; it will be continually expanded in chap-
ters to come, incorporating the Jacobian calculations, New-
ton root–finding, and so on.

Fast code will use elementary geometry (only one
√· · ·

per iteration, rest are multiplications) and eschew trigono-
metric functions. Provide a graphic display of the trajec-
tories and of the Poincaré section iterates. To be able to
compare with the numerical results of coming chapters,
work with R:a = 6 and/or 2.5 values. Draw the correct
versions of figure 1.9 or figure 12.3 for R:a = 2.5 and/or
6.

8.2. Trapped orbits. Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figure 1.9 for var-
ious R:a by color coding the initial points in the Poincaré
section by the number of bounces preceding their escape.
Try also R:a = 6:1, though that might be too thin and re-
quire some magnification. The initial conditions can be
randomly chosen, but need not - actually a clearer picture
is obtained by systematic scan through regions of interest.
32

8.3. Pinball stability. Add to your exercise 8.1 pinball sim-
ulator a routine that computes the [2×2] Jacobian matrix.
To be able to compare with the numerical results of com-
ing chapters, work with R:a = 6 and/or 2.5 values.

8.4. Stadium billiard. Consider the Bunimovich sta-
dium [9, 10] defined in figure 8.1. The Jacobian matrix
associated with the reflection is given by (8.10). Here we
take ρk = −1 for the semicircle sections of the bound-
ary, and cosφk remains constant for all bounces in a ro-
tation sequence. The time of flight between two semi-
circle bounces is τk = 2 cosφk. The Jacobian matrix of
one semicircle reflection folowed by the flight to the next
bounce is

J = (−1)

(
1 2 cosφk
0 1

) (
1 0

−2/ cosφk 1

)
= (−1)

(
−3 2 cosφk

2/ cosφk 1

)
.

A free flight must always be followed by k = 1, 2, 3, · · ·
bounces along a semicircle, hence the natural symbolic

32Predrag: Include fig. 15 from LNN.
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dynamics for this problem is nary, with the correspond-
ing Jacobian matrix given by shear (ie. the eigenvalues
remain equal to 1 throughout the whole rotation), and k
bounces inside a circle lead to

Jk = (−1)k

(
−2k − 1 2k cosφ
2k/ cosφ 2k − 1

)
. (8.21)

33 The Jacobian matrix of a cycle p of length n p is given
by 34

Jp = (−1)
∑

nk

np∏
k=1

(
1 τk
0 1

) (
1 0

nkrk 1

)
. (8.22)

35

Adopt your pinball simulator to the stadium billiard. 36

8.5. A test of your pinball simulator. Test your exercise 8.3
pinball simulator by computing numerically cycle stabili-
ties by tracking distances to nearby orbits. Compare your
result with the exact analytic formulas of exercise 13.8
and 13.9.

8.6. Birkhoff coordinates. Prove that the Birkhoff coordi-
nates are phase-space volume preserving. ⇓PRIVATE

8.7. Birkhoff coordinates. [Predrag 18apr2011 - not
edited yet] In a plane billiard the ball travels between
bounces along a straight line with a constant velocity–
so the 4-dimensional phase space flow can be reduced
to a 2-dimensional map Psk←s j that maps the coordinates
(Poincaré section Pk) of the pinball from one disk edge to
another.

A billiard flow has a natural Poincaré section defined by
Birkhoff coordinates sn, the arc length position of the
nth bounce measured along the billiard boundary, (fig-
ure ?? (b)), and pn = |p| sinφn, the momentum compo-
nent parallel to the boundary, where φn is the angle be-
tween the outgoing trajectory and the normal to the bound-
ary. We measure both the arc length s, and the parallel
momentum p counterclockwise relative to the outward
normal. (see figure 8.3 as well as figure 3.9). In D = 2,
the Poincaré section is a cylinder (topologically an annu-
lus), figure 8.4, where the parallel momentum p ranges
for −|p| to |p|, and the s coordinate is cyclic along each
connected component of ∂Q. 37 The volume in the full
phase space is preserved by the Liouville theorem (7.47).
Prove that the Birkhoff coordinates x = (s, p) ∈ P, see
figure 8.3, are the natural choice, because with them the
Poincaré return map preserves the phase space volume
of the (s, p) parameterized Poincaré section (a perfectly
good coordinate set (s, φ) does not do that).

exercise 8.6
section 8.233Predrag: compare to Jonas

34Predrag: whole formula looks wrong
35Predrag: append Jonas results here
36Predrag: Find Woytkowski’s purely geometric description
37Predrag: label the two areas Q1, Q2 in figure 8.4. Draw corresponding rectangles?
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Without loss of generality we set m = |v| = |p| = 1.
Poincaré section condition eliminates one dimension, and
the energy conservation |p| = 1 eliminates another, so the
Poincaré section return map P is (2D − 2)-dimensional.

Just after the moment of impact the trajectory is defined
by sn, the arc-length position of the nth bounce along the
billiard wall, and pn = p sinφn the momentum compo-
nent parallel to the billiard wall at the point of impact,
figure 3.9.

Prove that these coordinates (due to Birkhoff) are phase
space volume preserving.

The Jacobian matrix for the nth free flight segment is

MT (xn) =

(
1 τn
0 1

)
. (8.23)

The Jacobian matrix associated with the reflection is

MR(xn) = −
(

1 0
rn 1

)
, rn =

2
ρn cos φn

.(8.24)

The full Jacobian matrix for n p consecutive bounces de-
scribes a beam of trajectories defocused by MT along the
free flight (the τn terms below) and defocused/refocused
at reflections by MR (the rn terms below)

Mp = (−1)np

1∏
n=np

(
1 τn
0 1

) (
1 0
rn 1

)
, (8.25)

where τn is the flight time of the kth free-flight segment of
the orbit, rn = 2/ρn cos φn is the defocusing due to the kth
reflection, and ρn is the radius of curvature of the billiard
boundary at the nth scattering point.

Verify the ChaosBook formulas (8.8), (8.11) and (8.25).
Hint: is is more elegant if you derive them separately,
rather than going directly for the (8.11) multiplied out.

No need to reinvent the wheel; use the same notation as
ChaosBook, i.e., si instead aiθ.

8.8. Sinai-Bunimovich curvature. Make an exercise relat-
ing κ and J.

8.9. 3-disk repeller fit. Show by numerical comparison that
the R:a =6:1 3-disk repeller has a rather thin repeller, and
can be roughly fit with a ≈ 20 in (??). ⇑PRIVATE
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Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.

—Chairman Miaw

Dynamical systems often come equipped with symmetries, such as the re-
flection and rotation symmetries of various potentials. In this chapter we
study quotienting of discrete symmetries, and in the next chapter we study

symmetry reduction for continuous symmetries. We look at individual orbits, and
the ways they are interrelated by symmetries. This sets the stage for a discussion
of how symmetries affect global densities of trajectories, and the factorization of
spectral determinants to be undertaken in chapters21 and 25. ⇓PRIVATE

⇑PRIVATE
As we shall show here and in chapter 21, discrete symmetries simplify the dy-
namics in a rather beautiful way: If dynamics is invariant under a set of discrete
symmetries G, the state space M is tiled by a set of symmetry-related tiles, and
the dynamics can be reduced to dynamics within one such tile, the fundamental
domain M/G. In presence of a symmetry the notion of a prime periodic orbit
has to be reexamined: a set of symmetry-related full state space cycles is replaced
by often much shorter relative periodic orbit, the shortest segment of the full state
space cycle which tiles the cycle and all of its copies under the action of the group.
Furthermore, the group operations that relate distinct tiles do double duty as letters
of an alphabet which assigns symbolic itineraries to trajectories. 1

section 11.1

Familiarity with basic group-theoretic notions is assumed, with details rele-
gated to appendix K.1. We find the abstract notions easier to digest by working
out the examples interspersed throughout this chapter.The erudite reader might
prefer to skip the lengthy group-theoretic overture and go directly to C2 = D1

example 9.12, example 9.14, and C3v = D3 example 9.1, backtrack as needed.

1Predrag: recheck chapter relative.tex 22jul2006: Relativity for cyclists
replace Chairman Miaw by Alice in W. quote ‘Looking-Glass’ is the Victorian name for a mirror.
Mirror images are reflections reproductions, w...
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normal!washing
machine

group!finite
group!order of

Figure 9.1: The symmetries of three disks on an equi-
lateral triangle. A fundamental domain is indicated by
the shaded wedge.

9.1 Discrete symmetries

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter

We show that a symmetry equates multiplets of equivalent orbits, or ‘stratifies’ the
state space into equivalence classes, each class a ‘group orbit’. We start by defin-
ing a finite (discrete) group, its state space representations, and what we mean by
a symmetry (invariance or equivariance) of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A.6) way too many abstract notions
have to be defined before an intelligent conversation can take place. Perhaps best
to skim through this section on the first reading, then return to it later as needed.

Definition: A group consists of a set of elements

G = {e, g2, . . . , gn, . . .} (9.1)

and a group multiplication rule gj ◦ gi (often abbreviated as gjgi), satisfying

1. Closure: If gi, gj ∈ G, then gj ◦ gi ∈ G

2. Associativity: gk ◦ (gj ◦ gi) = (gk ◦ gj) ◦ gi

3. Identity e: g ◦ e = e ◦ g = g for all g ∈ G

4. Inverse g−1: For every g ∈ G, there exists a unique element h = g−1 ∈ G
such that
h ◦ g = g ◦ h = e.

If the group is finite, the number of elements, |G| = n, is called the order of the
group. 2

example K.1

example K.2

example K.3

2Predrag: use a triangle example to explain that C3 is the symmetry group of the triangle
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Example 9.1 C3v = D3 symmetry of the 3-disk game of pinball: If the three unit-
radius disks in figure 9.1 are equidistantly spaced, our game of pinball has a sixfold
symmetry. The symmetry group of relabeling the 3 disks is the permutation group S3;
however, it is more instructive to think of this group geometrically, as C3v, also known
as the dihedral group

D3 = {e, σ12, σ13, σ23,C
1/3,C2/3} , (9.2)

the group of order |G| = 6 consisting of the identity element e, three reflections across
symmetry axes {σ12, σ23, σ13}, and two rotations by 2π/3 and 4π/3 denoted {C1/3,C2/3}.
(continued in example 9.6)

Definition: Coordinate transformations. Consider a map x′ = f (x), x, x′ ∈
M. An active coordinate transformation Mx corresponds to a non-singular [d×d]
matrix M that maps the vector x ∈ M onto another vector Mx ∈ M. The corre-
sponding passive coordinate transformation f (x) → M−1 f (x) changes the coor-
dinate system with respect to which the vector f (x) ∈ M is measured. Together,
a passive and active coordinate transformations yield the map in the transformed
coordinates:

f̂ (x) = M−1 f (Mx) . (9.3)

Example 9.2 Discrete groups of order 2 on R3. Three types of discrete group of
order 2 can arise by linear action on our 3-dimensional Euclidian space R3:

reflections: σ(x, y, z) = (x, y,−z)

rotations: C1/2(x, y, z) = (−x,−y, z) (9.4)

inversions: P(x, y, z) = (−x,−y,−z) .

σ is a reflection (or an inversion) through the [x, y] plane. C1/2 is [x, y]-plane, constant z
rotation by π about the z-axis (or an inversion thorough the z-axis). P is an inversion (or
parity operation) through the point (0, 0, 0). Singly, each operation generates a group
of order 2: D1 = {e, σ}, C2 = {e,C1/2}, and D1 = {e, P}. Together, they form the dihedral
group D2 = {e, σ,C1/2, P} of order 4. (continued in example 9.3)

Definition: Matrix group. The set of [d×d]-dimensional real non-singular ma-
trices A, B,C, . . . ∈ GL(d) acting in a d-dimensional vector space V ∈ Rd forms
the general linear group GL(d) under matrix multiplication. The product of matri-
ces A and B gives the matrix C, Cx = B(Ax) = (BA)x ∈ V, for all x ∈ V . The unit
matrix 11 is the identity element which leaves all vectors in V unchanged. Every
matrix in the group has a unique inverse.

discrete - 7feb2012 boyscout version14.4, Mar 19 2013
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Definition: Matrix representation. Linear action of a group element g on
states x ∈ M is given by a finite non-singular [d×d] matrix g, the matrix rep-
resentation of element g ∈ G. We shall denote by ‘g’ both the abstract group
element and its matrix representation.

However, when dealing simultaneously with several representations of the
same group action, notation Dj(g), j a representation label, is preferable (see ap-
pendix K.1). A linear or matrix representation D(G) of the abstract group G acting
on a representation space V is a group of matrices D(G) such that

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 is mapped onto the matrix product D(g2 ◦ g1) =
D(g2)D(g1).

3. The associativity follows from the associativity of matrix multiplication,
D(g3 ◦ (g2 ◦ g1)) = D(g3)

(
D(g2)D(g1)

)
=

(
D(g3)

(
D(g2)

)
D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and
the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =
[D(g)]−1 ≡ D−1(g).

Example 9.3 Discrete operations on R3. (continued from example 9.2) The matrix
representation of reflections, rotations and inversions defined by (9.4) is

σ =

⎛⎜⎜⎜⎜⎜⎜⎝ 1 0 0
0 1 0
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ , C1/2 =

⎛⎜⎜⎜⎜⎜⎜⎝ −1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , P =

⎛⎜⎜⎜⎜⎜⎜⎝ −1 0 0
0 −1 0
0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ , (9.5)

with det C1/2 = 1, detσ = det P = −1; that is why we refer to C1/2 as a rotation, and σ, P
as inversions. As g2 = e in all three cases, these are groups of order 2. (continued in
example 9.5)

If the coordinate transformation g belongs to a linear non-singular represen-
tation of a discrete finite group G, for any element g ∈ G there exists a number
m ≤ |G| such that

gm ≡ g ◦ g ◦ . . . ◦ g︸����������︷︷����������︸
m times

= e → |det g| = 1 . (9.6)

As the modulus of its determinant is unity, det g is an mth root of 1. Hence all
finite groups have unitary representations.

Definition: Symmetry of a dynamical system. A group G is a symmetry of the
dynamics if for every solution f (x) ∈ M and g ∈ G, g f (x) is also a solution.

Another way to state this: A dynamical system (M, f ) is invariant (or G-
equivariant) under a symmetry group G if the time evolution f : M → M (a

discrete - 7feb2012 boyscout version14.4, Mar 19 2013
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equivariance

Figure 9.2: The bimodal Ulam sawtooth map with the
D1 symmetry f (−x) = − f (x). If the trajectory x0 →
x1 → x2 → · · · is a solution, so is its reflection σx0 →
σx1 → σx2 → · · ·. (continued in figure 9.4)

x

f(x)

x0

x1

x2

x3

x

f(x)

2x

1xσ

0xσ

3x

σ

σ

discrete time map f , or the continuous flow ft map from the d-dimensional man-
ifold M into itself) commutes with all actions of G,

f (gx) = g f (x) . (9.7)

In the language of physicists: The ‘law of motion’ is invariant, i.e., retains its form
in any symmetry-group related coordinate frame (9.3),

f (x) = g−1 f (gx) , (9.8)

for x ∈ M and any finite non-singular [d×d] matrix representation g of element
g ∈ G. As these are true any state x, one can state this more compactly as f ◦ g =
g ◦ f , or f = g−1 ◦ f ◦ g.

Why ‘equivariant?’ A scalar function h(x) is said to be G-invariant if h(x) =
h(gx) for all g ∈ G. The group actions map the solution f : M→M into different
(but equivalent) solutions g f (x), hence the invariance condition f (x) = g−1 f (gx)
appropriate to vectors (and, more generally, tensors). The full set of such solu-
tions is G-invariant, but the flow that generates them is said to be G-equivariant.
It is obvious from the context, but for verbal emphasis applied mathematicians
like to distinguish the two cases by in/equi-variant. The distinction is helpful in
distinguishing the dynamics written in the original, equivariant coordinates from
the dynamics rewritten in terms of invariant coordinates, see sects.9.5 and 10.4.
3

exercise 9.7
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Example 9.4 A reflection symmetric 1d map. Consider a 1d map f with reflection
symmetry f (−x) = − f (x), such as the bimodal ‘sawtooth’ map of figure 9.2, piecewise-
linear on the state space M = [−1, 1], a compact 1-dimensional line interval, split into
three regions M =ML ∪MC ∪MR. Denote the reflection operation by σx = −x. The
2-element group G = {e, σ} goes by many names, such as Z2 or C2. Here we shall
refer to it as D1, dihedral group generated by a single reflection. The G-equivariance
of the map implies that if {xn} is a trajectory, than also {σxn} is a symmetry-equivalent
trajectory because σxn+1 = σ f (xn) = f (σxn) (continued in example 9.12) 4

Example 9.5 Equivariance of the Lorenz flow. (continued from example 9.3) The
velocity field in Lorenz equations (2.13)⎡⎢⎢⎢⎢⎢⎢⎣ ẋ

ẏ
ż

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ σ(y − x)
ρx − y − xz

xy − bz

⎤⎥⎥⎥⎥⎥⎥⎦
is equivariant under the action of cyclic group C2 = {e,C1/2} acting on R3 by a π rotation
about the z axis,

C1/2(x, y, z) = (−x,−y, z) . (9.9)

(continued in example 9.14)

Example 9.6 3-disk game of pinball - symmetry-related orbits: (continued from
example 9.1) Applying an element (identity, rotation by ±2π/3, or one of the three
possible reflections) of this symmetry group to a trajectory yields another trajectory.
For instance, σ23, the flip across the symmetry axis going through disk 1 interchanges
the symbols 2 and 3; it maps the cycle 12123 into 13132, figure 9.3 (c). 5 Cycles 12, 23,
and 13 in figure 9.3 (a) are related to each other by rotation by ±2π/3, or, equivalently,
by a relabeling of the disks. (continued in example 9.8)

Example 9.7 Discrete symmetries of the plane Couette flow. The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in stream-
wise and spanwise directions. The Navier-Stokes equations for the plane Couette flow
have two discrete symmetries: reflection through the (streamwise , wall-normal) plane,
and rotation by π in the (streamwise , wall-normal) plane. That is why the system has
equilibrium and periodic orbit solutions, (as opposed to relative equilibrium and relative
periodic orbit solutions discussed in chapter 10). They belong to discrete symmetry
subspaces. (continued in example 10.4)

9.1.1 Subgroups, cosets, classes

Inspection of figure 9.3 indicates that various 3-disk orbits are the same up to a
symmetry transformation. Here we set up some abstract group-theoretic notions
needed to describe such relations. The reader might prefer to skip to sect. 9.2,
backtrack as needed.

3Predrag: include a sketch of plane Couette flow in example 9.7
4Predrag: write up exercise exer:ReflectA: write down the formula for the map of figure 9.2,

verify its D1-equivariance.
5Predrag: use here the same orbit as in figure 9.3 )(c).
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Figure 9.3: The 3-disk pinball cycles: (a) 12, 13,
23, 123; the clockwise 132 not drawn. (b) Cy-
cle 1232; the symmetry related 1213 and 1323 not
drawn. (c) 12323; 12123, 12132, 12313, 13131
and 13232 not drawn. (d) The fundamental do-
main, i.e., the 1/6th wedge indicated in (a), con-
sisting of a section of a disk, two segments of sym-
metry axes acting as straight mirror walls, and the
escape gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and re-
coded in binary reduce to the two fixed points 0,
1, 2-cycle 10, and 5-cycle 00111 (not drawn). See
figure 9.9 for the 001 cycle.

(a) (b) (c)

(d)

Definition: Subgroup. A set of group elements H = {e, b2, b3, . . . , bh} ⊆ G
closed under group multiplication forms a subgroup.

Definition: Coset. Let H = {e, b2, b3, . . . , bh} ⊆ G be a subgroup of order h =
|H|. The set of h elements {c, cb2, cb3, . . . , cbh}, c ∈ G but not in H, is called left
coset cH. For a given subgroup H the group elements are partitioned into H and
m − 1 cosets, where m = |G|/|H|. The cosets cannot be subgroups, since they do
not include the identity element. We learn that a nontrival subgroup can exist only
if |G|, the order of the group, is divisible by |H|, the order of the subgroup, i.e.,
only if |G| is not a prime number.

Example 9.8 Subgroups, cosets of D3: (continued from example 9.6) The
3-disks symmetry group, the D3 dihedral group (9.2) has six subgroups

{e}, {e, σ12}, {e, σ13}, {e, σ23}, {e,C1/3,C2/3}, D3 . (9.10)

The left cosets of subgroup D1 = {e, σ12} are {σ13,C1/3}, {σ23,C2/3}. The coset of
subgroup C3 = {e,C1/3,C2/3} is {σ12, σ13, σ23}. The significance of the coset is that if a
solution has a symmetry H, for example the symmetry of a 3-cycle 123 is C3, then all
elements in a coset act on it the same way, for example {σ12, σ13, σ23}123 = 132.

The nontrivial subgroups of D3 are D1 = {e, σ}, consisting of the identity and
any one of the reflections, of order 2, and C3 = {e,C1/3,C2/3}, of order 3, so possible
cycle multiplicities are |G|/|Gp| = 1, 2, 3 or 6. Only the fixed point at the origin has
full symmetry Gp = G. Such equilibria exist for smooth potentials, but not for the 3-
disk billiard. Examples of other multiplicities are given in figure 9.3 and figure 9.7.
(continued in example 9.9)

Next we need a notion that will, for example, identify the three 3-disk 2-cycles
in figure 9.3 as belonging to the same class.
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Definition: Class. An element b ∈ G is conjugate to a if b = c a c−1 where c is
some other group element. If b and c are both conjugate to a, they are conjugate
to each other. Application of all conjugations separates the set of group elements

exercise 9.3
into mutually not-conjugate subsets called classes, types or conjugacy classes.
The identity e is always in the class {e} of its own. This is the only class which is

exercise 9.5
a subgroup, all other classes lack the identity element.

Example 9.9 D3 symmetry - classes: (continued from example 9.8) The three
classes of the 3-disk symmetry group D3 = {e,C1/3,C2/3, σ, σC1/3, σC2/3}, are the iden-
tity, any one of the reflections, and the two rotations,

{e} ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ12
σ13
σ23

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

{
C1/3

C2/3

}
. (9.11)

In other words, the group actions either flip or rotate. (continued in example 9.13)

Physical importance of classes is clear from (9.8), the way coordinate trans-
formations act on mappings: action of elements of a class (say reflections, or
rotations) is equivalent up to a redefinition of the coordinate frame.

Definition: Invariant subgroup. A subgroup H ⊆ G is an invariant subgroup
or normal divisor if it consists of complete classes. Class is complete if no conju-
gation takes an element of the class out of H.

Think of action of H within each coset as identifying its |H| elements as equiv-
alent. This leads to the notion of the factor group or quotient group G/H of G,
with respect to the invariant subgroup H. H thus divides G into H and m − 1
cosets, each of order |H|. The order of G/H is m = |G|/|H|, and its multiplication
table can be worked out from the G multiplication table class by class, with the
subgroup H playing the role of identity. G/H is homeomorphic to G, with |H|
elements in a class of G represented by a single element in G/H.

9.1.2 Orbits, quotient space

So far we have discussed the structure of a group as an abstract entity. Now we
switch gears and describe the action of the group on the state space. This is the key
step; if a set of solutions is equivalent by symmetry (a circle, let’s say), we would
like to represent it by a single solution (cut the circle at a point, or rewrite the
dynamics in a ‘reduced state space,’ where the circle of solutions is represented
by a single point).

section 2.1

Definition: Orbit. The subset Mx0 ⊂ M traversed by the infinite-time trajec-
tory of a given point x0 is called the orbit (or time orbit, or solution) x(t) = ft(x0).
An orbit is a dynamically invariant notion: it refers to the set of all states that can
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be reached in time from x0, thus as a set it is invariant under time evolution. The
full state space M is foliated into a union of such orbits. We label a generic orbit
Mx0 by any point belonging to it, x0 = x(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable. The
ChaosBook strategy is to populate the state space by a hierarchy of orbits which
are compact invariant sets (equilibria, periodic orbits, invariant tori, . . .), each
computable in a finite time. They are a set of zero Lebesgue measure, but dense
on the non–wandering set, and are to a generic orbit what fractions are to normal
numbers on the unit interval. We label orbits confined to compact invariant sets by
whatever alphabet we find convenient in a given context: point EQ = xEQ =MEQ

for an equilibrium, 1-dimensional loop p =Mp for a prime periodic orbit p, etc.
(note also discussion on page 235, and the distinction between trajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment of an orbit).

Definition: Group orbit or the G-orbit of the point x ∈ M is the set

Mx = {g x | g ∈ G} (9.12)

of all state space points into which x is mapped under the action of G. If G is a
symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues) or
a cycle p (period, Floquet multipliers) evaluated anywhere along its G-orbit are
the same.

A symmetry thus reduces the number of inequivalent solutions Mp. So we
also need to describe the symmetry of a solution, as opposed to (9.8), the sym-
metry of the system. We start by defining the notions of reduced state space, of
isotropy of a state space point, and of the symmetry of an orbit.

Definition: Reduced state space. The action of group G partitions the state
space M into a union of group orbits. This set of group orbits, denoted M/G, has
many names: reduced state space, quotient space or any of the names listed on
page 223.

Reduction of the dynamical state space is discussed in sect. 9.4 for discrete
symmetries, and in sect. 10.4 for continuous symmetries. 6

Definition: Fixed-point subspace. MH is the set of all state space points left
H-fixed, point-wise invariant under subgroup or ‘centralizer’ H ⊂ G action

MH = Fix (H) = {x ∈ M : h x = x for all h ∈ H} . (9.13)

6Predrag: added to OUPbook on the margin: ‘Isotropic’ is derived from Greek ‘iso-tropos,’
‘same’-‘turn,’ meaning ‘identical in all directions.’
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Points in state space subspace MG which are fixed points of the full group action
are called invariant points,

MG = Fix (G) = {x ∈ M : g x = x for all g ∈ G} . (9.14)

Definition: Flow invariant subspace. A typical point in fixed-point subspace
MH moves with time, but, due to equivariance (9.7), its trajectory x(t) = f t(x)
remains within f (MH) ⊆ MH for all times,

h f t(x) = f t(hx) = f t(x) , h ∈ H , (9.15)

i.e., it belongs to a flow invariant subspace. This suggests a systematic approach
to seeking compact invariant solutions. The larger the symmetry subgroup, the
smaller MH , easing the numerical searches, so start with the largest subgroups H
first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. Mα ⊂ M is an invariant subspace if

{Mα : gx ∈ Mα for all g ∈ G and x ∈ Mα} . (9.16)

{0} and M are always invariant subspaces. So is any Fix(H) which is point-wise
invariant under action of G. 7 8

Definition: Irreducible subspace. A spaceMα whose only invariant subspaces
are {0} and Mα is called irreducible. ⇓PRIVATE

Definition: Free action. An group action on a state space submanifold M̂ is
free if all of the isotropy subgroups Gx, x ∈ M̂ are trivial. ⇑PRIVATE

7Siminos: I propose to use the following terminology for cycles: asymmetric, set-wise symmet-
ric (instead of symmetric), point-wise symmetric (instead of boundary). PC eventually return this
remark to siminos blog

8Predrag: 3 sep 2008: you are right ‘boundary’ is wrong term to use here. Not sure I like ‘set-
wise symmetric,’ ’point-wise symmetric’ - orbit Mp is already a set, so ‘Gp-invariant,’ Gp-fixed,’
might suffice.
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9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all of the system’s symmetries, a
subgroup of them, or have no symmetry at all. For a generic ergodic orbit ft(x) the
trajectory and any of its images under action of g ∈ G are distinct with probability
one, f t(x) ∩ g f t′ (x) = ∅ for all t, t′. For example, a typical turbulent trajectory
of pipe flow has no symmetry beyond the identity, so its symmetry group is the
trivial {e}. For compact invariant sets, such as fixed points and periodic orbits the
situation is very different. For example, the symmetry of the laminar solution of
the plane Couette flow is the full symmetry of its Navier-Stokes equations. 9 In
between we find solutions whose symmetries are subgroups of the full symmetry
of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space point x into itself,

Gx = {g ∈ G : gx = x} , (9.17)

is called the isotropy group or little group of x.

A solution usually exhibits less symmetry than the equations of motion. The
symmetry of a solution is thus a subgroup of the symmetry group of dynamics.
We thus also need a notion of set-wise invariance, as opposed to the point-wise
invariance under Gx.

exercise 9.2

Definition: Symmetry of a solution, Gp-symmetric cycle. We shall refer to the
subset of nontrivial group actions Gp ⊆ G on state space points within a compact
set Mp, which leave no point fixed but leave the set invariant, as the symmetry Gp

of the solution Mp,

Gp = {g ∈ Gp : gx ∈ Mp, gx � x for g � e} , (9.18)

and reserve the notion of ‘isotropy’ of a set Mp for the subgroup Gp that leaves
each point in it fixed.

A cycle p is Gp-symmetric (set-wise symmetric, self-dual) if the action of
elements of Gp on the set of periodic points Mp reproduces the set. g ∈ Gp acts
as a shift in time, mapping the periodic point x ∈ Mp into another periodic point.

Example 9.10 D1-symmetric cycles: For D1 the period of a set-wise symmetric
cycle is even (ns = 2ns̃), and the mirror image of the xs periodic point is reached by
traversing the relative periodic orbit segment s̃ of length n s̃, f ns̃ (xs) = σxs, see fig-
ure 9.4 (b).

9Predrag: continue with clips from insertDiscrete.tex, (or discreteInsert.tex, extracted from
Siminos 2008-08-29 symODEs.tex?)
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Definition: Conjugate symmetry subgroups. The splitting of a group G into
a symmetry group Gp of orbit Mp and m − 1 cosets cGp relates the orbit Mp to
m−1 other distinct orbits cMp. All of them have equivalent symmetry subgroups,

exercise 9.4
or, more precisely, the points on the same group orbit have conjugate symmetry
subgroups (or conjugate stabilizers):

Gc p = c Gp c−1 , (9.19)

i.e., if Gp is the symmetry of orbit Mp, elements of the coset space g ∈ G/Gp

generate the mp − 1 distinct copies of Mp, so for discrete groups the multiplicity
of orbit p is mp = |G|/|Gp|.

Definition: Gp-fixed orbits: An equilibrium xq or a compact solution p is point-
wise or Gp-fixed if it lies in the invariant points subspace Fix

(
Gp

)
, gx = x for all

g ∈ Gp, and x = xq or x ∈ Mp. A solution that is G-invariant under all group G
operations has multiplicity 1. Stability of such solutions will have to be examined
with care, as they lie on the boundaries of domains related by the action of the
symmetry group. 10

Example 9.11 D1-invariant cycles: In the example at hand there is only one G-
invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 9.4 (a). As
reflection symmetry is the only discrete symmetry that a map of the interval can have,
this example completes the group-theoretic analysis of 1-dimensional maps. We shall
continue analysis of this system in example 9.16, and work out the symbolic dynamics
of such reflection symmetric systems in example 12.5.

In the literature the symmetry group of a solution is often called stabilizer
or isotropy subgroup. Saying that Gp is the symmetry of the solution p, or that
the orbit Mp is ‘Gp-invariant,’ accomplishes as much without confusing you with
all these names (see remark 9.1). In what follows we say “the symmetry of the
periodic orbit p is C2 = {e,R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbits is their symmetry.
We note three types of solutions: (i) fully asymmetric solutions a, (ii) subgroup
Gs̃ set-wise invariant cycles s built by repeats of relative cycle segments s̃, and
(iii) isotropy subgroup GEQ-invariant equilibria or point-wise Gp-fixed cycles b.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {xa} ∩ {gxa} = ∅ for any g ∈ G, where {xa} is the set of periodic points
belonging to the cycle a. Thus g ∈ G generate |G| distinct orbits with the same
number of points and the same stability properties.

10Predrag: confused discussion: Boundary cycles also? ES: Yes, for example in Kuramoto-Siva-
shinsky equation in antisymmetric subspace, all cycles are point-wise invariant under reflections.
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symmetry!3-diskFigure 9.4: The D1-equivariant bimodal sawtooth

map of figure 9.2 has three types of periodic or-
bits: (a) D1-fixed fixed point C, asymmetric fixed
points pair {L,R}. (b) D1-symmetric (setwise in-
variant) 2-cycle LR. (c) Asymmetric 2-cycles pair
{LC,CR}. (continued in figure 9.8) (Y. Lan)
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x
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Example 9.12 Group D1 - a reflection symmetric 1d map: Consider the bimodal
‘sawtooth’ map of example 9.4, with the state space M = [−1, 1] split into three regions
M = {ML,MC ,MR}which we label with a 3-letter alphabet L(eft), C(enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C,R} corresponding to an admissible trajectory (‘complete’ means no additional
grammar rules required, see example 11.6 below). The D1-equivariance of the map,
D1 = {e, σ}, implies that if {xn} is a trajectory, so is {σxn}.

Fix (G), the set of points invariant under group action of D1, M̃ ∩ σM̃, is just
this fixed point x = 0, the reflection symmetry point. If a is an asymmetric cycle, σ maps
it into the reflected cycle σa, with the same period and the same stability properties,
see the fixed points pair {L,R} and the 2-cycles pair {LC,CR} in figure 9.4 (c).

The next illustration brings in the non-abelian, noncommutative group struc-
ture: for the 3-disk game of pinball of sect. 1.3, example 9.1 and example 9.17,
the symmetry group has elements that do not commute. 11 12

exercise 9.5

Example 9.13 3-disk game of pinball - cycle symmetries: (continued from exam-
ple 9.9) The C3 subgroup Gp = {e,C1/3,C2/3} invariance is exemplified by the two cy-
cles 123 and 132 which are invariant under rotations by 2π/3 and 4π/3, but are mapped
into each other by any reflection, figure 9.7 (a), and have multiplicity |G|/|Gp| = 2.

The Cv type of a subgroup is exemplified by the symmetries of p̂ = 1213. This
cycle is invariant under reflection σ23{1213} = 1312 = 1213, so the invariant subgroup
is Gp̂ = {e, σ23}, with multiplicity is mp̂ = |G|/|Gp| = 3; the cycles in this class, 1213, 1232
and 1323, are related by 2π/3 rotations, figure 9.7 (b).

A cycle of no symmetry, such as 12123, has Gp = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232),
figure 9.7 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313 and
313212121 = 121213132 which have the same periods and stabilities, but are related
by no space symmetry, see figure 9.7. (continued in example 9.17)

Consider next perhaps the simplest 3-dimensional flow with a symmetry, the
iconic flow of Lorenz. The example is long but worth working throug: the symmetry-
reduced dynamics is much simpler than the original Lorenz flow. 13 14

exercise 9.7
exercise 9.8
exercise 9.9

11Predrag: add here parts of PER’s Appendix B.
12Predrag: remember Golubitsky comments: in general, for even N there is a boundary 2-cycle
13Predrag: redirect remark 2.3
14Predrag: dasbuch: add toRem rem:Lorenz
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Lorenz flowExample 9.14 Desymmetrization of Lorenz flow: (continuation of example 9.5) Lorenz
equation (2.13) is equivariant under (9.9), the action of order-2 group C2 = {e,C1/2},
where C1/2 is [x, y]-plane, half-cycle rotation by π about the z-axis:

(x, y, z) → C1/2(x, y, z) = (−x,−y, z) . (9.20)

(C1/2)2 = 1 condition decomposes the state space into two linearly irreducible sub-
spacesM =M+⊕M−, the z-axisM+ and the [x, y] planeM−, with projection operators
onto the two subspaces given by (see sect. E.2.1)

P+ =
1
2

(1 +C1/2) =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , P− =
1
2

(1 −C1/2) =

⎛⎜⎜⎜⎜⎜⎜⎝ 1 0 0
0 1 0
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (9.21)

As the flow is C2-invariant, so is its linearization ẋ = Ax. Evaluated at EQ0, A com-
mutes with C1/2, and, as we have already seen in example 4.6, the EQ0 stability matrix
decomposes into [x, y] and z blocks. 15

The 1-dimensional M+ subspace is the fixed-point subspace, with the z-axis
points left point-wise invariant under the group action

M+ = Fix (C2) = {x ∈ M : g x = x for g ∈ {e,C1/2}} (9.22)

(here x = (x, y, z) is a 3-dimensional vector, not the coordinate x). A C2-fixed point x(t)
in Fix (C2) moves with time, but according to (9.15) remains within x(t) ∈ Fix (C2) for all
times; the subspace M+ = Fix (C2) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x, y, z) = (0, 0, z) the full state space Lorenz equation (2.13) is
reduced to the exponential contraction to the EQ0 equilibrium, 16

ż = −b z . (9.23)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-
ensional, with interesting dynamics of their own. Even in this simple case this subspace
plays an important role as a topological obstruction: the orbits can neither enter it nor
exit it, so the number of windings of a trajectory around it provides a natural, topological
symbolic dynamics.

The M− subspace is, however, not flow-invariant, as the nonlinear terms ż =
xy−bz in the Lorenz equation (2.13) send all initial conditions withinM− = (x(0), y(0), 0)
into the full, z(t) � 0 state space M/M+.

By taking as a Poincaré section any C1/2-equivariant, non-self-intersecting sur-
face that contains the z axis, the state space is divided into a half-space fundamental
domain M̃ =M/C2 and its 180o rotation C1/2M̃. An example is afforded by the P plane
section of the Lorenz flow in figure 3.4. Take the fundamental domain M̃ to be the half-
space between the viewer and P. Then the full Lorenz flow is captured by re-injecting
back into M̃ any trajectory that exits it, by a rotation of π around the z axis.

As any such C1/2-invariant section does the job, a choice of a ‘fundamental
domain’ is here largely mater of taste. For purposes of visualization it is convenient
to make the double-cover nature of the full state space by M̃ explicit, through any
state space redefinition that maps a pair of points related by symmetry into a single
point. In case at hand, this can be easily accomplished by expressing (x, y) in polar
coordinates (x, y) = (r cos θ, r sin θ), and then plotting the flow in the ‘doubled-polar
angle representation:’ ⇓PRIVATE

chapter 27

⇑PRIVATE

section 9.5
exercise 9.8

15Predrag: create example in sect. 10.3 from the last sentence
16Predrag: pointer to turbulence chapter here
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Figure 9.5: Lorenz attractor of figure 3.4, the full state
space coordinates [x, y, z], with the unstable manifold
orbits Wu(EQ0). (Green) is a continuation of the unsta-
ble e(1) of EQ0, and (brown) is its π-rotated symmetric
partner. Compare with figure 9.6. (E. Siminos)

EQ2EQ1

EQ0

x

y

z

Figure 9.6: (a) Lorenz attractor plotted in [x̂, ŷ, z],
the doubled-polar angle coordinates (9.24), with
points related by π-rotation in the [x, y] plane iden-
tified. Stable eigenvectors of EQ0: e(3) and e(2),
along the z axis (9.23). Unstable manifold orbit
Wu(EQ0) (green) is a continuation of the unstable
e(1) of EQ0. (b) Blow-up of the region near EQ1:
The unstable eigenplane of EQ1 defined by Re e(2)

and Im e(2), the stable eigenvector e(3). The descent
of the EQ0 unstable manifold (green) defines the
innermost edge of the strange attractor. As it is
clear from (a), it also defines its outermost edge.
(E. Siminos)

(a) (b)

(x̂, ŷ, z) = (r cos 2θ, r sin 2θ, z) = ((x2 − y2)/r, 2xy/r, z) , (9.24)

as in figure 9.6 (a). In contrast to the original G-equivariant coordinates [x, y, z], the
Lorenz flow expressed in the new coordinates [x̂, ŷ, z] is G-invariant, see example 9.18.
In this representation the M̃ =M/C2 fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [x̂, ŷ] plane. (continued in example 11.4)

(E. Siminos and J. Halcrow)

Note: nonlinear coordinate transformations such as the doubled-polar angle
representation (9.24) are not required to implement the symmetry quotienting
M/G.We deploy them only as a visualization aid that might help the reader dis-
entangle 2-dimensional projections of higher-dimensional flows. All numerical
calculations can still be carried in the initial, full state space formulation of a flow,
with symmetry-related points identified by linear symmetry transformations.

in depth:

appendix K, p. 1146

9.3 Relative periodic orbits

So far we have demonstrated that symmetry relates classes of orbits. Now we
show that a symmetry reduces computation of periodic orbits to repeats of shorter,
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‘relative periodic orbit’ segments.

Equivariance of a flow under a symmetry means that the symmetry image of
a cycle is again a cycle, with the same period and stability. The new orbit may be
topologically distinct (in which case it contributes to the multiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetric under symmetry operation g ∈ Gp if the operation
acts on it as a shift in time, advancing a cycle point to a cycle point on the sym-
metry related segment. The cycle p can thus be subdivided into mp repeats of a
relative periodic orbit segment, ‘prime’ in the sense that the full state space cycle
is built from its repeats. Thus in presence of a symmetry the notion of a periodic
orbit is replaced by the notion of the shortest segment of the full state space cycle
which tiles the cycle under the action of the group. In what follows we refer to this
segment as a relative periodic orbit. In the literature this is sometimes referred to
as a short periodic orbit, or, for finite symmetry groups, as a pre-periodic orbit.
17

Relative periodic orbits (or equivariant periodic orbits) are orbits x(t) in state
space M which exactly recur 18 19

x(t) = g x(t + T) (9.25)

for the shortest fixed relative period T and a fixed group action g ∈ Gp. Parameters
of this group action are referred to as ‘phases’ or ‘shifts.’ For a discrete group
gm = e for some finite m, by (9.6), so the corresponding full state space orbit is
periodic with period mT . 20

The period of the full orbit is given by the mp× (period of the relative periodic
orbit), Tp = |Gp|Tp̃, and the ith Floquet multiplier Λp,i is given by Λ

mp

p̃,i of the
relative periodic orbit. The elements of the quotient space b ∈ G/Gp generate the
copies bp, so the multiplicity of the full state space cycle p is mp = |G|/|Gp|. 21

Example 9.15 Relative periodic orbits of Lorenz flow: (continuation of exam-
ple 9.14) The relation between the full state space periodic orbits, and the fundamen-
tal domain (9.24) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rp maps into a single cycle p̃ in the fundamental domain, and
any self-dual cycle p = Rp = p̃Rp̃ is a repeat of a relative periodic orbit p̃.

17Predrag: perhaps call this pre-periodic, reserve ‘relative’ for continuous case, incommensurate
shift.

18Predrag: must distinguish ‘segment’ and ‘orbit’, p = p̃ ∪ gp̃
19Predrag: makes sure that relative equilibrium and relative periodic orbit refer to periodicity of

the group orbit as a set, not individual points on the group orbit
20Predrag: recheck usage of gm vs. multiplicity notation
21Predrag: draw two periodic orbits to illustrate example 9.15
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Figure 9.7: Cycle 121212313 has multiplicity 6;
shown here is 121313132 = σ23121212313. How-
ever, 121231313 which has the same stability and
period is related to 121313132 by time reversal,
but not by any C3v symmetry.

9.4 Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental
concepts.

—John F. Gibson

So far we have used symmetry to effect a reduction in the number of independent
cycles, by separating them into classes, and slicing them into ‘prime’ relative orbit
segments. The next step achieves much more: it replaces each class by a single
(typically shorter) prime cycle segment. 22

1. Discrete symmetry tessellates the state space into dynamically equivalent
domains, and thus induces a natural partition of state space: If the dynamics
is invariant under a discrete symmetry, the state space M can be completely
tiled by a fundamental domain M̃ and its symmetry images M̃a = aM̃,
M̃b = bM̃, . . . under the action of the symmetry group G = {e, a, b, . . .},

M = M̃ ∪ M̃a ∪ M̃b · · · ∪ M̃|G| . (9.26)

2. Discrete symmetriy can be used to restrict all computations to the funda-
mental domain M̃ =M/G, the reduced state space quotient of the full state
space M by the group actions of G.

We can use the invariance condition (9.7) to move the starting point x into
the fundamental domain x = ax̃, and then use the relation a−1b = h−1 to
also 23 relate the endpoint y ∈ M̃b to its image in the fundamental domain
M̃. While the global trajectory runs over the full space M, the restricted
trajectory is brought back into the fundamental domainM̃ any time it ex-
its into an adjoining tile; the two trajectories are related by the symmetry
operation h which maps the global endpoint into its fundamental domain
image.

3. Cycle multiplicities induced by the symmetry are removed by reduction
of the full dynamics to the dynamics on a fundamental domain. Each
symmetry-related set of global cycles p corresponds to precisely one fun-
damental domain (or relative) cycle p̃.

22Predrag: Give formal definition of the fundamental domain.
23Predrag: a−1b = h−1?
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Figure 9.8: The bimodal Ulam sawtooth map of
figure 9.4 with the D1 symmetry f (−x) = − f (x)
restricted to the fundamental domain. f (x) is in-
dicated by the thin line, and fundamental domain
map f̃ (x̃) by the thick line. (a) Boundary fixed
point C is the fixed point 0. The asymmetric fixed
point pair {L,R} is reduced to the fixed point 2,
and the full state space symmetric 2-cycle LR is
reduced to the fixed point 1. (b) The asymmetric
2-cycle pair {LC,CR} is reduced to 2-cycle 01. (c)
All fundamental domain fixed points and 2-cycles.
(Y. Lan) ������
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4. Conversely, each fundamental domain cycle p̃ traces out a segment of the
global cycle p, with the end point of the cycle p̃ mapped into the irreducible
segment of p with the group element hp̃. A relative periodic orbit segment
in the full state space is thus a periodic orbit in the fundamental domain.

5. The group elements G = {e, g2, . . . , g|G|} which map the fundamental do-
main M̃ into its copies gM̃, serve also as letters of a symbolic dynamics
alphabet.

For a symmetry reduction in presence of continuous symmetries, see sect.10.4.

exercise 9.6

Example 9.16 Group D1 and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f (−x) = − f (x) of exam-
ple 9.12, with symmetry group D1 = {e, σ}. The state space M = [−1, 1] can be tiled by
half-line M̃ = [0, 1], and σM̃ = [−1, 0], its image under a reflection across x = 0 point.
The dynamics can then be restricted to the fundamental domain x̃k ∈ M̃ = [0, 1]; every
time a trajectory leaves this interval, it is mapped back using σ.

In figure 9.8 the fundamental domain map f̃ (x̃) is obtained by reflecting x < 0
segments of the global map f (x) into the upper right quadrant. f̃ is also bimodal and
piecewise-linear, with M̃ = [0, 1] split into three regions M̃ = {M̃0, M̃1, M̃2} which we
label with a 3-letter alphabet Ã = {0, 1, 2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different
- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
figure 9.8:

In (a) the boundary fixed point C is also the fixed point 0.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.8 (c). 24

24Predrag: draw this cycle both in the full and in the fundamental domain.
in figure 9.8 (a) double label, with 0, 1 and 2.
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Figure 9.9: (a) The pair of full-space 9-cycles, the
counter-clockwise 121232313 and the clockwise
131323212 correspond to (b) one fundamental do-
main 3-cycle 001.

(a)

(b)

Example 9.17 3-disk game of pinball in the fundamental domain

If the dynamics is equivariant under interchanges of disks, the absolute disk
labels εi = 1, 2, · · · ,N can be replaced by the symmetry-invariant relative disk→disk
increments gi, where gi is the discrete group element that maps disk i−1 into disk i. For
3-disk system gi is either reflection σ back to initial disk (symbol ‘0’) or 2π/3 rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N-disk symbolic dynamics becomes (N−1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors (see figure 9.3(d)). A set of orbits related in the full space by dis-
crete symmetries maps onto a single fundamental domain orbit. The reduction to
the fundamental domain desymmetrizes the dynamics and removes all global discrete
symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-
cycles 123 and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles
12, 13 and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. 25 Some examples
of such orbits are shown in figures 9.7 and 9.9. 26 (continued in example 12.7)

⇓PRIVATE

9.4.1 Boundary orbits

Peculiar effects arise for orbits that run on a symmetry lines that border a fun-
damental domain. The state space transformation h � e leaves invariant sets of
boundary points; for example, under reflection σ across a symmetry axis, the axis
itself remains invariant. Some care need to be exercised in treating the invariant

25Predrag: recheck with Freddy!
26Predrag: In figure 9.9 put the two on top of each other, the SFIG it
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“boundary” set (see (9.26)) M = M̃ ∩ M̃a ∩ M̃b · · · ∩ M̃|G|. The properties of
boundary periodic orbits that belong to such G-fixed (point-wise invariant) sets
will require a bit of thinking. 27

In our 3-disk example, no such orbits are possible, but they exist in other
systems, such as in the bounded region of the Hénon-Heiles potential (remark9.3)
and in 1d maps of example 9.12. For the symmetrical 4-disk billiard, there are in
principle two kinds of such orbits, one kind bouncing back and forth between
two diagonally opposed disks and the other kind moving along the other axis of
reflection symmetry; the latter exists for bounded systems only. While for low-
dimensional state spaces there are typically relatively few boundary orbits, they
tend to be among the shortest orbits, and thus play a key role in dynamics.

While such boundary orbits are invariant under some symmetry operations,
their neighborhoods are not. This affects the Jacobian matrix Mp of the orbit and
its Floquet multipliers. 28

⇑PRIVATE

9.5 Invariant polynomials

Physical laws should have the same form in symmetry-equivalent coordinate frames,
so they are often formulated in terms of functions (Hamiltonians, Lagrangians,
· · ·) invariant under a given set of symmetries. The key result of the representation
theory of invariant functions is:

Hilbert-Weyl theorem. For a compact group G there exists a finite G-invariant
homogenous polynomial basis {u1, u2, . . . , um}, m ≥ d, such that any G-invariant
polynomial can be written as a multinomial

h(x) = p(u1(x), u2(x), . . . , um(x)) , x ∈ M . (9.27)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations called syzygies.

Example 9.18 Polynomials invariant under discrete operations on R3. (continued
from example 9.2) σ is a reflection through the [x, y] plane. Any {e, σ}-invariant
function can be expressed in the polynomial basis {u1, u2, u3} = {x, y, z2}.

C1/2 is a [x, y]-plane rotation by π about the z-axis. Any {e,C1/2}-invariant func-
tion can be expressed in the polynomial basis {u1, u2, u3, u4} = {x2, xy, y2, z}, with one
syzygy between the basis polynomials, (x2)(y2) − (xy)2 = 0.

27Predrag: dig out Viviane’s Manning multiples
28Predrag: In remark 9.3 use Hénon-Heiles potential equilibrium at origin to explain that the

corresponding equilibrium has multiplicity 1
incorporate into remark 2.3
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P is an inversion through the point (0, 0, 0). Any {e, P}-invariant function can be
expressed in the polynomial basis {u1, · · · , u6} = {x2, y2, z2, xy, xz, yz}, with three syzy-
gies between the basis polynomials, (x2)(y2) − (xy)2 = 0, and its 2 permutations.

For the D2 dihedral group G = {e, σ,C1/2, P} the G-invariant polynomial basis
is {u1, u2, u3, u4} = {x2, y2, z2, xy}, with one syzygy, (x2)(y2) − (xy)2 = 0. (continued in
example 10.15)

In practice, explicit construction of G-invariant basis can be a laborious un-
dertaking, and we will not take this path except for a few simple low-dimensional
cases, such as the 5-dimensional example of sect. 10.5. We prefer to apply the
symmetry to the system as given, rather than undertake a series of nonlinear co-
ordinate transformations that the theorem suggests. (What ‘compact’ in the above
refers to will become clearer after we have discussed continuous symmetries. For
now, it suffices to know that any finite discrete group is compact.)

exercise 9.1

Résumé

A group G is a symmetry of the dynamical system (M, f ) if its ‘law of motion’
retains its form under all symmetry-group actions, f (x) = g−1 f (gx) . A mapping u
is said to be invariant if gu = u, where g is any element of G. If the mapping and
the group actions commute, gu = ug, u is said to be equivariant. The governing
dynamical equations are equivariant with respect to G.

We have shown here that if a dynamical system (M, f ) has a symmetry G,
the symmetry should be deployed to ‘quotient’ the state space toM̂ =M/G, i.e.,
identify all symmetry-equivalent x ∈ M on each group orbit, thus replacing the
full state space dynamical system (M, f ) by the symmetry-reduced (M̂, f̂ ). The
main result of this chapter can be stated as follows:

In presence of a discrete symmetry G, associated with each full state space
solution p is the group of its symmetries Gp ⊆ G of order 1 ≤ |Gp| ≤ |G|, whose
elements leave the orbitMp invariant. The elements of Gp act on p as shifts, tiling
it with |Gp| copies of its shortest invariant segment, the relative periodic orbit p̃.
The elements of the coset b ∈ G/Gp generate mp = |G|/|Gp| equivalent copies of
p.

Once you grasp the relation between the full state space M and the desym-
metrized, G-quotiented reduced state spaceM/G, you will find the life as a funda-
mentalist so much simpler that you will never return to your full state space ways
of yesteryear. The reduction to the fundamental domain M̃ = M/G simplifies
symbolic dynamics and eliminates symmetry-induced degeneracies. For the short
orbits the labor saving is dramatic. For example, for the 3-disk game of pinball
there are 256 periodic points of length 8, but reduction to the fundamental domain
non-degenerate prime cycles reduces this number to 30. In the next chapter con-
tinuous symmetries will induce relative periodic orbits that never close a periodic
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orbit, and in the chapter 26 they will tile the infinite periodic state space, and re-
duce calculation of diffusion constant in an infinite domain to a calculation on a
compact torus.
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Commentary

Remark 9.1 Literature. We found Tinkham [1] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic concepts. Byron and Fuller [ 2], the last chap-
ter of volume two, offers an introduction even more compact than Tinkham’s. For a
summary of the theory of discrete groups see, for example, ref. [ 3]. Chapter 3 of Rebecca
Hoyle [4] is a very student-friendly overview of the group theory a nonlinear dynamicist
might need, with exception of the quotienting, reduction of dynamics to a fundamental do-
main, which is not discussed at all. We found sites such as en.wikipedia.org/wiki/Quotient group
helpful. Curiously, we have not read any of the group theory books that Hoyle recom-
mends as background reading, which just confirms that there are way too many group
theory books out there. For example, one that you will not find useful at all is ref. [ 5]. The
reason is presumably that in the 20th century physics (which motivated much of the work
on the modern group theory) the focus is on the linear representations used in quantum

appendix A.6
mechanics, crystallography and quantum field theory. We shall need these techniques in
Chapter 21, where we reduce the linear action of evolution operators to irreducible sub-
spaces. However, here we are looking at nonlinear dynamics, and the emphasis is on the
symmetries of orbits, their reduced state space sisters, and the isotypic decomposition of
their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt the theory of bifurcations,
the landscape between the boredom of regular motions and the thrills of chaos. Chapter
4 of Rebecca Hoyle [4] is a student-friendly introduction to the treatment of bifurca-
tions in presence of symmetries, worked out in full detail and generality in monographs
by Golubitsky, Stewart and Schaeffer [6], Golubitsky and Stewart [7] and Chossat and
Lauterbach [8]. Term ‘stabilizer’ is used, for example, by Broer et al. [9] to refer to a
periodic orbit with Z2 symmetry; they say that the relative or pre-periodic segment is in
this case called a ‘short periodic orbit.’ In Efstathiou [10] a subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropy group or stabilizer.’ Chap. 8 of
Govaerts [11] offers a review of numerical methods that employ equivariance with respect
to compact, and mostly discrete groups. (continued in remark 10.1)

Remark 9.2 Symmetries of the Lorenz equation: (continued from remark 2.3) Af-
ter having studied example 9.14 you will appreciate why ChaosBook.org starts out with
the symmetry-less Rössler flow (2.18), instead of the better known Lorenz flow (2.13).
Indeed, getting rid of symmetry was one of Rössler’s motivations. He threw the baby
out with the water; for Lorenz flow dimensionalities of stable/unstable manifolds make
possible a robust heteroclinic connection absent from Rössler flow, with unstable mani-
fold of an equilibrium flowing into the stable manifold of another equilibrium. How such
connections are forced upon us is best grasped by perusing the chapter 13 ‘Heteroclinic
tangles’ of the inimitable Abraham and Shaw illustrated classic [12]. Their beautiful
hand-drawn sketches elucidate the origin of heteroclinic connections in the Lorenz flow
(and its high-dimensional Navier-Stokes relatives) better than any computer simulation.
Miranda and Stone [13] were first to quotient the C2 symmetry and explicitly construct
the desymmetrized, ‘proto-Lorenz system,’ by a nonlinear coordinate transformation into
the Hilbert-Weyl polynomial basis invariant under the action of the symmetry group [ 14].
For in-depth discussion of symmetry-reduced (‘images’) and symmetry-extended (‘cov-
ers’) topology, symbolic dynamics, periodic orbits, invariant polynomial bases etc., of
Lorenz, Rössler and many other low-dimensional systems there is no better reference
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than the Gilmore and Letellier monograph [15]. They interpret [16] the proto-Lorenz
and its ‘double cover’ Lorenz as ‘intensities’ being the squares of ‘amplitudes,’ and call
quotiented flows such as (Lorenz)/C2 ‘images.’ Our ‘doubled-polar angle’ visualization
figure 11.8 is a proto-Lorenz in disguise; we, however, integrate the flow and construct
Poincaré sections and return maps in the original Lorenz [x, y, z] coordinates, without any
nonlinear coordinate transformations. The Poincaré return map figure 11.9 is reminiscent
in shape both of the one given by Lorenz in his original paper, and the one plotted in a
radial coordinate by Gilmore and Letellier. Nevertheless, it is profoundly different: our
return maps are from unstable manifold → itself, and thus intrinsic and coordinate inde-
pendent. In this we follow ref. [17]. This construction is necessary for high-dimensional
flows in order to avoid problems such as double-valuedness of return map projections on
arbitrary 1-dimensional coordinates encountered already in the Rössler example of fig-
ure 3.3. More importantly, as we know the embedding of the unstable manifold into the
full state space, a periodic point of our return map is - regardless of the length of the cycle
- the periodic point in the full state space, so no additional Newton searches are needed.
In homage to Lorenz, we note that his return map was already symmetry-reduced: as z
belongs to the symmetry invariant Fix (G) subspace, one can replace dynamics in the full
space by ż, z̈, · · ·. That is G-invariant by construction [15]. 29

Remark 9.3 Examples of systems with discrete symmetries. Almost any flow
of interest is symmetric in some way or other: the list of examples is endless, we list
here a handful that we found interesting. One has a C 2 symmetry in the Lorenz system
(remark 2.3), the Ising model, and in the 3-dimensional anisotropic Kepler potential [ 18,
19, 20], a D4 = C4v symmetry in quartic oscillators [21, 22], in the pure x2y2 potential [23,
24] and in hydrogen in a magnetic field [25], and a D2 = C2v = V4 = C2 × C2 symmetry
in the stadium billiard [26]. A very nice nontrivial desymmetrization is carried out in
ref. [27]. 30 An example of a system with D3 = C3v symmetry is provided by the motion
of a particle in the Hénon-Heiles potential [28, 29, 30, 31] 31

V(r, θ) =
1
2

r2 +
1
3

r3 sin(3θ) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands
and because the three orbits that run along the symmetry axis cannot be labeled in our
code. As these orbits run along the boundary of the fundamental domain, they require the ⇓PRIVATE
special treatment [31] discussed in sect. 9.4.1. A partial classification of the 67 possible

⇑PRIVATEsymmetries of solutions of the plane Couette flow of example 9.7, and their reduction 5
conjugate classes is given in ref. [32].

⇓PRIVATE

Evangelos Siminos, Jan 28 2010: According to Byron and Fuller [2], which I
find a very reliable and carefully written book, what I use right now is the conven-
tion most physicists use for active transformations. This I’ve also used in thesis
and I’d be happy to stick with this. With this choice small angle, active rotations,
are counterclockwise, so I’ve updated our orientation condition as well.

29Predrag: ChaosBook: link this to the figures (what figures?)
30Predrag: I think ref. [27] is not the one I mean - they did a nice decomposition on dodecahedron

in some publication? “An irreducible representation of S5 may become reducible when restricted
to 915 ... group of motions of an icosahedron (or, equivalently, of a dodecahedron)...”

31Predrag: make into exercise: reduce Hénon-Heiles symmetry
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PC 2010-01-28: Thanks, let’s make sure that we have the right sign in dis-
crete.tex, continuous.tex . Never seen Byron and Fuller. ⇑PRIVATE
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9.1. Polynomials invariant under discrete operations onR3.
Prove that the {e, σ}, {e,C1/2}, {e, P} and {e, σ,C1/2, P}-

invariant polynomial basis and syzygies are those listed
in example 9.18.

9.2. Gx ⊂ G. Prove that the set Gx as defined in (9.17) is a
subgroup of G.

9.3. Transitivity of conjugation. Assume that g1, g2, g3 ∈
G and both g1 and g2 are conjugate to g3. Prove that g1 is
conjugate to g2.

9.4. Isotropy subgroup of gx. Prove that for g ∈ G, x and
gx have conjugate isotropy subgroups:

Ggx = g Gx g−1

9.5. D3: symmetries of an equilateral triangle. Consider
group D3 � C3v, the symmetry group of an equilateral tri-
angle:

1

2  3 .

(a) List the group elements and the corresponding geo-
metric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the defi-
nition of a class.

(d) List the conjugacy classes of subgroups of D3. (con- ⇓PRIVATEtinued as exer:FractRot and exercise 21.3)
⇑PRIVATE

9.6. Reduction of 3-disk symbolic dynamics to binary. (con-
tinued from exercise 1.1)

(a) Verify that the 3-disk cycles
{1 2, 1 3, 2 3}, {1 2 3, 1 3 2}, {12 13 + 2 perms.},
{121 232 313+ 5 perms.}, {121 323+ 2 perms.}, · · ·,
correspond to the fundamental domain cycles 0, 1,
01, 001, 011, · · · respectively.

(b) Check the reduction for short cycles in table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 9.9.
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Lorenz flow!polar
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Lorenz flow
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flow!proto-Lorenz

(c) Optional: Can you see how the group elements listed
in table 12.2 relate irreducible segments to the fun-
damental domain periodic orbits?

(continued in exercise 12.7)

9.7. C2-equivariance of Lorenz system. Verify that the
vector field in Lorenz equations (2.13)

ẋ = v(x) =

⎡⎢⎢⎢⎢⎢⎢⎣ ẋ
ẏ
ż

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ σ(y − x)
ρx − y − xz

xy − bz

⎤⎥⎥⎥⎥⎥⎥⎦ (9.28)

is equivariant under the action of cyclic group C 2 = {e,C1/2}
acting on R3 by a π rotation about the z axis,

C1/2(x, y, z) = (−x,−y, z) ,

as claimed in example 9.5. (continued in exercise 9.8)

9.8. Lorenz system in polar coordinates: group theory.
Use (B.3), (B.4) to rewrite the Lorenz equation (9.28) in
polar coordinates (r, θ, z), where (x, y) = (r cos θ, r sin θ).

1. Show that in the polar coordinates Lorenz flow takes
form

ṙ =
r
2

(−σ − 1 + (σ + ρ − z) sin 2θ

+(1 − σ) cos 2θ)

θ̇ =
1
2

(−σ + ρ − z + (σ − 1) sin 2θ

+(σ + ρ − z) cos 2θ)

ż = −bz +
r2

2
sin 2θ . (9.29)

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the in-
verse not exist? What is group-theoretically special
about the subspace on which the inverse not exist?

3. Show that this is the (Lorenz)/C2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by the π rotation in the [x, y] plane.

4. Rewrite (9.28) in the invariant polynomial basis of
example 9.18 and exercise 9.29.

5. Show that a periodic orbit of the Lorenz flow in po-
lar representation (9.29) is either a periodic orbit or
a relative periodic orbit (9.25) of the Lorenz flow in
the (x, y, z) representation.

By going to polar coordinates we have quotiented out the
π-rotation (x, y, z) → (−x,−y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

9.9. Proto-Lorenz system. Here we quotient out the
C2 symmetry by constructing an explicit “intensity” rep-
resentation of the desymmetrized Lorenz flow, following
Miranda and Stone [13].
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1. Rewrite the Lorenz equation (2.13) in terms of vari-
ables

(u, v, z) = (x2 − y2, 2xy, z) , (9.30)

show that it takes form⎡⎢⎢⎢⎢⎢⎢⎣ u̇
v̇
ż

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣ −(σ + 1)u + (σ − r)v + (1 − σ)N + vz
(r − σ)u − (σ + 1)v + (r + σ)N − uz − uN

v/2 − bz

⎤⎥⎥⎥⎥⎥⎥⎦
N =

√
u2 + v2 . (9.31)

2. Show that this is the (Lorenz)/C2 quotient map for
the Lorenz flow, i.e., that it identifies points related
by the π rotation (9.20).

3. Show that (9.30) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the Lorenz
flow.

5. Plot the strange attractor both in the original form
(2.13) and in the proto-Lorenz form (9.31)

0 200 400 600 800
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for the Lorenz parameter values σ = 10, b = 8/3,
ρ = 28. Topologically, does it resemble more the
Lorenz, or the Rössler attractor, or neither? (plot
by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is
either a periodic orbit or a relative periodic orbit of
the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz
is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

9 What does the volume contraction formula (4.40)
look like now? Interpret.
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10. Show that the coordinate change (9.30) is the same
as rewriting (9.29) in variables

(u, v) = (r2 cos 2θ, r2 sin 2θ) ,

i.e., squaring a complex number z = x + iy, z2 =

u + iv.

11. How is (9.31) related to the invariant polynomial
basis of example 9.18 and exercise 9.29?
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[9.20] P. Cvitanović and F. Christiansen, Periodic orbit quantization of the
anisotropic Kepler problem, CHAOS 2, 61 (1992).

[9.21] G. H. B. Eckhardt and E. Pollak, Phys. Rev. A 39, 3776 (1989).

[9.22] C. C. Martens, R. L. Waterland, and W. P. Reinhardt, J. Chem. Phys. 90,
2328 (1989).

[9.23] S. G. Matanyan, G. K. Savvidy, and N. G. Ter-Arutyunyan-Savvidy, Sov.
Phys. JETP 53, 421 (1981).

[9.24] A. Carnegie and I. C. Percival, J. Phys. A 17, 801 (1984).

[9.25] B. Eckhardt and D. Wintgen, Symbolic description of periodic orbits for
the quadratic Zeeman effect, J. Phys. B 23, 355 (1990).

[9.26] J. M. Robbins, Discrete symmetries in periodic-orbit theory, Phys. Rev. A
40, 2128 (1989).

[9.27] N. Balasz and A. Voros, Chaos on the pseudosphere, Phys. Rep. 143, 109
(1986).
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Chapter 10

Relativity for cyclists

Physicists like symmetry more than Nature

— Rich Kerswell

What if the laws of motion retain their form for a family of coordinate fra-
mes related by continuous symmetries? The notion of ‘fundamental do-
main’ is of no use here. If the symmetry is continuous, the dynamical

system should be reduced to a lower-dimensional, desymmetrized system, with
‘ignorable’ coordinates eliminated (but not forgotten). 1

We shall describe here two ways of reducing a continuous symmetry. 2 In
the ‘method of slices’ or ‘moving frames’ of sect. 10.4 we slice the state space in
such a way that an entire class of symmetry-equivalent points is represented by a
single point. In the Hilbert polynomial basis approach of sect.10.5 we replace the
equivariant dynamics by the dynamics rewritten in terms of invariant coordinates.
In either approach we retain the option of computing in the original coordinates,
and then, when done, projecting the solution onto the symmetry reduced state
space.

Instead of writing yet another tome on group theory, in what follows we con-
tinue to serve group theoretic nuggets on need-to-know basis, through a series of
pedestrian examples (but take a slightly higher, cyclist road in the text proper).

10.1 Continuous symmetries

First of all, why worry about continuous symmetries? Here is an example of
exercise 10.1
exercise 10.8the effect a continuous symmetry has on dynamics (for physics background, see

remark 10.2). 3

1Predrag: remember to rescue chapter relative.tex 22jul2006:
2Predrag: Emphasize the two situation in which we must reduce (i) To partition the state space,

(ii) It is automatic for trace formulas, see chapter 25.
3Predrag: figure 10.1: Replot it. Label axes, use legible fonts in all figures.

205

http://Birdtracks.eu


CHAPTER 10. RELATIVITY FOR CYCLISTS 206

complex Lorenz flow

Figure 10.1: A typical {x1, x2, z} trajectory of the com-
plex Lorenz flow, with a short trajectory of figure 10.5
whose initial point is close to the relative equilibrium
TW1 superimposed. See also figure 10.8. (R. Wilczak)

Example 10.1 Complex Lorenz flow: Consider a complex generalization of Lorenz
equations (2.13),

ẋ = −σx + σy , ẏ = (ρ − z)x − ay

ż = (xy∗ + x∗y)/2 − bz , (10.1)

where x, y are complex variables, z is real, while the parameters σ, b are real and
ρ = ρ1+ iρ2, a = 1− ie are complex. Recast in real variables, this is a set of five coupled
ODEs

ẋ1 = −σx1 + σy1

ẋ2 = −σx2 + σy2

ẏ1 = (ρ1 − z)x1 − ρ2x2 − y1 − ey2

ẏ2 = ρ2x1 + (ρ1 − z)x2 + ey1 − y2

ż = −bz + x1y1 + x2y2 . (10.2)

In all numerical examples that follow, the parameters will be set to ρ1 = 28, ρ2 = 0, b =
8/3, σ = 10, e = 1/10, unless explicitly stated otherwise. As we shall show in exam-
ple 10.7, this is a dynamical system with a continuous SO(2) (but no discrete) symmetry.

Figure 10.1 offers a visualization of its typical long-time dynamics. What is
wrong with this picture? It is a mess. As we shall show here, the attractor is built up by
a nice ‘stretch & fold’ action, but that is totally hidden from the view by the continuous
symmetry induced drifts. In the rest of this chapter we shall investigate various ways
of ‘quotienting’ this SO(2) symmetry, and reducing the dynamics to a 4-dimensional
reduced state space. We shall not rest until we attain the simplicity of figure 10.15, and
the bliss of the 1-dimensional return map of figure 10.18.

We shall refer to the component of the dynamics along the continuous sym-
metry directions as a ‘drift.’ In a presence of a continuous symmetry an orbit
explores the manifold swept by combined action of the dynamics and the sym-
metry induced drifts. Further problems arise when we try to determine whether
an orbit shadows another orbit (see the figure 13.1 for a sketch of a close pass
to a periodic orbit), or develop symbolic dynamics (partition the state space, as
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in chapter 11): here a 1-dimensional trajectory is replaced by a (N+1)-dimens-
ional ‘sausage,’ a dimension for each continuous symmetry (N being the total
number of parameters specifying the continuous transformation, and ‘1’ for the
time parameter t). How are we to measure distances between such objects? In
this chapter we shall learn here how to develop more illuminating visualizations
of such flow than figure 10.1, ‘quotient’ symmetries, and offer computationally
straightforward methods of reducing the dynamics to lower-dimensional, reduced
state spaces. The methods should also be applicable to high-dimensional flows,
such as translationally invariant fluid flows bounded by pipes or planes (see ex-
ample 10.4).

But first, a lightning review of the theory of Lie groups. The group-theoretical
concepts of sect. 9.1 apply to compact continuous groups as well, and will not be
repeated here. All the group theory that we shall need is in principle contained in
the Peter-Weyl theorem, and its corollaries: A compact Lie group G is completely
reducible, its representations are fully reducible, every compact Lie group is a
closed subgroup of a unitary group U(n) for some n, and every continuous, unitary,
irreducible representation of a compact Lie group is finite dimensional.

Example 10.2 Special orthogonal group SO(2) (or S 1) is a group of length-
preserving rotations in a plane. ‘Special’ refers to requirement that det g = 1, in con-
tradistinction to the orthogonal group O(n) which allows for length-preserving inversions
through the origin, with det g = −1. A group element can be parameterized by angle φ,
with the group multiplication law g(φ ′)g(φ) = g(φ′+φ), and its action on smooth periodic
functions u(φ + 2π) = u(φ) generated by

g(φ′) = eφ
′T , T =

d
dφ

. (10.3)

Expand the exponential, apply it to a differentiable function u(φ), and you will recognize
a Taylor series. So g(φ′) shifts the coordinate by φ′, g(φ′) u(φ) = u(φ′ + φ) .

⇓PRIVATE

exercise 10.41

⇑PRIVATEExample 10.3 Translation group: Differential operator T in (10.3) is reminiscent
of the generator of spatial translations. The ‘constant velocity field’ v(x) = v = c ·
T’ acts on x j by replacing it by the velocity vector c j. It is easy to verify by Taylor
expanding a function u(x) that the time evolution is nothing but a coordinate translation
by (time× velocity): 4

e−τc·Tu(x) = e−τc· d
dx u(x) = u(x − τ c) . (10.4)

As x is a point in the Euclidean Rd space, the group is not compact. In general, a
sequence of time steps in time evolution always forms an abelian Lie group, albeit
never as trivial as this free ballistic motion.

If the group actions consist of N rotations which commute, for example act on
an N-dimensional cell with periodic boundary conditions, the group is an abelian group
that acts on a torus T N . 5 6 7

4Predrag: introduce traveling wave here already?
5Predrag: add Barkley definition of the Euclidean group E(2).
6Predrag: make up an exercise. Rebecca blog?
7Predrag: add a picture of a plane Couette flow.
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Example 10.4 Continuous symmetries of the plane Couette flow. (continued
from example 9.7) The plane Couette flow is a Navier-Stokes flow bounded by two
countermoving planes, in a cell periodic in streamwise and spanwise directions. Every
solution of Navier-Stokes equations belongs, by the SO(2) × SO(2) symmetry, to a 2-
torus T 2 of equivalent solutions. Furthermore these tori are interrelated by a discrete D2

group of spanwise and streamwise flips of the flow cell. (continued in example 10.11)

Let G be a group, and gM −→ M a group action on the state space M. The
[d×d] matrices g acting on vectors in the d-dimensional state space M form a
linear representation of the group G. If the action of every element g of a group G
commutes with the flow

gv(x) = v(gx) , g fτ(x) = f τ(gx) , (10.5)

G is a symmetry of the dynamics, and, as in (9.7), the dynamics is said to be
invariant under G, or G-equivariant.

In order to explore the implications of equivariance for the solutions of dyn-
amical equations, we start by examining the way a compact Lie group acts on state
space M. For any x ∈ M, the group orbit Mx of x is the set of all group actions
(see page 183 and figure 10.2) 8

Mx = {g x | g ∈ G} . (10.6)

⇓PRIVATE

Definition: Group orbit The orbit of a point x under the group G is the set of
all points that x is mapped to under the groups actions

Mx = {g x : g ∈ G}. (10.7)

The points in the fixed-point subspace MG are those points whose group orbit
consists of only the point itself (Mx = {x}).

Definition: Fixed-point subspace 9 MH or a ‘centralizer’ of a subgroup H ⊂
G, G a symmetry of dynamics, is the set of all state space points left H-fixed,
point-wise invariant under action of the subgroup

MH = Fix (H) = {x ∈ M : h x = x for all h ∈ H} . (10.8)

Points in the fixed-point subspace MG are fixed points of the full group action.
They are called invariant points,

MG = Fix (G) = {x ∈ M : g x = x for all g ∈ G} . (10.9)

8Predrag: Marsdenites use Orb(x) for Mx
9Predrag: repeat from discrete, probably remove again
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Figure 10.2: (a) The group orbit Mx(0) of state
space point x(0), and the group orbitMx(t) reached
by the trajectory x(t) time t later. As any point on
the manifold Mx(t) is physically equivalent to any
other, the state space is foliated into the union of
group orbits. (b) Symmetry reduction M → M̂
replaces each full state space group orbit Mx by a
single point x̂ ∈ M̂.

(a)

M
x(τ)

M
x(0)

x(0)

x(τ)

M
(b)

M̂ x̂(0)

x̂(τ)

If a point is an invariant point of the symmetry group, by the definition of
equivariance (10.29) the velocity at that point is also in MG, so the trajectory
through that point will remain in MG. MG is disjoint from the rest of the state
space since no trajectory can ever enter or leave it. The fixed-point subspace of
the SO(2) symmetry group of the complex Lorenz equations is the z-axis (see
example 10.6). The velocity (10.2) at a point on the z-axis points only in the
z-direction and so the trajectory remains on the z-axis for all times, as expected.

⇑PRIVATE

As we saw in example 10.3, the time evolution itself is a noncompact 1-
parameter Lie group. Thus the time evolution and the continuous symmetries
can be considered on the same Lie group footing. For a given state space point
x a symmetry group of N continuous transformations together with the evolution
in time sweeps out, in general, a smooth (N+1)-dimensional manifold of equiv-
alent solutions (if the solution has a nontrivial symmetry, the manifold may have
a dimension less than N + 1). For solutions p for which the group orbit of xp is
periodic in time Tp, the group orbit sweeps out a compact invariant manifold Mp.
The simplest example is the N = 0, no symmetry case, where the invariant mani-
fold Mp is the 1-torus traced out by a periodic trajectory p. If M is a smooth C∞

manifold, and G is compact and acts smoothly on M, the reduced state space can
be realized as a ‘stratified manifold,’ meaning that each group orbit (a ‘stratum’)
is represented by a point in the reduced state space, see sect.10.4. Generalizing
the description of a non–wandering set of sect. 2.1.1, we say that for flows with
continuous symmetries the non–wandering set Ω of dynamics (2.3) is the closure
of the set of compact invariant manifolds Mp. Without symmetries, we visualize
the non–wandering set as a set of points; in presence of a continuous symmetry,
each such ‘point’ is a group orbit.

10.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of ‘angular
momentum.’

— Mason A. Porter’s student
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Definition: A Lie group is a topological group G such that (i) G has the struc-
ture of a smooth differential manifold, and (ii) the composition map G ×G → G :
(g, h) → gh−1 is smooth, i.e., C∞ differentiable.

Do not be mystified by this definition. Mathematicians also have to make
a living. Historically, the theory of compact Lie groups that we will deploy here
emerged as a generalization of the theory of SO(2) rotations, i.e., Fourier analysis.
By a ‘smooth differential manifold’ one means objects like the circle of angles that
parameterize continuous rotations in a plane, example10.2, or the manifold swept
by the three Euler angles that parameterize SO(3) rotations.

⇓PRIVATE

Definition: A compact Lie group is a [... DEFINE] ⇑PRIVATE

An element of a compact Lie group continuously connected to identity can be
written as

g(φ) = eφ·T , φ · T =
∑

φaTa, a = 1, 2, · · · ,N , (10.10)

where φ ·T is a Lie algebra element, and φa are the parameters of the transforma-
tion. Repeated indices are summed throughout this chapter, and the dot product
refers to a sum over Lie algebra generators. The Euclidian product of two vectors
x, y will be indicated by x-transpose times y, i.e., xT y =

∑d
i xiyi. Unitary trans-

formations exp(φ · T) are generated by sequences of infinitesimal steps of form

g(δφ) � 1 + δφ · T , δφ ∈ RN , |δφ| � 1 , (10.11)

where Ta, the generators of infinitesimal transformations, are a set of linearly
independent [d×d] anti-hermitian matrices, (Ta)† = −Ta, acting linearly on the
d-dimensional state space M. In order to streamline the exposition, we post-
pone discussion of combining continuous coordinate transformations with the
discrete ones to sect. 10.2.1. 10 Unitary and orthogonal groups (as well as their

exercise 10.2

⇓PRIVATE
subgroups) are defined as groups that preserve these ‘length’ norms, 〈gx|gx〉 =
〈x|x〉, and infinitesimally their generators (??) induce no change in the norm,
〈Tax|x〉 + 〈x|Tax〉 = 0 , hence the Lie algebra generators T are antisymmetric
for orthogonal groups, and antihermitian for unitary ones,

T∗ = −T . (10.12)

This antisymmetry of generators implies that the action of the group on vector x
is locally normal to it,

〈x|ta(x)〉 = 0 . (10.13)

10Predrag: find “insert B” on equivariance...?
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Figure 10.3: Lie algebra fields {t1, · · · , tN } span the
tangent space of the group orbitMx at state space point
x, see (10.6).

A group tangent (10.15) is a vector both in the group tangent space and in
the state space. We shall indicate by 〈ta(x)|tb(y)〉 the sum over state space inner
product only, and by

〈t(x)|t(y)〉 =
N∑

a=1

〈ta(x)|ta(y)〉 = 〈x|T∗ · T y〉 (10.14)

the sum over both group and spatial dimensions. ⇑PRIVATE

For continuous groups the Lie algebra, i.e., the set of N generators Ta of
infinitesimal transformations, takes the role that the |G| group elements play in the
theory of discrete groups. The flow field at the state space point x induced by the
action of the group is given by the set of N tangent fields (see figure10.3)

⇓PRIVATE

⇑PRIVATE

ta(x)i = (Ta)i j x j , (10.15)

which span the tangent space. Any representation of a compact Lie group G is
fully reducible, and invariant tensors constructed by contractions of Ta are useful
for identifying irreducible representations. The simplest such invariant is

TT · T =
∑
α

C(α)
2 11(α) , (10.16)

where C(α)
2 is the quadratic Casimir for irreducible representation labeled α, and

11(α) is the identity on the α-irreducible subspace, 0 elsewhere. The dot product of
two tangent fields is thus a sum weighted by Casimirs,

t(x)T · t(x′) =
∑
α

C(α)
2 xi δ

(α)
i j x′j . (10.17)
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SO(2)@SO(2)!irreducible
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anti-
hermitian!generator

SO(2)@SO(2)
generator!anti-

hermitian
anti-
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Example 10.5 SO(2) irreducible representations: (continued from example 10.2) Ex-
pand a smooth periodic function u(φ + 2π) = u(φ) as a Fourier series

u(φ) = a0 +

∞∑
m=1

(am cos mφ + bm sin mφ) . (10.18)

The matrix representation of the SO(2) action (10.3) on the mth Fourier coefficient pair
(am, bm) is

g(m)(φ′) =

(
cos mφ′ sin mφ′

− sin mφ′ cos mφ′

)
, (10.19)

with the Lie group generator

T(m) =

(
0 m
−m 0

)
. (10.20)

The SO(2) group tangent (10.15) to state space point u(φ) on the mth invariant sub-
space is

t(m)(u) = m

(
bm
−am

)
. (10.21)

The L2 norm of t(u) is weighted by the SO(2) quadratic Casimir (10.16), C(m)
2 = m2,

∮
dφ
2π

(Tu(φ))T Tu(2π − φ) =
∞∑

m=1

m2
(
a2

m + b2
m

)
, (10.22)

and converges only for sufficiently smooth u(φ). What does that mean? We saw in
(10.4) that T generates translations, and by (10.20) the velocity of the mth Fourier
mode is m times higher than for the m = 1 component. If |u(m)| does not fall off faster
the 1/m, the action of SO(2) is overwhelmed by the high Fourier modes.

Example 10.6 SO(2) rotations for complex Lorenz equations: Substituting the
Lie algebra generator 11

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10.23)

acting on a 5-dimensional space (10.2) into (10.10) yields a finite angle SO(2) rotation:

g(φ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos φ sinφ 0 0 0
− sinφ cosφ 0 0 0

0 0 cos φ sin φ 0
0 0 − sinφ cos φ 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (10.24)

11Predrag: is the sign standard?
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cyclist!Lie groups
Lie!group
group!Lie
Peter-Weyl theorem
Weyl!Peter-Weyl

theorem
reducible

representation
representation!reducible

From (10.19) we see that the action of SO(2) on the complex Lorenz equations state
space decomposes into m = 0 G-invariant subspace (z-axis) and m = 1 subspace with
multiplicity 2.

The generator T is indeed anti-hermitian, T† = −T, and the group is compact,
its elements parametrized by φ mod 2π. Locally, at x ∈ M, the infinitesimal action of the
group is given by the group tangent field t(x) = Tx = (x2,−x1, y2,−y1, 0). In other words,
the flow induced by the group action is normal to the radial direction in the (x1, x2) and
(y1, y2) planes, while the z-axis is left invariant.

fast track:

sect. 10.2, p. 215

10.1.2 Lie groups for cyclists

Henriette Roux: “Why do you devote to Lie groups only
a page, while only a book-length monograph can do it
justice?” A: “ChaosBook tries its utmost to minimize
the Gruppenpest jargon damage, which is a total turnoff
to our intended audience of working plumbers and elec-
tricians. The sufferings of our master plumber Fabian
Waleffe while reading chapter 9 - World in a mirror are
chicken feed in comparison to the continuous symmetry
reduction nightmare that we embark upon here.”

—

appendix A.6

All the group theory that we shall need is in principle contained in the Peter-Weyl
theorem, and its corollaries: A compact Lie group G is completely reducible, its
representations are fully reducible, every compact Lie group is a closed subgroup
of a unitary group U(n) for some n, and every continuous, unitary, irreducible
representation of a compact Lie group is finite dimensional.

Here comes all of the theory of Lie groups in one quick serving. You will live
even if you do not digest this section, or, to spell it out; skip this section unless
you already know the theory of Lie algebras.

The [d×d] matrices g acting on vectors in the state space M form a linear
representation of the group G. Tensors transform as

h′i j
k = gi

i′gj
j′gk

k′hi′ j′
k′ . (10.25)

A multilinear function h(q, r, . . . , s) is an invariant function if (and only if) for any
transformation g ∈ G and for any set of vectors q, r, s, . . . it is unchanged by the
coordinate transformation

h(gq, gr, . . . gs) = h(q, r, . . . , s) = hab···
···c qarb · · · sc . (10.26)
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invariant!tensor
tensor!invariant
Lie!algebra
structure constant

Examples of such invariant functions are the length r(x)2 = δ j
i xix j and the volume

V(x, y, z) = εi jk xiy jzk. Substitute the infinitesimal form of group action (10.11)
into (10.25), keep the linear terms. In the index-notation longhand, the Lie algebra
generator acts on each index separately,

(Ta)i′
i h k...

i′ j... + (Ta) j′

j h k...
i j′ ... − (Ta)k

k′h
k′...

i j... + . . . = 0 . (10.27)

Hence the tensor h ...k
i j... is invariant if Tah = 0, i.e., the N generators Ta ‘annihi-

late’ it.

As one does not want the symmetry rules to change at every step, the genera-
tors Ta, a = 1, 2, . . . ,N, are themselves invariant tensors:

(Ta) i
j = gi

i′gj
j′gaa′ (Ta′)

i′
j′ , (10.28)

where gab =
[
e−iφ·C

]
ab

is the adjoint [N×N] matrix representation of g ∈ G. The
[d×d] matrices Ta are in general non-commuting, and from (10.27) it follows that
they close N-element Lie algebra

[Ta,Tb] = TaTb − TbTa = −CabcTc , a, b, c = 1, 2, ...,N ,

where the fully antisymmetric adjoint representation hermitian generators

[Cc]ab = Cabc = −Cbac = −Cacb

are the structure constants of the Lie algebra. 12

As we will not use non-abelian Lie groups in this chapter, we omit the deriva-
tion of the Jacobi relation between Cabc’s, and you can safely ignore all this talk of
tensors and Lie algebra commutators as far as the pedestrian applications at hand
are concerned.

10.1.3 Equivariance under infinitesimal transformations

A flow ẋ = v(x) is G-equivariant (10.5), if symmetry transformations commute
with time evolutions

exercise 10.4
exercise 10.5

v(x) = g−1 v(g x) , for all g ∈ G . (10.29)

For an infinitesimal transformation (10.11) the G-equivariance condition becomes

v(x) = (1 − φ · T) v(x + φ · Tx) + · · · = v(x) − φ · Tv(x) +
dv
dx

φ · Tx + · · · .

12Predrag: recheck Cabc normalization
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Lorenz flow
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The v(x) cancel, and φa are arbitrary. Denote the group flow tangent field at x by
ta(x)i = (Ta)i j x j. Thus the infinitesimal, Lie algebra G-equivariance condition is

ta(v) − A(x) ta(x) = 0 , (10.30)

where A = ∂v/∂x is the stability matrix (4.3). If case you find such learned
remarks helpful: the left-hand side of (10.30) is the Lie derivative of the dynamical
flow field v along the direction of the infinitesimal group-rotation induced flow
ta(x) = Tax,

Ltav =

(
Ta −

∂

∂y
(Tax)

)
v(y)

∣∣∣∣∣∣
y=x

. (10.31)

exercise 10.6
exercise 10.7
exercise 10.12

The equivariance condition (10.30) states that the two flows, one induced by the
dynamical vector field v, and the other by the group tangent field t, commute if
their Lie derivatives (or the ‘Lie brackets ’ or ‘Poisson brackets’) vanish. 13

Example 10.7 Equivariance of complex Lorenz flow: That complex Lorenz flow
(10.2) is equivariant under SO(2) rotations (10.24) can be checked by substituting the
Lie algebra generator (10.23) and the stability matrix (4.3) for complex Lorenz flow
(10.2),

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−σ 0 σ 0 0
0 −σ 0 σ 0

ρ1 − z −ρ2 −1 −e −x1
ρ2 ρ1 − z e −1 −x2
y1 y2 x1 x2 −b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (10.32)

into the equivariance condition (10.30). Considering that t(v) depends on the full set of
equations (10.2), and A(x) is only its linearization, this is not an entirely trivial statement.
For the parameter values (10.2) the flow is strongly volume contracting (4.28),

∂ivi =

5∑
i=1

λi(x, t) = −b − 2(σ + 1) = −24 − 2/3 , (10.33)

at a coordinate-, ρ- and e-independent constant rate.

Checking equivariance as a Lie algebra condition (10.30) is easier than checking
it for global, finite angle rotations (10.29).

10.2 Symmetries of solutions

13Predrag: define directional derivative D f (x)ξ limt→0
f (x+tξ)− f (x)

t
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time-$t$ forward map
equilibrium
group!orbit
orbit!group
relative!equilibrium
equilibrium!relative

Let v(x) be the dynamical flow, and fτ the trajectory or ‘time-τ forward map’ of
an initial point x0,

dx
dt
= v(x) , x(τ) = f τ(x0) = x0 +

∫ τ

0
dτ′ v(x(τ′)) . (10.34)

As discussed in sect. 9.2, solutions x(τ) of an equivariant system can satisfy all
of the system’s symmetries, a subgroup of them, or have no symmetry at all. For
a given solution x(τ), the subgroup that contains all symmetries that fix x (that
satisfy gx = x) is called the isotropy (or stabilizer) subgroup of x. A generic
ergodic trajectory x(τ) has no symmetry beyond the identity, so its isotropy group
is {e}, but recurrent solutions often do. At the other extreme is equilibrium, whose
isotropy group is the full symmetry group G.

14 15 16 The simplest solutions are the equilibria or steady solutions (2.9).

Definition: Equilibrium xEQ =MEQ is a fixed, time-invariant solution,

v(xEQ ) = 0 ,

x(xEQ , τ) = xEQ +

∫ τ

0
dτ′ v(x(τ′)) = xEQ . (10.35)

An equilibrium with full symmetry,

g xEQ = xEQ for all g ∈ G ,

lies, by definition, in Fix (G) subspace subspace (10.8), for example the x3 axis in ⇓PRIVATE

⇑PRIVATE
figure 10.4 (a). The multiplicity of such solution is one. An equilibrium xEQ with
symmetry GEQ smaller than the full group G belongs to a group orbit G/GEQ . If

exercise 10.13
exercise 10.14

G is finite there are |G|/|GEQ | equilibria in the group orbit, and if G is continuous
then the group orbit of x is a continuous family of equilibria of dimension dim G−
dim GEQ . For example, if the angular velocity c in figure 10.4 (b) equals zero, the
group orbit consists of a circle of (dynamically static) equivalent equilibria.

Definition: Relative equilibrium solution xTW(τ) ∈ MTW : the dynamical flow
field points along the group tangent field, with constant ‘angular’ velocity c, and
the trajectory stays on the group orbit, see figure10.4 (a): 17

exercise 10.17
exercise 10.19
exercise 10.20
exercise 10.21
exercise 10.22
exercise 10.26
exercise 10.27

14Predrag: main point; either group action moves trajectories around the invariant torus, or it
keeps them fixed, in disjoint families

15Siminos: I still think one needs to mention the direct product group G × S1 because then one
can regard the symmetry group of a set-wise symmetric cycle as an stabilizer of G × S1. Proposed
addition in order to tell the full story: “Thus we can think of the symmetry group as the direct
product group G × S 1 where S 1 is the circle group parametrized by τ ∈ [0, Tp] and acting on the
time variable by shifting time by τ. A set-wise symmetric cycle then has a non-trivial stabilizer
Gp ⊂ G × S 1. ”

16Predrag: might want to define semidirect product such as the Euclidean group E(2) of transla-
tions and rotations in a plane

17Predrag: experiment with labels other than TW
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traveling wave
rotating wave
group!orbit, slice

Figure 10.4: (a) A relative equilibrium orbit starts out
at some point x(0), with the dynamical flow field v(x) =
c · t(x) pointing along the group tangent space. For the
SO(2) symmetry depicted here, the flow traces out the
group orbit of x(0) in time T = 2π/c. (b) An equilib-
rium lives either in the fixed Fix (G) subspace (x3 axis
in this sketch), or on a group orbit as the one depicted
here, but with zero angular velocity c. In that case the
circle (in general, N-torus) depicts a continuous family
of fixed equilibria, related only by the group action.

x1

x2

x3

τg( )τx( )= x(0)

τg( )

x(0)

g( )tτ

v = c t

v = c 

Figure 10.5: {x1, x2, z} plot of the complex Lorenz
flow with initial point close to TW1. In figure 10.1 this
relative equilibrium is superimposed over the strange
attractor. (R. Wilczak)

v(x) = c · t(x) , x ∈ MTW

x(τ) = g(−τ c) x(0) = e−τ c·Tx(0) . (10.36)

A traveling wave
remark 10.3

x(τ) = g(−cτ) xTW = xTW − c τ , c ∈ Rd (10.37)

is a special type of a relative equilibrium of equivariant evolution equations, where
the action is given by translation (10.4), g(y) x(0) = x(0) + y . A rotating wave is
another special case of relative equilibrium, with the action is given by angular ro-
tation. By equivariance, all points on the group orbit are equivalent, the magnitude
of the velocity c is same everywhere along the orbit, so a ‘traveling wave’ moves
at a constant speed. 18 For an N > 1 trajectory traces out a line within the group
orbit. As the ca components are generically not in rational ratios, the trajectory
explores the N-dimensional group orbit (10.6) quasi-periodically. In other words,
the group orbit g(τ) x(0) coincides with the dynamical orbit x(τ) ∈ MTW and is
thus flow invariant.

Example 10.8 A relative equilibrium: For complex Lorenz equations and our
canonical parameter values of (10.2) a computation yields the relative equilibrium TW1

with a representative group orbit point

(x1, x2, y1, 0, z)TW1 = (8.48492, 0.0771356, 8.48562, 0, 26.9999) , (10.38)

and angular velocity cTW1 = 1/11. This corresponds to period TTW1 = 2π/c ≈ 69, so
a simulation has to be run up to time of order of at least 70 for the strange attractor in
figure 10.1 to start filling in.

18Predrag: remove boxes in figure 10.5 and the like
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complex Ginzburg
Landau equation

Ginzburg Landau
equation, complex

traveling wave
rotating wave
periodic!orbit

Figure 10.6: A periodic orbit starts out at x(0) with the
dynamical v and group tangent t flows pointing in dif-
ferent directions, and returns after time Tp to the initial
point x(0) = x(Tp). The group orbit of the temporal
orbit of x(0) sweeps out a (1+N)-dimensional torus, a
continuous family of equivalent periodic orbits, two of
which are sketched here. For SO(2) this is topologi-
cally a 2-torus.

x3

x2

x1

gv

gt

gx(0)
g

t

v

x(T) = x(0)

Figure 10.5 shows the complex Lorenz flow with the initial point (10.38) on the
relative equilibrium TW1. It starts out by drifting in a circle around the z-axis, but as the
numerical errors accumulate, the trajectory spirals out.

Calculation of the relative equilibrium stability reveals that it is spiral-out un-
stable, with the very short period Tspiral = 0.6163. This is the typical time scale for
fast oscillations visible in figure 10.1, with some 100 turns for one circumambulation
of the TW1 orbit. In that time an initial deviation from xTW1 is multiplied by the factor
Λradial ≈ 500. It would be sweet if we could eliminate the drift time scale ≈ 70 and focus
just on the fast time scale of ≈ 0.6. That we will attain by reformulating the dynamics in
a reduced state space.

⇓PRIVATE

Example 10.9 Traveling, rotating waves: Names ‘traveling waves,’ and ‘rotat-
ing waves’ are descriptive of solutions of some PDEs with simple continuous symme-
tries. Complex Ginzburg Landau equation is equivariant under the action of the group
g(θ, y) ∈ G = S 1 ×R on u(x) ∈ R2, given by translation in the domain and the rotation of
u(x), 19

g(θ, y) u(x) = R(θ) u(x + y) , R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, (10.39)

Hence complex Ginzburg Landau equation allows for rotating wave solutions of form
u(x, t) = R(−ω t) û(x − c t) with fixed profile û(x), velocity c and angular velocity ω. Trav-
eling waves are typical of translationally invariant systems such as the plane Couette
flow, example 10.11.

⇑PRIVATE

Definition: Periodic orbit. Let x be a periodic point on the periodic orbit p of
period T ,

f T (x) = x , x ∈ Mp.

By equivariance, g x is another periodic point, with the orbits of x and gx either
identical or disjoint.

If gx lands on the same orbit, g is an element of periodic orbit’s symmetry
group Gp. If the symmetry group is the full group G, we are back to (10.36),
i.e., the periodic orbit is the group orbit traced out by a relative equilibrium. The

19Predrag: define Complex Ginzburg Landau
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periodic!orbit!relative
relative!periodic orbit
period!relative
relative!period

Figure 10.7: A relative periodic orbit starts out at x(0)
with the dynamical v and group tangent t flows point-
ing in different directions, and returns to the group or-
bit of x(0) after time Tp at x(Tp) = gp x(0), a rotation of
the initial point by gp. For flows with continuous sym-
metry a generic relative periodic orbit (not pre-periodic
to a periodic orbit) fills out ergodically what is topo-
logically a torus, as in figure 10.6; if you are able to
draw such a thing, kindly send us the figure. As il-
lustrated by figure 10.9 (a) this might be a project for
Lucas Films.

x1

gp

x(Tp)

x2

gpt

gpv
x(0)

x3

t

v

other option is that the isotropy group is discrete, the orbit segment {x, gx} is pre-
periodic (or eventually periodic), x(0) = gpx(Tp), where Tp is a fraction of the
full period, Tp = T/m, and thus 20 21

x(0) = gpx(Tp) , x ∈ Mp , gp ∈ Gp

x(0) = gm
p x(m Tp) = x(T) = x(0) . (10.40)

If the periodic solutions are disjoint, as in figure 10.6, their multiplicity (if G
is finite, see sect. 9.1), or the dimension of the manifold swept under the group
action (if G is continuous) can be determined by applications of g ∈ G. They form
a family of conjugate solutions (9.19), 22

Mg p = gMp g−1 . (10.41)

Definition: Relative periodic orbit p is an orbit Mp in state space M which
exactly recurs

xp(0) = gpxp(Tp) , xp(τ) ∈ Mp , (10.42)

at a fixed relative period Tp, but shifted by a fixed group action gp which brings
the endpoint xp(Tp) back into the initial point xp(0), see figure 10.7. The group
action gp parameters φ = (φ1, φ2, · · ·φN) are referred to as “phases,” or “shifts.”
In contrast to the pre-periodic (10.40), the phase here are irrational, and the tra-
jectory sweeps out ergodically the group orbit without ever closing into a periodic
orbit. For dynamical systems with only continuous (no discrete) symmetries, the
parameters {t, φ1, · · · , φN} are real numbers, ratios π/φj are almost never rational,
likelihood of finding a periodic orbit for such system is zero, and such relative
periodic orbits are almost never eventually periodic. ⇓PRIVATE

20Predrag: draw a plot
21Predrag: caution - Ruelle uses pre-periodic differently, see sect. G.1, chapter/dahlqvist.tex
22Predrag: In figure 10.6: color orbits blue; make figure tall and narrow, to attain the same SFIG

scale as in the rest; redraw it thicker
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complex Lorenz
flow!relative
periodic orbit

Figure 10.8: (Figure 10.1 continued) A group portrait
of the complex Lorenz equations state space dynamics.
Plotted are relative equilibrium TW1 (red), its unsta-
ble manifold (brown), equilibrium EQ0, one trajectory
from the group orbit of its unstable manifold (green), 3
repetitions of relative periodic orbit 01 (magenta) and
a generic orbit (blue). (E. Siminos)

When a ‘traveling wave’ goes unstable through a Hopf bifurcation, the result-
ing motion resembles the initial traveling wave weakly periodically ‘modulated’ in
time, hence such relative periodic orbit is often called a modulated traveling wave
(MTW). These were studied, for instance, by Armbruster et al. (1988,1989), and
a detailed computation of numerous bifurcation branches of these solutions was
presented by [Brown and Kevrekidis 1996]. They find quasiperiodic secondary
Hopf bifurcations. In chaos unstable recurrent motions typically arise come from
other, stretching and folding mechanisms, so for our purposes ‘MTW’ is too nar-
row a concept, merely a particular case of a relative periodic orbit. ⇑PRIVATE

Relative periodic orbits are to periodic solutions what relative equilibria (trav-
eling waves) are to equilibria (steady solutions). Equilibria satisfy fτ(x) − x = 0
and relative equilibria satisfy fτ(x) − g(τ) x = 0 for any τ. In a co-moving frame,
i.e., frame moving along the group orbit with velocity v(x) = c · t(x), the relative
equilibrium appears as an equilibrium. Similarly, a relative periodic orbit is peri-
odic in its mean velocity cp = φp/Tp co-moving frame (see figure 10.9), but in the
stationary frame its trajectory is quasiperiodic. A co-moving frame is helpful in
visualizing a single ‘relative’ orbit, but useless for viewing collections of orbits,
as each one drifts with its own angular velocity. Visualization of all relative peri-
odic orbits as periodic orbits we attain only by global symmetry reductions, to be
undertaken in sect. 10.4.

Example 10.10 Complex Lorenz flow with relative periodic orbit: Figure 10.8
is a group portrait of the complex Lorenz equations state space dynamics, with several
important players posing against a generic orbit in the background. 23

The unstable manifold of relative equilibrium TW1 is characterized by a 2-
dimensional complex eigenvector pair, so its group orbit is a 3-dimensional. Only one
representative trajectory on it is plotted in the figure. The unstable manifold of equi-
librium EQ0 has one expanding eigenvalue, but its group orbit is a cone originating at
EQ0. Only one representative trajectory on this cone is shown in the figure. It lands
close to TW1, and then spirals out along its unstable manifold. 3 repetitions of a short
relative periodic orbit 01 are drawn. The trajectory fills out ergodically a 2-dimensional

23Predrag: Wirzba advice for figure 10.8. Too busy. Remove generic orbit in the background,
refer to figure 10.1 instead. TW1 could be blue, easier to distinguis it from the unstable manifold
brown.

continuous - 15june2012 boyscout version14.4, Mar 19 2013



CHAPTER 10. RELATIVITY FOR CYCLISTS 221

Figure 10.9: A relative periodic orbit of
Kuramoto-Sivashinsky flow projected on (a) the
stationary state space coordinate frame {v1, v2, v3},
traced for four periods Tp; (b) the co-moving
{ṽ1, ṽ2, ṽ3} coordinate frame, moving with the
mean angular velocity cp = φp/Tp. (from ref. [1])

(a)

v1v2

v3

(b)

v�1
v�2

v�3

Figure 10.10: State space group orbit of a periodic
orbit sweeps out a torus.

orbit M01. The assignment of its symbolic dynamics label will be possible only after the
symmetry reduction, see figure 10.18 and figure 11.9.

10.2.1 Discrete and continuous symmetries together

We expect to see relative periodic orbits because a trajectory that starts on and
returns to a given torus of a symmetry equivalent solutions is unlikely to intersect
it at the initial point, unless forced to do so by a discrete symmetry. This we
will make explicit in sect. 10.4, where relative periodic orbits will be viewed as
periodic orbits of the reduced dynamics. 24 25

If, in addition to a continuous symmetry, one has a discrete symmetry which is
not its subgroup, one does expect equilibria and periodic orbits. However, a relati-
ve periodic orbit can be pre-periodic if it is equivariant under a discrete symmetry,
as in (10.40): If gm = 1 is of finite order m, then the corresponding orbit is periodic
with period mTp. If g is not of a finite order, a relative periodic orbit is periodic
only after a shift by gp, as in (10.42). Morally, as it will be shown in chapter 21,
such orbit is the true ‘prime’ orbit, i.e., the shortest segment that under action of
G tiles the entire invariant submanifold Mp. 26 27 28

⇓PRIVATE

⇑PRIVATE

Definition: Relative orbit MGx in state space M is the time evolved group
orbit Mx of a state space point x, the set of all points that can be reached from x

24Predrag: remove v’s fromfigure 10.9
25Predrag: merge with GHC Sect 3.1
26Predrag: write up Onn as an example
27Predrag: no, distinguish pre-periodic from relative. Use this: “ In either discrete or continuous

symmetry case, we refer to the orbits Mp in M satisfying (10.42) as relative periodic orbits. ”
28Predrag: figure 10.10: try gnuplt → SVG, inkscape periodic orbit and rpo onto it?
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orbit!relative
relative!orbit
plane Couette

flow!relative
solutions

standing wave
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stability!continuous

symmetry

by all symmetry group actions and evolution of each in time. 29

Mx(t) = {gxt : t ∈ R, g ∈ G} . (10.43)

In presence of symmetry, an equilibrium is the set of all equilibria related by
symmetries, an relative periodic orbit is the hyper-surface traced by a trajectory in
time T and all group actions, etc..

Example 10.11 Relative orbits in the plane Couette flow. (continued from
example 10.4) Translational symmetry allows for relative equilibria (traveling waves),
characterized by a fixed profile Eulerian velocity uTW(x) moving with constant velocity
c, i.e.

u(x, τ) = uTW(x − cτ) . (10.44)

As the plane Couette flow is bounded by two counter-moving planes, it is easy to see
where the relative equilibrium (traveling wave) solutions come from. A relative equi-
librium solution hugs close to one of the walls and drifts with it with constant velocity,
slower than the wall, while maintaining its shape. A relative periodic solution is a solu-
tion that recurs at time T p with exactly the same disposition of the Eulerian velocity fields
over the entire cell, but shifted by a 2-dimensional (streamwise,spanwise) translation
gp. By discrete symmetries these solutions come in counter-traveling pairs uq(x − cτ),
−uq(−x + cτ): for example, for each one drifting along with the upper wall, there is a
counter-moving one drifting along with the lower wall. Discrete symmetries also imply
existence of strictly stationary solutions, or ‘standing waves.’ For example, a solution
with velocity fields antisymmetric under reflection through the midplane has equal flow
velocities in opposite directions, and is thus an equilibrium stationary in time.

chapter 21

10.3 Stability

A spatial derivative of the equivariance condition (10.5) yields the matrix equiv-
ariance condition satisfied by the stability matrix (stated here both for the finite
group actions, and for the infinitesimal, Lie algebra generators): 30

exercise 10.28
exercise 10.29

gA(x)g−1 = A(gx) , [Ta, A] =
∂A
∂x

ta(x) . (10.45)

For a flow within the fixed Fix (G) subspace, t(x) vanishes, and the symmetry
imposes strong conditions on the perturbations out of the Fix(G) subspace. As
in this subspace stability matrix A commutes with the Lie algebra generators T,
the spectrum of its eigenvalues and eigenvectors is decomposed into irreducible
representations of the symmetry group. This we have already observed for the
EQ0 of the Lorenz flow in example 9.14. 31

29Predrag: move this ahead of the special cases?
30Predrag: emphasize time is abelian in derivation of trace formulas
31Predrag: evaluate (10.45) for relative equilibria
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reduced state space
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A infinitesimal symmetry group transformation maps the initial and the end
point of a finite trajectory into a nearby, slightly rotated equivalent points, so we
expect the perturbations along to group orbit to be marginal, with unit eigenvalues.
The argument is akin to (4.8), the proof of marginality of perturbations along a pe-
riodic orbit. Consider two nearby initial points separated by an N-dimensional in-
finitesimal group transformation (10.11): δx0 = g(δφ)x0−x0 = δφ·Tx0 = δφ·t(x0).
By the commutativity of the group with the flow, g(δφ) fτ(x0) = f τ(g(δφ)x0). Ex-
panding both sides, keeping the leading term in δφ, and using the definition of the
Jacobian matrix (4.5), we observe that Jτ(x0) transports the N-dimensional group
tangent space at x(0) to the rotated tangent space at x(τ) at time τ: 32 33

ta(τ) = Jτ(x0) ta(0) , ta(τ) = Ta x(τ) . (10.46)

For a relative periodic orbit, gpx(Tp) = x(0), at any point along cycle p the group
tangent vector ta(τ) is an eigenvector of the Jacobian matrix with an eigenvalue of
unit magnitude, 34

Jp ta(x) = ta(x) , Jp(x) = gpJTp(x) , x ∈ Mp . (10.47)

⇓PRIVATE

exercise 10.7

⇑PRIVATE
For a relative equilibrium flow and group tangent vectors coincide, v = c · t(x) .
Dotting by the velocity c (i.e., summing over cata) the equivariance condition
(10.30), ta(v) − A(x) ta(x) = 0, we get

(c · T − A)v = 0 . (10.48)

In other words, in the co-rotating frame the eigenvalues corresponding to group
tangent are marginal, and the velocity v is the corresponding right eigenvector.35

Two successive points along the cycle separated by δx0 = δφ · t(τ) have the
same separation after a completed period δx(Tp) = gpδx0, hence eigenvalue of
magnitude 1. In presence of an N-dimensional Lie symmetry group, N eigenval-
ues equal unity.

10.4 Reduced state space

Maybe when I’m done with grad school I’ll be able to fig-
ure it all out . . .

— Rebecca Wilczak, undergraduate

32Predrag: missing step in the derivation here?
33Predrag: replace this whole derivation by simply taking a derivative?
34Predrag: recheck this
35Predrag: Is anything smart to be said for the corresponding left eigenvectors - in the theory of

rotating spirals they call them “Response Functions” (and capitalize them), while the right group
tangent vectors they call “Goldstone modes” and they make a big deal out of them.
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Figure 10.11: A point x on the full state space trajec-
tory x(t) is equivalent up to a group rotation g(t) to the
point x̂ on the curve x̂(t) if the two points belong to the
same group orbit Mx, see (10.6).

36 Given Lie group G acting smoothly on a C∞ manifold M, we can think
of each group orbit as an equivalence class. Symmetry reduction is the identifi-
cation of a unique point on a group orbit as the representative of its equivalence
class. We call the set of all such group orbit representatives the reduced state
space M/G. In the literature this space is often rediscovered, and thus has many
names - it is alternatively called ‘desymmetrized state space,’ ‘symmetry-reduced
space,’ ‘orbit space’ (because every group orbit in the original space is mapped to
a single point in the orbit space), or ‘quotient space’ (because the symmetry has
been ‘divided out’), obtained by mapping equivariant dynamics to invariant dy-
namics (‘image’) by methods such as ‘moving frames,’ ‘cross sections,’ ‘slices,’

remark 10.1
‘freezing,’ ‘Hilbert bases,’ ‘quotienting,’ ‘lowering of the degree,’ ‘lowering the
order,’ or ‘desymmetrization.’

Symmetry reduction replaces a dynamical system (M, f ) with a symmetry by
a ‘desymmetrized’ system (M̂, f̄ ), a system where each group orbit is replaced
by a point, and the action of the group is trivial, gx̂ = x̂ for all x̂ ∈ M̂, g ∈ G.
The reduced state spaceM̂ is sometimes called the ‘quotient space’ M/G because
the symmetry has been ‘divided out.’ For a discrete symmetry, the reduced state
space M/G is given by the fundamental domain of sect. 9.4. In presence of a
continuous symmetry, the reduction to M/G amounts to a change of coordinates
where the ‘ignorable angles’ {φ1, · · · , φN} that parameterize N group translations
can be separated out. 37 38 39

We start our discussion of symmetry reduction by considering the finite-rotations
method of moving frames, and its differential formulation, the method of slices.

36Predrag: clipped - rewrite this in own words! Use also Siminos thesis sect 2.3. ES:Started
rewriting using thesis sect 2.3

37Predrag: omitted time in “{t, φ1, · · · , φN }, that parameterize N+1 time and group translations
can be separated out,” as we discuss Poincaré sections separately

38Predrag: separate the time direction out?
39Predrag: difficult: try to draw state space explored by unstable N + 1 dimensional tori
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regular group action
group!orbit, slice
slice!condition
slice!linear

Figure 10.12: Slice M̂ is a hyperplane (10.50) pass-
ing through the slice-fixing point x̂′, and normal to the
group tangent t′ at x̂′. It intersects all group orbits (in-
dicated by dotted lines here) in an open neighborhood
of x̂′. The full state space trajectory x(τ) and the re-
duced state space trajectory x̂(τ) belong to the same
group orbit Mx(τ) and are equivalent up to a group ro-
tation g(τ), defined in (10.49).

M x(0)

x(t)

x(t)

g(t)

g

x’

t’

10.4.1 Go with the flow: method of moving frames

40 The idea: 41 We can, at least locally, map each point along any solution x(τ) to
the unique representative x̂(τ) of the associated group orbit equivalence class, by
a suitable rotation

x(τ) = g(τ) x̂(τ) . (10.49)

42 43 Equivariance implies the two points are equivalent. In the ‘method of slices’
the reduced state space representative x̂ of a group orbit equivalence class is picked
by slicing across the group orbits by a fixed hypersurface. We start by describing
how the method works for a finite segment of the full state space trajectory.

Definition: Slice. Let G act regularly on a d-dimensional manifold M, i.e., with
all group orbits N-dimensional. A slice through point x̂′ is a (d−N)-dimensional
submanifold M̂ such that all group orbits in an open neighborhood of the slice-
defining point x̂′ intersect M̂ transversally and only once (see figure 10.12).

The simplest slice condition defines a linear slice as a (d−N)-dimensional
hyperplane M̂ normal to the N group rotation tangents t′a at point x̂′: 44

(x̂ − x̂′)T t′a = 0 , t′a = ta(x̂′) = Ta x̂′ . (10.50)

In other words, ‘slice’ is a Poincaré section (3.6) for group orbits. 45 46 Each ‘big ⇓PRIVATE

⇑PRIVATE
circle’ –group orbit tangent to t′a– intersects the hyperplane exactly twice, with

40Siminos: Equivariance implies we can rigidly rotate a solution x(τ) by any g(τ). In moving
frames the rotation parameter depends on the point.

41Siminos: dropped: As the symmetries commute with dynamics, we can evolve a solution x(τ)
for as long as we like, and then rotate it to any equivalent point (see figure 10.11) on its group orbit,

42Siminos: dropped: any time and any way we like.
43Siminos: rephrased:
44Predrag: use FigSrc/xfig/PCunrot.fig to draw z axis, a point at θ a circle, and a slice cutting the

circle.
45Siminos: Condition (10.50) is trivially satisfied for points in Fix(G) but does not lead to solu-

tions for the group parameters (or for the case of Fix(H), where H ⊂ G and H is not finite, it leads
to solutions for M < N of the parameters). So I’ve dropped: The G-invariant subspaces are always
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moving frame
post-processing

Figure 10.13: Method of moving frames for a flow
SO(2)-equivariant under (10.24) with slice through
x̂′ = (0, 1, 0, 0, 0), group tangent t′ = (1, 0, 0, 0, 0).
The clockwise orientation condition restricts the slice
to half-hyperplane x̂1 = 0, x̂2 > 0. A trajectory started
on the slice at x̂(0), evolves to a state space point with
a non-zero x1(t1). Compute the polar angle φ1 of x(t1)
in the (x1, x2) plane. Rotate x(t1) clockwise by φ1 to
x̂(t1) = g(−φ1) x(t1), so that the equivalent point on the
circle lies on the slice, x̂1(t1) = 0. Repeat for all sample
points x(ti) along the trajectory.

τ

τ

τ

τ

1x

θ1

θ2

2x(  )

1x(  )

2       2x =x 

2

1x(  )
x(0)

x(  )

the two solutions separated by π. 47 As for a Poincaré section (3.4), we add an
orientation condition, and select the intersection with the clockwise rotation angle
into the slice.

Definition: Moving frame. Assume that for a given x ∈ M and a given slice
M̂ there exists a unique group element g = g(x) that rotates x into the slice,
gx = x̂ ∈ M̂. The map that associates to a state space point x a Lie group action
g(x) is called a moving frame.

exercise B.1
exercise 10.30

As (x̂′)T t′a = 0 by the antisymmetry of Ta, the slice condition (10.50) fixes φ
for a given x by

0 = x̂T t′a = xT g(φ)T t′a , (10.51)

where gT denotes the transpose of g. 48 The method of moving frames can be
interpreted as a change of variables

x̂(τ) = g−1(τ) x(τ) , (10.52)

within the slice, as Ta x = 0 for x in an invariant subspace, see (10.27).
46Siminos: Serious notation problem that I am sure will confuse any reader but me and Predrag:

In CLe we have x and y as variables and their complex and imaginary parts as xi, yi. In the rest
of the text reduced space variables are currently y so we get a conflict whenever CLe is used as an
example, as in this figure. Is it ok to switch to using overline or tilde for reduced state quantities?
We do it anyway for CLe example but do not notify the reader.
PC: It did not look good any way I tried it, so I settled for y′s (somebody in the literature does it).
CLe is only an example, so I propose you use overline or tilde only there, explaining why, as you
do in this footnote

47Siminos: For KS this is not true as noted in siminos/blog so we need to work out a general
statement.
PC: as noted after that in siminos/blog, it might work (you need to test it) if one uses component
magnitudes bounded by the Casimirs. In general you are right. Will rephrase.

48Predrag: Figure 10.14: try x(t j) → xj? Perhaps confusing...
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that is passing to a frame of reference in which condition (10.51) is identically
satisfied, see example 10.12. Therefore the name ‘moving frame.’ Method of
moving frames should not be confused with the co-moving frames, such as the
one illustrated in figure 10.9. Each relative periodic orbit has its own co-moving
frame. In the method of moving frames (or the method of slices) one fixes a
stationary slice, and rotates all solutions back into the slice.

The method of moving frames is a post-processing method; trajectories are
computed in the full state space, then rotated into the slice whenever desired, with
the slice condition easily implemented. The slice group tangent t′ is a given vec-
tor, and g(φ) x is another vector, linear in x and a function of group parameters φ.
Rotation parameters φ are determined numerically, by a Newton method, through
the slice condition (10.51).

Figure 10.14 illustrates the method of moving frames for an SO(2) slice nor-
mal to the x2 axis. Looks innocent, except there is nothing to prevent a trajectory
from going through (x1, x2) = (0, 0), and what φ is one to use then? We can always
chose a finite time step that hops over this singularity, but in the continuous time
formulation we will not be so lucky. 49

How does one pick a slice point x̂′? A generic point x̂′ not in an invariant
subspace (on the complex Lorenz equations z axis, for example) should suffice
to fix a slice. The rules of thumb are much like the ones for picking Poincaré
sections, sect. 3.1.2. The intuitive idea is perhaps best visualized in the context
of fluid flows. Suppose the flow exhibits an unstable coherent structure that –
approximately– recurs often at different spatial dispositions. One can fit a ‘tem-
plate’ to one recurrence of such structure, and describe other recurrences as its
translations. A well chosen slice point belongs to such dynamically important
equivalence class (i.e., group orbit). A slice is locally isomorphic to M/G, in an
open neighborhood of x̂′. As is the case for the dynamical Poincaré sections, in
general a single slice does not suffice to reduce M→M/G globally.

The Euclidian product of two vectors x, y is indicated in (10.50) by x-transpose
times y, i.e., xT y =

∑d
i xiyi. More general bilinear norms 〈x, y〉 can be used, as long

as they are G-invariant, i.e., constant on each irreducible subspace. An example is
the quadratic Casimir (10.17).

Example 10.12 An SO(2) moving frame: (continued from example 10.2) The
SO(2) action

(x̂1, x̂2) = (x1 cos θ + x2 sin θ, −x1 sin θ + x2 cos θ) (10.53)

is regular on R2\{0}. Thus we can define a slice as a ‘hyperplane’ (here a mere line),
through x̂′ = (0, 1), with group tangent t′ = (1, 0), and ensure uniqueness by clockwise
rotation into positive x2 axis. Hence the reduced state space is the half-line x1 = 0, x̂2 =

x2 > 0. The slice condition then simplifies to x̂1 = 0 and yields the explicit formula for
the moving frame parameter

θ(x1, x2) = tan−1(x1/x2) , (10.54)

49Predrag: add example here
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i.e., the angle which rotates the point (x1, x2) back to the slice, taking care that tan−1

distinguishes (x1, x2) plane quadrants correctly. Substituting (10.54) back to (10.53)
and using cos(tan−1 a) = (1 + a2)−1/2, sin(tan−1 a) = a(1 + a2)−1/2 confirms x̂1 = 0. It also
yields an explicit expression for the transformation to variables on the slice,

x̂2 =

√
x2

1 + x2
2 . (10.55)

This was to be expected as SO(2) preserves lengths, x2
1 + x2

2 = x̂2
1 + x̂2

2. If dynamics is
in plane and SO(2) equivariant, the solutions can only be circles of radius (x2

1 + x2
2)1/2,

so this is the “rectification” of the harmonic oscillator by a change to polar coordinates,
example B.1. Still, it illustrates the sense in which the method of moving frames yields
group invariants. (E. Siminos)

The slice condition (10.50) fixes N directions; the remaining vectors(x̂N+1 . . . x̂d)
span the slice hyperplane. They are d − N fundamental invariants, in the sense
that any other invariant can be expressed in terms of them, and they are function-
ally independent. Thus they serve to distinguish orbits in the neighborhood of the
slice-fixing point x̂′, i.e., two points lie on the same group orbit if and only if all
the fundamental invariants agree.

10.4.2 Dynamics within a slice

I made a wrong mistake.
—Yogi Berra

As an alternative to the post-processing approach of the preceding sections, we
can proceed as follows: Split up the integration into a sequence of finite time
steps, each followed by a rotation of the final point (and the whole coordinate
frame with it; the ‘moving frame’) 50 such that the next segment’s initial point
is in the slice fixed by a point x̂′, see figure 10.14. 51 It is tempting to see what
happens if the steps are taken infinitesimal. As we shall see, we do get a flow
restricted to the slice, but at a price. 52

Using decomposition (10.49) one can always write the full state space tra-
jectory as x(τ) = g(τ) x̂(τ), where the (d−N)-dimensional reduced state space
trajectory x̂(τ) is to be fixed by some condition, and g(τ) is then the corresponding
curve on the N-dimensional group manifold of the group action that rotates x̂ into
x at time τ. The time derivative is then ẋ = v(gx̂) = ġx̂+gv̂, with the reduced state
space velocity field given by v̂ = dx̂/dt. Rewriting this as v̂ = g−1v(g x̂) − g−1ġ x̂
and using the equivariance condition (10.29) leads to

v̂ = v − g−1ġ x̂ .

50Predrag: reinstated ‘coordinate frame’ - it was there because Rebecca rotated different trajec-
tories by different angles

51Predrag: can you now also rewrite the captions of figure 10.13 and figure 10.14?
52Siminos: Why does x1 axis point downwards? PC: right hand rule; if x2 gets rotated 90 deg

clockwise, x1 axis point downwards. It’s because of “The entire state space is then rotated (hence
‘moving frame’)” statement that you keep censoring. Please reinstate correct arrow in figure 10.13,
which is hard to understand anyway. We’ll have to go 3-dimensional.
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group!orbit, sliceFigure 10.14: Method of moving frames for a flow
SO(2)-equivariant under (10.24) with slice through
x̂′ = (0, 1, 0, 0, 0), group tangent t′ = (1, 0, 0, 0, 0).
The clockwise orientation condition restricts the slice
to half-hyperplane x̂1 = 0, x̂2 > 0. A trajectory started
on the slice at x̂(0), evolves to a state space point with
a non-zero x1(t1). Compute the polar angle φ1 of x(t1)
in the (x1, x2) plane. Rotate x(t1) clockwise by φ1 to
x̂(t1) = g(−φ1) x(t1), so that the equivalent point on the
circle lies on the slice, x̂1(t1) = 0. Thus after every
finite time step followed by a rotation the trajectory
restarts from the x̂1(tk) = 0 reduced state space.

2x(t )

1x(t ) θ2

θ1

x =y 2       21y(t )
2y(t )

x1

y(0)

The Lie group element (10.10) and its time derivative describe the group tangent
flow

g−1ġ = g−1 d
dt

eφ·T = φ̇ · T .

This is the group tangent velocity g−1ġ x̂ = φ̇ · t(x̂) evaluated at the point x̂, i.e.,
with g = 1 (see figure 10.3). The flow v̂ = dx̂/dt in the (d−N) directions transverse ⇓PRIVATE

⇑PRIVATE
to the group flow is now obtained by subtracting the flow along the group tangent
direction, 53

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) , (10.56)

for any factorization (10.49) of the flow of form x(τ) = g(τ) x̂(τ). To integrate
these equations we first have to fix a particular flow factorization by imposing
conditions on x̂(τ), and then integrate phases φ(τ) on a given reduced state space
trajectory x̂(τ).

exercise 10.31
exercise 10.32

Here we demand that the reduced state space is confined to a hyperplane slice.
Substituting (10.56) into the time derivative of the fixed slice condition (10.51), 54

v̂(x̂)T t′a = v(x̂)T t′a − φ̇a · t(x̂)T t′a = 0 ,

yields the equation for the group phases flow φ̇ for the slice fixed by x̂′, together
with the reduced state space M̂ flow v̂(x̂): 55

v̂(x̂) = v(x̂) − φ̇(x̂) · t(x̂) , x̂ ∈ M̂ (10.57)

φ̇a(x̂) =
v(x̂)T t′a
t(x̂)T · t′

. (10.58)

53Predrag: link exercises given here
54Predrag: explain that we have used “ Ta

T Tb =
∑
α C(α)

2 δab 11(α) ”
55Predrag: open problem: show that in the presence of discrete symmetries, φ̇a = 0 is one of the

solutions
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Figure 10.15: A slice fixed by taking as a tem-
plate a point on the complex Lorenz equations
relative equilibrium group orbit, x̂′ = xTW1. (a)
The strange attractor of figure 10.1 in the reduced
state space of (10.57), {x1, x2, z} projection. (b)
{x2, y2, z} projection. The reduced state space com-
plex Lorenz flow strange attractor of figure 10.1
now exhibits a discontinuity due to the vanishing
denominator in (10.59).

(a) (b)

Each group orbit Mx = {g x | g ∈ G} is an equivalence class; method of slices
represents the class by its single slice intersection point x̂. By construction v̂T t′ =
0, and the motion stays in the (d−N)-dimensional slice. We have thus replaced the
original dynamical system {M, f } by a reduced system {M̂, f̄ }.

In the pattern recognition and ‘template fitting’ settings (10.58) is called the
‘reconstruction equation.’ Integrated together, the reduced state space trajectory

exercise 10.33
exercise 10.35(10.57) and g(τ) = exp{φ(τ) · T}, the integrated phase (10.58), reconstruct the full

state space trajectory x(τ) = g(τ) x̂(τ) from the reduced state space trajectory x̂(τ),
so no information about the flow is lost in the process of symmetry reduction. 56

Example 10.13 A slice for complex Lorenz flow. (continuation of example 10.6) Here
we can use the fact that

t(x̂)T · t′ = x̄T TT · T x̂′ = x̄1x′1 + x̄2x′2 + ȳ1y′1 + ȳ2y′2

is the dot-product restricted to the m = 1 4-dimensional representation of SO(2). A
generic x̂′ can be brought to form x̂′ = (0, 1, y′1, y

′
2, z) by a rotation and rescaling. Then

Tx̂′ = (1, 0, y′2,−y′1, 0), and

v(x̄) · t′

t(x̄) · t′
= −

v1 + v3y′2 − v4y′1
x̄2 + ȳ1y′1 + ȳ2y′2

. (10.59)

57 A long time trajectory of (10.57) with x̂′ on the relative equilibrium TW1 group orbit
is shown in figure 10.15. As initial condition we chose the initial point (10.38) on the
unstable manifold of TW1, rotated back to the slice by angle φ as prescribed by (10.51).
We show the part of the trajectory for t ∈ [70, 100]. The relative equilibrium TW1, now an
equilibrium of the reduced state space dynamics, organizes the flow into a Rössler type
attractor (see figure 2.6). The denominator in (10.58) vanishes and the phase velocity
φ̇(x̂) diverges whenever the direction of group action on the reduced state space point
is perpendicular to the direction of group action on the slice point x̂ ′. While the reduced
state space flow appears continuous in the {x1, x2, z} projection, figure 10.15 (a), this
singularity manifests itself as a discontinuity in the {x2, y2, z} projection, figure 10.15 (b).
The reduced state space complex Lorenz flow strange attractor of figure 10.1 now

56Predrag: add Siminos text on multiple sections?
57Siminos: Why rescale and rotate a point like this? What does it buy us? I consider dropping

this. PC: It tells you that 2 numbers suffice to fix the Complex Lorenz flow slice, not 5. Did you
know that? Will not help us much for KS.
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Figure 10.16: Poincaré section through a slice fixed
by a point on the complex Lorenz equations relative
equilibrium group orbit, x̂′ = xTW1, as in figure 10.15,
{x1, x2, z} projection.

exhibits a discontinuity whenever the trajectory crosses this 3-dimensional subspace.
58

Slice flow equations (10.57) and (10.58) are pretty, but there is a trouble in
the paradise. The slice flow encounters singularities in subsets of state space, with
phase velocity φ̇ divergent whenever the denominator in (10.59) changes sign, see
{x2, y2, z} projection of figure 10.15 (b). Hence a single slice does not in general
suffice to cover M/G globally. ⇓PRIVATE

10.4.3 Poincaré: slice and section

Taking the infinitesimal time step limit of the method of moving frames led to an
elegant differential equation for the reduced flow, but only in an open neighbor-
hood of the slice-fixing point x̂′. The apparent divergences of φ̇ are artifacts of a
particular choice of a slice, and not genuine divergences. For the finite time steps
method of moving frames there is no such problem, as long as we chose time steps
that hop over the regions where φ̇ diverges. This suggests the next idea. Instead of
the creeping along in infinitesimal time steps, let us go to the other extreme, and
take the longest possible leap in time: define a Poincaré section within the slice,
taking to heart the wise advice of sect. 3.1.2, and leap from section to section. If
the section is placed away from the slice singularity regions, nice return maps may
follow. 59

Example 10.14 Slice and section for complex Lorenz flow. Here we can use the
fact that

58Siminos: What’s the dimension of the subspace? I don’t see any discontinuity in fig-
ure 10.15 (b). I don’t think there is such an issue with CLe. PC: Gawd - all that blogging to
no avail. The subspace is huge, one dimension less than the full space (you just need the two tan-
gents to be normal), one condition in 5 dimensions. Last summer you lulled me into believing that
if one uses relative equilibrium point as slice point, there is no discontinuity for Complex Lorenz
flow, but when I computed it I found that there is one, just as bad as in polar coordinates and in
Wilczak-Siminos-Poincaré choice of slice point. It is the V-shaped plane in figure 10.15 (b), you
can turn it around if you run my mathematica code for it.

59Predrag: Use Siminos thesis Sect 4.2.6.3 here?
create figure 10.16

continuous - 15june2012 boyscout version14.4, Mar 19 2013



CHAPTER 10. RELATIVITY FOR CYCLISTS 232

group!orbit, slice
invariant!polynomial

basis
G-invariant@“Group-

invariant!polynomial
basis

syzygy
SO(2)@SO(2)
invariant!polynomial

basis!SO(2)@SO(2)
image space

A long time trajectory of (10.57) with x̂′ on the relative equilibrium TW1 group
orbit is shown in figure 10.15.

As initial condition we chose the initial point (10.38) on the unstable manifold of
TW1, rotated back to the slice by angle φ as prescribed by (10.51).

In figure 10.16 we show the part of the trajectory for t ∈ [70, 100].

There are no artificial, slice induced singularities within this section, and the
relative equilibrium TW1, now an equilibrium of the reduced state space dynamics,
organizes the flow into a Rössler type Poincaré section (see figure 2.6). 60

⇑PRIVATE

10.5 Method of images: Hilbert bases

(E. Siminos and P. Cvitanović)

Erudite reader might wonder: why all this slicing and dicing, when the problem
of symmetry reduction had been solved by Hilbert and Weyl nearly a century
ago? Indeed, the most common approach to symmetry reduction is by means
of a Hilbert invariant polynomial bases (9.27), motivated intuitively by existence
of such nonlinear invariants as the rotationally-invariant length r2 = x2

1 + x2
2 +

· · · + x2
d, or, in Hamiltonian dynamics, the energy function. One trades in the

equivariant state space coordinates {x1, x2, · · · , xd} for a non-unique set of m ≥ d
polynomials {u1, u2, · · · , um} invariant under the action of the symmetry group.
These polynomials are linearly independent, but functionally dependent through
m − d + N relations called syzygies.

Example 10.15 An SO(2) Hilbert basis. (continued from example 9.18) The
Hilbert basis

u1 = x2
1 + x2

2 , u2 = y2
1 + y2

2 ,

u3 = x1y2 − x2y1 , u4 = x1y1 + x2y2 ,

u5 = z . (10.60)

is invariant under the SO(2) action on a 5-dimensional state space (10.24). That im-
plies, in particular, that the image of the full state space relative equilibrium TW 1 group
orbit of figure 10.5 is the stationary equilibrium point EQ1, see figure 10.17. The poly-
nomials are linearly independent, but related through one syzygy,

u1u2 − u2
3 − u2

4 = 0 , (10.61)

yielding a 4-dimensional M/SO(2) reduced state space, a symmetry-invariant repre-
sentation of the 5-dimensional SO(2) equivariant dynamics. (continued in exam-
ple 10.16)

The dynamical equations follow from the chain rule

u̇i =
∂ui

∂x j
ẋ j , (10.62)

60Predrag: draw figure 10.16
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Figure 10.17: Invariant ‘image’ of complex Lorenz
flow, figure 10.1, projected onto the invariant polyno-
mials basis (10.60). Note the unstable manifold con-
nection from the equilibrium EQ0 at the origin to the
strange attractor controlled by the rotation around rela-
tive equilibrium EQ1 (the reduced state space image of
TW1); as in the Lorenz flow figure 3.4, natural measure
close to EQ0 is vanishingly small but non-zero.

u3

u4

z

Q1

upon substitution {x1, x2, · · · , xd} → {u1, u2, · · · , um}. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions computed in the original,
equivariant basis in terms of these invariant polynomials.

exercise 10.15

Example 10.16 Complex Lorenz equations in a Hilbert basis. (continuation of
example 10.15) Substitution of (10.2) and (10.60) into (10.62) yields complex Lorenz
equations in terms of invariant polynomials:

u̇1 = 2σ (u4 − u1) ,

u̇2 = −2 ( u2 − ρ2 u3 − (ρ1 − u5) u4) ,

u̇3 = −(σ + 1) u3 + ρ2 u1 + e u4 , (10.63)

u̇4 = −(σ + 1) u4 + (ρ1 − u5) u1 + σ u2 − e u3 ,

u̇5 = u4 − b u5 .

As far as visualization goes, we need neither construct nor integrate the invariant dy-
namics (10.63). It suffices to integrate the original, unreduced flow of Figure 10.1, but
plot the solution in the image space, i.e., ui invariant, Hilbert polynomial coordinates,
as in figure 10.17. (continued in example 10.17)

Reducing dimensionality of a dynamical system by elimination of variables
through inclusion of syzygies such as (10.61) introduces singularities. Such elimi-
nation of variables, however, is not needed for visualization purposes; syzygies
merely guarantee that the dynamics takes place on a submanifold in the projec-
tion on the {u1, u2, · · · , um} coordinates. However, when one reconstructs the dy-
namics in the original space M from its image M/G, the transformations have
singularities at the fixed-point subspaces of the isotropy subgroups in M.

Example 10.17 Hilbert basis singularities. (continuation of example 10.16) When
one takes syzygies into account in rewriting a dynamical system, singularities are intro-
duced. For instance, if we solve (10.61) for u2 and substitute into (10.63), the reduced
set of equations, 61

u̇1 = 2σ (u4 − u1)

u̇3 = −(σ + 1) u3 + ρ2 u1 + e u4

u̇4 = −(σ + 1) u4 + (ρ1 − u5) u1 + σ (u2
3 + u2

4)/u1 − e u3

u̇5 = u4 − b u5 , (10.64)

61Predrag: I removed u̇2 = −2
(

u2
3+u2

4
u1

− ρ2 u3 − (ρ1 − u5) u4

)
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Figure 10.18: Return map to the Poincaré section
u1 = u4 for complex Lorenz equations projected on
invariant polynomials (10.60). The return map coor-
dinate is the Euclidean arclength distance from TW1,
measured along the Poincaré section of its spiral-out
unstable manifold, as for the Lorenz flow return map
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is singular as u1 → 0. (E. Siminos)

Nevertheless we can now easily identify a suitable Poincaré section, guided
by the Lorenz flow examples of chapter 9, as one that contains the z-axis and
the image of the relative equilibrium TW1, here defined by the condition u1 =

u4. 62 As in example 11.4, we construct the first return map using as coordinate
the Euclidean arclength along the intersection of the unstable manifold of TW1

with the Poincaré surface of section, see figure 10.18. Thus the goals set into
the introduction to this chapter are attained: we have reduced the messy strange
attractor of figure 10.1 to a 1-dimensional return map. As will be explained in
example 11.4 for the Lorenz attractor, we now have the symbolic dynamics and
can compute as many relative periodic orbits of the complex Lorenz flow as we
wish, missing none.

What limits the utility of Hilbert basis methods are not such singularities, but
rather the fact that the algebra needed to determine a Hilbert basis becomes com-
putationally prohibitive as the dimension of the system or of the group increases.
Moreover, even if such basis were available, rewriting the equations in an invari-
ant polynomial basis seems impractical, so in practice Hilbert basis computations
appear not feasible beyond state space dimension of order ten. When our goal is
to quotient continuous symmetries of high-dimensional flows, such as the Navier-
Stokes flows, we need a workable framework. The method of moving frames of
sect. 10.4 is one such minimalist alternative. 63

Résumé

The message: If a dynamical systems has a symmetry, use it! 64 Here we have
described how, and offered two approaches to continuous symmetry reduction.
In the method of slices one fixes a ‘slice’ (x̂ − x̂′)T t′ = 0, a hyperplane normal
to the group tangent t′ that cuts across group orbits in the neighborhood of the

62Predrag: recheck: is u1 = u4 really all it takes to include the relative equilibrium?
63Predrag: add Siminos basis for KS as an exercise
64Predrag: Symmetries foliate states space into group orbits, and time evolution then sweeps out

a relative orbit, union of trajectories equivalent up to a symmetry
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slice-fixing point x̂′. Each class of symmetry-equivalent points is represented by
a single point, with the symmetry-reduced dynamics in the reduced state space
M/G given by (10.57):

v̂ = v − φ̇ · t , φ̇a = (vT t′a)/(t · t′) .

In practice one runs the dynamics in the full state space, and post-processes the
trajectory by the method of moving frames. In the Hilbert polynomial basis ap-
proach one transforms the equivariant state space coordinates into invariant ones,
by a nonlinear coordinate transformation

{x1, x2, · · · , xd} → {u1, u2, · · · , um} + {syzygies} ,

and studies the invariant ‘image’ of dynamics (10.62) rewritten in terms of invari-
ant coordinates.

Continuous symmetry reduction is considerably more involved than the dis-
crete symmetry reduction to a fundamental domain of chapter 9. Slices are only
local sections of group orbits, and Hilbert polynomials are non-unique and diffi-
cult to compute for high-dimensional flows. However, there is no need to actually
recast the dynamics in the new coordinates: either approach can be used as a vi-
sualization tool, with all computations carried out in the original coordinates, and
then, when done, projecting the solutions onto the symmetry reduced state space
by post-processing the data. The trick is to construct a good set of symmetry
invariant Poincaré sections (see sect. 3.1), and that is always a dark art, with or
without a symmetry.

We conclude with a few general observations: Higher dimensional dynamics
requires study of compact invariant sets of higher dimension than 0-dimensional
equilibria and 1-dimensional periodic orbits studied so far. In sect.2.1.1 we made
an attempt to classify ‘all possible motions:’ (1) equilibria, (2) periodic orbits, (3)
everything else. Now one can discern in the fog of dynamics an outline of a more
serious classification - long time dynamics takes place on the closure of a set of
all invariant compact sets preserved by the dynamics, and those are: (1) 0-dimens-
ional equilibria MEQ , (2) 1-dimensional periodic orbits Mp, (3) global symmetry
induced N-dimensional relative equilibria MTW , (4) (N+1)-dimensional relative
periodic orbits Mp, (5) terra incognita. We have some inklings of the ‘terra incog-
nita:’ for example, in symplectic symmetry settings one finds KAM-tori, and in
general dynamical settings we encounter partially hyperbolic invariant M-tori,
isolated tori that are consequences of dynamics, not of a global symmetry. They
are harder to compute than anything we have attempted so far, as they cannot be
represented by a single relative periodic orbit, but require a numerical computa-
tion of full M-dimensional compact invariant sets and their infinite-dimensional
linearized Jacobian matrices, marginal in M dimensions, and hyperbolic in the
rest. We expect partially hyperbolic invariant tori to play important role in high-
dimensional dynamics. In this chapter we have focused on the simplest example
of such compact invariant sets, where invariant tori are a robust consequence of
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a global continuous symmetry of the dynamics. The direct product structure of a
global symmetry that commutes with the flow enables us to reduce the dynamics
to a desymmetrized (d−1−N)-dimensional reduced state space M/G.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of ‘periodic orbit’ theory
from unstable 1-dimensional closed periodic orbits to unstable (N+1)-dimension-
al compact manifolds Mp invariant under continuous symmetries, there are either
no or proportionally few periodic orbits. In presence of a continuous symmetry,
likelihood of finding a periodic orbit is zero. Relative periodic orbits are almost
never eventually periodic, i.e., they almost never lie on periodic trajectories in
the full state space, so looking for periodic orbits in systems with continuous
symmetries is a fool’s errand.

However, dynamical systems are often equivariant under a combination of
continuous symmetries and discrete coordinate transformations of chapter9, for
example the orthogonal group O(n). In presence of discrete symmetries relative
periodic orbits within discrete symmetry-invariant subspaces are eventually peri-
odic. Atypical as they are (no generic chaotic orbit can ever enter these discrete
invariant subspaces) they will be important for periodic orbit theory, as there the
shortest orbits dominate, and they tend to be the most symmetric solutions.

chapter 21

Commentary

Remark 10.1 A brief history of relativity, or, ‘Desymmetrization and its discontents’
(after Civilization and its discontents; continued from remark 9.1): The literature on
symmetries in dynamical systems is immense, most of it deliriously unintelligible. Would
it kill them to say ‘symmetry of orbit p’ instead of carrying on about ‘isotropies, quo-
tients, factors, normalizers, centralizers and stabilizers?’ [9, 10, 8, 15] Group action being
‘free, faithful, proper, regular?’ Symmetry-reduced state space being ‘orbitfold?’ For the
dynamical systems applications at hand we need only basic the Lie group facts, on the
level of any standard group theory textbook [ 2]. We found Roger Penrose [3] introduction
to the subject both enjoyable and understandable. Chapter 2. of ref. [ 4] offers a peda-
gogical introduction to Lie groups of transformations, and Nakahara [ 5] to Lie deriva-
tives and brackets. The presentation given here is in part based on Siminos thesis [ 6]
and ref. [7]. The reader is referred to the monographs of Golubitsky and Stewart [ 8],
Hoyle [9], Olver [11], Bredon [12], and Krupa [13] for more depth and rigor than would
be wise to wade into here.

Relative equilibria and relative periodic solutions are related by symmetry reduction
to equilibria and periodic solutions of the reduced dynamics. They appear in many physi-
cal applications, such as celestial mechanics, molecular dynamics, motion of rigid bodies,
nonlinear waves, spiralling patterns, and fluid mechanics. A relative equilibrium is a solu-
tion which travels along an orbit of the symmetry group at constant speed; an introduction
to them is given, for example, in Marsden [81]. According to Cushman, Bates [14] and
Yoder [15], C. Huygens [16] understood the relative equilibria of a spherical pendulum
many years before publishing them in 1673. A reduction of the translation symmetry
was obtained by Jacobi (for a modern, symplectic implementation, see Laskar et al. [ 17]).
In 1892 German sociologist Vierkandt [18] showed that on a symmetry-reduced space

continuous - 15june2012 boyscout version14.4, Mar 19 2013

http://en.wikipedia.org/wiki/Civilization_and_Its_Discontents
http://alo.uibk.ac.at/webinterface/library/ALO-BOOK_V01?objid=12421&zoom=6


CHAPTER 10. RELATIVITY FOR CYCLISTS 237

invariant!polynomial
basis

G-invariant@G-
invariant!polynomial
basis

Cartan, É.

(the constrained velocity phase space modulo the action of the group of Euclidean mo-
tions of the plane) all orbits of the rolling disk system are periodic [ 19]. According to
Chenciner [20], the first attempt to find (relative) periodic solutions of the N-body prob-
lem was the 1896 short note by Poincaré [21], in the context of the 3-body problem.
Poincaré named such solutions ‘relative.’ Relative equilibria of the N-body problem
(known in this context as the Lagrange points, stationary in the co-rotating frame) are
circular motions in the inertial frame, and relative periodic orbits correspond to quasiperi-
odic motions in the inertial frame. For relative periodic orbits in celestial mechanics see
also ref. [22]. A striking application of relative periodic orbits has been the discovery of
“choreographies” in the N-body problems [23, 24, 25].

The modern story on equivariance and dynamical systems starts perhaps with S.
Smale [26] and M. Field [27], and on bifurcations in presence of symmetries with Ru-
elle [28]. Ruelle proves that the stability matrix/Jacobian matrix evaluated at an equilib-
rium/fixed point x ∈ MG decomposes into linear irreducible representations of G, and that
stable/unstable manifold continuations of its eigenvectors inherit their symmetry proper-
ties, and shows that an equilibrium can bifurcate to a rotationally invariant periodic orbit
(i.e., relative equilibrium).

Gilmore and Lettelier monograph [29] offers a very clear, detailed and user friendly
discussion of symmetry reduction by means of Hilbert polynomial bases (do not look
for ‘Hilbert’ in the index, though). Vladimirov, Toronov and Derbov [ 30] use an invari-
ant polynomial basis different from (10.60) to study bounding manifolds of the symme-
try reduced complex Lorenz flow and its homoclinic bifurcations. There is no general
strategy how to construct a Hilbert basis; clever low-dimensional examples have been
constructed case-by-case. 65 The example 10.15, with one obvious syzygy, is also mis-
leading - syzygies proliferate rapidly with increase in dimensionality. The determination
of a Hilbert basis appears computationally prohibitive for state space dimensions larger
than ten [31, 32], and rewriting the equations of motions in invariant polynomial bases
appears impractical for high-dimensional flows. Thus, by 1920’s the problem of rewrit-
ing equivariant flows as invariant ones was solved by Hilbert and Weyl, but at the cost
of introducing largely arbitrary extra dimensions, with the reduced flows on manifolds of
lowered dimensions, constrained by sets of syzygies. Cartan found this unsatisfactory,
and in 1935 he introduced [33] the notion of a moving frame, a map from a manifold to
a Lie group, which seeks no invariant polynomial basis, but instead rewrites the reduced
M/G flow in terms of d − N fundamental invariants defined by a generalization of the
Poincaré section, a slice that cuts across all group orbits in some open neighborhood. Fels
and Olver view the method as an alternative to the Gröbner bases methods for computing
Hilbert polynomials, to compute functionally independent fundamental invariant bases
for general group actions (with no explicit connection to dynamics, differential equations
or symmetry reduction). ‘Fundamental’ here means that they can be used to generate all
other invariants. Olver’s monograph [11] is pedagogical, but does not describe the origi-
nal Cartan’s method. Fels and Olver papers [34, 35] are lengthy and technical. They refer
to Cartan’s method as method of ‘moving frames’ and view it as a special and less rigor-
ous case of their ‘moving coframe’ method. The name ‘moving coframes’ arises through
the use of Maurer-Cartan form which is a coframe on the Lie group G, i.e., they form a
pointwise basis for the cotangent space. In refs. [6, 7] the invariant bases generated by
the moving frame method are used as a basis to project a full state space trajectory to the
slice (i.e., the M/G reduced state space).

The basic idea of the ‘method of slices’ is intuitive and frequently reinvented, often
under a different name; for example, it is stated without attribution as the problem 1.
of Sect. 6.2 of Arnol’d Ordinary Differential Equations [36]. The factorization (10.49)

65Predrag: add the problem worked out by http://www.maths.usyd.edu.au/u/dullin/ ?
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is stated on p. 31 of Anosov and Arnol’d [37], who note, without further elaboration,
that in the vicinity of a point which is not fixed by the group one can reduce the order
of a system of differential equations by the dimension of the group. Ref. [ 38] refers to
symmetry reduction as ‘lowering the order.’ For the definition of ‘slice’ see, for example,
Chossat and Lauterbach [32]. Briefly, a submanifold M x̂′ containing x̂′ is called a slice
through x̂′ if it is invariant under isotropy G x̂′(Mx̂′ ) =Mx̂′ . If x̂′ is a fixed point of G, than
slice is invariant under the whole group. The slice theorem is explained, for example,
in Encyclopaedia of Mathematics. Slices tend to be discussed in contexts much more
difficult than our application - symplectic groups, sections in absence of global charts,
non-compact Lie groups. We follow refs. [39] in referring to a local group-orbit section as
a ‘slice.’ Refs. [12, 40] and others refer to global group-orbit sections as ‘cross-sections,’ a
term that we would rather avoid, as it already has a different and well established meaning
in physics. Duistermaat and Kolk [41] refer to ‘slices,’ but the usage goes back at least
to Guillemin and Sternberg [40] in 1984, Palais [42] in 1961 and Mastow [43] in 1957.
Bredon [12] discusses both cross-sections and slices. Guillemin and Sternberg [40] define
the ‘cross-section,’ but emphasize that finding it is very rare: “existence of a global section
is a very stringent condition on a group action. The notion of ‘slice’ is weaker but has a
much broader range of existence.”

Several important fluid dynamics flows exhibit continuous symmetries which are ei-
ther SO(2) or products of SO(2) groups, each of which act on different coordinates of
the state space. The Kuramoto-Sivashinsky equations [3, 4], plane Couette flow [31, 15,
55, 1], and pipe flow [56, 57] all have continuous symmetries of this form. In the 1982
paper Rand [58] explains how presence of continuous symmetries gives rise to rotating
and modulated rotating (quasiperiodic) waves in fluid dynamics. Haller and Mezić [ 59]
reduce symmetries of three-dimensional volume-preserving flows and reinvent method
of moving frames, under the name ‘orbit projection map.’ There is extensive literature
on reduction of symplectic manifolds with symmetry; Marsden and Weinstein 1974 ar-
ticle [60] is an important early reference. Then there are studies of the reduced phase
spaces for vortices moving on a sphere such as ref. [61], and many, many others.

Reaction-diffusion systems are often equivariant with respect to the action of a fi-
nite dimensional (not necessarily compact) Lie group. Spiral wave formation in such
nonlinear excitable media was first observed in 1970 by Zaikin and Zhabotinsky [ 44].
Winfree [45, 46] noted that spiral tips execute meandering motions. Barkley and collabo-
rators [47, 48] showed that the noncompact Euclidean symmetry of this class of systems
precludes nonlinear entrainment of translational and rotational drifts and that the inter-
action of the Hopf and the Euclidean eigenmodes leads to observed quasiperiodic and
meandering behaviors. Fiedler, in the influential 1995 talk at the Newton Institute, and
Fiedler, Sandstede, Wulff, Turaev and Scheel [49, 50, 51, 52] treat Euclidean symme-
try bifurcations in the context of spiral wave formation. The central idea is to utilize
the semidirect product structure of the Euclidean group E(2) to transform the flow into a
‘skew product’ form, with a part orthogonal to the group orbit, and the other part within
it, as in (10.57). They refer to a linear slice M̂ near relative equilibrium as a Palais slice,
with Palais coordinates. As the choice of the slice is arbitrary, these coordinates are
not unique. According to these authors, the skew product flow was first written down by
Mielke [53], in the context of buckling in the elasticity theory. However, this decompo-
sition is no doubt much older. For example, it was used by Krupa [ 13, 32] in his local
slice study of bifurcations of relative equilibria. Biktashev, Holden, and Nikolaev [ 54]
cite Anosov and Arnol’d [37] for the ‘well-known’ factorization (10.49) and write down
the slice flow equations (10.57).

Neither Fiedler et al. [49] nor Biktashev et al. [54] implemented their methods nu-
merically. That was done by Rowley and Marsden for the Kuramoto-Sivashinsky [ 39] and
the Burgers [62] equations, and Beyn and Thümmler [63, 64] for a number of reaction-
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complex Lorenz flowdiffusion systems, described by parabolic partial differential equations on unbounded do-
mains. We recommend the Barkley paper [48] for a clear explanation of how the Eu-
clidean symmetry leads to spirals, and the Beyn and Thümmler paper [ 63] for inspira-
tional concrete examples of how ‘freezing’/‘slicing’ simplifies the dynamics of rotational,
traveling and spiraling relative equilibria. Beyn and Thümmler write the solution as a
composition of the action of a time dependent group element g(t) with a ‘frozen,’ in-slice
solution û(t) (10.49). In their nomenclature, making a relative equilibrium stationary by
going to a co-moving frame is ‘freezing’ the traveling wave, and the imposition of the
phase condition (i.e., slice condition (10.50)) is the ‘freezing ansatz.’ They find it more
convenient to make use of the equivariance by extending the state space rather than reduc-
ing it, by adding an additional parameter and a phase condition. The ‘freezing ansatz’ [ 63]
is identical to the Rowley and Marsden [62] and our slicing, except that ‘freezing’ is for-
mulated as an additional constraint, just as when we compute periodic orbits of ODEs we
add Poincaré section as an additional constraint, i.e., increase the dimensionality of the
problem by 1 for every continuous symmetry (see sect. 13.4).

section 13.4

Derivation of sect. 10.4.2 follows most closely Rowley and Marsden [62] who, in
the pattern recognition setting refer to the slice point as a ‘template,’ and call ( 10.58)
the ‘reconstruction equation’ [81, 65]. They also describe the ‘method of connections’
(called ‘orthogonality of time and group orbit at successive times’ in ref. [ 63]), for which
the reconstruction equation (10.58) denominator is t(x̂)T · t(x̂) and thus nonvanishing as
long as the action of the group is regular. This avoids the spurious slice singularities, but
it is not clear what the ‘method of connections’ buys us otherwise. It does not reduce
the dimensionality of the state space, and it accrues ‘geometric phases’ which prevent
relative periodic orbits from closing into periodic orbits. Geometric phase in laser equa-
tions, including complex Lorenz equations, has been studied in ref. [ 66, 67, 69, 70, 71].
Another theorist’s temptation is to hope that a continuous symmetry would lead us to
a conserved quantity. However, Noether theorem requires that equations of motion be
cast in Lagrangian form and that the Lagrangian exhibits variational symmetries [ 72, 73].
Such variational symmetries are hard to find for dissipative systems.

Sect. 10.1.2 title ‘Lie groups for cyclists’ is bit of a joke in more ways than one.
First, ‘cyclist,’ ‘pedestrian’ throughout ChaosBook.org refer jokingly both to the title of
Lipkin’s Lie groups for pedestrians [74] and to our preoccupations with actual cycling.
Lipkin’s ‘pedestrian’ is fluent in Quantum Field Theory, but wobbly on Dynkin diagrams.
More to the point, it is impossible to dispose of Lie groups in a page of text. As a counter-
dote to the 1-page summary of sect. 10.1.2, consider reading Gilmore’s monograph [75]
which offers a quirky, personal and enjoyable distillation of a lifetime of pondering Lie
groups. As seems to be the case with any textbook on Lie groups, it will not help you with
the problem at hand, but it is the only place you can learn both what Galois actually did
when he invented the theory of finite groups in 1830, and what, inspired by Galois, Lie
actually did in his 1874 study of symmetries of ODEs. Gilmore also explains many things
that we pass over in silence here, such as matrix groups, group manifolds, and compact
groups.

One would think that with all this literature the case is shut and closed, but not so.
Applied mathematicians are inordinately fond of bifurcations, and almost all of the pre-
vious work focuses on equilibria, relative equilibria, and their bifurcations, and for these
problems a single slice works well. Only when one tries to describe the totality of chaotic
orbits does the non-global nature of slices become a serious nuisance.

(E. Siminos and P. Cvitanović)

Remark 10.2 Complex Lorenz equations (10.1) were introduced by Gibbon and
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McGuinness [76, 77] as a low-dimensional model of baroclinic instability in the atmo-
sphere. They are a generalization of Lorenz equations ( 2.13). Ning and Haken [78] have
shown that equations isomorphic to complex Lorenz equations also appear as a trunca-
tion of Maxwell-Bloch equations describing a single mode, detuned, ring laser. They set
e+ρ2 = 0 so that SO(2)-orbits of detuned equilibria exist [77]. Zeghlache and Mandel [?]
also use equations isomorphic to complex Lorenz equations with e+ρ 2 = 0 in their studies
of detuned ring lasers. This choice is ‘degenerate’ in the sense that it leads to non-generic
bifurcations. As existence of relative equilibria in systems with SO(2) symmetry is the
generic situation, we follow Bakasov and Abraham [79] who set ρ2 = 0 and e � 0 in
order to describe detuned lasers. Here, however, we are not interested in the physical ap-
plications of these equations; rather, we study them as a simple example of a dynamical
system with continuous (but no discrete) symmetries, with a view of testing methods of
reducing the dynamics to a lower-dimensional reduced state space. Complex Lorenz flow
examples and exercises in this chapter are based on E. Siminos thesis [6] and R. Wilczak
project report [80]. 66

Remark 10.3 Velocity vs. Speed Velocity is a vector, the rate at which the object
changes its position. Speed, or the magnitude of the velocity, is a scalar quantity which
describes how fast an object moves. We denote the rate of change of group phases, or
the phase velocity by the vector c = (φ̇1, · · · , φ̇N) = (c1, · · · , cN), a component for each
of the N continuous symmetry parameters. These are converted to state space velocity
components along the group tangents by

v(x) = c(t) · t(x) . (10.65)

For rotational waves these are called “angular velocities.”

Remark 10.4 Killing fields. The symmetry tangent vector fields discussed here are a
special case of Killing vector fields of Riemannian geometry and special relativity. If this
poetry warms the cockles of your heart, hang on. From wikipedia ( this wikipedia might
also be useful): A Killing vector field is a set of infinitesimal generators of isometries on
a Riemannian manifold that preserve the metric. Flows generated by Killing fields are
continuous isometries of the manifold. The flow generates a symmetry, in the sense that
moving each point on an object the same distance in the direction of the Killing vector
field will not distort distances on the object. A vector field X is a Killing field if the Lie
derivative with respect to X of the metric g vanishes:

LXg = 0 . (10.66)

67 Killing vector fields can also be defined on any (possibly nonmetric) manifoldM if we
take any Lie group G acting on it instead of the group of isometries. In this broader sense,
a Killing vector field is the pushforward of a left invariant vector field on G by the group
action. The space of the Killing vector fields is isomorphic to the Lie algebra g of G.

If the equations of motion can be cast in Lagrangian form, with the Lagrangian ex-
hibiting variational symmetries [72, 73], Noether theorem associates a conserved quantity
with each Killing vector. 68

⇓PRIVATE
66Predrag: looks like one should also read ref. [30]; they report on various return maps
67Predrag: some clip & paste math gibberish
68Predrag: combine this with the ChaosBook Noether remark
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Flotsam: Predrag 16mar2012, 8apr2012 -

In general relativity “symmetry reduction” is a method of finding exact solutions by
imposing symmetry conditions to obtain a reduced system of equations, i.e., restricting
the set of solutions considered to an invariant subspace, not what is meant by “symmetry
reduction” here.

Several symmetry reduction schemes are reviewed in ref. [ 7]. Here we shall describe
the method of slices [39, 63, ?], the only method that we find practical for a symmetry
reduction of chaotic solutions of highly nonlinear flows, see sect. ??.

In the method of slices the symmetry reduction is achieved by cutting the group or-
bits with a finite set of hyperplanes, one for each continuous group parameter, with each
group orbit of symmetry-equivalent points represented by a single point, its intersection
with the slice. The procedure is akin to (but distinct from) cutting across continuous-time
parametrized trajectories by means of Poincaré sections. As is the case for Poincaré sec-
tions, choosing a ‘good’ slice is a dark art. Our guiding principle is to chose a slice such
that the distance between a ‘template’ state x̂′ and nearby group orbits is minimized, i.e.,
identify the point x̂ on the group orbit (7.19) of a nearby state x which is the closest match
to the template point x̂′.

Lan has some relative equilibria (traveling waves) for KS in his thesis [?], and for
complex LG in a paper on “MAWs.” Viswanath [31] found them in the plane Couette
problem. Siminos and Davidchack have for cell size L = 22 some equilibria. (E. ⇑PRIVATE
Siminos and P. Cvitanović)

Exercises boyscout

10.1. Visualizations of the 5-dimensional complex Lorenz
flow: Plot complex Lorenz flow projected on any three
of the five {x1, x2, y1, y2, z} axes. Experiment with differ-
ent visualizations.

10.2. SO(2) rotations in a plane: Show by exponentiation
(10.10) that the SO(2) Lie algebra element T generates
rotation g in a plane,

g(θ) = eTθ = cos θ

(
1 0
0 1

)
+ sin θ

(
0 1
−1 0

)
=

(
cos θ sin θ
− sin θ cos θ

)
. (10.67)

10.3. Invariance under fractional rotations. Argue that if
the isotropy group of the velocity field v(x) is the discrete
subgroup Cm of SO(2) rotations about an axis (let’s say
the ‘z-axis’),

C1/mv(x) = v(C1/mx) = v(x) , (C1/m)m = e ,
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the only non-zero components of Fourier-transformed equa-
tions of motion are a jm for j = 1, 2, · · ·. Argue that the
Fourier representation is then the quotient map of the dy-
namics, M/Cm. (Hint: this sounds much fancier than
what is - think first of how it applies to the Lorenz sys-
tem and the 3-disk pinball.)

10.4. U(1) equivariance of complex Lorenz equations for fi-
nite angles: Show that the vector field in complex
Lorenz equations (10.1) is equivariant under (10.10), the
unitary group U(1) acting on R5 � C2 × R by

g(θ)(x, y, z) = (eiθx, eiθy, z) , θ ∈ [0, 2π) . (10.68)

(E. Siminos)

10.5. SO(2) equivariance of complex Lorenz equations for
finite angles: Show that complex Lorenz equations
(10.2) are equivariant under rotation for finite angles.

10.6. Stability matrix of complex Lorenz flow: Compute
the stability matrix (10.32) for complex Lorenz equations
(10.2).

10.7. SO(2) equivariance of complex Lorenz equations for
infinitesimal angles. Show that complex Lorenz equa-
tions are equivariant under infinitesimal SO(2) rotations.

10.8. A 2-mode SO(2)-equivariant flow: Complex Lorenz
equations (10.1) of Gibbon and McGuinness [76] have
a degenerate 4-dimensional subspace, with SO(2) acting
only in its lowest non-trivial representation. Here is a
possible model, still 5-dimensional, but with SO(2) act-
ing in the two lowest representations. Such models arise
as truncations of Fourier-basis representations of PDEs
on periodic domains. In the complex form, the simplest
such modification of complex Lorenz equations may be
the “2-mode” system

ẋ = −σx + σx∗y

ẏ = (ρ − z)x2 − ay

ż = −bz +
1
2

(
x2y∗ + x∗2y

)
, (10.69)

where x, y, ρ, a are complex and z, b,σ are real. Rewritten
in terms of real variables x = x1 + i x2 , y = y1 + i y2 this
is a 5-dimensional first order ODE system

ẋ1 = −σx1 + σ(x1y1 − x2y2)

ẋ2 = −σx2 + σ(x1y2 − x2y1)

ẏ1 = −y1 + ey2 + (ρ1 − z)(x2
1 − x2

2) − 2ρ2x1 x2

ẏ2 = −y2−ey1 + ρ2(x2
1 − x2

2) + (ρ1 − z)(2x1x2)

ż = −bz + (x2
1 − x2

2)y1 + 2x1x2y2 . (10.70)

Verify (10.70) by substituting x = x1 + i x2 , y = y1 + i y2,
ρ = ρ1+i ρ2, a = 1+i e into the complex 2-mode equations
(10.69).
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10.9. U(1) equivariance of 2-mode system for finite angles:
Show that 2-mode system (10.69) is equivariant under ro-
tation for finite angles.

10.10. SO(2) equivariance of the 2-mode system for infinites-
imal angles. Verify that the 2-mode system (10.70)
is equivariant under infinitesimal SO(2) rotations (10.24)
by showing that the stability matrix (4.3) for the system
is given by A =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ(y1 − 1) σy2 σx1 σx2 0
σy2 −σ(y1 + 1) −σx2 σx1 0

2ρ1x1 − 2ρ2x2 − 2x1z 2x2z − 2ρ2x1 − 2ρ1x2 −1 e x2
2 − x2

1
2ρ1x2 + 2ρ2x1 − 2x2z 2ρ1x1 − 2ρ2x2 − 2x1z −e −1 −2x1x2

2x1y1 + 2x2y2 2x1y2 − 2x2y1 x2
1 − x2

2 2x1x2 −b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (10.71)

and substituting the Lie algebra generator

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0
−1 0 0 0 0
0 0 0 2 0
0 0 −2 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10.72)

and the stability matrix (10.71) into the equivariance con-
dition (10.30).

10.11. Visualizations of the 5-dimensional 2-mode system: Plot
2-mode system projected on any three of the five {x 1, x2, y1, y2, z}
axes. For complex Lorenz flow numerical examples we
have set the parameters to ρ1 = 28, ρ2 = 0, b = 8/3, σ =
10, e = 1/10, but here you will have to play with them
until you find something that looks interestingly chaotic.
Experiment with different visualizations. It’s a big mess -
have no clue what parameters to take, what the trajectory
will do.

10.12. Discover the equivariance of a given flow: Sup-
pose you were given complex Lorenz equations, but no-
body told you they are SO(2) equivariant. More generally,
you might encounter a flow without realizing that it has a
continuous symmetry - how would you discover it? 69

10.13. Equilibria of complex Lorenz equations: Find all
equilibria of complex Lorenz equations. Hint: Equilibria
come either in the fixed Fix (G) subspace, or on a group
orbit.

10.14. More equilibria of complex Lorenz equations: In
exercise 10.13 we found only one equilibrium of com-
plex Lorenz equations. The Ning and Haken [78] version
of complex Lorenz equations (a truncation of Maxwell-
Bloch equations describing a single mode ring laser) sets
e + ρ2 = 0 so that a detuned equilibrium exists. Test your
routines on 2 cases: (a) e = 0, ρ2 = 0. As discussed

69Predrag: design a cyclist label for harder exercises...
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by Siminos [6], reality of parameters a, ρ in (10.1) im-
plies existence of a discrete C2 symmetry. (b) e + ρ2 = 0,
e � 0. You might want to compare results with those of
Ning and Haken.

10.15. Complex Lorenz equations in a Hilbert basis. (con-
tinuation of example 10.15) Derive complex Lorenz equa-
tions (10.63) in terms of invariant polynomials (10.63),
plot the strange attractor in projections you find illumi-
nating (one example is figure 10.17).

10.16. Hilbert basis singularities. When one takes syzygies
into account in rewriting a dynamical system, singulari-
ties are introduced. For instance, eliminate u2 using the
syzygy, and show that you get the reduced set of equa-
tions, 70

u̇1 = 2σ (u4 − u1)

u̇3 = −(σ + 1) u3 + ρ2 u1 + e u4

u̇4 = −(σ + 1) u4 + (ρ1 − u5) u1 + σ (u2
3 + u2

4)/u1 − e u3

u̇5 = u4 − b u5 , (10.73)

singular as u1 → 0. 71 (E. Siminos)

10.17. Complex Lorenz equations in polar coordinates. 72

Rewrite complex Lorenz equations from Cartesian to po-
lar coordinates, using (x1, x2, y1, y2, z) =

(r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2, z) , (10.74)

where r1 ≥ 0 , r2 ≥ 0. Show that in polar coordinates the
equations take form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṙ1

θ̇1
ṙ2

θ̇2
ż

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ (r1 − r2 cos θ)
−σ r2

r1
sin θ

−r2 + r1 ((ρ1 − z) cos θ − ρ2 sin θ)
e + r1

r2
((ρ1 − z) sin θ + ρ2 cos θ)
−bz + r1r2 cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where angles always appear in the combination θ = θ1−θ2

We know from classical mechanics that for translationally
or rotationally invariant flows the relative distance is in-
variant (that is why one speaks of ‘relative’ equilibria),
hence we introduce a variable θ = θ1 − θ2. Show that
this new variable allows us to rewrite the complex Lorenz
equations as 4 coupled polar coordinates equations:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṙ1
ṙ2

θ̇
ż

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ (r1 − r2 cos θ)
−r2 + (ρ1 − z)r1 cos θ

−e −
(
σ r2

r1
+ (ρ1 − z) r1

r2

)
sin θ

−bz + r1r2 cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10.75)

where we have set ρ2 = 0. (hints: review (2.23), exam-
ple B.1, exercise B.1, and (10.62))

70Predrag: I removed u̇2 = −2
(

u2
3+u2

4
u1

− ρ2 u3 − (ρ1 − u5) u4

)
71Predrag: PC 25feb2012: recheck this - there might be errors
72Predrag: move solution to here, needed in the text
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10.18. 2-mode system in polar coordinates. Show that the 2-
mode system (10.70) rewritten in polar coordinates (10.74)
is given by

ṙ1 = −σr1 + σr1r2 cos(θ)

ṙ2 = −r2 + r2
1((ρ1 − z) cos(θ) − ρ2 sin(θ))

θ̇1 = −σr2 sin(θ) , θ̇2 = −e +
r2

1

r2
((ρ1 − z) sin(θ) + ρ2 cos(θ))

ż = −bz +
r2

1

r2
cos(θ) , (10.76)

where θ = 2θ1 − θ2. Rewriting the angular part as θ̇ =
2θ̇1 − θ̇2, we have

θ̇ = e−
r2

1

r2
((ρ1−z) sin(θ)+ρ2 cos(θ))−2r2σ sin(θ) .(10.77)

D. Borrero

10.19. Visualizations of the complex Lorenz flow in polar co-
ordinates:

Plot a long-time solution of (10.75) and show that the po-
lar representation introduces singularities into what ini-
tially was a smooth flow:

We shall encounter the same problem in implementing
the x1 = 0 slice, . θ is very small until the trajectory ap-
proaches either r1 → 0 or r2 → 0, where Mathematica
continues through the singularity by a rapid change of θ
by π. The fixed Fix (G) subspace (r1, r2, θ, z) = (0, 0, θ, z)
separates the two folds of the attractor.

Plot complex Lorenz flow projected on any three of the
{r1, r2, θ, z} coordinates. Experiment with different visu-
alizations. The flow is singular as r j → 0, with angle θ j

going through a rapid change there: is that a problem?
Does it make sense to insist on r1 ≥ 0 , r2 ≥ 0, or should
one let them have either sign in order that the θ trajectory
be continuous?

10.20. Computing the relative equilibrium TW1: The two
rotation angles θ1 and θ2 change in time, but at the rela-
tive equilibria the difference between them is constant,
θ̇ = 0. Find the relative equilibria of the complex Lorenz
equations by finding the equilibria of the system in polar
coordinates (10.75). Show that
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(a) The relative equilibrium (hereafter referred to [ 6]
as TW1) is given by

(r1, r2, θ, z) =
(√

b (ρ1 − d),
√

bd (ρ1 − d),

cos−1
(
1/
√

d
)
, ρ1 − d

)
, (10.78)

where d = 1 + e2/(σ + 1)2,

(b) The angular velocity of relative equilibrium TW 1 is

θ̇i = σe/(σ + 1) , (10.79)

with the period TTW1 = 2π(σ + 1)/σe.

10.21. Relative equilibrium TW1 in polar coordinates: Plot
the equilibrium TW1 in polar coordinates.

10.22. Relative equilibrium TW1 in Cartesian coordinates:
Show that for (10.2) parameter values,

xTW1 = (x1, x2, y1, y2, z) (10.80)

= (8.4849, 0.077135, 8.4856, 0, 26.999) ,

is a point on the TW1 orbit. Plot the relative equilibrium
TW1 in Cartesian coordinates. State the velocity of rela-
tive equilibrium, compare with the imaginary part of the
complex stability eigenvalue, and explain the two time
scales visible in the ‘horn’, as well as the expansion rate
per turn of the spiral.

10.23. The relative equilibria of the 2-mode system: Find
the relative equilibria of the 2-mode system by finding
the equilibria of the system in polar coordinates (10.75).

10.24. Plotting the relative equilibria of the 2-mode system
in polar coordinates: Plot the relative equilibria of the
2-mode system in polar coordinates.

10.25. Plotting the relative equilibria of the 2-mode system
in Cartesian coordinates: Plot the relative equilibria
of the 2-mode system in Cartesian coordinates.

10.26. Eigenvalues and eigenvectors of TW1 stability matrix:
Compute the eigenvalues and eigenvectors of the stabil-
ity matrix (10.32) evaluated at TW1 and using the (10.2)
parameter values, in (a) Cartesian coordinates, (b) polar
coordinates.

10.27. The eigen-system of TW1 stability matrix in polar co-
ordinates: Plot the eigenvectors of A at TW1 in polar
coordinates, as well as the complex Lorenz flow at values
very near TW1.

10.28. Eigenvalues and eigenvectors of EQ0 stability matrix:
Find the eigenvalues and the eigenvectors of the stabil-
ity matrix A (10.32) at EQ0 = (0, 0, 0, 0, 0) determined in
exercise 10.13. ChaosBook convention is to order eigen-
values from most positive (unstable) to the most nega-
tive. Follow that. Replace complex eigenvectors by the
real, imaginary parts, so you can plot them in (real) state
space.
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SO(2)@SO(2)10.29. The eigen-system of the stability matrix at EQ0: Plot
the eigenvectors of A at EQ0 and the complex Lorenz flow
at values very close to EQ0.

10.30. SO(2) or harmonic oscillator slice: Construct a
moving frame slice for action of SO(2) on R2

(x, y) �→ (x cos θ − y sin θ, x sin θ + y cos θ)

by, for instance, the positive y axis: x = 0, y > 0. Write
out explicitly the group transformations that bring any
point back to the slice. What invariant is preserved by
this construction? (E. Siminos)

10.31. State space reduction by a slice, ODE formulation:
Replace integration of the complex Lorenz equations by
a sequence of finite time steps, each followed by a rota-
tion such that the next segment initial point is in the slice
x̂2 = 0, x̂1 > 0. Reconsider this as a sequence of in-
finitesimal time steps, each followed by an infinitesimal
rotation such that the next segment initial point is in the
slice x2 = 0, x1 > 0. Derive the corresponding 4d re-
duced state space ODE for the complex Lorenz flow.
73

10.32. Accumulated phase shift: Derive the 1d equation (10.58)
for the accumulated phase shift θ associated with the 4-
dimensional reduced state space ODE of exercise 10.31.

10.33. The moving frame flow stays in the reduced state space:
Show that the flow (10.57) stays in a (d−1)-dimensional
slice. 74

10.34. Relative equilibrium TW1 by the method of slices: De-
termine numerically the complex Lorenz equations equi-
librium TW1 by the method of slices, template x̂′ of your
choice.

10.35. State space reduction by a relative equilibrium TW1

template: Replace integration of the complex Lorenz
equations by a sequence of short time steps, each fol-
lowed by a rotation such that the next segment initial
point is in the relative equilibrium TW1 slice

(x̂ − x̂TW1 ) · tTW1 = 0 , tTW1 = Tx̂TW1 , (10.81)

where for any x, x̂ = g(θ) · x is the rotation that lies in
the slice. Check figure 10.15 by long-time integration of
(10.57).

73Predrag: in fig:infMF:
Change R into g.
Draw z axis (would lie horizontal in the present version, so tilt the figure).
Indicate dθ by drawing from origin, spanned by arc x, x + vdt.
Include a segment of the group-orbit ellipse, so t∗ is clearly visualized as a tangent.
Add arrows to vdt, udt.

74Predrag: omitted exercise “Integration on a slice”
“State space reduction by a locally transverse slice”
“Velocity field within slice can diverge”
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10.36. Stability of a relative equilibrium in the reduced state
space: Find an expression for the stability matrix of
the system at a relative equilibrium when a linear slice is
used to reduce the symmetry of the flow.

10.37. Stability of a relative periodic orbit in the reduced
state space: Find an expression for the Jacobian ma-
trix (monodromy matrix) of a relative periodic orbit when
a linear slice is used to reduce the dynamics of the flow. ⇓PRIVATE

10.38. Symmetry reduction by a relative equilibrium TW1

template: (a) Plot a symmetry reduced, 4-dimensional
complex Lorenz flow in a slice of your choice, in several
3-dimensional projections. One option is to implement
the TW1 slice illustrated by figure 10.15. Look at the at-
tractor carefully enough to locate the jumps induced by
crossing the slice border.

(b) Plot the symmetry reduced, 4-dimensional
complex Lorenz flow using an atlas of your making, con-
sisting of two slices, chosen so that that the strange attrac-
tor avoids the slice borders and the associated jumps.

10.39. A polar coordinates slice: SO(2) invariance under ro-
tations (10.24) suggests that a representation of complex
Lorenz equations in polar coordinates might be advanta-
geous. First check how this works for a harmonic oscilla-
tor exercise 10.30, and do it for here for complex Lorenz
equations.

[ Create here Rebecca θ1 = 0 x̂′ slice exercise, extract it
from exercise 10.31 and its solution, and from p. 16 of
Rebecca blog.] (R. Wilczak)

10.40. Velocity field within slice can diverge: Apparent lack
of singularities in reduced state space flow appears for-
tuitous or perhaps even a programming error. This is a
4-dimensional subspace, and indeed simulations do en-
counter this subspace very, with reduced state space ve-
locity going off to infinity. For example, take complex
Lorenz flow, with (a) x∗ ≈ xTW1 = (8.48, 0.077, 8.48, 0, 26.99)
on relative equilibrium TW1 group orbit, and initial point
x(0) ≈ (4.81, 0.154, 7.59, 0.281, 15.9) (taken from a long
run on the strange attractor). How far in time can you
integrate the reduced state space trajectory? This, how-
ever, is perhaps a bad example, as the initial point is not
on the slice. (b) Rotate x(0) into the slice, use that point
as the initial point. How far can you integrate? (c) Could
reduced state space complex Lorenz flow flow run into a
singularity for other choices of x∗? (d) For what slices is
the strange attractor of complex Lorenz flow singularity-
free?

10.41. SO(2) moving frame rotation angle: Continue the dis-
cussion of example 10.5 and write down the formula for φ
for a Fourier expansion of a periodic function. Show that
now the slice condition is a polynomial in cosφ, sinφ,
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and that, depending on the magnitudes of the Fourier se-
ries terms, the group orbit may traverse a slice arbitrarily
many times. 75

10.42. Determination of invariants by the method of slices:
Show that the d − N reduced state space coordinates de-
termined by the method of slices are independent and in-
variant under group actions, and that the method of slices
allows the determination of (in general non-polynomial)
symmetry invariants by a simple algorithm that works
well in high-dimensional state spaces.

10.43. Linear slices are not flow invariant (a) By forming
the inner product of the group tangent direction with the
velocity field of complex Lorenz equations show that the
linear slice x1 = 0 is not invariant under time evolution.
(b) Can we construct a flow invariant linear slice? (c)
Repeat the exercise using as little information as possible
about complex Lorenz equations. (E. Siminos)

10.44. x = 0 singularity in complex Lorenz flow (a) Show
that for complex Lorenz flow x1 = x2 = 0 implies that
y1 = y2 = 0, that is we can only run into x1 = 0 slice sin-
gularity in Fix (SO(2)) (the z axis). Since Fix (SO(2)) is
flow invariant, general dynamics cannot reach it and we
can safely apply the method of slices. (b) Is this result
complex Lorenz flow or group representation specific?
Can you prove it using as less information for complex
Lorenz flow as possible? (E. Siminos)

10.45. State space reduction by a locally transverse slice: De-
compose v(x) in ẋ = v(x) in a part v� parallel to the group
action and a part v⊥ transverse to it,

v(x) = v�(x) + v⊥(x) , (10.82)

using the projection operator

v⊥(x) = P⊥(x)v(x) , P⊥
i j(x) = δi j−

t(x)it(x) j

〈t(x)|t(x)〉
(10.83)

that projects a d-dimensional flow v(x) onto flow

ẋ⊥ = v⊥(x) = v(x) − t(x) · v(x)
〈t(x)|t(x)〉

t(x) (10.84)

in a (d−1)-dimensional slice transverse to the direction
fixed by the point x. By ignoring the flow component that
can be compensated for by an SO(2) rotation we quotient
the flow by SO(2). The idea is presumably very old; for
example, it is stated as the problem 1. of Sect. 6.2 of
Arnol’d Ordinary Differential Equations [1]. Note, how-
ever, that a choice of x0 fixes only a direction, so the re-
duced state space flow is still equivariant under the action
of discrete cyclic group C2 = {e,D(π)} on x, v(x) and the

75Predrag: is it still true that the rotation is by π?
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reference point x0, just as was the case for the Lorenz
flow. 76

(10.84) differs from (??) only by replacement of the slice
fixed by an arbitrary point x∗ by slice fixed by the instan-
taneous state itself, x∗ → x. It does not work for us; rela-
tive periodic orbits do not reduce to periodic orbits, and
the strange attractor remains embedded in 4 dimensions.
Explain what is wrong with (10.84). (P. Cvitanović)Aug
7 2008 ⇑PRIVATE
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Chapter 11

Charting the state space

The classification of the constituents of a chaos, nothing
less is here essayed.

—Herman Melville, Moby Dick, chapter 32

In this chapter and the next we learn to partition state space in a topologically
invariant way, and identify topologically distinct orbits. 1

We start in sect. 11.1 with a simple and intuitive example, a 3-disk game
of pinball. The qualitative dynamics of stretching/shrinking strips of surviving
state space regions enables us to partition the state space and assign symbolic
dynamics itineraries to trajectories. For the 3-disk game of pinball all possible
symbol sequences enumerate all possible orbits.

In sect. 11.2 we use Rössler and Lorenz flows to motivate modeling of higher-
dimensional flows by iteration of 1-dimensional maps. For these two flows the
1-dimensional maps capture essentially all of the higher-dimensional flow dynam-
ics, both qualitatively and quantitatively. 1-dimensional maps suffice to explain
the two key aspects of qualitative dynamics; temporal ordering, or itinerary with
which a trajectory visits state space regions (sect. 11.3), and the spatial ordering
between trajectory points (sect. 11.4), which is the key to determining the admis-
sibility of an orbit with a prescribed itinerary. In a generic dynamical system not
every symbol sequence is realized as a dynamical trajectory; as one looks further
and further, one discovers more and more ‘pruning’ rules which prohibit fami-
lies of itineraries. For 1-dimensional ‘stretch & fold’ maps the kneading theory
(sect. 11.5) provides the definitive answer as to which temporal itineraries are ad-
missible as trajectories of the dynamical system. Finally, sect.11.6 is meant serve
as a guide to the basic concepts of symbolic dynamics.

Deceptively simple, this subject can get very difficult very quickly, so in this
chapter we do the first, 1-dimensional pass at a pedestrian level, postponing the
discussion of higher-dimensional, cyclist level issues to chapter12.

1Predrag: propagate ‘Charting the state space’ into the homepages
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symbolic
dynamics—(

recurrence
symbolic dynamics
dynamics!symbolic
topological!dynamics
dynamics!topological
obscure!jargon
stateFigure 11.1: A coarse partition ofM into regionsM0,

M1, andM2, labeled by ternary alphabet A = {1, 2, 3}.

Even though by inclination you might only care about the serious stuff, like
Rydberg atoms or mesoscopic devices, and resent wasting time on formal things,
this chapter and chapters 14 and 15 are good for you. Study them.

11.1 Qualitative dynamics

(R. Mainieri and P. Cvitanović)

What can a flow do to points in state space? This is a very difficult question to
answer because we have assumed very little about the evolution function ft; con-
tinuity, and differentiability a sufficient number of times. Trying to make sense of
this question is one of the basic concerns in the study of dynamical systems. The
first answer was inspired by the motion of the planets: they appear to repeat their
motion through the firmament, so the ancients’ attempts to describe dynamical
systems were to think of them as periodic.

However, periodicity is almost never quite exact. What one tends to observe
is recurrence. A recurrence of a point x0 of a dynamical system is a return of
that point to a neighborhood of where it started. How close the point x0 must
return is up to us: we can choose a volume of any size and shape, and call it the
neighborhood M0, as long as it encloses x0. For chaotic dynamical systems, the
evolution might bring the point back to the starting neighborhood infinitely often.
That is, the set ⇓PRIVATE

exercise 11.10

⇑PRIVATE
{
y ∈ M0 : y = f t(x0), t > t0

}
(11.1)

will in general have an infinity of recurrent episodes.

To observe a recurrence we must look at neighborhoods of points. This sug-
gests another way of describing how points move in state space, the important
first step on the way to a theory of dynamical systems: qualitative, topological
dynamics, or symbolic dynamics. As the subject can get quite technical, a sum-
mary of the basic notions and definitions of symbolic dynamics is relegated to
sect. 11.6; check that section and references cited in remark 11.1 whenever you
run into baffling jargon.
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partition
alphabet
state!set
itinerary
memory!$m$-step

Figure 11.2: A trajectory with itinerary 021012.

Figure 11.3: A 1-step memory refinement of the par-
tition of figure 11.1, with each region Mi subdivided
into Mi0, Mi1, and Mi2, labeled by nine ‘words’
{00, 01, 02, · · · , 21, 22}.

01

12

22

02

00

20

21

11
10

We start by dividing the state space up into regions MA,MB, . . . ,MZ , as in
figure 11.1. This can be done in many ways, not all equally clever. Any such
division of state space into distinct regions constitutes a partition, and we associate
with each region (sometimes referred to as a state) a symbol s from an N-letter
alphabet or state set A = {A, B,C, · · · , Z}. As the state evolves, different regions
will be visited. The visitation sequence - forthwith referred to as the itinerary -
can be represented by the letters of the alphabet A. If, as in the example sketched
in figure 11.2, the state space is divided into three regions M0, M1, and M2, the
‘letters’ are the integers {0, 1, 2}, and the itinerary for the trajectory sketched in
the figure is 0 �→ 2 �→ 1 �→ 0 �→ 1 �→ 2 �→ · · ·.

Example 11.1 3-disk symbolic dynamics: Consider the motion of a free point
exercise 1.1

particle in a plane with 3 elastically reflecting convex disks, figure 11.4. After a collision
with a disk a particle either continues to another disk or escapes, so a trajectory can
be labeled by the disk sequence. Sets of configuration space pinball trajectories of
figure 11.4 become quickly hard to disentangle. As we shall see in what follows, their
state space visualization in terms of Poincaré sections P = [s, p] (figure 11.5, see also
figure 3.9 (b)) is much more powerful. 2 (continued in example 11.2) 3

In general only a subset of points in MB reaches MA. This observation offers
a systematic way to refine a partition by introducing m-step memory: the region
Msm ···s1s0 consists of the subset of points of Ms0 whose trajectory for the next m
time steps will be s0 �→ s1 �→ · · · �→ sm, see figure 11.3.

Example 11.2 3-disk state space partition: (continued from example 11.1) Em-
bedded within M12, M13 are four strips M121, M123, M131, M132 of initial conditions

2Predrag: replace by Grigo figures, soluFlows.tex?
3Predrag: recheck whether figure 11.5 was computed at a:R = 1:2.5

knead - 8jun2012 boyscout version14.4, Mar 19 2013



CHAPTER 11. CHARTING THE STATE SPACE 259

metric!indecomposability
indecomposability!metric
transient

Figure 11.4: Two pinballs that start out very close
to each other exhibit the same qualitative dynamics
2313 for the first three bounces, but due to the expo-

nentially growing separation of trajectories with time,
follow different itineraries thereafter: one escapes after
2313 , the other one escapes after 23132321 . (No-

tation 2313 is explained in sect. 11.6.)

1

2

3

23132321

2313

Figure 11.5: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x = (arclength, parallel momentum) = (s, p),
where p = sin θ. (a) Strips of initial points M12,
M13 which reach disks 2, 3 in one bounce, re-
spectively. (b) 1-step memory refinement of parti-
tion (see figure 11.3): strips of initial points M121,
M131, M132 and M123 which reach disks 1, 2, 3
in two bounces, respectively. Disk radius : center
separation ratio a:R = 1:2.5. (Y. Lan)
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that survive two bounces, and so forth. At each bounce a cone of initially nearby trajec-
tories disperses (see figures 1.8 and 11.4). Also in order to attain a desired longer and
longer itinerary of bounces, the strip of initial points x0 = (s0, p0) requires exponentially
finer precision, nested within the initial state space strips drawn in figure 11.5. Provided
that the disks are sufficiently separated, after n bounces the survivors are labeled by 2n

distinct itineraries s1 s2 s3 . . . sn. (continued in example 12.2)

If there is no way to reach partition Mi from partition M j, and conversely, par-
tition M j from partition Mi, the state space consists of at least two disconnected
pieces, and we can analyze it piece by piece. An interesting partition should be
dynamically connected, i.e., one should be able to go from any region Mi to any
other region M j in a finite number of steps. A dynamical system with such a
partition is said to be metrically indecomposable. 4

In general one also encounters transient regions - regions to which the dy-
namics does not return once they are exited. Hence we have to distinguish be-
tween (uninteresting to us) wandering trajectories that never return to the initial
neighborhood, and the non–wandering set (2.3) of the recurrent trajectories. We
are implicitly assuming that the transients are sufficiently short-lived not to be of
experimental interest.

However, knowing that a point from Mi reaches {M j, · · · ,Mk} in one step
is not quite good enough. We would be happier if we knew that the map of the
entire initial region f (Mi) overlaps nicely with the entire Mj; otherwise we have
to subpartition Mj into the subset f (Mi) and the reminder, and often we will

4Predrag: insert a figure of indecomposable, transient partitions in chapter 14
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Figure 11.6: For the 3-disk game of pinball no
itineraries are pruned as long as the inter-disk spac-
ing exceeds R : a > 2.04821419 . . .. (from
K.T. Hansen [23])

find ourselves partitioning ad infinitum, a difficult topic that we shall return to
sect. 12.4.

Such considerations motivate the notion of a Markov partition, a partition for
which no memory of preceding steps is required to fix the transitions allowed
in the next step. Finite Markov partitions can be generated by expanding d-
dimensional iterated mappings f : M →M, if M can be divided into N regions
{M0,M1, . . . ,MN−1} such that in one step points from an initial region Mi either
fully cover a region Mj, or miss it altogether,

either M j ∩ f (Mi) = ∅ or M j ⊂ f (Mi) . (11.2)

Whether such partitions can be found is not clear at all - the borders need to be
lower-dimensional sets invariant under dynamics, and there is no guarantee that
these are topologically simple objects. However, the game of pinball (and many
other non-wandering repeller sets) is especially nice: the issue of determining the
partition borders does not arise, as the survivors live on disconnected pieces of the
state space, separated by a chasm of escaping trajectories.

The itinerary of a billiard trajectory is finite for a scattering trajectory, coming
in from infinity and escaping after a finite number of collisions, infinite for a
trapped trajectory, and infinitely repeating for a periodic orbit. A finite length
trajectory is not uniquely specified by its finite itinerary, but an isolated unstable
cycle is: its itinerary is an infinitely repeating block of symbols. For hyperbolic
flows the intersection of the future and past itineraries, the bi-infinite itinerary
S -.S + = · · · s−2s−1s0.s1s2s3 · · · specifies a unique orbit. Almost all infinite length
trajectories (orbits) are aperiodic. Still, the longer the trajectory is, the closer to
it is a periodic orbit whose itinerary shadows the trajectory for its whole length:
think of the state space as the unit interval, aperiodic orbits as normal numbers,
and periodic ones as fractions whose denominators correspond to cycle periods,
as is literally the case for the Farey map (24.42), to be discussed in sect. 24.3.5.

Determining whether the symbolic dynamics is complete (as is the case for
sufficiently separated disks, see figure 11.6), pruned (for example, for touching or
overlapping disks), or only a first coarse-graining of the topology (as, for example,
for smooth potentials with islands of stability) requires a case-by-case investiga-
tion, a discussion we postpone until sect.11.5 and chapter 12. For now, we assume
that the disks are sufficiently separated that there is no additional pruning beyond
the prohibition of self-bounces.

Inspecting figure 11.5 we see that the relative ordering of regions with dif-
fering finite itineraries is a qualitative, topological property of the flow. This ob-
servation motivates searches for simple, ‘canonical’ partitions which exhibit in
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a simple manner the spatial ordering common to entire classes of topologically
similar nonlinear flows. 5

11.2 From d-dimensional flows to 1-dimensional maps

Symbolic dynamics for the 3-disk game of pinball is so straightforward that one
may altogether fail to see the connection between the topology of hyperbolic
flows and their symbolic dynamics. This is brought out more clearly by the 1-
dimensional visualization of ‘stretch & fold’ flows to which we turn now.

We construct here the return maps (3.4) for two iconic flows, the Rössler and
the Lorenz, in order to show how ODEs in higher dimensions can be modeled by
low-dimensional maps. In the examples at hand the strong dissipation happens to
render the dynamics essentially 1-dimensional, both qualitatively and quantitati-
vely. However, as we shall show in chapter 12, strong dissipation is not essential
-the hyperbolicity is- so the method applies to Hamiltonian (symplectic areas pre-
serving) flows as well. The key idea is to replace the original, arbitrarily concocted
coordinates by intrinsic, dynamically invariant curvilinear coordinates erected on
neighborhoods of unstable manifolds.

fast track:

sect. 11.3, p. 264

Suppose concentrations of certain chemical reactants worry you, or the variati-
ons in the Chicago temperature, humidity, pressure and winds affect your mood.
Such quantities vary within some fixed range, and so do their rates of change.
Even if we are studying an open system such as the 3-disk pinball game, we tend
to be interested in a finite region around the disks and ignore the escapees. So a
typical dynamical system that we care about is bounded. If the price to keep going
is high - for example, we try to stir up some tar, and observe it come to a dead
stop the moment we cease our labors - the dynamics tends to settle into a simple
state. However, as the resistance to change decreases - the tar is heated up and we
are more vigorous in our stirring - the dynamics becomes unstable.

Example 11.3 Rössler attractor return map: Stretch & fold. (continued from
example 4.5) In the Rössler flow (2.18) of example 3.3 we sketched the attractor by
running a long chaotic trajectory, and noted that the attractor of figure 3.2 is very thin.
For Rössler flow an interval transverse to the attractor is stretched, folded and fiercely
pressed back. The attractor is ‘fractal,’ but for all practical purposes the return map
is 1-dimensional; your printer will need a resolution better than 1013 dots per inch to
start resolving its structure. We had attempted to describe this ‘stretch & fold’ flow by a
1-dimensional return map, but the maps that we plotted in figure 3.3 were disquieting;
they did not appear to be a 1-to-1 maps. This apparent non-invertibility is an artifact of
projection of a 2-dimensional return map (Rn, zn) → (Rn+1, zn+1) onto the 1-dimensional
subspace Rn → Rn+1. Now that we understand equilibria and their linear stability, let’s
do this right.

5Mason: 2003-09-23 labels in figure 11.5 not nice
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Figure 11.7: (a) x = 0, y > 0 Poincaré section of
the x− unstable manifold, Rössler flow figure 2.6.
(p1, p2) are measured with the origin placed at x−.
(b) s → P(s) return map, where s is the arc-length
distance measured along the unstable manifold of
equilibrium point x−. (A. Basu and J. Newman)
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The key idea is to measure arclength distances along the unstable manifold
of the x− equilibrium point, as in figure 11.7 (a) (arclength parametrization of unstable⇓PRIVATEmanifolds is discussed in detail in sect. 12.1.1). Luck is with us; figure 11.7 (b) return

⇑PRIVATEmap sn+1 = P(sn) looks much like a parabola of example 3.8, so we shall take the
unimodal map symbolic dynamics, sect. 11.3, as our guess for the covering symbolic
dynamics. 6 (continued in example 11.12) 7

You get the idea - Rössler flow winds around the stable manifold of the ‘cen-
tral’ equilibrium, stretches and folds, and the dynamics on the Poincaré section
of the flow can be reduced to a 1-dimensional map. The next example is simi-
lar, but the folding mechanism is very different: the unstable manifold of one of
the equilibria collides with the stable manifold of the other one, forcing a robust
heteroclinic connection between the two.

fast track:

sect. 11.3, p. 264

11.2.1 Heteroclinic connections

In general, two manifolds can intersect in a stable way if the sum of their di-
mensions is greater than or equal to the dimension of the state space, hence an
unstable manifold of dimension k is likely to intersect a stable manifold whose
codimension in state space is less than or equal to k (i.e., robustly with respect to
small changes of system parameters). Trajectories that leave a fixed point along
its unstable manifold and reach another fixed point along its stable manifold are
called heteroclinic if the two fixed points are distinct or homoclinic if the initial
and the final point are the same point. Whether the two manifolds actually in-

remark 11.3
tersect is a subtle question that is central to the issue of “structural stability” of
ergodic dynamical systems.

6Predrag: figure 11.7: redraw both in xfig
7Predrag: replace ‘(continued...’ by a finger on the margin?

knead - 8jun2012 boyscout version14.4, Mar 19 2013



CHAPTER 11. CHARTING THE STATE SPACE 263

Lorenz flow
heteroclinic!connection

Figure 11.8: (a) A Poincaré section of the Lorenz
flow in the doubled-polar angle representation, fig-
ure 9.6, given by the [y′, z] plane that contains the
z-axis and the equilibrium EQ1. x′ axis points to-
ward the viewer. (b) The Poincaré section of the
Lorenz flow by the section Crossings into the sec-
tion are marked red (solid) and crossings out of
the section are marked blue (dashed). Outermost
points of both in- and out-sections are given by
the EQ0 unstable manifold Wu(EQ0) intersections.
(E. Siminos)
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Figure 11.9: The Poincaré return map sn+1 =

P(sn) parameterized by Euclidean arclength s mea-
sured along the EQ1 unstable manifold, from xEQ1 to
Wu(EQ0) section point, uppermost right point of the
blue (dashed) segment in figure 11.8 (b). The critical
point (the ‘crease’) of the map is given by the section
of the heteroclinic orbit Ws(EQ0) that descends all the
way to EQ0, in infinite time and with infinite slope. (E.
Siminos)
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Example 11.4 Lorenz flow: Stretch & crease. 8 We now deploy the symme-
try of Lorenz flow to streamline and complete analysis of the Lorenz strange attractor
commenced in example 9.14. There we showed that the dihedral D1 = {e,R} sym-
metry identifies the two equilibria EQ1 and EQ2, and the traditional ‘two-eared’ Lorenz
flow figure 2.5 is replaced by the ‘single-eared’ Van Gogh flow of figure 9.6 (a). Fur-

⇓PRIVATE

⇑PRIVATE
thermore, symmetry identifies two sides of any plane through the z axis, replacing a
full-space Poincaré section plane by a half-plane, and the two directions of a full-space
eigenvector of EQ0 by a one-sided eigenvector, see figure 9.6 (a).

Example 4.7 explained the genesis of the xEQ1 equilibrium unstable manifold,
its orientation and thickness, its collision with the z-axis, and its heteroclinic connec-
tion to the xEQ0 = (0, 0, 0) equilibrium. All that remains is to describe how the EQ0

neighborhood connects back to the EQ1 unstable manifold.

Figure 9.6 and figure 11.8 (a) show clearly how the Lorenz dynamics is pieced
together from the 2 equilibria and their unstable manifolds: Having completed the de-
scent to EQ0, the infinitesimal neighborhood of the heteroclinic EQ1 → EQ0 trajectory
is ejected along the unstable manifold of EQ0 and is re-injected into the unstable man-
ifold of EQ1. Both sides of the narrow strip enclosing the EQ0 unstable manifold lie
above it, and they get folded onto each other with a knife-edge crease (contracted
exponentially for infinite time to the EQ0 heteroclinic point), with the heteroclinic out-
trajectory defining the outer edge of the strange attractor. This leads to the folding of
the outer branch of the Lorenz strange attractor, illustrated in figure 11.8 (b), with the

8Predrag: copy this example to an appendix, keep a brief summary here; or split int several
examples, the first one taken back to discrete.tex
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outermost edge following the unstable manifold of EQ0.

Now the stage is set for construction of Poincaré sections and associated
Poincaré return maps. There are two natural choices; the section at EQ0, lower part
of figure 11.8 (b), and the section (blue) above EQ1. The first section, together with
the blowup of the EQ0 neighborhood, figure 4.7 (b), illustrates clearly the scarcity of
trajectories (vanishing natural measure) in the neighborhood of EQ0. The flat section
above EQ1 (which is, believe it or not, a smooth conjugacy by the flow of the knife-sharp
section at EQ0) is more convenient for our purposes. Its return map (3.4) is given by
figure 11.9.

The rest is straight sailing: to accuracy 10−4 the return map is unimodal, its crit-
ical point’s forward trajectory yields the kneading sequence (11.13), and the admissible
binary sequences, so any number of periodic points can be accurately determined from
this 1-dimensional return map, and the 3-dimensional cycles then verified by integrating
the Lorenz differential equations (2.13). As already observed by Lorenz, such a map is
everywhere expanding on the strange attractor, so it is no wonder mathematicians can
here make the ergodicity rigorous. 9 10

section 20.6
(E. Siminos and J. Halcrow)

What have we learned from the above two exemplary 3-dimensional flows?
If a flow is locally unstable but globally bounded, any open ball of initial points
will be stretched out and then folded back. If the equilibria are hyperbolic, the
trajectories will be attracted along some eigen-directions and ejected along others.
The unstable manifold of one equilibrium can avoid stable manifolds of other
equilibria, as is the case for Rössler, or slice them head on, as is the case for
Lorenz. A typical trajectory wanders through state space, alternatively attracted
into equilibria neighborhoods, and then ejected again. What is important is the
motion along the unstable manifolds – that is where 1d maps come from.

At this juncture we proceed to show how this works on the simplest exam-
ple: unimodal mappings of the interval. The erudite reader may skim through
this chapter and then take a more demanding path, via the Smale horseshoes of
chapter 12. Unimodal maps are easier, but less physically compelling. Smale
horseshoes offer the high road, more complicated, but the right tool to generalize
what we learned from the 3-disk dynamics, and begin analysis of general dynam-
ical systems. It is up to you - unimodal maps suffice to get quickly to the heart of
this treatise.

11.3 Temporal ordering: Itineraries

In this section we learn to name topologically distinct trajectories for the simple,
but instructive case; 1-dimensional maps of an interval.

The simplest mapping of this type is unimodal; interval is stretched and folded
only once, with at most two points mapping into a point in the refolded inter-
val, as in the Rössler return map figure 11.10 (b). A unimodal map f (x) is a 1-
dimensional function R → R defined on an interval M ∈ R with a monotonically

9Predrag: ChaosBook: move this paragraph to kneading theory link to knead.tex remark
10Predrag: Paragraph here - codimensionality of manifolds from paper with Viswanath
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Figure 11.10: (a) The Rössler flow, figure 3.2, is
an example of a recurrent flow that stretches and
folds. (b) The Rössler ‘stretch & fold’ return map,
figure 11.7 (b). (R. Paškauskas and A. Basu)
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Figure 11.11: The full tent map (11.4) partition
{M00,M01,M11,M10} together with the fixed points
x0, x1.
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increasing (or decreasing) branch, a critical point (or interval) xc for which f (xc)
attains the maximum (minimum) value, followed by a monotonically decreasing
(increasing) branch. Uni-modal means that the map is a 1-humped map with one
critical point within interval M. Multi-modal maps, with several critical points
within interval M, can be described with a straight-forward generalization of the
methods we describe next.

Example 11.5 Unimodal maps: (continued from example 3.8) The simplest exam-
ples of unimodal maps are the quadratic map 11

f (x) = Ax(1 − x) , x ∈ M = [0, 1] (11.3)

and numerically computed return maps such as figure 11.10 (b). Such dynamical
systems are irreversible (the inverse of f is double-valued), but, as we shall show
in sect. 12.2, they may nevertheless serve as effective descriptions of invertible 2-
dimensional hyperbolic flows. For the unimodal map such as figure 11.12 a Markov
partition of the unit interval M is given by the two intervals {M0,M1}. (continued in
example 11.6)

Example 11.6 Full tent map, Ulam map: (continued from example 11.5) The

11Predrag: refer to chapter map.tex
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Figure 11.12: A unimodal repeller with the survivor
intervals after 1 and 2 iterations. Intervals marked
s1 s2 · · · sn consist of points that do not escape in n iter-
ations, and follow the itinerary S+ = s1s2 · · · sn. Note
that the spatial ordering does not respect the binary or-
dering; for example x00 < x01 < x11 < x10. Also indi-
cated are the fixed points 0, 1, the 2-cycle 01, and the
3-cycle 011.
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simplest examples of unimodal maps with complete binary symbolic dynamics are the
full tent map, figure 11.11,

f (γ) = 1 − 2|γ − 1/2| , γ ∈ M = [0, 1] , (11.4)

the Ulam map (quadratic map (11.3) with A = 4)
exercise B.4

f (x) = 4x(1 − x) , x ∈ M = [0, 1] , (11.5)

and the repelling unimodal maps such as figure 11.12. For unimodal maps the Markov
partition of the unit interval M is given by intervals {M0,M1}. We refer to (11.4) as the
complete tent map because its symbolic dynamics is completely binary: as both f (M0)
and f (M1) fully cover M = {M0,M1}, all binary sequences are realized as admissible
itineraries. ⇓PRIVATE

exercise 11.2

⇑PRIVATEFor 1d maps the critical value denotes either the maximum or the minimum
value of f (x) on the defining interval; we assume here that it is a maximum,
f (xc) ≥ f (x) for all x ∈ M. The critical point xc that yields the critical value f (xc)
belongs to neither the left nor the right partition Mi and is instead denoted by its
own symbol s = C. As we shall see, its images and preimages serve as partition
boundary points.

The trajectory x1, x2, x3, . . . of the initial point x0 is given by the iteration
xn+1 = f (xn) . Iterating f and checking whether the point lands to the left or to the
right of xc generates a temporally ordered topological itinerary (11.17) for a given
trajectory, 12

sn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if xn > xc
C if xn = xc
0 if xn < xc

. (11.6)

We refer to S+(x0) = .s1s2s3 · · · as the future itinerary. Our next task is to answer
the reverse problem: given an itinerary, what is the spatial ordering of points that
belong to the corresponding state space trajectory?

12Predrag: bring (11.17) back into the text
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Figure 11.13: The n = 2, 4-intervals state space par-
tition for the Bernoulli shift map (11.7), together with
the fixed points 0, 1 and the 2-cycle 01.
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11.4 Spatial ordering

A well-known theorem states that combinatorial factors
are impossible to explain. [22]

—G. ’t Hooft and M. Veltman, DIAGRAMMAR

Suppose you have succeeded in constructing a covering symbolic dynamics, such
as the one we constructed for a well-separated 3-disk system. Now start moving
the disks toward each other. At some critical separation (see figure 11.6) a disk
will start blocking families of trajectories traversing the other two disks. The
order in which trajectories disappear is determined by their relative ordering in
space; the ones closest to the intervening disk will be pruned first. Determining
inadmissible itineraries requires that we relate the spatial ordering of trajectories
to their time ordered itineraries.

exercise 12.8

The easiest point of departure is to start by working out this relation for
the symbolic dynamics of 1-dimensional mappings. As it appears impossible
to present this material without getting bogged down in a sea of 0’s, 1’s and
subscripted subscripts, we announce the main result before embarking upon its
derivation:

section 11.5

The admissibility criterion (sect. 11.5) eliminates all itineraries that cannot
occur for a given unimodal map. 13

Example 11.7 Bernoulli shift map state space partition. First, an easy example:
the Bernoulli shift map, figure 11.13,

b(γ) =

{
b0(γ) = 2γ , γ ∈ M0 = [0, 1/2)
b1(γ) = 2γ − 1 , γ ∈ M1 = (1/2, 1] , (11.7)

models the 50-50% probability of a coin toss. It maps the unit interval onto itself, with
fixed points γ0 = 0, γ1 = 1. The closely related doubling map acts on the circle

x �→ 2x (mod 1) , x ∈ [0, 1] (11.8)

13Predrag: why doesn’t fbox environment accept a line break?
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combinatorics!teaching
teaching!combinatorics

Figure 11.14: An alternating binary tree relates the
itinerary labeling of the unimodal map intervals, fig-
ure 11.12, to their spatial ordering. The dotted line
stands for 0, the full line for 1; the binary sub-tree
whose root is a full line with symbol 1 reverses the
orientation, due to the orientation-reversing fold in fig-
ures 11.10 and 11.12. See also figure 14.4.
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and consequently has only one fixed point, x0 = 0 = 1 (mod 1). The Bernoulli map
is called a ‘shift’ map, as a multiplication by 2 acts on the binary representation of
γ = .s1s2 s3 . . . by shifting its digits, b(γ) = .s2 s3 . . .. The nth preimages b−n(γ) of the
critical point γc = 1/2 partition the state space into 2n subintervals, each labeled by the
first n binary digits of points γ = .s1s2 s3 . . . within the subinterval: figure 11.13 illustrates
such 4-intervals state space partition {M00,M01,M11,M10} for n = 2.

Consider a map f (x) topologically conjugate (two monotonically increasing
branches) to the Bernoulli shift, with the forward orbit of x generating the itinerary
s1s2 s3 . . .. Convert this itinerary into Bernoulli map point γ = .s1s2 s3 . . .. These values
can now be used to spatially order points with different temporal itineraries: if γ < γ ′,
then x < x′. 14

Suppose we have already computed all (n − 1)-cycles of f (x), and would now
like to compute the cycle p = s1 s2 s3 . . . sn of period n. Mark γ values on the unit interval
for all known periodic points of the Bernoulli shift map, and then insert in between them
γσk p, k = 0, 1, · · · , np − 1 corresponding to periodic points of cycle p. In the dynamical
state space they will be bracketed by corresponding cycle points x j from cycles al-
ready computed, and thus the knowledge of the topological ordering of all cycle points
provides us with robust initial guesses for periodic-orbit searches for any map with 2
monotonically increasing branches. (continued in example 23.5)

For the Bernoulli shift converting itineraries into a topological ordering is
easy; the binary expansion of coordinate γ is also its temporary itinerary. The tent
map (11.4), figure 11.11 is a bit harder. It consists of two straight segments joined
at x = 1/2. The symbol sn defined in (11.6) equals 0 if the function increases,
and 1 if it decreases. Iteration forward in time generates the time itinerary. More
importantly, the piecewise linearity of the map makes the converse possible: de-
termine analytically an initial point given its itinerary, a property that we now use
to define a topological coordinatization common to all unimodal maps.

Here we have to face the fundamental problem of pedagogy: combinatorics
cannot be taught. The best one can do is to state the answer and hope that you
will figure it out by yourself. Then you can also complain that the way the rule is
stated here is incomprehensible. 15

The tent map point γ(S+) with future itinerary S+ is given by converting the
itinerary of sn’s into a binary number γ by the following algorithm: 16

wn+1 =

{
wn if sn = 0
1 − wn if sn+1 = 1 , w1 = s1

14Predrag: draw a map f (x) topologically conjugate (two monotone branches) to the Bernoulli
shift

15Predrag: quote ref. [22]
16Mason: Use Devaney, Guckenheimer & Holmes presentation
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γ(S +) = 0.w1w2w3 . . . =

∞∑
n=1

wn/2
n. (11.9)

This follows by inspection from the binary tree of figure 11.14. Once you figure
exercise 11.4

this out, feel free to complain that the way the rule is stated here is incomprehen-
sible, and show us how you did it better.

Example 11.8 Converting γ to S +: γ whose itinerary is S + = 0110000 · · · is given
by the binary number γ = .010000 · · ·. Conversely, the itinerary of γ = .01 is s1 = 0,
f (γ) = .1 → s2 = 1, f 2(γ) = f (.1) = 1 → s3 = 1, etc.. Orbit that starts out as a finite
block followed by infinite repeats of another block p = S p = (s1 s2s3 . . . sn)∞ is said to
be heteroclinic to the cycle p. An orbit that starts out as p∞ followed by a finite block
followed by infinite repeats of another block p′ is said to be heteroclinic connection from
cycle p to cycle p′.

We refer to γ(S+) as the (future) topological coordinate. The wt’s are the
digits in the binary expansion of the starting point γ for the full tent map (11.4).
In the left half-interval the map f (x) acts by multiplication by 2, while in the right
half-interval the map acts as a flip as well as multiplication by 2, reversing the
ordering, and generating in the process the sequence of sn’s from the binary digits
wn.

The mapping x0 → S +(x0) → γ0 = γ(S +) is a topological conjugacy that
maps the trajectory of an initial point x0 under the iteration of a given unimodal
map to that initial point γ0 for which the trajectory of the ‘canonical’ unimodal
map, the full tent map (11.4), has the same itinerary. The virtue of this conjugacy
is that γ(S+) preserves the ordering for any unimodal map in the sense that if
x > x, then γ > γ.

Example 11.9 Periodic orbits of unimodal maps. Let

f (x) =

{
f0(x) if x < xc
f1(x) if x > xc

, (11.10)

and assume that all periodic orbits are unstable, i.e., the stability Λ p = f k
a
′ (see (4.41))

satisfies |Λp| > 1. Then the periodic point xs1 s2 s3...sn is the only fixed point of the unique
composition (3.15) of n maps

fsn ◦ · · · ◦ fs2 ◦ fs1 (xs1 s2 s3...sn ) = xs1 s2 s3...sn (11.11)

(note that successive maps, applied from the left, correspond to later times, i.e., later
symbols in the itinerary).

The nth iterate of a unimodal map has at most 2n monotone segments, and
therefore there will be 2n or fewer periodic points of length n. 17 For the full tent map
(11.4) it has exactly 2n periodic points. A periodic orbit p of length n corresponds to an

section 12.2
infinite repetition of a length n = n p symbol string block, customarily indicated by a line
over the string: p = S p = (s1 s2s3 . . . sn)∞ = s1s2 s3 . . . sn . As all itineraries are infinite,

17Predrag: draw f 2 tent map
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critical!point
Gatto Nero!professor
Nero, G.

S γ̂(S ) S γ̂(S )
0 .0 = 0 10111 .11010 = 26/31
1 .10 = 2/3 10110 .1101100100 = 28/33

10 .1100 = 4/5 10010 .11100 = 28/31
101 .110 = 6/7 10011 .1110100010 = 10/11
100 .111000 = 8/9 10001 .11110 = 30/31

1011 .11010010 = 14/17 10000 .1111100000 = 32/33
1001 .1110 = 14/15
1000 .11110000 = 16/17

Table 11.1: The maximal values of unimodal map cycles up to length 5. (K.T. Hansen)

we shall adopt convention that a finite string itinerary p = s1 s2s3 . . . sn stands for infinite
repetition of a finite block, and routinely omit the overline. A cycle p is called prime if its
itinerary S cannot be written as a repetition of a shorter block S ′. If the itinerary of x0 is
p = s1 s2 s3 . . . sn , its cyclic permutation σk p = sk sk+1 . . . sn s1 . . . sk−1 corresponds to the
point xk−1 in the same cycle.

Example 11.10 Periodic points of the full tent map. Each cycle p is a set of np

rational-valued full tent map periodic points γ. It follows from (11.9) that if the repeating
string s1s2 . . . sn contains an odd number of ‘1’s, the string of well ordered symbols
w1w2 . . .w2n has to be of the double length before it repeats itself. The cycle-point γ is
a geometrical sum which we can rewrite as the odd-denominator fraction

γ(s1s2 . . . sn) =

2n∑
t=1

wt

2t
+

1
2−2n

2n∑
t=1

wt

2t
+ · · ·

=
22n

22n − 1

2n∑
t=1

wt

2t
(11.12)

Using this we can calculate the γ̂p = γ̂(S p) for all short cycles. For orbits up to length 5
this is done in table 11.1.

Critical points are special - they define the boundary between intervals, i.e.,
interval is split into 0 [left part], xc [critical point] and 1 [right part]. For the dike
map and the repeller figure 11.12 xc is the whole interval of points along the flat
top of the map, but usually it is a point. As illustrated by figures11.11 and 11.13,
for a unimodal map the preimages f−n(xc) of the critical point xc serve as partition
boundary points. But not all preimages–one has to ensure that they are within the
set of all admissible orbits by checking them against the kneading sequence of the
map.

11.5 Kneading theory

Tired of being harassed by your professors? Finish, get a
job, do combinatorics your own way, while you still know
everything.

—Professor Gatto Nero
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Figure 11.15: The ‘dike’ map obtained by slicing of
the top portion of the tent map in figure 11.11. Any or-
bit that visits the primary pruning interval (κ, 1] is inad-
missible. The admissible orbits form the Cantor set ob-
tained by removing from the unit interval the primary
pruning interval and all its iterates. Any admissible or-
bit has the same topological coordinate and itinerary as
the corresponding tent map figure 11.11 orbit.

f1f0

cκ =f(  )γ

pruned

(K.T. Hansen and P. Cvitanović)

The reason we need to be mindful of spatial ordering of temporal itineraries is
that this spatial ordering provides us with criteria that separate inadmissible orbits
from those realizable by the dynamics. For 1-dimensional mappings the kneading
theory provides a precise and definitive criterion of admissibility. 18

If the parameter in the quadratic map (11.3) is A > 4, then the iterates of the
critical point xc diverge for n → ∞, and any sequence S+ composed of letters si =

{0, 1} is admissible, and any value of 0 ≤ γ < 1 corresponds to an admissible orbit
in the non–wandering set of the map. The corresponding repeller is a complete
binary labeled Cantor set, the n → ∞ limit of the nth level covering intervals
sketched in figure 11.12.

For A < 4 only a subset of the points in the interval γ ∈ [0, 1] corresponds
to admissible orbits. The forbidden symbolic values are determined by observing
that the largest xn value in an orbit x1 → x2 → x3 → . . . has to be smaller than or
equal to the image of the critical point, the critical value f (xc). Let K = S +(xc)
be the itinerary of the critical point xc, denoted the kneading sequence of the map.
The corresponding topological coordinate is called the kneading value

κ = γ(K) = γ(S +(xc)). (11.13)

⇓PRIVATE

Example 11.11 Pruned binary dynamics: 19 20 Consider the 1-dimensional
quadratic map (11.3) for map height A = 3.8. It is easy to check numerically (given

18Predrag: regenerate f-logA3-8
19Predrag: figure 11.16: Use Sharon’s figure, and or Dane Freeman’s

dane.freeman[snail]asdl.gatech.edu version, especially dike map. Seems to be out of se-
quence here. Maybe use dikePart.svg. Add “(a) ... partitioned by inverse iterates of the critical
point, with the partition intervals after 1, 2 and 3 iterations indicated. Intervals marked s1 s2 · · · sn

are unions of all points that follow the itinerary S+ = s1s2 · · · sn. The forward itinerary of the
critical point xc, corresponding to kneading sequence K = 1011011 . . ., prunes blocks 100, 10?? not
revisited by recurrent dynamics. (b) The dike map together with intervals that follow the indicated
itinerary for n steps. ” Then, in the text: “Corresponding itinerary for the dike map is illustrated by
figure 11.16 (b).”

20Predrag: fix “ blocks 100, 10?? not revisited ” before going public
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Figure 11.16: The quadratic map (11.3) for A = 3.8
is believed to posses a strange attractor. The forward
itinerary of the critical point xc yields kneading se-
quence K = 1011011 . . ., with the pruning blocks 100,
10??, · · · not revisited by recurrent dynamics. (con-
tinued in sect. 15.5)
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sufficiently high precision) that the kneading value (the itinerary of the critical point
xc = 1/2) is

K = 1011011110110111101011110111110 . . . ,

see figure 11.16.

⇑PRIVATE

The ‘canonical’ map that has the same kneading sequence K (11.13) as f (x)
is the dike map, figure 11.15,

f (γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f0(γ) = 2γ γ ∈ M0 = [0, κ/2)
fc(γ) = κ γ ∈ Mc = [κ/2, 1 − κ/2]
f1(γ) = 2(1 − γ) γ ∈ M1 = (1 − κ/2, 1]

, (11.14)

obtained by slicing off all γ
(
S +(x0)

)
> κ. The dike map is the full tent map

figure 11.11 with the top sliced off. It is convenient for coding the symbolic dy-
namics, as those γ values that survive the pruning are the same as for the full tent
map figure 11.11, and are easily converted into admissible itineraries by (11.9).

If γ(S +) > γ(K), the point x whose itinerary is S+ would exceed the critical
value, x > f (xc), and hence cannot be an admissible orbit. Let

γ̂(S +) = sup
m
γ(σm(S +)) (11.15)

be the maximal value, the highest topological coordinate reached by the orbit
x1 → x2 → x3 → . . ., where σ is the shift (11.20), σ(· · · s−2s−1s0.s1s2s3 · · ·) =
· · · s−2s−1s0s1.s2s3 · · · . We shall call the interval (κ, 1] the primary pruned inter-
val. The orbit S+ is inadmissible if γ of any shifted sequence of S+ falls into this
interval.

Criterion of admissibility: Let κ be the kneading value of the critical point,
and γ̂(S+) be the maximal value of the orbit S+. Then the orbit S+ is admissible
if and only if γ̂(S+) ≤ κ. ⇓PRIVATE

⇑PRIVATEWhile a unimodal map may depend on many arbitrarily chosen parameters, its
dynamics determines the unique kneading value κ. We shall call κ the topological
parameter of the map. Unlike the parameters of the original dynamical system,
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Figure 11.17: (a) Return map for x = 0, y < 0
Poincaré section; conjugate to figure 11.7 (b) by
1800 turn, but as the section is in the region of
strong folding, much less convenient in practice.
(b) Web diagram generated by the trajectory of the
critical point the unimodal Rössler return map of
figure 11.7. (A. Basu and J. Newman)
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Figure 11.18: (a) Web diagram generated by
the trajectory of the critical point the unimodal
Rössler return map of figure 11.7 (b). (b) The web
diagram for the corresponding ‘canonical’ dike
map (11.14) with the same kneading sequence.
(A. Basu and J. Newman)
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the topological parameter has no reason to be either smooth or continuous. The
jumps in κ as a function of the map parameter such as A in (11.3) correspond to
inadmissible values of the topological parameter. Each jump in κ corresponds to
a stability window associated with a stable cycle of a smooth unimodal map. For
the quadratic map (11.3) κ increases monotonically with the parameter A, but for
a general unimodal map such monotonicity need not hold. ⇓PRIVATE

⇑PRIVATE

Example 11.12 Rössler return map web diagram: (continuation of example 11.2) The
arclength distance along the unstable manifold of the x− equilibrium point return map,
figure 11.7 (b), generates the kneading sequence (11.13) as the itinerary of the critical
point plotted in figure 11.18 (a).

For further details of unimodal dynamics, the reader is referred to appendixG.1.
As we shall see in sect. 12.4, for higher dimensional maps and flows there is no
single parameter that orders dynamics monotonically; as a matter of fact, there
is an infinity of parameters that need adjustment for a given symbolic dynamics.
This difficult subject to which we shall return in sect. 12.5 is beyond our current ⇓PRIVATE

⇑PRIVATE
ambition horizon.

fast track:

chapter 12, p. 284
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11.6 Symbolic dynamics, basic notions

(Mathematics) is considered a specialized dialect of the
natural language and its functioning as a special case of
speech.

— Yuri I. Manin [1]

In this section we collect the basic notions and definitions of symbolic dynamics.
The reader might prefer to skim through this material on a first reading and return
to it later, as the need arises.

Shifts. We associate with every initial point x0 ∈ M the future itinerary, a se-
quence of symbols S+(x0) = s1s2s3 · · · which indicates the order in which the
regions are visited. If the trajectory x1, x2, x3, . . . of the initial point x0 is gener-
ated by

xn+1 = f (xn) , (11.16)

then the itinerary is given by the symbol sequence

sn = s if xn ∈ Ms . (11.17)

Similarly, the past itinerary S-(x0) = · · · s−2s−1s0 describes the history of x0, the
order in which the regions were visited before arriving to the point x0. To each
point x0 in the dynamical space we thus associate a bi-infinite itinerary

S (x0) = (sk)k∈Z = S -.S + = · · · s−2s−1s0.s1s2s3 · · · . (11.18)

The itinerary will be finite for a scattering trajectory, entering and then escaping
M after a finite time, infinite for a trapped trajectory, and infinitely repeating for
a periodic trajectory.

The set of all bi-infinite itineraries that can be formed from the letters of the
alphabet A is called the full shift (or topological Markov chain)

AZ = {(sk)k∈Z : sk ∈ A for all k ∈ Z} . (11.19)

The jargon is not thrilling, but this is how professional dynamicists talk to each
other. We will stick to plain English to the extent possible.

We refer to this set of all conceivable itineraries as the covering symbolic dy-
namics. The name shift is descriptive of the way the dynamics acts on these se-
quences. As is clear from the definition (11.17), a forward iteration x → x′ = f (x)
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shifts the entire itinerary to the left through the ‘decimal point.’ This operation,
denoted by the shift operator σ,

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (11.20)

demoting the current partition label s1 from the future S+ to the ‘has been’ itinerary
S -. The inverse shift σ−1 shifts the entire itinerary one step to the right.

A finite sequence b = sk sk+1 · · · sk+nb−1 of symbols from A is called a block
of length nb. If the symbols outside of the block remain unspecified, we denote
the totality of orbits that share this block by sksk+1 · · · sk+nb−1 .

A state space orbit is periodic if it returns to its initial point after a finite time;
in shift space the orbit is periodic if its itinerary is an infinitely repeating block
p∞. We shall refer to the set of periodic points Mp that belong to a given periodic
orbit as a cycle

p = s1s2 · · · snp = {xs1s2···snp
, xs2···snp s1 , · · · , xsnp s1···snp−1} . (11.21)

By its definition, a cycle is invariant under cyclic permutations of the symbols
in the repeating block. A bar over a finite block of symbols denotes a periodic
itinerary with infinitely repeating basic block; we shall omit the bar whenever it
is clear from the context that the orbit is periodic. Each periodic point is labeled
by the first np steps of its future itinerary. For example, the 2nd periodic point is
labeled by

xs2···snp s1 = xs2···snp s1·s2···snp s1 .

This - a bit strained - notation is meant to indicate that the symbol block repeats
both in the past and in the future. It is helpful for determining spatial ordering of
cycles of 2D-hyperbolic maps, to be undertaken in sect.12.3.1. 21

A prime cycle p of length np is a single traversal of the orbit; its label is
a block of np symbols that cannot be written as a repeat of a shorter block (in
the literature, such cycles are sometimes called primitive; we shall refer to it as
‘prime’ throughout this text).

Partitions. A partition is called generating if every infinite symbol sequence
corresponds to a distinct point in state space. The finite Markov partition (11.2)
is an example. Constructing a generating partition for a given system is a difficult
problem. In the examples to follow, we shall concentrate on cases which that
permit finite partitions, but in practice almost any generating partition of interest
is infinite.

21Predrag: eliminate s−m+1 · · · s0 and [s−m+1 · · · s0., ] s−m+1 · · · s0 notation in favor a single con-
vention
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A partition too coarse, coarser than, for example, a Markov partition, would
assign the same symbol sequence to distinct dynamical trajectories. To avoid that,
we often find it convenient to work with partitions finer than strictly necessary.
Ideally the dynamics in the refined partition assigns a unique infinite itinerary
· · · s−2s−1s0.s1s2s3 · · · to each distinct orbit, but there might exist full shift sym-
bol sequences (11.19) which are not realized as orbits; such sequences are called
inadmissible, and we say that the symbolic dynamics is pruned. The word is
suggested by the ‘pruning’ of branches corresponding to forbidden sequences for
symbolic dynamics organized hierarchically into a tree structure, as explained in
chapter 14. 22

A mapping f : M → M together with a partition A induces topological
dynamics (Σ, σ), where the subshift

Σ = {(sk)k∈Z} , (11.22)

is the set of all admissible (i.e., ‘pruned’) infinite itineraries, and σ : Σ → Σ

is the shift operator (11.20). The designation ‘subshift’ comes form the fact that
Σ ⊂ AZ is the subset of the full shift (11.19). One of our principal tasks in
developing the symbolic dynamics of dynamical systems that occur in nature will
be to determine Σ, the set of all bi-infinite itineraries S that are actually realized
by the given dynamical system.

Pruning. If the dynamics is pruned, the alphabet must be supplemented by
a grammar, a set of pruning rules. After the inadmissible sequences have been
pruned, it is often convenient to parse the symbolic strings into words of variable
length - this is called coding. Suppose that the grammar can be stated as a finite
number of pruning rules, each forbidding a block of finite length,

G = {b1, b2, · · · bk} , (11.23)

where a pruning block b is a sequence of symbols b = s1s2 · · · snb , s ∈ A, of finite
length nb. In this case we can always construct a finite Markov partition (11.2) by
replacing finite length words of the original partition by letters of a new alphabet.
In particular, if the longest forbidden block is of length M + 1, we say that the
symbolic dynamics is a shift of finite type with M-step memory. In that case we
can recode the symbolic dynamics in terms of a new alphabet, with each new
letter given by an admissible block of at most length M.

A topological dynamical system (Σ, σ) for which all admissible itineraries are
generated by a finite transition matrix (14.1)

Σ =
{
(sk)k∈Z : Tsk sk+1 = 1 for all k

}
(11.24)

is called a subshift of finite type. 23 24

22Predrag: coding is ‘non-singular’ if x � y implies that codes C(x) � C(y)
23Predrag: forward reference to transition matrix (14.1)
24Predrag: remember to put refsKnead.tex improvements back to refs.all
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in depth:

chapter 12, p. 284

Résumé

From our initial chapters 2 to 4 fixation on things local: a representative point, a
short-time trajectory, a neighborhood, in this chapter we have made a courageous
leap and gone global.

The main lesson is that - if one intends to go thoughtfully about globalization -
one should trust the dynamics itself, and let it partition the state space, by means of
its (topologically invariant) unstable manifolds. This works if every equilibrium
and periodic orbit is unstable, so one exits it local neighborhood via its unstable
manifold. We delineate the segment of the unstable manifold between the fixed
point and the point where the nonlinearity of the dynamics folds back on itself
as the primary segment, and measure location of nearby state space points by
arclengths measured along this (curvilinear) segment. For 1-dimensional maps
the folding point is the critical point, and easy to determine. In higher dimensions,
the situation is not so clear - we shall discuss that in chapter12.

Trajectories exit a neighborhood of an equilibrium or periodic point along un-
stable directions, and fall along stable manifolds towards other fixed points, until
they again are repelled along their unstable manifolds. Such sequences of visi-
tations can be described by symbolic dynamics. As we shall show in chapter14,
they are encoded by transition matrices / transition graphs, and approximated dy-
namically by sequences of unstable manifold → unstable manifold maps, or, in
case of a return to the initial neighborhood, by return maps s → f (s).

As ‘kneading theory’ of sect. 11.5 illustrates, not all conceivable symbol seq-
uences are actually realized (admissible). The identification of all inadmissible or
pruned sequences is in general not possible. However, the theory to be developed
here relies on exhaustive enumeration of all admissible itineraries up to a given
topological length; chapters 12 and 15 describe several strategies for accomplish-
ing this for physically realistic goals. 25

Commentary

Remark 11.1 Symbolic dynamics. For a brief history of symbolic dynamics, from
Hadamard in 1898, Morse and Hedlund in 1938 and onward, see notes to chapter 1 of
Kitchens monograph [2], a very clear and enjoyable mathematical introduction to topics

25Predrag: For remark 11.3, sect. 11.2.1: Heteroclinic connections, cycles and networks are
defined in arXiv:1206.4328. Has lots of references, focuses on two-dimensional unstable man-
ifolds. Discrete symmetries, robust cycles on invariant subspaces. Constructs ‘cross-sections’ that
lie within the region of approximate linear flow near equilibria.
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discussed here. Diacu and Holmes [3] provide an excellent survey of symbolic dynamics
applied to celestial mechanics. For a compact survey of symbolic dynamics techniques,
consult sects. 3.2 and 8.3 of Robinson [4]. The binary labeling of the once-folding map
periodic points was introduced by Myrberg [5] for 1-dimensional maps, and its utility
to 2-dimensional maps has been emphasized in refs. [6, 7]. For 1-dimensional maps it
is now customary to use the R-L notation of Metropolis, Stein and Stein [ 8, 9], indi-
cating that the point xn lies either to the left or to the right of the critical point in fig-
ure 11.12. The symbolic dynamics of such mappings has been extensively studied by
means of the Smale horseshoes, see for example ref. [10]. Using letters rather than nu-
merals in symbol dynamics alphabets probably reflects good taste. We prefer numerals
for their computational convenience, as they speed up conversions of itineraries into the
topological coordinates (δ, γ) introduced in sect. 12.3.1. The alternating binary ordering
of figure 11.14 is related to the Gray codes of computer science [11]. Kitchens [2] con-
vention is · · · s−2 s−1.s0 s1s2 s3 · · ·, with ‘.’ placed differently from our convention ( 11.18).
26 27

Remark 11.2 Kneading theory. The admissible itineraries are studied, for example,
in refs. [12, 8, 10, 13]. We follow here the Milnor-Thurston exposition [14]. They study
the topological zeta function for piecewise monotone maps of the interval, and show that
for the finite subshift case it can be expressed in terms of a finite dimensional kneading
determinant. As the kneading determinant is essentially the topological zeta function
of sect. 15.4, we do not discuss it here. Baladi and Ruelle have reworked this theory
in a series of papers [15, 16, 17, 18]. See also P. Dahlqvist’s appendix G.1. Knight
and Klages [19] in their study of deterministic diffusion (for deterministic diffusion, see
chapter 26) refer to the set of iterates of the critical point as ‘generating orbit.’ They
say: “The structure of the Markov partitions varies wildly under parameter variation.
The method we employ to understand the Markov partitions involves iterating the critical
point. The set of iterates of this point form a set of Markov partition points for the map.
Hence we call the orbit of the critical point a ‘generating orbit.’ If the generating orbit
is finite for a particular value of parameters, we obtain a finite Markov partition. We can
then use the finite Markov partition to tell us about the diffusive properties of the map and
hence the structure of the diffusion coefficient.” 28

Remark 11.3 Heteroclinic connections. For sketches of heteroclinic connections in
the nonlinear setting, see Abraham and Shaw illustrated classic [20]. Section 5 of ref. [21]
makes elegant use of stable manifold co-dimension counts and of invariant subspaces im-
plied by discrete symmetries of the underlying PDE to deduce the existence of a hetero-
clinic connection.

26Predrag: read up on Gray codes - are they well-ordered sequences?
27Predrag: say somewhere that the return map figure 11.9 is reminiscent of the one found by

Lorenz in his original paper
28Predrag: move this to Markov.tex?
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Exercises boyscout

11.1. Binary symbolic dynamics. Verify that the shortest
prime binary cycles of the unimodal repeller of figure 11.12
are 0, 1, 01, 001, 011, · · ·. Compare with table 15.1.
Sketch them in the graph of the unimodal function f (x);
compare the ordering of the periodic points with that in
figure 11.14. The point is that while overlayed on each
other the longer cycles look like a hopeless jumble, the
periodic points are clearly and logically ordered by the
alternating binary tree.

11.2. Generating prime cycles. Write a program that gener-
ates all binary prime cycles up to a given finite length.

11.3. A contracting baker’s map. Consider the contracting
(or “dissipative”) baker’s map defined in exercise 4.7.

The symbolic dynamics encoding of trajectories is real-
ized via symbols 0 (y ≤ 1/2) and 1 (y > 1/2). Consider
the observable a(x, y) = x. Verify that for any periodic
orbit p (ε1 . . . εnp ), εi ∈ {0, 1}

Ap =
3
4

np∑
j=1

δ j,1 .

11.4. Unimodal map symbolic dynamics. Show that the
tent map point γ(S +) with future itinerary S + is given by
converting the sequence of sn’s into a binary number by
the algorithm (11.9). This follows by inspection from the
binary tree of figure 11.14.

11.5. Unimodal map kneading value. Consider the 1-dimensional
quadratic map

f (x) = Ax(1 − x) , A = 3.8 . (11.25)

(a) (easy) Plot (11.25), and the first 4-8 (whatever looks
better) iterates of the critical point xc = 1/2.

(b) (hard) Draw corresponding intervals of the partition
of the unit interval as levels of a Cantor set, as in the
symbolic dynamics partition of figure 11.12. Note,
however, that some of the intervals of figure 11.12
do not appear in this case - they are pruned.

(c) (easy) Check numerically that K = S +(xc), knead-
ing sequence (the itinerary of the critical point (11.13))
is

K = 1011011110110111101011110111110 . . .

As the orbits of a chaotic map are exponentially un-
stable, so many digits seem too good to be true
- recheck this sequence using arbitrary precision
arithmetics.
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(d) (medium) The tent map point γ(S +) with future
itinerary S + is given by converting the sequence of
sn’s into a binary number by the algorithm (11.9).
List the corresponding kneading value (11.13) se-
quence κ = γ(K) to the same number of digits as K.

(e) (hard) Plot the dike map, figure 11.15, with the same
kneading sequence K as f (x). The dike map is ob-
tained by slicing off all γ

(
S +(x0)

)
> κ, from the

full tent map figure 11.11, see (11.14).

How this kneading sequence is converted into a series of
pruning rules is a dark art, relegated to sect. 15.5 and ap- ⇓PRIVATEpendix G.1.

⇑PRIVATE
11.6. “Golden mean” pruned map. Consider a symmetric

tent map on the unit interval such that its highest point
belongs to a 3-cycle:

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) Find the value |Λ| for the slope (the two different
slopes ±Λ just differ by a sign) where the maxi-
mum at 1/2 is part of a 3-cycle, 29 as depicted in
the figure.

(b) Show that no orbit of this map can visit the region
x > (1 +

√
5)/4 more than once. Verify also that

once an orbit exceeds x > (
√

5 − 1)/4, it does not
reenter the region x < (

√
5 − 1)/4.

(c) If an orbit is in the interval (
√

5 − 1)/4 < x < 1/2,
where will it be on the next iteration?

(d) If the symbolic dynamics is such that for x < 1/2
we use the symbol 0 and for x > 1/2 we use the
symbol 1, show that no periodic orbit will have the
substring 00 in it.

(e) On a second thought, is there a periodic orbit that
violates the above 00 pruning rule?

To continue with this line of thinking, see exercise 15.7
and exercise 19.2. See also exercise 15.6 and exercise 15.8.

29Predrag: Raenell - part of a 3-cycle sounds strange to me
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recurrence11.7. Binary 3-step transition matrix. Construct an [8×8]
binary 3-step transition matrix analogous to the 2-step
transition matrix (14.10). Convince yourself that the num-
ber of terms of contributing to tr T n is independent of the
memory length, and that this [2m×2m] trace is well defined
in the infinite memory limit m → ∞.

11.8. Full tent map periodic points. This exercise is easy:
just making sure you know how to go back and forth be-
tween spatial and temporal ordering of trajectory points.

(a) derive (11.12)

(b) compute the five periodic points of cycle 10011

(c) compute the five periodic points of cycle 10000

(d) (optional) plot the above two cycles on the graph of
the full tent map.

(continued in exercise 13.16) ⇓PRIVATE
11.9. One-dimensional repellers. 30 The simplest exam-

ple of symbolic dynamics is afforded by 1-dimensional
unimodal maps, ie. maps with one increasing and one
decreasing branch. The alphabet consists of two letters,
describing the branch on which the iterate is located. 31

Consider the quadratic polynomial

f (x) = x2 + c , (11.26)

and the cubic polynomial 32

f (x) = (1 + ε)μcx(1 − x2) , (11.27)

For ε > 0 the latter map repels, so that almost any initial
point x will iterate out of the unit interval and escape, see
figure 11.12.

11.10. Recurrences. A recurrence of a point x0 of a dynam-
ical system is a return of that point to a neighborhood of
where it started. Choose a volumeM0 which encloses x0.
Prove for a chaotic dynamical system the if the evolution
brings bring the trajectory back throughM 0, it will do so
infinitely often, and the set (11.1){

y ∈ M0 : y = f t(x0), t > t0
}

(11.28)

will in general have an infinity of recurrent episodes.

11.11. Heavy pruning. Implement the pruning grammar
(14.14), with the pruned blocks

10010, 101, 01001, 01101, 111, 10110,

by a method of your own devising, or following the exam-
ple of chapter 14 illustrated in figure 14.7. For additional
practice, see exercise 15.23.

⇑PRIVATE

30Predrag: this might be an obsolete version; if not, use Malloppo text
31Predrag: copy Freddy p.18, 3rd paragraph
32Predrag: copy Per’s p.29
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Chapter 12

Stretch, fold, prune

I.1. Introduction to conjugacy problems for diffeomor-
phisms. This is a survey article on the area of global anal-
ysis defined by differentiable dynamical systems or equiv-
alently the action (differentiable) of a Lie group G on a
manifold M. Here Diff(M) is the group of all diffeomor-
phisms of M and a diffeomorphism is a differentiable map
with a differentiable inverse. (. . .) Our problem is to study
the global structure, i.e., all of the orbits of M.

—Stephen Smale, Differentiable Dynamical Systems

We have learned that the Rössler attractor is very thin, but otherwise the re-
turn maps that we found were disquieting – figure 3.3 did not appear to
be a one-to-one map. This apparent loss of invertibility is an artifact of

projection of higher-dimensional return maps onto their lower-dimensional sub-
spaces. As the choice of a lower-dimensional subspace is arbitrary, the resulting
snapshots of return maps look rather arbitrary, too. Such observations beg a ques-
tion: Does there exist a natural, intrinsic coordinate system in which we should
plot a return map?

We shall argue in sect. 12.1 that the answer is yes: The intrinsic coordinates
are given by the stable/unstable manifolds, and a return map should be plotted as
a map from the unstable manifold back onto the immediate neighborhood of the
unstable manifold. In chapter 5 we established that Floquet multipliers of periodic
orbits are (local) dynamical invariants. Here we shall show that every equilibrium
point and every periodic orbit carries with it stable and unstable manifolds which
provide topologically invariant global foliation of the state space. They will en-
able us to partition the state space in a dynamically invariant way, and assign
symbolic dynamics itineraries to trajectories.

The topology of stretching and folding fixes the relative spatial ordering of tra-
jectories, and separates the admissible and inadmissible itineraries. We illustrate
how this works on Hénon map example 12.3. Determining which symbol se-
quences are absent, or ‘pruned’ is a formidable problem when viewed in the state
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space, [x1, x2, ..., xd] coordinates. It is equivalent to the problem of determining
the location of all homoclinic tangencies, or all turning points of the Hénon attrac-
tor. They are dense on the attractor, and show no self-similar structure in the state
space coordinates. However, in the ‘danish pastry’ representation of sect. 12.3
(and the ‘pruned danish,’ in American vernacular, of sect.12.4), the pruning prob-
lem is visualized as crisply as the New York subway map; any itinerary which
strays into the ‘pruned region’ is banned.

The level is distinctly cyclist, in distinction to the pedestrian tempo of the
preceding chapter. Skip most of this chapter unless you really need to get into
nitty-gritty details of symbolic dynamics.

fast track:

chapter 13, p. 314

12.1 Goin’ global: stable/unstable manifolds

The complexity of this figure will be striking, and I shall
not even try to draw it.

— H. Poincaré, on his discovery of homoclinic tan-
gles, Les méthodes nouvelles de la méchanique céleste

The Jacobian matrix Jt transports an infinitesimal neighborhood, its eigenvalues
and eigen-directions describing deformation of an initial infinitesimal frame of

neighboring trajectories into a distorted frame time t later, as in figure4.2.
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f (   )t

x(t)+     x

Nearby trajectories separate exponentially along the unstable directions, approach
each other along the stable directions, and creep along the marginal directions.1

The fixed point q Jacobian matrix J(x) eigenvectors (5.12) form a rectilinear
coordinate frame in which the flow into, out of, or encircling the fixed point is

linear in the sense of sect. 4.3.

J

+   x δ

δp

x0

0x +      x

The continuations of the span of the local stable, unstable eigen-directions into
global curvilinear invariant manifolds are called the stable, respectively unstable

1Predrag: 2011-10-07: incorporate FigSrc/gif/Saddle.gif, Scholarpe-
dia.org/article/File:Saddle.gif
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stable!manifold
unstable!manifold

manifolds. They consist of all points which march into the fixed point forward,
respectively backward in time 2

W s =
{
x ∈ M : f t(x) − xq → 0 as t → ∞

}
Wu =

{
x ∈ M : f−t(x) − xq → 0 as t → ∞

}
. (12.1)

Eigenvectors e(i) of the monodromy matrix J(x) play a special role - on them the
action of the dynamics is the linear multiplication by Λi (for a real eigenvector)
along 1-dimensional invariant curve Wu,s

(i) or spiral in/out action in a 2-D surface
(for a complex pair). For t → ±∞ a finite segment on Ws

(c), respectively Wu
(e)

converges to the linearized map eigenvector e(c), respectively e(e), where (c), (e)

stand respectively for ‘contracting,’ ‘expanding.’ In this sense each eigenvector
defines a (curvilinear) axis of the stable, respectively unstable manifold.

Actual construction of these manifolds is the converse of their definition (12.1):
one starts with an arbitrarily small segment of a fixed point eigenvector and lets
evolution stretch it into a finite segment of the associated manifold. As a periodic
point x on cycle p is a fixed point of fTp(x), the fixed point discussion that follows
applies equally well to equilibria and periodic orbits.

Expanding real and positive Floquet multiplier. Consider ith expanding eigen-
value, eigenvector pair (Λi, e(i)) computed from J = Jp(x) evaluated at a fixed
point x,

J(x)e(i)(x) = Λie(i)(x) , x ∈ Mp , Λi > 1 . (12.2)

Take an infinitesimal eigenvector e(i)(x), ||e(i)(x)|| = ε � 1, and its return Λie(i)(x)
after one period Tp. Sprinkle the straight interval between [ε,Λiε] ⊂ Wu

(i) with a

large number of points x(k), for example equidistantly spaced on logarithmic scale
between ln ε and lnΛi + ln ε . The successive returns of these points fTp(x(k)),
f 2Tp(x(k)), · · ·, f mTp(x(k)) trace out the 1d curve Wu

(i) within the unstable manifold.
As separations between points tend to grow exponentially, every so often one
needs to interpolate new starting points between the rarified ones. Repeat for
−e(i)(x).

Contracting real and positive Floquet multiplier. Reverse the action of the
map backwards in time. This turns a contracting direction into an expanding one,
tracing out the curvilinear stable manifold Ws

(i) as a continuation of e(i).

Expanding/contracting real negative Floquet multiplier. As above, but every
even iterate f2Tp(x(k)), f 4Tp(x(k)), f 6Tp(x(k)) continues in the direction e(i), every
odd one in the direction −e(i).

Complex Floquet multiplier pair, expanding/contracting. The complex Flo-
quet multiplier pair {Λj,Λ j+1 = Λ

∗
j} has Floquet exponents (4.7) of form λ( j) =

2Predrag: define the center manifold
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Figure 12.1: A 2d unstable manifold obtained by
continuation from the linearized neighborhood of a
complex eigenvalue pair of an unstable equilibrium
of plane Couette flow, a projection from a 61,506-
dimensional state space ODE truncation of the (∞-
dimensional) Navier-Stokes PDE. (J.F. Gibson, 8
Nov. 2005 blog entry [62])

μ( j)± iω( j), with the sign of μ(k j) � 0 determining whether the linear neighborhood
is out / in spiralling. The orthogonal pair of real eigenvectors {Re e( j), Im e( j)}
spans a plane, as in (E.36). T = 2π/ω( j) is the time of one turn of the spiral, ⇓PRIVATE

⇑PRIVATE
JT Re e( j)(x) = |Λ j|Re e( j)(x) . As in the real cases above, sprinkle the straight in-
terval between [ε, |Λ j|ε] along Re e( j)(x) with a large number of points x(k). The
flow will now trace out the 2d invariant manifold as an out / in spiralling strip.
Two low-dimensional examples are the unstable manifolds of the Lorenz flow,
figure 11.8 (a), and the Rössler flow, figure 11.10 (a). For a highly non-trivial
example, see figure 12.1. 3

The unstable manifolds of a flow are du-dimensional. Taken together with the
marginally stable direction along the flow, they are rather hard to visualize. A
more insightful visualization is offered by (d−1)-dimensional Poincaré sections
(3.2) with the marginal flow direction eliminated (see also sect. 3.1.2). Stable,
unstable manifolds for maps are defined by 4

Ŵ s =
{
x ∈ P : Pn(x) − xq → 0 as n → ∞

}
Ŵu =

{
x ∈ P : P−n(x) − xq → 0 as n → ∞

}
, (12.3)

where P(x) is the (d−1)-dimensional return map (3.1). In what follows, all invari-
ant manifolds Wu, W s will be restricted to their Poincaré sections Ŵu, Ŵ s.

Example 12.1 A section at a fixed point with a complex Floquet multiplier pair:
(continued from example 3.1) The simplest choice of a Poincaré section for a fixed (or
periodic) point xq with a complex Floquet multiplier pair is the plane P specified by the
fixed point (located at the tip of the vector xq) and the eigenvector Im e(k) perpendicular
to the plane. A point x is in the section P if it satisfies the condition

(x − xq) · Im e(k) = 0 . (12.4)

In the neighborhood of xq the spiral out/in motion is in the {Re e(k), Im e(k)} plane, and
thus guaranteed to be cut by the Poincaré section P normal to e(k).

3Predrag: do we need to say something about the spiral being elliptical rather than ‘circular,’
‘isotropic’?

4Predrag: define yq; note 2-dimensional only example
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POD
Karhunen-Lo“‘eve

In general the full state space eigenvectors do not lie in a Poincaré section; the
eigenvectors ê( j) tangent to the section are given by (5.23). Furthermore, while in
the linear neighborhood of fixed point x the trajectories return with approximate
periodicity Tp, this is not the case for the globally continued manifolds; τ(x), or
the first return times (3.1) differ, and the Ŵu

( j) restricted to the Poincaré section is
obtained by continuing trajectories of the points from the full state space curve
Wu

( j) to the section P.

For long times the unstable manifolds wander throughout the connected er-
godic component, and are no more informative than an ergodic trajectory. For
example, the line with equitemporal knots in figure 12.1 starts out on a smoothly
curved neighborhood of the equilibrium, but after a ‘turbulent’ episode decays
into an attractive equilibrium point. The trick is to stop continuing an invariant
manifold while the going is still good.

fast track:

sect. 12.2, p. 290

Learning where to stop is a bit of a technical exercise, the reader might prefer
to skip next section on the first reading.

12.1.1 Parametrization of invariant manifolds

As the flow is nonlinear, there is no ‘natural’ linear basis to represent it.
Wistful hopes like ‘POD modes,’ ‘Karhunen-Loève,’ and other linear changes of
bases do not cut it. The invariant manifolds are curved, and their coordinatizations
are of necessity curvilinear, just as the maps of our globe are, but infinitely foliated
and thus much harder to chart.

Let us illustrate this by parameterizing a 1d slice of an unstable manifold by its
arclength. Sprinkle evenly points {x(1), x(2), · · · , x(N−1)} between the equilibrium
point xq = x(0) and point x = x(N), along the 1d unstable manifold continuation
x(k) ∈ Ŵu

( j) of the unstable ê( j) eigendirection (we shall omit the eigendirection

label ( j) in what follows). Then the arclength from equilibrium point xq = x(0) to
x = x(N) is given by

s2 = lim
N→∞

N∑
k=1

gi j dx(k)
i dx(k)

j , dx(k)
i = x(k)

i − x(k−1)
i . (12.5)

For the lack of a better idea (perhaps the dynamically determined g = JT J would
be a more natural metric?) let us measure arclength in the Euclidian metric, gi j =

δi j, so

s = lim
N→∞

⎛⎜⎜⎜⎜⎜⎜⎝ N∑
k=1

(
dx(k)

)2
⎞⎟⎟⎟⎟⎟⎟⎠

1/2

. (12.6)
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turnback pointBy definition f τ(x)(x) ∈ Ŵu
( j), so f t(x) induces a 1d map s(s0, τ) = s( f τ(x0)(x0)).

Turning points are points on the unstable manifold for which the local un-
stable manifold curvature diverges for forward iterates of the map, i.e., points at
which the manifold folds back onto itself arbitrarily sharply. For our purposes,
approximate turning points suffice. The 1d curve Ŵu

( j) starts out linear at xq, then
gently curves until –under the influence of other unstable equilibria and/or peri-
odic orbits– it folds back sharply at ‘turning points’ and then nearly retraces itself.
This is likely to happen if there is only one unstable direction, as we saw in the
Rössler attractor example 11.3, but if there are several, the ‘turning point’ might
get stretched out in the non-leading expanding directions.

The trick is to figure out a good base segment to the nearest turning point
L = [0, sb], and after the foldback assign to s(x, t) > sb the nearest point s on
the base segment. If the stable manifold contraction is strong, the 2nd coordinate
connecting s(x, t) → s can be neglected. We saw in example11.3 how this works.
You might, by nature and temperament, take the dark view: Rössler has helpful
properties, namely insanely strong contraction along a 1-dimensional stable direc-
tion, that are not present in real problems, such as turbulence in a plane Couette
flow, and thus the lessons of chapter 11 of no use when it comes to real plumb-
ing. For this reason, both of the training examples to come, the billiards and the
Hénon map are of Hamiltonian, phase-space preserving type, and thus as far from
being insanely contracting as possible. Yet, to a thoughtful reader, they unfold
themselves as pages of a book.

Assign to each d-dimensional point x̂ ∈ Lq a coordinate s = s(x̂) whose value
is the Euclidean arclength (12.5) to xq measured along the 1-dimensional Pq sec-
tion of the xq unstable manifold. Next, for a nearby point x̂0 � Lq determine
the point x̂1 ∈ Lq which minimizes the Euclidean distance (x̂0 − x̂1)2, and as-
sign arc length coordinate value s0 = s(x̂1) to x̂0. In this way, an approximate
1-dimensional intrinsic coordinate system is built along the unstable manifold.
This parametrization is useful if the non–wandering set is sufficiently thin that its
perpendicular extent can be neglected, with every point on the non–wandering set
assigned the nearest point on the base segment Lq.

⇓PRIVATE

refFigf:antmn1 (c) shows the first iterate of Lq: finer structures do develop,
but on the whole they lie close to Lq and should be well described by the intrinsic
curvilinear coordinate that we now define. 5

Alternatively, one can write down a parametric equation for the stable (unsta-
ble) manifold and generate the manifold by integrating the equation. 6 7

⇑PRIVATE

Armed with this intrinsic curvilinear coordinate parametrization, we are now
in a position to construct a 1-dimensional model of the dynamics on the non–
wandering set. If x̂n is the nth Poincaré section of a trajectory in neighborhood of
xq, and sn is the corresponding curvilinear coordinate, then sn+1 = f τn (sn) models

5Predrag: need a fatter return map than Rössler to illustrate this
6Predrag: explain, draw figure
7Predrag: add backward labels figure 12.3
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Figure 12.2: Binary labeling of trajectories of the
symmetric 3-disk pinball; a bounce in which the tra-
jectory returns to the preceding disk is labeled 0, and a
bounce which results in continuation to the third disk
is labeled 1.

the full state space dynamics x̂n → x̂n+1. We approximate f (sn) by a smooth,
continuous 1-dimensional map f : Lq → Lq by taking x̂n ∈ Lq, and assigning to
x̂n+1 the nearest base segment point sn+1 = s(x̂n+1).

12.2 Horseshoes

If you find yourself mystified by Smale’s article abstract quoted on page 290,
about ‘the action (differentiable) of a Lie group G on a manifold M,’ time has
come to bring Smale to everyman. If you still remain mystified by the end of
this chapter, reading chapter 16 might help; for example, the Liouville operators
form a Lie group of symplectic, or canonical transformations acting on the (p, q)
manifold.

If a flow is locally unstable but globally bounded, any open ball of initial
points will be stretched out and then folded. An example is a 3-dimensional in-
vertible flow sketched in figure 11.10 which returns a Poincaré section of the flow
folded into a ‘horseshoe’ (we shall belabor this in figure 12.4). 8 We now of-

exercise 12.1
fer two examples of locally unstable but globally bounded flows which return an
initial area stretched and folded into a ‘horseshoe,’ such that the initial area is in-
tersected at most twice. We shall refer to such mappings with at most 2n transverse
self-intersections at the nth iteration as the once-folding maps.

The first example is the 3-disk game of pinball figure 11.5, which, for suf-
ficiently separated disks (see figure 11.6), is an example of a complete Smale
horseshoe. We start by exploiting its symmetry to simplify it, and then partition
its state space by its stable / unstable manifolds. 9

Example 12.2 Recoding 3-disk dynamics in binary. (continued from exam-
ple 11.2) The A = {1, 2, 3} symbolic dynamics for 3-disk system is neither unique,
nor necessarily the smartest one - before proceeding it pays to quotient the symme-
tries of the dynamics in order to obtain a more efficient description. We do this in a
quick way here, and redo it in more detail in sect. 12.6.

As the three disks are equidistantly spaced, the disk labels are arbitrary; what
is important is how a trajectory evolves as it hits subsequent disks, not what label the
starting disk had. We exploit this symmetry by recoding, in this case replacing the
absolute disk labels by relative symbols, indicating the type of the collision. For the 3-
disk game of pinball there are two topologically distinct kinds of collisions, figure 12.2:

exercise 11.1
exercise 12.78Predrag: motivate 1-dimensional maps with this, replace figure 11.10 by hand-drawn version

9Predrag: Add Grigo’s pictures?
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Figure 12.3: The 3-disk game of pinball of fig-
ure 11.5, generated by starting from disk 1, pre-
ceded by disk 2, coded in binary, as in figure 12.2.
(a) Strips Msi. j which have survived a bounce in
the past and will survive a bounce in the future.
(b) Iteration corresponds to the decimal point shift;
for example, all points in the rectangle [1.01] map
into the rectangles [0.10], [0.11] in one iteration.

(a)

si
nØ

1

0

−1
−2.5 0 2.5s

0.0 1.1

0. .01. .1

0.1

1.0

(b)

si
n

θ

s

1.

0.01

0.010.01

0.

0.00

si =

{
0 : pinball returns to the disk it came from
1 : pinball continues to the third disk . (12.7)

In the binary recoding of the 3-disk symbolic dynamics the prohibition of self-bounces
is automatic. If the disks are sufficiently far apart there are no further restrictions on
symbols, the symbolic dynamics is complete, and all binary sequences (see table 15.1)
are admissible.

exercise 11.2
It is intuitively clear that as we go backward in time (reverse the velocity vec-

tor), we also need increasingly precise specification of x0 = (s0, p0) in order to follow
a given past itinerary. Another way to look at the survivors after two bounces is to
plot Ms1.s2 , the intersection of M.s2 with the strips Ms1. obtained by time reversal (the
velocity changes sign sin φ → − sin φ). Ms1.s2 , figure 12.3 (a), is a ‘rectangle’ of
nearby trajectories which have arrived from disk s1 and are heading for disk s2. 10 11

(continued in example 12.6)

The 3-disk repeller does not really look like a ‘horseshoe;’ the ‘fold’ is cut
out of the picture by allowing the pinballs that fly between the disks to fall off the
table and escape. Next example captures the ‘stretch & fold’ horseshoe dynamics
of return maps such as Rössler’s, figure 3.2.

Example 12.3 A Hénon repeller complete horseshoe: (continued from exam-
ple 3.6) Consider 2-dimensional Hénon map 12

exercise 3.5

(xn+1, yn+1) = (1 − ax2
n + byn, xn) . (12.8)

If you start with a small ball of initial points centered around the fixed point x0, and
iterate the map, the ball will be stretched and squashed along the unstable manifold
Wu

0 . Iterated backward in time, 13

(xn−1, yn−1) = (yn,−b−1(1 − ay2
n − xn)) , (12.9)

this small ball of initial points traces out the stable manifold W s
0 . Their intersections

enclose the region M. , figure 12.4 (a). Any point outside W s
0 border of M. escapes

10Predrag: figure 12.3 change color of intersections, so they show up in grayscale. .0 and .1 labels
are now invisible

11Predrag: sin φ or sin θ? Harmonize with chapter 8
12Predrag: refer to the fixed points exercise
13Predrag: add exercise
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stable!manifold
unstable!manifold

Figure 12.4: The Hénon map (12.8) for a = 6, b =
−1: fixed point 0 with segments of its stable, unsta-
ble manifolds Ws , Wu, and fixed point 1. (a) Their
intersection bounds the region M. = 0BCD which
contains the non–wandering set Ω. (b) The inter-
section of the forward image f (M.) with M. con-
sists of two (future) strips M0., M1., with points
BCD brought closer to fixed point 0 by the sta-
ble manifold contraction. (c) The intersection of
the forward image f (M.) with the backward back-
ward f −1(M.) is a four-region cover of Ω. (d) The
intersection of the twice-folded forward horseshoe
f 2(M.) with backward horseshoe f−1(M.). (e)
The intersection of f 2(M.) with f −2(M.) is a 16-
region cover of Ω. Iteration yields the complete
Smale horseshoe non–wandering set Ω, i.e., the
union of all non-wandering points of f , with ev-
ery forward fold intersecting every backward fold.
(P. Cvitanović and Y. Matsuoka)

(a) −1.0 0.0 1.0
−1.0

0.0

1.0

0 W
u

W
s

B

C
D

1

(b) −1.0 0.0 1.0
−1.0

0.0

1.0

1.

0

0.D

B

C

(c)

1.0

0.0

0.1

1.1

(d)
10.0
00.0

00.1

10.1

11.1

11.0
01.0

01.1

(e)

01.10

10.10

00.11

01.01

to infinity forward in time, while –by time reversal– any point outside W u
0 border arrives

from infinity back in paste. In this way the unstable - stable manifolds define topologi-
cally, invariant and optimal initial region M .; all orbits that stay confined for all times are
confined to M. . 14 15

The Hénon map models qualitatively the Poincaré section return map of fig-
ure 11.10. For b = 0 the Hénon map reduces to the parabola (11.3), and, as shown in
sects. 3.3 and 33.1, for b � 0 it is kind of a fattened parabola; by construction, it takes
a rectangular initial area and returns it bent as a horseshoe. Parameter a controls the
amount of stretching, while the parameter b controls the amount of compression of the
folded horseshoe. For definitiveness, fix the parameter values to a = 6, b = −1; the
map is then strongly stretching but area preserving, the furthest away from the strongly
dissipative examples discussed in sect. 11.2. The map is quadratic, so it has 2 fixed
points x0 = f (x0), x1 = f (x1) indicated in figure 12.4 (a). For the parameter values at
hand, they are both unstable.

Iterated one step forward, the region M. is stretched and folded into a Smale
horseshoe drawn in figure 12.4 (b). Label the two forward intersections f (M.) ∩M. by
Ms., with s ∈ {0, 1}. The horseshoe consists of the two strips M0.,M1. , and the bent
segment that lies entirely outside the W s

0 line. As all points in this segment escape to
infinity under forward iteration, this region can safely be cut out and thrown away. 16

Iterated one step backwards, the region M. is again stretched and folded into
a horseshoe, figure 12.4 (c). As stability and instability are interchanged under time
reversal, this horseshoe is transverse to the forward one. Again the points in the horse-
shoe bend wander off to infinity as n → −∞, and we are left with the two (past) strips
M.0,M.1 . Iterating two steps forward we obtain the four strips M11.,M01.,M00.,M10.,
and iterating backwards we obtain the four strips M.00,M.01,M.11,M.10 transverse to
the forward ones just as for 3-disk pinball game figure 12.2. Iterating three steps for-
ward we get an 8 strips, and so on ad infinitum. (continued in example 12.4)

What is the significance of the subscript such as .011 which labels the M.011

14Predrag: harmonize the text with the new figure 12.4
15Predrag: might want to reuse Fig/figM
16Predrag: use this: “the backward and the forward Smale horseshoes intersect at most 2n times,

and therefore there will be 2n or fewer periodic points of length n.” ?
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future strip? The two strips M.0,M.1 partition the state space into two regions
labeled by the two-letter alphabet A = {0, 1}. S+ = .011 is the future itinerary
for all x ∈ M.011. Likewise, for the past strips all x ∈ Ms−m···s−1s0. have the past
itinerary S - = s−m · · · s−1s0 . Which partition we use to present pictorially the
regions that do not escape in m iterations is a matter of taste, as the backward
strips are the preimages of the forward ones

M0. = f (M.0) , M1. = f (M.1) .

Ω, the non–wandering set (2.3) of M., is the union of all points whose forward
and backward trajectories remain trapped for all time, given by the intersections
of all images and preimages of M:

Ω =

{
x : x ∈ lim

m,n→∞
f m(M.)

⋂
f −n(M.)

}
. (12.10)

Two important properties of the Smale horseshoe are that it has a complete
binary symbolic dynamics and that it is structurally stable.

For a complete Smale horseshoe every forward fold fn(M) intersects transver-
sally every backward fold f−m(M), so a unique bi-infinite binary sequence can be
associated to every element of the non–wandering set. A point x ∈ Ω is labeled
by the intersection of its past and future itineraries S (x) = · · · s−2s−1s0.s1s2 · · ·,
where sn = s if f n(x) ∈ M.s , s ∈ {0, 1} and n ∈ Z.

remark A.2

The system is said to be structurally stable if all intersections of forward and
backward iterates ofM remain transverse for sufficiently small perturbations f →
f + δ of the flow, for example, for slight displacements of the disks in the pinball
problem, or sufficiently small variations of the Hénon map parameters a, b. While

section 1.8
structural stability is exceedingly desirable, it is also exceedingly rare. About this,
more later.

section 26.2

⇓PRIVATE
Inspecting figure 12.4 (c) we see that the relative ordering of regions with

differing finite itineraries is a qualitative, topological property of the flow, so it
makes sense to define a simple ‘canonical’ representative partition for the entire
class of topologically similar flows. 17

⇑PRIVATE

12.3 Symbol plane

Consider a system for which you have succeeded in constructing a covering sym-
bolic dynamics, such as a well-separated 3-disk system. Now start moving the
disks toward each other. At some critical separation a disk will start blocking

17Predrag: July 2008: July 2008: define finite-time Lyapunovs, offer a stable/unstable mani-
fold foliation illustrated by color-coded exponents. Vlad Bezuglyy (a PhD student), Mehling and
Wilkinson (?) refer to state space regions with complex finite time Lyapunovs as ‘gyres’

smale - 19apr2009 boyscout version14.4, Mar 19 2013



CHAPTER 12. STRETCH, FOLD, PRUNE 294

ordering!spatial
symbol plane@“topp
baker’s map
danish pastry
rectangle

Figure 12.5: Kneading orientation preserving danish
pastry: mimic the horsheshoe dynamics of figure 12.6
by: (1) squash the unit square by factor 1/2, (2) stretch
it by factor 2, and (3) fold the right half back over the
left half.

B

A

A

B

B

A

families of trajectories traversing the other two disks. 18 The order in which trajec-
tories disappear is determined by their relative ordering in space; the ones closest
to the intervening disk will be pruned first. Determining inadmissible itineraries
requires that we relate the spatial ordering of trajectories to their time ordered
itineraries.

exercise 12.8

So far we have rules that, given a state space partition, generate a temporally
ordered itinerary for a given trajectory. Our next task is the converse: given a
set of itineraries, what is the spatial ordering of corresponding points along the
trajectories? In answering this question we will be aided by Smale’s visualization
of the relation between the topology of a flow and its symbolic dynamics by means
of ‘horseshoes,’ such as figure 12.4.

12.3.1 Kneading danish pastry

The danish pastry transformation, the simplest baker’s transformation appropriate
to Hénon type mappings, yields a binary coordinatization of all possible periodic
points. 19

The symbolic dynamics of once-folding map is given by the danish pastry
transformation. This generates both the longitudinal and transverse alternating
binary tree. The longitudinal coordinate is given by the head of a symbolic se-
quence; the transverse coordinate is given by the tail of the symbolic sequence.
The dynamics on this space is given by symbol shift permutations; volume pre-
serving, with 2 expansion and 1/2 contraction.

For a better visualization of 2-dimensional non–wandering sets, fatten the in-
tersection regions until they completely cover a unit square, as in figure12.7. 20

exercise 12.2
exercise 12.3We shall refer to such a ‘map’ of the topology of a given ‘stretch & fold’ dynam-

ical system as the symbol square. The symbol square is a topologically accurate
representation of the non–wandering set and serves as a street map for labeling its
pieces. Finite memory of m steps and finite foresight of n steps partitions the sym-
bol square into rectangles [s−m+1 · · · s0.s1s2 · · · sn], such as those of figure 12.6. In

18Predrag: place Kai’s figure here? refer to it?
19Predrag: explain danish pastry here
20Predrag: motivate by the NYC subway map
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symbol!square

Figure 12.6: The dynamics maps two (past) strips
strips M.0, M.1 into two (future) strips M0., M1..
The corners are labeled to aid visualization. Note
that the BCGH strip is rotated by 180 degrees. (P.
Cvitanović and Y. Matsuoka)

(e)

.0 .1
1.

0

0.D

B

C

D

B

C

0
E

F

F

E

G

H

H

G

Figure 12.7: Kneading danish pastry: symbol
square representation of an orientation preserving
once-folding map obtained by fattening the Smale
horseshoe intersections of (a) figure 12.6 (b) fig-
ure 12.4 into a unit square. Also indicated: the
fixed points 0, 1 and the 2-cycle points {01,10}. In
the symbol square the dynamics maps rectangles
into rectangles by a decimal point shift.

(a) .1.0

0.

1.

0

1

(b)

01.

11.

00.

10.

.00 .01 .11 .10

0

01

10

1

the binary dynamics symbol square the size of such rectangle is 2−m × 2−n; it cor-
responds to a region of the dynamical state space which contains all points that
share common n future and m past symbols. This region maps in a nontrivial way
in the state space, but in the symbol square its dynamics is exceedingly simple; all
of its points are mapped by the decimal point shift (11.20) 21 22 23

σ(· · · s−2s−1s0.s1s2s3 · · ·) = · · · s−2s−1s0s1.s2s3 · · · , (12.11)

Example 12.4 A Hénon repeller subshift: (continued from example 12.3) The
Hénon map acts on the binary partition as a shift map. Figure 12.6 illustrates ac-
tion f (M.0) = M0.. The square [01.01] gets mapped into the rectangles σ[01.01] =
[10.1] = {[10.10], [10.11]}, see figure 12.4 (e). Further examples can be gleaned from
figure 12.4. 24

As the horseshoe mapping is a simple repetitive operation, we expect a simple
relation between the symbolic dynamics labeling of the horseshoe strips, and their
relative placement. The symbol square points γ(S+) with future itinerary S+ are

⇓PRIVATE

exercise 12.4

⇑PRIVATE

constructed by converting the sequence of sn’s into a binary number by the algo-
rithm (11.9). This follows by inspection from figure 12.9. In order to understand
this relation between the topology of horseshoes and their symbolic dynamics, it
might be helpful to backtrace to sect. 11.4 and work through and understand first
the symbolic dynamics of 1-dimensional unimodal mappings.

21Predrag: define here baker’s map - use figure 4.7?
22Predrag: say symbol square is a product of two tent maps
23Predrag: complement figure 12.7 with a figure of rectangles mapping into rectangles
24Predrag: mislabeled 2-cycle in figure 12.7
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past “topc

Figure 12.8: Kneading orientation preserving
danish pastry: symbol square representation of an
orientation preserving once-folding map obtained
by fattening the intersections of two forward iter-
ates / two backward iterates of Smale horseshoe
into a unit square.
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Figure 12.9: Kneading danish pastry: symbol square
representation of an orientation preserving once-
folding map obtained by fattening the Smale horse-
shoe intersections of figure 12.4 (e) into a unit square.
Also indicated: the fixed points 0, 1, and the 3-cycle
points {011,110,101}. In the symbol square the dynam-
ics maps rectangles into rectangles by a decimal point
shift.

.000
.001

.011
.010

.110
.111

.101
.100

100.

110.

010.

011.

111.

101.

001.

000.

110

0

1

100

001

010

101

011

25 Under backward iteration the roles of 0 and 1 symbols are interchanged;
M−1

0 has the same orientation as M, while M−1
1 has the opposite orientation. We

exercise 12.5
assign to an orientation preserving once-folding map the past topological coordi-
nate δ = δ(S -) by the algorithm: 26 27

wn−1 =

{
wn if sn = 0
1 − wn if sn = 1 , w0 = s0

δ(S -) = 0.w0w−1w−2 . . . =

∞∑
n=1

w1−n/2
n . (12.12)

Such formulas are best derived by solitary contemplation of the action of a folding
map, in the same way we derived the future topological coordinate (11.9).

The coordinate pair (δ, γ) associates a point (x, y) in the state space Cantor
set of figure 12.4 to a point in the symbol square of figure 12.9, preserving the
topological ordering. The symbol square [δ, γ] serves as a topologically faithful
representation of the non–wandering set of any once-folding map, and aids us in
partitioning the set and ordering the partitions for any flow of this type.28 29

fast track:

chapter 13, p. 314

25Predrag: into exercises - orientation preserving case
26Predrag: recheck this
27Predrag: incorporate Grigo solutions?
28Predrag: Include results of refs. [54, 55]
29Predrag: add chapter on templates, braids?
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pruning!front12.4 Prune danish

Anyone know where I can get a good prune danish in
Charlotte? I mean a real NY Jewish bakery kind of prune
danish!

— Googled

In general, not all possible symbol sequences are realized as physical trajectories.
Trying to get from ‘here’ to ‘there’ we might find that a short path is excluded by
some obstacle, such as a disk that blocks the path, or a potential ridge. In order to
enumerate orbits correctly, we need to prune the inadmissible symbol sequences,
i.e., describe the grammar of the admissible itineraries.

The complete Smale horseshoe dynamics discussed so far is rather straight-
forward, and sets the stage for situations that resembles more the real life. A
generic once-folding map does not yield a complete horseshoe; some of the horse-
shoe pieces might be pruned, i.e., not realized for particular parameter values of
the mapping. In 1 dimension, the criterion for whether a given symbolic sequence
is realized by a given unimodal map is easily formulated; any orbit that strays
to the right of the value computable from the kneading sequence (the orbit of
the critical point (11.13)) is pruned. This is a topological statement, indepen-
dent of a particular unimodal map. Our objective is to generalize this notion to
2-dimensional once-folding maps.

Adjust the parameters of a once-folding map so that the intersection of the
backward and forward folds is still transverse, but no longer complete, as in fig-
ure 12.10 (a). The utility of the symbol square lies in the fact that the surviving,
admissible itineraries still maintain the same relative spatial ordering as for the
complete case. 30

In the example of figure 12.10 the rectangles [10.1], [11.1] have been pruned,
and consequently any trajectory containing blocks b1 = 101, b2 = 111 is pruned,
the symbol dynamics is a subshift of finite type (11.24). We refer to the border
of this primary pruned region as the pruning front; another example of a pruning
front is drawn in figure 12.11 (b). We call it a ‘front’ as it can be visualized as a
border between admissible and inadmissible; any trajectory whose points would
fall to the right of the front in figure 12.11 is inadmissible, i.e., pruned. The
pruning front is a complete description of the symbolic dynamics of once-folding
maps; we shall discuss this in more depth in sect.12.5. For now we need this only ⇓PRIVATE

⇑PRIVATE
as a concrete illustration of how pruning rules arise.

In the example at hand there are total of two forbidden blocks 101, 111, so
For now we concentrate on this kind of pruning because it is particularly clean
and simple. ⇓PRIVATE

30Predrag: add Henon exercise based on AACI, AACII. Refer to Carvalho. Explain that fig-
ure 12.11 is not possible for invertible maps - we are taking a bit of pedagogical license here.
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homoclinic!tangency

Figure 12.10: (a) An incomplete Smale horse-
shoe: the inner forward fold does not intersect the
outer backward fold. (b) The primary pruned re-
gion in the symbol square and the corresponding
forbidden binary blocks.
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Figure 12.11: (a) An incomplete Smale horseshoe
which illustrates (b) the monotonicity of the prun-
ing front: the thick line which delineates the left
border of the primary pruned region is monotone
on each half of the symbol square. The backward
folding in this figure and figure 12.10 is schematic
- in invertible mappings there are further miss-
ing intersections, all obtained by the forward and
backward iterations of the primary pruned region.

12.5 Pruned danish

No matter how far down the wrong road you’ve gone, turn
back.

— Turkish proverb

31 Ronnie: Finite and in-
finite subshifts. How the
above stuff gets compli-
cated. Serious pruning
here.

The pruning front conjecture offers a complete description of the symbolic dy-
namics of once-folding maps in the same sense in which the kneading sequence
defines the symbolic dynamics of a 1-dimensional unimodal map. The intuition
behind this conjecture is that the folding induced by a single iteration is the pri-
mary folding, and all other folds (turnbacks, homoclinic tangencies) are images
or preimages of the primary ones. The topology puts two constraints on the form
of a pruning front for once-folding maps:

1. The pruning front is symmetric across the horizontal 1/2 line.

2. The pruning front is monotone across either half of the symbol square.

This is a consequence of the deterministic foliation; inner folds cannot pierce
through the outer folds, and therefore have fewer transverse sections than the outer
ones.

Our strategy is the following: we first construct a 2-dimensional representation
of the covering symbolic dynamics of the map. This is a ‘road map’ in which the
various sheets of the stable and unstable manifolds are represented by straight

31Predrag: Include sections of the paper with Kai.

smale - 19apr2009 boyscout version14.4, Mar 19 2013



CHAPTER 12. STRETCH, FOLD, PRUNE 299

sections, and the topology is preserved: the nearby periodic points in the symbol
square represent nearby periodic points in the state space. Next we separate the
admissible and the forbidden motions by means of a ‘pruning front,’ a boundary
between the two kinds of orbits.

We make following assumptions:

(i) The partition conjecture: the non–wandering set of a once-folding map can be
described by a subset of a complete Smale horseshoe, partitioned by the set
of primary turning points.

(ii) The pruning-front conjecture: kneading values of the set of all primary turn-
ing points separate the admissible from the forbidden orbits, and there are
no other pruning rules.

(iii) Multimodal map approximation: A 2-dimensional once-folding map can
be systematically approximated by a sequence of 1-dimensional n-folding
maps.

The intuition behind these conjectures is that the folding induced by a sin-
gle iteration is the primary folding, and all other folds (turning points, homo-
clinic tangencies) are images or preimages of the primary ones. The asymptotic
object is a collection of infinitely many 1-dimensionals̃heets, and the pruning
front is the set of the corresponding kneading sequences (11.13), one for each
1-dimensionals̃heet. 32

The analogous situation can be attained for a 2–dimensional once–folding map
if the parameters of the map adjusted so that the intersection of the backward and
forward folds is still transverse, but no longer complete, as in figure 12.10. In
this particular example the intersections 10.1 , 11.1 have been lost, and conse-
quently any trajectory containing substrings 101 , 111 is pruned. We refer to
the left border of this primary pruned region as the pruning front; an example of
a pruning front is drawn in figure 12.11 (b). The pruning front is a 2-dimensional
generalization of the 1-dimensional kneading sequence (11.13); the location of
each vertical step in the pruning front is the kneading sequence of the correspond-
ing primary turnback of the unstable manifolds.

33

⇑PRIVATE

fast track:

chapter 13, p. 314

Though a useful tool, Markov partitioning is not without drawbacks. One glar-
ing shortcoming is that Markov partitions are not unique: any of many different
partitions might do the job. The C2- and D3- equivariant systems that we discuss
next offers a simple illustration of different Markov partitioning strategies for the
same dynamical system.

32Predrag: Conjectures (i) and (ii) work for all examples that we have studied, and we are not
aware of existence of any once-folding maps that contradict them.

33Predrag: Insert table like one from exercise 13.15 here for the pruned Hénon map values.
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symmetry!discrete
Ising model
symbolic

dynamics!recoding
recoding

Table 12.1: Correspondence between the C2 symmetry reduced cycles p̃ and the full state
space periodic orbits p, together with their multiplicities m p. Also listed are the two
shortest cycles (length 6) related by time reversal, but distinct under C 2.

p̃ p mp

1 + 2
0 −+ 1
01 − − ++ 1
001 − + + 2
011 − − − + ++ 1
0001 − + − − + − ++ 1
0011 − + ++ 2
0111 − − − − + + ++ 1
00001 − + − + − 2
00011 − + − − − + − + ++ 1
00101 − + + − − + − − ++ 1
00111 − + − − − + − + ++ 1
01011 − − + + + 2
01111 − − − − − + + + ++ 1
001011 − + + − − − + − − + ++ 1
001101 − + + + − − + − − − ++ 1

12.6 Recoding, symmetries, tilings

In chapter 9 we made a claim that if there is a symmetry of dynamics, we
must use it. Here we shall show how to use it, on two concrete examples, and in
chapter 21 we shall be handsomely rewarded for our labors. First, the simplest
example of equivariance, a single ‘reflection’ C2 group of example 9.16.

Example 12.5 C2 recoded: Assume that each orbit is uniquely labeled by an
exercise 9.6

infinite string {si}, si ∈ {+,−} and that the dynamics is C2-equivariant under the + ↔ −
interchange. Periodic orbits separate into two classes, the self-dual configurations +−,
++−−, +++−−−, +−−+−++−, · · ·, with multiplicity mp = 1, and the pairs +, −, ++−,
− − +, · · ·, with multiplicity mp = 2. For example, as there is no absolute distinction
between the ‘left’ or the ‘right’ lobe of the Lorenz attractor, figure 3.4 (a), the Floquet
multipliers satisfy Λ+ = Λ−, Λ++− = Λ+−−, and so on.

exercise 21.5
The symmetry reduced labeling ρi ∈ {0, 1} is related to the full state space

labeling si ∈ {+,−} by

If si = si−1 then ρi = 1

If si � si−1 then ρi = 0 (12.13)

For example, the fixed point + = · · · + + + + · · · maps into · · · 111 · · · = 1, and so does
the fixed point −. The 2-cycle −+ = · · · − + − + · · · maps into fixed point · · · 000 · · · = 0,
and the 4-cycle − + +− = · · · − − + + − − + + · · · maps into 2-cycle · · · 0101 · · · = 01. A
list of such reductions is given in table 12.1.

Next, let us take the old pinball game and ‘quotient’ the state space by the
symmetry, or ‘desymmetrize.’ As the three disks are equidistantly spaced, our
game of pinball has a sixfold symmetry. For instance, the cycles 12, 23, and 13 in
figure 12.12 are related to each other by rotation by ±2π/3 or, equivalently, by a
relabeling of the disks. We exploit this symmetry by recoding, as in (12.7).

exercise 11.1
exercise 12.7
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prime cycle!ternary
ternary!prime cycles
prime cycle!binary
binary!prime cycles
fundamental!domain
three-disk@3-

disk!symmetry
symmetry!3-disk

Figure 12.12: The 3-disk game of pinball with the
disk radius : center separation ratio a:R = 1:2.5.
(a) 2-cycles 12, 13, 23, and 3-cycles 123 and 132
(not drawn). (b) The fundamental domain, i.e., the
small 1/6th wedge indicated in (a), consisting of a
section of a disk, two segments of symmetry axes
acting as straight mirror walls, and an escape gap.
The above five cycles restricted to the fundamental
domain are the two fixed points 0, 1. See figure 9.3
for cycle 10 and further examples.

(a) (b)

Example 12.6 Recoding ternary symbolic dynamics in binary: Given a ternary
sequence and labels of 2 preceding disks, rule (12.7) fixes the subsequent binary sym-
bols. Here we list an arbitrary ternary itinerary, and the corresponding binary sequence:

ternary : 3 1 2 1 3 1 2 3 2 1 2 3 1 3 2 3

binary : · 1 0 1 0 1 1 0 1 0 1 1 0 1 0 (12.14)

The first 2 disks initialize the trajectory and its direction; 3 �→ 1 �→ 2 �→ · · ·. Due to
the 3-disk symmetry the six distinct 3-disk sequences initialized by 12, 13, 21, 23, 31,
32 respectively have the same weights, the same size state space partitions, and are
coded by a single binary sequence. (continued in example 12.7)

exercise 12.8
exercise 14.2Binary symbolic dynamics has two immediate advantages over the ternary

one; the prohibition of self-bounces is automatic, and the coding utilizes the sym-
metry of the 3-disk pinball game in an elegant manner. 34

exercise 11.2

The 3-disk game of pinball is tiled by six copies of the fundamental domain,
a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors, see figure 12.12 (b). 35 Every global 3-disk trajectory has a
corresponding fundamental domain mirror trajectory obtained by replacing every
crossing of a symmetry axis by a reflection. Depending on the symmetry of the
full state space trajectory, a repeating binary alphabet block corresponds either to
the full periodic orbit or to a relative periodic orbit (examples are shown in fig-
ure 12.12 and table 12.2). A relative periodic orbit corresponds to a periodic orbit
in the fundamental domain.

Table 12.2 lists some of the shortest binary periodic orbits, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. For a number
of deep reasons that will be elucidated in chapter 21, life is much simpler in the
fundamental domain than in the full system, so whenever possible our computa-
tions will be carried out in the fundamental domain.

Example 12.7 D3 recoded - 3-disk game of pinball: (continued from exam-
ple 12.6) The D3 recoding can be worked out by a glance at figure 12.12 (a) (con-
tinuation of example 9.17). For the symmetric 3-disk game of pinball the fundamental

34Predrag: use this?: For periodic orbits, the equivalent ternary cycles reduce to binary cycles
of 1/3, 1/2 or the same length. How this works is best understood by inspection of table 12.2,
figure 12.12 and figure 9.7.

35Predrag: absorb this text into the example
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three-disk@3-
disk!symmetry

symmetry!3-disk
symmetry!D3

c3v@C3v = D3
symmetry

heteroclinic!orbit

Table 12.2: D3 correspondence between the binary labeled fundamental domain prime
cycles p̃ and the full 3-disk ternary labeled cycles p, together with the D 3 transformation
that maps the end point of the p̃ cycle into the irreducible segment of the p cycle, see
example 9.1. White spaces in the above ternary sequences mark repeats of the irreducible
segment; for example, the full space 12-cycle 1212 3131 2323 consists of 1212 and its
symmetry related segments 3131, 2323. The multiplicity of p cycle is m p = 6np̃/np.
The shortest pair of fundamental domain cycles related by time reversal (but no spatial
symmetry) are the 6-cycles 001011 and 001101.

p̃ p g p̃

0 1 2 σ12
1 1 2 3 C
01 12 13 σ23
001 121 232 313 C
011 121 323 σ13
0001 1212 1313 σ23

0011 1212 3131 2323 C 2

0111 1213 2123 σ12
00001 12121 23232 31313 C
00011 12121 32323 σ13
00101 12123 21213 σ12
00111 12123 e
01011 12131 23212 31323 C
01111 12132 13123 σ23

p̃ p g p̃

000001 121212 131313 σ23

000011 121212 313131 232323 C 2

000101 121213 e
000111 121213 212123 σ12
001011 121232 131323 σ23
001101 121231 323213 σ13
001111 121231 232312 313123 C
010111 121312 313231 232123 C 2

011111 121321 323123 σ13
0000001 1212121 23232323131313 C
0000011 1212121 3232323 σ 13
0000101 1212123 2121213 σ 12
0000111 1212123 e
· · · · · · · · ·

domain is bounded by a disk segment and the two adjacent sections of the symme-
try axes that act as mirrors (see figure 12.12 (b)). The three symmetry axes divide
the space into six copies of the fundamental domain. Any trajectory on the full space
can be pieced together from bounces in the fundamental domain, with symmetry axes
replaced by flat mirror reflections. The binary {0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation, figure 12.2: a collision of type 0 re-
flects the projectile to the disk it comes from (back–scatter), whereas after a collision of
type 1 projectile continues to the third disk. For example, 23 = · · · 232323 · · ·maps into
· · ·000 · · · = 0 (and so do 12 and 13), 123 = · · · 12312 · · · maps into · · · 111 · · · = 1 (and
so does 132), and so forth. Such reductions for short cycles are given in table 12.2,
figure 12.12 and figure 9.7.

Résumé

In the preceding and this chapter we start with a d-dimensional state space and
end with what the ultimate goal would be for the (yet unattained) Kuramoto-Siva- ⇓PRIVATE
shinsky and Navier-Stokes symmetry reductions, a 1-dimensional return map

⇑PRIVATEdescription of the dynamics. The arc-length parametrization of the unstable man-
ifold maintains the 1-to-1 relation of the full d-dimensional state space dynamics
and its 1-dimensional return-map representation. To high accuracy no information
about the flow is lost by its 1-dimensional return map description. We explain why
Lorenz equilibria are heteroclinically connected (it is not due to the symmetry),
and how to generate all periodic orbits of Lorenz flow up to given length. This
we do, in contrast to the rest of the thesis, without any group-theoretical jargon to
blind you with.
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For 1-dimensional maps the folding point is the critical point, and easy to
determine. In higher dimensions, the situation is not so clear - one can attempt
to determine the (fractal set of) folding points by looking at their higher iterates
- due to the contraction along stable manifolds, the fold gets to be exponentially
sharper at each iterate. In practice this set is essentially uncontrollable for the
same reason the flow itself is chaotic - exponential growth of errors. We prefer to
determine a folding point by bracketing it by longer and longer cycles which can
be determined accurately using variational methods of chapter33, irrespective of
their period.

For a generic dynamical system a subshift of finite type is the exception rather
than the rule. Its symbolic dynamics can be arbitrarily complex; even for the lo-
gistic map the grammar is finite only for special parameter values. Only some
repelling sets (like our game of pinball) and a few purely mathematical constructs
(called Anosov flows) are structurally stable - for most systems of interest an
infinitesimal perturbation of the flow destroys and/or creates an infinity of trajec-
tories, and specification of the grammar requires determination of pruning blocks
of arbitrary length. The repercussions are dramatic and counterintuitive; for ex-
ample, the transport coefficients such as the deterministic diffusion constant of
sect. 26.2 are emphatically not smooth functions of the system parameters. The

section 26.2
importance of symbolic dynamics is often under appreciated; as we shall see in
chapters 20 and 23, the existence of a finite grammar is the crucial prerequisite for
construction of zeta functions with nice analyticity properties. This generic lack
of structural stability is what makes nonlinear dynamics so hard.

The conceptually simpler finite subshift Smale horseshoes suffice to motivate
most of the key concepts that we shall need for time being. Our strategy is akin
to bounding a real number by a sequence of rational approximants; we converge
toward the non–wandering set under investigation by a sequence of self-similar
Cantor sets. The rule that everything to one side of the pruning front is forbid-
den is striking in its simplicity: instead of pruning a Cantor set embedded within
some larger Cantor set, the pruning front cleanly cuts out a compact region in the
symbol square, and that is all - there are no additional pruning rules. A ‘self-
similar’ Cantor set (in the sense in which we use the word here) is a Cantor set
equipped with a subshift of finite type symbol dynamics, i.e., the corresponding
grammar can be stated as a finite number of pruning rules, each forbidding a finite
subsequence s1s2 . . . sn . Here the notation s1s2 . . . sn stands for n consecutive
symbols s11, s2, . . ., sn, preceded and followed by arbitrary symbol strings. ⇓PRIVATE

Given a partition A of the state space M, a dynamical system (M, f ) in-
duces topological shift dynamics (Σ, σ) on the space Σ of all admissible bi–infinite
itineraries. 36

The itinerary describes the time evolution of an orbit, while (for 2-dimensional
hyperbolic maps) the symbol square describes the spatial ordering of points along
the orbit. ⇑PRIVATE

The symbol square is a useful tool in transforming topological pruning into

36Predrag: move to chapter 14?
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pruning rules for inadmissible sequences; those are implemented by constructing
transition matrices and/or graphs, see chapters 14 and 15. 37

Commentary

Remark 12.1 Stable/unstable manifolds. For pretty hand-drawn pictures of invari-
ant manifolds, see Abraham and Shaw [12]. Construction of invariant manifolds by map
iteration is described in Simo [35]. Fixed point stable / unstable manifolds and their
homoclinic and heteroclinic intersections can be computed using DsTool [ 59, 60, 61].
Unstable manifold turning points were utilized in refs. [13, 2, 3, 32, 33, 34] to partition
state space and prune inadmissible symbol sequences. The arclength parameterized return
maps were introduced by Christiansen et al. [63]. Even though no dynamical system has ⇓PRIVATE

⇑PRIVATE
been studied more exhaustively than the Lorenz equations, the analysis of sect. 11.2 is
new. The desymmetrization follows Gilmore and Lettelier [15], but the key new idea is
taken from Christiansen et al. [63]: the arc-length parametrization of the unstable mani-
fold maintains the 1-to-1 relation of the full d-dimensional state space dynamics and its
1-dimensional return-map representation, in contrast to 1-dimensional projections of the
(d−1)-dimensional Poincaré section return maps previously deployed in the literature. In
other words, to high accuracy no information about the flow is lost by its 1-dimensional
return map description. ⇓PRIVATE

For a parametric equation for the stable (unstable) manifold see Franceschini and
Russo [30]. ⇑PRIVATE

Remark 12.2 Smale horseshoe. S. Smale understood clearly that the crucial ingre-
dient in the description of a chaotic flow is the topology of its non–wandering set, and he
provided us with the simplest visualization of such sets as intersections of Smale horse-
shoes. In retrospect, much of the material covered here can already be found in Smale’s
fundamental paper [27], 38 but an engineer or a scientist who has run into a chaotic time
series in his laboratory might not know that he is investigating the action (differentiable)
of a Lie group G on a manifold M, and that the Lefschetz trace formula is the way to go.

We have tried to explain the geometric picture the best we could in the static text for-
mat, but there is no substitute for dynamics but the dynamics itself. We found Demidov’s
“Chaotic maps” [66] simulations of the Hénon map particularly helpful in explaining how
horsheshoes partition the non–wandering sets.

Remark 12.3 Pruning fronts. The ‘partition conjecture’ of sect. 12.5 is due to Grass- ⇓PRIVATE

⇑PRIVATE
berger and Kantz [3]. The notion of a pruning front and the ‘pruning-front conjecture’
was formulated by Cvitanović et al. [13], and developed by K.T. Hansen for a number of
dynamical systems in his Ph.D. thesis [23] and a series of papers [24]-[28]. The ‘multi-
modal map approximation’ is described in the K.T. Hansen thesis [ 23]. Hansen’s thesis
is still the most accessible exposition of the pruning theory and its applications. Detailed
studies of pruning fronts are carried out in refs. [14, ?, 15]; ref. [5] is the most detailed
study carried out so far. 39 The rigorous theory of pruning fronts has been developed by

37Predrag: extract parts of refsKnead.tex
38Predrag: refer also to his biographical notes
39Predrag: Is ref. [5] the right one?
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Y. Ishii [19, 20] for the Lozi map, and A. de Carvalho [17, 18] in a very general setting.
Beyond the orbit pruning and its infinity of admissible unstable orbits, an attractor of
Hénon type may also own an infinity of attractive orbits coexisting with the strange at-
tractor [21, 68]. We offer heuristic arguments and numerical evidence that the coexistence
of attractive orbits does not destroy the strange attractor/repeller, which is also in this case
described by the 2-dimensional danish pastry plot. 40 41 42

⇓PRIVATE

Remark 12.4 Lozi map pruning: (continued from example 3.7 and remark 3.3) 43

We use the Lozi map to illustrate the orbit pruning problem. The Lozi map has the
unstable-pruned orbit structure and non-trivial scaling structure of Hénon type, without
the subtleties introduced by the coexistence of stable periodic orbits, or worries about the
uniqueness of periodic points corresponding to a given symbol sequence. Furthermore, as
the Lozi map is linear, it is computationally fast, and the attractor can be covered by hun-
dreds of thousands of periodic points without straining patience of a desktop workstation.
For the Lozi map (3.19) the stable (unstable) manifolds Ŵ s (Ŵu) are piecewise linear and
easily plotted. Analysis of the Lozi map is much simpler than that of the Hénon map, as
all primary turning points of W u lie on the line x = 0, and the symbol corresponding to a
point (xn, xn+1) is given by the sign of xt+1. For an interesting study of bifurcations in the
Lozi map, see ref. [69]. 44

⇑PRIVATE

40Predrag: remember to return the updated version from siminos/lyapunov/Henon.tex
41Predrag: refine references, emphasize Carvalho Nonlinearity review
42Predrag: Benedicks and Carleson [?] have proven that in the vicinity of (a, b) = (2, 0) strange

attractors exist for a Lebesgue measure in the parameter space. PC: recheck the phrasing!
43Predrag: We → refrefs
44Predrag: remember to return the updated version from siminos/lyapunov/Henon.tex
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12.1. A Smale horseshoe. The Hénon map of example 3.6[
x′

y′

]
=

[
1 − ax2 + by
x

]
(12.15)

maps the [x, y] plane into itself - it was constructed by
Hénon [6] in order to mimic the Poincaré section of once-
folding map induced by a flow like the one sketched in
figure 11.10. For definitiveness fix the parameters to a =
6, b = −1.

a) Draw a rectangle in the (x, y) plane such that its nth
iterate by the Hénon map intersects the rectangle 2n

times.

b) Construct the inverse of the (12.15). 45

c) Iterate the rectangle back in the time; how many
intersections are there between the n forward and m
backward iterates of the rectangle?

d) Use the above information about the intersections
to guess the (x, y) coordinates for the two fixed points,
a 2-periodic point, and points on the two distinct 3-
cycles from table 15.1. The exact periodic points
are computed in exercise 13.14.

12.2. Kneading Danish pastry. Write down the (x, y) → (x, y)
mapping that implements the baker’s map

45Predrag: solution to exercise 12.1 (b) given in the text
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Figure 12.13: A complete Smale horseshoe it-
erated forwards and backwards, orientation pre-
serving case: function f maps the dashed bor-
der square M into the vertical horseshoe, while
the inverse map f−1 maps it into the horizontal
horseshoe. a) One iteration, b) two iterations,
c) three iterations. The non–wandering set is
contained within the intersection of the forward
and backward iterates (crosshatched). (from K.T.
Hansen [23])

Figure: Kneading danish pastry: symbol square repre-
sentation of an orientation reversing once-folding map
obtained by fattening the Smale horseshoe intersections
of figure 12.4 into a unit square. In the symbol square the
dynamics maps rectangles into rectangles by a decimal
point shift. together with the inverse mapping. Sketch

a few rectangles in symbol square and their forward and
backward images. (Hint: the mapping is very much like
the tent map (11.4)).

12.3. Kneading danish without flipping. The baker’s map
of exercise 12.2 includes a flip - a map of this type is
called an orientation reversing once-folding map. Write
down the (x, y) → (x, y) mapping that implements an ori-
entation preserving baker’s map (no flip; Jacobian deter-
minant = 1). Sketch and label the first few folds of the
symbol square. 46

⇓PRIVATE
12.4. Recheck this and that. Check whether the layers of

the baker’s map of exercise 12.2 are indeed ordered as
the branches of the alternating binary tree of figure 11.14.
(They might not be - we have not rechecked them). Draw
the correct binary trees that order both the future and past
itineraries.

For once-folding maps there are four topologically dis-
tinct ways of laying out the stretched and folded image of
the starting region,

(a) orientation preserving: stretch, fold upward, as in
figure 12.13.

(b) orientation preserving: stretch, fold upward, as in
figure ??

(c) orientation reversing: stretch, fold upward, flip, as
in figure 12.14. 47

(d) orientation reversing: stretch, fold downward, flip,
as in exercise 12.2,

with the corresponding four distinct binary-labeled sym-
bol squares. For n-fold ‘stretch & fold’ flows the labeling
would be nary. The intersection M0 for the orientation
preserving Smale horseshoe, figure 12.13 (a) is oriented

⇓PRIVATE

⇑PRIVATE
46Predrag: this is now in the text, make this exercise orient preserv.
47Predrag: exercise 12.4: lower labels in figure 12.14 (b) wrong
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alternating binary tree
binary!tree,

alternating

Figure 12.14: An orientation reversing Smale
horseshoe map. Function f = {stretch,fold,flip}
maps the dashed border square M into the verti-
cal horseshoe, while the inverse map f−1 maps it
into the horizontal horseshoe. a) one iteration, b)
two iterations, c) the non–wandering set cover by
16 rectangles, each labeled by the 2 past and the 2
future steps. (from K.T. Hansen [23])

.0 .1

.1

.0

.0
1

.0
0

.1
0

.1
1

.10

.11

.01

.00

the same way as M, while M1 is oriented opposite to
M. Brief contemplation of figure in exercise 12.2 indi-
cates that the forward iteration strips are ordered relative
to each other as the branches of the alternating binary tree
in figure 11.14. Check the labeling for all four cases. 48

⇑PRIVATE
12.5. Orientation reversing once-folding map. By adding a

reflection around the vertical axis to the horseshoe map g
we get the orientation reversing map g̃ shown in figure 12.14. ⇓PRIVATEQ̃0 and Q̃1 are oriented as Q0 and Q1, so the definition of

⇑PRIVATEthe future topological coordinate γ is identical to the γ for
the orientation preserving horseshoe. The inverse inter-
sections Q̃−1

0 and Q̃−1
1 are oriented so that Q̃−1

0 is opposite
to Q, while Q̃−1

1 has the same orientation as Q. Check that
the past topological coordinate δ is given by

wn−1 =

{
1 − wn if sn = 0
wn if sn = 1 , w0 = s0

δ(x) = 0.w0w−1w−2 . . . =
∞∑

n=1

w1−n/2n .(12.16)

12.6. Infinite symbolic dynamics. Let σ be a function that
returns zero or one for every infinite binary string: σ :
{0, 1}N → {0, 1}. Its value is represented by σ(ε1, ε2, . . .)
where the εi are either 0 or 1. We will now define an
operatorT that acts on observables on the space of binary
strings. A function a is an observable if it has bounded
variation, that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .)

+a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

(a) (easy) Consider a finite version T n of the operator
T :

Tna(ε1, ε2, . . . , ε1,n) =

a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +

a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

48Predrag: move this exercise to an appendix
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Show that Tn is a 2n×2n matrix. Show that its trace
is bounded by a number independent of n.

(b) (medium) With the operator norm induced by the
function norm, show that T is a bounded operator.

(c) (hard) Show that T is not trace class. (Hint: check ⇓PRIVATEifT is compact “trace class” is defined in appendix N.)

⇑PRIVATE

12.7. 3-disk fundamental domain cycles. (continued from

exercise 9.6) Try to sketch 0, 1, 01, 001, 011, · · ·. in the
fundamental domain, and interpret the symbols {0, 1} by
relating them to topologically distinct types of collisions.
Compare with table 12.2. Then try to sketch the location
of periodic points in the Poincaré section of the billiard
flow. The point of this exercise is that while in the config-
uration space longer cycles look like a hopeless jumble,
in the Poincaré section they are clearly and logically or-
dered. The Poincaré section is always to be preferred to
projections of a flow onto the configuration space coordi-
nates, or any other subset of state space coordinates which
does not respect the topological organization of the flow.

12.8. 3-disk pruning. (Not easy) Show that for 3-disk
game of pinball the pruning of orbits starts at R : a =
2.04821419 . . ., figure 11.6. (K.T. Hansen)

⇓PRIVATE
12.9. Stadium symbolic dynamics. (Easy, considering

you can get a publication out of this one) Contact P. Cvi-
tanović to obtain source files, complete the draft of ref. [ 27],
publish. ⇑PRIVATE
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Chapter 13

Fixed points, and how to get them

Cycles. Is there anything they can’t do?
— Mason Porter, channeling Homer Simpson

Having set up the dynamical context, we now turn to the key and unavoidable
numerical task in this subject; we must search for the solutions (x, T),
x ∈ Rd, T ∈ R satisfying the periodic orbit condition

f t+T (x) = f t(x) , T > 0 (13.1)

for a given flow or map.

In chapters 18 and 19 we will establish that spectra of evolution operators can
be extracted from periodic orbit sums:

∑
(spectral eigenvalues) =

∑
(periodic orbits) .

Hence, periodic orbits are the necessary ingredient for evaluation of the spectra
of evolution operators. We need to know what periodic orbits can exist, and the
symbolic dynamics developed so far is an invaluable tool toward this end.

Sadly, searching for periodic orbits will never become as popular as a week
on Côte d’Azur, or publishing yet another log-log plot in Phys. Rev. Letters. This
chapter is intended as a hands-on guide to extracting periodic orbits, and should
be skipped on first reading - you can return to it whenever the need for finding
actual cycles arises. A serious cyclist will want to also learn about the variational

chapter 33
methods to find cycles, chapter 33. They are particularly useful when little is
known about the topology of a flow, such as in high-dimensional periodic orbit
searches. 1

1Predrag: thank Viswanath for comments
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prime cycle
cycle!prime
fixed point
cyclic!invariance
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fast track:

chapter 14, p. 345

A prime cycle p of period Tp is a single traversal of the periodic orbit, so our
task will be to find a periodic point x ∈ Mp and the shortest time Tp for which
(13.1) has a solution. A periodic point of a flow ft crossing a Poincaré section
n times is a fixed point of Pn , the nth iterate of P, the return map (3.1); hence,
we shall refer to all cycles as “fixed points” in this chapter. By cyclic invariance,

section 5.3
Floquet multipliers and the period of the cycle are independent of the choice of
the initial point, so it will suffice to solve (13.1) at a single periodic point.

If the cycle is an attracting limit cycle with a sizable basin of attraction, it
can be found by integrating the flow for a sufficiently long time. If the cycle is
unstable, simple integration forward in time will not reveal it, and the methods
to be described here need to be deployed. In essence, any method for finding
a cycle is based on devising a new dynamical system which possesses the same
cycle, but for which this cycle is attractive. Beyond that, there is a great freedom
in constructing such systems, and many different methods are used in practice.

Due to the exponential divergence of nearby trajectories in chaotic dynamical
systems, fixed point searches based on direct solutions of the fixed-point condition
(13.1) as an initial value problem can be numerically very unstable. Methods that

chapter 33
start with initial guesses for a number of points along the cycle, such as the mul-
tipoint shooting method described here in sect. 13.3, and the variational methods
of chapter 33, are considerably more robust and safer.

A prerequisite for any exhaustive cycle search is a good understanding of the
topology of the flow: a preliminary step to any serious periodic orbit calculation is
preparing a list of all distinct admissible prime periodic symbol sequences, such as
the list given in table 15.1. The relations between the temporal symbol sequences
and the spatial layout of the topologically distinct regions of the state space dis-
cussed in chapters 11 and 12 should enable us to guess the location of a series of
periodic points along a cycle. Armed with such an informed guess we proceed
to improve it by methods such as Newton-Raphson iteration; we show how this
works by applying Newton method to 1- and d-dimensional maps. But first, where
are the cycles?

13.1 Where are the cycles?

Q: What if you choose a really bad initial condition and it
doesn’t converge? A: Well then you only have yourself to
blame.

— T.D. Lee

The simplest and conceptually easiest setting for guessing where the cycles are is
the case of planar billiards. The Maupertuis principle of least action here dictates

cycles - 22jun2012 boyscout version14.4, Mar 19 2013
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Maupertuis, P.L.M.
de

least action principle
three-disk@3-

disk!prime
cycles

cycle!prime!3-disk
itinerary

that the physical trajectories extremize the length of an approximate orbit that
visits a desired sequence of boundary bounces.

Example 13.1 Periodic orbits of billiards. Consider how this works for 3-disk
pinball game of sect. 12.6. . Label the three disks by 1, 2 and 3, and associate to every

section 12.6
section 1.4

trajectory an itinerary, a sequence of labels indicating the order in which the disks are
visited, as in figure 3.8. Given the itinerary, you can construct a guess trajectory by
taking a point on the boundary of each disk in the sequence, and connecting them by
straight lines. Imagine that this is a rubber band wrapped through 3 rings, and shake
the band until it shrinks into the physical trajectory, the rubber band of shortest length.

Extremization of a cycle length requires variation of n bounce positions si.
The computational problem is to find the extremum values of cycle length L(s) where
s = (s1, . . . , sn ) , a task that we postpone to sect. 33.3. As an example, the short peri-

exercise 33.2
exercise 13.14

ods and stabilities of 3-disk cycles computed this way are listed table 33.3, and some
examples are plotted in figure 3.8. It’s a no brainer, and millions of such cycles have
been computed.

If we were only so lucky. Real life finds us staring at something like Yang-
Mills or Navier-Stokes equations, utterly clueless. What to do?

One, there is always mindless computation. In practice one might be satisfied
with any rampaging robot that finds “the most important” cycles. The ergodic
explorations of recurrences sometimes perform admirably well, and we discuss
this next. 2

13.1.1 Cycles from long time series

Two wrongs don’t make a right, but three lefts do.
—Appliance guru

(L. Rondoni and P. Cvitanović)

The equilibria and periodic orbits (with the exception of sinks and stable limit
remark 13.1

cycles) are never seen in simulations and experiments because they are unstable.
Nevertheless, one does observe close passes to the least unstable equilibria and
periodic orbits, as in figure 13.1. Ergodic exploration by long-time trajectories (or
long-lived transients, in case of strange repellers) can uncover state space regions
of low velocity, or finite time recurrences. In addition, such trajectories preferen-

section 16.1
tially sample the natural measure of the ‘turbulent’ flow, and by initiating searches
within the state space concentrations of natural measure bias the search toward the
dynamically important invariant solutions.

The search consists of following a long trajectory in state space, and looking
for close returns of the trajectory to itself, see figure13.1. Whenever the trajectory
almost closes in a loop (within a given tolerance), another point close to this near
miss of a cycle can be taken as an initial condition. Supplemented by a Newton

2Predrag: Emphasize importance of equilibria; equations are algebraic.
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Figure 13.1: An ergodic trajectory can shadow an un-
stable periodic orbit p for a finite time.

p

x(t)

x(0)

routine described below, a sequence of improved initial conditions may indeed
rapidly lead to closing a cycle. The method preferentially finds the least unstable
orbits, while missing the more unstable ones that contribute little to the cycle
expansions. 3

This blind search is seriously flawed: in contrast to the 3-disk example13.1,
it is not systematic, it gives no insight into organization of the ergodic sets, and
can easily miss very important cycles. Foundations to a systematic exploration
of ergodic state space are laid in chapters 11 and 12, but are a bit of work to
implement.

13.1.2 Cycles found by thinking

Thinking is extra price.

—Dicho Colombiano

A systematic charting out of state space starts out by a hunt for equilibrium points.
If the equations of motion are a finite set of ODEs, setting the velocity field v(x)
in (2.7) to zero reduces search for equilibria to a search for zeros of a set of al-
gebraic equations. We should be able, in principle, to enumerate and determine
all real and complex zeros in such cases, e.g. the Lorenz example 2.2 and the
Rössler example 2.3. If the equations of motion and the boundary conditions are
invariant under some symmetry, some equilibria can be determined by symmetry
considerations: if a function is e.g. antisymmetric, it must vanish at origin, e.g.
the Lorenz EQ0 = (0, 0, 0) equilibrium.

As to other equilibria: if you have no better idea, create a state space grid,
about 50 xk across M in each dimension, and compute the velocity field vk = v(xk)
at each grid point; a few million vk values are easily stored. Plot xk for which
|vk |2 < ε, ε << |vmax|2 but sufficiently large that a few thousand xk are plotted.
If the velocity field varies smoothly across the state space, the regions |vk |2 < ε

isolate the (candidate) equilibria. Start a Newton iteration with the smallest |vk |2

3Predrag: clone figure 13.1 into a figure where the same trajectory comes back (no cycle to
shadow). Perhaps add Gibson close recurrences graph

cycles - 22jun2012 boyscout version14.4, Mar 19 2013



CHAPTER 13. FIXED POINTS, AND HOW TO GET THEM 318
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point within each region. Barring exceptionally fast variations in v(x) this should
yield all equilibrium points.

For ODEs equilibria are fixed points of algebraic sets of equations, but steady
states of PDEs such as the Navier-Stokes flow are themselves solutions of ODEs
or PDEs, and much harder to determine. An example of how one searches for ⇓PRIVATE
equilibria in this case is worked out in sect. 27.4 for the Kuramoto-Sivashinsky
flow. ⇑PRIVATE

Equilibria–by definition–do not move, so they cannot be “turbulent.” What
makes them dynamically important are their stable/unstable manifolds. A chaotic
trajectory can be thought of as a sequence of near visitations of equilibria. Typi-
cally such neighborhoods have many stable, contracting directions and a handful
of unstable directions. Our strategy will be to generalize the billiard Poincaré sec-
tion maps Psn+1←sn of example 3.9 to maps from a section of the unstable manifold
of equilibrium sn to the section of unstable manifold of equilibrium sn+1, and thus
reduce the continuous time flow to a sequence of maps. These Poincaré section
maps do double duty, providing us both with an exact representation of dynamics
in terms of maps, and with a covering symbolic dynamics.

We showed in the Lorenz flow example 11.4 how to reduce the 3-dimensional
Lorenz flow to a 1-dimensional return map. In the Rössler flow example 2.3 we
sketched the attractor by running a long chaotic trajectory, and noting that the
attractor is very thin, but that otherwise the return maps that we plotted were dis-
quieting – figure 3.3 did not appear to be a 1-to-1 map. In the next example we
show how to use such information to locate cycles approximately. In the remain-
der of this chapter and in chapter 33 we shall learn how to turn such guesses into
highly accurate cycles.

Example 13.2 Rössler attractor. We run a long simulation of the Rössler flow
f t, plot a Poincaré section, as in figure 3.2, and extract the corresponding Poincaré
return map P, as in figure 3.3. 4 Luck is with us, since figure 13.2 (a) return map
y → P1(y, z) is quite reminiscent of a parabola, we take the unimodal map symbolic
dynamics, sect. 11.3, as our guess for the covering dynamics. Strictly speaking, the
attractor is “fractal,” but for all practical purposes the return map is 1-dimensional; your
printer will need a resolution better than 1014 dots per inch to even begin resolving its
structure.

⇓PRIVATE

⇑PRIVATE
Periodic points of a prime cycle p of cycle length np for the x = 0, y > 0 Poincaré

section of the Rössler flow figure 2.6 are fixed points (y, z) = Pn(y, z) of the nth Poincaré
return map.

Using the fixed point yk+1 = yk in figure 13.2 (a) together with the simultaneous
fixed point of the z → P1(y, z) return map (not shown) as a starting guess (0, y(0), z(0))
for the Newton-Raphson search for the cycle p with symbolic dynamics label 1, we find
the cycle figure 13.2 (b) with the Poincaré section point (0, yp, zp), period T p, expand-
ing, marginal, contracting Floquet multipliers (Λ p,e,Λp,m,Λp,c), and the corresponding
Lyapunov exponents (λp,e, λp,m, λp,c): 5

exercise 13.11

1-cycle: (x, y, z) = (0, 6.09176832, 1.2997319)

4Predrag: exact repeat of a paragraph in chapter ??, edit
5Predrag: recheck Λc = −1.29 × 10−14
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Figure 13.2: (a) The y → P1(y, z) return map for
the x = 0, y > 0 Poincaré section of the Rössler
flow figure 2.6. (b) The 1-cycle found by taking
the fixed point yk+n = yk together with the fixed
point of the z → z return map (not shown) as an
initial guess (0, y(0), z(0)) for the Newton-Raphson
search. (c) The third iterate, yk+3 = P3

1(yk , zk),
of the Poincaré return map (3.1) together with the
corresponding plot for zk+3 = P3

2(yk, zk), is used
to pick initial guesses for the Newton-Raphson
searches for the two 3-cycles: (d) the 001 cycle,
and (e) the 011 cycle. (G. Simon)
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Figure 13.3: (a) y → P1(y, z) return map for
x = 0, y > 0 Poincaré section of the Rössler flow
figure 2.6. (b) The 1-cycle found by taking the
fixed point yk+n = yk together with the fixed point
of the z → z return map (not shown) an initial
guess (0, y(0), z(0)) for the Newton-Raphson search.
(c) yk+3 = P3

1(yk, zk), the third iterate of Poincaré
return map (3.1) together with the corresponding
plot for zk+3 = P3

2(yk , zk), is used to pick starting
guesses for the Newton-Raphson searches for the
two 3-cycles: (d) the 001 cycle, and (e) the 011
cycle. (A. Basu)
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T1 = 5.88108845586

(Λ1,e,Λ1,m,Λ1,c) = (−2.40395353, 1+ 10−14,−1.29 × 10−14)

(λ1,e, λ1,m, λ1,c) = (0.149141556, 10−14,−5.44) . (13.2)

The Newton-Raphson method that we used is described in sect. 13.4.

As an example of a search for longer cycles, we use yk+3 = P3
1(yk, zk), the third

iterate of the Poincaré return map (3.1) plotted in figure 13.2 (c), together with a cor-
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responding plot for zk+3 = f 3(yk, zk), to pick starting guesses for the Newton-Raphson
searches for the two 3-cycles plotted in figure 13.2 (d), (e). For a listing of the short
cycles of the Rössler flow, consult exercise 13.11.

The numerical evidence suggests (though a proof is lacking) that all cycles
that comprise the strange attractor of the Rössler flow are hyperbolic, each with an
expanding eigenvalue |Λe| > 1, a contracting eigenvalue |Λc| < 1, and a marginal
eigenvalue |Λm| = 1 corresponding to displacements along the direction of the flow.

For the Rössler flow the contracting eigenvalues turn out to be insanely con-
tracting, a factor of e−32 per one par-course of the attractor, so their numerical deter-
mination is quite difficult. Fortunately, they are irrelevant; for all practical purposes
the strange attractor of the Rössler flow is 1-dimensional, a very good realization of a
horseshoe template. (G. Simon and P. Cvitanović)

13.2 One-dimensional maps

So far we have given some qualitative hints for how to set out on a periodic orbit
hunt. In what follows, we teach you how to nail down periodic orbits numerically.

(F. Christiansen)

13.2.1 Inverse iteration

Let us first consider a very simple method to find the unstable cycles of a 1-
dimensional map such as the logistic map. Unstable cycles of 1-dimensional maps
are attracting cycles of the inverse map. The inverse map is not single-valued, so
at each backward iteration we have a choice of branch to make. By choosing the
branch according to the symbolic dynamics of the cycle we are trying to find, we
will automatically converge to the desired cycle. The rate of convergence is given
by the stability of the cycle, i.e., the convergence is exponentially fast. Figure13.6
shows such a path to the 01-cycle of the logistic map. 6

exercise 13.14

6Predrag: draw a figure of a unimodal repeller, its inverse
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Newton method

Figure 13.6: The inverse time path to the 01-cycle of
the logistic map f (x) = 4x(1 − x) from an initial guess
of x = 0.2. At each inverse iteration we chose the 0
(respectively 1) branch.
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tions searching for the 01-cycle of the logistic map
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x1 = 0.2, x2 = 0.8. The y-axis is log10 of the error.
The difference between the exponential convergence of
the inverse iteration method and the super-exponential
convergence of Newton method is dramatic.
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The method of inverse iteration is fine for finding cycles for 1-d maps and
some 2-dimensional systems such as the repeller of exercise 13.14. It is not par-
ticularly fast, however, especially if the inverse map is not known analytically. It
also completely fails for higher dimensional systems where we have both stable
and unstable directions. Inverse iteration will exchange these, but we will still be
left with both stable and unstable directions. The best strategy is to directly attack
the problem of finding solutions of fT (x) = x.

13.2.2 Newton method

Newton method for determining a zero x∗ of a function F(x) of one variable is
based on a linearization around a starting guess x0:

F(x) ≈ F(x0) + F′(x0)(x − x0). (13.3)

An approximate solution x1 of F(x) = 0 is

x1 = x0 − F(x0)/F′(x0). (13.4)

The approximate solution can then be used as a new starting guess in an iterative
process. A fixed point of a map f is a solution to F(x) = x − f (x) = 0. We
determine x by iterating

xm = g(xm−1) = xm−1 − F(xm−1)/F′(xm−1)

= xm−1 −
1

1 − f ′(xm−1)
(xm−1 − f (xm−1)) . (13.5)
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Figure 13.8: Newton method for finding zeros of
functions, f (xzero) = 0.
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Provided that the fixed point is not marginally stable, f′(x) � 1 at the fixed point
x, a fixed point of f is a super-stable fixed point of the Newton-Raphson map g,
g′(x) = 0, and with a sufficiently good initial guess, the Newton-Raphson iteration
will converge super-exponentially fast. ⇓PRIVATE

⇑PRIVATETo illustrate the efficiency of Newton method we compare it to the inverse
iteration method in figure 13.7. Newton method wins hands down: the number
of significant digits of the accuracy of the x estimate typically doubles with each
iteration.

In order to avoid jumping too far from the desired x∗ (see figure 13.9), one
often initiates the search by the damped Newton method,

Δx(m) = x(m+1) − x(m) = − F(x(m))

F′(x(m))
Δτ , 0 < Δτ ≤ 1 ,

takes small Δτ steps at the beginning, reinstating to the full Δτ = 1 jumps only
when sufficiently close to the desired x∗. 7

13.3 Multipoint shooting method

(F. Christiansen)

Periodic orbits of length n are fixed points of fn so in principle we could
use the simple Newton method described above to find them. However, this is
not an optimal strategy. The function fn oscillates wildly, with as many as 2n

or more closely spaced fixed points, and finding a specific periodic point, such
as one with a given symbolic sequence, requires a very good starting guess. For
binary symbolic dynamics we must expect to improve the accuracy of our initial
guesses by at least a factor of 2n to find orbits of length n. Furthermore, the
Jacobian of f n will be ill-conditioned because eigenvalues go like Λn. But if the
map is broken up, the eigenvalues are ≈ Λ. A better alternative is the multipoint
or multiple shooting method. While it might very hard to give a precise initial
guess for a long periodic orbit, if our guesses are informed by a good state space
partition, a rough guess for each point along the desired trajectory might suffice,
as for the individual short trajectory segments the errors have no time to explode

7Predrag: Draw a tangency in figure 13.9
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periodic!orbit!multipoint
shooting

multipoint shooting
methodFigure 13.9: Newton method: bad initial guess x(b)

leads to the Newton estimate x(b+1) far away from the
desired zero of F(x). Sequence · · · , x(m), x(m+1), · · ·,
starting with a good guess converges super-
exponentially to x∗. The method diverges if it iterates
into the basin of attraction of a local minimum xc. x(b)

x

F(x)

x

(m)F(x    )

(m+1)

x(m)

x
x xxc *

R

L(b+1)x

exponentially. And, indeed, in chapter 11 we have developed a qualitative theory
of how these cycle points are laid out topologically. 8 9

A cycle of length n is a zero of the n-dimensional vector function F:

F(x) = F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1
x2
·

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 − f (xn)
x2 − f (x1)

· · ·
xn − f (xn−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The relationship between the temporal symbol sequences and the spatial layout
of the topologically distinct regions of state space discussed in chapter11 enable
us to guess the location of a series of periodic points along a cycle. Armed with
such informed initial guesses, we can initiate a Newton-Raphson iteration. The
iteration in Newton’s method now takes the form 10

d
dx

F(x)(x′ − x) = −F(x), (13.6)

where d
dx F(x) is an [n × n] matrix:

d
dx F(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − f ′(xn)

− f ′(x1) 1
· · · 1

· · · 1
− f ′(xn−1) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13.7)

This matrix can easily be inverted numerically by first eliminating the elements
below the diagonal. This creates non-zero elements in the nth column. We elimi-
nate these and are done.

Example 13.3 Newton inversion for a 3-cycle. Let us illustrate how this works step
by step for a 3-cycle. The initial setup for a Newton step is:⎛⎜⎜⎜⎜⎜⎜⎝ 1 0 − f ′(x3)

− f ′(x1) 1 0
0 − f ′(x2) 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ Δx1
Δx2
Δx3

⎞⎟⎟⎟⎟⎟⎟⎠ = −
⎛⎜⎜⎜⎜⎜⎜⎝ F1

F2
F3

⎞⎟⎟⎟⎟⎟⎟⎠ ,
8Predrag: add index for PIM
9Predrag: recheck the name!

10Predrag: make inversion in “weak noise, diagrammatic” article an exercise here
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Henon@Hénon
map!time delay
map

where Δxi = x′i − xi is the correction to our initial guess xi, and Fi = xi − f (xi−1) is the
error at ith periodic point. Eliminate the sub-diagonal elements by adding f ′(x1) times
the first row to the second row, then adding f ′(x2) times the second row to the third
row: ⎛⎜⎜⎜⎜⎜⎜⎝ 1 0 − f ′(x3)

0 1 − f ′(x1) f ′(x3)
0 0 1 − f ′(x2) f ′(x1) f ′(x3)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ Δx1
Δx2
Δx3

⎞⎟⎟⎟⎟⎟⎟⎠ =
−

⎛⎜⎜⎜⎜⎜⎜⎝ F1
F2 + f ′(x1)F1

F3 + f ′(x2)F2 + f ′(x2) f ′(x1)F1

⎞⎟⎟⎟⎟⎟⎟⎠ .
The next step is to invert the last element in the diagonal, i.e., divide the third row by
1 − f ′(x2) f ′(x1) f ′(x3). If this element is zero at the periodic orbit this step cannot work.
As f ′(x2) f ′(x1) f ′(x3) represents the stability of the cycle (when the Newton iteration
has converged), this is not a good method to find marginally stable cycles. We now
have ⎛⎜⎜⎜⎜⎜⎜⎝ 1 0 − f ′(x3)

0 1 − f ′(x1) f ′(x3)
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ Δx1
Δx2
Δx3

⎞⎟⎟⎟⎟⎟⎟⎠ =−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1
F2 + f ′(x1)F1

F3+ f ′(x2)F2+ f ′(x2) f ′(x1)F1

1− f ′(x2) f ′(x1) f ′(x3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Finally we add f ′(x3) times the third row to the first row and f ′(x1) f ′(x3) times the third
row to the second row. The left hand side matrix is now the unit matrix, and the right
hand side is an explicit formula for the corrections to our initial guess. With this, we
have gone through one Newton iteration. 11

When one sets up Newton iteration on a computer, it is not necessary to write
the left hand side as a matrix. All one needs is a vector containing the f′(xi)’s and
a vector containing the n’th column, i.e., the cumulative product of the f′(xi)’s
and a vector containing the right hand side. After iteration the vector containing
the right hand side is the correction to the initial guess.

exercise 13.1

13.3.1 d-dimensional maps

Armed with clever initial guesses from a system’s symbolic dynamics, we can
easily extend the Newton-Raphson iteration method to d-dimensional maps. In
this case f ′(xi) is a [d × d] matrix, and d

dx F(x) is an [nd × nd] matrix. In each
of the steps above, we are then manipulating d rows of the left-hand-side matrix.
(Remember that matrices do not commute - always multiply from the left.) In
inverting the nth element of the diagonal we are inverting a [d × d] matrix (1 −∏

f ′(xi)) which can be done as long as none of the eigenvalues of
∏

f ′(xi) equals
1, i.e., if the cycle has no marginally stable eigen-directions.

Example 13.4 Newton method for time delay maps. Some d-dimensional maps
(such as the Hénon map (3.17)) can be written as 1-dimensional time delay maps of
the form

f (xi) = f (xi−1, xi−2, . . . , xi−d). (13.8)

11Predrag: Can one write the final result as a formula? MAP 2002-08-10: yes, using LU factor-
ization
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Newton method!flowsIn this case, d
dx F(x) is an [n × n] matrix as in the case of usual 1-dimensional maps but

with non-zero matrix elements on d off-diagonals.

13.4 Flows

(R. Paškauskas and P. Cvitanović)

For a continuous time flow the periodic orbit the Floquet multiplier (5.16) along
the flow direction always equals unity; the separation of any two points along
a cycle remains unchanged after a completion of the cycle. More unit Floquet

section 5.3.1
multipliers arise if the flow satisfies conservation laws, such as the symplectic in-
variance for Hamiltonian flows, or the dynamics is equivariant under a continuous
symmetry transformation.

section 10.3

Let us apply the Newton method of (13.4) to search for periodic orbits with
unit Floquet multipliers, starting with the case of a continuous time flow. Assume
that the periodic orbit condition (13.1) holds for x+Δx and T +Δt, with the initial
guesses x and T close to the desired solution, i.e., with |Δx|, Δt small. The Newton
setup (13.4)

0 = x + Δx − f T+Δt(x + Δx)

≈ x − f T (x) + (1 − J(x)) · Δx − v( fT (x))Δt (13.9)

suffers from two shortcomings. First, we now need to solve not only for the pe-
riodic point x, but for the period T as well. Second, the marginal, unit Floquet
multiplier (5.16) along the flow direction (arising from the time-translation invari-
ance of a periodic orbit) renders the factor (1 − J) in (13.5) non-invertible: if x
is close to the solution, fT (x) ≈ x, then J(x) · v(x) = v( fT (x)) ≈ v(x). If Δx is
parallel to the velocity vector, the derivative term (1 − J) · Δx ≈ 0, and it becomes
harder to invert (1 − J) as the iterations approach the solution.

As a periodic orbit p is a 1-dimensional set of points invariant under dynamics,
Newton guess is not improved by picking Δx such that the new point lies on the
orbit of the initial one, so we need to constrain the variation Δx to directions
transverse to the flow, by requiring, for example, that 12

v(x) · Δx = 0 . (13.10)

Combining this constraint with the variational condition (13.9) we obtain a New-
ton setup for flows, best displayed in the matrix form:

(
1 − J(x) v(x)

v(x) 0

) (
Δx
Δt

)
= −

(
x − f (x)

0

)
(13.11)

12Predrag: In remark explain that Davidchack inverts it anyway, without a constraint
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This illustrates the general strategy for determining periodic orbits in presence of
continuous symmetries - for each symmetry, pick a point on the orbit by imposing
a constraint, and compute the value of the corresponding continuous parameter
(here the period T) by iterating the enlarged set of Newton equations. Constraining
the variations to transverse ones thus fixes both of Newton’s shortcomings: it
breaks the time-translation invariance, and the period T can be read off once the
fixed point has been found (hence we omit the superscript in fT for the remainder
of this discussion).

More generally, the Poincaré surface of section technique of sect. 3.1 turns
the periodic orbit search into a fixed point search on a suitably defined surface of
section, with a neighboring point variation Δx with respect to a reference point x
constrained to stay on the surface manifold (3.2),

U(x + Δx) = U(x) = 0 . (13.12)

The price to pay are constraints imposed by the section: in order to stay on the
surface, arbitrary variation Δx is not allowed.

Example 13.5 A hyperplane Poincaré section. Let us for the sake of simplicity
assume that the Poincaré surface of section is a (hyper)-plane, i.e., it is given by the
linear condition (3.6) 13

(x − x0) · n̂ = 0, (13.13)

where n̂ is a vector normal to the Poincaré section and x0 is any point in the Poincaré
section. The Newton setup is then (derived as (13.11)) 14

(
1 − J v(x)

n̂ 0

) (
x′ − x
Δt

)
=

(
−F(x)

0

)
. (13.14)

The last row in this equation ensures that x will be in the surface of section, and the
addition of v(x)Δt, a small vector along the direction of the flow, ensures that such an x
can be found, at least if x is sufficiently close to a fixed point of f .

To illustrate that the addition of the extra constraint resolves the problem of
(1 − J) non-invertability, we consider the particularly simple example of a 3-d flow with
the (x, y, 0)-plane as the Poincaré section, a = (0, 0, 1). Let all trajectories cross the
Poincaré section perpendicularly, so that v = (0, 0, vz), which means that the marginally
stable direction is also perpendicular to the Poincaré section. Furthermore, let the
unstable direction be parallel to the x-axis and the stable direction be parallel to the
y-axis. The Newton setup is now 15

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − Λu 0 0 0

0 1 − Λs 0 0
0 0 0 vz
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
δx
δy
δz
δτ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−Fx
−Fy
−Fz

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (13.15)

13Predrag: draw figure
14Predrag: use Sune’s identity?
15Predrag: draw figure
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If one considers only the upper-left [3 × 3] matrix (which we started out with, prior to
adding the constraint (13.13)) then this matrix is not invertible and the equation does
not have a unique solution. However, the full [4×4] matrix is invertible, as det (·) =
−vzdet (1 − M⊥), where M⊥ is the [2×2] monodromy matrix for a surface of section
transverse to the orbit (see sect. 5.5). (F. Christiansen)

13.4.1 Cost function

It pays to think in terms of a cost (or error) function I(Δx) = (x+Δx− f (x+Δx))2/2.
Periodic orbit condition (13.1) corresponds both to a zero of I(Δx), and of its first
Δx variation. Expand I(Δx) to the second order in Δx, Ĩ ≈ Δ̃x

2
/2 + (x − f (x)) ·

Δ̃x + (x − f (x))2/2, where Δ̃x = (1 − J(x))Δx. To find an extremum, we set the
derivative with respect to Δ̃x to zero. As the term (x− f (x))2/2 is a constant under
Δx variation, let us define an unconstrained cost function16 17

I0(Δ̃x) =
1
2
Δ̃x · Δ̃x + (x − f (x)) · Δ̃x , (13.16)

Setting the derivative of this function 18

∂I0(Δ̃x)

∂Δ̃x
= Δ̃x + x − f (x) = (1 − J(x)) · Δx + x − f (x) (13.17)

to zero recovers the Newton setup (13.4)

Next, we need to enforce the constraint that curbs the directions in which Δx
can point. Lagrange multipliers come to help. 19

A local surface of section can be constructed when f (x) is “near” the initial
point x. A natural choice is a hyperplane perpendicular to the velocity vector v(x).
The reference point x0 in (13.13) is x itself, and the surface of section condition
is U(x + Δx) = v(x) · Δx = 0. Introduce a Lagrange multiplier λ, and assemble a
cost function with the constraint:

I1(Δ̃x, λ) =
1
2
Δ̃x · Δ̃x + [x − f (x)] · Δ̃x + λv(x) · Δ̃x . (13.18)

Now we differentiate I1(Δx, λ) with respect to each argument and set the deriva-
tives to zero. We recover the Newton setup (13.11), with the Lagrange multiplier

16Predrag: Is Δ̃x really needed? Seems to only demand extra mental gymnastics...
17Predrag: crosslink with chapter 32. Here have finite time intervals, rather than many small

ones.
18Predrag: recheck, might be wrong
19Predrag: Rytis, check ref. [25] seems to use Lagrange multipliers. If you google “periodic orbit

Lagrange multiplier,” huge literature comes up. Refs. [26, 27, 28, 29, 30, 31, 32] and many more
might be of interest.
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λ = Δt interpreted as the time increment needed to place f (x) onto the section,
f (x) → f (x) + v( f (x))Δt.

A global surface of section is a fixed surface U(x+Δx)−U(x0) ≈ ∂U(x)Δx+
U(x) −U(x0) that hopefully transects all or a significant portion of recurrent parts
of the flow. It is not as ‘natural’ as the local section (13.10), but hard to avoid in
practice, and one is interested not only in the fixed point itself, but in the global
reach of its unstable manifold as well. The simplest choice is a hyperplane (13.13).

example 13.5
The cost function and the variational equations are then20

I2(Δx,Δt) =
1
2
Δx[1 − J(x)]Δx + (x − f (x))Δx

+ Δt (∂U(x)Δx + U(x) − U(x0)) , (13.19)

(
1 − J(x) ∂U(x)
∂U(x) 0

) (
Δx
Δt

)
= −

(
x − f (x)

U(x) − U(x0)

)
(13.20)

Further continuous symmetries can be handled in the same fashion. Suppose,
for example, that we are searching for periodic orbits of a Hamiltonian flow.
There, periodic orbits not only have the time-translation symmetry, but energy-
translation symmetry as well. What is energy-translation symmetry? If there ex-
ists a periodic orbit at x with energy H(x) = E, and period T , it is very likely that it
belongs to a family of orbits (x+εΔx(E), T+εΔt(E)) continuous under variation of
E. As with the time-translation symmetry, this implies a unit Floquet multiplier:
indeed, we know from sect. 7.4 that symplectic eigenvalues come in pairs, so unit
multiplier in the time direction implies a unit multiplier in its dual, the energy
direction, (Λt,ΛE, · · ·) = (1, 1, · · ·). But extending the number of constraints is no
longer a problem: add more Lagrange multipliers. Consider the following system

I3(Δx, λ1, λ2) = Δx[1 − J(x)]Δx/2 + (x − f (x))Δx

+ λ1 (U(x + Δx) − U(x0)) + λ2 (H(x + Δx) − E0) (13.21)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ 1 − J(x) ∂U(x) ∂H(x)
∂U(x) 0 0
∂H(x) 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝ Δx
λ1
λ2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = −
⎛⎜⎜⎜⎜⎜⎜⎜⎝ x − f (x)

U(x) − U(x0)
H(x) − E0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (13.22)

This is the Newton iteration setup for how to search for a periodic orbit of a Hamil-
tonian flow with a global surface of section U(x) = U(x0) and fixed energy E0. 21

Note that these instructions do not put every iteration on a surface U(x) = U(x0)
and energy H(x) = E0, unless the surface is a plane U(x) = a · (x − x0), but
instead assure that the iterations (provided they converge) will approach super-
exponentially to the surfaces.

⇓PRIVATE

(F. Christiansen)

20Predrag: shouldn’t one of the U(x) be v(x)?
21Predrag: why does (13.22) differ from (13.24)? are the both right?
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22 23 [remove this insert after the corresponding Rytis text is crosschecked]

This method can be generalized to iterations in which other eigenvalues of
the Jacobian matrix equal 1. This happens if the flow has an invariant of motion,
such as energy conservation in Hamiltonian systems. In this case we append an
equation guaranteeing that x is on the energy shell together with an extra variable
corresponding to adding a small vector along the gradient of the Hamiltonian.

24 We then have to solve the same trick used in continuation problems in
Hamiltonian systems. So that one sometimes part, say, a saddle-center it looks
very similar; one adds a small and xx dissipation so that equilibrium doesn’t move;
one now has a saddle node at a saddle-center; after going past, one lets dissipation
approach zero and does whatever one needs after that.

(
1 − J v(x) ∇H(x)

a 0 0

) ⎛⎜⎜⎜⎜⎜⎜⎜⎝ x′ − x
Δt
ΔE

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =
(
−(x − f (x))

0

)
(13.23)

simultaneously with

H(x′) − H(x) = 0. (13.24)

The last equation is nonlinear. It is often best to treat this equation separately
and solve at each Newton step. This might mean putting in an additional Newton
routine to solve the single step of (13.23) and (13.24) together. One might be
tempted to linearize (13.24) and put it into (13.23) to do the two different Newton
routines simultaneously, but this will not guarantee a solution on the energy shell.
In fact, it may not even be possible to find any solution of the combined linearized
equations, if the initial guess is not very good. ⇑PRIVATE

For periodic orbits multi-point shooting generalizes in the same way as (13.7),
but with n additional equations – one for each point on a Poincaré section. The
Newton setup looks like this:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −Jn
−J1 1

· · · 1
· · · 1

−Jn−1 1

v1
. . .

vn

a
. . .

a

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δx1
Δx2
·
·
Δxn
Δt1
·
Δtn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−F1
−F2
·
·

−Fn
0
.
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Solving this equation resembles the corresponding task for maps. However, we
will need to invert a [(d + 1)n × (d + 1)n] matrix rather than a [d × d] matrix. 25

⇓PRIVATE
22Predrag: Interesting, the Lagrange multiplier is no longer the time increment, λ = Δt. What is

its interpretation now?
23Predrag: Perhaps include parts of Freddy’s discussion?
24Predrag: this ∇H(x) looks wrong - perhaps ∇H(x)/R as in sect. 43.3 needed, and extra matrix

row (∇H(x)00), with additional correction for the linearization?
25Predrag: moved “Newton method with optimal surface of section,” to sect. F.2.1
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matrix!positive
definite

positive definite
matrix

Multipoint shooting. We set action I0 as a sum of quadratic terms, we could
use a quadratic positive definite matrix as well. Say

I0 ∼
1
2

∑
i

ci (xi+1 + Δxi+1 − f (xi + Δxi))
2 (13.25)

Relevant for us is

Δ̃xi = Δxi − J(xi−1)Δxi−1 (13.26)

I0 =

N∑
i=1

1
2
Δ̃x

2
i + [ f (xi) − xi+1] (13.27)

We will add Lagrange multiplier (functions) to make variations of I meaningful.

13.4.2 How good is my orbit?

Provided we understand the topology of the flow, multi-shooting methods and
their variational cousins of chapter 33 enable us to compute periodic orbits of
arbitrary length. A notion that errors somehow grow exponentially with the cycle
length at Lyapunov exponent rate cannot be right. So how do we characterize the
accuracy of an orbit of arbitrary length?

26 In refs. [?, ?] it was shown that the Newton descent and the variational
methods for finding periodic orbits are variants of minimizing the stochastic path
integral in the leading, linearized approximation. 27 That suggests that we should
think of the numerical round-off errors along a trajectory as uncorrelated and act-
ing as noise, so the errors (x(t + δτ)− fδτ(x(t))2 are expected to accumulate as the
sum of squares of uncorrelated steps, linearly with time. Hence the accumulated
numerical noise along an orbit of period Tp sliced by N intermediate sections sep-
arated by δτk = tk+1 − tk ∼ Tp/N can be characterized by an effective diffusion
tensor 28

Δp,a,i j =

〈np−1∑
k=0

1
Δtk

(xa+k+1 − fΔtk (xa+k))i(xa+k+1 − fΔtk (xa+k)) j

〉
, (13.28)

26Predrag: This ChaosBook section on the effective diffusion constant for a numerically com-
puted periodic orbit is an example of how to get the covariance matrix from numerically computed
data. It is not really correct, as we do not use our formulas for noise propagation. Also, we need
to do several attempts at computing a periodic orbit to get some statistics, and probably need to
understand Kalman filters and data assimilation to do this right.

27Predrag: replace refs. [?, ?] by a pointer to noisy.tex
28Predrag: should define 〈· · ·〉?
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saddle-straddle
method

triple PIM method
periodic!orbit!triple

PIM method

where 〈· · ·〉 denotes an average over a number of different attempt to determine
the cycle p. 29 In meteorology (32.45) is used in the forecasting, with weather
predicted one iteration step later through a convolution of a weather data set of
the ‘error’ covariance matrix Qa with a (linearized) deterministic ‘forecast’ xk →
xk+1. This is the essential step in implementing data assimilation algorithms by
means of a Kalman filter. 30

An honest calculation requires an honest error estimate. If you are computing
a large set of periodic orbits p, list Dp along with Tp and other properties of cycles.

13.5 Sundry methods for cycle extraction

13.5.1 Saddle-straddle methods
exercise 3.5

A simple alternative to periodic orbit exploration is the triple PIM method which
uses the instability of the repeller to find trajectories that stay arbitrarily close to
the non–wandering set for a given time interval. The method is efficient and useful
in exploring repelling sets. 31

13.5.2 Bijection searches

One can keep halving intervals and checking whether the desired cycle visits them.
This approach, called a bijection search, is rather slow, not very insightful, and
hard to use in dimensions higher than one, so we will not discuss it here. 32 33 34

13.5.3 Symmetry lines

discuss symmetry lines

Example 13.6 Symmetry lines of the standard map. 35

29Predrag: This formula is a wild guess, needs to be fixed. The statement “ For hyperbolic flows
errors are exponentially amplified along unstable and contracted along stable eigen-directions, so
de + 1 stands for the number of unstable directions of the flow together with the single marginal
direction along the flow.” is not right - this should be taken care of by the numerically measured
diffusion tensor. Hence not using

Dp =
1

2(de + 1)

N∑
k=1

1
Δtk

(xk+1 − f Δtk (xk))2 .

30Predrag: remark on Kalman filters: add references, some are already in E. Ott’s first lecture in
Maribor 2008 conference, Siminos blog

31Mason: explain the PIM method [7]
32Predrag: include Kai’s method
33Predrag: Baker-Moore-Spiegel eigenvalue method [33]
34Predrag: In exercise 13.3, specify the MAP
35Roberto: Drop or modify and move to periodic orbit search as section/exercise/remark
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periodic!orbit!conditionIn practice the search for important classes of periodic orbits for the standard
map takes advantage of its remarkable symmetry: A can be written as the product of
two involutions, A = T2 ·T1, (involution means that the square of the map is the identity):

remark 13.6

T1(x , y) = (−x , y − k sin x)

T2(x , y) = (−x + y , y) . (13.29)

Now define symmetry lines L1 and L2 as the sets of fixed points of the corresponding
involution: L1 consists of the lines x = 0, π, L2 of x = y/2 mod (2π). There are deep
connections between symmetry lines and periodic orbits: we just give an example with
the following statement: if (x0, y0) ∈ L1 and AM(x0, y0) ∈ L1 (i.e. they are both fixed
points of T1), then (x0, y0) is a periodic point of period 2M. 36 As a matter of fact

A2M(x0, y0) = AM−1T2T1AM−1T2T1(x0, y0)

= AM−1T2AM−1T2(x0, y0) (13.30)

by the fixed point property. Now the involution property implies

T2A = T1 AT1 = T2 (13.31)

and thus

AT2AT2 = AT1T2 = 1 (13.32)

and

APT2APT2 = AP−1T2AP−1T2 (13.33)

from which it easily follows that (x0, y0) belongs to a 2M cycle.

13.5.4 Braids, templates and simplicial triangulations

37 38 39

⇑PRIVATE

Résumé

There is no general computational algorithm that is guaranteed to find all solutions
(up to a given period Tmax) to the periodic orbit condition

f t+T (x) = f t(x) , T > 0

36Predrag: bad notation - M is monodromy matrix
37Predrag: cross-reference exercise 13.1 with other appearances of the Ulam equation
38Predrag: Prepare a Lozi map exercise
39Predrag: update exercise 13.19 “a simple rational every so often?” references here and in

solutions
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natural measure
periodic!orbit!extraction—)

for a general flow or mapping. Due to the exponential divergence of nearby trajec-
tories in chaotic dynamical systems, direct solution of the periodic orbit condition
can be numerically very unstable.

A prerequisite for a systematic and complete cycle search is a good (but hard
to come by) understanding of the topology of the flow. Usually one starts by -
possibly analytic - determination of the equilibria of the flow. Their locations, sta-
bilities, stability eigenvectors and invariant manifolds offer skeletal information
about the topology of the flow. The next step is numerical long-time evolution
of “typical” trajectories of the dynamical system under investigation. Such nu-
merical experiments build up the “natural measure” and reveal which regions are
most frequently visited. Periodic orbit searches can then be initialized by taking

section 16.4.1
nearly recurring orbit segments and deforming them into closed orbits. With a
sufficiently good initial guess, the Newton-Raphson formula

(
1 − J v(x)

a 0

) (
δx
δT

)
=

(
f (x) − x

0

)

yields improved estimate x′ = x+δx, T ′ = T +δT . Iteration then yields the period
T and the location of a periodic point xp in the Poincaré section (xp − x0) · a = 0,
where a is a vector normal to the Poincaré section at x0.

The problem one faces with high-dimensional flows is that their topology is
hard to visualize, and that even with a decent starting guess for a point on a peri-
odic orbit, methods like the Newton-Raphson method are likely to fail. Methods

chapter 33
that start with initial guesses for a number of points along the cycle, such as the
multipoint shooting method of sect. 13.3, are more robust. Relaxation (or vari-
ational) methods take this strategy to its logical extreme, and start by a guess of
not a few points along a periodic orbit, but a guess of the entire orbit. Just as
these methods are intimately related to variational principles and path integrals,
we postpone their introduction until chapter 33.

Commentary

Remark 13.1 Close recurrence searches. For low-dimensional maps of flows (for
high-dimensional flows, forget about it) picking initial guesses for periodic orbits from
close recurrences of a long ergodic trajectory seems like an obvious idea. Nevertheless,
ref. [1] is frequently cited. Such methods have been deployed by many, among them
G. Tanner, L. Rondoni, G. Morris, C.P. Dettmann, and R.L. Davidchack [ 2, 15, 16, 11, 12, ⇓PRIVATE
14] (see also sect. 20.6). Sometimes one can determine most of the admissible itineraries

⇑PRIVATEand their weights without working too hard, but method comes with no guarantee.

Remark 13.2 Piecewise linear maps. The Lozi map (3.19) is linear, and hundred of
thousands of cycles can easily be computed by [2×2] matrix multiplication and inversion.
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Kuramoto-
Sivashinsky
system

Remark 13.3 Cycles, searches, and symmetries. A few comments about the role
of symmetries in actual extraction of cycles. In the N-disk billiard example, a fundamen-
tal domain is a sliver of the N-disk configuration space delineated by a pair of adjoining
symmetry axes. The flow may further be reduced to a return map on a Poincaré surface
of section. While in principle any Poincaré surface of section will do, a natural choice in
the present context are crossings of symmetry axes, see example 7.8. In actual numerical
integrations only the last crossing of a symmetry line needs to be determined. The cycle is
run in global coordinates and the group elements associated with the crossings of symme-
try lines are recorded; integration is terminated when the orbit closes in the fundamental
domain. Periodic orbits with non-trivial symmetry subgroups are particularly easy to find
since their points lie on crossings of symmetry lines, see example 7.8.

Remark 13.4 Newton gone wild. Skowronek and Gora [24] offer an interesting
discussion of Newton iterations gone wild while searching for roots of polynomials as
simple as x2 + 1 = 0.

⇓PRIVATE

Remark 13.5 Kuramoto-Sivashinsky system cycles. We have found all cycles
up to topological length 10 (the redefined topological length in the case of the period-3
window), 92 cycles in the chaotic regime and 228 in the period-3 window, by using the
1-dimensional parametrization f (s) to find initial guesses for periodic points of the full
N = 16 Fourier modes truncation and then determining the cycles by a multi-shooting
Newton routine. It is worth noting that the effectiveness of using the 1-dimensional f (s)
approximation to the dynamics to determine initial guesses is such that for a typical cycle
it takes only 2-3 Newton iterations to find the cycle with an accuracy of 10 −10.

⇑PRIVATE

Remark 13.6 Symmetries of the symbol square. For a discussion of symmetry
lines of example 13.6 see refs. [5, 6, 6, 7, 8]. It is an open question (see remark 21.2) ⇓PRIVATE

⇑PRIVATE
as to how time reversal symmetry can be exploited for reduction of cycle expansions
of chapter 20. For example, the fundamental domain symbolic dynamics for reflection
symmetric systems is discussed in some detail in sect. 21.5, but how does one recode from
time-reversal symmetric symbol sequences to desymmetrized 1/2 state space symbols? In ⇓PRIVATE
discussion of example 7.9, we have followed refs. [14, 40, 15]. 40

⇑PRIVATE

40Predrag: improve references
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Ulam map
alternating binary tree
binary!tree,

alternating

Exercises boyscout

13.1. Cycles of the Ulam map. Test your cycle-searching
routines by computing a bunch of short cycles and their
stabilities for the Ulam map 41 f (x) = 4x(1 − x) .

13.2. Cycles stabilities for the Ulam map (exact). In ex-
ercise 13.1 you should have observed that the numerical
results for the cycle Floquet multipliers (4.41) are excep-
tionally simple: the Floquet multiplier of the x0 = 0 fixed
point is 4, while the eigenvalue of any other n-cycle is
±2n. Prove this. (Hint: the Ulam map can be conjugated
to the tent map (11.4). This problem is perhaps too hard,
but give it a try - the answer is in many introductory books
on nonlinear dynamics.)

⇓PRIVATE

13.3. Unimodal map cycles. Knowledge of the topological
coordinate (11.9) is very useful when searching for peri-
odic orbits. Assume that we have already determined all
periodic points xa, xb, · · · of period n, and would like to
have a good initial guess for the period (n + 1) periodic
point xd with prescribed itinerary S +d := S +(xd). It is easy
to determine the two closest itineraries γ(S +a ), γ(S +b ) that
bracket γ(S +d ). If γ(S +a ) < γ(S +d ) < γ(S +b ), then one can
restrict the search for xc to xc ∈ [xa, xb]. For example, the
relative ordering of all unimodal map periodic points up
to n = 5 is given in the figure.

41Predrag: replace, superseded by exercise 13.16
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The alternating binary tree organization of the periodic
points of a unimodal map (in this example, the Ulam map
(11.5)). The itinerary of a point is read off the tree by
starting at the root and following the branches down to x;
relative ordering of points along the x axis is given by the
relative ordering of the corresponding nodes. Appendix G.1.1

contains further details of the symbolics dynamics for pe-
riodic point of unimodal maps.

⇑PRIVATE

13.4. Stability of billiard cycles. Compute the stabilities of
few simple cycles:

(a) A simple scattering billiard is the two-disk billiard.
It consists of a disk of radius one centered at the
origin and another disk of unit radius located at dis-
tance L + 2. Find all periodic orbits for this system
and compute their stabilities. (You might have done
this already in exercise 1.2; at least now you will be
able to see where you went wrong when you knew
nothing about cycles and their extraction.)

(b) Find all periodic orbits and their stabilities for a bil-
liard ball bouncing between the diagonal y = x and
one of the hyperbola branches y = −1/x.
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three-disk@3-
disk!cycle!analytically

Rossler@Rössler!cycles
cycle!Rössler flow

13.5. Cycle stability. Add to the pinball simulator of exer-
cise 8.1 a routine that evaluates the expanding eigenvalue
(??) for a given cycle. ⇓PRIVATE

⇑PRIVATE13.6. Pinball cycles. Determine the stability and length of all
fundamental domain prime cycles of the binary symbol
string lengths up to 5 (or longer) for R : a = 6 3-disk
pinball.

13.7. Newton-Raphson method. Implement the Newton-Raphson
method in 2-dimensional and apply it to the determination
of pinball cycles.

13.8. Fundamental domain fixed points. Use the formula
(8.11) for billiard Jacobian matrix to compute the periods
Tp and the expanding eigenvalues Λ p of the fundamental
domain 0 (the 2-cycle of the complete 3-disk space) and
1 (the 3-cycle of the complete 3-disk space) fixed points:

Tp Λp

0: R − 2 R − 1 + R
√

1 − 2/R

1: R −
√

3 − 2R√
3
+ 1 − 2R√

3

√
1 −

√
3/R

(13.34)

We have set the disk radius to a = 1. 42

13.9. Fundamental domain 2-cycle. Verify that for the 10-
cycle the cycle length and the trace of the Jacobian matrix
are given by

L10 = 2

√
R2 −

√
3R + 1 − 2,

tr J10 = Λ10 + 1/Λ10 (13.35)

= 2L10 + 2 +
1
2

L10(L10 + 2)2

√
3R/2 − 1

.

43 The 10-cycle is drawn in figure 12.12. The unstable
eigenvalue Λ10 follows from (7.34).

13.10. A test of your pinball simulator: 10-cycle. Test
your exercise 8.3 pinball simulator stability evaluation by
checking numerically the exact analytic 10-cycle stability
formula (13.35).

13.11. Rössler flow cycles. (continuation of exercise 4.5) De-
termine all cycles for the Rössler flow (2.18), as well as
their stabilities, up to

42Predrag: remeber to move solutions to this set as well
43Predrag: recheck - fixed up by Per
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helium!collinear!stability
helium!collinear!cycles
inverse!iteration,

Hamiltonian
repeller

iteration!inverse!Hamiltonian
repeller

periodic!orbit!Hamiltonian
repeller

Hamiltonian!repeller,
periodic orbits

(a) 3 Poincaré section returns

(b) (optional) 5 Poincaré section returns (Hint: imple-
ment (13.14), the multipoint shooting methods for
flows; you can cross-check your shortest cycles against
the ones listed in the table.)

Table: The Rössler flow (2.18): The itinerary p, a peri-
odic point xp = (0, yp, zp) and the expanding eigenvalue
Λp for all cycles up to topological length 7.
( J. Mathiesen, G. Simon, A. Basu)

np p yp zp Λe
1 1 6.091768 1.299732 -2.403953
2 01 3.915804 3.692833 -3.512007
3 001 2.278281 7.416481 -2.341923

011 2.932877 5.670806 5.344908
4 0111 3.466759 4.506218 -16.69674
5 01011 4.162799 3.303903 -23.19958

01111 3.278914 4.890452 36.88633
6 001011 2.122094 7.886173 -6.857665

010111 4.059211 3.462266 61.64909
011111 3.361494 4.718206 -92.08255

7 0101011 3.842769 3.815494 77.76110
0110111 3.025957 5.451444 -95.18388
0101111 4.102256 3.395644 -142.2380
0111111 3.327986 4.787463 218.0284

13.12. Cycle stability, helium. Add to the helium integrator
of exercise 2.10 a routine that evaluates the expanding
eigenvalue (??) for a given cycle. ⇓PRIVATE

⇑PRIVATE
13.13. Colinear helium cycles. Determine the stability and

length of all fundamental domain prime cycles up to sym-
bol sequence length 5 or longer for collinear helium of
figure 7.2.

13.14. Uniqueness of unstable cycles∗∗∗. Prove that there ex-
ists only one 3-disk prime cycle for a given finite admissi-
ble prime cycle symbol string. Hints: look at the Poincaré
maps; can you show that there is exponential contraction
to a unique periodic point with a given itinerary? Exer-
cise 33.1 might be helpful in this effort.

13.15. Inverse iteration method for a Hénon repeller.

Table: All periodic orbits up to 6 bounces for the Hamil-
tonian Hénon mapping (13.36) with a = 6. Listed are
the cycle itinerary, its expanding eigenvalue Λ p, and its
“center of mass.” The “center of mass” is listed because
it turns out that it is often a simple rational or a quadratic
irrational. 44

44Predrag: give the center of mass paper reference somewhere
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Henon@Hénon
map!cycles

Ulam map

p Λp
∑

xp,i

0 0.715168×101 -0.607625
1 -0.295285×101 0.274292
10 -0.989898×101 0.333333
100 -0.131907×103 -0.206011
110 0.558970×102 0.539345
1000 -0.104430×104 -0.816497
1100 0.577998×104 0.000000
1110 -0.103688×103 0.816497
10000 -0.760653×104 -1.426032
11000 0.444552×104 -0.606654
10100 0.770202×103 0.151375
11100 -0.710688×103 0.248463
11010 -0.589499×103 0.870695
11110 0.390994×103 1.095485
100000 -0.545745×105 -2.034134
110000 0.322221×105 -1.215250
101000 0.513762×104 -0.450662
111000 -0.478461×104 -0.366025
110100 -0.639400×104 0.333333
101100 -0.639400×104 0.333333
111100 0.390194×104 0.548583
111010 0.109491×104 1.151463
111110 -0.104338×104 1.366025

Consider the Hénon map (3.17) for the area-preserving
(“Hamiltonian”) parameter value b = −1. The coordi-
nates of a periodic orbit of length n p satisfy the equation

xp,i+1 + xp,i−1 = 1 − ax2
p,i , i = 1, ..., np , (13.36)

with the periodic boundary condition x p,0 = xp,np . Verify
that the itineraries and the stabilities of the short periodic
orbits for the Hénon repeller (13.36) at a = 6 are as listed
above.

Hint: you can use any cycle-searching routine you wish,
but for the complete repeller case (all binary sequences
are realized), the cycles can be evaluated simply by in-
verse iteration, using the inverse of (13.36)

x′′p,i = S p,i

√
1 − x′p,i+1 − x′p,i−1

a
, i = 1, ..., np .

Here S p,i are the signs of the corresponding periodic point
coordinates, S p,i = xp,i/|xp,i|. (G. Vattay)

13.16. Ulam map periodic points. (continued from exer-
cise 11.8)

(a) compute the five periodic points of cycle 10011 for
the Ulam map (11.5) f (x) = 4x(1 − x) . using your
Newton or other routine.

(b) compute the five periodic points of cycle 10000

(c) plot the above two cycles on the graph of the Ulam
map, verify that their topological ordering is as in
the ‘canonical’ full tent map exercise 11.8.
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center of mass(d) (optional) This works only for the Ulam map: com-
pute periodic points by conjugating the full tent map
periodic points of exercise 11.8 using exercise B.4.

13.17. Newton setups for flows.

(a) We have formulated three Newton setups for flows:
the ‘local’ setup (13.11), the ‘hyperplane’ setup (13.14),
and the ‘global’ setup (13.20). Derive (13.20) and
verify that if the surface of section is a hyperplane,
it reduces to (13.14). (Hint: it is not inconceivable
that (13.14) is wrong as it stands.)

(b) (optional) Derive (13.22), the Newton setup for Hamil-
tonian flows.

⇓PRIVATE
13.18. Newton setup for collinear helium. 45 The New-

ton setup (13.22) for Hamiltonian flows depends explic-
itly on the Hamiltonian of a particular problem at hand.
Set up Newton iteration of periodic orbits of collinear
helium (B.15), assuming plane Poincaré section (13.14)
a = (?, ?, ?, ?). ⇑PRIVATE

13.19. “Center of mass” puzzle∗∗. Why is the “center of
mass,” tabulated in exercise 13.15, often a rational num-
ber?
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Qunadry: all these cycles, but what to do with them? What you have now is a
topologically invariant road map of the state space, with the chaotic region pinned
down by a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths

and self-similar structure. In chapter 15 we shall turn this topological dynamics into a
multiplicative operation on the state space partitions by means of transition matrices of
chapter 14, the simplest examples of evolution operators. This will enable us to count the
distinct orbits, and in the process touch upon all the main themes of this book, going the
whole distance from diagnosing chaotic dynamics to computing zeta functions.

1. Partition the state space and describe all allowed ways of getting from ‘here’ to
‘there’ by means of transition graphs (transition matrices). These generate the total-
ity of admissible itineraries. (Chapter 14)

2. Learn to count (Chapter 15)

3. Learn how to measure what’s important (Chapter 16)

4. Learn how to evolve the measure, compute averages (Chapter17)

5. Learn what a ‘Fourier transform’ is for a nonlinear world, not a circle (Chapter18),

6. and how the short-time / long-time duality is encoded by spectral determinant ex-
pression for evolution operator spectrum in terms of periodic orbits. (Chapter19)

7. Learn how use short period cycles to describe chaotic world at times much beyond
the Lyapunov time (Chapter 20).

Next ponder how symmetries simplify spectral determinants (chapter 21), develop some
feeling for the traces of evolution operators (chapter22), why all this works (chapter 23),
when does it not work (chapter 24), what does it have to do with foundations of statistical
mechanics (chapter 26) and turbulence (chapter 27).
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Chapter 14

Walkabout: Transition graphs

I think I’ll go on a walkabout
find out what it’s all about [...] take a ride to the other side

—Red Hot Chili Peppers, ‘Walkabout’

In chapters 11 and 12 we learned that invariant manifolds partition the state
space in invariant way, and how to name distinct orbits. We have established
and related the temporally and spatially ordered topological dynamics for a

class of ‘stretch & fold’ dynamical systems, and discussed pruning of inadmissi-
ble trajectories.

Here we shall use these results to generate the totality of admissible itineraries.
This task will be particularly easy for repellers with complete Smale horseshoes
and for subshifts of finite type, for which the admissible itineraries are generated
by finite transition matrices, and the topological dynamics can be visualized by
means of finite transition graphs. We shall then turn topological dynamics into a
linear multiplicative operation on the state space partitions by means of transition
matrices, the simplest examples of ‘evolution operators.’ They will enable us – in
chapter 15 – to count the distinct orbits.

14.1 Matrix representations of topological dynamics

The allowed transitions between the regions of a partition {M1,M2, · · · ,Mm} are
encoded in the [m×m]-dimensional transition matrix whose elements take values

Ti j =

{
1 if the transition Mj →Mi is possible
0 otherwise . (14.1)

The transition matrix is an explicit linear representation of topological dynam-
ics. If the partition is a dynamically invariant partition constructed from sta-
ble/unstable manifolds, it encodes the topological dynamics as an invariant law
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adjacency matrix
irreducible!matrix
matrix!irreducible
topological!transitivity
dynamical!transitivity
indecomposability
Perron-

Frobenius!matrix
probability!matrix
stochastic!matrix
Markov!matrix

Figure 14.1: Points from the region M21 reach re-
gions {M10,M11,M12}, and no other regions, in one
time step. Labeling exemplifies the ‘shift map’ of ex-
ample 11.7 and (11.20).

of motion, with the allowed transitions at any instant independent of the trajectory
history, requiring no memory.

Several related matrices as well will be needed in what follows. Often it is
convenient to distinguish between two or more paths connecting the same two
regions; that is encoded by the adjacency matrix with non-negative integer entries,

Ai j =

{
k if a transition Mj →Mi is possible in k ways
0 otherwise . (14.2)

More generally, we shall encounter [m×m] matrices which assign different real or
complex weights to different transitions,

Li j =

{
Li j ∈ R or C if M j →Mi is allowed
0 otherwise . (14.3)

As in statistical physics, we shall refer to these as transfer matrices. 1

Mi is accessible from Mj in k steps if (Lk)i j � 0. A matrix L is called
reducible if there exists one or more index pairs {i, j} such that (Lk)i j = 0 for all
k, otherwise the matrix is irreducible. This means that a trajectory starting in any
partition region eventually reaches all of the partition regions, i.e., the partition
is dynamically transitive or indecomposable, as assumed in (2.3). The notion of
topological transitivity is crucial in ergodic theory: a mapping is transitive if it
has a dense orbit. If that is not the case, state space decomposes into disconnected
pieces, each of which can be analyzed separately by a separate irreducible matrix.
Region Mi is said to be transient if no trajectory returns to it. Region Mj is said
to be absorbing if no trajectory leaves it, Lj j � 0, Li j = 0 for all i � j. Hence it
suffices to restrict our considerations to irreducible matrices.

If L has strictly positive entries, Li j > 0, the matrix is called positive; if Li j ≥
0, the matrix is called non-negative. Matrix L is said to be eventually positive or
Perron-Frobenius if Lk is positive for some power k (as a consequence, the matrix
is transitive as well). A non-negative matrix whose columns conserve probability,
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topological!dynamics
subshift!finite type
dynamics!topological

Figure 14.2: Topological dynamics: shrink each state
space partition region figure 14.1 to a node, and indi-
cate the possibility of reaching a region by a directed
link. The links stand for transition matrix elements
T10,21 = T11,21 = T12,21 = 1; remaining Ti j,21 = 0. 21

1010

1111

1010

1212

21212121

1111

1212

∑
i Li j = 1, is called Markov, probability or stochastic matrix. 2

Example 14.1 Markov chain. The Google PageRank of a webpage is computed by
a Markov chain, with a rather large Markov matrix M.

A subshift (11.22) of finite type is a topological dynamical system (Σ, σ),
where the shift σ acts on the space of all admissible itineraries (sk)

Σ =
{
(sk)k∈Z : Tsk+1sk = 1 for all k

}
, sk ∈ {a, b, c, · · · , z} . (14.4)

The task of generating the totality of admissible itineraries is particularly easy for
subshifts of finite type, for which the admissible itineraries are generated by finite
transition matrices, and the topological dynamics can be visualized by means of
finite transition graphs. 3 4

14.2 Transition graphs: wander from node to node

Let us abstract from a state space partition such as figure 14.1 its topological
essence: indicate a partition region Ma by a node, and indicate the possibility of
reaching the region Mb, Lba � 0 by a directed link, as in figure 14.2. Do this for
all nodes. The result is a transition graph.

A transition graph (or digraph, or simply ‘graph’) consists of a set of nodes
(or vertices, or states), one for each letter in the alphabet A = {a, b, c, · · · , z},
connected by a set of directed links (edges, arcs, arrows). A directed link starts
out from node j and terminates at node i whenever the matrix element (14.3)
takes value Li j � 0. A link connects two nodes, or originates and terminates on
the same node (a ‘self-loop’). For example, if a partition includes regions labeled
{· · · ,M101,M110, · · ·}, the transition matrix element connecting the two is drawn
as L101,110 = 110101 , whereas L0,0 = 0 . Here a dotted link indicates that the

1Predrag: create transfer matrix example with Fig/exer11.ai; motivate the adjoint matrix by the
3-disk example.

2Predrag: define Markov chain
3Predrag: combine spatial and temporal - how regions map in time
4Predrag: check this section against ref. [3]
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shift σ(x011···) = x11··· involves symbol 0, and a full one a shift σ(x110···) = x10···
that involves 1. A j → · · · → k walk (path, itinerary) traverses a connected set
of directed links, starting at node j and ending at node k. A loop (periodic orbit,
cycle) is a walk that ends at the starting node (which can be any node along the
loop), for example

t011 = L110,011L011,101L101,110 =

101

011

110

. (14.5)

Our convention for ordering indices is that the successive steps in a visitation se-
quence j → i → k are generated by matrix multiplication from the left, Tk j =∑

TkiTi j. Two graphs are isomorphic if one can be obtained from the other by
relabeling links and nodes. As we are interested in recurrent (transitive, indecom-
posable) dynamics, we restrict our attention to irreducible or strongly connected
graphs, i.e., graphs for which there is a path from any node to any other node. (In
a connected graph one may reach node j from node k, but not node k from node
j.) 5 6

A transition graph compactly describes the ways in which the state space re-
gions map into each other, accounts for finite memory effects in dynamics, and
generates the totality of admissible trajectories as the set of all possible walks
along its links. A transition graph is also the precise statement of what is meant ⇓PRIVATEtopologically by a “self-similar” fractal; supplemented by scaling information, the
transition graph generates a self-similar fractal, see chapterO. 7

⇑PRIVATE

Construction of a good transition graph is, like combinatorics, unexplainable.
The only way to learn is by some diagrammatic gymnastics, so we work our way
through a sequence of exercises in lieu of plethora of baffling definitions.8

Example 14.2 Full binary shift. Consider a full shift on two-state partition A =
{0, 1}, with no pruning restrictions. The transition matrix and the corresponding transi-
tion graph are

T =
( 1 1

1 1

)
= 0 1 . (14.6)

Dotted links correspond to shifts originating in region 0, and the full ones to shifts origi-
nating in 1. The admissible itineraries are generated as walks on this transition graph.
(continued in example 14.8)

Example 14.3 Complete N-ary dynamics: If all transition matrix entries equal
unity (one can reach any region from any other region in one step),

Tc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (14.7)

5Predrag: www.cs.odu.edu link seems useful
6Predrag: give examples of relabeling
7Predrag: need to resurrect parts of sect s-ThermDynFract
8Predrag: refer to the earlier Veltman, t’Hooft quote ref. [22]
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the symbolic dynamics is called complete, or a full shift. The corresponding transition
graph is obvious, but a bit tedious to draw for arbitrary N. 9

Example 14.4 Pruning rules for a 3-disk alphabet: As the disks are convex, there
can be no two consecutive reflections off the same disk, hence the covering symbolic
dynamics consists of all sequences which include no symbol repetitions 11, 22, 33.
This is a finite set of finite length pruning rules, hence, the dynamics is a subshift of
finite type (see (11.23) for definition), with the transition matrix / graph given by

T =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 1 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ = 3 1

2

. (14.8)

The complete unrestricted symbolic dynamics is too simple to be illuminating,
so we turn next to the simplest example of pruned symbolic dynamics, the finite
subshift obtained by prohibition of repeats of one of the symbols, let us say 11 .
This situation arises, for example, in studies of the circle maps, where this kind
of symbolic dynamics describes “golden mean” rotations (we shall return to this ⇓PRIVATE
example in chapter 30).

⇑PRIVATE

exercise 15.6
exercise 15.8Example 14.5 ‘Golden mean’ pruning. Consider a subshift on two-state partition

A = {0, 1}, with the simplest grammar G possible, a single pruned block b = 11
(consecutive repeat of symbol 1 is inadmissible): the state M0 maps both onto M0 and
M1, but the state M1 maps only onto M0. The transition matrix and the corresponding
transition graph are

T =
(

1 1
1 0

)
= 0 1 . (14.9)

Admissible itineraries correspond to walks on this finite transition graph. (continued in
example 14.9)

In the complete N-ary symbolic dynamics case (see example14.3) the choice
of the next symbol requires no memory of the previous ones. However, any further
refinement of the state space partition requires finite memory.

Example 14.6 Finite memory transition graphs. For the binary labeled repeller with
complete binary symbolic dynamics, we might chose to partition the state space into
four regions {M00,M01,M10,M11}, a 1-step refinement of the initial partition {M0,M1}.
Such partitions are drawn in figures 12.3 and 12.4, as well as figure 1.9. Topologically⇓PRIVATE

⇑PRIVATE
f acts as a left shift (12.11), and its action on the rectangle [.01] is to move the decimal
point to the right, to [0.1], forget the past, [.1], and land in either of the two rectangles
{[.10], [.11]}. Filling in the matrix elements for the other three initial states we obtain the
1-step memory transition matrix/graph acting on the 4-regions partition

exercise 11.7
9Predrag: need a serious definition of transversality, hyperbolicity instead of this
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Figure 14.3: Transition graph (graph whose links cor-
respond to the nonzero elements of a transition matrix
Tba) describes which regions b can be reached from the
region a in one time step. The 7 nodes correspond to
the 7 regions of the partition (14.11). The links repre-
sent non-vanishing transition matrix elements, such as
T101,110 = 110101 . Dotted links correspond to a shift
by symbol 0, and the full ones by symbol 1.

00 010

100

101

011

110

111

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
T00,00 0 T00,10 0
T01,00 0 T01,10 0

0 T10,01 0 T10,11

0 T11,01 0 T11,11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
01

10

1100 . (14.10)

(continued in example 15.8)

By the same token, for M-step memory the only nonvanishing matrix elements
are of the form Ts1s2...sM+1,s0s1...sM , sM+1 ∈ {0, 1}. This is a sparse matrix, as the
only non vanishing entries in the a = s0s1 . . . sM column of Tba are in the rows
b = s1 . . . sM0 and b = s1 . . . sM1. If we increase the number of remembered

exercise 15.1
steps, the transition matrix grows large quickly, as the N-ary dynamics with M-
step memory requires an [NM+1 × NM+1] matrix. Since the matrix is very sparse,
it pays to find a compact representation for T . Such a representation is afforded by
transition graphs, which are not only compact, but also give us an intuitive picture
of the topological dynamics.

Example 14.7 A 7-state transition graph. Consider a state space partitioned into 7
regions

{M00,M011,M010,M110,M111,M101,M100} . (14.11)

Let the evolution in time map the regions into each other by acting on the labels as
shift (12.11): M011 → {M110,M111} , M00 → {M00,M011,M010} · · · , with nonvanish-
ing L110,011, L011,00, . . ., etc.. This is compactly summarized by the transition graph of
figure 14.3. (continued as example 15.7) 10

14.3 Transition graphs: stroll from link to link

exercise 15.1

What do finite graphs have to do with infinitely long trajectories? To understand
the main idea, let us construct a graph that enumerates all possible itineraries for
the case of complete binary symbolic dynamics. In this construction the nodes
will be unlabeled, links labeled, signifying different kinds of transitions.

10Predrag: explain the 00 notaton?
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memory!finite
subshift!finite type

Figure 14.4: The self-similarity of the complete bi-
nary symbolic dynamics represented by a binary tree:
trees originating in nodes B, C, · · · (actually - any
node) are the same as the tree originating in node A.
Level m = 4 partition is labeled by 16 binary strings,
coded by dotted (0) and full (1) links read down the
tree, starting from A. See also figure 11.14.

A

B C

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000

0001

0000

Example 14.8 Complete binary topological dynamics. Mark a dot ‘·’ on a piece of
paper. Draw two short lines out of the dot, end each with a dot. The full line will signify
that the first symbol in an itinerary is ‘1,’ and the dotted line will signifying ‘0.’ Repeat
the procedure for each of the two new dots, and then for the four dots, and so on. The
result is the binary tree of figure 14.4. Starting at the top node, the tree enumerates
exhaustively all distinct finite itineraries of lengths n = 1, 2, 3, · · ·

{0, 1} {00, 01, 10, 11}
{000, 001, 010, 011, 100, 101, 111, 110} · · · .

The n = 4 nodes in figure 14.4 correspond to the 16 distinct binary strings of length
4, and so on. By habit we have drawn the tree as the alternating binary tree of fig-
ure 11.14, but that has no significance as far as enumeration of itineraries is concerned
- a binary tree with labels in the natural order, as increasing binary ‘decimals’ would
serve just as well.

The trouble with an infinite tree is that it does not fit on a piece of paper. On
the other hand, we are not doing much - at each node we are turning either left or
right. Hence all nodes are equivalent. In other words, the tree is self-similar; the trees
originating in nodes B and C are themselves copies of the entire tree. The result of
identifying B = A, C = A is a single node, 2-link transition graph with adjacency matrix
(14.2)

A = ( 2 ) = A=B=CA=B=C . (14.12)

An itinerary generated by the binary tree figure 14.4, no matter how long, corresponds
to a walk on this graph.

This is the most compact encoding of the complete binary symbolic dynamics.
Any number of more complicated transition graphs such as the 2-node (14.6) and
the 4-node (14.10) graphs generate all itineraries as well, and might be sometimes
preferable.

exercise 15.6
exercise 15.5

We turn next to the simplest example of pruned symbolic dynamics, the finite
subshift obtained by prohibition of repeats of one of the symbols, let us say 00 .

Example 14.9 ‘Golden mean’ pruning. (a link-to-link version of example 14.5) Now
the admissible itineraries are enumerated by the pruned binary tree of figure 14.5.
Identification of nodes A = C = E leads to the finite 2-node, 3-links transition graph
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Henon@Hénon
map!pruning front

Figure 14.5: The self-similarity of the 00 pruned bi-
nary tree: trees originating from nodes C and E are the
same as the entire tree. 0110

0111

0101

1101

1111

1110

1010

1011

A

E

B C

Figure 14.6: Conversion of the pruning front of fig-
ure 12.11 (b) into a finite transition graph. (a) Starting
with the start node “.”, delineate all pruning blocks on
the binary tree. Full line stands for “1” and the dashed
line for “0”. Label all internal nodes by reading the bits
connecting “.”, the base of the tree, to the node. The
blocks 0010, 0110 are pruned by removing the dashed
lines from the 001, 011 nodes. (b) Drop recursively the
leading bits in the admissible blocks; if the truncated
string corresponds to an internal node in (a), identi-
cal trees originate in both, so we connect them. All
admissible sequences are generated as walks on this fi-
nite transition graph. (d) Identify all distinct loops and
construct the determinant (15.20).

00

0

000 011001

01

010

.

1

10

0

0011 0111

.

.
011

00

T =
(

0 1
1 1

)
= A=C=EA=C=EB . (14.13)

As 0 is always followed by 1, the walks on this graph generate only the admissible
itineraries. This is the same graph as the 2-node graph (14.9). (continued in exam-
ple 15.4)

⇓PRIVATE

Example 14.10 A Hénon map pruning front:
11 (continued in example 15.6)

⇑PRIVATE

14.3.1 Converting pruning blocks into transition graphs

Suppose now that, by hook or crook, you have been so lucky fishing for pruning
rules that you now know the grammar (11.23) in terms of a finite set of pruning
blocks G = {b1, b2, · · · bk}, of lengths ≤ m. Our task is to generate all admissible
itineraries. What to do?

We have already seen the main ingredients of a general algorithm: (1) tran-
sition graph encodes self-similarities of the tree of all itineraries, and (2) if we
have a pruning block of length m, we need to descend m levels before we can start
identifying the self-similar sub-trees.

11Predrag: replace figure 14.7 by figure 14.6. Cross-link with chapter ??.
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Figure 14.7: Conversion of the pruning front of
figure 12.11 (b) into a finite transition graph. (a)
Starting with the initial node “.”, delineate all
pruning blocks on the binary tree. A solid line
stands for “1” and a dashed line for “0”. The ends
of forbidden strings are marked with ×. Label
all internal nodes by reading the bits connecting
“.”, the base of the tree, to the node. (b) Indi-
cate all admissible starting blocks by arrows. (c)
Recursively drop the leading bits in the admissi-
ble blocks; if the truncated string corresponds to
an internal node in (a), connect them. (d) Delete
the transient, non-circulating nodes; all admissi-
ble sequences are generated as walks on this finite
transition graph. (e) Identify all distinct loops and
construct the determinant (15.20).

Finite grammar transition graph algorithm.

1. Starting with the root of the tree, delineate all branches that correspond to
all pruning blocks; implement the pruning by removing the last node in each
pruning block (marked ‘×’ in figure 14.7 (a)).

2. Label all nodes internal to pruning blocks by the itinerary connecting the
root point to the internal node, figure14.7 (b). Why? So far we have pruned
forbidden branches by looking mb steps into future for a given pruning
block, let’s say b = 10110. However, the blocks with a right combina-
tion of past and future [1.0110], [10.110], [101.10] and [1011.0] are also
pruned. In other words, any node whose near past coincides with the begin-
ning of a pruning block is potentially dangerous - a branch further down the
tree might get pruned.

3. Add to each internal node all remaining branches allowed by the alphabet,
and label them, figure 14.7 (c). Why? Each one of them is the beginning
point of an infinite tree, a tree that should be similar to another one origi-
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transientnating closer to the root of the whole tree.
12

4. Pick one of the free external nodes closest to the root of the entire tree,
forget the most distant symbol in its past. Does the truncated itinerary cor-
respond to an internal node? If yes, identify the two nodes. If not, forget
the next symbol in the past, repeat. If no such truncated past corresponds to
any internal node, identify with the root of the tree.

This is a little bit abstract, so let’s say the free external node in question is
[1010.]. Three time steps back the past is [010.]. That is not dangerous, as
no pruning block in this example starts with 0. Now forget the third step in
the past: [10.] is dangerous, as that is the start of the pruning block [10.110].
Hence the free external node [1010.] should be identified with the internal
node [10.].

5. Repeat until all free nodes have been tied back into the internal nodes.

6. Clean up: check whether every node can be reached from every other node.
Remove the transient nodes, i.e., the nodes to which dynamics never returns.

7. The result is a transition graph. There is no guarantee that this is the
smartest, most compact transition graph possible for given pruning (if you
have a better algorithm, teach us), but walks around it do generate all ad-
missible itineraries, and nothing else.

Example 14.11 Heavy pruning.
13 We complete this training by examples by implementing the pruning of fig-

ure 12.11 (b). The pruning blocks are ⇓PRIVATE

exercise 11.11

⇑PRIVATE
[100.10], [10.1], [010.01], [011.01], [11.1], [101.10]. (14.14)

Blocks 01101, 10110 contain the forbidden block 101, so they are redundant as pruning
rules. Draw the pruning tree as a section of a binary tree with 0 and 1 branches and
label each internal node by the sequence of 0’s and 1’s connecting it to the root of the
tree (figure 14.7 (a). These nodes are the potentially dangerous nodes - beginnings of
blocks that might end up pruned. Add the side branches to those nodes (figure 14.7 (b).
As we continue down such branches we have to check whether the pruning imposes
constraints on the sequences so generated: we do this by knocking off the leading bits
and checking whether the shortened strings coincide with any of the internal pruning
tree nodes: 00 → 0; 110 → 10; 011 → 11; 0101 → 101 (pruned); 1000 → 00 → 00 → 0;
10011 → 0011 → 011 → 11; 01000 → 0.

The trees originating in identified nodes are identical, so the tree is “self-similar.”
Now connect the side branches to the corresponding nodes, figure 14.7 (d). Nodes “.”
and 1 are transient nodes; no sequence returns to them, and as you are interested here
only in infinitely recurrent sequences, delete them. The result is the finite transition
graph of figure 14.7 (d); the admissible bi-infinite symbol sequences are generated as
all possible walks on this graph.

12Predrag: Peles: this one is tricky
13Predrag: describe transients in figure 14.7
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14 15 1617

Résumé

The set of all admissible itineraries is encoded multiplicatively by transition ma-
trices, diagrammatically by transition graphs. Pruning rules for inadmissible se-
quences are implemented by constructing corresponding transition matrices and/or
transition graphs. These matrices are the simplest examples of evolution operators

⇓PRIVATEprerequisite to developing a theory of averaging over chaotic flows. From our ini-
tial chapters 2 to 4 fixation on things local: a representative point, a short-time
trajectory, a neighborhood, in this chapter and the next we make a courageous
leap, and go global. 1819

⇑PRIVATE

Commentary

Remark 14.1 Transition graphs. We enjoyed studying Lind and Marcus [1] intro-
duction to symbolic dynamics and transition graphs. Finite transition graphs or finite
automata are discussed in refs. [2, 3, 4]. They belong to the category of regular lan-
guages. Transition graphs for unimodal maps are discussed in refs. [ 8, 9, 10]. (see also
remark 11.1)

Remark 14.2 Inflating transition graphs. In the above examples the symbolic dy-
namics has been encoded by labeling links in the transition graph. Alternatively one can
encode the dynamics by labeling the nodes, as in example 14.6, where the 4 nodes refer
to 4 Markov partition regions {M00,M01,M10,M11}, and the 8 links to the 8 non-zero
entries in the 2-step memory transition matrix (14.10).

Remark 14.3 The unbearable growth of transition graphs. A construction of finite
Markov partitions is described in refs. [11, 12], as well as in the innumerably many other
references.

If two regions in a Markov partition are not disjoint but share a boundary, the bound-
ary trajectories require special treatment in order to avoid overcounting, see remark G.4

⇓PRIVATEand sect. 21.3.1. If the image of a trial partition region cuts across only a part of another
⇑PRIVATEtrial region and thus violates the Markov partition condition ( 11.2), a further refinement

of the partition is needed to distinguish distinct trajectories - figure ?? is an example of
⇓PRIVATEsuch refinements. 20

⇑PRIVATE
14Predrag: refer to K.T. Hanson’s implementation, Politi?
15Predrag: add Per chapt. 6.1
16Predrag: add transition graph exercises.
17Predrag: Redo exercises by transition graphs.
18Predrag: add Transition graph exercises.
19Predrag: Redo exercises by Transition graphs.
20Predrag: use Mikkelsen termpaper to discuss border points subtleties
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The finite transition graph construction sketched above is not necessarily the minimal
one; for example, the transition graph of figure 14.7 does not generate only the “funda-
mental” cycles (see chapter 20), but shadowed cycles as well, such as t00011 in (15.20).
For methods of reduction to a minimal graph, consult refs. [ 8, 49, 9]. Furthermore, when
one implements the time reversed dynamics by the same algorithm, one usually gets a
graph of a very different topology even though both graphs generate the same admissible
sequences, and have the same determinant. The algorithm described here makes some
sense for 1-dimensional dynamics, but is unnatural for 2-dimensional maps whose dy-
namics it treats as 1-dimensional. In practice, generic pruning grows longer and longer,
and more plentiful pruning rules. For generic flows the refinements might never stop,
and almost always we might have to deal with infinite Markov partitions, such as those
that will be discussed in sect. 15.5. Not only do the transition graphs get more and more
unwieldy, they have the unpleasant property that every time we add a new rule, the graph
has to be constructed from scratch, and it might look very different form the previous
one, even though it leads to a minute modification of the topological entropy. The most
determined effort to construct such graphs may be the one of ref. [ 14]. Still, this seems to
be the best technology available, unless the reader alerts us to something superior.
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Exercises boyscout

14.1. Time reversibility.∗∗ Hamiltonian flows are time re-
versible. Does that mean that their transition graphs are
symmetric in all node → node links, their transition ma-
trices are adjacency matrices, symmetric and diagonaliz-
able, and that they have only real eigenvalues?

14.2. Alphabet {0,1}, prune 1000 , 00100 , 01100 . This
example is motivated by the pruning front description of
the symbolic dynamics for the Hénon-type mapsremark 12.3.

step 1. 1000 prunes all cycles with a 000 subsequence
with the exception of the fixed point 0; hence we factor
out (1− t0) explicitly, and prune 000 from the rest. This
means that x0 is an isolated fixed point - no cycle stays in
its vicinity for more than 2 iterations. In the notation of
sect. 14.3.1, the alphabet is {1, 2, 3; 0}, and the remaining
pruning rules have to be rewritten in terms of symbols
2=10, 3=100:

step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 .
This means that the 3-cycle 3 = 100 is pruned and no
long cycles stay close enough to it for a single 100 re-
peat. 21 Prohibition of 33 is implemented by dropping
the symbol “3” and extending the alphabet by the allowed
blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 ,
13 13 , where 13 = 13, 23 = 23 are now used as sin-

gle letters. Pruning of the repetitions 13 13 (the 4-cycle
13 = 1100 is pruned) yields the

result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary dy-
namics. The other remaining possible blocks 213 , 2313
are forbidden by the rules of step 3. (continued as exer- ⇓PRIVATEcise ??)

⇑PRIVATE
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Chapter 15

Counting

I’m gonna close my eyes
And count to ten
I’m gonna close my eyes
And when I open them again
Everything will make sense to me then

—Tina Dico, ‘Count To Ten’

We are now in a position to apply the periodic orbit theory to the first and
the easiest problem in theory of chaotic systems: cycle counting. This
is the simplest illustration of the raison d’etre of periodic orbit theory;

we derive a duality transformation that relates local information - in this case the
next admissible symbol in a symbol sequence - to global averages, in this case
the mean rate of growth of the number of cycles with increasing cycle period. In
chapter 14 we have transformed, by means of the transition matrices / graphs, the
topological dynamics of chapter 11 into a multiplicative operation. Here we show
that the nth power of a transition matrix counts all itineraries of length n. The
asymptotic growth rate of the number of admissible itineraries is therefore given
by the leading eigenvalue of the transition matrix; the leading eigenvalue is in turn
given by the leading zero of the characteristic determinant of the transition matrix,
which is - in this context - called the topological zeta function.

For flows with finite transition graphs this determinant is a finite topological
polynomial which can be read off the graph. However, (a) even something as
humble as the quadratic map generically requires an infinite partition (sect.15.5),
but (b) the finite partition approximants converge exponentially fast.1

The method goes well beyond the problem at hand, and forms the core of the
entire treatise, making tangible the abstract notion of “spectral determinants” yet
to come.

1Predrag: emphasize SHADOWING here and in summary
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15.1 How many ways to get there from here?

In the 3-disk system of example 11.1 the number of admissible trajectories dou-
bles with every iterate: there are Kn = 3 ·2n distinct itineraries of length n. If disks
are too close and a subset of trajectories is pruned, this is only an upper bound and
explicit formulas might be hard to discover, but we still might be able to establish
a lower 2 exponential bound of the form Kn ≥ Cenĥ. Bounded exponentially by
3en ln 2 ≥ Kn ≥ Cenĥ, the number of trajectories must grow exponentially as a
function of the itinerary length, with rate given by the topological entropy:

h = lim
n→∞

1
n

ln Kn . (15.1)

We shall now relate this quantity to the spectrum of the transition matrix, with
the growth rate of the number of topologically distinct trajectories given by the
leading eigenvalue of the transition matrix.

The transition matrix element Ti j ∈ {0, 1} in (14.1) indicates whether the tran-
sition from the starting partition j into partition i in one step is allowed or not, and
the (i, j) element of the transition matrix iterated n times3

exercise 15.1

(T n)i j =
∑

k1 ,k2,...,kn−1

Tik1 Tk1k2 . . . Tkn−1 j (15.2)

receives a contribution 1 from every admissible sequence of transitions, so (Tn)i j

is the number of admissible n symbol itineraries starting with j and ending with i.

Example 15.1 3-disk itinerary counting. The (T 2)13 = T12T23 = 1 element of T 2 for
the 3-disk transition matrix (14.8)

⎛⎜⎜⎜⎜⎜⎜⎝ 0 1 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
2

=

⎛⎜⎜⎜⎜⎜⎜⎝ 2 1 1
1 2 1
1 1 2

⎞⎟⎟⎟⎟⎟⎟⎠ . (15.3)

corresponds to path 3 → 2 → 1, the only 2-step path from 3 to 1, while (T 2)33 = T31T13+

T32T23 = 2 counts the two returning, periodic paths 31 and 32. Note that the trace
tr T 2 = (T 2)11 + (T 2)22 + (T 2)33 = 2T13T31 + 2T21T12 + 2T32T23 has a contribution from
each 2-cycle 12, 13, 23 twice, one contribution from each periodic point.

The total number of admissible itineraries of n symbols is

Kn =
∑

i j

(T n)i j = ( 1, 1, . . . , 1 ) T n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
1
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (15.4)

2Predrag: make up an exercise
3Predrag: add figure

count - 10apr2012 boyscout version14.4, Mar 19 2013



CHAPTER 15. COUNTING 361

We can also count the number of prime cycles and pruned periodic points, but
in order not to break up the flow of the argument, we relegate these pretty results
to sect. 15.7. Recommended reading if you ever have to compute lots of cycles.

A finite [N ×N] matrix T has eigenvalues {λ0, λ1, · · · , λm−1} and (right) eigen-
vectors {ϕ0, ϕ1, · · · , ϕm−1} satisfying Tϕα = λαϕα. Expressing the initial vector in
(15.4) in this basis (which might be incomplete, with m ≤ N eigenvectors),

T n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
1
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = T n
m−1∑
α=0

bαϕα =
m−1∑
α=0

bαλ
n
αϕα ,

and contracting with ( 1, 1, . . . , 1 ), we obtain 4

Kn =

m−1∑
α=0

cαλ
n
α .

exercise 15.3

The constants cα depend on the choice of initial and final partitions: In this ex-
ample we are sandwiching Tn between the vector ( 1, 1, . . . , 1 ) and its transpose,
but any other pair of vectors would do, as long as they are not orthogonal to the
leading eigenvector ϕ0. In an experiment the vector ( 1, 1, . . . , 1 ) would be re-
placed by a description of the initial state, and the right vector would describe the
measurement time n later.

Perron theorem states that a Perron-Frobenius matrix has a nondegenerate
(isolated) positive real eigenvalue λ0 > 1 (with a positive eigenvector) which
exceeds the moduli of all other eigenvalues. Therefore as n increases, the sum
is dominated by the leading eigenvalue of the transition matrix, λ0 > |Re λα|,
α = 1, 2, · · · ,m − 1, and the topological entropy (15.1) is given by

h = lim
n→∞

1
n

ln c0λ
n
0

[
1 +

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= ln λ0 + lim
n→∞

[
ln c0

n
+

1
n

c1

c0

(
λ1

λ0

)n

+ · · ·
]

= ln λ0 . (15.5)

What have we learned? The transition matrix T is a one-step, short time operator,
advancing the trajectory from one partition to the next admissible partition. Its
eigenvalues describe the rate of growth of the total number of trajectories at the
asymptotic times. Instead of painstakingly counting K1,K2,K3, . . . and estimating
(15.1) from a slope of a log-linear plot, we have the exact topological entropy if
we can compute the leading eigenvalue of the transition matrix T . This is reminis-
cent of the way free energy is computed from transfer matrices for 1-dimensional

4Predrag: rethink λ, later using es
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lattice models with finite range interactions. Historically, it is this analogy with
statistical mechanics that led to introduction of evolution operator methods into
the theory of chaotic systems. This ‘thermodynamic’ formulation will be devel- ⇓PRIVATE
oped in chapter O. 5

⇑PRIVATE

15.2 Topological trace formula

There are two standard ways of computing eigenvalues of a matrix - by evaluating
the trace tr Tn =

∑
λn
α, or by evaluating the determinant det (1 − zT ). We start by

evaluating the trace of transition matrices. The main lesson will be that the trace
receives contributions only from itineraries that return to the initial partition, i.e.,
periodic orbits.

Consider an M-step memory transition matrix, like the 1-step memory exam-
ple (14.10). The trace of the transition matrix counts the number of partitions that
map into themselves. More generally, each closed walk through n concatenated
entries of T contributes to tr Tn the product (15.2) of the matrix entries along the
walk. Each step in such a walk shifts the symbolic string by one symbol; the trace
ensures that the walk closes on a periodic string c. Define tc to be the local trace,
the product of matrix elements along a cycle c, each term being multiplied by a
book keeping variable z. In chapters that follow, the ‘local trace’ tc will take a con-
tinuum of values, so for the remainder of this chapter we stick to the ‘tc’ notation
rather than to the 0 or zn values specific to the counting problem.

The quantity zntr T n is then the sum of tc for all cycles of period n. The tc
= (product of matrix elements along cycle c is manifestly cyclically invariant,
t100 = t010 = t001, so a prime cycle p of period np contributes np times, once for
each periodic point along its orbit. For the purposes of periodic orbit counting,
the local trace takes values

tp =

{
znp if p is an admissible cycle
0 otherwise, (15.6)

i.e., (setting z = 1) the local trace is tp = 1 if the cycle is admissible, and tp = 0
otherwise.

Example 15.2 Traces for binary symbolic dynamics. For example, for the [8×8]
transition matrix Ts1 s2 s3,s0 s1 s2 version of (14.10), or any refined partition [2n×2n] transition
matrix, n arbitrarily large, the periodic point 100 contributes t100 = z3T100,010T010,001T001,100

to z3tr T 3. This product is manifestly cyclically invariant, t100 = t010 = t001, so a prime
cycle p = 001 of period 3 contributes 3 times, once for each periodic point along its
orbit.

exercise 11.7

5Predrag: emphasize positive definiteness
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Table 15.1: Prime cycles for the binary symbolic dynamics up to length 9. The numbers
of prime cycles are given in table 15.3.

np p
1 0

1
2 01
3 001

011
4 0001

0011
0111

5 00001
00011
00101
00111
01011
01111

6 000001
000011
000101
000111
001011
001101
001111
010111
011111

7 0000001
0000011
0000101

np p
7 0001001

0000111
0001011
0001101
0010011
0010101
0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111

8 00000001
00000011
00000101
00001001
00000111
00001011
00001101
00010011
00010101
00011001
00100101

np p
8 00001111

00010111
00011011
00011101
00100111
00101011
00101101
00110101
00011111
00101111
00110111
00111011
00111101
01010111
01011011
00111111
01011111
01101111
01111111

9 000000001
000000011
000000101
000001001
000010001
000000111
000001011

np p
9 000001101

000010011
000010101
000011001
000100011
000100101
000101001
000001111
000010111
000011011
000011101
000100111
000101011
000101101
000110011
000110101
000111001
001001011
001001101
001010011
001010101
000011111
000101111
000110111
000111011
000111101

np p
9 001001111

001010111
001011011
001011101
001100111
001101011
001101101
001110101
010101011
000111111
001011111
001101111
001110111
001111011
001111101
010101111
010110111
010111011
001111111
010111111
011011111
011101111
011111111

Table 15.2: The total numbers Nn of periodic points of period n for binary symbolic dy-
namics. The numbers of contributing prime cycles illustrates the preponderance of long
prime cycles of period n over the repeats of shorter cycles of periods n p, where n = rnp.
Further enumerations of binary prime cycles are given in tables 15.1 and 15.3. (L. Ron-
doni)

n Nn # of prime cycles of period n p

1 2 3 4 5 6 7 8 9 10
1 2 2
2 4 2 1
3 8 2 2
4 16 2 1 3
5 32 2 6
6 64 2 1 2 9
7 128 2 18
8 256 2 1 3 30
9 512 2 2 56

10 1024 2 1 6 99
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For the binary labeled non–wandering set the first few traces are given by (con-
sult tables 15.1 and 15.2)

z tr T = t0 + t1,

z2tr T 2 = t2
0 + t2

1 + 2t10,

z3tr T 3 = t3
0 + t3

1 + 3t100 + 3t101,

z4tr T 4 = t4
0 + t4

1 + 2t2
10 + 4t1000 + 4t1001 + 4t1011. (15.7)

In the binary case the trace picks up only two contributions on the diagonal, T0···0,0···0 +

T1···1,1···1, no matter how much memory we assume. We can even take infinite memory
M → ∞, in which case the contributing partitions are shrunk to the fixed points, tr T =
T0,0 + T1,1.

If there are no restrictions on symbols, the symbolic dynamics is complete, and
all binary sequences are admissible (or allowable) itineraries. As this type of symbolic
dynamics pops up frequently, we list the shortest binary prime cycles in table 15.1.

exercise 11.2

Hence tr Tn = Nn counts the number of admissible periodic points of period
n. The nth order trace (15.7) picks up contributions from all repeats of prime
cycles, with each cycle contributing np periodic points, so Nn, the total number of
periodic points of period n is given by

znNn = zntr T n =
∑
np |n

npt
n/np
p =

∑
p

np

∞∑
r=1

δn,nprt
r
p . (15.8)

Here m|n means that m is a divisor of n. An example is the periodic orbit counting
in table 15.2.

In order to get rid of the awkward divisibility constraint n = npr in the above
sum, we introduce the generating function for numbers of periodic points

∞∑
n=1

znNn = tr
zT

1 − zT
. (15.9)

The right hand side is the geometric series sum of Nn = tr T n. Substituting (15.8)
into the left hand side, and replacing the right hand side by the eigenvalue sum
tr T n =

∑
λn
α, we obtain our first example of a trace formula, the topological trace

formula

∑
α=0

zλα
1 − zλα

=
∑

p

nptp

1 − tp
. (15.10)

A trace formula relates the spectrum of eigenvalues of an operator - here the tran-
sition matrix - to the spectrum of periodic orbits of a dynamical system. It is a
statement of duality between the short-time, local information - in this case the
next admissible symbol in a symbol sequence - to long-time, global averages, in
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this case the mean rate of growth of the number of cycles with increasing cycle
period.

The zn sum in (15.9) is a discrete version of the Laplace transform (see sect.18.1.2),
and the resolvent on the left hand side is the antecedent of the more sophisticated
trace formulas (18.10), (18.23) and the Gutzwiller trace formula (39.3) of semi- ⇓PRIVATE
classical quantum mechanics. We shall now use this result to compute the spectral

⇑PRIVATEdeterminant of the transition matrix.

15.3 Determinant of a graph

Our next task is to determine the zeros of the spectral determinant of an [m×m]
transition matrix ⇓PRIVATE

exercise 14.1

⇑PRIVATEdet (1 − zT ) =
m−1∏
α=0

(1 − zλα) . (15.11)

We could now proceed to diagonalize T on a computer, and get this over with. It
pays, however, to dissect det (1−zT ) with some care; understanding this computa-
tion in detail will be the key to understanding the cycle expansion computations of
chapter 20 for arbitrary dynamical averages. For T a finite matrix, (15.11) is just
the characteristic polynomial for T . However, we shall be able to compute this ob-
ject even when the dimension of T and other such operators becomes infinite, and
for that reason we prefer to refer to (15.11) loosely as the “spectral determinant.”

There are various definitions of the determinant of a matrix; we will view the
determinant as a sum over all possible permutation cycles composed of the traces
tr T k, in the spirit of the determinant–trace relation (1.16): 6

exercise 4.1

det (1 − zT ) = exp (tr ln(1 − zT )) = exp

⎛⎜⎜⎜⎜⎜⎝−∑
n=1

zn

n
tr T n

⎞⎟⎟⎟⎟⎟⎠
= 1 − z tr T − z2

2

(
(tr T )2 − tr T 2

)
− . . . (15.12)

This is sometimes called a cumulant expansion. Formally, the right hand is a
Taylor series in z about z = 0. If T is an [m×m] finite matrix, then the characteristic
polynomial is at most of order m. In that case the coefficients of zn must vanish
exactly for n > m.

We now proceed to relate the determinant in (15.12) to the corresponding
transition graph of chapter 14: toward this end, we start with the usual textbook
expression for a determinant as the sum of products of all permutations

det M =
∑
{π}

(−1)πM1,π1 M2,π2 · · ·Mm,πm (15.13)

6Predrag: credit Newton?
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where M = 1 − zT is a [m×m] matrix, {π} denotes the set of permutations of m
symbols, πk is the permutation π applied to k, and (−1)π = ±1 is the parity of
permutation π. The right hand side of (15.13) yields a polynomial in T of order m
in z: a contribution of order n in z picks up m − n unit factors along the diagonal,
the remaining matrix elements yielding

(−z)n(−1)πTs1πs1 · · · Tsnπsn (15.14)

where π is the permutation of the subset of n distinct symbols s1 · · · sn indexing T
matrix elements. As in (15.7), we refer to any combination tc = Ts1sk Ts3 s2 · · · Ts2 s1 ,
for a given itinerary c = s1s2 · · · sk, as the local trace associated with a closed loop
c on the transition graph. Each term of the form (15.14) may be factored in terms
of local traces tc1 tc2 · · · tck , i.e., loops on the transition graph. 7 These loops are
non-intersecting, as each node may only be reached by one link, and they are
indeed loops, as if a node is reached by a link, it has to be the starting point of
another single link, as each sj must appear exactly once as a row and column
index.

So the general structure is clear, a little more thinking is only required to get
the sign of a generic contribution. We consider only the case of loops of length
1 and 2, and leave to the reader the task of generalizing the result by induction.
Consider first a term in which only loops of unit length appear in (15.14), i.e.,
only the diagonal elements of T are picked up. We have k = m loops and an even
permutation π so the sign is given by (−1)k, where k is the number of loops. Now
take the case in which we have i single loops and j loops of length n = 2 j + i.
The parity of the permutation gives 8 (−1) j and the first factor in (15.14) gives
(−1)n = (−1)2 j+i. So once again these terms combine to (−1)k, where k = i + j is
the number of loops. Let f be the maximal number of non-intersecting loops. We

exercise 15.4
may summarize our findings as follows:

The characteristic polynomial of a transition matrix is given by
the sum of all possible partitions π of the corresponding transi-
tion graph into products of k non-intersecting loops, with each loop
trace tp carrying a minus sign:

det (1 − zT ) =
f∑

k=0

∑′

π

(−1)ktp1 · · · tpk (15.15)

Any self-intersecting loop is shadowed by a product of two loops that share the
intersection point. As both the long loop tab and its shadow tatb in the case at hand
carry the same weight zna+nb , the cancelation is exact, and the loop expansion
(15.15) is finite. In the case that the local traces count prime cycles (15.6), tp = 0
or zn , we refer to det (1 − zT ) as the topological polynomial. 9

7Predrag: GT: make this digestible? Try a birdtracks derivation?
8Predrag: lots of pictures needed
9Predrag: GT: discuss non-intersecting, self-intersecting
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adjacency matrix

We refer to the set of all non-self-intersecting loops {tp1 , tp2 , · · · tp f } as the fun-
damental cycles (for an explicit example, see the loop expansion of example15.7).
This is not a very good definition, as transition graphs are not unique –the most we
know is that for a given finite-grammar language, there exist transition graph(s)
with the minimal number of loops. Regardless of how cleverly a transition graph
is constructed, it is always true that for any finite transition graph the number of
fundamental cycles f is finite. If the graph has m nodes, no fundamental cycle is
of period longer than m, as any longer cycle is of necessity self-intersecting.

The above loop expansion of a determinant in terms of traces is most easily
grasped by working through a few examples. The complete binary dynamics tran-
sition graph of figure 14.4 is a little bit too simple, but let us start humbly and
consider it anyway.

Example 15.3 Topological polynomial for complete binary dynamics: (continu-
ation of example 14.2) There are only two non-intersecting loops, yielding

det (1 − zT ) = 1 − t0 − t1 − (t01 − t0t1) = 1 − 2z (15.16)

0 1 = 1 − 0 − 1 −
(

0 1 − 1 0

)
.

Due to the symmetry under 0 ↔ 1 interchange, this is a redundant graph (the 2-cycle
t01 is exactly shadowed by the 1-cycles). Another way to see is that itineraries are
labeled by the {0, 1} links, node labels can be omitted. As both nodes have 2 in-links
and 2 out-links, they can be identified, and a more economical presentation is in terms
of the [1×1] adjacency matrix (14.12) 10

det (1 − zA) = 1 − t0 − t1 = 1 − 2z (15.17)

A=B=CA=B=C

= 1 − 0 − 1 .

The leading (and only) zero of this characteristic polynomial yields the topological en-
tropy eh = 2. As there are Kn = 2n binary strings of length N, this comes as no surprise.
11

Similarly, for the complete symbolic dynamics of N symbols the transition graph
has one node and N links, yielding

det (1 − zT ) = 1 − Nz , (15.18)

which gives the topological entropy h = ln N.

Example 15.4 Golden mean pruning: The “golden mean” pruning of example 14.5
has one grammar rule: the substring 11 is forbidden. The corresponding transition

exercise 15.5
10Predrag: draw LHS of (15.17)
11Predrag: explain the two graphs
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pruning!golden mean
Henon@Hénon

map!pruning front

graph non-intersecting loops are of length 1 and 2, so the topological polynomial is
given by

det (1 − zT ) = 1 − t0 − t01 = 1 − z − z2 (15.19)

0 1 = 1 − 0 − 0 1 .

The leading root of this polynomial is the golden mean, so the entropy (15.5) is the
logarithm of the golden mean, h = ln 1+

√
5

2 . 12

fast track:

sect. 15.4, p. 370

13

Example 15.5 Nontrivial pruning: The non-self-intersecting loops of the transition
graph of figure 14.7 (d) are indicated in figure 14.7 (e). The determinant can be written
down by inspection, as the sum of all possible partitions of the graph into products of
non-intersecting loops, with each loop carrying a minus sign: ⇓PRIVATE

exercise 15.23

⇑PRIVATE
det (1 − zT ) = 1 − t0 − t0011 − t0001 − t00011

+t0t0011 + t0011t0001 . (15.20)

With tp = znp , where np is the period of the p-cycle, the smallest root of

0 = 1 − z − 2z4 + z8 (15.21)

yields the topological entropy h = − ln z, z = 0.658779 . . ., h = 0.417367 . . ., significantly
smaller than the entropy of the covering symbolic dynamics, the complete binary shift
with topological entropy h = ln 2 = 0.693 . . .

exercise 15.9
⇓PRIVATE

Example 15.6 A Hénon map pruning front: (continuation of example 14.10)

det (1 − zT ) = 1 − t0 − t1 − t01 + t0t1 + t01t1 + t0t01

− t0111 − t0t01t1 − t00111 + t0t0111 (15.22)

1/ζtop = 1 − 2 z + 2 z3 − 2 z4

Numbers of periodic points (15.36):

∑
n=1

Nnzn =
2 z − 6 z3 + 8 z4

1 − 2 z + 2 z3 − 2 z4

= 2 z + 4 z2 + 2 z3 + 8 z4 + 12 z5 + 28 z6 + 44 z7 + 80 z8

+128 z9 + 224 z10 + 376 z11 + 656 z12 + 1120 z13 +

1936 z14 + 3312 z15 + 5696 z16 + . . . (15.23)

⇑PRIVATE
12Predrag: recheck appropriateness/correctness of figure 12.11. Carvalho proved it wrong. Im-

prove graphics. Get Grassberger figure for Henon?
13Predrag: 2012-06-19 make example 15.5 into exercise
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Figure 15.1: (a) The region labels in the nodes
of transition graph figure 14.3 can be omitted, as
the links alone keep track of the symbolic dynam-
ics. (b)-(j) The fundamental cycles (15.25) for the
transition graph (a), i.e., the set of its non-self-
intersecting loops. Each loop represents a local
trace tp, as in (14.5).

(a) (b)

010

1

(c)

1

011

001

(d)

0011

01

1

(e)

0

0111

(f)

00111

01

(g)

001101

1

(h)

001011

1

(i)

0010111

(j)

0011101

Example 15.7 Loop expansion of a transition graph. (continued from exam-
ple 14.7) Consider a state space covered by 7 neighborhoods (14.11), with the topo-
logical time evolution given by the transition graph of figure 14.3.

The determinant det (1 − zT ) of the transition graph in figure 14.3 can be read
off the graph, and expanded as a polynomial in z, with coefficients given by products of
non-intersecting loops (traces of powers of T ) of the transition graph figure 15.1:

det (1 − zT ) = 1 − (t0 + t1)z − (t01 − t0t1) z2 − (t001 + t011 − t01t0 − t01t1) z3

− (t0011 + t0111 − t001t1 − t011t0 − t011t1 + t01t0t1) z4

− (t00111 − t0111t0 − t0011t1 + t011t0t1) z5 (15.24)

− (t001011 + t001101 − t0011t01 − t001t011) z6

− (t0010111 + t0011101 − t001011t1 − t001101t1 − t00111t01 + t0011t01t1 + t001t011t1) z7 .

Twelve cycles up to period 7 are fundamental cycles:

0, 1, 01, 001, 011, 0011, 0111, 00111, 001011, 001101, 0010111, 0011101 , (15.25)
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transition!graph!infinite

out of the total of 41 prime cycles (listed in table 15.1) up to cycle period 7. The
topological polynomial t p → znp

1/ζtop(z) = 1 − 2 z − z7

is interesting; the shadowing fails first at the cycle length n = 7, so the topological
entropy is only a bit smaller than the binary h = ln 2. Not exactly obvious from the
partition (14.11).

⇓PRIVATE

in depth:

sect. T.1, p. 1438
⇑PRIVATE

15.4 Topological zeta function

What happens if there is no finite-memory transition matrix, if the transition graph
is infinite? If we are never sure that looking further into the future will reveal no
further forbidden blocks? There is still a way to define the determinant, and this
idea is central to the whole treatise: the determinant is then defined by its cumulant
expansion (15.12) 14

exercise 4.1

det (1 − zT ) = 1 −
∞∑

n=1

ĉnzn . (15.26)

Example 15.8 Complete binary det (1 − zT ) expansion. (continuation of exam-
ple 14.6) consider the loop expansion of the binary 1-step memory transition graph
(14.10)

01

10

1100 = 1 − 0 − 1 −
(

0 1 − 1 0

)
= 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]

−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)]

= 1 −
∑

f

t f −
∑

n

ĉn = 1 − 2z . (15.27)

15

For finite dimensional matrices the expansion is a finite polynomial, and (15.26)
is an identity; however, for infinite dimensional operators the cumulant expansion
coefficients ĉn define the determinant.

14Predrag: GT: put Newton formula in here? the take N → ∞
15Predrag: link to (20.7)
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polynomial!topological

Let us now evaluate the determinant in terms of traces for an arbitrary transi-
tion matrix. In order to obtain an expression for the spectral determinant (15.11)
in terms of cycles, substitute (15.8) into (15.26) and sum over the repeats of prime
cycles using ln(1 − x) = −∑

r xr/r ,

det (1 − zT ) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

tr
p

r

⎞⎟⎟⎟⎟⎟⎟⎠ = exp

⎛⎜⎜⎜⎜⎜⎜⎝∑
p

ln(1 − tp)

⎞⎟⎟⎟⎟⎟⎟⎠∏
α

(1 − zλα) =
∏

p

(1 − tp) , (15.28)

where for the topological entropy the weight assigned to a prime cycle p of period
np is tp = znp if the cycle is admissible, or tp = 0 if it is pruned. This determinant
is called the topological or the Artin-Mazur zeta function, conventionally denoted
by 16

1/ζtop(z) =
∏

p

(1 − znp) = 1 −
∑
n=1

ĉnzn . (15.29)

Counting cycles amounts to giving each admissible prime cycle p weight tp = znp

and expanding the Euler product (15.29) as a power series in z. The number of
prime cycles p is infinite, but if T is an [m×m] finite matrix, then the number of
roots λα is at most m, the characteristic polynomial is at most of order m, and the
coefficients of zn vanish for n > m. As the precise expression for the coefficients ĉn
in terms of local traces tp is more general than the current application to counting,
we postpone its derivation to chapter 20.

The topological entropy h can now be determined from the leading zero z =
e−h of the topological zeta function. For a finite [m×m] transition matrix, the
number of terms in the characteristic equation (15.15) is finite, and we refer to
this expansion as the topological polynomial of order ≤ m. The utility of defining
the determinant by its cumulant expansion is that it works even when the partition
is infinite, m → ∞; an example is given in sect. 15.5, and many more later on.

fast track:

sect. 15.5, p. 372

15.4.1 Topological zeta function for flows

We now apply the method that we shall use in deriving (18.23) to the
problem of deriving the topological zeta functions for flows. The time-weighted
density of prime cycles of period t is

Γ(t) =
∑

p

∑
r=1

Tp δ(t − rTp) . (15.30)

16Predrag: write first few terms in binary expansion
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The Laplace transform smooths the sum over Dirac delta spikes (see (18.22))
and yields the topological trace formula

∑
p

∑
r=1

Tp

∫ ∞

0+
dt e−st δ(t − rTp) =

∑
p

Tp

∞∑
r=1

e−sTpr (15.31)

and the topological zeta function for flows:

1/ζtop(s) =
∏

p

(
1 − e−sTp

)
, (15.32)

related to the trace formula by

∑
p

Tp

∞∑
r=1

e−sTpr = − ∂

∂s
ln 1/ζtop(s) .

This is the continuous time version of the discrete time topological zeta function
(15.29) for maps; its leading zero s = −h yields the topological entropy for a flow.
17

15.5 Topological zeta function for an infinite partition

(K.T. Hansen and P. Cvitanović)

To understand the need for topological zeta function (15.26), we turn a
dynamical system with (as far as we know - there is no proof) an infinite partition,
or an infinity of ever-longer pruning rules. Consider the 1-dimensional quadratic
map (11.3) of figure 11.16

⇓PRIVATE

⇑PRIVATE

f (x) = Ax(1 − x) , A = 3.8 .

Numerically the kneading sequence (the itinerary of the critical point x = 1/2
(11.13)) (see figure 11.16) is 18

⇓PRIVATE

⇑PRIVATE

exercise 15.21K = 1011011110110111101011110111110 . . .

where the symbolic dynamics is defined by the partition of figure 11.12. How
this kneading sequence is converted into a series of pruning rules is a dark art,

⇓PRIVATErelegated to appendix G.1. For the moment it suffices to state the result, to give you
⇑PRIVATEa feeling for what a “typical” infinite partition topological zeta function looks like.
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Figure 15.2: The logarithm ln |z(n)
0 − z0| of the dif-

ference between the leading zero of the n-th polyno-
mial approximation to topological zeta function and
our best estimate (15.35), as a function of order of the
polynomial n (the topological zeta function evaluated
for the closest value of A to A = 3.8 for which the
quadratic map has a stable cycle of period n). (from
K.T. Hansen [23])

Figure 15.3: The 90 zeroes of the topological zeta
function for the quadratic map for A = 3.8 approxi-
mated by the nearest topological zeta function with a
stable cycle of length 90. (from K.T. Hansen [23])

For example, approximating the dynamics by a transition graph corresponding to
a repeller of the period 29 attractive cycle close to the A = 3.8 strange attractor (or, ⇓PRIVATE
much easier, following the algorithm of appendix G.1) yields a transition graph

⇑PRIVATEwith 29 nodes and the characteristic polynomial 19

1/ζ(29)
top = 1 − z1 − z2 + z3 − z4 − z5 + z6 − z7 + z8 − z9 − z10

+z11 − z12 − z13 + z14 − z15 + z16 − z17 − z18 + z19 + z20

−z21 + z22 − z23 + z24 + z25 − z26 + z27 − z28 . (15.33)

The smallest real root of this approximate topological zeta function is

z = 0.62616120 . . . (15.34)

Constructing finite transition graphs of increasing length corresponding to A →
3.8 we find polynomials with better and better estimates for the topological en-
tropy. For the closest stable period 90 orbit we obtain our best estimate of the
topological entropy of the repeller:

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (15.35)

Figure 15.2 illustrates the convergence of the truncation approximations to the
topological zeta function as a plot of the logarithm of the difference between the
zero of a polynomial and our best estimate (15.35), plotted as a function of the

17Predrag: recheck the sign of h
18Predrag: move exerbox e-prune0fix to intermittency chapter
19Dahlqvist: divide by (1 − z) once!
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period of the stable periodic orbit. The error of the estimate (15.34) is expected
to be of order z29 ≈ e−14 because going from period 28 to a longer truncation
typically yields combinations of loops with 29 and more nodes giving terms ±z29

and of higher order in the polynomial. Hence the convergence is exponential,
with an exponent of −0.47 = −h, the topological entropy itself. 20 In figure 15.3
we plot the zeroes of the polynomial approximation to the topological zeta func-
tion obtained by accounting for all forbidden strings of length 90 or less. The
leading zero giving the topological entropy is the point closest to the origin. Most
of the other zeroes are close to the unit circle; we conclude that for infinite state
space partitions the topological zeta function has a unit circle as the radius of
convergence. The convergence is controlled by the ratio of the leading to the
next-to-leading eigenvalues, which is in this case indeed λ1/λ0 = 1/eh = e−h.
21 22

15.6 Shadowing

The topological zeta function is a pretty function, but the infinite product (15.28)
should make you pause. For finite transition matrices the left hand side is a deter-
minant of a finite matrix, therefore a finite polynomial; so why is the right hand
side an infinite product over the infinitely many prime periodic orbits of all peri-
ods?

The way in which this infinite product rearranges itself into a finite polynomial
is instructive, and crucial for all that follows. You can already take a peek at the
full cycle expansion (20.7) of chapter 20; all cycles beyond the fundamental t0
and t1 appear in the shadowing combinations such as

ts1s2···sn − ts1s2···sm tsm+1···sn .

For subshifts of finite type such shadowing combinations cancel exactly, if we are
counting cycles as we do in (15.16) and (15.27), or if the dynamics is piecewise
linear, as in exercise 19.3. As we argue in sect. 1.5.4 and appendix L.1.2, for nice ⇓PRIVATE

⇑PRIVATE
hyperbolic flows whose symbolic dynamics is a subshift of finite type, the shad-
owing combinations almost cancel, and the spectral determinant is dominated by
the fundamental cycles from (15.15), with longer cycles contributing only small
“curvature” corrections. 23

These exact or nearly exact cancelations depend on the flow being smooth and
the symbolic dynamics being a subshift of finite type. If the dynamics requires
an infinite state space partition, with pruning rules for blocks of increasing length,
most of the shadowing combinations still cancel, but the few corresponding to new

20Predrag: recheck, perhaps the shadowing improves the estimate to e−2h?
21Predrag: prove elsewhere that λ1 = 1
22Predrag: cite Grassberger, Politi
23Predrag: Vattay has removed sect s-TracInterp from getused.tex - need other piecewise linear

section examples
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stability!structural

forbidden blocks do not, leading to a finite radius of convergence for the spectral
determinant, as depicted in figure 15.3.

One striking aspect of the pruned cycle expansion (15.33) compared to the
trace formulas such as (15.9) is that coefficients are not growing 24 exponentially -
indeed they all remain of order 1, so instead having a radius of convergence e−h, in
the example at hand the topological zeta function has the unit circle as the radius
of convergence. In other words, exponentiating the spectral problem from a trace
formula to a spectral determinant as in (15.26) increases the analyticity domain:
the pole in the trace (15.10) at z = e−h is promoted to a smooth zero of the spec-
tral determinant with a larger radius of convergence. A detailed discussion of the ⇓PRIVATE
radius of convergence is given in appendix G.1.

⇑PRIVATE

This sensitive dependence of spectral determinants on whether or not the sym-
bolic dynamics is a subshift of finite type is bad news. If the system is generic and
not structurally stable (see sect. 12.2), a smooth parameter variation is in no sense
a smooth variation of topological dynamics - infinities of periodic orbits are cre-
ated or destroyed, and transition graphs go from being finite to infinite and back.
That will imply that the global averages that we intend to compute are generi-
cally nowhere differentiable functions of the system parameters, and averaging
over families of dynamical systems can be a highly nontrivial enterprise; a simple
illustration is the parameter dependence of the diffusion constant computed in a
remark in chapter 26.

You might well ask: What is wrong with computing the entropy from (15.1)?
Does all this theory buy us anything? An answer: If we count Kn level by level, we
ignore the self-similarity of the pruned tree - examine for example figure14.5, or
the cycle expansion of (15.37) - and the finite estimates of hn = ln Kn/n converge
nonuniformly to h, and on top of that with a slow rate of convergence, |h − hn| ≈
O(1/n) as in (15.5). The determinant (15.11) is much smarter, as by construction
it encodes the self-similarity of the dynamics, and yields the asymptotic value of
h with no need for any finite n extrapolations.

fast track:

sect. 16, p. 389

15.7 Counting cycles

Chaos is merely order waiting to be deciphered
— José Saramago, The Double

In what follows, we shall occasionally need to compute all cycles up to
topological period n, so it is important to know their exact number. The formulas
are fun to derive, but a bit technical for plumber on the street, and probably best
skipped on the first reading.

24Predrag: recheck sign
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periodic!point!count15.7.1 Counting periodic points

The number of periodic points of period n is denoted Nn. It can be computed from
(15.26) and (15.9) as a logarithmic derivative of the topological zeta function

∑
n=1

Nnzn = tr

(
−z

d
dz

ln(1 − zT )

)
= −z

d
dz

ln det (1 − zT )

=
−z d

dz (1/ζtop)

1/ζtop
. (15.36)

Observe that the trace formula (15.10) diverges at z → e−h, because the denomi-
nator has a simple zero there.

Example 15.9 Complete N-ary dynamics: To check formula (15.36) for the finite-
grammar situation, consider the complete N-ary dynamics (14.7) for which the number
of periodic points of period n is simply tr T n

c = Nn. Substituting

∞∑
n=1

zn

n
tr T n

c =

∞∑
n=1

(zN)n

n
= − ln(1 − zN) ,

into (15.26) we verify (15.18). The logarithmic derivative formula (15.36) in this case
does not buy us much either, it simply recovers

∑
n=1

Nnzn =
Nz

1 − Nz
.

Example 15.10 Nontrivial pruned dynamics: 25 Consider the pruning of fig-
ure 14.7 (e). Substituting (15.36) we obtain

∑
n=1

Nnzn =
z + 8z4 − 8z8

1 − z − 2z4 + z8
. (15.37)

The topological zeta function is not merely a tool for extracting the asymptotic growth
of Nn; it actually yields the exact numbers of periodic points. In case at hand it yields
a nontrivial recursive formula N1 = N2 = N3 = 1, Nn = 2n + 1 for n = 4, 5, 6, 7, 8, and
Nn = Nn−1 + 2Nn−4 − Nn−8 for n > 8.

15.7.2 Counting prime cycles

Having calculated the number of periodic points, our next objective is to evaluate
the number of prime cycles Mn for a dynamical system whose symbolic dynamics
is built from N symbols. The problem of finding Mn is classical in combinatorics

25Predrag: replace by Biham
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Table 15.3: Number of prime cycles for various alphabets and grammars up to period
10. The first column gives the cycle period, the second gives the formula ( 15.39) for the
number of prime cycles for complete N-symbol dynamics, and columns three through five
give the numbers of prime cycles for N = 2, 3 and 4.

n Mn(N) Mn(2) Mn(3) Mn(4)
1 N 2 3 4
2 N(N − 1)/2 1 3 6
3 N(N2 − 1)/3 2 8 20
4 N2(N2 − 1)/4 3 18 60
5 (N5 − N)/5 6 48 204
6 (N6 − N3 − N2 + N)/6 9 116 670
7 (N7 − N)/7 18 312 2340
8 N4(N4 − 1)/8 30 810 8160
9 N3(N6 − 1)/9 56 2184 29120

10 (N10 − N5 − N2 + N)/10 99 5880 104754

(counting necklaces made out of n beads of N different kinds) and is easily solved.
There are Nn possible distinct strings of length n composed of N letters. These
Nn strings include all Md prime d-cycles whose period d equals or divides n. A
prime cycle is a non-repeating symbol string: for example, p = 011 = 101 =
110 = . . . 011011 . . . is prime, but 0101 = 010101 . . . = 01 is not. A prime d-
cycle contributes d strings to the sum of all possible strings, one for each cyclic
permutation. The total number of possible periodic symbol sequences of period n
is therefore related to the number of prime cycles by

Nn =
∑
d|n

dMd , (15.38)

where Nn equals tr Tn. The number of prime cycles can be computed recursively

Mn =
1
n

⎛⎜⎜⎜⎜⎜⎜⎝Nn −
d<n∑
d|n

dMd

⎞⎟⎟⎟⎟⎟⎟⎠ ,
or by the Möbius inversion formula 26

exercise 15.10

Mn = n−1
∑
d|n

μ
(n
d

)
Nd . (15.39)

where the Möbius function μ(1) = 1, μ(n) = 0 if n has a squared factor, and
μ(p1 p2 . . . pk) = (−1)k if all prime factors are different.

We list the number of prime cycles up to period 10 for 2-, 3- and 4-letter
complete symbolic dynamics in table 15.3, obtained by Möbius inversion (15.39).
27

exercise 15.11
26Mason: Re. ‘Whence Möbius function?’: refer to Dummit and Foote’s algebra book, a good

place to look up Möbius function.
27Predrag: move the chilli to the left of the whole example
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pruning!individual
cycles

cycle!pruning
Example 15.11 Counting N-disk periodic points: A simple example of
pruning is the exclusion of “self-bounces” in the N-disk game of pinball. The number of
points that are mapped back onto themselves after n iterations is given by Nn = tr T n.
The pruning of self-bounces eliminates the diagonal entries, T N−disk = Tc − 1, so the
number of the N-disk periodic points is

Nn = tr T n
N−disk = (N − 1)n + (−1)n(N − 1) . (15.40)

Here Tc is the complete symbolic dynamics transition matrix (14.7). For the N-disk
pruned case (15.40), Möbius inversion (15.39) yields

MN−disk
n =

1
n

∑
d|n

μ
(n
d

)
(N − 1)d +

N − 1
n

∑
d|n

μ
(n
d

)
(−1)d

= M(N−1)
n for n > 2 . (15.41)

There are no fixed points, so MN−disk
1 = 0. The number of periodic points of period 2

is N2 − N, hence there are MN−disk
2 = N(N − 1)/2 prime cycles of period 2; for periods

n > 2, the number of prime cycles is the same as for the complete (N −1)-ary dynamics
of table 15.3.

Example 15.12 Pruning individual cycles: Consider the 3-disk game
of pinball. The prohibition of repeating a symbol affects counting only for the fixed
points and the 2-cycles. Everything else is the same as counting for a complete binary
dynamics (15.41). To obtain the topological zeta function, just divide out the binary 1-
and 2-cycles (1 − zt0)(1 − zt1)(1 − z2t01) and multiply with the correct 3-disk 2-cycles
(1 − z2t12)(1 − z2t13)(1 − z2t23):

exercise 15.15
exercise 15.16

1/ζ3−disk = (1 − 2z)
(1 − z2)3

(1 − z)2(1 − z2)

= (1 − 2z)(1 + z)2 = 1 − 3z2 − 2z3 . (15.42)

The factorization reflects the underlying 3-disk symmetry; we shall rederive it in (21.26).
As we shall see in chapter 21, symmetries lead to factorizations of topological polyno-
mials and topological zeta functions.

28

Example 15.13 Alphabet {a, cbk; b}: (continuation of exercise 15.17) 29 In the
cycle counting case, the dynamics in terms of a → z, cbk → z + z2 + z3 + · · · = z/(1 − z)
is a complete binary dynamics with the explicit fixed point factor (1 − tb) = (1 − z): 30

exercise 15.20

1/ζtop = (1 − z)
(
1 − z − z

1 − z

)
= 1 − 3z + z2 .

28Predrag: draw full tent map, prune 0 fixed point; show this leads to infinite alphabet
29Predrag: make example 15.13 into exercise too
30Predrag: recheck PC’s NB 6/4-88 for the Artin-Mazur, Smale references...
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Table 15.4: List of 3-disk prime cycles up to period 10. Here n is the cycle period, M n is
the number of prime cycles, Nn is the number of periodic points, and S n the number of
distinct prime cycles under D3 symmetry (see chapter 21 for further details). Column 3
also indicates the splitting of Nn into contributions from orbits of periods that divide n.
The prefactors in the fifth column indicate the degeneracy m p of the cycle; for example,
3·12 stands for the three prime cycles 12, 13 and 23 related by 2π/3 rotations. Among
symmetry-related cycles, a representative p̂ which is lexically lowest is listed. The cycles
of period 9 grouped with parentheses are related by time reversal symmetry, but not by
any D3 transformation.

n Mn Nn S n mp · p̂
1 0 0 0
2 3 6=3·2 1 3·12
3 2 6=2·3 1 2·123
4 3 18=3·2+3·4 1 3·1213
5 6 30=6·5 1 6·12123
6 9 66=3·2+2·3+9·6 2 6·121213 + 3·121323
7 18 126=18·7 3 6·1212123 + 6·1212313 + 6·1213123
8 30 258=3·2+3·4+30·8 6 6·12121213 + 3·12121313 + 6·12121323

+ 6·12123123 + 6·12123213 + 3·12132123
9 56 510=2·3+56·9 10 6·121212123 + 6·(121212313 + 121212323)

+ 6·(121213123+ 121213213) + 6·121231323
+ 6·(121231213+ 121232123) + 2·121232313
+ 6·121321323

10 99 1022 18

Table 15.5: The 4-disk prime cycles up to period 8. The symbols is the same as shown
in table 15.4. Orbits related by time reversal symmetry (but no C 4v symmetry) already
appear at cycle period 5. Cycles of period 7 and 8 have been omitted.

n Mn Nn S n mp · p̂
1 0 0 0
2 6 12=6·2 2 4·12 + 2·13
3 8 24=8·3 1 8·123
4 18 84=6·2+18·4 4 8·1213 + 4·1214 + 2·1234 + 4·1243
5 48 240=48·5 6 8·(12123 + 12124) + 8·12313

+ 8·(12134 + 12143) + 8·12413
6 116 732=6·2+8·3+116·6 17 8·121213 + 8·121214 + 8·121234

+ 8·121243 + 8·121313 + 8·121314
+ 4·121323 + 8·(121324 + 121423)
+ 4·121343 + 8·121424 + 4·121434
+ 8·123124 + 8·123134 + 4·123143
+ 4·124213 + 8·124243

7 312 2184 39
8 810 6564 108
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exponential!proliferation
complexity!algorithmic

Résumé

The main result of this chapter is the cycle expansion (15.29) of the topological
zeta function (i.e., the spectral determinant of the transition matrix):

1/ζtop(z) = 1 −
∑
k=1

ĉkzk .

For subshifts of finite type, the transition matrix is finite, and the topological zeta
function is a finite polynomial evaluated by the loop expansion (15.15) of det (1−
zT ). For infinite grammars the topological zeta function is defined by its cycle
expansion. The topological entropy h is given by the leading zero z = e−h. This
expression for the entropy is exact; in contrast to the initial definition (15.1), no
n → ∞ extrapolations of ln Kn/n are required.

What have we accomplished? We have related the number of topologically
distinct paths from one state space region to another region to the leading eigen-
value of the transition matrix T . The spectrum of T is given by topological zeta
function, a certain sum over traces tr Tn, and in this way the periodic orbit theory
has entered the arena through the trace formula (15.10), already at the level of the
topological dynamics.

The main lesson of learning how to count well, a lesson that will be constantly
reaffirmed, is that while trace formulas are a conceptually essential step in deriving
and understanding periodic orbit theory, the spectral determinant is the right object
to use in actual computations. Instead of summing all of the exponentially many
periodic points required by trace formulas at each level of truncation, spectral det-
erminants incorporate only the small incremental corrections to what is already
known - and that makes them a more powerful tool for computations.

Contrary to claims one all too often encounters in the literature, “exponential
proliferation of trajectories” is not the problem; what limits the convergence of
cycle expansions is the proliferation of the grammar rules, or the “algorithmic
complexity,” as illustrated by sect. 15.5, and figure 15.3 in particular. Nice, finite
grammar leads to nice, discrete spectrum; infinite grammar leads to analyticity
walls in the complex spectral plane.

Historically, these topological zeta functions were the inspiration for applying
the transfer matrix methods of statistical mechanics to the problem of computation
of dynamical averages for chaotic flows. The key result was the dynamical zeta
function to be derived in chapter 18, a weighted generalization of the topological
zeta function. 31

31Predrag: define “Axiom A” somewhere
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Smale, S.
Kolmogorov entropy
entropy!Kolmogorov
entropy!topological
determinant!graph
partition!infinite

Commentary

Remark 15.1 Artin-Mazur zeta functions. Motivated by A. Weil’s zeta function for
the Frobenius map [8], Artin and Mazur [11] introduced the zeta function (15.29) that
counts periodic points for diffeomorphisms (see also ref. [ 9] for their evaluation for maps
of the interval). Smale [10] conjectured rationality of the zeta functions for Axiom A
diffeomorphisms, later proved by Guckenheimer [ 11] and Manning [12]. See remark 19.4
on page 465 for more zeta function history. 32

Remark 15.2 “Entropy.” The ease with which the topological entropy can be motivated
obscures the fact that our construction does not lead to an invariant characterization of
the dynamics, as the choice of symbolic dynamics is largely arbitrary: the same caveat
applies to other entropies to be discussed in chapter O. In order to obtain invariant char-

⇓PRIVATE

⇑PRIVATE
acterizations we will have to work harder. Mathematicians like to define the (impossible
to evaluate) supremum over all possible partitions. The key point that eliminates the need
for such searches is the existence of generators, i.e., partitions that under the dynamics
are able to probe the whole state space on arbitrarily small scales. A generator is a fi-
nite partition M = {M1 . . .MN} with the following property: consider the partition built
upon all possible intersections of sets f n(Mi), where f is dynamical evolution and n takes
all possible integer values (positive as well as negative), then the closure of such a par-
tition coincides with the ‘algebra of all measurable sets.’ For a thorough (and readable)
discussion of generators and how they allow a computation of the Kolmogorov entropy,
see ref. [1] and chapter O. 33

⇓PRIVATE

⇑PRIVATE
Remark 15.3 Perron-Frobenius matrices. For a proof of the Perron theorem on the
leading eigenvalue see ref. [26]. Appendix A4.1 of ref. [2] offers a clear discussion of the
spectrum of the transition matrix.

Remark 15.4 Determinant of a graph. Many textbooks offer derivations of the
loop expansions of characteristic polynomials for transition matrices and their transition
graphs, see for example refs. [3, 4, 5]. 34

Remark 15.5 Ordering periodic orbit expansions. In sect. 20.6 we will introduce
an alternative way of hierarchically organizing cumulant expansions, in which the order
is dictated by stability rather than cycle period: such a procedure may be better suited to
perform computations when the symbolic dynamics is not well understood.

Remark 15.6 T is not trace class. Note to the erudite reader: the transition matrix T
(in the infinite partition limit (15.26)) is not trace class in the sense of appendix N. Still

⇓PRIVATE

⇑PRIVATE
the trace is well defined in the n → ∞ limit. 35

Remark 15.7 Counting prime cycles. Duval has an efficient algorithm for generating
Lyndon words (non-periodic necklaces, i.e., prime cycle itineraries). ⇓PRIVATE

32Predrag: what is the difference between [11] and [12]?
33Predrag: include here historical Notes, end of chapter 6 of Lind and Marcus
34Predrag: add more refs, bitch about graph theorists
35Mason: the reference on ‘trace class’ it the book by Sjöstrand. Find.
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prime cycle
cycle!prime
three-disk@3-

disk!prime
cycles

prime cycle!3-disk

36 See www.theory.csc.uvic.ca/simcos/inf/neck/NecklaceInfo.html.
The number of binary necklaces for n = 1, 2, ..., 15 is

2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352, 632, 1182, 2192 .

This is sequence A000031(M0564) in Neil J. Sloane’s database of integer sequences. A
time-reversed sequence is called a “bracelet,” i.e., a necklace that can be turned over. 37

38

⇑PRIVATE

39 40

boyscout

15.1. A transition matrix for 3-disk pinball.

a) Draw the transition graph corresponding to the 3-
disk ternary symbolic dynamics, and write down
the corresponding transition matrix corresponding
to the graph. Show that iteration of the transition
matrix results in two coupled linear difference equa-
tions, - one for the diagonal and one for the off di-
agonal elements. (Hint: relate tr T n to tr T n−1 + . . ..)

b) Solve the above difference equation and obtain the
number of periodic orbits of length n. Compare
your result with table 15.4.

c) Find the eigenvalues of the transition matrix T for
the 3-disk system with ternary symbolic dynamics
and calculate the topological entropy. Compare this
to the topological entropy obtained from the binary
symbolic dynamics {0, 1}.

15.2. 3-disk prime cycle counting. A prime cycle p of
length np is a single traversal of the orbit; its label is a
non-repeating symbol string of n p symbols. For example,
12 is prime, but 2121 is not, since it is 21 = 12 repeated.

Verify that a 3-disk pinball has 3, 2, 3, 6, 9, · · · prime
cycles of length 2, 3, 4, 5, 6, · · ·.

36Predrag: make this into a reference
37Predrag: get Duval, Lyndon refs from Siminos thesis
38Predrag: www.math.harvard.edu/∼shlomo/docs/dynamical systems.pdf seems to have a nice

chapter on symbolic dynamics - read it.
39Predrag: Redo exercises by transition graphs.
40Predrag: 2012-06-19 exercise 15.6 into a problem and a solution
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golden mean!pruning
pruning!golden mean

15.3. Sum of Ai j is like a trace. Let A be a matrix with eigen-
values λk. Show that

Γn :=
∑
i, j

[An]i j =
∑

k

ckλ
n
k .

(a) Under what conditions do ln |tr An| and ln |Γn| have
the same asymptotic behavior as n → ∞, i.e., their
ratio converges to one?

(b) Do eigenvalues λk need to be distinct, λk � λl for
k � l? How would a degeneracy λk = λl affect your
argument for (a)?

15.4. Loop expansions. Prove by induction the sign rule in
the determinant expansion (15.15):

det (1 − zT) =
∑
k≥0

∑
p1+···+pk

(−1)ktp1 tp2 · · · tpk .

15.5. Transition matrix and cycle counting. Suppose you
are given the transition graph

0 1a

b

c
This diagram can be encoded by a matrix T , where the
entry Ti j means that there is a link connecting node i to
node j. The value of the entry is the weight of the link.

a) Walks on the graph are given a weight that is the
product of the weights of all links crossed by the
walk. Convince yourself that the transition matrix
for this graph is:

T =

[
a c
b 0

]
.

b) Enumerate all the walks of length three on the tran-
sition graph. Now compute T 3 and look at the en-
tries. Is there any relation between the terms in T 3

and all the walks?

c) Show that T n
i j is the number of walks from point i to

point j in n steps. (Hint: one might use the method
of induction.)

d) Estimate the number Kn of walks of length n for
this simple transition graph.

e) The topological entropy h measures the rate of ex-
ponential growth of the total number of walks Kn as
a function of n. What is the topological entropy for
this transition graph?

15.6. Alphabet {0,1}, prune 00 . The transition graph
example 14.9 implements this pruning rule which implies
that “0” must always be bracketed by “1”s; in terms of a
new symbol 2 := 10, the dynamics becomes unrestricted
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circle map
golden mean
golden mean!pruning
pruning!golden mean
golden mean!pruning
pruning!golden mean

symbolic dynamics with with binary alphabet {1,2}. The
cycle expansion (15.15) becomes

1/ζ = (1 − t1)(1 − t2)(1 − t12)(1 − t112) . . .

= 1 − t1 − t2 − (t12 − t1t2) (15.43)

−(t112 − t12t1) − (t122 − t12t2) . . .

In the original binary alphabet this corresponds to:

1/ζ = 1 − t1 − t10 − (t110 − t1t10) (15.44)

−(t1110 − t110t1) − (t11010 − t110t10) . . .

41 This symbolic dynamics describes, for example, circle
maps with the golden mean winding number, discused in

⇓PRIVATEchapter 30. For unimodal maps this symbolic dynamics
⇑PRIVATEis realized by the tent map of exercise 11.6.

15.7. “Golden mean” pruned map. (continuation of exer-
cise 11.6) Show that the total number of periodic orbits
of length n for the “golden mean” tent map is

(1 +
√

5)n + (1 −
√

5)n

2n
.

Continued in exercise 19.2. See also exercise 15.8.

15.8. A unimodal map with golden mean pruning. Con-
sider the unimodal map

for which the critical point maps into the right hand fixed
point in three iterations, S + = 1001. Show that the ad-
missible itineraries are generated by the above transition
graph, with transient neighborhood of 0 fixed point, and
00 pruned from the recurrent set. (K.T. Hansen)

15.9. Glitches in shadowing. (medium difficulty) Note
that the combination t00011 minus the “shadow” t0t0011 in
(15.20) cancels exactly, and does not contribute to the
topological zeta function (15.21). Are you able to con-
struct a smaller transition graph than figure 14.7 (e)?

15.10. Whence Möbius function? To understand the origin
of the Möbius function (15.39), consider the function

f (n) =
∑
d|n

g(d) (15.45)

41Predrag: add references here...
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where d|n stands for sum over all divisors d of n. Invert
recursively this infinite tower of equations and derive the
Möbius inversion formula

g(n) =
∑
d|n

μ(n/d) f (d) . (15.46)

15.11. Counting prime binary cycles. In order to get com-
fortable with Möbius inversion reproduce the results of
the second column of table 15.3.

Write a program that determines the number of prime cy-
cles of length n. You might want to have this program
later on to be sure that you have missed no 3-pinball prime
cycles.

15.12. Counting subsets of cycles. The techniques devel-
oped above can be generalized to counting subsets of cy-
cles. Consider the simplest example of a dynamical sys-
tem with a complete binary tree, a repeller map (11.4)
with two straight branches, which we label 0 and 1. Ev-
ery cycle weight for such map factorizes, with a factor t 0

for each 0, and factor t1 for each 1 in its symbol string.
Prove that the transition matrix traces (15.7) collapse to
tr(T k) = (t0 + t1)k, and 1/ζ is simply∏

p

(
1 − tp

)
= 1 − t0 − t1 (15.47)

Substituting (15.47) into the identity∏
p

(
1 + tp

)
=

∏
p

1 − tp
2

1 − tp

we obtain∏
p

(
1 + tp

)
=

1 − t2
0 − t2

1

1 − t0 − t1

= 1 + t0 + t1 +
2t0t1

1 − t0 − t1
= 1 + t0 + t1

+

∞∑
n=2

n−1∑
k=1

2

(
n − 2
k − 1

)
tk
0tn−k

1 .

Hence for n ≥ 2 the number of terms in the cumulant ex-
pansion with k 0’s and n− k 1’s in their symbol sequences
is 2

(
n−2
k−1

)
.

In order to count the number of prime cycles in each
such subset we denote with Mn,k (n = 1, 2, . . . ; k =
{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the num-
ber of prime n-cycles whose labels contain k zeros. Show
that 42

M1,0 = M1,1 = 1 , n ≥ 2 , k = 1, . . . , n − 1

nMn,k =
∑
m
∣∣∣ n

k

μ(m)

(
n/m
k/m

)

42Mason: is 0 in k = {0, 1} necessary?
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where the sum is over all m which divide both n and k.
(continued as exercise 20.7)

15.13. Logarithmic periodicity of ln Nn. (medium difficulty)
Plot (ln Nn, nh) for a system with a nontrivial finite tran-
sition graph. Do you see any periodicity? If yes, why?

⇓PRIVATE
15.14. Symmetric 3-disk pinball topological zeta function. Show

that the 3-disk pinball topological zeta function (the prun-
ing affects only the fixed points and the 2-cycles) is given
by

1/ζ4−disk
top = (1 − 3z)

(1 − z2)6

(1 − z)3(1 − z2)3

= (1 − 3z)(1 + z)3

= 1 − 6z2 − 8z3 − 3z4 . (15.48)

⇑PRIVATE
15.15. Symmetric 4-disk pinball topological zeta function. Show

that the 4-disk pinball topological zeta function (the prun-
ing affects only the fixed points and the 2-cycles) is given
by

1/ζ4−disk
top = (1 − 3z)

(1 − z2)6

(1 − z)3(1 − z2)3

= (1 − 3z)(1 + z)3

= 1 − 6z2 − 8z3 − 3z4 . (15.49)

15.16. Symmetric N-disk pinball topological zeta function.
Show that for an N-disk pinball, the topological zeta func-
tion is given by

1/ζN−disk
top = (1 − (N − 1)z) ×

(1 − z2)N(N−1)/2

(1 − z)N−1(1 − z2)(N−1)(N−2)/2

= (1 − (N − 1)z) (1 + z)N−1 . (15.50)

The topological zeta function has a root z−1 = N−1, as we
already know it should from (15.40) or (15.18). We shall
see in sect. 21.4 that the other roots reflect the symmetry
factorizations of zeta functions.

15.17. Alphabet {a, b, c}, prune ab . Write down the topo-
logical zeta function for this pruning rule.

15.18. Alphabet {0,1}, prune n repeats of “0” 000 . . .00 .
This is equivalent to the n symbol alphabet {1, 2, . . .,
n} unrestricted symbolic dynamics, with symbols corre-
sponding to the possible 10. . .00 block lengths: 2:=10,
3:=100, . . ., n:=100. . .00. Show that the cycle expansion
(15.15) becomes

1/ζ = 1 − t1 − t2 . . . − tn − (t12 − t1t2) . . .

−(t1n − t1tn) . . . .
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fundamental!cycle
cycle!fundamental

15.19. Alphabet {0,1}, prune 1000 , 00100 , 01100 . This
⇓PRIVATEexercise is motivated by the pruning front description of

the symbolic dynamics for the Hénon-type maps, sect. 12.4.
Show that the topological zeta function is given by ⇑PRIVATE

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (15.51)

with the unrestricted 4-letter alphabet {1, 2, 23, 113}. Here
2 and 3 refer to 10 and 100 respectively, as in exercise 15.18.

15.20. Alphabet {0,1}, prune 1000 , 00100 , 01100 , 10011 .
(This grammar arises from Hénon map pruning, see re-
mark 12.3.) The first three pruning rules were incorpo-
rated in the preceeding exercise.

(a) Show that the last pruning rule 10011 leads (in a
way similar to exercise 15.19) to the alphabet {21k, 23,
21k113; 1, 0}, and the cycle expansion

1/ζ = (1− t0)(1− t1− t2− t23+ t1t23− t2113) .(15.52)

Note that this says that 1, 23, 2, 2113 are the fundamental
cycles; not all cycles up to length 7 are needed, only 2113.

(b) Show that the topological zeta function is

1/ζtop = (1 − z)(1 − z − z2 − z5 + z6 − z7) (15.53)

and that it yields the entropy h = 0.522737642 . . ..

15.21. Alphabet {0,1}, prune only the fixed point 0 . This
is equivalent to the infinite alphabet {1, 2, 3, 4, . . .} unre-
stricted symbolic dynamics. The prime cycles are labeled
by all non-repeating sequences of integers, ordered lexi-
cally: tn, n > 0; tmn, tmmn, . . . , n > m > 0; tmnr, r > n >
m > 0, . . . (see sect. 24.3). Now the number of fundamen-
tal cycles is infinite as well:

1/ζ = 1 −
∑
n>0

tn −
∑

n>m>0

(tmn − tntm)

−
∑

n>m>0

(tmmn − tmtmn)

−
∑

n>m>0

(tmnn − tmntn) (15.54)

−
∑

r>n>m>0

(tmnr + tmrn − tmntr

− tmrtn − tmtnr + tmtntr) · · ·

We encounter this sum in the Ulam map (11.5) cycle ex-
⇓PRIVATEpansion [3]. As shown in table 24.1, this grammar
⇑PRIVATEplays an important role in description of fixed points of

marginal stability.
⇓PRIVATE

15.22. Fundamental cycles.∗∗∗ In sect. 15.3 we referred to the
set of all non-self-intersecting loops {t p1 , tp2 , · · · tp f } as the
fundamental cycles. This is not a very good definition, as
transition graphs are not unique. If you have a better way
to define the “fundamental cycles,” yours, or something
discussed in the literature, let us know.

exerCount - 13jun2008 boyscout version14.4, Mar 19 2013



REFERENCES 388

15.23. Heavy pruning. (continuation of exercise 11.11) Im-
plement the grammar (14.14) by verifying every step in
the construction outlined in figure 14.7. Verify the en-
tropy estimate (15.21). Count admissible trajectories up
to some length of 5-10 symbols by your own method
(generate all binary sequences, throw away the bad ones?).
Finally, check whether this converges to the value of h
claimed in the text. ⇑PRIVATE
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Chapter 16

Transporting densities

Paulina: I’ll draw the curtain:
My lord’s almost so far transported that
He’ll think anon it lives.

—W. Shakespeare: The Winter’s Tale

(P. Cvitanović, R. Artuso, L. Rondoni, and E.A. Spiegel)

In chapters 2, 3, 7 and 8 we learned how to track an individual trajectory, and
saw that such a trajectory can be very complicated. In chapter 4 we stud-
ied a small neighborhood of a trajectory and learned that such neighborhood

can grow exponentially with time, making the concept of tracking an individual
trajectory for long times a purely mathematical idealization.

While the trajectory of an individual representative point may be highly con-
voluted, as we shall see, the density of these points might evolve in a manner that
is relatively smooth. The evolution of the density of representative points is for
this reason (and other that will emerge in due course) of great interest. So are
the behaviors of other properties carried by the evolving swarm of representative
points.

We shall now show that the global evolution of the density of representative
points is conveniently formulated in terms of linear action of evolution operators.
We shall also show that the important, long-time “natural” invariant densities are
unspeakably unfriendly and essentially uncomputable everywhere singular func-
tions with support on fractal sets. Hence, in chapter 17 we rethink what is it that
the theory needs to predict (“expectation values” of “observables”), relate these
to the eigenvalues of evolution operators, and in chapters 18 to 20 show how to
compute these without ever having to compute a “natural” invariant density ρ0.
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confession!St.
Augustine

St. Augustine
coarse-graining
partition!“statesp
state space!partition
characteristic!function
measure
density

Figure 16.1: (a) First level of partitioning: A
coarse partition of M into regions M0, M1, and
M2. (b) n = 2 level of partitioning: A refinement
of the above partition, with each region Mi subdi-
vided into Mi0, Mi1, and Mi2.
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16.1 Measures

Do I then measure, O my God, and know not what I mea-
sure?

—St. Augustine, The confessions of Saint Augustine

A fundamental concept in the description of dynamics of a chaotic system is that
of measure, which we denote by dμ(x) = ρ(x)dx. An intuitive way to define and
construct a physically meaningful measure is by a process of coarse-graining.
Consider a sequence 1, 2, ..., n, ... of increasingly refined partitions of state space,
figure 16.1, into regions Mi defined by the characteristic function

χi(x) =

{
1 if x ∈ Mi ,
0 otherwise . (16.1)

A coarse-grained measure is obtained by assigning the “mass,” or the fraction of
trajectories contained in the ith region Mi ⊂ M at the nth level of partitioning of
the state space:

Δμi =

∫
M

dμ(x)χi(x) =
∫
Mi

dμ(x) =
∫
Mi

dx ρ(x) . (16.2)

The function ρ(x) = ρ(x, t) denotes the density of representative points in state
space at time t. This density can be (and in chaotic dynamics, often is) an ar-
bitrarily ugly function, and it may display remarkable singularities; for instance,
there may exist directions along which the measure is singular with respect to the
Lebesgue measure (namely the uniform measure on the state space). We shall
assume that the measure is normalized

(n)∑
i

Δμi = 1 , (16.3)

where the sum is over subregions i at the nth level of partitioning. The infinites-
imal measure ρ(x) dx can be thought of as an infinitely refined partition limit of
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jacobian

Figure 16.2: The evolution rule f tcan be used to map
a region Mi of the state space into the region f t(Mi).
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Mi

t
ff (     )Mi

Δμi = |Mi| ρ(xi) , where |Mi| is the volume of subregion Mi and xi ∈ Mi; also
ρ(x) is normalized

∫
M

dx ρ(x) = 1 . (16.4)

Here |Mi| is the volume of region Mi, and all |Mi| → 0 as n → ∞.

So far, any arbitrary sequence of partitions will do. What are intelligent ways
of partitioning state space? We already know the answer from chapter11, but let
us anyway have another look at this, in order to develop some intuition about how
the dynamics transports densities.

chapter 11

16.2 Perron-Frobenius operator

Given a density, the question arises as to what it might evolve into with time.
Consider a swarm of representative points making up the measure contained in a
region Mi at time t = 0. As the flow evolves, this region is carried into ft(Mi),
as in figure 16.2. No trajectory is created or destroyed, so the conservation of
representative points requires that

∫
f t(Mi)

dx ρ(x, t) =
∫
Mi

dx0 ρ(x0, 0) .

Transform the integration variable in the expression on the left hand side to the
initial points x0 = f −t(x),

∫
Mi

dx0 ρ( f t(x0), t)
∣∣∣det Jt(x0)

∣∣∣ = ∫
Mi

dx0 ρ(x0, 0) .

The density changes with time as the inverse of the Jacobian (4.27)

ρ(x, t) =
ρ(x0, 0)
|det Jt(x0)| , x = f t(x0) , (16.5)

which makes sense: the density varies inversely with the infinitesimal volume
occupied by the trajectories of the flow.
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Dirac delta
Dirac delta

Figure 16.3: A piecewise-linear skew ‘full tent map’
(16.11) (Λ0 = 4/3, Λ1 = −4).
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The relation (16.5) is linear in ρ, so the manner in which a flow transports
densities may be recast into the language of operators, by writing

exercise 16.1

ρ(x, t) =
(
Lt ◦ ρ

)
(x) =

∫
M

dx0 δ
(
x − f t(x0)

)
ρ(x0, 0) . (16.6)

Let us check this formula. As long as the zero is not smack on the border of ∂M,
integrating Dirac delta functions is easy:

∫
M dx δ(x) = 1 if 0 ∈ M, zero otherwise.

The integral over a 1-dimensional Dirac delta function picks up the Jacobian of its
argument evaluated at all of its zeros: 1

∫
dx δ(h(x)) =

(x−x )h’(x )* *

x*

h(x)

x (16.7)

=
∑

{x:h(x)=0}

1
|h′(x)| ,

and in d dimensions the denominator is replaced by

∫
dx δ(h(x)) =

∑
j

∫
M j

dx δ(h(x)) =
∑

j

1∣∣∣∣det
∂h(xj)
∂x

∣∣∣∣ , (16.8)

where M j is any open neighborhood that contains the single xj zero of h. Now
you can check that (16.6) is just a rewrite of (16.5):

exercise 16.2

(
Lt ◦ ρ

)
(x) =

∑
x0= f −t(x)

ρ(x0)
| f t(x0)′|

(1-dimensional)

=
∑

x0= f −t(x)

ρ(x0)
|det Jt(x0)| (d-dimensional) . (16.9)

1Predrag: use gnu-plotted DiracGauss.eps here, once fixed
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Perron-
Frobenius!operator

operator!Perron-
Frobenius

Ulam map!skew
transfer!matrix
Markov!matrix

For a deterministic, invertible flow x has only one preimage x0; allowing for mul-
tiple preimages also takes account of noninvertible mappings such as the ‘stretch
& fold’ maps of the interval, to be discussed briefly in example16.1, and in more
detail in sect. 11.3.

We shall refer to the integral operator with singular kernel (16.6) as the Perron-
Frobenius operator: 2

exercise 16.3
example 23.7

Lt(x, y) = δ
(
x − f t(y)

)
. (16.10)

The Perron-Frobenius operator assembles the density ρ(x, t) at time t by going
back in time to the density ρ(x0, 0) at time t = 0. If you do not like the word “ker-
nel” you might prefer to think of Lt(x, y) as a matrix with indices x, y, and index
summation in matrix multiplication replaced by an integral over y,

(
Lt ◦ ρ

)
(x) =∫

dyLt(x, y)ρ(y) . In the next example Perron-Frobenius operator is a matrix, and
remark 19.4

(16.14) illustrates a matrix approximation to the Perron-Frobenius operator. 3

⇓PRIVATE

in depth:

appendix I, p. 1126
⇑PRIVATE

Example 16.1 Perron-Frobenius operator for a piecewise-linear map: Consider
the expanding 1-dimensional map f (x) of figure 16.3, a piecewise-linear 2–branch map
with slopes Λ0 > 1 and Λ1 = −Λ0/(Λ0 − 1) < −1 :

exercise 16.7

f (x) =

{
f0(x) = Λ0 x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ1(1 − x) , x ∈ M1 = (1/Λ0, 1] . (16.11)

Both f (M0) and f (M1) map onto the entire unit interval M = [0, 1]. We shall refer to
any unimodal map whose critical point maps onto the “left” unstable fixed point x0 as
the “Ulam” map. Assume a piecewise constant density

ρ(x) =

{
ρ0 if x ∈ M0
ρ1 if x ∈ M1

. (16.12)

As can be easily checked using (16.9), the Perron-Frobenius operator acts on this
piecewise constant function as a [2×2] Markov matrix L with matrix elements

exercise 16.1
exercise 16.5(

ρ0

ρ1

)
→ Lρ =

( 1
|Λ0 |

1
|Λ1 |

1
|Λ0 |

1
|Λ1 |

) (
ρ0

ρ1

)
, (16.13)

stretching both ρ0 and ρ1 over the whole unit interval Λ. In this example the density is
constant after one iteration, so L has only a unit eigenvalue es0 = 1/|Λ0| + 1/|Λ1| = 1,
with constant density eigenvector ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respec-
tively, the fractions of state space taken up by the |M0|, |M1| intervals. This simple
explicit matrix representation of the Perron-Frobenius operator is a consequence of the
piecewise linearity of f , and the restriction of the densities ρ to the space of piece-
wise constant functions. The example gives a flavor of the enterprize upon which we
are about to embark in this book, but the full story is much subtler: in general, there
will exist no such finite-dimensional representation for the Perron-Frobenius operator.
(continued in example 17.4)

2Predrag: remember to link with (17.26)
3Predrag: move this remark to ?: (for nomenclature, see remark 19.4).
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fast track:

sect. 16.4, p. 396

16.3 Why not just leave it to a computer?

Another subtlety in the [dynamical systems ] theory is that
topological and measure-theoretic concepts of genericity
lead to different results.

— John Guckenheimer

(R. Artuso and P. Cvitanović)

To a student with a practical bent the above Example 16.1 suggests a strategy for
constructing evolution operators for smooth maps, as limits of partitions of state
space into regions Mi, with a piecewise-linear approximations fi to the dynamics
in each region, but that would be too naive; much of the physically interesting
spectrum would be missed. As we shall see, the choice of function space for ρ is

chapter 23
crucial, and the physically motivated choice is a space of smooth functions, rather
than the space of piecewise constant functions.

All of the insight gained in this chapter and in what is to follow is nothing but
an elegant way of thinking of the evolution operator, L, as a matrix (this point of
view will be further elaborated in chapter 23). There are many textbook methods
of approximating an operator L by sequences of finite matrix approximations L,
but in what follows the great achievement will be that we shall avoid construct-
ing any matrix approximation to L altogether. Why a new method? Why not
just run it on a computer, as many do with such relish in diagonalizing quantum
Hamiltonians?

The simplest possible way of introducing a state space discretization, fig-
ure 16.4, is to partition the state space M with a non-overlapping collection of
sets Mi, i = 1, . . . ,N, and to consider densities (16.2) piecewise constant on each
Mi:

ρ(x) =
N∑

i=1

ρi
χi(x)
|Mi|

where χi(x) is the characteristic function (16.1) of the set Mi. This piecewise
constant density is a coarse grained presentation of a fine grained density ρ̂(x),
with (16.2)

ρi =

∫
Mi

dx ρ̂(x).
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Figure 16.4: State space discretization approach to
computing averages.

Figure 16.5: State space discretization approach
to computing averages. (A. Johansen)

The Perron-Frobenius operator does not preserve the piecewise constant form, but
we may reapply coarse graining to the evolved measure

ρ′i =

∫
Mi

dx (L ◦ ρ)(x)

=

N∑
j=1

ρ j

|M j|

∫
Mi

dx
∫
M j

dy δ(x − f (y)) ,

or 4

ρ′i =
N∑

j=1

ρ j
|M j ∩ f −1(Mi)|

|M j|
.

In this way

Li j =
|Mi ∩ f −1(M j)|

|Mi|
, ρ′ = ρL (16.14)

is a matrix approximation to the Perron-Frobenius operator, and its leading left
eigenvector is a piecewise constant approximation to the invariant measure. 5

⇓PRIVATE

⇑PRIVATE

remark 16.3

4Predrag: recheck, missing f ′ jacobian here?
5Predrag: replace figure 16.4 by figure 16.5
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Henon@H“’enon
map!natural
measure

stationary!state
measure!invariant
invariant!measure

The problem with such state space discretization approaches is that they are
blind, the grid knows not what parts of the state space are more or less important.
This observation motivated the development of the invariant partitions of chaotic
systems undertaken in chapter 11, we exploited the intrinsic topology of a flow to
give us both an invariant partition of the state space and a measure of the partition
volumes, in the spirit of figure 3.7.

Furthermore, a piecewise constant ρ belongs to an unphysical function space,
and with such approximations one is plagued by numerical artifacts such as spu-
rious eigenvalues. In chapter 23 we shall employ a more refined approach to
extracting spectra, by expanding the initial and final densities ρ, ρ′ in some basis
ϕ0, ϕ1, ϕ2, · · · (orthogonal polynomials, let us say), and replacing L(y, x) by its
ϕα basis representation Lαβ = 〈ϕα|L|ϕβ〉. The art is then the subtle art of finding
a “good” basis for which finite truncations of Lαβ give accurate estimates of the
eigenvalues of L.

chapter 23

Regardless of how sophisticated the choice of basis might be, the basic prob-
lem cannot be avoided - as illustrated by the natural measure for the Hénon map
(3.17) sketched in figure 16.6, eigenfunctions ofL are complicated, singular func-
tions concentrated on fractal sets, and in general cannot be represented by a nice
basis set of smooth functions. We shall resort to matrix representations of L and
the ϕα basis approach only insofar this helps us prove that the spectrum that we
compute is indeed the correct one, and that finite periodic orbit truncations do
converge.

in depth:

chapter 1, p. 3

16.4 Invariant measures

A stationary or invariant density is a density left unchanged by the flow

ρ(x, t) = ρ(x, 0) = ρ(x) . (16.15)

Conversely, if such a density exists, the transformation ft(x) is said to be measure-
preserving. As we are given deterministic dynamics and our goal is the compu-
tation of asymptotic averages of observables, our task is to identify interesting
invariant measures for a given ft(x). Invariant measures remain unaffected by dy-
namics, so they are fixed points (in the infinite-dimensional function space of ρ
densities) of the Perron-Frobenius operator (16.10), with the unit eigenvalue: 6

exercise 16.3

Ltρ(x) =
∫
M

dy δ(x − f t(y))ρ(y) = ρ(x). (16.16)

6Predrag: repeller measures?
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equilibrium!point
confession!C.N. Yang
Yang, C.N.
natural measure
measure!natural

We will construct explicitly such eigenfunction for the piecewise linear map in
example 17.4, with ρ(y) = const and eigenvalue 1. In general, depending on the
choice of f t(x) and the function space for ρ(x), there may be no, one, or many
solutions of the eigenfunction condition (16.16). For instance, a singular measure
dμ(x) = δ(x − xq)dx concentrated on an equilibrium point xq = f t(xq), or any
linear combination of such measures, each concentrated on a different equilib-
rium point, is stationary. There are thus infinitely many stationary measures that
can be constructed. Almost all of them are unnatural in the sense that the slightest
perturbation will destroy them.

From a physical point of view, there is no way to prepare initial densities
which are singular, so we shall focus on measures which are limits of transforma-
tions experienced by an initial smooth distribution ρ(x) under the action of f ,

ρ0(x) = lim
t→∞

∫
M

dy δ(x − f t(y)) ρ(y, 0) ,
∫
M

dy ρ(y, 0) = 1 . (16.17)

Intuitively, the “natural” measure should be the measure that is the least sensitive
to the (in practice unavoidable) external noise, no matter how weak, or round-off
errors in a numerical computation. 7

16.4.1 Natural measure

Huang: Chen-Ning, do you think ergodic theory gives us
useful insight into the foundation of statistical mechanics?
Yang: I don’t think so.

—Kerson Huang, C.N. Yang interview

8

In computer experiments, as the Hénon example of figure16.6, the long time evo-
lution of many “typical” initial conditions leads to the same asymptotic distribu-
tion. Hence the natural measure (also called equilibrium measure, SRB measure,
Sinai-Bowen-Ruelle measure, physical measure, invariant density, natural density,
or even “natural invariant”) is defined as the limit9 10

exercise 16.8
exercise 16.9

ρx0
(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
limt→∞

1
t

∫ t

0
dτ δ(y − f τ(x0)) flows

limn→∞
1
n

∑n−1
k=0 δ

(
y − f k(x0)

)
maps ,

(16.18)

where x0 is a generic initial point. 11 Generated by the action of f , the natural
measure satisfies the stationarity condition (16.16) and is thus invariant by con-
struction.

7Predrag: connect to chapter 32: make the robustness under external noise more convincing here
8Predrag: add to refsMeasure.tex
9Predrag: draw the picture

10Predrag: place lim above → ∞
11Driebe: emphasize generic, not periodic: use normal (Borel definition of irrationals) vs. non-

normal. Explained in the green book edited by Series
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visitation frequency
observable
average!space
space!average
functional
time!average
average!time

Staring at an average over infinitely many Dirac deltas is not a prospect we
cherish. From a computational point of view, the natural measure is the visitation
frequency defined by coarse-graining, integrating (16.18) over the Mi region

Δμi = lim
t→∞

ti
t
, (16.19)

where ti is the accumulated time that a trajectory of total duration t spends in the
Mi region, with the initial point x0 picked from some smooth density ρ(x).

12 Let a = a(x) be any observable. In the mathematical literature a(x) is a
function belonging to some function space, for instance the space of integrable
functions L1, that associates to each point in state space a number or a set of num-
bers. In physical applications the observable a(x) is necessarily a smooth function.
The observable reports on some property of the dynamical system. Several exam-
ples will be given in sect. 17.1. 13

The space average of the observable a with respect to a measure ρ is given by
the d-dimensional integral over the state space M:

〈a〉ρ =
1
|ρM|

∫
M

dx ρ(x)a(x)

|ρM| =
∫
M

dx ρ(x) = mass in M . (16.20)

For now we assume that the state space M has a finite dimension and a finite
volume. By its construction, 〈a〉ρ is a function(al) of ρ. For ρ = ρ0 natural measure
we shall drop the subscript in the definition of the space average; 〈a〉ρ = 〈a〉.

Inserting the right-hand-side of (16.18) into (16.20), we see that the natural
measure corresponds to a time average of the observable a along a trajectory of
the initial point x0,

ax0 = lim
t→∞

1
t

∫ t

0
dτ a( f τ(x0)) . (16.21)

Analysis of the above asymptotic time limit is the central problem of ergodic
theory. The Birkhoff ergodic theorem asserts that if an invariant measure ρ ex-

remark 16.1
appendix Aists, the limit a(x0) for the time average (16.21) exists for (almost) all initial x0.

Still, Birkhoff theorem says nothing about the dependence on x0 of time averages
ax0 (or, equivalently, that the construction of natural measures (16.18) leads to a
“single” density, independent of x0). This leads to one of the possible definitions

12John G: This material fits better in average.tex. Moving it there would make discussion of
ergodicity easier.
PC: not sure how to do it. It is here because we just introduced invariant measure, and this is the
most important example of it. We can discuss it further.

13Predrag: put pointer, refer to the example there
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ergodic!average
Birkhoff!ergodic

theorem
ergodic!theory
mixing

Figure 16.6: Natural measure (16.19) for the Hénon
map (3.17) strange attractor at parameter values
(a, b) = (1.4, 0.3). See figure 3.6 for a sketch of the
attractor without the natural measure binning. (Cour-
tesy of J.-P. Eckmann)
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of an ergodic evolution: f is ergodic if for any integrable observable a in (16.21)
the limit function is constant. If a flow enjoys such a property the time averages
coincide (apart from a set of ρ measure 0) with space averages 14

lim
t→∞

1
t

∫ t

0
dτ a( f τ(x0)) = 〈a〉 . (16.22)

15

For future reference, we note a further property that is stronger than ergodicity:
if the space average of a product of any two variables decorrelates with time,16

section 22.3

lim
t→∞

〈
a(x)b( f t(x))

〉
= 〈a〉 〈b〉 , (16.23)

the dynamical system is said to be mixing. The terminology may be understood
better once we consider as the pair of observables in (16.23) characteristic func-
tions of two sets A and B: then (16.23) may be written as

lim
t→∞

μ
(
A∩ f t(B)

)
μ(A)

= μ(B)

so that the set B spreads “uniformly” over the whole state space as t increases.
Mixing is a fundamental notion in characterizing statistical behavior for dynam-
ical systems: suppose we start with an arbitrary smooth nonequilibrium distribu-
tion ρ(x)ν(x): the after time t the average of an observable a is given by

∫
M

dx ρ(x)ν( f t(x))a(x)

and this tends to the equilibrium average 〈a〉ρ if f is mixing.

14Predrag: definition of ergodic (Webster?) ES: The only convincing explanation of the etymol-
ogy I’ve found so far is at http://web.maths.unsw.edu.au/ froyland/intro.ps.gz, p. 1.

15Predrag: explain we drop suffix ρ if ρ is the natural measure JFG: Or keep ρ suffix here and
drop it later in average.tex, where the reasoning can be explained.

16Predrag: explain mixing
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Example 16.2 The Hénon attractor natural measure: A numerical calculation of
the natural measure (16.19) for the Hénon attractor (3.17) is given by the histogram
in figure 16.6. The state space is partitioned into many equal-size areas Mi, and the
coarse grained measure (16.19) is computed by a long-time iteration of the Hénon map,
and represented by the height of the column over area Mi. What we see is a typical
invariant measure - a complicated, singular function concentrated on a fractal set.

remark A.3

If an invariant measure is quite singular –for instance a Dirac δ concentrated
on a fixed point or a cycle– it is most likely of no physical import (see however ⇓PRIVATE
discussion of orbital measures, sect. ??). No smooth initial density will converge

⇑PRIVATEto this measure if its neighborhood is repelling. In practice the average (16.18)
is problematic and often hard to control, as generic dynamical systems are nei-
ther uniformly hyperbolic nor structurally stable: it is not known whether even
the simplest model of a strange attractor, the Hénon attractor of figure 16.6, is
“strange,” or merely a transient to a very long stable cycle.

exercise 6.4

16.4.2 Determinism vs. stochasticity

While dynamics can lead to very singular ρ’s, in any physical setting we cannot
do better than to measure ρ averaged over some region Mi; the coarse-graining is
not an approximation but a physical necessity. One is free to think of a measure
as a probability density, as long as one keeps in mind the distinction between de-
terministic and stochastic flows. In deterministic evolution the evolution kernels
are not probabilistic; the density of trajectories is transported deterministically.
What this distinction means will became apparent later: for deterministic flows

chapter 19
our trace and determinant formulas will be exact, while for quantum and stochas-
tic flows they will only be the leading saddle point (stationary phase, steepest
descent) approximations. 17

⇓PRIVATE

chapter 38

⇑PRIVATE
Clearly, while deceptively easy to define, measures spell trouble. The good

news is that if you hang on, you will never need to compute them, at least not
in this book. How so? The evolution operators to which we next turn, and the
trace and determinant formulas to which they will lead us, will assign the correct
weights to desired averages without recourse to any explicit computation of the
coarse-grained measure Δρi.

16.5 Density evolution for infinitesimal times

Consider the evolution of a smooth density ρ(x) = ρ(x, 0) under an infinitesimal
step δτ, by expanding the action of Lδτ to linear order in δτ:

Lδτρ(y) =
∫
M

dx δ
(
y − f δτ(x)

)
ρ(x)

17Predrag: refer to noise.tex as well
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=

∫
M

dx δ(y − x − δτv(x)) ρ(x)

=
ρ(y − δτv(y))∣∣∣∣det

(
1 + δτ∂v(y)

∂x

)∣∣∣∣ =
ρ(y) − δτvi(y)∂iρ(y)

1 + δτ
∑d

i=1 ∂ivi(y)

ρ(x, δτ) = ρ(x, 0) − δτ ∂
∂x

(v(x)ρ(x, 0)) . (16.24)

Here we have used the infinitesimal form of the flow (2.7), the Dirac delta Jaco-
exercise 4.1

bian (16.9), and the ln det = tr ln relation. By the Einstein summation conven-
tion, repeated indices imply summation, vi(y)∂i =

∑d
i=1 vi(y)∂i. Moving ρ(y, 0) to

the left hand side and dividing by δτ, we discover that the rate of the deformation
of ρ under the infinitesimal action of the Perron-Frobenius operator is nothing but
the continuity equation for the density:

∂tρ + ∂ · (ρv) = 0 . (16.25)

The family of Perron-Frobenius operators operators
{
Lt}

t∈R+ forms a semigroup
parameterized by time

(a) L0 = I

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property) .

From (16.24), time evolution by an infinitesimal step δτ forward in time is gener-
ated by

Aρ(x) = + lim
δτ→0+

1
δτ

(
Lδτ − I

)
ρ(x) = −∂i(vi(x)ρ(x)) . (16.26)

We shall refer to 18

A = −∂ · v +
d∑
i

vi(x)∂i (16.27)

as the time-evolution generator. 19 If the flow is finite-dimensional and invertible,
A is a generator of a full-fledged group. The left hand side of (16.26) is the
definition of time derivative, so the evolution equation for ρ(x) is

(
∂

∂t
−A

)
ρ(x) = 0 . (16.28)

⇓PRIVATE

appendix I.2

⇑PRIVATE

The finite time Perron-Frobenius operator (16.10) can be formally expressed
by exponentiating the time evolution generator A as

Lt = etA . (16.29)
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⇓PRIVATE

exercise ??
⇑PRIVATE

The generator A is reminiscent of the generator of translations. Indeed, for a con-
stant velocity field dynamical evolution is nothing but a translation by (time× velocity):

exercise 16.10

e−tv ∂
∂x a(x) = a(x − tv) . (16.30)

⇓PRIVATE

As we will not need to implement a computational formula for general etA in what
follows, we relegate making sense of such operators to appendixI.2. ref. [1] and

appendix I.2
chapter O.

⇑PRIVATE

16.6 Liouville operator

A case of special interest is the Hamiltonian or symplectic flow defined
by Hamilton’s equations of motion (7.1). A reader versed in quantum mechan-
ics will have observed by now that with replacement A → −i

�
Ĥ , where Ĥ is

the quantum Hamiltonian operator, (16.28) looks rather like the time dependent
Schrödinger equation, so this is the right moment to figure out what all this means
for Hamiltonian flows.

The Hamilton’s evolution equations (7.1) for any time-independent quantity
Q = Q(q, p) are given by

dQ
dt
=
∂Q
∂qi

dqi

dt
+
∂Q
∂pi

dpi

dt
=
∂H
∂pi

∂Q
∂qi

− ∂Q
∂pi

∂H
∂qi

, (16.31)

where (pi, qi) span the full state space, which for Hamiltonian flows we shall refer
to as the phase space. As equations with this structure arise frequently for sym-
plectic flows, it is convenient to introduce a notation for them, the Poisson bracket

remark 16.4

{A, B} = ∂A
∂pi

∂B
∂qi

− ∂A
∂qi

∂B
∂pi

. (16.32)

20 In terms of Poisson brackets the time-evolution equation (16.31) takes the com-
pact form

dQ
dt
= {H,Q} . (16.33)

The discussion of sect. 16.5 applies to any deterministic flow. The full phase
space flow velocity is ẋ = v = (q̇, ṗ), where the dot signifies time derivative.

section 32.1
18Predrag: 2012-10-01: ’+’ sign wrong? recheck!
19Predrag: looks like Hamiltonian, but it is not
20Predrag: Gaspard has {A, B} defined the other way around; use {, }. Check also Kadanoff p. 129
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If the density itself is a material invariant, combining 21

∂tI + v · ∂I = 0 .

and (16.25) we conclude that ∂ivi = 0 and det Jt(x0) = 1. An example of such
incompressible flow is the Hamiltonian flow. For incompressible flows the con-
tinuity equation (16.25) becomes a statement of conservation of the phase space
volume (see sect. 7.3), or the Liouville theorem

∂tρ + vi∂iρ = 0 . (16.34)

The symplectic structure of Hamilton’s equations (7.1) implies that the flow
is incompressible, ∂ivi = 0, so for Hamiltonian flows the equation for ρ reduces to
the continuity equation for the phase-space density: 22

⇓PRIVATE

appendix I

⇑PRIVATE∂tρ + ∂i(ρvi) = 0 , i = 1, 2 . . . ,D . (16.35)

Consider the evolution of the phase-space density ρ of an ensemble of nonin-
teracting particles; the particles are conserved, so23

d
dt
ρ(q, p, t) =

(
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi

)
ρ(q, p, t) = 0 .

Inserting Hamilton’s equations (7.1) we obtain the Liouville equation, a special
case of (16.28): 24

remark 16.4

∂

∂t
ρ(q, p, t) = −A ρ(q, p, t) = {H, ρ(q, p, t)} , (16.36)

where { , } is the Poisson bracket (16.32). The generator of the flow (16.27) is in
this case a generator of infinitesimal symplectic transformations,

A = q̇i
∂

∂qi
+ ṗi

∂

∂pi
=
∂H
∂pi

∂

∂qi
− ∂H
∂qi

∂

∂pi
. (16.37)

For example, for separable Hamiltonians of form H = p2/2m+V(q), the equations
of motion are 25 26

q̇i =
pi

m
, ṗi = −

∂V(q)
∂qi

. (16.38)
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and the action of the generator
exercise 16.11

A = − pi

m
∂

∂qi
+ ∂iV(q)

∂

∂pi
. (16.39)

Looking back at (16.30) we see that the first term generates a translation in the
configuration space, f (q, p) → f (q − dt q̇, p), and the second generates acceler-
ation by force ∂V(q) in the momentum space. They do not commute, hence the
time integration is not trivial.

⇓PRIVATE

appendix I.2.1

⇑PRIVATE

27 The time-evolution generator (16.27) for the case of symplectic flows is
called the Liouville operator. You might have encountered it in statistical me-
chanics, while discussing what ergodicity means for 1023 hard balls. 28 Here its
action will be very tangible; we shall apply the Liouville operator to systems as
small as 1 or 2 hard balls and to our surprise learn that this suffices to already get
a bit of a grip on foundations of the nonequilibrium statistical mechanics.

⇓PRIVATE

in depth:

sect. I.2, p. 1128
⇑PRIVATE

Résumé

In physically realistic settings the initial state of a system can be specified only to
a finite precision. If the dynamics is chaotic, it is not possible to calculate the long
time trajectory of a given initial point. Depending on the desired precision, and
given a deterministic law of evolution, the state of the system can then be tracked
for a finite time only.

The study of long-time dynamics thus requires trading in the evolution of a
single state space point for the evolution of a measure, or the density of repre-
sentative points in state space, acted upon by an evolution operator. Essentially
this means trading in nonlinear dynamical equations on a finite dimensional space
x = (x1, x2 · · · xd) for a linear equation on an infinite dimensional vector space of
density functions ρ(x). For finite times and for maps such densities are evolved by
the Perron-Frobenius operator,

ρ(x, t) =
(
Lt ◦ ρ

)
(x) ,

21Predrag: should material invariant be defined here?
22Predrag: confused - conflicts with (16.25) and (16.34)
23Predrag: reference is Goldstein
24Predrag: recheck sign! Rescue the Poisson brackets from appendix E

25Predrag: photoshop
26Predrag: move to appendix F
27Predrag: Dorfman notation is L = −A
28Predrag: look up Avagardo’s number
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observableand in a differential formulation they satisfy the continuity equation:

∂tρ + ∂ · (ρv) = 0 .

The most physical of stationary measures is the natural measure, a measure robust
under perturbations by weak noise.

For long times the dynamics is described in terms of stationary measures, i.e.,
fixed points of the appropriate evolution operators. Reformulated this way, clas-
sical dynamics takes on a distinctly quantum-mechanical flavor. If the Lyapunov
time (1.1), the time after which the notion of an individual deterministic trajectory
loses meaning, is much shorter than the observation time, the “sharp” observables
are those dual to time, the eigenvalues of evolution operators. This is very much
the same situation as in quantum mechanics; as atomic time scales are so short,
what is measured is the energy, the quantum-mechanical observable dual to the
time. Both in classical and quantum mechanics one has a choice of implementing
dynamical evolution on densities (“Schrödinger picture,” sect.16.5) or on observ-
ables (“Heisenberg picture,” sect. 17.2 and chapter 18). By “Schrödinger picture” ⇓PRIVATE
we mean computer eigenvalues...., and then expectation values by extreme sand-
wiching the observables between the eigen..... ⇑PRIVATE

In what follows we shall find the second formulation more convenient, but the
alternative is worth keeping in mind when posing and solving invariant density
problems. However, as classical evolution operators are not unitary, their eigen-
function can be quite singular and difficult to work with. In what follows we
shall learn how to avoid dealing with these eigenstates altogether. As a matter of
fact, what follows will be a labor of radical deconstruction; after having argued so
strenuously here that only smooth measures are “natural,” we shall merrily pro-
ceed to erect the whole edifice of our theory on periodic orbits, i.e., objects that
are δ-functions in state space. The trick is that each comes with an interval, its
neighborhood – periodic points only serve to pin these intervals, just as millime-
ter markings on a measuring rod are used to partition a continuum into intervals.
29

Commentary

Remark 16.1 Ergodic theory: An overview of ergodic theory is outside the scope of
this book: the interested reader may find it useful to consult refs. [ 1, 3, 4, 5]. The exis-
tence of time average (16.21) is the basic result of ergodic theory, known as the Birkhoff
theorem, see for example refs. [1, 25], or the statement of theorem 7.3.1 in ref. [12]. The
natural measure (16.19) of sect. 16.4.1 is often referred to as the SRB or Sinai-Ruelle-
Bowen measure [29, 28, 32].

There is much literature on explicit form of natural measure for special classes of 1-
dimensional maps [19, 14, 15] - J. M. Aguirregabiria [16], for example, discusses several

29Predrag: need to add a Koopman remark, link somewhere here
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families of maps with known smooth measure, and behavior of measure under smooth
conjugacies. As no such explicit formulas exist for higher dimensions and general dy-
namical systems, we do not discuss such measures here.

Remark 16.2 Time evolution as a Lie group: Time evolution of sect. 16.5 is an
example of a 1-parameter Lie group. Consult, for example, chapter 2. of ref. [ 13] for a
clear and pedagogical introduction to Lie groups of transformations. For a discussion of
the bounded semigroups of page 424 see, for example, Marsden and Hughes [6].

Remark 16.3 Discretization of the Perron-Frobenius operator operator It is an old
idea of Ulam [18] that such an approximation for the Perron-Frobenius operator is a
meaningful one. The piecewise-linear approximation of the Perron-Frobenius operator
(16.14) has been shown to reproduce the spectrum for expanding maps, once finer and
finer Markov partitions are used [19, 23, 20]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in ref. [21, 22].

Remark 16.4 The sign convention of the Poisson bracket: The Poisson bracket
is antisymmetric in its arguments and there is a freedom to define it with either sign
convention. When such freedom exists, it is certain that both conventions are in use
and this is no exception. In some texts [8, 7] you will see the right hand side of (16.32)
defined as {B, A} so that (16.33) is dQ

dt = {Q,H}. Other equally reputable texts [24] employ
the convention used here. Landau and Lifshitz [8] denote a Poisson bracket by [A, B],
notation that we reserve here for the quantum-mechanical commutator. As long as one is
consistent, there should be no problem.

Remark 16.5 “Anon it lives”? “Anon it lives” refers to a statue of King Leontes’s wife,
Hermione, who died in a fit of grief after he unjustly accused her of infidelity. Twenty
years later, the servant Paulina shows Leontes this statue of Hermione. When he repents,
the statue comes to life. Or perhaps Hermione actually lived and Paulina has kept her
hidden all these years. The text of the play seems deliberately ambiguous. It is probably
a parable for the resurrection of Christ. (John F. Gibson)

boyscout

16.1. Integrating over Dirac delta functions. Check the delta
function integrals in

(a) 1 dimension (16.7),∫
dx δ(h(x)) =

∑
{x:h(x)=0}

1
|h′(x)| , (16.40)
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(b) and in d dimensions (16.8), h : Rd → Rd,∫
Rd

dx δ(h(x)) =
∑

j

∫
M j

dx δ(h(x))

=
∑

{x:h(x)=0}

1∣∣∣det ∂h(x)
∂x

∣∣∣ .(16.41)

where M j are arbitrarily small regions enclosing
the zeros x j (with x j not on the boundary ∂M j).
For a refresher on Jacobian determinants, read, for
example, Stone and Goldbart Sect. 12.2.2.

(c) The delta function can be approximated by a se-
quence of Gaussians∫

dx δ(x) f (x) = lim
σ→0

∫
dx

e−
x2

2σ

√
2πσ

f (x) .

Use this approximation to see whether the formal
expression∫

R

dx δ(x2)

makes sense.

16.2. Derivatives of Dirac delta functions. Consider δ (k)(x) =
∂k

∂xk δ(x) .

Using integration by parts, determine the value of∫
R

dx δ′(y) , where y = f (x) − x(16.42)∫
dx δ(2) (y) =

∑
{x:y(x)=0}

1
|y′|

{
3

(y′′)2

(y′)4
− y′′′

(y′)3

}
(16.43)

∫
dx b(x)δ(2)(y) =

∑
{x:y(x)=0}

1
|y′|

{
b′′

(y′)2
− b′y′′

(y′)3

+b

(
3

(y′′)2

(y′)4
−

y′′′

(y′)3

)}
.(16.44)

These formulas are useful for computing effects of weak
noise on deterministic dynamics [9].

16.3. Lt generates a semigroup. Check that the Perron-Frobenius
operator has the semigroup property,∫

M
dzLt2 (y, z)Lt1(z, x) = Lt2+t1 (y, x) , t1, t2 ≥ 0 .(16.45)

As the flows in which we tend to be interested are invert-
ible, the L’s that we will use often do form a group, with
t1, t2 ∈ R.

16.4. Escape rate of the tent map.

(a) Calculate by numerical experimentation the log of
the fraction of trajectories remaining trapped in the
interval [0, 1] for the tent map

f (x) = a(1 − 2|x − 0.5|)
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for several values of a. 30

(b) Determine analytically the a dependence of the es-
cape rate γ(a).

(c) Compare your results for (a) and (b).

31

16.5. Invariant measure. We will compute the invariant mea-
sure for two different piecewise linear maps.

α0 1 0 1

(a) Verify the matrix L representation (16.13).

(b) The maximum value of the first map is 1. Compute
an invariant measure for this map.

(c) Compute the leading eigenvalue of L for this map.

(d) For this map there is an infinite number of invariant
measures, but only one of them will be found when
one carries out a numerical simulation. Determine
that measure, and explain why your choice is the
natural measure for this map.

(e) In the second map the maximum occurs at α =
(3 −

√
5)/2 and the slopes are ±(

√
5 + 1)/2. Find

the natural measure for this map. Show that it is
piecewise linear and that the ratio of its two values
is (

√
5 + 1)/2.

(medium difficulty)

16.6. Escape rate for a flow conserving map. Adjust Λ0, Λ1

in (16.11) so that the gap between the intervals M0, M1

vanishes. Show that the escape rate equals zero in this
situation.

16.7. Eigenvalues of the Perron-Frobenius operator for the
skew full tent map. Show that for the skew full tent
map

30Mason: suggest specific values
31Predrag: move to exerGetused?
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0.8

1

Λ0

Λ1

f (x) =

{
f0(x) = Λ0 x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (1 − x) , x ∈ M1 = (1/Λ0, 1] . (16.46)

the eigenvalues are available analytically, compute the
first few.

16.8. “Kissing disks”∗ (continuation of exercises 8.1 and
8.2) Close off the escape by setting R = 2, and look
in real time at the density of the Poincaré section iter-
ates for a trajectory with a randomly chosen initial condi-
tion. Does it look uniform? Should it be uniform? (Hint -
phase-space volumes are preserved for Hamiltonian flows
by the Liouville theorem). Do you notice the trajectories
that loiter near special regions of phase space for long
times? These exemplify “intermittency,” a bit of unpleas-
antness to which we shall return in chapter 24.

16.9. Invariant measure for the Gauss map. Consider the
Gauss map(we shall need this map in chapter 30):

⇓PRIVATE

⇑PRIVATE
f (x) =

{
1
x −

[
1
x

]
x � 0

0 x = 0
(16.47)

where [ ] denotes the integer part.

(a) Verify that the density

ρ(x) =
1

log 2
1

1 + x

is an invariant measure for the map.

(b) Is it the natural measure?

16.10. A as a generator of translations. Verify that for a con-
stant velocity field the evolution generatorA in (16.30) is
the generator of translations,

etv ∂
∂x a(x) = a(x + tv) .

32

32Mason: discuss the Lie group perspective in an appendix
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16.11. Incompressible flows. Show that (16.9) implies that
ρ0(x) = 1 is an eigenfunction of a volume-preserving flow
with eigenvalue s0 = 0. In particular, this implies that the
natural measure of hyperbolic and mixing Hamiltonian
flows is uniform. Compare this results with the numerical
experiment of exercise 16.8.
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Chapter 17

Averaging

Why think when you can compute?
—Maciej Zworski

We discuss first the necessity of studying the averages of observables in
chaotic dynamics. A time average of an observable is computed by inte-
grating its value along a trajectory. The integral along trajectory can be

split into a sum of over integrals evaluated on trajectory segments; if exponenti-
ated, this yields a multiplicative weight for successive trajectory segments. This
elementary observation will enable us to recast the formulas for averages in a mul-
tiplicative form that motivates the introduction of evolution operators and further
formal developments to come. The main result is that any dynamical average mea-
surable in a chaotic system can be extracted from the spectrum of an appropriately
constructed evolution operator. In order to keep our toes closer to the ground, in
sect. 17.4 we try out the formalism on the first quantitative diagnosis whether a
system is chaotic, the Lyapunov exponent.

17.1 Dynamical averaging

In chaotic dynamics detailed prediction is impossible, as any finitely specified ini-
tial condition, no matter how precise, will fill out the entire accessible state space
after a finite Lyapunov time (1.1). Hence for chaotic dynamics one cannot follow
individual trajectories for a long time; what is attainable, however, is a description
of the geometry of the set of possible outcomes, and the evaluation of long-time
averages. Examples of such averages are transport coefficients for chaotic dynam-
ical flows, such as escape rates, mean drifts and diffusion rates; power spectra; and
a host of mathematical constructs such as generalized dimensions, entropies, and
Lyapunov exponents. Here we outline how such averages are evaluated within the
evolution operator framework. The key idea is to replace the expectation values of
observables by the expectation values of generating functionals. This associates
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Lyapunov!time
observable
integrated observable
observable!integrated
action
time!average
average!time

an evolution operator with a given observable, and relates the expectation value of
the observable to the leading eigenvalue of the evolution operator.

17.1.1 Time averages

Let a = a(x) be any observable, a function that associates to each point in state
space a number, a vector, or a tensor. The observable reports on a property of
the dynamical system. The observable is a device, such as a thermometer or laser
Doppler velocitometer. The device itself does not change during the measurement.
The velocity field ai(x) = vi(x) is an example of a vector observable; the length
of this vector, or perhaps a temperature measured in an experiment at instant τ
are examples of scalar observables. We define the integrated observable At as the
time integral of the observable a evaluated along the trajectory of the initial point
x0,

At(x0) =
∫ t

0
dτ a[x(τ)] , x(t) = f t(x0) . (17.1)

If the dynamics are given by an iterated mapping and the time is discrete, the
integrated observable after n iterations is given by

An(x0) =
n−1∑
k=0

a(xk) , xk = f k(x0)) (17.2)

(we suppress vectorial indices for the time being).

Example 17.1 Integrated observables. (a) If the observable is the velocity, ai(x) =
vi(x), its time integral At

i(x0) is the trajectory At
i(x0) = xi(t).

(b) For Hamiltonian flows the action associated with a trajectory x(t) = [q(t), p(t)]
passing through a phase-space point x0 = [q(0), p(0)] is(this function will be the key to⇓PRIVATEthe semiclassical quantization of chapter 39):

⇑PRIVATE

At(x0) =
∫ t

0
dτ q̇(τ) · p(τ) . (17.3)

The time average of the observable along an orbit is defined by

a(x0) = lim
t→∞

1
t

At(x0) . (17.4)

If a does not behave too wildly as a function of time – for example, if a(x) is the
Chicago temperature, bounded between −80oF and +130oF for all times – At(x0)
is expected to grow no faster than t, and the limit (17.4) exists. For an example of
a time average - the Lyapunov exponent - see sect.17.4.

average - 20mar2013 boyscout version14.4, Mar 19 2013
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integrated observable
observable!integrated
hyperbolic!systems

Figure 17.1: (a) A typical chaotic trajectory ex-
plores the state space with the long time visitation
frequency building up the natural measure ρ0(x).
(b) time average evaluated along an atypical tra-
jectory such as a periodic orbit fails to explore the
entire accessible state space. (A. Johansen)

(a)

x

M (b)

The time average is a property of the orbit, independent of the initial point on
that orbit: if we start at a later state space point fT (x0) we get a couple of extra
finite contributions that vanish in the t → ∞ limit:

a[ f T (x0)] = lim
t→∞

1
t

∫ t+T

T
dτ a[ f τ(x0)]

= a(x0) − lim
t→∞

1
t

(∫ T

0
dτ a[ f τ(x0)] −

∫ t+T

t
dτ a[ f τ(x0)]

)
= a(x0) .

The integrated observable At(x0) and the time average a(x0) take a particularly
simple form when evaluated on a periodic orbit. Define

exercise 4.7

Ap =

⎧⎪⎪⎨⎪⎪⎩ apTp =
∫ Tp

0 dτ a[ f τ(x0)] for a flow
apnp =

∑np

i=1 a[ f i(x0)] for a map
, x0 ∈ Mp , (17.5)

where p is a prime cycle, Tp is its period, and np is its discrete time period in the
case of iterated map dynamics. The quantity Ap is a loop integral of the observable
along a single traversal of a prime cycle p, so it is an intrinsic property of the cycle,
independent of the starting point x0 ∈ Mp. (If the observable a is not a scalar but
a vector or matrix we might have to be more careful in defining an average which
is independent of the starting point on the cycle). If the trajectory retraces itself
r times, we just obtain Ap repeated r times. Evaluation of the asymptotic time
average (17.4) therefore requires only a single traversal of the cycle:

ap = Ap/Tp . (17.6)

However, a(x0) is in general a wild function of x0; for a hyperbolic system it
takes the same value 〈a〉 for almost all initial x0, but a different value (17.6) on
any periodic orbit, i.e., on a dense set of points (figure17.1 (b)). 1

⇓PRIVATE

⇑PRIVATE

Example 17.2 Deterministic diffusion. The phase space of an open system such as
the Sinai gas (an infinite 2-dimensional periodic array of scattering disks, see sect. 26.1)

1Predrag: draw (b) in figure 17.1
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open system
average!space
space!average
natural measure
measure!natural

Figure 17.2: (A. Johansen)

is dense with initial points that correspond to 2 periodic runaway trajectories. The mean
distance squared traversed by any such trajectory grows as x(t)2 ∼ t2, and its contri-
bution to the diffusion rate D ∝ x(t)2/t, (17.4) evaluated with a(x) = x(t)2, diverges.
Seemingly there is a paradox; even though intuition says the typical motion should be
diffusive, we have an infinity of ballistic trajectories.

For chaotic dynamical systems, this paradox is resolved by also averaging over
the initial x and worrying about the measure of the ‘pathological’ trajectories. (contin-
ued in example 17.3)

section 26.1

17.1.2 Spatial averages

The space average of a quantity a evaluated over all state space trajectories x(t) at
time t is given by the d-dimensional integral over all initial points x0 at time t = 0:

〈a〉(t) = 1
|M|

∫
M

dx0 a[x(t)] , x(t) = f t(x0)

|M| =
∫
M

dx = volume of M . (17.7)

The space M is assumed to have finite volume - open systems like the 3-disk game
of pinball are discussed in sect. 17.3.

What is it we really do in experiments? We cannot measure the time average
(17.4), as there is no way to prepare a single initial condition with infinite preci-
sion. The best we can do is prepare an initial density ρ(x), perhaps concentrated on
some small (but always finite) neighborhood. Then we can abandon the uniform
space average (17.7) and consider instead the weighted spatial average

〈a〉ρ(t) =
1

|Mρ|

∫
M

dx0 ρ(x0) a[x(t)] , |Mρ| =
∫
M

dx ρ(x) . (17.8)

For ergodic mixing systems, any smooth initial density will tend to the asymptotic
natural measure in the t → ∞ limit ρ(x, t) → ρ0(x). This allows us to take any

2Mason: Forward refs big trouble!
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expectation valuesmooth initial ρ(x) and define the expectation value 〈a〉 of an observable a as the
asymptotic time and space average over the state space M

〈a〉 = 1
|M|

∫
M

dx a[x] = lim
t→∞

1
|M|

∫
M

dx0
1
t

∫ t

0
dτ a[x(t)] . (17.9)

We use the same 〈· · ·〉 notation as for the space average (17.7) and distinguish the
two by the presence of the time variable in the argument: if the quantity 〈a〉(t)
being averaged depends on time, then it is a space average; if it is the infinite time
limit, it is the expectation value 〈a〉.

The expectation value is a space average of time averages, with every x ∈ M
used as a starting point of a time average. The advantage of averaging over space
is that it smears the starting points which were problematic for the time average
(such as periodic points). While easy to define, the expectation value 〈a〉 turns out
not to be particularly tractable in practice.

Here comes a simple idea that is the basis of all that follows: Such averages
are more conveniently studied by investigating instead of 〈a〉 the space averages
of form

〈
eβ·A

t〉
=

1
|M|

∫
M

dx eβ·A
t(x) . (17.10)

In the present context β is an auxiliary variable of no physical significance whose
role is to enable us to recover the desired space average by differentiation,

〈
At

〉
=

∂

∂β

〈
eβ·A

t〉∣∣∣∣∣
β=0

.

In most applications β is a scalar, but if the observable is a d-dimensional vector
a(x) ∈ Rd, then β ∈ Rd; if the observable is a [d × d] tensor, β is also a rank-2
tensor, and so on. Here we will mostly limit the considerations to scalar β.

If the time average limit a(x0) (17.4) exists for ‘almost all’ initial x0’s and
the system is ergodic and mixing (in the sense of sect. 1.3.1), 3 we expect the
time average along almost all trajectories to tend to the same value a, and the
integrated observable At to tend to t a. The space average (17.10) is an integral
over exponentials and hence also grows exponentially with time. So as t → ∞ we
would expect the space average of exp(β · At(x)) to grow exponentially with time〈

eβ·A
t〉 → (const) ets(β) ,

and its rate of growth to be given by the limit

s(β) = lim
t→∞

1
t

ln
〈
eβ·A

t〉
. (17.11)

3Roberto: Search on the pdf shows that ”ergodic” first appear in the text in chapter 9.
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diffusion!constantNow we understand one reason for why it is smarter to compute
〈
exp(β · At)

〉
rather than 〈a〉: the expectation value of the observable (17.9) and the moments of
the integrated observable (17.1) can be computed by evaluating the derivatives of
s(β)

∂s
∂β

∣∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At

〉
= 〈a〉 ,

∂2s

∂β2

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
AtAt

〉
−

〈
At

〉 〈
At

〉)
= lim

t→∞

1
t

〈
(At − t 〈a〉)2

〉
,

(17.12)

exercise 17.1

and so forth. We have explicitly written out the formulas for a scalar observable;
the vector case is worked out in exercise 17.1 (we could have used full derivative
notation ds/dβ in (17.12), but for vector observable we do need partial derivatives
∂s/∂βi). If we can compute the function s(β), we have the desired expectation
value without having to estimate any infinite time limits from finite time data.

Suppose we could evaluate s(β) and its derivatives. What are such formulas
good for? A typical application arises in the problem of determining transport
coefficients from underlying deterministic dynamics.

Example 17.3 Deterministic diffusion. (continued from example 17.2) Con-
sider a point particle scattering elastically off a d-dimensional array of scatterers. If
the scatterers are sufficiently large to block any infinite length free flights, the particle
will diffuse chaotically, and the transport coefficient of interest is the diffusion constant〈
x(t)2

〉
≈ 4Dt. In contrast to D estimated numerically from trajectories x(t) for finite

but large t, the above formulas yield the asymptotic D without any extrapolations to the
t → ∞ limit. For example, for ai = vi and zero mean drift 〈vi〉 = 0, in d dimensions the
diffusion constant is given by the curvature of s(β) at β = 0,

section 26.1

D = lim
t→∞

1
2dt

〈
x(t)2

〉
=

1
2d

d∑
i=1

∂2s

∂β2
i

∣∣∣∣∣∣
β=0

, (17.13)

so if we can evaluate derivatives of s(β), we can compute transport coefficients that
characterize deterministic diffusion. As we shall see in chapter 26, periodic orbit theory
yields an exact and explicit closed form expression for D.

We turn to the problem of evaluating
〈
eβ·A

t
〉

in sect. 17.2, but first we review
some elementary notions of statistics that will be useful later on.

fast track:

sect. 17.2, p. 419
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empirical mean
sample variance
mean
expectation
expected value
moment
central moment
variance
standard deviation
standardized moment
moment-generating

function
cumulant
cumulant-generating

function

17.1.3 Moments, cumulants

Given a set of N data points, the unbiased empirical estimates for the
empirical mean and the sample variance are

â =
1
N

N∑
i=1

ai , σ̂2 =
1

N − 1

N∑
i=1

(ai − â)2 . (17.14)

(The N − 1 divisor in sample invariance formula has to do with ensuring that â
minimizes σ̂2.)

The exact mean (or expectation or expected value) is the integral of the random
variable with respect to its probability measure ρ, commonly denoted 〈· · ·〉, E[· · ·],
or · · ·,

〈a〉 = E[a] = a =
∫
M

dx ρ(x) a(x) . (17.15)

(In ChaosBook we use 〈· · ·〉ρ to denote an integral over state space weighted by
ρ, and · · · to denote a time average.) The nth moment is the expectation 〈an〉.
The moments about the mean, 〈(a − 〈a〉)n〉, are called central moments. The
second central moment is the variance, and its positive square root is the stan-
dard deviation σ. Standardized moment is the nth central moment divided by
σn, 〈(a − 〈a〉)n〉 /σn, a dimensionless representation of the distribution, indepen-
dent of translations and linear changes of scale. Moments can be collected in the
moment-generating function

〈
eβa

〉
= 1 +

∞∑
n=1

βn

n!
〈
an〉 , (17.16)

or, with some hindsight, in a more natural representation, the cumulant-generating
function

log
〈
eβa

〉
=

∞∑
n=1

βn

n!
〈
an〉

c , (17.17)

where the subscript c indicates a cumulant, or, in statistical mechanics and quan-
tum field theory contexts, the ‘connected Green’s function’. Expanding log 〈e...〉
it is easy to check that the first cumulant is the mean, the second is the variance,

〈
a2

〉
c
= σ2 =

〈
(a − 〈a〉)2

〉
=

〈
a2

〉
− 〈a〉2 , (17.18)
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skewness
kurtosis
partition function
Helmholtz free energy
free energy
Dirac delta

and
〈
a3

〉
c

is the third central moment, or the skewness,

〈
a3

〉
c
=

〈
(a − 〈a〉)3

〉
=

〈
a3

〉
− 3

〈
a2

〉
〈a〉 + 2 〈a〉3 . (17.19)

The higher cumulants are neither moments nor central moments. The fourth cu-
mulant,

〈
a4

〉
c
=

〈
(a − 〈a〉)4

〉
− 3

〈
(a − 〈a〉)2

〉2

=
〈
a4

〉
− 4

〈
a3

〉
〈a〉 − 3

〈
a2

〉2
+ 12

〈
a2

〉
〈a〉2 − 6 〈a〉4 . (17.20)

rewritten in terms of standardized moments, is known as the kurtosis:

1

σ4

〈
a4

〉
c
=

1

σ4

〈
(a − 〈a〉)4

〉
− 3 . (17.21)

One of the reasons why cumulants are preferable to moments is that for a normal-
ized Gaussian distribution all cumulants beyond the second one vanish, so they
are a measure of deviation of statistics from the Gaussian one (see example26.3).

In statistical mechanics and field theory, the partition function and the Helmholtz
free energy have form

Z(β) = exp(−βE) , F(β) = − 1
β

ln Z(E) , (17.22)

analogous to
〈
eβAt〉

and s(β) in (17.11). The derivatives s(β) with respect to β then
yield cumulants, or the Burnett coefficients (26.22).

17.2 Evolution operators

For it, the mystic evolution;
Not the right only justified
– what we call evil also justified.

—Walt Whitman,
Leaves of Grass: Song of the Universal

The above simple shift of focus, from studying 〈a〉 to studying
〈
exp

(
β · At)〉 is

the key to everything that follows. Make the dependence on the flow explicit by
rewriting this quantity as

〈
eβ·A

t〉
=

1
|M|

∫
M

dx
∫
M

dy δ
(
y − f t(x)

)
eβ·A

t(x) . (17.23)
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Dirac delta
evolution!operator
operator!evolution

Figure 17.3: Space averaging pieces together the
time average computed along the t → ∞ orbit
of figure 17.1 by a space average over infinitely
many short t trajectory segments starting at all ini-
tial points at once. x1

x2 x2

x1

ρ(x) [Lt ◦ ρ] (x)

Here δ
(
y − f t(x)

)
is the Dirac delta function: for a deterministic flow an initial

point x maps into a unique point y at time t. Formally, all we have done above is
to insert the identity

1 =
∫
M

dy δ
(
y − f t(x)

)
, (17.24)

into (17.10) to make explicit the fact that we are averaging only over the trajec-
tories that remain in M for all times. However, having made this substitution
we have replaced the study of individual trajectories ft(x) by studying the evolu-
tion of the density of the totality of initial conditions. Instead of trying to extract a
temporal average from an arbitrarily long trajectory which explores the state space
ergodically, we can now probe the entire state space with short (and controllable)
finite time pieces of trajectories originating from every point in M. 4

As a matter of fact (and that is why we went to the trouble of defining the gen-
erator (16.27) of infinitesimal transformations of densities) infinitesimally short
time evolution induced by the generator A of (16.27) suffices to determine the
spectrum and eigenvalues of Lt.

5 We shall refer to the kernel of the operation (17.23) as the evolution operator

Lt(y, x) = δ
(
y − f t(x)

)
eβ·A

t(x) . (17.25)

6 The simplest example is the β = 0 case, i.e., the Perron-Frobenius operator
introduced in sect. 16.2. Another example - designed to deliver the Lyapunov
exponent - will be the evolution operator (17.42) discussed below. The action of
the evolution operator on a function φ is given by 7

[
Ltφ

]
(y) =

∫
M

dx δ
(
y − f t(x)

)
eβ·A

t(x)φ(x) . (17.26)

The evolution operator is different for different observables, as its definition
depends on the choice of the integrated observable At in the exponential. Its job is

4Predrag: Is reference in figure 17.3 to figure 17.1 correct?
5Predrag: draw a field of grass
6Predrag: recheck, probably δ

(
y − f −t(x)

)
7Predrag: figure here
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integrated observable
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evolution!semigroup

to deliver the expectation value of a, but before showing that it accomplishes that,
we need to verify the semigroup property of evolution operators. 8

By its definition, the integral over the observable a is additive along the tra-
jectory 9

x(t1+t2)

x(0) = x(0)
x(t1)

+

x(t1+t2)

x(t1)

At1+t2 (x0) =
∫ t1

0
dτ a[ f τ(x)] +

∫ t1+t2

t1
dτ a[ f τ(x)]

= At1 (x0) + At2( f t1 (x0)) .
exercise 16.3

As At(x) is additive along the trajectory, the evolution operator generates a semi-
group

section 16.5

Lt1+t2 (y, x) =
∫
M

dz Lt2 (y, z)Lt1 (z, x) , (17.27)

as is easily checked by substitution

[
Lt2Lt1a

]
(y) =

∫
M

dx δ(y − f t2 (x))eβ·A
t2 (x)

[
Lt1 a

]
(x) =

[
Lt1+t2 a

]
(y) .

This semigroup property is the main reason why (17.23) is preferable to (17.9) as
a starting point for evaluation of dynamical averages: it recasts averaging in form
of operators multiplicative along the flow.

In terms of the evolution operator, the space average of the generating function
(17.23) is given by

〈
eβ·A

t〉
=

1
|M|

∫
M

dx
∫
M

dy φ(y)Lt(y, x)φ(x) .

where φ(x) is the constant function φ(x) = 1. If the linear operator Lt can be
thought of as a matrix, high powers of a matrix are dominated by its fastest grow-
ing matrix elements, and the limit (17.11)

s(β) = lim
t→∞

1
t

ln
〈
Lt

〉
. (17.28)

yields the leading eigenvalue s0(β), and, through it, all desired expectation values
(17.12).

In what follows we shall learn how to extract not only the leading eigenvalue
ofLt, but much of the dominant part of its spectrum. Clearly, we are not interested
into the eigenvalues of Lt for any particular finite time t, but their behavior as
t →∞. That is achieved via a Laplace transform, see sect. 17.2.3.

8Predrag: did not yet edit text from here to (18.3)
9Predrag: redraw this
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17.2.1 Spectrum of an evolution operator

This operator is strange: it is not self-adjoint, so it is noth-
ing good

—Jean Bellissard

An exposition of a subject is of necessity sequential and one cannot explain ev-
erything at once. As we shall actually never use eigenfunctions of evolution oper-
ators, we postpone their discussion to sect. 23.7. For the time being we ask the
reader to accept uncritically the following sketch:

Schematically, a linear operator has a spectrum of eigenvalues sα and eigen-
functions ϕα(x)[

Ltϕα
]

(x) = esαtϕα(x) , α = 0, 1, 2, . . . (17.29)

ordered so that Re sα ≥ Re sα+1. For continuous time flow eigenvalues cannot
depend on time, they are eigenvalues of the time-evolution generator (16.26) we
always write the eigenvalues of an evolution operator in exponentiated form esα

rather than as multipliers λα We find it convenient to write them this way both for
the continuous time Lt and the discrete time L = L1 cases, and we shall assume
that spectrum of L is discrete.

Lt is a linear operator acting on a density of initial conditions ρ(x), x ∈ M, so
the t → ∞ limit will be dominated by s0 = s(β), the leading eigenvalue of Lt,

[
Ltρβ

]
(y) :=

∫
M

dx δ
(
y − f t(x)

)
eβ·A

t(x)ρβ(x) = ets(β)ρβ(y) , (17.30)

where ρβ(x) is the corresponding eigenfunction. For β = 0 the evolution operator
(17.25) is the Perron-Frobenius operator (16.10), with ρ0(x) the natural measure.

From now on we have to be careful to distinguish the two kinds of linear
operators. In chapter 5 we have characterized the evolution of the local linear
neighborhood of a state space trajectory by eigenvalues and eigenvalues of the
linearized flow Jacobian matrices. Evolution operators described in this chapter
are global, and they act on densities of orbits, not on individual trajectories. As
we shall see, ne of the wonders of chaotic dynamics is that the more unstable
individual trajectories, the nicer are the corresponding global density functions.

17.2.2 Evolution for infinitesimal times

For infinitesimal time δt, the evolution operator (17.7) acts as 10

ρ(y, δt) =
∫

dx eβAδt(x)δ(y − f δt(x)) ρ(x, 0)

10Predrag: must check algebra of this section!
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=

∫
dx eβa(x)δtδ(y − x − δt v(x)) ρ(x, 0)

= (1 + δt β a(y))
ρ(y, 0) − δt v · ∂

∂xρ(y, 0)

1 + δt ∂v
∂x

,

(the denominator arises from the δt linearization of the jacobian) giving the conti-
nuity equation (16.25) a source term 11

∂ρ

∂t
+

∂

∂xi
(viρ) = β a ρ . (17.31)

The evolution generator (16.27) eigenfunctions now satisfy

(s(β) −A) ρ(x, β) = β a(x) ρ(x, β) . (17.32)

Differentiating with respect to β

s′(β) ρ(x, β) + s(β)
∂

∂β
ρ(x, β) +

∂

∂x

(
v(x)

∂

∂β
ρ(x, β)

)
= a(x) ρ(x, β) + β a(x)

∂

∂β
ρ(x, β)

In the vanishing auxiliary parameter limit β→ 0, we have s(0) = 0, ρ(x, 0) = ρ0(x)

s′(0) ρ0(x) +
∂

∂xi

(
vi(x)

∂

∂β
ρ(x, 0)

)
= a(x) ρ0(x) .

By integrating, the second term vanishes by Gauss’ theorem

s′(0) =
∫

dx a(x) ρ0(x) = 〈a〉 ,

verifying equation (17.8): spatial average of the observable a is given by the
derivative of the leading eigenvalue s′(0).

fast track:

sect. 18, p. 433

11Predrag: rethink: not a ‘source term’, it is still a homogenous linear equation
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17.2.3 Resolvent of L

Here we limit ourselves to a brief remark about the notion of the ‘spectrum’ of a
linear operator.

The Perron-Frobenius operator L acts multiplicatively in time, so it is reason-
able to suppose that there exist constants M > 0, s0 ≥ 0 such that ||Lt || ≤ Mets0 for
all t ≥ 0. What does that mean? The operator norm is defined in the same spirit
in which one defines matrix norms(see appendix N.2): We are assuming that no

⇓PRIVATE

⇑PRIVATE
value of Ltρ(x) grows faster than exponentially for any choice of function ρ(x), so
that the fastest possible growth can be bounded by ets0 , a reasonable expectation
in the light of the simplest example studied so far, the escape rate (1.3). If that is ⇓PRIVATE

appendix N.2

⇑PRIVATE

so, multiplying Lt by e−ts0 we construct a new operator e−ts0Lt = et(A−s0) which
decays exponentially for large t, ||et(A−s0)|| ≤ M. We say that e−ts0Lt is an element
of a bounded semigroup with generator A − s0I. Given this bound, it follows by
the Laplace transform

∫ ∞

0
dt e−stLt =

1
s −A

, Re s > s0 , (17.33)

12 that the resolvent operator (s −A)−1 is bounded 13

⇓PRIVATE

appendix N.2

⇑PRIVATE
∣∣∣∣∣∣∣∣∣∣ 1

s −A

∣∣∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−st Mets0 =

M
s − s0

. (17.34)

If one is interested in the spectrum of L, as we will be, the resolvent operator is a
natural object to study; it has no time dependence, and it is bounded. It is called
‘resolvent’ because it separates the spectrum ofL into individual constituents, one
for each spectral ’line’. From (17.28), it is clear that the leading eigenvalue s0(β)
corresponds to the pole in (17.34); as we shall see in chapter 18, the rest of the
spectrum is similarly resolved into further poles of the Laplace transform.

The main lesson of this brief aside is that for continuous time flows, the
Laplace transform is the tool that brings down the generator in (16.29) into the
resolvent form (17.33) and enables us to study its spectrum. ⇓PRIVATE

in depth:

appendix I.2, p. 1128
⇑PRIVATE

17.3 Averaging in open systems

12Predrag: A sign wrong here
13Predrag: maybe also as Fourier transform of (16.28), a ‘Green’s’ function
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M@$“pS$ state space

volume
state space!volume

$“pS$

Figure 17.4: A piecewise-linear repeller (16.11): All
trajectories that land in the gap between the f0 and f1
branches escape (Λ0 = 4, Λ1 = −2).

0 0.5 1

x

0

0.5

1

f(x)

If M is a compact region or set of regions to which the dynamics is con-
fined for all times, (17.9) is a sensible definition of the expectation value. How-
ever, if the trajectories can exit M without ever returning,

∫
M

dy δ(y − f t(x0)) = 0 for t > texit , x0 ∈ M ,

we might be in trouble. In particular, a repeller is a dynamical system for which
the trajectory f t(x0) eventually leaves the region M, unless the initial point x0 is
on the repeller, so the identity

∫
M

dy δ(y − f t(x0)) = 1 , t > 0 , iff x0 ∈ non–wandering set (17.35)

might apply only to a fractal subset of initial points of zero Lebesgue measure
(non–wandering set is defined in sect. 2.1.1). Clearly, for open systems we need
to modify the definition of the expectation value to restrict it to the dynamics on
the non–wandering set, the set of trajectories which are confined for all times.

Denote by M a state space region that encloses all interesting initial points,
say the 3-disk Poincaré section constructed from the disk boundaries and all pos-
sible incidence angles, and denote by |M| the volume of M. The volume of state
space containing all trajectories, which start out within the state space region M
and recur within that region at time t, is given by 14

|M(t)| =
∫
M

dxdy δ
(
y − f t(x)

)
∼ |M|e−γt. (17.36)

As we have already seen in sect. 1.4.3, this volume is expected to decrease ex-
ponentially, with the escape rate γ. The integral over x takes care of all possible
initial points; the integral over y checks whether their trajectories are still within
M by the time t. For example, any trajectory that falls off the pinball table in

section 22.1
14Predrag: label branches, change font size in figure 17.4
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figure 1.1 is gone for good.

If we expand an initial distribution ρ(x) in (17.29), the eigenfunction basis
ρ(x) =

∑
α aαϕα(x) , we can also understand the rate of convergence of finite-time

estimates to the asymptotic escape rate. For an open system the fraction of trapped
trajectories decays as

section 17.3

ΓM(t) =

∫
M dx

[
Ltρ

]
(x)∫

M dx ρ(x)
=

∑
α

esαtaα

∫
M dx ϕα(x)∫
M dx ρ(x)

= es0t
(
(const.) + O(e(s1−s0)t)

)
. (17.37)

The constant depends on the initial density ρ(x) and the geometry of state space
cutoff region M, but the escape rate γ = −s0 is an intrinsic property of the re-
pelling set. We see, at least heuristically, that the leading eigenvalue of Lt domi-
nates ΓM(t) and yields the escape rate, a measurable property of a given repeller.

The non–wandering set can be very difficult to describe; but for any finite
time we can construct a normalized measure from the finite-time covering volume
(17.36), by redefining the space average (17.10) as 15

〈
eβ·A

t〉
=

∫
M

dx
1

|M(t)|
eβ·A

t(x) ∼ 1
|M|

∫
M

dx eβ·A
t(x)+γt . (17.38)

in order to compensate for the exponential decrease of the number of surviving
trajectories in an open system with the exponentially growing factor eγt. What
does this mean? Once we have computed γ we can replenish the density lost to
escaping trajectories, by pumping in eγt of new trajectories in such a way that the
overall measure is correctly normalized at all times, 〈1〉 = 1. 16

Example 17.4 Escape rate for a piecewise-linear repeller: (continuation of exam-
ple 16.1) What is gained by reformulating the dynamics in terms of ‘operators’? We
start by considering a simple example in which the operator is a [2×2] matrix. Assume
the expanding 1-dimensional map f (x) of figure 17.4, a piecewise-linear 2–branch re-
peller (16.11). Assume a piecewise constant density (16.12). There is no need to
define ρ(x) in the gap between M0 and M1, as any point that lands in the gap escapes.

The physical motivation for studying this kind of mapping is the pinball game: f
is the simplest model for the pinball escape, figure 1.8, with f0 and f1 modelling its two
strips of survivors.

As can be easily checked using (16.9), the Perron-Frobenius operator acts on
this piecewise constant function as a [2×2] ‘transfer’ matrix (16.13) 17

exercise 16.1
exercise 16.5(

ρ0

ρ1

)
→ Lρ =

( 1
|Λ0|

1
|Λ1 |

1
|Λ0|

1
|Λ1 |

) (
ρ0

ρ1

)
,

15Predrag: describe this as a research problem: derive the exact cycle expansion for (17.38)
16Predrag: credit Grassberger
17Predrag: introduce, explain ‘transfer’ matrix
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measure

stretching both ρ0 and ρ1 over the whole unit interval Λ, and decreasing the density at
every iteration. In this example the density is constant after one iteration, so L has only
one non-zero eigenvalue es0 = 1/|Λ0| + 1/|Λ1| ≤ 1, with constant density eigenvector
ρ0 = ρ1. The quantities 1/|Λ0|, 1/|Λ1| are, respectively, the sizes of the |M0|, |M1|
intervals, so the exact escape rate (1.3) – the log of the fraction of survivors at each
iteration for this linear repeller – is given by the sole eigenvalue of L:

γ = −s0 = − ln(1/|Λ0| + 1/|Λ1|) . (17.39)

Voila! Here is the rationale for introducing operators – in one time step we have solved
the problem of evaluating escape rates at infinite time. (continued in example 23.5)

17.4 Evolution operator evaluation of Lyapunov exponents

18 19 20 A solution to these problems was offered in sect. 17.2: replace time av-
eraging along a single orbit by action of a multiplicative evolution operator on
the entire state space, and extract the state space average of the Lyapunov expo-
nent from its leading eigenvalue, computed from finite length cycles. The main
idea - what is the Lyapunov ‘observable’ - can be illustrated by the dynamics of a
1-dimensional map.

Example 17.5 Lyapunov exponent, discrete time 1-dimensional dynamics. Due
to the chain rule (4.21) for the derivative of an iterated map, the stability of a 1-dimensional
mapping is multiplicative along the flow, so the integral (17.1) of the observable a(x) =
ln | f ′(x)|, the local trajectory divergence rate, evaluated along the trajectory of x0, is
additive:

An(x0) = ln
∣∣∣ f n′(x0)

∣∣∣ = n−1∑
k=0

ln
∣∣∣ f ′(xk)

∣∣∣ . (17.40)

For a 1-dimensional iterative mapping, the Lyapunov exponent is then the expectation
value (17.9) given by a spatial integral (17.8) weighted by the natural measure 21

λ =
〈
ln | f ′(x)|

〉
=

∫
M

dx ρ0(x) ln | f ′(x)| . (17.41)

The associated (discrete time) evolution operator (17.25) is ⇓PRIVATE

appendix J.1

⇑PRIVATE
L(y, x) = δ(y − f (x)) eβ ln | f ′(x)| . (17.42)

Here we have restricted our considerations to 1-d maps, as for higher-dimensional
flows only the Jacobian matrices are multiplicative, not the individual eigenvalues.
Construction of the evolution operator for evaluation of the Lyapunov spectra for

18Predrag: use this title somewhere here: “Roll your own cigar”
19Predrag: 2013-03-20 cross link with chapter 6
20Predrag: 2013-03-20 “these problems”?
21Predrag: continue exercise 16.5: Lyapunovs

average - 20mar2013 boyscout version14.4, Mar 19 2013



CHAPTER 17. AVERAGING 428

a d-dimensional flow requires more skill than warranted at this stage in the narra-
tive: an extension of the evolution equations to a flow in the tangent space.

If the chaotic motion fills the whole state space, we are indeed computing the
asymptotic Lyapunov exponent. If the chaotic motion is transient, leading even-
tually to some long attractive cycle, our Lyapunov exponent, computed on a non–
wandering set, will characterize the chaotic transient; this is actually what any
experiment would measure, as even a very small amount of external noise suffices
to destabilize a long stable cycle with a minute immediate basin of attraction. ⇓PRIVATE

in depth:

appendix J.1, p. 1135
⇑PRIVATE

All that remains is to determine the value of the Lyapunov exponent22

λ =
〈
ln | f ′(x)|〉 = ∂s(β)

∂β

∣∣∣∣∣
β=0
= s′(0) (17.43)

from (17.12), the derivative of the leading eigenvalue s0(β) of the evolution oper-
ator (17.42).

example 20.2

The only question is: How? (By chapter 20 you will know.)

Résumé

The expectation value 〈a〉 of an observable a(x) integrated, At(x) =
∫ t

0 dτ a(x(τ)),
and time averaged, At/t, over the trajectory x → x(t) is given by the derivative

〈a〉 = ∂s
∂β

∣∣∣∣∣
β=0

of the leading eigenvalue ets(β) of the evolution operator Lt.

By computing the leading eigenfunction of the Perron-Frobenius operator
(16.10), one obtains the expectation value (16.20) of any observable a(x). Thus
we can construct a specific, hand-tailored evolution operator L for each and every
observable. The good news is that, by the time we arrive at chapter 20, the scaf-

chapter 20
folding will be removed, both L’s and their eigenfunctions will be gone, and only
the explicit and exact periodic orbit formulas for expectation values of observables
will remain.

The next question is: How do we evaluate the eigenvalues of L? In exam-
ple 17.4, we saw a piecewise-linear example where these operators reduce to fi-
nite matrices L, but for generic smooth flows, they are infinite-dimensional linear

22Predrag: recheck, was β = 1, s′(1)? Explain this!

average - 20mar2013 boyscout version14.4, Mar 19 2013



CHAPTER 17. AVERAGING 429

pressure!thermodynamic
thermodynamical!pressure
partition!function
pressure!topological
convexity
Perron-

Frobenius!operator
operator!Perron-

Frobenius
Ruelle!-Pollicott

resonances
resonances!Ruelle-

Pollicott
Pollicott, M.
Ruelle, D.
microcanonical

ensemble
ensemble!microcanonical
state

space!discretization

operators, and finding smart ways of computing their eigenvalues requires some
thought. In chapter 11 we undertook the first step, and replaced the ad hoc parti-
tioning (16.14) by the intrinsic, topologically invariant partitioning. In chapter15
we applied this information to our first application of the evolution operator for-
malism, evaluation of the topological entropy, and the growth rate of the number
of topologically distinct orbits. In chapters 18 and 19, this small victory will
be refashioned into a systematic method for computing eigenvalues of evolution
operators in terms of periodic orbits.

Commentary

Remark 17.1 ‘Pressure’. The quantity
〈
exp(β · At)

〉
is called a ‘partition function’ by

Ruelle [1]. Mathematicians decorate it with considerably more Greek and Gothic letters
than is done in this treatise. By a somewhat unfortuitous analogy either Ruelle [ 1] or ⇓PRIVATE
Bowen [2] had given name ‘pressure’ or ’topological pressure’ P(a) to s(β) (where a

⇑PRIVATEis the observable introduced in sect. 17.1.1), defined by the ‘large system’ limit (17.11).
As we shall also apply the theory to computating the physical gas pressure exerted on
the walls of a container by a bouncing particle (in sections still unwritten), we refer to ⇓PRIVATE

⇑PRIVATE
s(β) as simply the leading eigenvalue of the evolution operator introduced in sect. 16.5.
The ‘convexity’ properties such as P(a) ≤ P(|a|) will be pretty obvious consequences of
the definition (17.11). In the case that L is the Perron-Frobenius operator (16.10), the
eigenvalues {s0(β), s1(β), · · ·} are called the Ruelle-Pollicott resonances [3, 4, 5], with the
leading one, s(β) = s0(β) being the one of main physical interest. In order to aid
the reader in digesting the mathematics literature, we shall try to point out the notational
correspondences whenever appropriate. The rigorous formalism is replete with lims, sups,
infs, Ω-sets which are not really essential to understanding of the theory, and are avoided
in this book.

23 24

Remark 17.2 Microcanonical ensemble. In statistical mechanics the space average
(17.7) performed over the Hamiltonian system constant energy surface invariant measure
ρ(x)dx = dqdp δ(H(q, p)− E) of volume ω(E) =

∫
Mdqdp δ(H(q, p)− E)

〈a(t)〉 =
1

ω(E)

∫
M

dqdp δ(H(q, p)− E)a(q, p, t) (17.44)

is called the microcanonical ensemble average.

Remark 17.3 State space discretization. Ref. [10] discusses numerical discretiza-
tons of state space, and construction of Perron-Frobenius operators as stochastic matrices,

23Predrag: add someplace h(σ) + σ(a) ≤ P(a)
24Predrag: remark also that Kolmolgorov and typological ‘entropies’ are not entropies, but en-

tropy production rates
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or directed weighted graphs, as coarse-grained models of the global dynamics, with trans-
port rates between state space partitions computed using this matrix of transition proba-
bilities; a rigorous discussion of some of the former features is included in ref. [ 11].
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Exercises boyscout

17.1. Expectation value of a vector observable.

Check and extend the expectation value formulas (17.12)
by evaluating the derivatives of s(β) up to 4-th order for
the space average

〈
exp(β · At)

〉
with ai a vector quantity:

(a)

∂s
∂βi

∣∣∣∣∣
β=0

= lim
t→∞

1
t

〈
At

i

〉
= 〈ai〉 , (17.45)

(b)

∂2s
∂βi∂β j

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t

(〈
At

iA
t
j

〉
−

〈
At

i

〉 〈
At

j

〉)
= lim

t→∞

1
t

〈
(At

i − t 〈ai〉)(At
j − t

〈
a j

〉
)
〉
.

Note that the formalism is smart: it automatically
yields the variance from the mean, rather than sim-
ply the 2nd moment

〈
a2

〉
.

(c) compute the third derivative of s(β).

(d) compute the fourth derivative assuming that the mean
in (17.45) vanishes, 〈ai〉 = 0. The 4-th order mo-
ment formula

K(t) =

〈
x4(t)

〉
〈
x2(t)

〉2
− 3 (17.46)

that you have derived is known as kurtosis (17.21):
it measures a deviation from what the 4-th order
moment would be were the distribution a pure Gaus-
sian (see (26.22) for a concrete example). If the ob-
servable is a vector, the kurtosis K(t) is given by∑

i j

[〈
AiAiA jA j

〉
+ 2

(〈
AiA j

〉 〈
A jAi

〉
− 〈AiAi〉

〈
A jA j

〉)]
(∑

i 〈AiAi〉
)2

17.2. Pinball escape rate from numerical simulation∗. Es-
timate the escape rate for R : a = 6 3-disk pinball by
shooting 100,000 randomly initiated pinballs into the 3-
disk system and plotting the logarithm of the number of
trapped orbits as function of time. 25 For comparison, a
numerical simulation of ref. [3] yields γ = .410 . . .. 26

25Predrag: put here 〈n〉 numbers from Per.
26Predrag: list numerical results for different R.
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Chapter 18

Trace formulas

The trace formula is not a formula, it is an idea.

—Martin Gutzwiller

Dynamics is posed in terms of local equations, but the ergodic averages re-
quire global information. How can we use a local description of a flow
to learn something about the global behavior? In chapter 17 we have re-

lated global averages to the eigenvalues of appropriate evolution operators. Here
we show that the traces of evolution operators can be evaluated as integrals over
Dirac delta functions, and in this way the spectra of evolution operators become
related to periodic orbits. If there is one idea that one should learn about chaotic
dynamics, it happens in this chapter, and it is this: there is a fundamental local ↔
global duality which says that

the spectrum of eigenvalues is dual to the spectrum of periodic orbits

For dynamics on the circle, this is called Fourier analysis; for dynamics on well-
tiled manifolds, Selberg traces and zetas; and for generic nonlinear dynamical
systems the duality is embodied in the trace formulas that we will now derive.
These objects are to dynamics what partition functions are to statistical mechanics.

The above phrasing is a bit too highfalutin, so it perhaps pays to go again
through the quick sketch of sects. 1.5 and 1.6. We have a state space that we
would like to tessellate by periodic orbits, one short orbit per neighborhood, as in
figure 18.1 (a). How big is the neighborhood of a given cycle?

Along stable directions neighbors of the periodic orbit get closer with time,
so we only have to keep track of those who are moving away along the unsta-
ble directions. The fraction of those who remain in the neighborhood for one
recurrence time Tp is given by the overlap ratio along the initial sphere and the
returning ellipsoid, figure 18.1 (b), and along the expanding eigen-direction e(i)

of Jp(x) this is given by the expanding Floquet multiplier 1/|Λp,i|. A bit more
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Figure 18.1: (a) Smooth dynamics tesselated by
the skeleton of periodic points, together with their
linearized neighborhoods. (b) Jacobian matrix Jp

maps spherical neighborhood of x0 → ellipsoidal
neighborhood time Tp later, with the overlap ratio
along the expanding eigdirection e(i) of Jp(x) given
by the expanding eigenvalue 1/|Λp,i |.

(a) (b)

J

+   x δ

δp

x0

0x +      x

thinking leads to the conclusion that one also cares about how long it takes to re-
turn (the long returns contributing less to the time averages), so the weight tp
of the p-neighborhood tp = e−sTp/|Λp| decreases exponentially both with the
shortest recurrence period and the product (5.9) of expanding Floquet multipli-
ers Λp =

∏
eΛp,e . With emphasis on expanding - the flow could be a 60,000-

dimensional dissipative flow, and still the neighborhood is defined by the handful
of expanding eigen-directions. Now the long-time average of a physical observ-
able -let us say power D dissipated by viscous friction of a fluid flowing through a
pipe- can be estimated by its mean value (17.6) Dp/Tp computed on each neigh-
borhood, and weighted by the above estimate

〈D〉 ≈
∑

p

Dp

Tp

e−sTp

|Λp|
.

Wrong in detail, this estimate is the crux of many a Phys. Rev. Letter, and in its
essence the key result of this chapter, the ‘trace formula.’ Here we redo the argu-
ment in a bit greater depth, and derive the correct formula (20.23) for a long time
average 〈D〉 as a weighted sum over periodic orbits. It will take three chapters,
but it is worth it - the reward is an exact (i.e., not heuristic) and highly convergent
and controllable formula for computing averages over chaotic flows.

18.1 A trace formula for maps

Our extraction of the spectrum of L commences with the evaluation of the trace.
As the case of discrete time mappings is somewhat simpler, we first derive the
trace formula for maps, and then, in sect.18.2, for flows. The final formula (18.23)
covers both cases.

To compute an expectation value using (17.23) we have to integrate over all
the values of the kernel Ln(x, y). Were Ln a matrix sum over its matrix elements
would be dominated by the leading eigenvalue as n → ∞ (we went through the
argument in some detail in sect. 15.1). As the trace of Ln is also dominated by the
leading eigenvalue as n → ∞, we might just as well look at the trace for which we
have a very explicit formula

exercise 15.3
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observable
monodromy matrix
Floquet!multiplier
expanding!Floquet

multipliers
marginal!stability
contracting!Floquet

multipliers

trLn =

∫
dxLn(x, x) =

∫
dx δ

(
x − f n(x)

)
eβ·A

n(x) . (18.1)

On the other hand, by its matrix motivated definition, the trace is the sum over
eigenvalues (17.29),

trLn =

∞∑
α=0

esαn . (18.2)

We find it convenient to write the eigenvalues as exponents esα rather than as
multipliers λα, and we assume that spectrum ofL is discrete, s0, s1, s2, · · ·, ordered
so that Re sα ≥ Re sα+1.

For the time being we choose not to worry about convergence of such sums,
ignore the question of what function space the eigenfunctions belong to, and com-
pute the eigenvalue spectrum without constructing any explicit eigenfunctions.
We shall revisit these issues in more depth in chapter23, and discuss how lack of
hyperbolicity leads to continuous spectra in chapter24.

18.1.1 Hyperbolicity assumption

We have learned in sect. 16.2 how to evaluate the delta-function integral (18.1).
section 16.2

According to (16.8) the trace (18.1) picks up a contribution whenever x −
f n(x) = 0, i.e., whenever x belongs to a periodic orbit. For reasons which we
will explain in sect. 18.2, it is wisest to start by focusing on discrete time systems.
The contribution of an isolated prime cycle p of period np for a map f can be
evaluated by restricting the integration to an infinitesimal open neighborhood Mp

around the cycle,

tr pLnp =

∫
Mp

dx δ
(
x − f np(x)

)
=

np∣∣∣∣det
(
1 − Mp

)∣∣∣∣ = np

d∏
i=1

1
|1 − Λp,i|

. (18.3)

For the time being we set here and in (16.9) the observable eβAp = 1. Periodic orbit
Jacobian matrix Mp is also known as the monodromy matrix, and its eigenvalues
Λp,1, Λp,2, . . ., Λp,d as the Floquet multipliers.

section 5.2.2

We sort the eigenvalues Λp,1, Λp,2, . . ., Λp,d of the p-cycle [d×d] monodromy
matrix Mp into expanding, marginal and contracting sets {e,m, c}, as in (5.8). As
the integral (18.3) can be evaluated only if Mp has no eigenvalue of unit magni-
tude, we assume that no eigenvalue is marginal (we shall show in sect. 18.2 that
the longitudinal Λp,d+1 = 1 eigenvalue for flows can be eliminated by restricting
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hyperbolicity
assumption

three-disk@3-
disk!hyperbolicity

stability!elliptic
small divisor problem

the consideration to the transverse monodromy matrix Mp), and factorize the trace
(18.3) into a product over the expanding and the contracting eigenvalues

∣∣∣∣det
(
1 − Mp

)∣∣∣∣−1
=

1
|Λp|

∏
e

1
1 − 1/Λp,e

∏
c

1
1 − Λp,c

, (18.4)

where Λp =
∏

eΛp,e is the product of expanding eigenvalues. Both Λp,c and
1/Λp,e are smaller than 1 in absolute value, and as they are either real or come in
complex conjugate pairs we are allowed to drop the absolute value brackets | · · · |
in the above products.

The hyperbolicity assumption requires that the stabilities of all cycles included
in the trace sums be exponentially bounded away from unity:

|Λp,e| > eλeTp any p, any expanding |Λp,e| > 1

|Λp,c| < e−λcTp any p, any contracting |Λp,c| < 1 , (18.5)

where λe, λc > 0 are strictly positive bounds on the expanding, contracting cycle
Lyapunov exponents. If a dynamical system satisfies the hyperbolicity assump-
tion (for example, the well separated 3-disk system clearly does), the Lt spectrum
will be relatively easy to control. If the expansion/contraction is slower than ex-
ponential, let us say |Λp,i| ∼ Tp

2, the system may exhibit “phase transitions,” and
the analysis is much harder - we shall discuss this in chapter24.

Example 18.1 Elliptic stability. Elliptic stability, i.e., a pair of purely imaginary
exponentsΛm = e±iθ is excluded by the hyperbolicity assumption. While the contribution
of a single repeat of a cycle

1
(1 − eiθ)(1 − e−iθ)

=
1

2(1 − cos θ)
(18.6)

does not make (16.9) diverge, if Λm = ei2πp/r is rth root of unity, 1/
∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ di-
verges. For a generic θ repeats cos(rθ) behave badly and by ergodicity 1 − cos(rθ) is
arbitrarily small, 1− cos(rθ) < ε, infinitely often. This goes by the name of “small divisor
problem,” and requires a separate treatment.

It follows from (18.4) that for long times, t = rTp → ∞, only the product of

expanding eigenvalues matters,
∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ → |Λp|r. We shall use this fact to
motivate the construction of dynamical zeta functions in sect.19.3. However, for
evaluation of the full spectrum the exact cycle weight (18.3) has to be kept.

18.1.2 A classical trace formula for maps

If the evolution is given by a discrete time mapping, and all periodic points have
Floquet multipliers |Λp,i| � 1 strictly bounded away from unity, the trace Ln is
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Dirac delta
integrated observable
observable!integrated
prime cycle
cycle!prime
Laplace!transform,

discrete
generating function

given by the sum over all periodic points i of period n:

trLn =

∫
dxLn(x, x) =

∑
xi∈Fix f n

eβ·Ai

|det (1 − Mn(xi))|
. (18.7)

Here Fix f n = {x : f n(x) = x} is the set of all periodic points of period n, and
Ai is the observable (17.5) evaluated over n discrete time steps along the cycle to
which the periodic point xi belongs. The weight follows from the properties of
the Dirac delta function (16.8) by taking the determinant of ∂i(x j − f n(x) j). If a
trajectory retraces itself r times, its monodromy matrix is Mr

p, where Mp is the
[d×d] monodromy matrix (4.5) evaluated along a single traversal of the prime
cycle p. As we saw in (17.5), the integrated observable An is additive along the
cycle: If a prime cycle p trajectory retraces itself r times, n = rnp, we obtain Ap

repeated r times, Ai = An(xi) = rAp, xi ∈ Mp.

A prime cycle is a single traversal of the orbit, and its label is a non-repeating
symbol string. There is only one prime cycle for each cyclic permutation class.
For example, the four periodic points 0011 = 1001 = 1100 = 0110 belong to the

chapter 11
same prime cycle p = 0011 of length 4. As both the stability of a cycle and the
weight Ap are the same everywhere along the orbit, each prime cycle of length np

contributes np terms to the sum, one for each periodic point. Hence (18.7) can be
rewritten as a sum over all prime cycles and their repeats

trLn =
∑

p

np

∞∑
r=1

erβ·Ap∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣δn,npr , (18.8)

with the Kronecker delta δn,npr projecting out the periodic contributions of total
period n. This constraint is awkward, and will be more awkward still for the
continuous time flows, where it would yield a series of Dirac delta spikes. In both
cases a Laplace transform rids us of the time periodicity constraint.

In the sum over all cycle periods,

∞∑
n=1

zntrLn = tr
zL

1 − zL
=

∑
p

np

∞∑
r=1

znprerβ·Ap∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (18.9)

the constraint δn,npr is replaced by weight zn . Such discrete time Laplace trans-
form of trLn is usually referred to as a “generating function.” Why this transform?
We are actually not interested in evaluating the sum (18.8) for any particular fixed
period n; what we are interested in is the long time n → ∞ behavior. The trans-
form trades in the large time n behavior for the small z behavior. Expressing the
trace as in (18.2), in terms of the sum of the eigenvalues of L, we obtain the trace
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trace!formula!maps
transfer!operator
space!density

functions
piecewise!constant

function
function!space,

piecewise constant

formula for maps: 1

∞∑
α=0

zesα

1 − zesα
=

∑
p

np

∞∑
r=1

znpr erβ·Ap∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (18.10)

This is our second example of the duality between the spectrum of eigenvalues
and the spectrum of periodic orbits, announced in the introduction to this chapter.
(The first example was the topological trace formula (15.10).) ⇓PRIVATE

If the above derivation is too formal for your taste, you might want to read
sect. ?? 2

⇑PRIVATE

fast track:

sect. 18.2, p. 439

Example 18.2 A trace formula for transfer operators: For a piecewise-linear map
(16.11), we can explicitly evaluate the trace formula. By the piecewise linearity and the
chain rule Λp = Λ

n0
0 Λ

n1
1 , where the cycle p contains n0 symbols 0 and n1 symbols 1, the

trace (18.7) reduces to 3

trLn =

n∑
m=0

(
n
m

)
1

|1 − Λm
0Λ

n−m
1 |
=

∞∑
k=0

⎛⎜⎜⎜⎜⎝ 1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

⎞⎟⎟⎟⎟⎠n

, (18.11)

with eigenvalues 4 5

esk =
1

|Λ0|Λk
0

+
1

|Λ1|Λk
1

. (18.12)

As the simplest example of spectrum for such dynamical system, consider the symmet-
ric piecewise-linear 2-branch repeller (16.11) for which Λ = Λ1 = −Λ0. In this case all
odd eigenvalues vanish, and the even eigenvalues are given by esk = 2/Λk+1, k even.

exercise 16.7
Asymptotically the spectrum (18.12) is dominated by the lesser of the two fixed

point slopes Λ = Λ0 (if |Λ0| < |Λ1|, otherwise Λ = Λ1), and the eigenvalues esk fall off
exponentially as 1/Λk, dominated by the single less unstable fixed-point.

example 23.1
For k = 0 this is in agreement with the explicit transfer matrix (16.13) eigenval-

ues (17.39). The alert reader should experience anxiety at this point. Is it not true that
we have already written down explicitly the transfer operator in (16.13), and that it is
clear by inspection that it has only one eigenvalue es0 = 1/|Λ0| + 1/|Λ1|? The example
at hand is one of the simplest illustrations of necessity of defining the space that the
operator acts on in order to define the spectrum. The transfer operator (16.13) is
the correct operator on the space of functions piecewise constant on the state space
partition {M0,M1}; on this space the operator indeed has only the eigenvalue es0 . As

1Predrag: box this relation
2Predrag: Rondoni’s section s-Still-another was killed by Vattay and needs resurrection as an

appendix, OldChapter/getused2.tex, section Orbital measures, in parallel with this chapter.
3Predrag: define transfer operator; incorporate the wiki
4Predrag: restore the smooth 2-branch case here.
5Predrag: move this to symbolic.tex
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Laplace!transform
trace!formula!flows

we shall see in example 23.1, the full spectrum (18.12) corresponds to the action of the
transfer operator on the space of real analytic functions.

The Perron-Frobenius operator trace formula for the piecewise-linear map (16.11)
follows from (18.9)

tr
zL

1 − zL
=

z
(

1
|Λ0−1| +

1
|Λ1−1|

)
1 − z

(
1

|Λ0−1| +
1

|Λ1−1|

) , (18.13)

verifying the trace formula (18.10).

18.2 A trace formula for flows

Amazing! I did not understand a single word.

—Fritz Haake

(R. Artuso and P. Cvitanović)

Our extraction of the spectrum of Lt commences with the evaluation of the trace

trLt = tr eAt =

∫
dxLt(x, x) =

∫
dx δ

(
x − f t(x)

)
eβ·A

t(x) . (18.14)

We are not interested in any particular time t, but into the long-time behavior
as t → ∞, so we need to transform the trace from the “time domain” into the
“frequency domain.” A generic flow is a semi-flow defined forward in time, so
the appropriate transform is a Laplace rather than Fourier.

For a continuous time flow, the Laplace transform of an evolution operator
yields the resolvent (17.33). This is a delicate step, since the evolution operator
becomes the identity in the t → 0+ limit. In order to make sense of the trace we
regularize the Laplace transform by a lower cutoff ε smaller than the period of any
periodic orbit, and write

∫ ∞

ε
dt e−st trLt = tr

e−(s−A)ε

s −A =

∞∑
α=0

e−(s−sα)ε

s − sα
, (18.15)

where A is the generator of the semigroup of dynamical evolution, see sect.16.5.
Our task is to evaluate trLt from its explicit state space representation.

18.2.1 Integration along the flow

As any pair of nearby points on a cycle returns to itself exactly at each cycle
period, the eigenvalue of the Jacobian matrix corresponding to the eigenvector
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Laplace!transformalong the flow necessarily equals unity for all periodic orbits. Hence for flows the
section 5.3.1

trace integral trLt requires a separate treatment for the longitudinal direction. To
evaluate the contribution of an isolated prime cycle p of period Tp, restrict the in-
tegration to an infinitesimally thin tube Mp enveloping the cycle (see figure 1.13),
and consider a local coordinate system with a longitudinal coordinate dx‖ along
the direction of the flow, and d−1 transverse coordinates x⊥ ,

tr p Lt =

∫
Mp

dx⊥dx‖ δ
(
x⊥ − f t

⊥(x)
)
δ
(
x‖ − f t(x‖)

)
. (18.16)

(we set β = 0 in the exp(β · At) weight for the time being). Pick a point on the
prime cycle p, and let

v(x‖) =

⎛⎜⎜⎜⎜⎜⎜⎝ d∑
i=1

vi(x)2

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

(18.17)

be the magnitude of the tangential velocity at any point x = (x‖, 0, · · · , 0) on the
cycle p. The velocity v(x) must be strictly positive, as otherwise the orbit would
stagnate for infinite time at v(x) = 0 points, and that would get us nowhere.

As 0 ≤ τ < Tp, the trajectory x‖(τ) = f τ(xp) sweeps out the entire cycle, and
for larger times x‖ is a cyclic variable of periodicity Tp,

x‖(τ) = x‖(τ + rTp) r = 1, 2, · · · (18.18)

We parametrize both the longitudinal coordinate x‖(τ) and the velocity v(τ) =
v(x‖(τ)) by the flight time τ, and rewrite the integral along the periodic orbit as

∮
p

dx‖ δ
(
x‖ − f t(x‖)

)
=

∮
p

dτ v(τ) δ
(
x‖(τ) − x‖(τ + t

)
) . (18.19)

By the periodicity condition (18.18) the Dirac δ function picks up contributions
for t = rTp, so the Laplace transform can be split as

∫ ∞

0
dt e−st δ

(
x‖(τ) − x‖(τ + t)

)
=

∞∑
r=1

e−sTpr Ir

Ir =

∫ ε

−ε
dt e−st δ

(
x‖(τ) − x‖(τ + rTp + t

)
) .

Taylor expanding and applying the periodicity condition (18.18), we have x‖(τ +
rTp + t) = x‖(τ) + v(τ)t + . . .,

Ir =

∫ ε

−ε
dt e−st δ

(
x‖(τ) − x‖(τ + rTp + t

)
) =

1
v(τ)

,
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relative!solutionsso the remaining integral (18.19) over τ is simply the cycle period
∮

p
dτ = Tp.

The contribution of the longitudinal integral to the Laplace transform is thus

∫ ∞

0
dt e−st

∮
p

dx‖ δ
(
x‖ − f t(x‖)

)
= Tp

∞∑
r=1

e−sTpr . (18.20)

This integration is a prototype of what needs to be done for each marginal direc-
tion, whenever existence of a conserved quantity (energy in Hamiltonian flows,
angular momentum, translational invariance, etc.) implies existence of a smooth
manifold of equivalent (equivariant) solutions of dynamical equations.

⇓PRIVATE

in depth:

sect. 25, p. 605
⇑PRIVATE

18.2.2 Stability in the transverse directions

Think of the τ = 0 point in above integrals along the cycle p as a choice of a
particular Poincaré section. As we have shown in sect. 5.5, the transverse Flo-
quet multipliers do not depend on the choice of a Poincaré section, so ignoring
the dependence on x‖(τ) in evaluating the transverse integral in (18.16) is justi-
fied. For the transverse integration variables the Jacobian matrix is defined in a
reduced Poincaré surface of section P of fixed x‖. Linearization of the periodic
flow transverse to the orbit yields

∫
P

dx⊥δ
(
x⊥ − f

rTp
⊥ (x)

)
=

1∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (18.21)

where Mp is the p-cycle [d−1×d−1] transverse monodromy matrix. As in (18.5)
we have to assume hyperbolicity, i.e., that the magnitudes of all transverse eigen-
values are bounded away from unity.

Substitution (18.20), (18.21) in (18.16) leads to an expression for trLt as a
sum over all prime cycles p and their repetitions

∫ ∞

ε
dt e−st trLt =

∑
p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (18.22)

The ε → 0 limit of the two expressions for the resolvent, (18.15) and (18.22), now
yields the classical trace formula for flows

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ . (18.23)
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Figure 18.2: (continuation of figure 1.13) RHS of the
trace formula (18.23). Tubes still to be drawn

exercise 18.1

(If you are worried about the convergence of the resolvent sum, keep the ε regu-
larization.)

⇓PRIVATE

6

⇑PRIVATE

This formula is still another example of the duality between the (local) cycles
and (global) eigenvalues. 7 If Tp takes only integer values, we can replace e−s → z
throughout, so the trace formula for maps (18.10) is a special case of the trace
formula for flows. The relation between the continuous and discrete time cases
can be summarized as follows:

Tp ↔ np

e−s ↔ z

etA ↔ Ln . (18.24)

The beauty of trace formulas is that they are coordinate independent: the∣∣∣∣det
(
1 − Mp

)∣∣∣∣ = |det (1 − MTp(x))| and eβAp = eβAT p (x) contributions to the cy-
cle weight tp are both independent of the starting periodic point x ∈ Mp. For
the Jacobian matrix Mp this follows from the chain rule for derivatives, and for
eβAp from the fact that the integral over eβAt(x) is evaluated along a closed loop. In

addition, as we have shown in sect. 5.3,
∣∣∣∣det

(
1 − Mp

)∣∣∣∣ is invariant under smooth

coordinate transformations. 8

We could now proceed to estimate the location of the leading singularity of
tr (s−A)−1 by extrapolating finite cycle length truncations of (18.23) by methods

6Niall: The derivation of this result does not seem manifestly obvious to me. For the contribu-
tion of a single periodic orbit I first define n-1 coordinates transverse to the orbit and one coordinate
(call it z) parallel to the orbit. The transverse integral then gives |detI − J| (where the Jacobian
is then defined in a reduced surface of section of constant z.) To do the integral along the orbit∮

dzδ(z − f t(z)) I first changed variables from the spatial z to a time coordinate through dz = vdτ
where v(τ) is the local velocity along the orbit at that point. In that event z − f t(z) equals (locally)
(T − t)v(τ). When we take the v(τ) out of the delta function, it cancels with the factor coming from
the change of variables so that

∮
dzδ(z − f t(z)) =

∮
dτδ(T − t). Since the integrand is independent

of τ, we can take it outside and the integral is finally trivial so we get the desired result.
7Predrag: make a learned comment about how this is a generalization of the Poisson resumma-

tion technique
8Predrag: misleading: if a = x, this will depend on coordinates
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such as Padé approximants. However, it pays to first perform a simple resumma-
tion which converts this divergence of a trace into a zero of a spectral determinant.
We shall do this in sect. 19.2, but first a brief refresher of how all this relates to
the formula for escape rate (1.8) offered in the introduction might help digest the
material.

fast track:

sect. 19, p. 449

18.3 An asymptotic trace formula

In order to illuminate the manipulations of sect. 18.1 and relate them to
something we already possess intuition about, we now rederive the heuristic sum
of sect. 1.5.1 from the exact trace formula (18.10). The Laplace transforms (18.10)
or (18.23) are designed to capture the time → ∞ asymptotic behavior of the trace
sums. By the hyperbolicity assumption (18.5), for t = Tpr large the cycle weight
approaches

∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ → |Λp|r , (18.25)

where Λp is the product of the expanding eigenvalues of Mp. Denote the corre-
sponding approximation to the nth trace (18.7) by

Γn =

(n)∑
i

1
|Λi|

, (18.26)

and denote the approximate trace formula obtained by replacing the cycle weights∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ by |Λp|r in (18.10) by Γ(z). Equivalently, think of this as a replace-
ment of the evolution operator (17.25) by a transfer operator (as in example 18.2).
For concreteness consider a dynamical system whose symbolic dynamics is com-
plete binary, for example the 3-disk system figure1.6. In this case distinct periodic
points that contribute to the nth periodic points sum (18.8) are labeled by all ad-
missible itineraries composed of sequences of letters si ∈ {0, 1}:

Γ(z) =
∞∑

n=1

znΓn =

∞∑
n=1

zn
∑

xi∈Fix f n

eβ·A
n(xi)

|Λi|

= z

{
eβ·A0

|Λ0|
+

eβ·A1

|Λ1|

}
+ z2

{
e2β·A0

|Λ0|2
+

eβ·A01

|Λ01|
+

eβ·A10

|Λ10|
+

e2β·A1

|Λ1|2

}
+z3

{
e3β·A0

|Λ0|3
+

eβ·A001

|Λ001|
+

eβ·A010

|Λ010|
+

eβ·A100

|Λ100|
+ . . .

}
(18.27)
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Both the cycle averages Ai and the stabilities Λi are the same for all points xi ∈ Mp

in a cycle p. Summing over repeats of all prime cycles we obtain

Γ(z) =
∑

p

nptp

1 − tp
, tp = znpeβ·Ap/|Λp| . (18.28)

This is precisely our initial heuristic estimate (1.9). Note that we could not per-

form such sum over r in the exact trace formula (18.10) as
∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ �∣∣∣∣det
(
1 − Mp

)∣∣∣∣r; the correct way to resum the exact trace formulas is to first ex-
pand the factors 1/|1 − Λp,i|, as we shall do in (19.9).

section 19.2

If the weights eβAn(x) are multiplicative along the flow, and the flow is hyper-
bolic, for given β the magnitude of each |eβAn(xi)/Λi| term is bounded by some
constant Mn. The total number of cycles grows as 2n (or as ehn, h = topological
entropy, in general), and the sum is convergent for z sufficiently small, |z| < 1/2M.
For large n the nth level sum (18.7) tends to the leading Ln eigenvalue ens0 . Sum-
ming this asymptotic estimate level by level

Γ(z) ≈
∞∑

n=1

(zes0 )n
=

zes0

1 − zes0
(18.29)

we see that we should be able to determine s0 by determining the smallest value
of z = e−s0 for which the cycle expansion (18.28) diverges.

If one is interested only in the leading eigenvalue of L, it suffices to consider
the approximate trace Γ(z). We will use this fact in sect. 19.3 to motivate the
introduction of dynamical zeta functions (19.14), and in sect. 19.5 we shall give
the exact relation between the exact and the approximate trace formulas.

Résumé

The description of a chaotic dynamical system in terms of cycles can be visual-
ized as a tessellation of the dynamical system, figure 18.1, with a smooth flow
approximated by its periodic orbit skeleton, each region Mi centered on a peri-
odic point xi of the topological length n, and the size of the region determined
by the linearization of the flow around the periodic point. The integral over such
topologically partitioned state space yields the classical trace formula

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ .
Now that we have a trace formula, one might ask: what is it good for? As it
stands, it is a scary divergent formula which relates the unspeakable infinity of
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ceiling function
Dirac delta
Feigenbaum!constant

global eigenvalues to the unthinkable infinity of local unstable cycles. However,
it is a good stepping stone on the way to construction of spectral determinants (to
which we turn next), and a first hint that when the going is good, the theory might
turn out to be convergent beyond our wildest dreams (chapter 23). In order to
implement such formulas, we will have to determine “all” prime cycles. The first
step is topological: enumeration of all admissible cycles undertaken in chapter12.
The more onerous enterprize of actually computing the cycles we first approach
traditionally, as a numerical task in chapter 13, and then more boldly as a part and
parcel of variational foundations of classical and quantum dynamics in chapter33.

Commentary

Remark 18.1 Who’s dunne it? Continuous time flow traces weighted by cycle
periods were introduced by Bowen [1] who treated them as Poincaré section suspensions
weighted by the “time ceiling” function (3.5). They were used by Parry and Pollicott [2].
The derivation presented here [3] parallels closely to the derivation of the Gutzwiller ⇓PRIVATE
semiclassical trace formula, chapters 38 and 39.

⇑PRIVATE
⇓PRIVATE

Remark 18.2 t → 0+ regularization. 9 We remark again that in taking the Laplace
transform that led to (18.23), we have ignored a possible t → 0+ diverging term, as we
do not know how to profitably regularize the delta function kernel in this limit. In the
quantum (or heat kernel) case such volume term gives rise to the Weyl mean density of
states (see sect. 39.1.1). A more careful treatment would regularize the divergent sum
in (18.23), and possibly assign to the volume term some interesting role in the theory of
classical resonance spectra. 10 11

⇑PRIVATE

Remark 18.3 Flat and sharp traces. In the above formal derivation of trace for-
mulas we cared very little whether our sums were well posed. In the Fredholm theory
traces like (18.14) require compact operators with continuous function kernels. This is
not the case for our Dirac delta evolution operators: nevertheless, there is a large class
of dynamical systems for which our results may be shown to be perfectly legal. In the
mathematical literature expressions like (18.7) are called flat traces (see the review [4]
and chapter 23). Other names for traces appear as well: for instance, in the context of 1-
dimensional mappings, sharp traces refer to generalizations of ( 18.7) where contributions
of periodic points are weighted by the Lefschetz sign ±1, reflecting whether the periodic
point sits on a branch of nth iterate of the map which crosses the diagonal starting from
below or starting from above [10]. Such traces are connected to the theory of kneading in-
variants (see ref. [4] and references therein). Traces weighted by ±1 sign of the derivative
of the fixed point have been used to study the period doubling repeller, leading to high
precision estimates of the Feigenbaum constant δ, refs. [5, 6, 6].

9Predrag: Tanner says he has fixed this.
10Roberto: the remark and the exercise almost coincide
11Baladi: (18.23) is nonzero only if t > 0 is an integer multiple of T . So the limit as t → 0± is

just zero, no? so what or why you should regularize? For t = 0 you get the identity operator whose
trace is divergent so there should not be great hope to give a meaning to the l.h.s. of (18.23).
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Exercises boyscout

18.1. t → 0+ regularization of eigenvalue sums∗∗. In
taking the Laplace transform (18.23) we have ignored the
t → 0+ divergence, as we do not know how to regular-
ize the delta function kernel in this limit. In the quantum
(or heat kernel) case this limit gives rise to the Weyl or
Thomas-Fermi mean eigenvalue spacing(see sect. 39.1.1). ⇓PRIVATERegularize the divergent sum in (18.23) following (for

⇑PRIVATE

⇓PRIVATE
example) the prescription of appendix N.6 and assign to

⇑PRIVATE

such volume term some interesting role in the theory of
classical resonance spectra. E-mail the solution to the au-
thors.

18.2. General weights. (easy) Let f t be a flow and Lt the

operator 12

Ltg(x) =
∫

dy δ(x − f t(y))w(t, y)g(y)

where w is a weight function. In this problem we will try
and determine some of the properties w must satisfy.

(a) Compute LsLtg(x) to show that

w(s, f t(x))w(t, x) = w(t + s, x) .

(b) Restrict t and s to be integers and show that the
most general form of w is

w(n, x) = g(x)g( f (x))g( f 2(x)) · · ·g( f n−1(x)) ,

for some g that can be multiplied. Could g be a
function from Rn1 �→ Rn2 ? (ni ∈ N.) ⇓PRIVATE

(c) (not yet tried out) 13 Generalize the expression for
w for continuous time. Use g = ep and convert the
infinite product into an exponential of an integral. ⇑PRIVATE

⇓PRIVATE18.3. Higher order traces. One way to define the de-
terminant of a matrix is to consider in a d-dimensional
vector space the multilinear function Δ (this will turn out
to be the determinant function where the matrix is speci-
fied by the column vectors, or if you like wedge products
Δ(e1, . . . , ed = e1 ∧ · · · ∧ ed). It takes d vectors as argu-
ments and is linear in each of them

Δ(e1, . . . , αek + e′k, . . . , ed) = αΔ(e1, . . . , ek, . . . , ed) + Δ(e1, . . . , e
′
k, . . . , ed) .

This function is also anti-symmetric: if we swap the po-
sition of two of its arguments it changes sign

Δ(e1, . . . , ek, . . . , e j, . . . , ed) = −Δ(e1, . . . , e j, . . . , ek, . . . , ed) .

12Predrag: recheck whether this is backwards
13Predrag: fix - done in the text?
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One can show that up to a multiplicative constant, this
function is unique. Assume that it has been shown unique.

(a) Show thatΔ(Ae1, . . . , Aed) differs fromΔ(e1, . . . , ed)
by a multiplicative constant (let us call it det A), that
is,

Δ(Ae1, . . . , Aed) = det (A)Δ(e1, . . . , ed)

Take this as the definition of the determinant of a
matrix.

(b) Show that det (AB) = det (A)det (B)

(c) Try and give a definition for trace of a matrix in
terms of Δ. Think of det (I + εA) = 1 + εtr A as
ε → 0 and show that

tr A =
∑

k

Δ(e1, . . . , Aek, . . . , ed)

(d) For a 3 × 3 matrix, expand det (I − A).

(e) Try the general case.

det (I − A) =
∑
k≥0

(−1)ktr k(A) ,

where tr k(A) means the summation∑
j1,..., jk

Δ(. . . Ae j1 , . . . , Ae jk︸���������������︷︷���������������︸
k A′s

)

(f) If the ek are a basis for the vector space, them

Δ(. . . Ae j1 , . . . , Ae jk︸���������������︷︷���������������︸
k A′s

)

is really the determinant of the matrix A with only k
of the columns, i.e., a k× k minor. So the expansion
is really an expansion in minors.

⇑PRIVATE
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Chapter 19

Spectral determinants

“It seems very pretty,” she said when she had finished it,
“but it’s rather hard to understand!” (You see she didn’t
like to confess, even to herself, that she couldn’t make it
out at all.) “Somehow it seems to fill my head with ideas
— only I don’t exactly know what they are!”

—Lewis Carroll, Through the Looking Glass

The problem with the trace formulas (18.10), (18.23) and (18.28) is that they
diverge at z = e−s0 , respectively s = s0, i.e., precisely where one would
like to use them. While this does not prevent numerical estimation of some

“thermodynamic” averages for iterated mappings, in the case of the Gutzwiller
trace formula of chapter 39 this leads to a perplexing observation that crude es- ⇓PRIVATE

chapter 39

⇑PRIVATE

timates of the radius of convergence seem to put the entire physical spectrum
out of reach. We shall now cure this problem by thinking, at no extra computa-
tional cost; while traces and determinants are formally equivalent, determinants
are the tool of choice when it comes to computing spectra. The idea is illus-

chapter 23

⇓PRIVATE
trated by figure 1.15: Determinants tend to have larger analyticity domains be-

⇑PRIVATE
cause if trL/(1− zL) = − d

dz ln det (1− zL) diverges at a particular value of z, then
det (1− zL) might have an isolated zero there, and a zero of a function is easier to
determine numerically than its poles.

19.1 Spectral determinants for maps

The eigenvalues zk of a linear operator are given by the zeros of the determinant1

det (1 − zL) =
∏

k

(1 − z/zk) . (19.1)

1Predrag: recheck that eigenvalues are labeled either by α or k

449



CHAPTER 19. SPECTRAL DETERMINANTS 450

spectral!determinant
determinant!spectral
transfer!spectrum
spectral!determinant!entire
eigenvalue!exponential

spacing

For finite matrices this is the characteristic determinant; for operators this is the
Hadamard representation of the spectral determinant (sparing the reader from
pondering possible regularization factors). Consider first the case of maps, for ⇓PRIVATE

appendix N

⇑PRIVATE

which the evolution operator advances the densities by integer steps in time. In
this case we can use the formal matrix identity

exercise 4.1

ln det (1 − M) = tr ln(1 − M) = −
∞∑

n=1

1
n

tr Mn , (19.2)

to relate the spectral determinant of an evolution operator for a map to its traces
(18.8), and hence to periodic orbits:

det (1 − zL) = exp

⎛⎜⎜⎜⎜⎜⎝− ∞∑
n

zn

n
trLn

⎞⎟⎟⎟⎟⎟⎠
= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

znprerβ·Ap∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (19.3)

Going the other way, the trace formula (18.10) can be recovered from the
spectral determinant by taking a derivative

tr
zL

1 − zL = −z
d
dz

ln det (1 − zL) . (19.4)

fast track:

sect. 19.2, p. 451

Example 19.1 Spectral determinants of transfer operators:

For a piecewise-linear map (16.11) with a finite Markov partition, an explicit
formula for the spectral determinant follows by substituting the trace formula (18.11)
into (19.3):

det (1 − zL) =
∞∏

k=0

⎛⎜⎜⎜⎜⎝1 − t0
Λk

0

− t1
Λk

1

⎞⎟⎟⎟⎟⎠ , (19.5)

where ts = z/|Λs|. The eigenvalues are necessarily the same as in (18.12), which we
already determined from the trace formula (18.10).

The exponential spacing of eigenvalues guarantees that the spectral determin-
ant (19.5) is an entire function. It is this property that generalizes to piecewise smooth
flows with finite Markov partitions, and singles out spectral determinants rather than
the trace formulas or dynamical zeta functions as the tool of choice for evaluation of
spectra. 2

2Predrag: refer to the convergence chapter
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determinant!for flows
flow!spectral

determinant

19.2 Spectral determinant for flows

. . . an analogue of the [Artin-Mazur] zeta function for dif-
feomorphisms seems quite remote for flows. However we
will mention a wild idea in this direction. [· · ·] define l(γ)
to be the minimal period of γ [· · ·] then define formally
(another zeta function!) Z(s) to be the infinite product

Z(s) =
∏
γ∈Γ

∞∏
k=0

(
1 −

[
exp l(γ)

]−s−k
)
.

—Stephen Smale, Differentiable Dynamical Systems

We write the formula for the spectral determinant for flows by analogy to
(19.3) 3

det (s −A) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (19.6)

and then check that the trace formula (18.23) is the logarithmic derivative of the
spectral determinant 4

tr
1

s −A =
d
ds

ln det (s −A) . (19.7)

⇓PRIVATE

To recover det (s −A) integrate both sides with respect to s

∫ s

s0

ds tr
1

s −A
= ln

det (s −A)
det (s0 −A)

.

5 In this form, the determinant is regularized, as the divergent xxx contribution
cancels out

det (s −A)
det (s0 −A)

= exp

(
tr

∫ s

s0

ds
1

s −A

)
= T exp

(
tr

∫ ∞

0
dt

∫ s

s0

ds et(s−A)
)

= T exp

(∫ ∞

0
dt

1
t

tr
(
et(s−A) − et(s0−A)

))
.

⇑PRIVATE
3Predrag: might want to make the regularization prefactor explicit?
4Predrag: Fried relates the zeros to correlation spectrum
5Predrag: Here we dance all to easily around the problem of possible zero-length orbits contri-

bution.

det - 19apr2005 boyscout version14.4, Mar 19 2013



CHAPTER 19. SPECTRAL DETERMINANTS 452
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6 With z set to z = e−s as in (18.24), the spectral determinant (19.6) has the
same form for both maps and flows. We refer to (19.6) as spectral determinant,
as the spectrum of the operator A is given by the zeros of

det (s −A) = 0 . (19.8)

We now note that the r sum in (19.6) is close in form to the expansion of a
logarithm. This observation enables us to recast the spectral determinant into an
infinite product over periodic orbits as follows:

Let Mp be the p-cycle [d×d] transverse Jacobian matrix, with eigenvalues
Λp,1, Λp,2, . . ., Λp,d. Expanding the expanding eigenvalue factors 1/(1 − 1/Λp,e)
and the contracting eigenvalue factors 1/(1 − Λp,c) in (18.4) as geometric series,
substituting back into (19.6), and resumming the logarithms, we find that the spec-
tral determinant is formally given by the infinite product 7 8 9

det (s −A) =
∞∏

k1=0

· · ·
∞∏

lc=0

1
ζk1···lc

1/ζk1 ···lc =
∏

p

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 − tp

Λ
l1
p,e+1Λ

l2
p,e+2 · · ·Λ

lc
p,d

Λ
k1
p,1Λ

k2
p,2 · · ·Λ

ke
p,e

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (19.9)

tp = tp(z, s, β) =
1
|Λp|

eβ·Ap−sTpznp . (19.10)

In such formulas tp is a weight associated with the p cycle (letter t refers to the
“local trace” evaluated along the p cycle trajectory), and the index p runs through
all distinct prime cycles. Why the factor znp ? It is associated with the trace for-
mula (18.10) for maps, whereas the factor e−sTp is specific to the continuous time
trace formuls (18.23); according to (18.24) we should use either one or the other.
But we have learned in sect. 3.1 that flows can be represented either by their
continuous-time trajectories, or by their topological time Poincaré section return
maps. In cases when we have good control over the topology of the flow, it is
often convenient to insert the znp factor into cycle weights, as a formal parame-
ter which keeps track of the topological cycle lengths. These factors will assist

chapter 20
us in expanding zeta functions and determinants, eventually we shall set z = 1.
The subscripts e, c indicate that there are e expanding eigenvalues, and c contract-
ing eigenvalues. The observable whose average we wish to compute contributes
through the At(x) term in the p cycle multiplicative weight eβ·Ap . By its definition
(17.1), the weight for maps is a product along the periodic points

eAp =

np−1∏
j=0

ea( f j(xp)) ,

6Predrag: point to Wirzba append.
7Predrag: Insert Gregor’s volume term.
8Predrag: probably better to write p product first — more correct as far as convergence is con-

cerned.
9Predrag: Fried An Ec Norm Sup 1985, 1986 might contain this
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and the weight for flows is an exponential of the integral (17.5) along the cycle

eAp = exp

(∫ Tp

0
a(x(τ))dτ

)
.

This formula is correct for scalar weighting functions; more general matrix val-
ued weights require a time-ordering prescription as in the Jacobian matrix of
sect. 4.1(we will discuss this in sect. 19.5.1). ⇓PRIVATE

⇑PRIVATE

Example 19.2 Expanding 1-dimensional map: For expanding 1-dimensional
mappings the spectral determinant (19.9) takes the form

det (1 − zL) =
∏

p

∞∏
k=0

(
1 − tp/Λ

k
p

)
, tp =

eβAp

|Λp|
znp . (19.11)

Example 19.3 Two-degree of freedom Hamiltonian flows: For a 2-degree of free-
dom Hamiltonian flows the energy conservation eliminates on phase-space variable,
and restriction to a Poincaré section eliminates the marginal longitudinal eigenvalue
Λ = 1, so a periodic orbit of 2-degree of freedom hyperbolic Hamiltonian flow has one
expanding transverse eigenvalue Λ, |Λ| > 1, and one contracting transverse eigenvalue
1/Λ. The weight in (18.4) is expanded as follows:

1∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =
1

|Λ|r(1 − 1/Λr
p)2
=

1
|Λ|r

∞∑
k=0

k + 1

Λkr
p

. (19.12)

The spectral determinant exponent can be resummed,

−
∞∑

r=1

1
r

e(βAp−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =
∞∑

k=0

(k + 1) log

⎛⎜⎜⎜⎜⎝1 − eβAp−sTp

|Λp|Λk
p

⎞⎟⎟⎟⎟⎠ ,

and the spectral determinant for a 2-dimensional hyperbolic Hamiltonian flow rewritten
as an infinite product over prime cycles

det (s −A) =
∏

p

∞∏
k=0

(
1 − tp/Λ

k
p

)k+1
. (19.13)

10
exercise 23.4

Now we are finally poised to deal with the problem posed at the beginning of
chapter 18; how do we actually evaluate the averages introduced in sect.17.1? The
eigenvalues of the dynamical averaging evolution operator are given by the values
of s for which the spectral determinant (19.6) of the evolution operator (17.25)
vanishes. If we can compute the leading eigenvalue s0(β) and its derivatives, we
are done. Unfortunately, the infinite product formula (19.9) is no more than a
shorthand notation for the periodic orbit weights contributing to the spectral det-
erminant; more work will be needed to bring such formulas into a tractable form.
This shall be accomplished in chapter 20, but here it is natural to introduce still
another variant of a determinant, the dynamical zeta function.

10Predrag: state here also the d-dimensional result ala Gaspard
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19.3 Dynamical zeta functions

It follows from sect. 18.1.1 that if one is interested only in the leading eigenvalue
of Lt, the size of the p cycle neighborhood can be approximated by 1/|Λp|r, the
dominant term in the rTp = t → ∞ limit, where Λp =

∏
eΛp,e is the product of

the expanding eigenvalues of the Jacobian matrix Mp. With this replacement the
spectral determinant (19.6) is replaced by the dynamical zeta function

1/ζ = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

tr
p

⎞⎟⎟⎟⎟⎟⎟⎠ (19.14)

that we have already derived heuristically in sect. 1.5.2. Resumming the loga-
rithms using

∑
r tr

p/r = − ln(1 − tp) we obtain the Euler product representation of
the dynamical zeta function:

1/ζ =
∏

p

(
1 − tp

)
. (19.15)

In order to simplify the notation, we usually omit the explicit dependence of 1/ζ,
tp on z, s, β whenever the dependence is clear from the context.

The approximate trace formula (18.28) plays the same role vis-à-vis the dyn-
amical zeta function (19.7)

Γ(s) =
d
ds

ln ζ−1 =
∑

p

Tptp

1 − tp
, (19.16)

as the exact trace formula (18.23) plays vis-à-vis the spectral determinant (19.6).
The heuristically derived dynamical zeta function of sect. 1.5.2 now re-emerges
as the 1/ζ0···0(z) part of the exact spectral determinant; other factors in the infinite
product (19.9) affect the non-leading eigenvalues of L.

In summary, the dynamical zeta function (19.15) associated with the flow f t(x)
is defined as the product over all prime cycles p. The quantities, Tp, np and
Λp, denote the period, topological length and product of the expanding Floquet
multipliers of prime cycle p, Ap is the integrated observable a(x) evaluated on a
single traversal of cycle p (see (17.5)), s is a variable dual to the time t, z is dual
to the discrete “topological” time n, and tp(z, s, β) denotes the local trace over the
cycle p. We have included the factor znp in the definition of the cycle weight in
order to keep track of the number of times a cycle traverses the surface of section.
The dynamical zeta function is useful because the term

1/ζ(s) = 0 (19.17)
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contour integral
escape rate

when s = s0, Here s0 is the leading eigenvalue of Lt = etA, which is often all
that is necessary for application of this equation. The above argument completes
our derivation of the trace and determinant formulas for classical chaotic flows.
In chapters that follow we shall make these formulas tangible by working out a
series of simple examples.

The remainder of this chapter offers examples of zeta functions.

fast track:

chapter 20, p. 471

19.3.1 A contour integral formulation

The following observation is sometimes useful, in particular for zeta func-
tions with richer analytic structure than just zeros and poles, as in the case of
intermittency (chapter 24): Γn , the trace sum (18.26), can be expressed in terms
of the dynamical zeta function (19.15)

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)
. (19.18)

as a contour integral

Γn =
1

2πi

∮
γ−r

z−n
(

d
dz

log ζ−1(z)

)
dz , (19.19)

exercise 19.7

where a small contour γ−r encircles the origin in negative (clockwise) direction.
If the contour is small enough, i.e., it lies inside the unit circle |z| = 1, we may
write the logarithmic derivative of ζ−1(z) as a convergent sum over all periodic
orbits. Integrals and sums can be interchanged, the integrals can be solved term
by term, and the trace formula (18.26) is recovered. For hyperbolic maps, cycle

chapter 20
expansions or other techniques provide an analytical continuation of the dynam-
ical zeta function beyond the leading zero; we may therefore deform the original
contour into a larger circle with radius R which encircles both poles and zeros of
ζ−1(z), as depicted in figure 19.1. Residue calculus turns this into a sum over the
zeros zα and poles zβ of the dynamical zeta function, that is

Γn =

zeros∑
|zα |<R

1
zn
α
−

poles∑
|zβ |<R

1
zn
β

+
1

2πi

∮
γ−R

dz z−n d
dz

log ζ−1, (19.20)

where the last term gives a contribution from a large circle γ−R . It would be a
miracle if you still remember this, but in sect. 1.4.3 we interpreted Γn as fraction
of survivors after n bounces, and defined the escape rate γ as the rate of the find
exponential decay of Γn. We now see that this exponential decay is dominated by
the leading zero or pole of ζ−1(z).
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Figure 19.1: The survival probability Γn can be split
into contributions from poles (x) and zeros (o) between
the small and the large circle and a contribution from
the large circle.

Im z

-

γ
R
-

γ z = 1
zα

r
Re z

19.3.2 Dynamical zeta functions for transfer operators

Ruelle’s original dynamical zeta function was a generalization of the topo-
logical zeta function (15.29) to a function that assigns different weights to different

chapter 15
cycles:

ζ(z) = exp
∞∑

n=1

zn

n

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑
xi∈Fix f n

tr
n−1∏
j=0

g( f j(xi))

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
exercise 18.2

Here we sum over all periodic points xi of period n, and g(x) is any (matrix val-
ued) weighting function, where the weight evaluated multiplicatively along the
trajectory of xi. 11

By the chain rule (4.41) the stability of any n-cycle of a 1-dimensional map
is given by Λp =

∏n
j=1 f ′(xi), so the 1-dimensional map cycle stability is the

simplest example of a multiplicative cycle weight g(xi) = 1/| f ′(xi)|, and indeed -
via the Perron-Frobenius evolution operator (16.9) - the historical motivation for
Ruelle’s more abstract construction.

In particular, for a piecewise-linear map with a finite Markov partition such as
the map of example 16.1, the dynamical zeta function is given by a finite polyno-
mial, (discussed in more detail in appendix C.5), a straightforward generalization

⇓PRIVATE

⇑PRIVATE
of the topological transition matrix determinant (14.1). As explained in sect. 15.3,
for a finite [N×N] dimensional matrix the determinant is given by

∏
p

(1 − tp) =
N∑

n=1

zncn ,

where cn is given by the sum over all non-self-intersecting closed paths of length
n together with products of all non-intersecting closed paths of total length n.

11Predrag: maybe incorporate parts of exercise 18.2 here
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false zeros
zero, false
Euler!product
escape rate

Example 19.4 A piecewise linear repeller: Due to piecewise linearity, the stability
of any n-cycle of the piecewise linear repeller (16.11) factorizes as Λs1 s2...sn = Λ

m
0Λ

n−m
1 ,

where m is the total number of times the letter s j = 0 appears in the p symbol sequence,
so the traces in the sum (18.28) take the particularly simple form

tr T n = Γn =

(
1
|Λ0|
+

1
|Λ1|

)n

.

The dynamical zeta function (19.14) evaluated by resumming the traces,
exercise 19.3

1/ζ(z) = 1 − z/|Λ0| − z/|Λ1| , (19.21)

is indeed the determinant det (1 − zT ) of the transfer operator (16.13), which is almost
as simple as the topological zeta function (15.36).

chapter 15

More generally, piecewise-linear approximations to dynamical systems yield
polynomial or rational polynomial cycle expansions, provided that the symbolic
dynamics is a subshift of finite type. 12 13

We see that the exponential proliferation of cycles so dreaded by quantum
chaologians is a bogus anxiety; we are dealing with exponentially many cycles of
increasing length and instability, but all that really matters in this example are the
stabilities of the two fixed points. Clearly the information carried by the infinity
of longer cycles is highly redundant; we shall learn in chapter20 how to exploit
this redundancy systematically.

19.4 False zeros

Compare (19.21) with the Euler product (19.15). For simplicity consider two
equal scales, |Λ0| = |Λ1| = eλ. Our task is to determine the leading zero z = eγ

of the Euler product. It is a novice error to assume that the infinite Euler product
(19.15) vanishes whenever one of its factors vanishes. If that were true, each factor
(1 − znp/|Λp|) would yield 14

0 = 1 − enp(γ−λp), (19.22)

so the escape rate γ would equal the Floquet exponent of a repulsive cycle, one
eigenvalue γ = γp for each prime cycle p. This is false! The exponentially
growing number of cycles with growing period conspires to shift the zeros of the
infinite product. The correct formula follows from (19.21)

0 = 1 − eγ−λ+h , h = ln 2. (19.23)

This particular formula for the escape rate is a special case of a general relation
between escape rates, Lyapunov exponents and entropies that we shall derive in ⇓PRIVATE
sect. ??. 15 Physically this means that the escape induced by the repulsion by each

exercise ??
⇑PRIVATE12Predrag: Complete with Per’s pp. 22-23

13Predrag: Illustrate Fredholm with Per’s p. 30
14Predrag: add Riemann zeta exercise
15Predrag: rescue this from old thermodyn1.tex
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spectral!determinant!weightedunstable fixed point is diminished by the rate of backscatter from other repelling
regions, i.e., the entropy h; the positive entropy of orbits shifts the “false zeros”
z = eλp of the Euler product (19.15) to the true zero z = eλ−h.

19.5 Spectral determinants vs. dynamical zeta functions

In sect. 19.3 we derived the dynamical zeta function as an approximation to the
spectral determinant. Here we relate dynamical zeta functions to spectral deter-
minants exactly, by showing that a dynamical zeta function can be expressed as a
ratio of products of spectral determinants.

The elementary identity for d-dimensional matrices Ronnie: Ref to right
equation or problem -
important to explain the
wedge

1 =
1

det (1 − M)

d∑
k=0

(−1)ktr
(
∧k M

)
, (19.24)

16 inserted into the exponential representation (19.14) of the dynamical zeta func-
tion, relates the dynamical zeta function to weighted spectral determinants.

Example 19.5 Dynamical zeta function in terms of determinants, 1-dimensional
maps: For 1-dimensional maps the identity

1 =
1

(1 − 1/Λ)
− 1
Λ

1
(1 − 1/Λ)

substituted into (19.14) yields an expression for the dynamical zeta function for 1-
dimensional maps as a ratio of two spectral determinants 17 18

1/ζ =
det (1 − zL)

det (1 − zL(1))
(19.25)

where the cycle weight in L(1) is given by replacement tp → tp/Λp. As we shall see
in chapter 23, this establishes that for nice hyperbolic flows 1/ζ is meromorphic, with
poles given by the zeros of det (1− zL(1)). The dynamical zeta function and the spectral
determinant have the same zeros, although in exceptional circumstances some zeros
of det (1 − zL(1)) might be cancelled by coincident zeros of det (1 − zL(1)). Hence even
though we have derived the dynamical zeta function in sect. 19.3 as an “approximation”
to the spectral determinant, the two contain the same spectral information.

Example 19.6 Dynamical zeta function in terms of determinants, 2-dimensional
Hamiltonian maps: For 2-dimensional Hamiltonian flows the above identity yields 19

1
|Λ|
=

1
|Λ|(1 − 1/Λ)2

(1 − 2/Λ + 1/Λ2) ,

16Predrag: define wedge
17Predrag: make an exercise: cancelation for piecewise linear flows
18Predrag: define meromorphic
19Predrag: define det (1 − zL(2))
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hyperbolic!systems
dynamical

system!hyperbolic

Figure 19.2: A game of pinball consisting of two disks
of equal size in a plane, with its only periodic orbit (A.
Wirzba).

R

a L a

1 2

so

1/ζ =
det (1 − zL) det (1 − zL(2))

det (1 − zL(1))
. (19.26)

20 This establishes that for nice 2-dimensional hyperbolic flows the dynamical zeta func-
tion is meromorphic. 21

Example 19.7 Dynamical zeta functions for 2-dimensional Hamiltonian flows: The
relation (19.26) is not particularly useful for our purposes. Instead we insert the identity

1 =
1

(1 − 1/Λ)2
−

2
Λ

1
(1 − 1/Λ)2

+
1
Λ2

1
(1 − 1/Λ)2

22 into the exponential representation (19.14) of 1/ζk, and obtain 23

1/ζk =
det (1 − zL(k))det (1 − zL(k+2))

det (1 − zL(k+1))2
. (19.27)

Even though we have no guarantee that det (1 − zL(k)) are entire, we do know (by⇓PRIVATEarguments explained in sect. ?!) 24 that the upper bound on the leading zeros of det (1−
⇑PRIVATEzL(k+1)) lies strictly below the leading zeros of det (1 − zL(k)), and therefore we expect

that for 2-dimensional Hamiltonian flows the dynamical zeta function 1/ζk generically
has a double leading pole coinciding with the leading zero of the det (1 − zL (k+1)) spec-
tral determinant. This might fail if the poles and leading eigenvalues come in wrong
order, but we have not encountered such situations in our numerical investigations.
This result can also be stated as follows: the theorem establishes that the spectral det-
erminant (19.13) is entire, and also implies that the poles in 1/ζk must have the right
multiplicities to cancel in the det (1 − zL) =

∏
1/ζk+1

k product.

⇓PRIVATE

19.5.1 Spectral determinants with matrix weights

We now generalize the results of chapter 18 to matrix-weighted evolution
operators given by

Lt
βα(y, x) = gt

βα(x) δ
(
y − f t(x)

)
. (19.28)

20Predrag: compare with 1/ζ = F2

F1F−1
of the preceeding section

21Predrag: write out Ruelle’s alternating product for any dimensions
22Predrag: seems the same as (19.26)?
23Predrag: recheck, looks wrong
24Predrag: find the sect. referred to
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eigenvalueHere gt
βα(x) is any weight multiplicative along the trajectory, with the precise

functional form depending on the dynamical average under study. We have al-
ready introduced a class of such weights in (17.25). The indices α and β refer to
possible extra matrix structure; for example, vector fields such as magnetic flux
lines advected by the flow discussed in appendix J.2, or the group elements asso-
ciated with discrete symmetries of chapter 21. The trace tr gn =

∑
α gn

αα is taken
over the possible matrix indices of the multiplicative weight in (19.28)

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r

e−sTprtr gr
p∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ . (19.29)

det (s −A) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∑
r≥1

1
r

e−sTprtr
(
gr

p

)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (19.30)

det (s −A) =
∞∏

k1=0

· · ·
∞∏

lc=0

1
ζk1···lc (s)

1/ζk1 ···lc (s) =
∏

p

det

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 −
e−sTp gp

|Λp|
Λ

l1
p,e+1Λ

l2
p,e+2 · · ·Λ

lc
p,d

Λ
k1
p,1Λ

k2
p,2 · · ·Λ

ke
p,e

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (19.31)

25 Here “det” refers to the gβα matrix indices, and gp is the p cycle average of
the multiplicative weight gt(x), which for maps is the product along the periodic
points

gp =

np∏
j=1

g( f j(xp)) ,

and an integral like (17.1) along the cycle for the flows

gp,αβ =

[
Te

∫ T p
0 dτa(x(τ))

]
αβ
, (19.32)

where T stands for the time-ordered integration. As a matrix trace can be written
as sum of its eigenvalues, tr g =

∑
gα, such determinants tend to factorize. We

shall return to this in chapter 21 and appendix J.2. ⇑PRIVATE
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hyperbolic!flow
flow!hyperbolic
decay!rate
open system

Figure 19.3: The classical resonances α = {k, n}
(19.33) for a 2-disk game of pinball.
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19.6 All too many eigenvalues?

What does the 2-dimensional hyperbolic Hamiltonian flow spectral determinant
(19.13) tell us? Consider one of the simplest conceivable hyperbolic flows: the
game of pinball of figure 19.2 consisting of two disks of equal size in a plane.
There is only one periodic orbit, with the period T and expanding eigenvalue
Λ given by elementary considerations (see exercise 13.8), and the resonances
det (sα −A) = 0, α = {k, n} plotted in figure 19.3:

sα = −(k + 1)λ + n
2πi
T

, n ∈ Z , k ∈ Z+ , multiplicity k + 1, (19.33)

can be read off the spectral determinant (19.13) for a single unstable cycle:

det (s −A) =
∞∏

k=0

(
1 − e−sT /|Λ|Λk

)k+1
. (19.34)

In the above λ = ln |Λ|/T is the cycle Lyapunov exponent. For an open system,
the real part of the eigenvalue sα gives the decay rate of αth eigenstate, and the
imaginary part gives the “node number” of the eigenstate. The negative real part
of sα indicates that the resonance is unstable, and the decay rate in this simple
case (zero entropy) equals the cycle Lyapunov exponent.

Rapidly decaying eigenstates with large negative Re sα are not a problem, but
as there are eigenvalues arbitrarily far in the imaginary direction, this might seem
like all too many eigenvalues. However, they are necessary - we can check this by
explicit computation of the right hand side of (18.23), the trace formula for flows:
26

∞∑
α=0

esαt =

∞∑
k=0

∞∑
n=−∞

(k + 1)e−(k+1)λt+i2πnt/T

=

∞∑
k=0

(k + 1)

(
1

|Λ|Λk

)t/T ∞∑
n=−∞

ei2πnt/T

25Predrag: make up an exercise for this
26Rytis: 26nov2009, corrected (k + 1)λt → −(k + 1)λt .
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Dirac delta
equilibrium!point=

∞∑
k=0

k + 1

|Λ|rΛkr

∞∑
r=−∞

δ(r − t/T)

= T
∞∑

r=−∞

δ(t − rT)

|Λ|r(1 − 1/Λr)2
. (19.35)

Hence, the two sides of the trace formula (18.23) are verified. The formula is fine
for t > 0; for t → 0+, however, sides are divergent and need regularization. 27

The reason why such sums do not occur for maps is that for discrete time we
work with the variable z = es, so an infinite strip along Im s maps into an annulus
in the complex z plane, and the Dirac delta sum in the above is replaced by the
Kronecker delta sum in (18.8). In the case at hand there is only one time scale
T , and we could just as well replace s by the variable z = e−sT . In general, a
continuous time flow has an infinity of irrationally related cycle periods, and the
resonance arrays are more irregular, cf. figure 20.1. 28 29

⇓PRIVATE

19.7 Equilibrium points

30 In our derivation of trace formulas for flows we have neglected the equi-
librium (or stagnation) points xq, i.e., the zero velocity points (2.9) that remain
stationary under the flow

f t(xq) = xq for all t .

Expanding around the equilibrium point xq, using the fact that A, its matrix of its
Floquet exponents (5.1), is constant, and assuming no marginal eigenvalues, we
obtain the equilibrium point contribution to the trace sum

trLt
∣∣∣
q
=

eβ·aqt∣∣∣det
(
1 − eAt)∣∣∣ = e(β·aq−λq)t

∏
e

1

1 − e−λq,et

∏
c

1

1 − eλq,ct
.

Here the Floquet exponents (the eigenvalues of A) have been split into expanding
(λq,e > 0) and contracting (λq,c < 0) exponents as in (18.4) and (19.9), λq =∑

e λq,e is the sum of the expanding exponents, and aq = a(xq) is the value of
the observable at the equilibrium point. Expanding each factor 1/(1 − e−λq,i t) as a
geometric series we obtain

trLt
∣∣∣
q
=

∞∑
k1 ···kd

e(β·aq−
∑

e λq,e(1+ke)+
∑

c λq,ckc)t . (19.36)

27Predrag: on dimensional grounds, need to either use z = e−sT everywhere, or set the time scale
to T = 1

28Predrag: add frequency beating section (PER PhD?), copy 3 disk resonances text; ask AW for
figure

29Predrag: discuss trace class operators somewhere here
30Predrag: this section looks all wrong
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Laplace!transform
spectral!determinant!equilibrium

point
dynamical!zeta func-

tion!equilibrium
point

Taking the Laplace transform as in (??) yields

∫ ∞

0+
dt e−st trLt

∣∣∣
q
= tr

1
s −A

∣∣∣∣∣
q

(19.37)

=

∞∑
k1k2···kd=0

1
s − β · aq +

∑
e λq,e(1 + ke) −

∑
c λq,ckc

.

A poor man’s trace formula (18.28) contribution is obtained by setting all ki =

0. As in (19.7), the contribution to the determinant det (s − A) is obtained by
integrating over

∫ s

s0
ds. The spectral determinant (formally) has an extra factor

associated with each equilibrium point xq

det (s −A)|q =
∞∏

k1···kd=0

⎛⎜⎜⎜⎜⎜⎝s − β · aq +
∑

e

λs,e(1 + ke) −
∑

c

λs,ckc

⎞⎟⎟⎟⎟⎟⎠ , (19.38)

and the dynamical zeta function (19.15) picks up an equilibrium point factor

1/ζ =
∏

q

(s − β · aq + λq)
∏

p

(
1 − e−Tp(s−β·ap+λp)

)
. (19.39)

⇑PRIVATE

Résumé

The eigenvalues of evolution operators are given by the zeros of corresponding
determinants, and one way to evaluate determinants is to expand them in terms
of traces, using the matrix identity log det = tr log. Traces of evolution operators
can be evaluated as integrals over Dirac delta functions, and in this way the spectra
of evolution operators are related to periodic orbits. The spectral problem is now
recast into a problem of determining zeros of either the spectral determinant

det (s −A) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

e(β·Ap−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

or the leading zeros of the dynamical zeta function

1/ζ =
∏

p

(
1 − tp

)
, tp =

1
|Λp|

eβ·Ap−sTp .

The spectral determinant is the tool of choice in actual calculations, as it has
superior convergence properties (this will be discussed in chapter 23 and is il-
lustrated, for example, by table 20.2). In practice both spectral determinants and
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transfer!operator
Smale, S.!wild idea

dynamical zeta functions are preferable to trace formulas because they yield the
eigenvalues more readily; the main difference is that while a trace diverges at an
eigenvalue and requires extrapolation methods, determinants vanish at s corre-
sponding to an eigenvalue sα, and are analytic in s in an open neighborhood of
sα.

The critical step in the derivation of the periodic orbit formulas for spectral
determinants and dynamical zeta functions is the hyperbolicity assumption (18.5)
that no cycle stability eigenvalue is marginal, |Λp,i| � 1. By dropping the prefac-
tors in (1.5), we have given up on any possibility of recovering the precise distri-
bution of the initial x (return to the past is rendered moot by the chaotic mixing
and the exponential growth of errors), but in exchange we gain an effective de-
scription of the asymptotic behavior of the system. The pleasant surprise (to be
demonstrated in chapter 20) is that the infinite time behavior of an unstable system
turns out to be as easy to determine as its short time behavior.

Commentary

Remark 19.1 Piecewise monotone maps. A partial list of cases for which the
transfer operator is well defined: the expanding Hölder case, weighted subshifts of finite
type, expanding differentiable case, see Bowen [28]: expanding holomorphic case, see
Ruelle [9]; piecewise monotone maps of the interval, see Hofbauer and Keller [ 14] and
Baladi and Keller [17].

Remark 19.2 Smale’s wild idea. Smale’s wild idea quoted on page 451 was tech-
nically wrong because 1) the Selberg zeta function yields the spectrum of a quantum
mechanical Laplacian rather than the classical resonances, 2) the spectral determinant
weights are different from what Smale conjectured, as the individual cycle weights also
depend on the stability of the cycle, 3) the formula is not dimensionally correct, as k is
an integer and s represents inverse time. Only for spaces of constant negative curvature
do all cycles have the same Lyapunov exponent λ = ln |Λ p|/Tp. In this case, one can
normalize time so that λ = 1, and the factors e−sTp/Λk

p in (19.9) simplify to s−(s+k)Tp , as
intuited in Smale’s quote on page 451 (where l(γ) is the cycle period denoted here by T p).
Nevertheless, Smale’s intuition was remarkably on the target.

Remark 19.3 Is this a generalization of the Fourier analysis? Fourier analysis
is a theory of the space ↔ eigenfunction duality for dynamics on a circle. The way in
which periodic orbit theory generalizes Fourier analysis to nonlinear flows is discussed in
ref. [3], a very readable introduction to the Selberg Zeta function.

Remark 19.4 Zeta functions, antecedents. For a function to be deserving of
the appellation “zeta function,” one expects it to have an Euler product representation
(19.15), and perhaps also satisfy a functional equation. Various kinds of zeta functions
are reviewed in refs. [6, 7, 8]. Historical antecedents of the dynamical zeta function are
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Smale, S.the fixed-point counting functions introduced by Weil [ 9], Lefschetz [10] and Artin and
Mazur [11], and the determinants of transfer operators of statistical mechanics [ 29].

In his review article Smale [27] already intuited, by analogy to the Selberg Zeta func-
tion, that the spectral determinant is the right generalization for continuous time flows.
In dynamical systems theory, dynamical zeta functions arise naturally only for piecewise
linear mappings; for smooth flows the natural object for the study of classical and quantal
spectra are the spectral determinants. Ruelle derived the relation (19.3) between spectral
determinants and dynamical zeta functions, but since he was motivated by the Artin-
Mazur zeta function (15.29) and the statistical mechanics analogy, he did not consider the
spectral determinant to be a more natural object than the dynamical zeta function. This
has been put right in papers on “flat traces” [18, 23].

The nomenclature has not settled down yet; what we call evolution operators here is
elsewhere called transfer operators [32], Perron-Frobenius operators [4] and/or Ruelle-
Araki operators.

Here we refer to kernels such as (17.25) as evolution operators. We follow Ruelle in
usage of the term “dynamical zeta function,” but elsewhere in the literature the function
(19.15) is often called the Ruelle zeta function. Ruelle [33] points out that the corre-
sponding transfer operator T was never considered by either Perron or Frobenius; a more
appropriate designation would be the Ruelle-Araki operator. 31 Determinants similar to
or identical with our spectral determinants are sometimes called Selberg Zetas, Selberg-
Smale zetas [8] (Gaspard credits Smale [13] - but why, dynamical spectral determinant
was not derived by either? and we cannot find any other zeta for the flows but the “wild”
one quoted on page 451), functional determinants, Fredholm determinants, or even - to
maximize confusion - dynamical zeta functions [12]. A Fredholm determinant is a notion
that applies only to trace class operators - as we consider here a somewhat wider class of
operators, we prefer to refer to their determinants loosely as “spectral determinants.” 32 33

⇓PRIVATE

Remark 19.5 Discussion of a single equilibrium point. Gaspard [8] discusses at
length the evolution operator spectrum for a system with a single equilibrium point. We
will use this system in a similar way by focusing on a mapping with a single fixed point in
example 23.1; this will develop our intuition about evolution operator spectra. A project
length problem: We still need to show that the periodic orbits that come close to the
equilibrium point shadow it.

34

35

⇑PRIVATE

31Predrag: track down the reference to Araki.
32Predrag: add appropriate references
33Predrag: add link to Wirzba append
34Predrag: make into a project
35Predrag: mention somewhere Artin-Mazur-Ruelle and Smale-Ruelle zeta functions, and what

we call them.
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escape rate
golden mean!pruning
pruning!golden mean

Exercises boyscout

19.1. Escape rate for a 1-dimensional repeller, numerically. Con-
sider the quadratic map

f (x) = Ax(1 − x) (19.40)

on the unit interval. The trajectory of a point starting in
the unit interval either stays in the interval forever or af-
ter some iterate leaves the interval and diverges to mi-
nus infinity. Estimate numerically the escape rate (22.8),
the rate of exponential decay of the measure of points re-
maining in the unit interval, for either A = 9/2 or A = 6.
Remember to compare your numerical estimate with the
solution of the continuation of this exercise, exercise 20.2.

19.2. Spectrum of the “golden mean” pruned map. (medium
- exercise 15.7 continued)

(a) Determine an expression for trLn, the trace of pow-
ers of the Perron-Frobenius operator (16.10) acting
on the space of real analytic functions for the tent
map of exercise 15.7.

(b) Show that the spectral determinant for the Perron-
Frobenius operator is

det (1 − zL) = (19.41)∏
k even

(
1 − z
Λk+1

− z2

Λ2k+2

)
×

∏
k odd

(
1 +

z
Λk+1

+
z2

Λ2k+2

)
.

19.3. Dynamical zeta functions. (easy)

(a) Evaluate in closed form the dynamical zeta function

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)
for the piecewise-linear map (16.11) with the left
branch slope Λ0, the right branch slope Λ1.

x

f(x)

s10s00

s01 s11
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(b) What if there are four different slopes s00, s01, s10,
and s11 instead of just two, with the preimages of
the gap adjusted so that junctions of branches s00, s01

and s11, s10 map in the gap in one iteration? What
would the dynamical zeta function be?

19.4. Dynamical zeta functions from transition graphs. Ex-
tend sect. 15.3 to evaluation of dynamical zeta functions
for piecewise linear maps with finite transition graphs.
This generalizes the results of exercise 19.3.

19.5. Zeros of infinite products. Determination of the quan-
tities of interest by periodic orbits involves working with
infinite product formulas.

(a) Consider the infinite product

F(z) =
∞∏

k=0

(1 + fk(z))

where the functions fk are “sufficiently nice.” This
infinite product can be converted into an infinite
sum by the use of a logarithm. Use the properties
of infinite sums to develop a sensible definition of
infinite products.

(b) If z∗ is a root of the function F, show that the infinite
product diverges when evaluated at z∗.

(c) How does one compute a root of a function repre-
sented as an infinite product?

(d) Let p be all prime cycles of the binary alphabet
{0, 1}. Apply your definition of F(z) to the infinite
product

F(z) =
∏

p

(1 − znp

Λnp
)

(e) Are the roots of the factors in the above product the
zeros of F(z)?

(Per Rosenqvist)

19.6. Dynamical zeta functions as ratios of spectral determinants.
(medium) Show that the zeta function

1/ζ(z) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∑
r=1

1
r

znp

|Λp|r

⎞⎟⎟⎟⎟⎟⎟⎠
can be written as the ratio

1/ζ(z) = det (1 − zL(0))/det (1 − zL(1)) ,

where det (1 − zL(s)) =
∏

p
∏∞

k=0(1 − znp/|Λp|Λk+s
p ).

19.7. Contour integral for survival probability. Perform
explicitly the contour integral appearing in (19.19).
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Ulam map!tent19.8. Dynamical zeta function for maps. In this prob-
lem we will compare the dynamical zeta function and the
spectral determinant. Compute the exact dynamical zeta
function for the skew full tent map (16.46)

1/ζ(z) =
∏
p∈P

(
1 − znp

|Λp|

)
.

What are its roots? Do they agree with those computed in
exercise 16.7?

19.9. Dynamical zeta functions for Hamiltonian maps. Start-
ing from

1/ζ(s) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

tr
p

⎞⎟⎟⎟⎟⎟⎟⎠
for a 2-dimensional Hamiltonian map. Using the equality

1 =
1

(1 − 1/Λ)2
(1 − 2/Λ + 1/Λ2) ,

show that

1/ζ = det (1 − L) det (1 − L(2))/det (1 − L(1))2 .

In this expression det (1− zL(k)) is the expansion one gets
by replacing tp → tp/Λ

k
p in the spectral determinant.

19.10. Riemann ζ function. The Riemann ζ function is
defined as the sum

ζ(s) =
∞∑

n=1

1
ns
, s ∈ C .

(a) Use factorization into primes to derive the Euler
product representation

ζ(s) =
∏

p

1
1 − p−s

.

The dynamical zeta function exercise 19.15 is called
a “zeta” function because it shares the form of the
Euler product representation with the Riemann zeta
function.

(b) (Not trivial:) For which complex values of s is the
Riemann zeta sum convergent?

(c) Are the zeros of the terms in the product, s = − ln p,
also the zeros of the Riemann ζ function? If not,
why not?

19.11. Finite truncations. (easy) Suppose we have a 1-dimensional
system with complete binary dynamics, where the stabil-
ity of each orbit is given by a simple multiplicative rule:

Λp = Λ
np,0

0 Λ
np,1

1 , np,0 = #0 in p , np,1 = #1 in p ,

so that, for example, Λ00101 = Λ
3
0Λ

2
1.
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(a) Compute the dynamical zeta function for this sys-
tem; perhaps by creating a transfer matrix analo-
gous to (16.13), with the right weights.

(b) Compute the finite p truncations of the cycle ex-
pansion, i.e. take the product only over the p up to
given length with np ≤ N, and expand as a series in
z ∏

p

(
1 − znp

|Λp|

)
.

Do they agree? If not, how does the disagreement
depend on the truncation length N?
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Chapter 20

Cycle expansions

Recycle... It’s the Law!
—Poster, New York City Department of Sanitation

The Euler product representations of spectral determinants (19.9) and dyn-
amical zeta functions (19.15) are really only a shorthand notation - the ze-
ros of the individual factors are not the zeros of the zeta function, and the

convergence of these objects is far from obvious. Now we shall give meaning to
dynamical zeta functions and spectral determinants by expanding them as cycle
expansions, which are series representations ordered by increasing topological cy-
cle length, with products in (19.9), (19.15) expanded as sums over pseudo-cycles,
products of weights tp of contributing cycles. The zeros of correctly truncated
cycle expansions yield the desired leading eigenvalues of evolution operators, and
the expectation values of observables are given by the cycle averaging formulas
obtained from the partial derivatives of dynamical zeta functions (or spectral det-
erminants).

For reasons of pedagogy in what follows everything is first explained in terms
of dynamical zeta functions: they aid us in developing ‘shadowing’ intuition about
the geometrical meaning of cycle expansions. For actual calculations, we recom-
mend the spectral determinant cycle expansions of sects.20.2.2 and 20.4.2. While
the shadowing is less transparent, and the weights calculation is an iterative nu-
merical algorithm, these expansions use full analytic information about the flow,
and can have better convergence properties than the dynamical zeta functions. For
example, as we shall show in chapter 23, even when a spectral determinant (19.6)
is entire and calculations are super-exponentially convergent, cycle expansion of
the corresponding dynamical zeta function (19.25) has a finite radius of conver-
gence and captures only the leading eigenvalue, at exponentially convergent rate.
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pseudo-cycle20.1 Pseudocycles and shadowing

How are periodic orbit formulas such as (19.15) evaluated? We start by computing
the lengths and Floquet multipliers of the shortest cycles. This always requires
numerical work, such as searches for periodic solutions via Newton’s method;
we shall assume for the purpose of this discussion that the numerics is under

chapter 13
control, and that all short cycles up to a given (topological) length have been
found. Examples of the data required for application of periodic orbit formulas
are the lists of cycles given in exercise 13.15 and table 33.3. Sadly, it is not
enough to set a computer to blindly troll for invariant solutions, and blithely feed
those into the formulas that will be given here. The reason that this chapter is
numbered 20 and not 6, is that understanding the geometry of the non–wandering
set is a prerequisite to good estimation of dynamical averages: one has to identify
cycles that belong to a given ergodic component (whose symbolic dynamics and
shadowing is organized by its transition graph), and discard the isolated cycles
and equilibria that do not take part in the asymptotic dynamics. 1 It is important
not to miss any short cycles, as the calculation is as accurate as the shortest cycle
dropped - including cycles longer than the shortest omitted does not improve the
accuracy (more precisely, the calculation improves, but so little as not to be worth
while). 2

Given a set of periodic orbits, we can compute their weights tp and expand the
dynamical zeta function (19.15) as a formal power series,

1/ζ =
∏

p

(1 − tp) = 1 −
∑′

{p1 p2...pk}
(−1)k+1tp1 tp2 . . . tpk (20.1)

where the prime on the sum indicates that the sum is over all distinct non-repeating
combinations of prime cycles. As we shall frequently use such sums, let us denote
by tπ = (−1)k+1tp1 tp2 . . . tpk an element of the set of all distinct products of the
prime cycle weights tp. The formal power series (20.1) is now compactly written
as

1/ζ = 1 −
∑′

π

tπ . (20.2)

For k > 1, the signed products tπ are weights of pseudo-cycles; they are sequences
of shorter cycles that shadow a cycle with the symbol sequence p1 p2 . . . pk along
the segments p1, p2, . . ., pk, as in figure 1.12. The symbol

∑′ denotes the re-
stricted sum, for which any given prime cycle p contributes at most once to a
given pseudo-cycle weight tπ.

1Predrag: 2013-01-27 Kerswell: presumably a reference to an impatient fluid dynamicist with a
generically finite life span?

2Predrag: write the errors section, refer to it
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integrated observable
observable!integrated
periodic!orbit
orbit!periodic
cycle!expansion
cycle!fundamental
curvature!correction

The pseudo-cycle weight, i.e., the product of weights (19.10) of prime cycles
comprising the pseudo-cycle,

tπ = (−1)k+1 1
|Λπ|

eβAπ−sTπ znπ , (20.3)

depends on the pseudo-cycle integrated observable Aπ, the period Tπ, the stability
Λπ,

remark 5.1

Λπ = Λp1Λp2 · · ·Λpk , Tπ = Tp1 + . . . + Tpk

Aπ = Ap1 + . . . + Apk , nπ = np1 + . . . + npk , (20.4)

and, when available, the topological length nπ.

20.1.1 Curvature expansions

The simplest example is the pseudo-cycle sum for a system described by a com-
plete binary symbolic dynamics. In this case the Euler product (19.15) is given
by

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011) (20.5)

× (1 − t0001)(1 − t0011)(1 − t0111)(1 − t00001)(1 − t00011)

× (1 − t00101)(1 − t00111)(1 − t01011)(1 − t01111) . . .

(see table 15.1), and the first few terms of the expansion (20.2) ordered by increas-
ing total pseudo-cycle length are:

1/ζ = 1 − t0 − t1 − t01 − t001 − t011 − t0001 − t0011 − t0111 − . . .
+ t0t1 + t0t01 + t01t1 + t0t001 + t0t011 + t001t1 + t011t1
− t0t01t1 − . . . (20.6)

We refer to such series representation of a dynamical zeta function or a spectral
determinant, expanded as a sum over pseudo-cycles, and ordered by increasing
cycle length and instability, as a cycle expansion.

The next step is the key step: regroup the terms into the dominant fundamental
contributions tf and the decreasing curvature corrections ĉn, each ĉn split into
prime cycles p of length np=n grouped together with pseudo-cycles whose full
itineraries build up the itinerary of p. For the binary case this regrouping is given
by

1/ζ = 1 − t0 − t1 − [(t01 − t1t0)] − [(t001 − t01t0) + (t011 − t01t1)]

−[(t0001 − t0t001) + (t0111 − t011t1)

+(t0011 − t001t1 − t0t011 + t0t01t1)] − . . .
= 1 −

∑
f

t f −
∑

n

ĉn . (20.7)
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curvature!expansionAll terms in this expansion up to length np = 6 are given in table 20.1. We refer to
such regrouped series as curvature expansions, because the shadowed combina-
tions [· · ·] vanish identically for piecewise-linear maps with nice partitions, such
as the ‘full tent map’ of figure 16.3.

This separation into ‘fundamental’ and ‘curvature’ parts of cycle expansions
is possible only for dynamical systems whose symbolic dynamics has finite gram-
mar. The fundamental cycles t0, t1 have no shorter approximations; they are the
“building blocks” of the dynamics in the sense that all longer orbits can be approx-
imately pieced together from them. The fundamental part of a cycle expansion is
given by the sum of the products of all non-intersecting loops of the associated
transition graph, discussed in chapter 14. The terms grouped in brackets [· · ·] are

section 15.3
section 20.5the curvature corrections; the terms grouped in parentheses (· · ·) are combinations

of longer cycles and corresponding sequences of “shadowing” pseudo-cycles, as
in figure 1.12. If all orbits are weighted equally (tp = znp ), such combinations
cancel exactly, and the dynamical zeta function reduces to the topological poly-
nomial (15.29). If the flow is continuous and smooth, orbits of similar symbolic
dynamics will traverse the same neighborhoods and will have similar weights, and
the weights in such combinations will almost cancel. The utility of cycle expan-
sions of dynamical zeta functions and spectral determinants, in contrast to naive
averages over periodic orbits such as the trace formulas discussed in sect. ?? and

⇓PRIVATEsect. 22.5, lies precisely in this organization into nearly canceling combinations:
⇑PRIVATEcycle expansions are dominated by short cycles, with longer cycles giving expo-

nentially decaying corrections.

More often than not, good symbolic dynamics for a given flow is either not
available, or its grammar is not finite, or the convergence of cycle expansions
is affected by non-hyperbolic regions of state space. In those cases truncations
such as the stability cutoff of sect. 20.6 and sect. 24.3.5 might be helpful. The
idea is to truncate the cycle expansion by including only the pseudo-cycles such
that |Λp1 · · ·Λpk | ≤ Λmax, with the cutoff Λmax equal to or greater than the most
unstable Λp in the data set.

In what follows, we shall introduce two cycle averaging formulas, one based
on dynamical zeta functions and the other on spectral determinants. (Frequently
used, but inferior ‘level sums’ shall be discussed in sect.22.5.)

20.2 Construction of cycle expansions

Due to the lack of factorization of the determinant in the denominator of the full
pseudo-cycle weight in (18.23),

det
(
1 − Mp1 p2

)
� det

(
1 − Mp1

)
det

(
1 − Mp2

)
,

the cycle expansions for the spectral determinant (19.9) are somewhat less trans-
parent than is the case for the dynamical zeta functions, so we postpone their
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Table 20.1: The binary curvature expansion (20.7) up to length 6, listed in such a way that
the sum of terms along the pth horizontal line is the curvature ĉ p associated with a prime
cycle p, or a combination of prime cycles such as the t 100101 + t100110 pair.

- t0
- t1
- t10 + t1t0
- t100 + t10t0
- t101 + t10t1
- t1000 + t100t0
- t1001 + t100t1 + t101t0 - t1t10t0
- t1011 + t101t1
- t10000 + t1000t0
- t10001 + t1001t0 + t1000t1 - t0t100t1
- t10010 + t100t10
- t10101 + t101t10
- t10011 + t1011t0 + t1001t1 - t0t101t1
- t10111 + t1011t1
- t100000 + t10000t0
- t100001 + t10001t0 + t10000t1 - t0t1000t1
- t100010 + t10010t0 + t1000t10 - t0t100t10
- t100011 + t10011t0 + t10001t1 - t0t1001t1
- t100101 - t100110 + t10010t1 + t10110t0

+ t10t1001 + t100t101 - t0t10t101 - t1t10t100
- t101110 + t10110t1 + t1011t10 - t1t101t10
- t100111 + t10011t1 + t10111t0 - t0t1011t1
- t101111 + t10111t1

evaluation to sect. 20.2.2. Sect. 20.2.1 is a pedagogical warmup. In actual calcu-
lations, implementing the spectral determinant cycle expansions of sect.20.2.2 is
recommended. Correct objects are spectral determinants, and as using the correct
object costs exactly the same as using the approximations, why settle for less?

20.2.1 Evaluation of dynamical zeta functions

Cycle expansions of dynamical zeta functions are evaluated numerically by first
computing the weights tp = tp(β, s) of all prime cycles p of topological length
np ≤ N, for given fixed β and s. Denote by the subscript (i) the ith prime cycle
computed, ordered by the topological length n(i) ≤ n(i+1). The dynamical zeta
function 1/ζN truncated to np ≤ N cycles is computed recursively, by multiplying

1/ζ(i) = 1/ζ(i−1)[1 − t(i)z
n(i) ] , (20.8)

and truncating the expansion at each step to a finite polynomial in zn, n ≤ N. The
result is the Nth order polynomial approximation

1/ζN = 1 −
N∑

n=1

cnzn . (20.9)

In other words, a cycle expansion is a Taylor expansion in the dummy variable z,
where each term in the sum is raised to the topological cycle length. If both the
number of cycles and their individual weights grow not faster than exponentially
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trace!formula!weightwith the cycle length, and we multiply the weight of each cycle p by a factor znp ,
the cycle expansion converges for sufficiently small |z|. If the symbolic dynamics
grammar is finite, the truncation cuttof N has to be larger than the length of longest
cycle in the transition graph (15.15), for the salubrious effect of shadowing cance-
lations to kick in. If that is the case, further increases in N yield the exponentially
decreasing corrections ĉn in (20.7).

If the dynamics is given by an iterated mapping, the leading zero of (20.9)
as a function of z yields the leading eigenvalue of the appropriate evolution oper-
ator. For continuous time flows, z is a dummy variable that we set to z = 1, and
the leading eigenvalue of the evolution operator is given by the leading zero of
1/ζ(s, β(s)) as function of s.

20.2.2 Evaluation of traces and spectral determinants

We commence the cycle expansion evaluation of a spectral determinant by com-
puting the trace formula (18.10) or (18.23). The weight of prime cycle p repeated
r times is

tp(z, β, r) =
erβ·Ap zr np∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ (discrete time) (20.10)

tp(s, β, r) =
er(β·Ap−sTp)∣∣∣∣det

(
1 − Mr

p

)∣∣∣∣ (continuous time) . (20.11)

For discrete time, the trace formula (18.10) truncated to all prime cycles p and
their repeats r such that npr ≤ N,

tr
zL

1 − zL

∣∣∣∣∣
N
=

N∑
n=1

Cnzn , Cn = trLn , (20.12)

is computed as a polynomial in z by adding a cycle at the time: 3

tr
zL

1 − zL

∣∣∣∣∣
(i)
= tr

zL
1 − zL

∣∣∣∣∣
(i−1)
+ n(i)

n(i)r≤N∑
r=1

t(i)(z, β, r) .

For continuous time, we assume that the method of Poincaré sections assigns each
cycle a topological length np. Than the trace formula (18.23) is also organized as
a polynomial

tr
1

s −A

∣∣∣∣∣
N
=

N∑
n=1

Cnzn , (20.13)

3Predrag: Y Lan: explain (recheck this formula) also that the logarithmic derivative (19.7) of
the spectral determinant yields det (s −A)tr 1

s−A =
d
ds det (s −A) .
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cumulant!expansioncomputed as: 4

tr
1

s −A

∣∣∣∣∣
(i)
= tr

1
s −A

∣∣∣∣∣
(i−1)
+ T(i)

n(i)r≤N∑
r=1

t(i)(s, β, r) znpr

The periodic orbit data set (20.4) consists of the list of the cycle periods Tp, the
cycle Floquet multipliers Λp,1,Λp,2, . . . ,Λp,d, and the cycle averages of the ob-
servable Ap for all prime cycles p such that np ≤ N. The coefficient of znpr is then
evaluated numerically for the given parameter values (β, s). Always compute the
leading eigenvalue of the evolution operator first, i.e., the escape rate γ = −s0, in
order to use it in calculation of averages of sect.20.4 as a weight eγT(i) in (20.12).
Now that we have an expansion for the trace formula (18.9) as a power series, we
compute the Nth order approximation to the spectral determinant (19.3), 5

det (1 − zL)|N = 1 −
N∑

n=1

Qnzn , Qn = nth cumulant , (20.14)

as follows. The logarithmic derivative relation (19.4) yields

(
tr

zL
1 − zL

)
det (1 − zL) = −z

d
dz

det (1 − zL)

(C1z +C2z2 + · · ·)(1 − Q1z − Q2z2 − · · ·) = Q1z + 2Q2z2 + 3Q3z3 · · ·

so the nth order term of the spectral determinant cycle (or in this case, the cumu-
lant) expansion is given recursively by the convolution trace formula expansion
coefficients 6

Qn =
1
n

(Cn −Cn−1Q1 − · · ·C1Qn−1) , Q1 = C1 . (20.15)

Given the trace formula (20.12) truncated to zN , we now also have the spectral
determinant truncated to zN . 7

The same program can also be reused to compute the dynamical zeta function
cycle expansion (20.9), by replacing

∏(
1 − Λr

(i), j

)
in (20.12) by the product of

section 19.3
expanding eigenvalues Λ(i) =

∏
eΛ(i),e.

A few points concerning different cycle averaging formulas:

4Predrag: recheck the signs of s −A
5Predrag: For Markov graphs modify the np ≤ N criterion to something that groups the curvature

contributions optimally
6Predrag: rederive this formula in a more direct way!
7Predrag: note: due to large cancelations, accuracy drops
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Table 20.2: The 3-disk repeller escape rates computed from cycle expansions of the spec-
tral determinant (19.6) and the dynamical zeta function (19.15), as functions of the max-
imal cycle length N. The disk-disk center separation to disk radius ratio is R:a, and the
det(s − A) is an estimate of the classical escape rate computed from the spectral det-
erminant cycle expansion in the fundamental domain. For larger disk-disk separations,
the dynamics is more uniform, as illustrated by the faster convergence. Convergence of
spectral determinant det(s−A) is super-exponential, see chapter 23. For comparison, the
1/ζ(s) column lists estimates from the fundamental domain dynamical zeta function cycle
expansion (20.7), and the 1/ζ(s)3-disk column lists estimates from the full 3-disk cycle
expansion (20.43). The convergence of the fundamental domain dynamical zeta function
is significantly slower than the convergence of the corresponding spectral determinant,
and the full (unfactorized) 3-disk dynamical zeta function has still poorer convergence.
(P.E. Rosenqvist.)

R:a N . det(s −A) 1/ζ(s) 1/ζ(s)3-disk
1 0.39 0.407
2 0.4105 0.41028 0.435
3 0.410338 0.410336 0.4049

6 4 0.4103384074 0.4103383 0.40945
5 0.4103384077696 0.4103384 0.410367
6 0.410338407769346482 0.4103383 0.410338
7 0.4103384077693464892 0.4103396
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192
1 0.41
2 0.72
3 0.675
4 0.67797

3 5 0.677921
6 0.6779227
7 0.6779226894
8 0.6779226896002
9 0.677922689599532

10 0.67792268959953606
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• The dynamical zeta functions is an approximation to spectral determinant
that yields only the leading eigenvalue of the evolution operator. The cycle
weights depend only on the product of expanding |Λi| Floquet multipliers,
so signs do no matter. For hyperbolic flows they converge exponentially
with increasing cycle lengths.

• spectral determinants weights in (19.3) contain 1/|1 − Λi| factors, so for
them signs of Floquet multipliers Λi do matter. With finite grammar the
leading eigenvalue converges super-exponentially in cycle length.

Note that while the dynamical zeta functions weights use only the expand-
ing Floquet multipliers |Λe|, for spectral determinants the weights are of
form |1−Λr

j|, both expanding and contracting directions contribute, and the
signs of multipliers do matter. That’s why ChaosBook everywhere tracks
multipliers Λ j, rather than Floquet exponents λj. λ’s belong to equilibria,
periodic orbits require multipliers. That’s the way cookie crumbles. For
very high-dimensional flows (such as unstable periodic solutions of Navier-
Stokes equations), usually only a subset of the most unstable / least con-
tracting Floquet multipliers is known. As long as the contracting Floquet
multipliers omitted from the weights in (20.12) are sufficiently strongly con-
tracting, the errors introduced by replacement |1 − Λr

j| → 1 for such eigen-
values should be negligible.

• The least enlightened are the ‘level sum’ cycle averaging formulas. There
is no point in using them, except that they have to be mentioned (here in

⇓PRIVATEsect. 22.5), as Maryland organization [8] has generated about 10,000 papers
using them. The first paper I know that uses them is Auerbach, PC,..., [?]
but we graduated from that kindergarden in months and moved on to the
middle school where zeta functions replaced the first foggy guesses, and so
on... ⇑PRIVATE

• Other formulas published in physics literature are likely to be wrong. 8

If the set of computed periodic orbits is incomplete, and their Floquet mul-
tipliers inaccurate, distinctions between different cycle averaging formulas are
academic, as there are not sufficiently many cycles to start worrying about what
expansion converges faster. ⇓PRIVATE

9 A conceptually more elegant spectral determinant cycle expansion is based
on the property of unique factorization of symbol sequences. This expansion has
been relegated to appendix G.3.1, as its computational implementation is probably
not worth the effort as far as the numerical evaluation of spectral determinants is
concerned. ⇑PRIVATE

8Predrag: add pointer to Das Remark.
9Predrag: make into a remark: “ For ∞-dimensional flows, the infinity of strongly contracting

terms 1/|1 − Λi| can be replaced by 1. Starting where? Current speculation: One could drop the
ones beyond the Kaplan-Yorke criterion, but I would start with what Ginelli and Chate call the
’unphysical modes’ (covariant Lyapunov eigenvectors point out of the inertial manifold, not within
it). Gibson computes of order of 30 eigenvectors for plane Couette invariant solutions, more could
be computed if we really wanted to determine physical dimension of a turbulent Navier-Stokes flow,
but we are nowhere there yet. ”
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20.3 Periodic orbit averaging

The first cycle expansion calculation should always be the determination of the
leading eigenvalue of the evolution operator, calculated as follows. After the
prime cycles and the pseudo-cycles have been grouped into subsets of equal topo-
logical length, the dummy variable can be set equal to z = 1. With z = 1, the
expansion (20.14) constitutes the cycle expansion (19.6) for the spectral deter-
minant det(s − A) . We vary s in cycle weights, and determine αth eigenvalue
sα (17.29) by finding s = sα for which (20.14) vanishes. As an example, the
convergence of a leading eigenvalue for a nice hyperbolic system is illustrated in
table 20.2 by the list of pinball escape rates γ = −s0 estimates computed from
truncations of (20.7) and (20.14) to different maximal cycle lengths. 10 11 12 13

chapter 23

The pleasant surprise, to be explained in chapter 23, is that one can prove
that the coefficients in these cycle expansions decay exponentially or even faster,
because of the analyticity of det (s −A) or 1/ζ(s), for s values well beyond those
for which the corresponding trace formula (18.23) diverges.

20.3.1 Newton algorithm for determining the evolution operator eigen-
values

Cycle expansions of spectral determinants can be used to compute a set
of leading eigenvalues of the evolution operator. A convenient way to search for
these is by plotting either the absolute magnitude ln |det (s − A)| or the phase of
spectral determinants and dynamical zeta functions as functions of the complex
variable s. The eye is guided to the zeros of spectral determinants and dynamical
zeta functions by means of complex s plane contour plots, with different intervals
of the absolute value of the function under investigation assigned different col-
ors; zeros emerge as centers of elliptic neighborhoods of rapidly changing colors.
Detailed scans of the whole area of the complex s plane under investigation and
searches for the zeros of spectral determinants, figure20.1, 14 reveal complicated
patterns of resonances even for something as simple as the 3-disk game of pinball.
As we shall see in sect. ??, this classical spectrum is closely related to the quan- ⇓PRIVATE
tum resonances for the corresponding quantum system. With a good starting guess

exercise 20.6

⇑PRIVATE
(such as the location of a zero suggested by the complex s scan of figure20.1), a
zero 1/ζ(s) = 0 can now be determined by standard numerical methods, such as
the iterative Newton algorithm (13.4), with the mth Newton estimate given by

sm+1 = sm −
(
ζ(sm)

∂

∂s
ζ−1(sm)

)−1

= sm −
1/ζ(sm)
〈T〉ζ

. (20.16)

10Predrag: Fill table 20.2 out with Per’s numbers.
11Predrag: Figure: plot of 1/ζ(s) and det (s −A) with first few zeros, perhaps from ref. [6]
12Predrag: probably should supplement reftabt-Table4 with a graph, where one notes that the

3-disk convergence is not monotone.
13Predrag: Rosenqvist has also Tp = mean number of bounces. Is there a simple relation?
14Predrag: redraw figure 20.1 so elliptic regions can be seen. Interchange Re s, Im s. Replace

Im s ≥ −1 by correct value.
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Figure 20.1: Example scans in the complex s
plane: contour plots of the logarithm of the ab-
solute values of (left) 1/ζ(s), (right) spectral deter-
minant det (s−A) for the 3-disk system, separation
R : a = 6. The A1 subspace is evaluated numeri-
cally. The eigenvalues of the evolution operator L
are given by the centers of elliptic neighborhoods
of the rapidly narrowing rings. While the dynam-
ical zeta function is analytic on the Im s ≥ −1 half-
plane, the spectral determinant is entire and reveals
further families of zeros. (P.E. Rosenqvist)

The denominator 〈T〉ζ is required for Newton iteration and is given by cycle ex-
pansion (20.25). We need to evaluate it anyhow, as 〈T〉ζ is needed for the cycle
averaging formulas.

Our next task will be to compute long-time averages of observables. Three
situations arise, two of them equal in practice:

(i) The system is bounded, and we have all cycles up to some cutoff: always
start by testing the cycle expansion sum rules of sect.20.3.2.

(ii) The system is unbounded, and averages have to be computed over a repeller
whose natural measure is obtained by balancing local instability with the
global escape rate γ = −s0, as in sect. 17.3. 15

(iii) The system is bounded, but we only have a repelling set consisting of a sub-
set of unstable cycles embedded into the bounded strange attractor. Best one
can do is to treat this as an open system, case (iii). That assigns a stationary
natural measure to neighborhoods of the solutions used, the local instabili-
ties balanced by a weight that includes escape rate exp(γTp). Whether use
of this measure improves averages as one increases the stability cutoff de-
pends on whether the longer cycles explore qualitatively different regions
of state space not visited by the shorter (fundamental) cycles, or only revisit
already known regions (curvature corrections).

20.3.2 Flow conservation sum rules

If a dynamical system is bounded, so that all trajectories remain confined for all
times, the escape rate (22.8) vanishes γ = −s0 = 0, and the leading eigenvalue of
the Perron-Frobenius operator (16.10) (evolution operator with β = 0) is simply
exp(−tγ) = 1. Conservation of material flow thus implies that for bounded flows
cycle expansions of dynamical zeta functions and spectral determinants satisfy

15Predrag: give the isolated unstable cycle as example
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exact flow conservation sum rules:

1/ζ(0, 0) = 1 +
∑′

π

(−1)k

|Λp1 · · ·Λpk |
= 0

F(0, 0) = 1 −
∞∑

n=1

Qn(0, 0) = 0 (20.17)

obtained by setting s = 0 in (20.18), (20.19) with cycle weights tp = e−sTp/|Λp| →
1/|Λp| . These sum rules depend neither on the cycle periods Tp nor on the observ-
able a(x) under investigation, but only on the cycle stabilities Λp,1, Λp,2, · · ·, Λp,d.
Their significance is purely geometric; they are a measure of how well periodic
orbits tessellate state space, as in figure 1.11. Conservation of material flow pro-
vides a first and very useful test of the quality of finite cycle length truncations and
is something that you should always check when constructing a cycle expansion
for a bounded flow.

20.4 Cycle formulas for dynamical averages

Want to learn some useful safety maneuvers? Or perhaps
you’d like to become a more able mechanic? Or have bike
safety questions answered? Or eat pizza? Then sign up for
Enlightened Cycling!

— Bike GT: Cycling around Georgia Tech

The eigenvalue conditions for the dynamical zeta function (20.2) and the spectral
determinant (20.14), 16

0 = 1 −
∑′

π

tπ , tπ = tπ(β, s(β)) (20.18)

0 = 1 −
∞∑

n=1

Qn , Qn = Qn(β, s(β)) , (20.19)

are implicit equations for an eigenvalue s = s(β) of the form 0 = F(β, s(β)). The
eigenvalue s = s(β) as a function of β is sketched in figure 20.2; this condition
is satisfied on the curve F = 0. The cycle averaging formulas for the slope and
curvature of s(β) are obtained as in (17.12) by taking derivatives of the eigenvalue
condition. Evaluated along F = 0, by the chain rule the first derivative yields

0 =
d

dβ
F(β, s(β))

=
∂F
∂β
+

ds
dβ

∂F
∂s

∣∣∣∣∣
s=s(β)

=⇒ ds
dβ
= −∂F

∂β

/ ∂F
∂s

, (20.20)

16Predrag: in figure 20.2 move the s = 0 axis
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Figure 20.2: The eigenvalue condition is satisfied on
the curve F = 0 on the (β, s) plane. The expectation
value of the observable (17.12) is given by the slope of
the curve.

s

β

__

βF(  ,s(  ))=0 curveβ

d
ds
β

and the second derivative of F(β, s(β)) = 0 yields

d2s

dβ2
= −

⎡⎢⎢⎢⎢⎢⎣∂2F

∂β2
+ 2

ds
dβ

∂2F
∂β∂s

+

(
ds
dβ

)2
∂2F

∂s2

⎤⎥⎥⎥⎥⎥⎦ / ∂F
∂s

. (20.21)

Denoting

〈A〉F = − ∂F
∂β

∣∣∣∣∣
β,s=s(β)

, 〈T〉F =
∂F
∂s

∣∣∣∣∣
β,s=s(β)

,

〈
(A − 〈A〉)2

〉
F
=

∂2F

∂β2

∣∣∣∣∣∣
β,s=s(β)

, (20.22)

respectively, and the mean cycle expectation value of A, the mean cycle period,
and the second derivative of F computed for F(β, s(β)) = 0, we obtain the cycle
averaging formulas for the expectation and variance of the observable (17.12): 17

18

〈a〉 = 〈A〉F

〈T〉F
(20.23)〈

(a − 〈a〉)2
〉
=

1
〈T〉F

〈
(A − 〈A〉)2

〉
F
. (20.24)

These formulas are the central result of periodic orbit theory. We now show that
for each choice of the function F(β, s) in (20.2), (20.14), and (22.15), the above
quantities have explicit cycle expansions.

20.4.1 Dynamical zeta function cycle averaging formulas

For the dynamical zeta function condition (20.18), the cycle averaging formulas
(20.20), (20.24) require one to evaluate derivatives of dynamical zeta functions at

17Predrag: Roberto says LHS is wrong, fix the second one!
18Predrag: forward reference
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a given eigenvalue. Substituting the cycle expansion (20.2) for the dynamical zeta
function we obtain

〈A〉ζ := − ∂

∂β

1
ζ
=

∑′
Aπtπ (20.25)

〈T〉ζ :=
∂

∂s
1
ζ
=

∑′
Tπtπ , 〈n〉ζ := −z

∂

∂z
1
ζ
=

∑′
nπtπ ,

where the subscript in 〈· · ·〉ζ stands for the dynamical zeta function average over
prime cycles, Aπ, Tπ, and nπ given by (20.3) are evaluated on pseudo-cycles (20.4),
and pseudo-cycle weights tπ = tπ(z, β, s(β)) are evaluated at the eigenvalue s(β).
In most applications β = 0, and s(β) of interest is typically the leading eigenvalue
s0 = s0(0) of the evolution generator A.

For bounded flows the leading eigenvalue (the escape rate) vanishes, s(0) = 0,
the exponent βAπ − sTπ in (20.3) vanishes, so the cycle expansions take a simple
form

〈A〉ζ =
∑′

π

(−1)k+1 Ap1 + Ap2 · · · + Apk

|Λp1 · · ·Λpk |
, (20.26)

where analogous formulas hold for 〈T〉ζ , 〈n〉ζ .

Example 20.1 Cycle expansion for the mean cycle period: For example, for the
complete binary symbolic dynamics the mean cycle period 〈T〉ζ is given by

section 1.5.4

〈T〉ζ =
T0

|Λ0|
+

T1

|Λ1|
+

(
T01

|Λ01|
− T0 + T1

|Λ0Λ1|

)
(20.27)

+

(
T001

|Λ001|
− T01 + T0

|Λ01Λ0|

)
+

(
T011

|Λ011|
− T01 + T1

|Λ01Λ1|

)
+ . . . .

Note that the cycle expansions for averages are grouped into the same shad-
owing combinations as the dynamical zeta function cycle expansion (20.7), with
nearby pseudo-cycles nearly canceling each other.

The cycle averaging formulas for the expectation of observable 〈a〉 follow by
substitution into (20.24). Assuming zero mean drift 〈a〉 = 0, the cycle expansion
(20.14) for the variance

〈
(A − 〈A〉)2

〉
ζ

is given by

〈
A2

〉
ζ
=

∑′
(−1)k+1

(
Ap1 + Ap2 · · · + Apk

)2

|Λp1 · · ·Λpk |
. (20.28)
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20.4.2 Spectral determinant cycle expansions

19 The dynamical zeta function cycle expansions have a particularly simple
structure, with the shadowing apparent already by a term-by-term inspection of
table 20.2. For “nice” hyperbolic systems, shadowing ensures exponential conver-

section 23.6
gence of the dynamical zeta function cycle expansions. This, however, is not the
best achievable convergence. As will be explained in chapter 23, for nice hyper-
bolic systems the spectral determinant constructed from the same cycle database
is entire, and its cycle expansion converges faster than exponentially. The fastest
convergence is attained by the spectral determinant cycle expansion (20.19) and
its derivatives. In this case the ∂/∂s, ∂/∂β derivatives are computed recursively,
by taking derivatives of the spectral determinant cycle expansion contributions
(20.12) and (20.15).

The cycle averaging formulas are exact, and highly convergent for nice hy-
perbolic dynamical systems. An example of their utility is the cycle expansion
formula for the Lyapunov exponent of example 20.2. Further applications of cy-
cle expansions will be discussed in chapter 22. 20

20.4.3 Continuous vs. discrete mean return time

Sometimes it is convenient to compute an expectation value along a flow in con-
tinuous time, and sometimes it might be easier to compute it in discrete time, from
a Poincaré return map. 21 22 Return times (3.1) might vary wildly, and it is not at
all clear that the continuous and discrete time averages are related in any simple
way. As we shall now show, the relationship turns out to be both elegantly simple,
and totally general.

exercise 20.14

23 The mean cycle period 〈T〉F fixes the normalization of the unit of time; it
can be interpreted as the average near recurrence or the average first return time.
For example, if we have evaluated a billiard expectation value 〈a〉 = 〈A〉F/〈T〉F in
terms of continuous time, and would like to also have the corresponding average
〈a〉dscr = 〈A〉F/〈n〉F measured in discrete time, given by the number of reflections
off billiard walls, the two averages are related by

〈a〉dscr = 〈a〉 〈T〉F / 〈n〉F , (20.29)

where 〈n〉F the average of the number of bounces np along the cycle p is given by
is (20.25).

Example 20.2 Cycle expansion formula for Lyapunov exponents: In sect. 17.4
we defined the Lyapunov exponent for a 1-dimensional map, relating it to the leading

19Predrag: expand this section
20Predrag: expand
21Predrag: rewrite this section, expand, emphasize
22Niall: does < T > s average always exist?
23Niall: find NW comment
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eigenvalue of an evolution operator, and promised to evaluate it. Now we are finally in
position to deliver on our promise.

The cycle averaging formula (20.26) yields an exact explict expression for the
Lyapunov exponent in terms of prime cycles:

λ =
1
〈n〉ζ

∑′
(−1)k+1 log |Λp1 | + · · · + log |Λpk |

|Λp1 · · ·Λpk |
. (20.30)

For a repeller, the 1/|Λp| weights are replaced by (22.10), the normalized measure
weights exp(γnp)/|Λp|, where γ is the escape rate. 24

25 For 2-dimensional Hamiltonian flows such as our game of pinball (see ex-
ample 19.3), there is only one expanding eigenvalue and (20.30) applies as writ-
ten. However, in dimensions higher than one, a correct calculation of Lyapunov
exponents requires a bit of sophistication, see appendixJ.1. ⇓PRIVATE

⇑PRIVATE

⇓PRIVATEin depth:

appendix J.1, p. 1135 ⇑PRIVATE

20.5 Cycle expansions for finite alphabets

A finite transition graph like the one given in figure 14.7 (d) is a compact encod-
ing of the transition matrix for a given subshift. It is a sparse matrix, and the
associated determinant (15.20) can be written by inspection: it is the sum of all
possible partitions of the graph into products of non-intersecting loops, with each
loop carrying a minus sign:

det (1 − T ) = 1 − t0 − t0011 − t0001 − t00011 + t0t0011 + t0011t0001 (20.31)

The simplest application of this determinant is the evaluation of the topological
entropy; if we set tp = znp , where np is the length of the p-cycle, the determinant
reduces to the topological polynomial (15.21).

The determinant (20.31) is exact for the finite graph figure 14.7 (e), as well
as for the associated finite-dimensional transfer operator of example 17.4. For
the associated (infinite dimensional) evolution operator, it is the beginning of the
cycle expansion of the corresponding dynamical zeta function:

1/ζ = 1 − t0 − t0011 − t0001 + t0001t0011

−(t00011 − t0t0011 + . . . curvatures) . . . (20.32)

The cycles 0, 0001 and 0011 are the fundamental cycles introduced in (20.7); they
are not shadowed by any combinations of shorter cycles. All other cycles appear

24Predrag: forward reference
25Predrag: refer to open systems section
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together with 26 their shadows (for example, the t00011 − t0t0011 combination, see
figure 1.12) and yield exponentially small corrections for hyperbolic systems. For
cycle counting purposes, both tab and the pseudo-cycle combination ta+b = tatb in
(20.2) have the same weight zna+nb , so all curvature combinations tab − tatb vanish
exactly, and the topological polynomial (15.29) offers a quick way of checking
the fundamental part of a cycle expansion.

The splitting of cycles into the fundamental cycles and the curvature correc-
tions depends on balancing long cycles tab against their pseudo-trajectory shadows
tatb. If the ab cycle or either of the shadows a, b do not to exist, such curvature
cancelation is unbalanced.

The most important lesson of the pruning of the cycle expansions is that pro-
hibition of a finite subsequence imbalances the head of a cycle expansion and
increases the number of the fundamental cycles in (20.7). Hence the pruned ex-
pansions are expected to start converging only after all fundamental cycles have
been incorporated - in the last example, the cycles 1, 10, 10100, 1011100. With-
out cycle expansions, no such crisp and clear cut definition of the fundamental set
of scales is available. 27

Because topological zeta functions reduce to polynomials for finite grammars,
only a few fundamental cycles exist and long cycles can be grouped into curvature
combinations. For example, the fundamental cycles in exercise 9.6 are the three
2-cycles that bounce back and forth between two disks and the two 3-cycles that
visit every disk. Of all cycles, the 2-cycles have the smallest Floquet exponent,
and the 3-cycles the largest. It is only after these fundamental cycles have been
included that a cycle expansion is expected to start converging smoothly, i.e., only
for n larger than the lengths of the fundamental cycles are the curvatures ĉn (in
expansion (20.7)), a measure of the deviations between long orbits and their short
cycle approximations, expected to fall off rapidly with n.

20.6 Stability ordering of cycle expansions

There is never a second chance. Most often there is not
even the first chance.

—John Wilkins

(C.P. Dettmann and P. Cvitanović)

We have judiciously deployed the 3-disk pinball, with its simple grammar, to mo-
tivate the periodic orbit theory. Most dynamical systems of interest, however, have
infinite grammar, so at any order in z a cycle expansion may contain unmatched
terms that do not fit neatly into the almost canceling curvature corrections. Sim-
ilarly, for the intermittent systems that we shall discuss in sect.24.3.5, curvature

26Predrag: restore
27Predrag: Use 1-dimensional inverse iterates to illustrate that pruning implies existence of com-

plex orbits.
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intermittencycorrections are not small in general, so again the cycle expansions may converge
slowly. For such systems, schemes that collect the pseudocycle terms according
to some criterion other than the topology of the flow may converge faster than
expansions based on the topological length. 28

All chaotic systems exhibit some degree of shadowing, and a good truncation
criterion should do its best to respect the shadowing as much as possible. If a
long cycle is shadowed by two or more shorter cycles and the flow is smooth, the
periods and the Floquet exponents will be additive in sense that the period of the
longer cycle is approximately the sum of the shorter cycle periods. Similarly, as
stability is multiplicative, shadowing is approximately preserved by including all
terms with pseudo-cycle stability

∣∣∣Λp1 · · ·Λpk

∣∣∣ ≤ Λmax (20.33)

and ignoring any pseudo-cycles that are less stable.

Two such schemes for ordering cycle expansions that approximately respect
shadowing are truncations by the pseudocycle period (or action) discussed in re- ⇓PRIVATEmark A.5, and the stability ordering that we shall discuss here. In these schemes,

⇑PRIVATEa dynamical zeta function or a spectral determinant is expanded. One keeps all
terms for which the period, action or stability for a combination of cycles (pseudo-
cycles) is less than a given cutoff.

Settings in which stability ordering may be preferable to29 ordering by topo-
logical cycle length are the cases of bad grammar, of intermittency, and of partial
cycle data sets.

20.6.1 Stability ordering for bad grammars

For generic flows it is often not clear what partition of state space generates the
“optimal” symbolic dynamics. Stability ordering does not require understanding
dynamics in such detail: if you can find the cycles, you can use stability-ordered
cycle expansions. Stability truncation is thus easier to implement for a generic
dynamical system than the curvature expansions (20.7) that rely on finite subshift
approximations to a given flow.

Cycles can be detected numerically by searching a long trajectory for near re-
currences. The long trajectory method for detecting cycles discussed in sect.13.1.1 ⇓PRIVATE
preferentially finds the least unstable cycles, regardless of their topological length.

⇑PRIVATE
28Predrag: refer back to example 11.4, then use this: “ But there is trouble in paradise. By a fluke,

the Lorenz attractor, the first flow to popularize strange attractors, turns out to be topologically one
of the simplest strange attractors. But it is not ‘uniformly hyperbolic.’ The flow near EQ1 is barely
unstable, while the flow near EQ0 is arbitrarily unstable. So binary symbolic dynamics enumeration
of cycles mixes cycles of vastly different stabilities, and is not very useful - the practical way to
compute dynamical averages is by stability ordering. ”

29Predrag: add Berry-Keating somewhere
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Another practical advantage of the method (in contrast to blind Newton method
searches) is that it preferentially finds cycles in a given connected ergodic compo-
nent of state space, ignoring isolated cycles or other ergodic regions elsewhere in
state space.

Why should stability-ordered cycle expansions of a dynamical zeta function
converge better than the crude trace formula (22.9), to be discussed in sect. 22.2?
The argument has essentially already been laid out in sect. 15.6: in truncations
that respect shadowing, most of the pseudo-cycles appear in shadowing combi-
nations and nearly cancel, while only the relatively small subset affected by the
increasingly long pruning rules is not shadowed. The error is typically of the order
of 1/Λ, which is smaller by a factor ehT than the trace formula (22.9) error, where
h is the entropy and T is the typical cycle length for cycles of stability Λ.30 31

20.6.2 Smoothing

If most, but not all long cycles in a stability truncation are shadowed by
shorter cycles, we say that the shadowing is partial. The breaking of exact shad-
owing cancellations deserves further comment. Any partial shadowing that may
be present can be (partially) restored by smoothing the stability-ordered cycle ex-
pansions by replacing the 1/Λweight for each term with the pseudo-cycle stability
Λ = Λp1 · · ·Λpk by f (Λ)/Λ. Here, f (Λ) decreases monotonically from f (0) = 1
to f (Λmax) = 0. The lack of smoothing means we have a step function. 32

A typical “shadowing error” induced by the cutoff is due to two pseudo-cycles
of stability Λ separated by ΔΛ; the contributions of these pseudo-cycles are of
opposite sign. Ignoring possible weighting factors, the magnitude of the resulting
term is of order 1/Λ − 1/(Λ + ΔΛ) ≈ ΔΛ/Λ2. With smoothing, one obtains an
extra term of the form f ′(Λ)ΔΛ/Λ, which we want to minimize. A reasonable
guess might be to keep f′(Λ)/Λ constant and as small as possible, so that

f (Λ) = 1 −
(
Λ

Λmax

)2

The results of a stability-ordered expansion (20.33) should always be tested
for robustness by varying the cutoff Λmax. If this introduces significant variations,
smoothing is probably necessary. ⇓PRIVATE

20.7 Equilibrium points

In sect. 19.7 we worked out the contribution of an isolated equilibrium

30Predrag: explain better, or move to sect. 22.2
31Predrag: Incorporate Grassberger’s dimension of the Cantor set of pruning rules
32Predrag: I do not believe yet that this is significant improvement
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equilibrium!point
abscissa of absolute

convergence
convergence!abscissa

of absolute
convergence!abscissa

of abysimal
entropy!barrier
axiom A systems
dynamical

system!axiom A

point to the trace and spectral determinant formulas. As they differ in form from
the cycle weights for periodic orbits, we need to show that they are shadowed by
nearby families of cycles. ⇑PRIVATE

Résumé

A cycle expansion is a series representation of a dynamical zeta function, trace
formula or a spectral determinant, with products in (19.15), (39.19) 33 expanded

⇓PRIVATE

⇑PRIVATE
as sums over pseudo-cycles, which are products of the prime cycle weights tp.

If a flow is hyperbolic and has the topology of the Smale horseshoe (a sub-
shift of finite type), dynamical zeta functions are holomorphic (have only poles
in the complex s plane), the spectral determinants are entire, and the spectrum of
the evolution operator is discrete. The situation is considerably more reassuring
than what practitioners of quantum chaos fear; there is no ‘abscissa of absolute
convergence’ and no ‘entropy barrier’, the exponential proliferation of cycles is
no problem, spectral determinants are entire and converge everywhere, and the
topology dictates the choice of cycles to be used in cycle expansion truncations.

In this case, the basic observation is that the motion in low-dimensional dy-
namical systems is organized around a few fundamental cycles, with the cycle
expansion of the Euler product

1/ζ = 1 −
∑

f

t f −
∑

n

ĉn,

regrouped into dominant fundamental contributions tf and decreasing curvature
corrections ĉn. The fundamental cycles tf have no shorter approximations; they
are the ‘building blocks’ of the dynamics in the sense that all longer orbits can be
approximately pieced together from them. A typical curvature contribution to ĉn
is the difference of a long cycle {ab} and its shadowing approximation by shorter
cycles {a} and {b}, as in figure 1.12:

tab − tatb = tab(1 − tatb/tab)

Orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo-cycle’
{a}{b}, lie close to each other, have similar weights, and for increasingly long
orbits the curvature corrections fall off rapidly. Indeed, for systems that satisfy the
‘axiom A’ requirements, such as the 3-disk billiard, curvature expansions converge
very well. 34

Once a set of the shortest cycles has been found, and the cycle periods, stabili-
ties, and integrated observable have been computed, the cycle averaging formulas

33Predrag: (39.19) for ref?
34Predrag: define “Axiom A” somewhere
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such as (20.25) for the dynamical zeta function

〈a〉 = 〈A〉ζ / 〈T〉ζ , where for the zeta function expansions:

〈A〉ζ = − ∂

∂β

1
ζ
=

∑′
Aπtπ , 〈T〉ζ =

∂

∂s
1
ζ
=

∑′
Tπtπ

yield the expectation value of the observable a(x), i.e., the long time average over
the chaotic non–wandering set).

Commentary

Remark 20.1 Alternative Periodic Orbit Theories.

Extraordinary how potent cheap music is.

— Noel Coward

There are no ‘alternative periodic orbit theories’. There is only one ergodic theory, and
periodic orbits are one aspect of it, just like there is only one quantum mechanics, and
WKB is one way to gain insight into it. While the eigenfunctions of quantum evolution
operators are smooth Hilbert space states, the eigenfunctions of deterministic evolution
operators are highly singular, nowhere differentiable functions with support on fractal sets.
The deterministic eigenstates of high-dimensional ergodic flows thus cannot be computed
using the methods developed for quantum eigenstates, at least not without much further
thought. The ergodic, singular ‘natural measure’ is harder (and in high-dimensional state
space impossible) to construct numerically than its smooth quantum cousin, the ‘ground
state’, and periodic orbits seem to be the way to do it. Were ergodic theory easy, Chaos-
Book.org and Gaspard monograph [8] would have been a much breezier reads.

In the vast and vastly uneven periodic orbit literature (should erroneous papers be
cited?) one sometimes encounters the ‘escape-time weighting’,

〈a〉 =
∑

p τpap∑
p τp

, τp =
1∑e

j λp, j
, (20.34)

where the p sum goes over all known unstable periodic orbits, and sometimes also over
judiciously chosen subsets of unstable equilibria. Here

e∑
j

λp, j =
1

Tp
lnΛp , Λp = |Λp,1Λp,2 · · ·Λp,e| , (20.35)

Tp is the period of of the prime periodic orbit p, Λ p, j is the jth Floquet multiplier (5.5),
Λp is the product of the expanding multipliers |Λ p, j| > 1 , j = 1, . . . , e, and λp, j’s are the
strictly positive Floquet exponents.∑e λp,i is the local escape rate from single repelling cycle p, of dimension 1/[time],
so one may interpret its inverse τp as “an estimate of the mean time spent by the system
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in vicinity of periodic orbit” p. τ p is the Lyapunov time of cycle p, that is, the mean time
it takes for the density of neighboring trajectories in an arbitrarily small ball centered
around a point on the trajectory to decrease by factor 1/e.

The ‘escape-time weighting’ was introduced in a rapid communication thusly: “Less
unstable orbits must be weighted more heavily, so the attractor dimension is approximated
by ‘escape-time weighting’ (20.34).” That’s it: the ‘derivation’ in its entirety. Formula
(20.34) is then asserted to approximate the time average 〈a〉 of observable a(x) over the
chaotic attractor in terms of

ap =
1

Tp

∮ Tp

0
dτ a[ f τ(x0)] , x0 ∈ p , (20.36)

averaged over each and every prime periodic orbit p found in any computer exploration
of a dynamical system’s state space.

The enchantment with the escape-time weighting approach lies its charming simplic-
ity. If one has a dynamical problem, and if one has a computer one has programmed
to search for periodic orbits, and if the computer brings back a set of unstable periodic
orbits, all one has to do is to put λ p, j and ap into the formula (20.34), and it returns a
number - let’s say D = 9.0±0.1, where the error one estimates somehow - which one then
publishes.

The only drawback is that the ‘formula’ is wrong. (1) It comes from nowhere. (2)
τp has dimension of 1/[time], but a ‘weight’ should be a dimensionless number, the like-
lihood that an ergodic trajectory enters the neighborhood of the periodic orbit p. (3)

∑
p

is the sum over all unstable prime periodic orbits, regardless whether they belong to the
ergodic component under investigation or dwell isolated in the Moon orbit. (4) The guess
for the weight τp is clearly wrong, as any periodic orbit, no matter how long and unstable,
has the comparable weight

∑e λp,i, as long as its Lyapunovs (instability rate per unit time)
are comparable; the Lyapunov time has nothing to do with the period of the particular
cycle. For that there is a fix in the literature, with the Lyapunov time in ( 20.34) replaced
by

τp = Tp/
e∑
λp,i . (20.37)

The fix is explained as follows: “it is reasonable also to suppose that orbits with longer
periods must be weighted more heavily as they are longer and should provide a greater
contribution to the total sum.” That’s it: the ‘derivation’ in its entirety. No less wrong.

The exact weight of the unstable prime periodic orbit p (for level sum ( 18.7)) was
given by Kadanoff and Tang [10] in 1984. For the classical trace formula for flows (18.23)
it is

Tp e−Tp s∣∣∣∣det
(
1 − Mp

)∣∣∣∣ eβAp , Ap = Tpap , (20.38)

where s is the evolution operator eigenvalue, and β is an auxiliary variable. It is de-
termined by the dimensionless Floquet multipliers (eigenvalues of the periodic orbit’s
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exponential!proliferation
complexity!algorithmic

monodromy matrix M p) which grow/shrink exponentially with cycle period, not the Os-
eledec Lyapunov exponents or periodic orbit Floquet exponents which measure average
expansion/contraction rate per unit time.

The exact cycle averaging formulas for the expectation value of the observable a,
derived in chapters 16 to 19, have form

〈a〉 = 〈A〉F/〈T〉F , (20.39)

where the form of the periodic orbit sum 〈· · ·〉F depends on whether it is computed from
the trace formula (22.15), the dynamical zeta function (20.2), or the spectral determinant
(20.14). This sum is never of the form (20.34).

Often one cares only about the leading long-time behavior, and for long periodic or-
bits approximates the denominator of (20.38) by the product of the expanding multipliers
Λp of the monodromy matrix M p,

e−Tp s∣∣∣∣det
(
1 − Mp

)∣∣∣∣ → tp =
e−Tp s

Λp
. (20.40)

This weight seems to have been first used in the 1987 Auerbach et al. [ 17], who computed
(for discrete time n given by iterates of map f ) an nth order estimate s (n) of the leading
evolution operator eigenvalue s from the sum of all periodic points j of period n

1 =
∑

j∈Fix f n

t j eβAn(x j) , t j =
e−ns(n)

Λ j
. (20.41)

Even as its was written, the heuristics of this paper was superseded by the exact cycle
expansions, first published in 1987 Cvitanović letter [10]. 35

Then there is in literature an ‘Alternative Periodic Orbit Theory’ so bold that one can
only call it The Heresy: the conjecture is that if one looks carefully enough, there exists
a single periodic orbit that captures all dynamical averages of a turbulent flow. This is so
wrong that one is at loss what to say: there is NO such single periodic orbit. Instead, there
is the well established theory that says how periodic orbits are to be used, and how many
are needed to capture the hyperbolic parts of the non–wandering set to a desired accuracy.
It is as elegant and systematic as Statistical Mechanics and Quantum Field Theory. Read
ChaosBook.org. But who reads books nowadays? (Of course, if one takes a random
very long periodic orbit, one will get estimates as good as from an ergodic trajectory of
comparable length, but then why make life hard by insisting on exact recurrence?) ⇓PRIVATE

Feb 15, 2013 Bruno Eckhardt wrote: “ On the ’absurd’ idea of looking for a single
periodic orbit that covers all behaviour: the first to actually do this and get away with it

35Predrag: incorporate: “ Contrary to claims one all too often encounters in the literature, “ex-
ponential proliferation of trajectories” is not the problem; what limits the convergence of cycle
expansions is the proliferation of the grammar rules, or the “algorithmic complexity,” as illustrated
by sect. 15.5, and figure 15.3 in particular. Nice, finite grammar leads to nice, discrete spectrum; in-
finite grammar leads to analyticity walls in the complex spectral plane. ” and “ Aurell-Eckhardt silly
radius of absolute convergence - There is no “abscissa of absolute convergence” and no “entropy
wall,” the exponential proliferation of orbits can be controlled, and the Selberg-type zeta functions
are entire and converge everywhere. ”
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Dirichlet series
cumulant

was Martin Gutzwiller in the anisotropic Kepler problem. However, his acceptable excuse
was that at the time it was the only orbit he could find and he wanted to illustrate how it
works.”

Predrag writes back: You are right, I say it elsewhere, but I should include it here
(Berry diplomatically writes “he found one orbi” in his pean to Gutzwiller [ 17]). But
in my book (figuratively and literally,) Martin invented periodic orbit theory as a tool
for physicists, and -like Kawahara- he was lucky that the one orbit he got by adiabtic
deformation of a Kepler ellipse gave him 10% accuracy, which was great for his purposes
(they all believed that semiclassics should be bad for the ground state). Two years later he
formulated the full anisotropic Kepler. ⇑PRIVATE

The strangest thing about ‘Alternative Periodic Orbit Theories’ is that since intro-
duction of zeta functions of Smale (1967), Ruelle (1976), Gutzwiller (1969) and their
cycle expansions (1987) there is no need for them whatsoever. Why would on need to
guess an approximate periodic orbit weight when the exact weight is already known? It
costs exactly the same to compute the exact spectral determinant as it costs to compute
a wrong formula, both require the same periodic orbits, Floquet multipliers, periods, and
cycle-averaged observables a p. Go figure...

Remark 20.2 Pseudocycle expansions. Bowen’s introduction of shadowing ε-
pseudo-orbits [28] was a significant contribution to Smale’s theory. The expression ‘pseudo-
orbits’ seems to have been introduced in Parry and Pollicott’s 1983 paper [ 19]. Following
them, M. Berry [9] used the expression ’pseudo-orbits’ in his 1986 paper on Riemann
zeta and quantum chaos. Cycle and curvature expansions of dynamical zeta functions and
spectral determinants in terms of pseudocycles were introduced in refs. [ 10, 2]. Some
literature [12] refers to pseudo-orbits as ‘composite orbits’, and to cycle expansions as
‘Dirichlet series’ (see also appendix L.6 and remark L.1).

Remark 20.3 Cumulant expansion. To statistical mechanicians, curvature ex-
section 17.1.3

pansions are very reminiscent of cumulant expansions. Indeed, ( 20.15) is the standard
Plemelj-Smithies cumulant formula (N.21) for the Fredholm determinant, discussed in ⇓PRIVATE
more detail in appendix N. A new aspect, not reminiscent of statistical mechanics, is that

⇑PRIVATEin cycle expansions each Qn coefficient is expressed as a sum over exponentially many
cycles.

Remark 20.4 Exponential growth of the number of cycles. Going from Nn ≈ Nn

periodic points of length n to Mn prime cycles reduces the number of computations from
Nn to Mn ≈ Nn−1/n. The use of discrete symmetries (chapter 21) reduces the number
of nth level terms by another factor. While reformulating theory from trace ( 18.28) to
cycle expansion (20.7) does not eliminate exponential growth in the number of cycles, in
practice only the shortest cycles are used, and the reduction in computational labor for
these cycles can be significant.

Remark 20.5 Shadowing cycle-by-cycle. A glance at the low order curvatures
in table 20.1 leads to the temptation to associate curvatures to individual cycles, such as
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escape rate
intermittency
Lorentz gas
homoclinic!tangency

ĉ0001 = t0001− t0t001. Such combinations tend to be numerically small 36 (see, for example,
ref. [3], table 1). However, splitting ĉn into individual cycle curvatures is not possible in
general [1]; the first example of such ambiguity in the binary cycle expansion is given by
the t100101, t100110 0 ↔ 1 symmetric pair of 6-cycles; the counterterm t 001t011 in table 20.1
is shared by these two cycles.

Remark 20.6 Escape rates. A lucid introduction to escape from repellers is given by
Kadanoff and Tang [10]. For a review of transient chaos see refs. [11, 13]. The ζ–function
formulation is given by Ruelle [18] and W. Parry and M. Pollicott [14] and discussed in
ref. [15]. Altmann and Tel [16] give a detailed study of escape rates, with citations to
more recent literature.

Remark 20.7 Stability ordering. The stability ordering was introduced by Dahlqvist
and Russberg [13, 14] in a study of chaotic dynamics for the (x2y2)1/a potential. The
presentation here runs along the lines of Dettmann and Morriss [ 15] for the Lorentz gas,
which is hyperbolic but with highly pruned symbolic dynamics, and Dettmann and Cvi-
tanović [16] for a family of intermittent maps. In the applications discussed in the above
papers, stability ordering yields a considerable improvement over topological length or-
dering. In quantum chaos applications, cycle expansion cancelations are affected by the
phases of pseudo-cycles (their actions), hence period or action ordering rather than sta-
bility is frequently employed.

Remark 20.8 Desymmetrized cycle expansions. The 3-disk cycle expansions
(20.43) might be useful for cross-checking purposes, but, as we shall see in chapter 21,
they are not recommended for actual computations, as the factorized zeta functions yield
much better convergence.

⇓PRIVATE

Remark 20.9 A homoclinic tangle with a equilibrium point. We still need to show
that the periodic orbits that come close to the equilibrium point shadow it.

⇑PRIVATE

36Predrag: include this table:
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three-disk@3-
disk!cycle!expansion

cycle!expansion!3-
disk

escape rateboyscout

20.1. Cycle expansions. Write programs that implement bi-
nary symbolic dynamics cycle expansions for (a) dynam-
ical zeta functions, (b) spectral determinants. Combined
with the cycles computed for a 2-branch repeller or a 3-
disk system they will be useful in the problems below.

20.2. Escape rate for a 1-dimensional repeller. (continua-
tion of exercise 19.1 - easy, but long) Consider again the
quadratic map (19.40)

f (x) = Ax(1 − x)

on the unit interval. In order to be definitive, take either
A = 9/2 or A = 6. Describing the itinerary of any tra-
jectory by the binary alphabet {0, 1} (’0’ if the iterate is in
the first half of the interval and ’1’ if it is in the second
half), we have a repeller with a complete binary symbolic
dynamics.

(a) Sketch the graph of f and determine its two fixed
points 0 and 1, along with their stabilities.

(b) Sketch the two branches of f −1. Determine all the
prime cycles up to topological length 4 using your
calculator and backwards iteration of f (see sect. 13.2.1).

(c) Determine the leading zero of the zeta function (19.15)
using the weights tp = znp/|Λp|, whereΛp is the sta-
bility of the p-cycle.

(d) Show that for A = 9/2 the escape rate of the repeller
is 0.361509 . . . using the spectral determinantwith
the same cycle weight. If you have taken A = 6,
show instead that the escape rate is in 0.83149298 . . .,
as shown in solution 20.2. Compare the coefficients
of the spectral determinant and the zeta function cy-
cle expansions. Which expansion converges faster?

(Per Rosenqvist)

20.3. Escape rate for the Ulam map. (Medium; repeat of
exercise 13.1) We will try to compute the escape rate for
the Ulam map (11.5)

f (x) = 4x(1 − x),

using the method of cycle expansions. The answer should
be zero, as nothing escapes.

(a) Compute a few of the stabilities for this map. Show
that Λ0 = 4, Λ1 = −2, Λ01 = −4, Λ001 = −8 and
Λ011 = 8.
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three-disk@3-
disk!escape
rate

escape rate!3-disk

(b) Show that

Λε1...εn = ±2n

and determine a rule for the sign.

(c) (hard) Compute the dynamical zeta function for this
system

ζ−1 = 1 − t0 − t1 − (t01 − t0t1) − · · ·

Note that the convergence as a function of the trun-
cation cycle length is slow. Try to fix that by treat-
ing the Λ0 = 4 cycle separately. (continued as
exercise 20.13)

20.4. Pinball escape rate, semi-analytical. Estimate the 3-
disk pinball escape rate for R : a = 6 by substituting
analytical cycle stabilities and periods (see exercise 13.8
and exercise 13.9) into the appropriate binary cycle ex-
pansion. Compare your result with the numerical esti-
mate exercise 17.2.

20.5. Pinball escape rate, from numerical cycles. Compute
the escape rate for the 3-disk pinball with R : a = 6 by
substituting the list of numerically computed cycle stabil-
ities of exercise 13.6 into the binary cycle expansion.

20.6. Pinball resonances in the complex plane. Plot
the logarithm of the absolute value of the dynamical zeta
function and/or the spectral determinant cycle expansion
(20.5) as contour plots in the complex s plane. Do you
find zeros other than the one corresponding to the com-
plex one? Do you see evidence for a finite radius of con-
vergence for either cycle expansion?

20.7. Counting the 3-disk psudocycles. 37 (continuation of
exercise 15.12) Show that the number of terms in the
3-disk pinball curvature expansion (20.42) is given by∏

p

(
1 + tp

)
=

1 − 3z4 − 2z6

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 +
z4(6 + 12z + 2z2)

1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5

+20z6 + 48z7 + 84z8 + 184z9 + . . .

This means that, for example, c6 has a total of 20 terms, in
agreement with the explicit 3-disk cycle expansion (20.43).

20.8. 3–disk unfactorized zeta cycle expansions. Check
that the curvature expansion (20.2) for the 3-disk pinball,
assuming no symmetries between disks, is given by

1/ζ = (1 − z2t12)(1 − z2t13)(1 − z2t23)

(1 − z3t123)(1 − z3t132)(1 − z4t1213)

37Predrag: where did the counterterms section go in the main text?
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(1 − z4t1232)(1 − z4t1323)(1 − z5t12123) · · ·
= 1 − z2t12 − z2t23 − z2t31 − z3(t123 + t132)

−z4[(t1213 − t12t13) + (t1232 − t12t23)

+(t1323 − t13t23)] (20.42)

−z5[(t12123 − t12t123) + · · ·] − · · ·

Show that the symmetrically arranged 3-disk pinball cy-
cle expansion of the Euler product (20.2) (see table 15.5
and figure 9.1) is given by:

1/ζ = (1 − z2t12)3(1 − z3t123)2(1 − z4t1213)3

(1 − z5t12123)6(1 − z6t121213)6

(1 − z6t121323)3 . . . (20.43)

= 1 − 3z2 t12 − 2z3 t123 − 3z4 (t1213 − t2
12)

−6z5 (t12123 − t12t123)

−z6 (6 t121213 + 3 t121323 + t3
12 − 9 t12t1213 − t2

123)

−6z7 (t1212123 + t1212313 + t1213123 + t2
12t123

−3 t12t12123 − t123t1213)

−3z8 (2 t12121213 + t12121313 + 2 t12121323

+2 t12123123 + 2 t12123213 + t12132123

+ 3 t2
12t1213 + t12t2

123 − 6 t12t121213

− 3 t12t121323 − 4 t123t12123 − t2
1213) − · · ·

20.9. 4–disk unfactorized dynamical zeta function cycle ex-
pansions. For the symmetrically arranged 4-disk pin-
ball, the symmetry group is C4v, which is of order 8. The
degenerate cycles can have multiplicities 2, 4 or 8 (see
table 15.3). Show that:

1/ζ = (1 − z2t12)4(1 − z2t13)2(1 − z3t123)8

(1 − z4t1213)8(1 − z4t1214)4(1 − z4t1234)2

(1 − z4t1243)4(1 − z5t12123)8(1 − z5t12124)8

(1 − z5t12134)8(1 − z5t12143)8

(1 − z5t12313)8(1 − z5t12413)8 · · · . (20.44)

Show that the cycle expansion is given by

1/ζ = 1 − z2(4 t12 + 2 t13) − 8z3 t123

−z4(8 t1213 + 4 t1214 + 2 t1234 + 4 t1243

−6 t2
12 − t2

13 − 8 t12t13)

−8z5(t12123 + t12124 + t12134 + t12143 + t12313

+t12413 − 4 t12t123 − 2 t13t123)

−4z6(2 S 8 + S 4 + t3
12 + 3 t2

12 t13 + t12t2
13

−8 t12t1213 − 4 t12t1214

−2 t12t1234 − 4 t12t1243

−4 t13t1213 − 2 t13t1214 − t13t1234

−2 t13t1243 − 7 t2
123) − · · ·
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contracting!state
space, Rössler

where in the coefficient of z6 ,the abbreviations S 8 and
S 4 stand for the sums over the weights of the 12 orbits
with multiplicity 8 and the 5 orbits with multiplicity 4,
respectively; the orbits are listed in table 15.5. 38 39

⇓PRIVATE
20.10. Tail resummations. A simple illustration of tail re-

summation is the ζ function for the Ulam map (11.5),
for which the cycle structure is exceptionally simple: the
eigenvalue of the x0 = 0 fixed point is 4, whenever that
of any other n-cycle is ±2n. Typical cycle weights used in
thermodynamic averaging are t0 = 4τz, t1 = t = 2τz, and
tp = tnp for p � 0. The simplicity of the cycle eigenvalues
enables us to evaluate the ζ function with a simple trick:
we note that if the value of any n-cycle eigenvalue were
tn, (19.21) would yield 1/ζ = 1−2t. There is only one cy-
cle, the x0 fixed point, that has a different weight (1 − t0),
so we factor it out, multiply the rest by (1− t)/(1− t), and
obtain a rational ζ function

1/ζ(z) =
(1 − 2t)(1 − t0)

(1 − t)
(20.45)

Consider how we would have detected the pole at z = 1/t
without the above trick. As the 0 fixed point is isolated in
its stability (the only one with t0 = 4τz), we would have
kept the factor (1 − t0) in (20.7) unexpanded, and noted
that all curvature combinations in (20.7) which include
the t0 factor are unbalanced, so that the cycle expansion
is an infinite series:∏

p

(
1 − tp

)
= (1−t0)(1−t−t2−t3−t4−. . .)(20.46)

(we shall return to such infinite series in chapter 24). The
geometric series in the brackets sums to (20.45). Had we
expanded the (1− t0) factor, we would have noted that the
ratio of the successive curvatures is exactly cn+1/cn = t;
summing (X.11) we would recover the rational ζ function
(20.45).

⇑PRIVATE
20.11. Escape rate for the Rössler flow. (continuation of

exercise 13.11) Try to compute the escape rate for the
Rössler flow (2.18) using the method of cycle expansions.
The answer should be zero, as nothing escapes. Ideally
you should already have computed the cycles and have an
approximate grammar, but failing that you can cheat a bit
and peak into exercise 13.11.

20.12. State space volume contraction, recycled. (contin-
uation of exercise 4.4) The plot of instantaneous state
space volume contraction as a function of time in exer-
cise 4.4 (d) illustrates one problem of time-averaging in
chaotic flows - the observable might vary wildly across
each recurrence to a given Poincaré section. Evaluated
on a given short cycle, the average is crisp and arbitrarily

38Predrag: add Freddy p. 25.
39Predrag: refer to the golden mean exercise 15.6

exerRecyc - 19nov2012 boyscout version14.4, Mar 19 2013



REFERENCES 500

accurate. Recompute 〈∂ · v〉 by means of cycle expansion,
study its convergence. 1/t convergence of mindless time-
averaging is now replaced by exponential convergence in
the cycle length.

20.13. Ulam map is conjugate to the tent map. (continuation
of exercise 20.3, repeat of exercise B.4 and exercise 13.2;
requires real smarts, unless you look it up) Explain the
magically simple form of cycle stabilities of exercise 20.3
by constructing an explicit smooth conjugacy (2.20)

gt(y0) = h ◦ f t ◦ h−1(y0)

that conjugates the Ulam map (11.5) into the tent map
(11.4).

20.14. Continuous vs. discrete mean return time. Show that
the expectation value 〈a〉 time-averaged over continuous
time flow is related to the corresponding average 〈a〉dscr
measured in discrete time (e.g. , Poincaré section returns)
by (20.29):

〈a〉dscr = 〈a〉 〈T〉ζ / 〈n〉ζ . (20.47)

(Hint: consider the form of their cycle expansions.) The
mean discrete period 〈n〉ζ averaged over cycles, and the
mean continuous time period 〈T〉ζ need to be evaluated
only once, thereafter one can compute either 〈a〉 or 〈a〉 dscr,
whichever is more convenient.
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[20.16] C. P. Dettmann and P. Cvitanović, “Cycle expansions for intermittent dif-
fusion,” Phys. Rev. E 56, 6687 (1997); arXiv:chao-dyn/9708011.
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Chapter 21

Discrete factorization

No endeavor that is worthwhile is simple in prospect; if it
is right, it will be simple in retrospect.

—Edward Teller

The utility of discrete symmetries in reducing spectrum calculations is fa-
miliar from quantum mechanics. Here we show that the classical spectral
determinants factor in essentially the same way as the quantum ones. In the

process we 1.) learn that the classical dynamics, once recast into the language of
evolution operators, is much closer to quantum mechanics than is apparent in the
Newtonian, ODE formulation (linear evolution operators/PDEs, group-theoretical
spectral decompositions, . . .), 2.) that once the symmetry group is quotiented out,
the dynamics simplifies, and 3.) it’s a triple home run: simpler symbolic dynam-
ics, fewer cycles needed, much better convergence of cycle expansions. Once you
master this, going back is unthinkable.

The main result of this chapter can be stated as follows:

If the dynamics possesses a discrete symmetry, the contribution of a cycle p
of multiplicity mp to a dynamical zeta function factorizes into a product over the
dα-dimensional irreducible representations Dα of the symmetry group,

(1 − tp)mp =
∏
α

det
(
1 − Dα(hp̃)tp̃

)dα
, tp = t

g/mp

p̃ ,

where tp̃ is the cycle weight evaluated on the relative periodic orbit p̃, g = |G| is the
order of the group, hp̃ is the group element relating the fundamental domain cycle
p̃ to a segment of the full space cycle p, and mp is the multiplicity of the p cycle.
As dynamical zeta functions have particularly simple cycle expansions, a geomet-
rical shadowing interpretation of their convergence, and suffice for determination
of leading eigenvalues, we shall use them to explain the group-theoretic factoriza-
tions; the full spectral determinants can be factorized using the same techniques.
p-cycle into a cycle weight tp.

502
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sawtooth map
map!sawtooth

This chapter is meant to serve as a detailed guide to the computation of dynam-
ical zeta functions and spectral determinants for systems with discrete symmetries.
Familiarity with basic group-theoretic notions is assumed, with the definitions
relegated to appendix K.1. We develop here the cycle expansions for factorized
determinants, and exemplify them by working two cases of physical interest: C2 =

D1, C3v = D3 symmetries. C2v = D2×D2 and C4v = D4 symmetries are discussed
in appendix K.

21.1 Preview

As we saw in chapter 9, discrete symmetries relate classes of periodic orbits and
reduce dynamics to a fundamental domain. Such symmetries simplify and im-
prove the cycle expansions in a rather beautiful way; in classical dynamics, just
as in quantum mechanics, the symmetrized subspaces can be probed by linear op-
erators of different symmetries. If a linear operator commutes with the symmetry,
it can be block-diagonalized, and, as we shall now show, the associated spectral
determinants and dynamical zeta functions factorize.

21.1.1 Reflection symmetric 1-d maps

Consider f , a map on the interval with reflection symmetry f (−x) = − f (x). A
simple example is the piecewise-linear sawtooth map of figure 9.4. Denote the
reflection operation by Rx = −x. The symmetry of the map implies that if {xn} is a
trajectory, than also {Rxn} is a trajectory because Rxn+1 = R f (xn) = f (Rxn) . The
dynamics can be restricted to a fundamental domain, in this case to one half of
the original interval; every time a trajectory leaves this interval, it can be mapped
back using R. Furthermore, the evolution operator commutes with R, 1 L(y, x) =
L(Ry,Rx). R satisfies R2 = e and can be used to decompose the state space
into mutually orthogonal symmetric and antisymmetric subspaces by means of
projection operators

PA1 =
1
2

(e + R) , PA2 =
1
2

(e − R) ,

LA1(y, x) = PA1L(y, x) =
1
2

(L(y, x) +L(−y, x)) ,

LA2(y, x) = PA2L(y, x) =
1
2

(L(y, x) − L(−y, x)) . (21.1)

To compute the traces of the symmetrization and antisymmetrization projec-
tion operators (21.1), we have to distinguish three kinds of cycles: asymmetric cy-
cles a, symmetric cycles s built by repeats of irreducible segments s̃, and boundary

1Predrag: must derive L(y, x) = L(Ry,Rx).
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cycles b. Now we show that the spectral determinant can be written as the prod-
uct over the three kinds of cycles: det (1−L) = det (1−L)adet (1−L)s̃det (1−L)b.

Asymmetric cycles: A periodic orbits is not symmetric if {xa}∩ {Rxa} = ∅, where
{xa} is the set of periodic points belonging to the cycle a. Thus R generates a
second orbit with the same number of points and the same stability properties.
Both orbits give the same contribution to the first term and no contribution to the
second term in (21.1); as they are degenerate, the prefactor 1/2 cancels. Resum-
ing as in the derivation of (19.15) we find that asymmetric orbits yield the same
contribution to the symmetric and the antisymmetric subspaces: 2

det (1 − L±)a =
∏

a

∞∏
k=0

(
1 − ta
Λk

a

)
, ta =

zna

|Λa|
.

Symmetric cycles: A cycle s is reflection symmetric if operating with R on the
set of periodic points reproduces the set. The period of a symmetric cycle is
always even (ns = 2ns̃) and the mirror image of the xs periodic point is reached by
traversing the irreducible segment s̃ of length ns̃, f ns̃ (xs) = Rxs. δ(x − f n(x)) picks
up 2ns̃ contributions for every even traversal, n = rns̃, r even, and δ(x + f n(x)) for
every odd traversal, n = rns̃, r odd. Absorb the group-theoretic prefactor in the
Floquet multiplier by defining the stability computed for a segment of length ñs,

Λs̃ = −
∂ f ns̃ (x)
∂x

∣∣∣∣∣
x=xs

.

Restricting the integration to the infinitesimal neighborhood Ms of the s cycle,
we obtain the contribution to trLn

±:

zntrLn
± →

∫
Ms

dx zn 1
2

(
δ
(
x − f n(x)

)
± δ

(
x + f n(x)

))
= ns̃

⎛⎜⎜⎜⎜⎜⎜⎝even∑
r=2

δn,rns̃

tr
s̃

1 − 1/Λr
s̃

±
odd∑
r=1

δn,rns̃

tr
s̃

1 − 1/Λr
s̃

⎞⎟⎟⎟⎟⎟⎟⎠
= ns̃

∞∑
r=1

δn,rns̃

(±ts̃)r

1 − 1/Λr
s̃

.

Substituting all symmetric cycles s into det (1 − L±) and resuming we obtain: 3

det (1 − L±)s̃ =
∏

s̃

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 ∓ ts̃

Λk
s̃

⎞⎟⎟⎟⎟⎠
2Predrag: draw examples of such orbits!
3Predrag: recheck s̃ tilde on LHS
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Boundary cycles: In the example at hand there is only one cycle which is neither
symmetric nor antisymmetric, but lies on the boundary of the fundamental do-
main, the fixed point at the origin. Such cycle contributes simultaneously to both
δ(x − f n(x)) and δ(x + f n(x)):

zntrLn
± →

∫
Mb

dx zn 1
2

(
δ
(
x − f n(x)

) ± δ(x + f n(x)
))

=

∞∑
r=1

δn,r tr
b

1
2

(
1

1 − 1/Λr
b

± 1
1 + 1/Λr

b

)

zn trLn
+ →

∞∑
r=1

δn,r
tr
b

1 − 1/Λ2r
b

; zn trLn
− →

∞∑
r=1

δn,r
1
Λr

b

tr
b

1 − 1/Λ2r
b

.

Boundary orbit contributions to the factorized spectral determinants follow by
resummation:

det (1 − L+)b =

∞∏
k=0

⎛⎜⎜⎜⎜⎜⎝1 − tb
Λ2k

b

⎞⎟⎟⎟⎟⎟⎠ , det (1 − L−)b =

∞∏
k=0

⎛⎜⎜⎜⎜⎜⎝1 − tb
Λ2k+1

b

⎞⎟⎟⎟⎟⎟⎠
Only the even derivatives contribute to the symmetric subspace, and only the odd
ones to the antisymmetric subspace, because the orbit lies on the boundary.

Finally, the symmetry reduced spectral determinants follow by collecting the
above results:

F+(z) =
∏

a

∞∏
k=0

(
1 − ta
Λk

a

)∏
s̃

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 − ts̃

Λk
s̃

⎞⎟⎟⎟⎟⎠ ∞∏
k=0

⎛⎜⎜⎜⎜⎜⎝1 − tb
Λ2k

b

⎞⎟⎟⎟⎟⎟⎠

F−(z) =
∏

a

∞∏
k=0

(
1 − ta
Λk

a

)∏
s̃

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 +
ts̃

Λk
s̃

⎞⎟⎟⎟⎟⎠ ∞∏
k=0

⎛⎜⎜⎜⎜⎜⎝1 − tb
Λ2k+1

b

⎞⎟⎟⎟⎟⎟⎠ (21.2)

We shall work out the symbolic dynamics of such reflection symmetric systems in
some detail in sect. 21.5. As reflection symmetry is essentially the only discrete
symmetry that a map of the interval can have, this example completes the group-
theoretic factorization of determinants and zeta functions for 1-dimensional maps.
We now turn to discussion of the general case.

exercise 21.1

21.2 Discrete symmetries

A dynamical system is invariant under a symmetry group G = {e, g2, . . . , g|G|} if
the equations of motion are invariant under all symmetries g ∈ G. For a map
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xn+1 = f (xn) and the evolution operator L(y, x) defined by (17.25) this means

f (x) = g−1 f (gx)

L(y, x) = L(gy, gx) . (21.3)

Bold face letters for group elements indicate a suitable representation on state
space. For example, if a 2-dimensional map has the symmetry x1 → −x1, x2 →
−x2, the symmetry group G consists of the identity and C, a rotation by π around
the origin. The map f must then commute with rotations by π, f (Rx) = C f (x),
with R given by the [2 × 2] matrix

R =

(
−1 0
0 −1

)
. (21.4)

R satisfies R2 = e and can be used to decompose the state space into mutually or-
thogonal symmetric and antisymmetric subspaces by means of projection opera-
tors (21.1). More generally the projection operator onto the α irreducible subspace
of dimension dα is given by Pα = (dα/|G|)

∑
χα(h)h−1, where χα(h) = tr Dα(h) 4

are the group characters, and the transfer operator L splits into a sum of inequiv-
alent irreducible subspace contributions

∑
α trLα, 5

Lα(y, x) =
dα
|G|

∑
h∈G

χα(h)L(h−1y, x) . (21.5)

The prefactor dα in the above reflects the fact that a dα-dimensional representation
occurs dα times. 6

⇓PRIVATE

(21.6) follows by replacing integration over Haar measure by a finite group
discrete sum. For a finite group G with |G| group elements, the sum in (21.6)
is normalized, |G|−1 ∑

g∈G = 1 , so that the group average of an invariant scalar
quantity is the quantity itself.

Frobenious theory is a generalization of Fourier analysis for |G| points on a
circle to all finite groups, For a finite group G = {e, g2, . . . , g|G|}, the fundamen-
tal result is Frobenius reduction formula in terms of group characters, with the
projection operator onto the irreducible subspace Vm given by

Pm =
dm

|G|
∑
g∈G

χm(g)Dm(g−1) . (21.6)

For a finite group the prefactor dm in (21.6) reflects the fact that a dm-dimensional
representation occurs dm times. ⇑PRIVATE

4Predrag: where is Dα defined
5Predrag: why h and not g
6Predrag: add here parts of PER’s Appendix B.
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21.2.1 Cycle degeneracies

Taking into account these degeneracies, the Euler product (19.15) takes the form

∏
p

(1 − tp) =
∏

p̂

(1 − tp̂)mp̂ . (21.7)

The Euler product (19.15) for the D3 symmetric 3-disk problem is given in
(20.43).

21.3 Dynamics in the fundamental domain

If the dynamics is invariant under a discrete symmetry, the state space M can be
completely tiled by the fundamental domain M̃ and its images aM̃, bM̃, . . . under
the action of the symmetry group G = {e, a, b, . . .},

M =
∑
a∈G

Ma =
∑
a∈G

aM̃ .

In the above example (21.4) with symmetry group G = {e,C}, the state space
M = {x1-x2 plane} can be tiled by a fundamental domain M̃ = {half-plane x1 ≥ 0},
and CM̃ = {half-plane x1 ≤ 0}, its image under rotation by π.

If the space M is decomposed into g tiles, a function φ(x) over M splits into
a g-dimensional vector φa(x) defined by φa(x) = φ(x) if x ∈ Ma, φa(x) = 0
otherwise. Let h = ab−1 conflicts with be the symmetry operation that maps the
endpoint domain Mb into the starting point domain Ma, and let D(h)ba, the left
regular representation, be the [g × g] matrix whose b, a-th entry equals unity if
a = hb and zero otherwise; D(h)ba = δbh,a. Since the symmetries act on state
space as well, the operation h enters in two guises: as a [g× g] matrix D(h) which
simply permutes the domain labels, and as a [d × d] matrix representation h of a
discrete symmetry operation on the d state space coordinates. For instance, in the
above example (21.4) h ∈ C2 and D(h) can be either the identity or the interchange
of the two domain labels,

D(e) =

(
1 0
0 1

)
, D(C) =

(
0 1
1 0

)
. (21.8)

Note that D(h) is a permutation matrix, mapping a tile Ma into a different tile
Mha � Ma if h � e. Consequently only D(e) has diagonal elements, and tr D(h) =
gδh,e. However, the state space transformation h � e leaves invariant sets of
boundary points; for example, under reflection σ across a symmetry axis, the
axis itself remains invariant. The boundary periodic orbits that belong to such
pointwise invariant sets will require special care in trL evaluations.
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One can associate to the evolution operator (17.25) a [g × g] matrix evolution
operator defined by

Lba(y, x) = D(h)baL(y, x) ,

if x ∈ Ma and y ∈ Mb, and zero otherwise. Now we can use the invariance
condition (21.3) to move the starting point x into the fundamental domain x = ax̃,
L(y, x) = L(a−1y, x̃), and then use the relation a−1b = h−1 to also 7 relate the
endpoint y to its image in the fundamental domain, L̃(ỹ, x̃) := L(h−1ỹ, x̃). With
this operator which is restricted to the fundamental domain, the global dynamics
reduces to

Lba(y, x) = D(h)baL̃(ỹ, x̃) .

While the global trajectory runs over the full space M, the restricted trajectory is
brought back into the fundamental domain M̃ any time it crosses into adjoining
tiles; the two trajectories are related by the symmetry operation h which maps the
global endpoint into its fundamental domain image.

Now the traces (19.3) required for the evaluation of the eigenvalues of the
transfer operator can be evaluated on the fundamental domain alone

trL =
∫

M
dxL(x, x) =

∫
M̃

dx̃
∑

h

tr D(h) L(h−1 x̃, x̃) (21.9)

The fundamental domain integral
∫

dx̃ L(h−1 x̃, x̃) picks up a contribution from
every global cycle (for which h = e), but it also picks up contributions from
shorter segments of global cycles. The permutation matrix D(h) guarantees by the
identity tr D(h) = 0, h � e, that only those repeats of the fundamental domain
cycles p̃ that correspond to complete global cycles p contribute. Compare, for
example, the contributions of the 12 and 0 cycles of figure 12.12. tr D(h)L̃ does
not get a contribution from the 0 cycle, as the symmetry operation that maps the
first half of the 12 into the fundamental domain is a reflection, and tr D(σ) = 0. In
contrast, σ2 = e, tr D(σ2) = 6 insures that the repeat of the fundamental domain
fixed point tr (D(h)L̃)2 = 6t2

0, gives the correct contribution to the global trace
trL2 = 3 · 2t12.

Let p be the full orbit, p̃ the orbit in the fundamental domain and hp̃ an ele-
ment of Hp, the symmetry group of p. Restricting the volume integrations to the
infinitesimal neighborhoods of the cycles p and p̃, respectively, and performing
the standard resummations, we obtain the identity

(1 − tp)mp = det
(
1 − D(hp̃)tp̃

)
, (21.10)

7Predrag: a−1b = h−1?
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three-disk@3-
disk!boundary
orbits

boundary orbits

valid cycle by cycle in the Euler products (19.15) for det (1−L). Here “det” refers
to the [g× g] matrix representation D(hp̃); as we shall see, this determinant can be
evaluated in terms of standard characters, and no explicit representation of D(h̃p)
is needed. Finally, if a cycle p is invariant under the symmetry subgroup Hp ⊆ G
of order hp, its weight can be written as a repetition of a fundamental domain
cycle

tp = t
hp

p̃ (21.11)

computed on the irreducible segment that corresponds to a fundamental domain
cycle. For example, in figure 12.12 we see by inspection that t12 = t2

0 and t123 = t3
1.

21.3.1 Boundary orbits

8 Before we can turn to a presentation of the factorizations of dynamical zeta
functions for the different symmetries we have to discuss an effect that arises for
orbits that run on a symmetry line that borders a fundamental domain. In our 3-
disk example, no such orbits are possible, but they exist in other systems, such
as in the bounded region of the Hénon-Heiles potential and in 1-d maps. For
the symmetrical 4-disk billiard, there are in principle two kinds of such orbits,
one kind bouncing back and forth between two diagonally opposed disks and the
other kind moving along the other axis of reflection symmetry; the latter exists for
bounded systems only. While there are typically very few boundary orbits, they
tend to be among the shortest orbits, and their neglect can seriously degrade the
convergence of cycle expansions, as those are dominated by the shortest cycles.

While such orbits are invariant under some symmetry operations, their neigh-
borhoods are not. This affects the Jacobian matrix Mp of the linearization perpen-
dicular to the orbit and thus the eigenvalues. Typically, e.g. if the symmetry is
a reflection, some eigenvalues of Mp change sign. This means that instead of a
weight 1/det (1 − Mp) as for a regular orbit, boundary cycles also pick up contri-
butions of form 1/det (1 − hMp), where h is a symmetry operation that leaves the
orbit pointwise invariant; see for example sect. 21.1.1.

Consequences for the dynamical zeta function factorizations are that some-
times a boundary orbit does not contribute. A derivation of a dynamical zeta
function (19.15) from a determinant like (19.9) usually starts with an expansion
of the determinants of the Jacobian. The leading order terms just contain the prod-
uct of the expanding eigenvalues and lead to the dynamical zeta function (19.15).
Next to leading order terms contain products of expanding and contracting eigen-
values and are sensitive to their signs. Clearly, the weights tp in the dynamical
zeta function will then be affected by reflections in the Poincaré surface of section
perpendicular to the orbit. In all our applications it was possible to implement
these effects by the following simple prescription.

8Predrag: harmonize with sect. 9.4.1
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9 If an orbit is invariant under a little group Hp = {e, b2, . . . , bh}, then the
corresponding group element in (21.10) will be replaced by a projector. If the
weights are insensitive to the signs of the eigenvalues, then this projector is

gp =
1
h

h∑
i=1

bi . (21.12)

In the cases that we have considered, the change of sign may be taken into account
by defining a sign function εp(g) = ±1, with the “-” sign if the symmetry element
g flips the neighborhood. Then (21.12) is replaced by

gp =
1
h

h∑
i=1

ε(bi) bi . (21.13)

We have illustrated the above in sect. 21.1.1 by working out the full factorization
for the 1-dimensional reflection symmetric maps.

21.4 Factorizations of dynamical zeta functions

In chapter 9 we have shown that a discrete symmetry induces degeneracies among
periodic orbits and decomposes periodic orbits into repetitions of irreducible seg-
ments; this reduction to a fundamental domain furthermore leads to a convenient
symbolic dynamics compatible with the symmetry, and, most importantly, to a
factorization of dynamical zeta functions. This we now develop, first in a general
setting and then for specific examples. 10

21.4.1 Factorizations of dynamical dynamical zeta functions

According to (21.10) and (21.11), the contribution of a degenerate class of global
cycles (cycle p with multiplicity mp = g/hp) to a dynamical zeta function is given
by the corresponding fundamental domain cycle p̃:

(1 − t
hp

p̃ )g/hp = det
(
1 − D(hp̃)tp̃

)
(21.14)

Let D(h) =
⊕

α dαDα(h) be the decomposition of the matrix representation D(h)
into the dα dimensional irreducible representations α of a finite group G. Such

9Predrag: write this up correctly, for arbitrary case!
10Bartsch: The evolution operator can only be decomposed into symmetry subspaces if the

observable A is G-invariant. You should make a pertinent remark somewhere.
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decompositions are block-diagonal, so the corresponding contribution to the Euler
product (19.9) factorizes as

det (1 − D(h)t) =
∏
α

det (1 − Dα(h)t)dα , (21.15)

where now the product extends over all distinct dα-dimensional irreducible rep-
resentations, each contributing dα times. For the cycle expansion purposes, it
has been convenient to emphasize that the group-theoretic factorization can be ef-
fected cycle by cycle, as in (21.14); but from the transfer operator point of view,
the key observation is that the symmetry reduces the transfer operator to a block
diagonal form; this block diagonalization implies that the dynamical zeta func-
tions (19.15) factorize as

1
ζ
=

∏
α

1

ζdα
α

,
1
ζα
=

∏
p̃

det
(
1 − Dα(hp̃)tp̃

)
. (21.16)

Determinants of d-dimensional irreducible representations can be evaluated
using the expansion of determinants in terms of traces,

det (1 + M) = 1 + tr M +
1
2

(
(tr M)2 − tr M2

)
+

1
6

(
(tr M)3 − 3 (tr M)(tr M2) + 2 tr M3

)
+ · · · + 1

d!

(
(tr M)d − · · ·

)
, (21.17)

(see (N.19), for example) and each factor in (21.15) can be evaluated by looking ⇓PRIVATE

⇑PRIVATE
up the characters χα(h) = tr Dα(h) in standard tables [18]. In terms of characters,
we have for the 1-dimensional representations

det (1 − Dα(h)t) = 1 − χα(h)t ,

for the 2-dimensional representations

det (1 − Dα(h)t) = 1 − χα(h)t +
1
2

(
χα(h)2 − χα(h2)

)
t2,

and so forth. ⇓PRIVATE

exercise 21.8

⇑PRIVATE
In the fully symmetric subspace tr DA1(h) = 1 for all orbits; hence a straight-

forward fundamental domain computation (with no group theory weights) always
yields a part of the full spectrum. In practice this is the most interesting subspec-
trum, as it contains the leading eigenvalue of the transfer operator.

exercise 21.2
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21.4.2 Factorizations of spectral determinants

Factorization of the full spectral determinant (19.3) proceeds in essentially the
same manner as the factorization of dynamical zeta functions outlined above. By
(21.5) and (21.9) the trace of the transfer operator L splits into the sum of inequiv-
alent irreducible subspace contributions

∑
α trLα, with

trLα = dα
∑
h∈G

χα(h)
∫

M̃
dx̃L(h−1 x̃, x̃) .

This leads by standard manipulations to the factorization of (19.9) into

F(z) =
∏
α

Fα(z)dα

Fα(z) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎝−∑
p̃

∞∑
r=1

1
r

χα(hr
p̃)znp̃r

|det
(
1 − M̃r

p̃

)
|

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (21.18)

where M̃p̃ = h p̃Mp̃ is the fundamental domain Jacobian. Boundary orbits re-
quire special treatment, discussed in sect. 21.3.1, with examples given in the next
section as well as in the specific factorizations discussed below.

The factorizations (21.16), (21.18) are the central formulas of this chapter.
We now work out the group theory factorizations of cycle expansions of dynam-
ical zeta functions for the cases of C2 and D3 symmetries. The cases of the D2,
D4 symmetries are worked out in appendix K below.

21.5 C2 factorization

As the simplest example of implementing the above scheme consider the C2 sym-
metry. For our purposes, all that we need to know here is that each orbit or configu-
ration is uniquely labeled by an infinite string {si}, si = +,− and that the dynamics
is invariant under the + ↔ − interchange, i.e., it is C2 symmetric. The C2 sym-
metry cycles separate into two classes, the self-dual configurations +−, + + −−,
+ + + − −−, + − − + − + +−, · · ·, with multiplicity mp = 1, and the asymmetric
configurations +, −, + + −, − − +, · · ·, with multiplicity mp = 2. For example,
as there is no absolute distinction between the “up” and the “down” spins, or the
“left” or the “right” lobe, t+ = t−, t++− = t+−−, and so on.

exercise 21.5

The symmetry reduced labeling ρi ∈ {0, 1} is related to the standard si ∈ {+,−}
Ising spin labeling by

If si = si−1 then ρi = 1

If si � si−1 then ρi = 0 (21.19)
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Ising modelFor example, + = · · · + + + + · · · maps into · · · 111 · · · = 1 (and so does −),
−+ = · · · − + − + · · · maps into · · · 000 · · · = 0, − + +− = · · · − − + + − − + + · · ·
maps into · · · 0101 · · · = 01, and so forth. A list of such reductions is given in
table 12.1.

Depending on the maximal symmetry groupHp that leaves an orbit p invariant
(see sects. 21.2 and 21.3 as well as sect. 21.1.1), the contributions to the dynamical
zeta function factor as

A1 A2

Hp = {e} : (1 − tp̃)2 = (1 − tp̃)(1 − tp̃)

Hp = {e, σ} : (1 − t2p̃) = (1 − tp̃)(1 + tp̃) , (21.20)

For example:

H++− = {e} : (1 − t++−)2 = (1 − t001)(1 − t001)

H+− = {e, σ} : (1 − t+−) = (1 − t0) (1 + t0), t+− = t2
0

This yields two binary cycle expansions. The A1 subspace dynamical zeta function
is given by the standard binary expansion (20.7). The antisymmetric A2 subspace
dynamical zeta function ζA2 differs from ζA1 only by a minus sign for cycles with
an odd number of 0’s:

1/ζA2 = (1 + t0)(1 − t1)(1 + t10)(1 − t100)(1 + t101)(1 + t1000)

(1 − t1001)(1 + t1011)(1 − t10000)(1 + t10001)

(1 + t10010)(1 − t10011)(1 − t10101)(1 + t10111) . . .

= 1 + t0 − t1 + (t10 − t1t0) − (t100 − t10t0) + (t101 − t10t1)

−(t1001 − t1t001 − t101t0 + t10t0t1) − . . . . . . (21.21)

Note that the group theory factors do not destroy the curvature corrections (the
cycles and pseudo cycles are still arranged into shadowing combinations).

If the system under consideration has a boundary orbit (cf. sect.21.3.1) with
group-theoretic factor hp = (e + σ)/2, the boundary orbit does not contribute to
the antisymmetric subspace

A1 A2

boundary: (1 − tp) = (1 − tp̃)(1 − 0tp̃) (21.22)

This is the 1/ζ part of the boundary orbit factorization of sect.21.1.1.
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three-disk@3-
disk!symmetry

symmetry!3-disk
symmetry!$D˙3$
c3v@$C˙3v = D˙3$

symmetry

21.6 D3 factorization: 3-disk game of pinball

The next example, the D3 symmetry, can be worked out by a glance at figure12.12 (a).
For the symmetric 3-disk game of pinball the fundamental domain is bounded by
a disk segment and the two adjacent sections of the symmetry axes that act as
mirrors (see figure 12.12 (b)). The three symmetry axes divide the space into six
copies of the fundamental domain. Any trajectory on the full space can be pieced
together from bounces in the fundamental domain, with symmetry axes replaced
by flat mirror reflections. The binary {0, 1} reduction of the ternary three disk
{1, 2, 3} labels has a simple geometric interpretation: a collision of type 0 reflects
the projectile to the disk it comes from (back–scatter), whereas after a collision
of type 1 projectile continues to the third disk. For example, 23 = · · · 232323 · · ·
maps into · · · 000 · · · = 0 (and so do 12 and 13), 123 = · · · 12312 · · · maps into
· · · 111 · · · = 1 (and so does 132), and so forth. A list of such reductions for short
cycles is given in table 12.2.

D3 has two 1-dimensional irreducible representations, symmetric and anti-
symmetric under reflections, denoted A1 and A2, and a pair of degenerate 2-
dimensional representations of mixed symmetry, denoted E. The contribution
of an orbit with symmetry g to the 1/ζ Euler product (21.15) factorizes according
to 11

det (1−D(h)t) =
(
1 − χA1(h)t

) (
1 − χA2(h)t

) (
1 − χE(h)t + χA2(h)t2

)2
(21.23)

with the three factors contributing to the D3 irreducible representations A1, A2

and E, respectively, and the 3-disk dynamical zeta function factorizes into ζ =

ζA1ζA2ζ
2
E . Substituting the D3 characters [18]

D3 A1 A2 E
e 1 1 2

C,C2 1 1 −1
σv 1 −1 0

into (21.23), we obtain for the three classes of possible orbit symmetries (indicated
in the first column)

h p̃ A1 A2 E

e : (1 − tp̃)6 = (1 − tp̃)(1 − tp̃)(1 − 2tp̃ + t2
p̃)2

C,C2 : (1 − t3p̃)2 = (1 − tp̃)(1 − tp̃)(1 + tp̃ + t2
p̃)2

σv : (1 − t2p̃)3 = (1 − tp̃)(1 + tp̃)(1 + 0tp̃ − t2
p̃)2. (21.24)

where σv stands for any one of the three reflections.

11Predrag: explain why χE(h2) = χA2 (h)
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The Euler product (19.15) on each irreducible subspace follows from the fac-
torization (21.24). On the symmetric A1 subspace the ζA1 is given by the standard
binary curvature expansion (20.7). The antisymmetric A2 subspace ζA2 differs
from ζA1 only by a minus sign for cycles with an odd number of 0’s, and is given
in (21.21). For the mixed-symmetry subspace E the curvature expansion is given
by

1/ζE = (1 + zt1 + z2t2
1)(1 − z2t2

0)(1 + z3t100 + z6t2
100)(1 − z4t2

10)

(1 + z4t1001 + z8t2
1001)(1 + z5t10000 + z10t2

10000)

(1 + z5t10101 + z10t2
10101)(1 − z5t10011)2 . . .

= 1 + zt1 + z2(t2
1 − t2

0) + z3(t001 − t1t2
0)

+z4
[
t0011 + (t001 − t1t2

0)t1 − t2
01

]
+z5

[
t00001 + t01011 − 2t00111 + (t0011 − t2

01)t1 + (t2
1 − t2

0)t100

]
+ · · ·(21.25)

We have reinserted the powers of z in order to group together cycles and pseudo-
cycles of the same length. Note that the factorized cycle expansions retain the
curvature form; long cycles are still shadowed by (somewhat less obvious) com-
binations of pseudo-cycles.

Referring back to the topological polynomial (15.42) obtained by setting tp =
1, we see that its factorization is a consequence of the D3 factorization of the ζ
function:

1/ζA1 = 1 − 2z , 1/ζA2 = 1 , 1/ζE = 1 + z , (21.26)

as obtained from (20.7), (21.21) and (21.25) for tp = 1.

Their symmetry is K = {e, σ}, so according to (21.12), they pick up the group-
theoretic factor hp = (e + σ)/2. If there is no sign change in tp, then evaluation of
det (1 − e+σ

2 tp̃) yields

A1 A2 E

boundary: (1 − tp)3 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)2 , tp = tp̃ . (21.27)

However, if the cycle weight changes sign under reflection, tσ p̃ = −tp̃, the bound-
ary orbit does not contribute to the subspace symmetric under reflection across the
orbit;

A1 A2 E

boundary: (1 − tp)3 = (1 − 0tp̃)(1 − tp̃)(1 − tp̃)2 , tp = tp̃ . (21.28)

12

12Predrag: insert here Freddy p.22, Gunnar paper with C3 symmetry; discuss symmetry splittings
as magnetic field is turned on.
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three-disk@3-
disk!cycle!count

Résumé

If a dynamical system has a discrete symmetry, the symmetry should be exploited;
much is gained, both in understanding of the spectra and ease of their evaluation.
Once this is appreciated, it is hard to conceive of a calculation without factor-
ization; it would correspond to quantum mechanical calculations without wave–
function symmetrizations.

While the reformulation of the chaotic spectroscopy from the trace sums to
the cycle expansions does not reduce the exponential growth in number of cycles
with the cycle length, in practice only the short orbits are used, and for them the
labor saving is dramatic. For example, for the 3-disk game of pinball there are
256 periodic points of length 8, but reduction to the fundamental domain non-
degenerate prime cycles reduces the number of the distinct cycles of length 8 to
30.

In addition, cycle expansions of the symmetry reduced dynamical zeta func-
tions converge dramatically faster than the unfactorized dynamical zeta functions.
One reason is that the unfactorized dynamical zeta function has many closely
spaced zeros and zeros of multiplicity higher than one; since the cycle expansion
is a polynomial expansion in topological cycle length, accommodating such be-
havior requires many terms. The dynamical zeta functions on separate subspaces
have more evenly and widely spaced zeros, are smoother, do not have symmetry-
induced multiple zeros, and fewer cycle expansion terms (short cycle truncations)
suffice to determine them. Furthermore, the cycles in the fundamental domain
sample state space more densely than in the full space. For example, for the 3-
disk problem, there are 9 distinct (symmetry unrelated) cycles of length 7 or less
in full space, corresponding to 47 distinct periodic points. In the fundamental
domain, we have 8 (distinct) periodic orbits up to length 4 and thus 22 different
periodic points in 1/6-th the state space, i.e., an increase in density by a factor 3
with the same numerical effort.

We emphasize that the symmetry factorization (21.24) of the dynamical zeta
function is intrinsic to the classical dynamics, and not a special property of quantal
spectra. The factorization is not restricted to the Hamiltonian systems, or only
to the configuration space symmetries; for example, the discrete symmetry can
be a symmetry of the Hamiltonian phase space [4]. In conclusion, the manifold
advantages of the symmetry reduced dynamics should thus be obvious; full state
space cycle expansions, such as those of exercise 20.8, are useful only for cross-
checking purposes. 13

Commentary

Remark 21.1 Symmetry reductions in periodic orbit theory. This chapter is based
on a collaborative effort with B. Eckhardt, ref. [1]. The group-theoretic factorizations of

13Predrag: Mention in remark 21.1 also the number theoretic zeta’s factorizations (Epstein, etc.?);
Include magnetic symmetry breaking parts of Russberg’s unfinished paper.
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dynamical zeta functions that we develop here were first introduced and applied in ref. [ 2].
They are closely related to the symmetrizations introduced by Gutzwiller [ 3] in the context
of the semiclassical periodic orbit trace formulas, put into more general group-theoretic
context by Robbins [4], whose exposition, together with Lauritzen’s [5] treatment of the
boundary orbits, has influenced the presentation given here. The symmetry reduced trace
formula for a finite symmetry group G = {e, g2, . . . , g|G|} with |G| group elements, where
the integral over Haar measure in projection (25.23) is replaced by a finite group discrete ⇓PRIVATE

⇑PRIVATE
sum |G|−1 ∑

g∈G = 1 , was derived in ref. [1]. A related group-theoretic decomposition in
context of hyperbolic billiards was utilized in ref. [6], and for the Selberg’s zeta function
in ref. [7]. One of its loftier antecedents is the Artin factorization formula of algebraic
number theory, which expresses the zeta-function of a finite extension of a given field as
a product of L-functions over all irreducible representations of the corresponding Galois
group. 14

The techniques of this chapter have been applied to computations of the 3-disk clas-
sical and quantum spectra in refs. [8, 9], and to a “Zeeman effect” pinball and the x2y2

potentials in ref. [10, 11]. In a larger perspective, the factorizations developed above are
special cases of a general approach to exploiting the group-theoretic invariances in spec-
tra computations, such as those used in enumeration of periodic geodesics [ 6, 12, 13] for
hyperbolic billiards [14] and Selberg zeta functions [15]. ⇓PRIVATE

ES March 2009: I like a lot Ian Melbourne’s work on symmetric attractors. I find the
distinction between instantaneous symmetry and symmetry on average very meaningful
and potentially useful for us (it will appear in The Thesis real soon.) ⇑PRIVATE

Remark 21.2 Other symmetries. In addition to the symmetries exploited here, time
reversal symmetry and a variety of other non-trivial discrete symmetries can induce fur-
ther relations among orbits; we shall point out several of examples of cycle degeneracies
under time reversal. We do not know whether such symmetries can be exploited for fur-
ther improvements of cycle expansions.

Exercises boyscout

21.1. Sawtooth map desymmetrization. Work out the some
of the shortest global cycles of different symmetries and
fundamental domain cycles for the sawtooth map of fig-
ure 9.4. Compute the dynamical zeta function and the
spectral determinant of the Perron-Frobenius operator for
this map; check explicitly the factorization (21.2).

21.2. 2-dimensional asymmetric representation. The
above expressions can sometimes be simplified further
using standard group-theoretical methods. For example,

14Predrag: Check whether ref. [21, 22] “Using symmetries of the Frobenius-Perron operator to
determine spectral decompositions” is of use for ChaosBook discrete.tex chapter.
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three-disk@3-
disk!symmetry

desymmetrization!3-
disk

symmetry!3-disk

the 1
2

(
(tr M)2 − tr M2

)
term in (21.17) is the trace of the

antisymmetric part of the M×M Kronecker product. Show
that if α is a 2-dimensional representation, this is the A2

antisymmetric representation, and

2-dim: det (1−Dα(h)t) = 1−χα(h)t+χA2 (h)t2.(21.29)

21.3. Characters of D3. (continued from exercise 9.5) D3 �
C3v, the group of symmetries of an equilateral triangle:
has three irreducible representations, two one-dimensional
and the other one of multiplicity 2.

(a) All finite discrete groups are isomorphic to a per-
mutation group or one of its subgroups, and ele-
ments of the permutation group can be expressed
as cycles. Express the elements of the group D3 as
cycles. For example, one of the rotations is (123),
meaning that vertex 1 maps to 2, 2 → 3, and 3 → 1.

(b) Use your representation from exercise 9.5 to com-
pute the D3 character table.

(c) Use a more elegant method from the group-theory
literature to verify your D3 character table.

(d) Two D3 irreducible representations are one dimen-
sional and the third one of multiplicity 2 is formed
by [2× 2] matrices. Find the matrices for all six
group elements in this representation.

(Hint: get yourself a good textbook, like Hamermesh [ 2]
or Tinkham [16], and read up on classes and characters.)

21.4. 3-disk desymmetrization.

a) Work out the 3-disk symmetry factorization for the
0 and 1 cycles, i.e. which symmetry do they have,
what is the degeneracy in full space and how do
they factorize (how do they look in the A1, A2 and
the E representations).

b) Find the shortest cycle with no symmetries and fac-
torize it as in a)

c) Find the shortest cycle that has the property that its
time reversal is not described by the same symbolic
dynamics.

d) Compute the dynamical zeta functions and the spec-
tral determinants (symbolically) in the three rep-
resentations; check the factorizations (21.16) and
(21.18).

(Per Rosenqvist)

21.5. C2 factorizations: the Lorenz and Ising systems. In
the Lorenz system the labels + and − stand for the left or
the right lobe of the attractor and the symmetry is a rota-
tion by π around the z-axis. Similarly, the Ising Hamil-
tonian (in the absence of an external magnetic field) is
invariant under spin flip. Work out the factorizations for
some of the short cycles in either system.
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Ising model21.6. Ising model. The Ising model with two states ε i = {+,−}
per site, periodic boundary condition, and Hamiltonian

H(ε) = −J
∑

i

δεi,εi+1 ,

is invariant under spin-flip: + ↔ −. Take advantage of
that symmetry and factorize the dynamical zeta function
for the model, i.e., find all the periodic orbits that con-
tribute to each factor and their weights.

21.7. One orbit contribution. If p is an orbit in the funda-
mental domain with symmetry h, show that it contributes
to the spectral determinant with a factor

det

⎛⎜⎜⎜⎜⎝1 − D(h)
tp

λk
p

⎞⎟⎟⎟⎟⎠ ,
where D(h) is the representation of h in the regular repre-
sentation of the group.

⇓PRIVATE
21.8. Characters. Give a bunch of exercises for evaluating

simple characters.
⇑PRIVATE
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Part III

Chaos: what to do about it?
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What you know now is to partition topologically and invariantly the state space,
compute a hierarchy of cycles, compute spectral determinants and their eigen-
values. What next?

1. Why cycle? (Chapter 22)

2. Why does it work? (Chapter 23)

3. When does it not work? (Chapter 24)

4. When does it work? Deterministic diffusion and foundations of ‘far for equilibrium’
statistical mechanics (Chapter 26)
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Chapter 22

Why cycle?

“Progress was a labyrinth ... people plunging blindly in
and then rushing wildly back, shouting that they had found
it ... the invisible king - the élan vital - the principle of
evolution ... writing a book, starting a war, founding a
school....”

—F. Scott Fitzgerald, This Side of Paradise

In the preceding chapters we have moved rather briskly through the evolution
operator formalism. Here we slow down in order to develop some fingertip
feeling for the traces of evolution operators. It is a melancholy task, as the

“intuition” garnered by these heuristic approximations is in all ways inferior to
the straightforward and exact theory developed so far. But, it has to be done, as
there is immense literature out there that deploys these heuristic estimates, most
of it of it uninspired, some of it plain wrong, and the reader should be able to
understand and sort through that literature. We start out by explaining qualitatively
how local exponential instability of topologically distinct trajectories leads to a
global exponential instability. 1 2

22.1 Escape rates

3 We start by verifying the claim (17.11) that for a nice hyperbolic flow the trace
of the evolution operator grows exponentially with time. Consider again the game
of pinball in figure 1.1. Designate by M a region of state space that encloses the
three disks, such as the surface of the table along with all pinball directions. The

1Roberto: Roberto froze this text on Aug 31, 2000: “I’ll try to work a little on correlations in
getused chapter .” Did he? Were they incorporated before Ronnie’s rearrangements of Sep 20?

2Predrag: this chapter makes no sense...
3Predrag: in the lecture this section was used as a verification that physically measurable escape

rate is the leading eigenvalue
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fraction of initial points whose trajectories start within M and recur within that
region at the time t is given by

Γ̂M(t) =
1
|M|

∫ ∫
M

dxdy δ
(
y − f t(x)

)
. (22.1)

This quantity is both measurable and physically interesting in a variety of prob-
lems spanning nuclear physics to celestial mechanics. The integral over x takes
care of all possible initial pinballs; the integral over y checks whether they are
still within M by time t. If the dynamics is bounded, and M envelops the entire
accessible state space, Γ̂M(t) = 1 for all t. However, if trajectories exit M, the
recurrence fraction decreases with time. For example, any trajectory that falls off
the pinball table in figure 1.1 is gone for good.

These observations can be made more concrete by examining the pinball
phase-space of figure 1.9. With each pinball bounce the initial conditions that
survive get thinned out, each strip yielding two thinner strips within it. The total
fraction of survivors (1.2) after n bounces is given by

Γ̂n =
1
|M|

(n)∑
i

|Mi| , (22.2)

where i is a binary label of the ith strip, and |Mi| is the area of the ith strip. Phase-
space volume is preserved by the flow, so the strips of survivors are contracted
along the stable eigen-directions and ejected along the unstable eigen-directions.
As a crude estimate of the number of survivors in the ith strip, assume that a ray
of trajectories spreads by a factor Λ after every bounce. The quantity Λ represents
the mean value of the expanding eigenvalue of the corresponding Jacobian matrix
of the flow. We replace |Mi| by the phase-space strip width estimate |Mi|/|M| ∼
1/Λi, which is right in spirit but not without drawbacks. For example, in general
the eigenvalues of a Jacobian matrix for a finite segment of a trajectory have no
invariant meaning; they depend on the choice of coordinates. However, we saw
in chapter 18 that neighborhood sizes are determined by Floquet multipliers of
periodic points, which are invariant under smooth coordinate transformations.

In the approximation Γ̂n receives 2n contributions of equal size

Γ̂1 ∼
1
Λ
+

1
Λ
, · · · , Γ̂n ∼ 2n

Λn
= e−n(λ−h) = e−nγ , (22.3)

up to pre-exponential factors. We see here the interplay of the two key ingredients
of chaos first mentioned in sect. 1.3.1: the escape rate γ equals the local expansion
rate (the Lyapunov exponent λ = lnΛ) minus the rate of global reinjection back
into the system (the topological entropy h = ln 2). As we shall see in (O.16), this ⇓PRIVATE
result is exact and has a correctly defined “entropy”.

⇑PRIVATE
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hyperbolic!systemsAt each bounce one routinely loses the same fraction of trajectories, so one
expects the sum (22.2) to decay exponentially with n. More precisely, by the
hyperbolicity assumption of sect.18.1.1, the expanding eigenvalue of the Jacobian
matrix of the flow is exponentially bounded from both above and below,

1 < |Λmin| ≤ |Λ(x)| ≤ |Λmax| , (22.4)

and the area of each strip in (22.2) is bounded by |Λ−n
max| ≤ |Mi| ≤ |Λ−n

min|. Replac-
ing |Mi| in (22.2) by its estimates in terms of |Λmax| and |Λmin| immediately leads
to exponential bounds (2/|Λmax|)n ≤ Γ̂n ≤ (2/|Λmin|)n , i.e.,

ln |Λmax| − ln 2 ≥ −1
n

ln Γ̂n ≥ ln |Λmin| − ln 2 . (22.5)

The argument based on (22.5) establishes only that the sequence γn = − 1
n ln Γn

has a lower and an upper bound for any n. In order to prove that γn converge to the
limit γ, we first show that for hyperbolic systems the sum over surviving intervals
(22.2) can be replaced by a sum over periodic orbit stabilities. By (22.4) the size
of the strip Mi can be bounded by the stability Λi of the ith periodic point:

C1
1
|Λi|

<
|Mi|
|M|

< C2
1
|Λi|

, (22.6)

for any periodic point i of period n, with constants Cj dependent on the dynamical
system but independent of n. The meaning of these bounds is that for increasingly
long cycles in a system of bounded hyperbolicity, the shrinking of the ith strip is
better approximated by the derivatives evaluated on the periodic point within the
strip. 4 Hence, the survival probability can be bounded close to the periodic point
stability sum

Ĉ1 Γn <

(n)∑
i

|Mi|
|M| < Ĉ2 Γn , (22.7)

where Γn =
∑(n)

i 1/|Λi| is the asymptotic trace sum (18.26). This establishes that
for hyperbolic systems the survival probability sum (22.2) can be replaced by the
periodic orbit sum (18.26). 5

exercise 22.1
exercise 16.4

We conclude that for hyperbolic, locally unstable flows the fraction (22.1) of
initial x whose trajectories remain trapped within M up to time t is expected to
decay exponentially,

ΓM(t) ∝ e−γt ,

4Predrag: make Per’s proof into an exercise?
5Predrag: abrupt change to continuous time
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escape rate
open system

where γ is the asymptotic escape rate defined by

γ = − lim
t→∞

1
t

ln ΓM(t) . (22.8)

22.2 Natural measure in terms of periodic orbits

6 7 Let us now refine the reasoning of sect. 22.1 and argue that the trace is a
discretized integral over state space. Consider the trace (18.7) in the large time
limit (18.25):

trLn =

∫
dx δ

(
x − f n(x)

)
eβAn(x) ≈

(n)∑
i

eβAn(xi)

|Λi|
.

The factor 1/|Λi| was interpreted in (22.2) as the area of the ith phase-space strip.
Hence, the trLn represents a discrete version of

∫
dx eβAn(x) approximated by a

tessellation into strips centered on periodic points xi, (see figure 1.11), with the
volume of the ith neighborhood given by estimate |Mi| ∼ 1/|Λi|, and eβAn(x) es-
timated by eβAn(xi), its value at the ith periodic point. If the symbolic dynam-
ics is complete, any state space rectangle [s−m · · · s0.s1s2 · · · sn] always contains

section 12.3.1
the periodic point s−m · · · s0s1s2 · · · sn; hence, although the periodic points are of
measure zero (just like rationals in the unit interval), they are dense on the non–
wandering set. Equipped with a measure for the associated rectangles, periodic
orbits suffice to cover the entire non–wandering set. The average of eβAn

evaluated
on the non–wandering set is therefore given by the trace, properly normalized so
that 〈1〉 = 1:

〈
eβAn〉

n
≈

∑(n)
i eβAn(xi)/|Λi|∑(n)

i 1/|Λi|
=

(n)∑
i

μi eβAn(xi) . (22.9)

Here μi is the normalized natural measure
section 17.3

(n)∑
i

μi = 1 , μi = enγn/|Λi| , (22.10)

which is correct both for closed systems as well as open systems.

Unlike brute numerical slicing of the integration space into an arbitrary lattice
(for a critique, see sect. 16.3), periodic orbit theory is smart, as it automatically
partitions integrals according to the intrinsic topology of the flow, and assigns to
each tile i the invariant natural measure μi.

6Predrag: rewrite this section
7Predrag: in the lecture this section was used to interpret trace as “Euler” integral
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correlation!time
observable

22.2.1 Unstable periodic orbits are dense

(L. Rondoni and P. Cvitanović)

Our goal in sect. 17.1 was to evaluate the space and time averaged expectation
value (17.9). An average over all periodic orbits can accomplish the job only if
the periodic orbits fully explore the asymptotically accessible state space.

Why should unstable periodic points end up being dense? The cycles are intu-
itively expected to be dense because on a connected chaotic set a typical trajectory
is expected to behave ergodically, and infinitely many times pass arbitrarily close
to any point on the set (including the initial point of the trajectory itself). The
argument proceeds more or less as follows. Partition M in arbitrarily small re-
gions and consider particles that start in the region Mi, and return to it in n steps
after some peregrination in the state space. For example, a trajectory might re-
turn a little to the left of its original position, whereas a nearby neighbor might
return a little to the right of its original position. By assumption, the flow is con-
tinuous, so generically one expects to be able to gently move the initial point in
such a way that the trajectory returns precisely to the initial point, i.e., one ex-
pects a periodic point of period n in cell i. As we diminish the size of regions Mi,
aiming a trajectory that returns to Mi becomes increasingly difficult. Therefore,
we are guaranteed that unstable orbits of increasingly large periods are densely
interspersed in the asymptotic non–wandering set.

The above argument is heuristic, by no means guaranteed to work, and it must
be checked for the particular system at hand. A variety of ergodic but insuffi-
ciently mixing counter-examples can be constructed - the most familiar being a
quasiperiodic motion on a torus.

22.3 Correlation functions

The time correlation function CAB(t) of two observables A and B along the trajec-
tory x(t) = f t(x0) is defined as

CAB(t; x0) = lim
T→∞

1
T

∫ T

0
dτA(x(τ + t))B(x(τ)) , x0 = x(0) . (22.11)

If the system is ergodic, with invariant continuous measure ρ0(x)dx, then correla-
tion functions do not depend on x0 (apart from a set of zero measure), and may be
computed by a state space average as well,

CAB(t) =
∫
M

dx0 ρ0(x0)A( f t(x0))B(x0) . (22.12)

For a chaotic system we expect that time evolution will lose the information con-
tained in the initial conditions, so that CAB(t) will approach the uncorrelated limit

getused - 24dec2012 boyscout version14.4, Mar 19 2013
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natural measure
measure!natural

〈A〉 · 〈B〉. As a matter of fact the asymptotic decay of correlation functions

ĈAB := CAB − 〈A〉 〈B〉 (22.13)

for any pair of observables coincides with the definition of mixing, a fundamental
property in ergodic theory. We now assume without loss of generality that 〈B〉 = 0.
(Otherwise we may define a new observable by B(x) − 〈B〉.) Our purpose is now
to connect the asymptotic behavior of correlation functions with the spectrum of
the Perron-Frobenius operator L. We can write (22.12) as

C̃AB(t) =
∫
M

dx
∫
M

dy A(y)B(x)ρ0(x)δ(y − f t(x))

and recover the evolution operator

C̃AB(t) =
∫
M

dx
∫
M

dy A(y)Lt(y, x)B(x)ρ0(x).

Recall sect. 16.1, where we showed that ρ(x) is the eigenvector of L corre-
sponding to probability conservation:

∫
M

dy Lt(x, y)ρ(y) = ρ(x) .

We can expand the x-dependent part of this equation in terms of the eigenbasis of
L:

B(x)ρ0(x) =
∞∑
α=0

cαρα(x) ,

where ρ0(x) is the natural measure. Since the average of the left hand side is zero
the coefficient c0 must vanish. The action of L can then be written as

C̃AB(t) =
∑
α�0

e−sαtcα

∫
M

dy A(y)ρα(y). (22.14)

exercise 22.2

We see immediately that if the spectrum has a gap, i.e., if the second largest
leading eigenvalue is isolated from the largest eigenvalue (s0 = 0) then (22.14)
implies exponential decay of correlations

C̃AB(t) ∼ e−νt .
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intermittencyThe correlation decay rate ν = s1 then depends only on intrinsic properties of the
dynamical system (the position of the next-to-leading eigenvalue of the Perron-
Frobenius operator), and the choice of a particular observable influences only the
prefactor.

Correlation functions are often accessible from time series measurable in lab-
oratory experiments and numerical simulations; moreover, they are intimately
linked to transport exponents.

⇓PRIVATE

22.4 The most chaotic of billiards?

An experimentalist can build a chaotic billiard, and in order to explore conse-
quences of chaos, you would like to build the most chaotic of billiards. What to
do?

Roberto Artuso, 6 Apr 1998

ahem: for overlapping 4 disc (and other geometry billiards Lyapunov exp + mean
field should be in Benettin Physica D13, 211 (’84)), i think that the overall behav-
ior should not be much different than the expression for shortest periodic orbit (at
least i think i saw that in ancient times).

maybe also quantum stadium and rough billiards could be of interest? (prl 77,
4744 (96) 78, 1440 (97)?

Sune F Nielsen, 6 Apr 1998

Lyapunov is zero in the integrable case (triangular/square billiard) and decreases
in the other end due to intermittency, so there is a maximum. I expect the Lya-
punov is highest near the ratio of a:R=1.9 although I have not made any scans.

Stephanie Reimann, 6 Apr 1998

How about just a simple Sinai? This has the advantage that the square is done
already, and he can compare his results to M.’s. Perhaps one could design a sample
where the inner ring could be turned on gradually, to see the transition.

Niall Whelan, 3 Apr 1998

What exactly are they proposing to measure? If it is something like a magnetic
susceptibility, I am not sure that the Lyapunov exponent is really all that relevant

getused - 24dec2012 boyscout version14.4, Mar 19 2013



CHAPTER 22. WHY CYCLE? 530

Figure 22.1: Johannes Kepler contemplating the bust
of Mandelbrot, after Rembrandt’s “Aristotle contem-
plating the bust of Homer” (Metropolitan Museum,
New York).

a consideration. In that event it is rather the distinction between having families
of orbits or isolated orbits which is crucial. If they are measuring conductances, I
think a similar statement applies. In that event ergodicity is important since you
are interested in the transport properties across the device and I don’t think the
Lyapunov exponent is of direct importance.

I would think that a more relevant concern would be structural stability of
the system. The confining potential is typically applied to gate voltages which
sit above the electron gas by a fair amount. I have forgotten the exact numbers
but presumably experimentalists know. The point is that whatever sharply defined
potential you think you are working with on the gate level is considerably softened
on the electron gas level. So you want something which maintains the generic
features of chaotic systems under such a “perturbation.” A stadium whose straight
bits were too short, for example, would presumably be bad since it might look like
a more or less integrable oval or ellipse down below. The shapes you suggest are
probably safe in this regard. I know that for the cardioid, you can lop off the cuspy
bit and it is still chaotic, for example. Except it may end up looking like a normal
circle down below.

No one has ever done this for mesoscopic systems that I know of, but a Sinai-
type billiard is presumably quite robust in its chaotic properties, except that it has
the bouncing ball modes. I suppose there may be engineering problems associated
with trying to leave holes behind or putting tiny circular gates in the middle of the
device. But an eighth Sinai billiard (its fundamental domain) might not be a bad
choice if the presence of the bb modes is not a concern. ⇑PRIVATE

22.5 Trace formulas vs. level sums

Benoit B. Mandelbrot: “I would be perfectly happy being
Kepler” [to a coming fractals’ Newton]. Referring to the
broad array of things now described by fractals, he added,
“I have been Kepler many times over.”

—J. Gleick, New York Times, January 22, 1985

⇓PRIVATE

⇑PRIVATE
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Trace formulas (18.10) and (18.23) diverge precisely where one would
like to use them, at s equal to eigenvalues sα. To avoid this divergence, one can
proceed as follows; according to (18.27) the “level” sums (all symbol strings of
length n) are asymptotically dominated by the leading eigenvalue es0n of the evo-
lution operator

∑
i∈Fix f n

eβAn(xi)

|Λi|
→ es0n ,

so an nth order estimate s(n) of the leading eigenvalue s0 is fixed by the condition

1 =
∑

i∈Fix f n

eβAn(xi)e−s(n)n

|Λi|
. (22.15)

The eigenvalue condition for the level sum (22.15) can be written in the same form
as the two conditions (20.18) and (20.19) given so far:

0 = 1 −
(n)∑
i

ti , ti = ti(β, s(β)) , ni = n . (22.16)

We do not recommended it as a computational method. The difficulty in estimat-
ing the leading eigenvalue s0 from this n → ∞ limit is at least twofold:

1. Due to an exponential growth in the number of intervals and an exponential
decrease in the attainable accuracy, the maximum n, achieved experimentally or
numerically, is approximately between 5 and 20.

2. The pre-asymptotic sequence of finite estimates s(n) is not unique, because
the sums Γn depend on how we define the escape region, and because in gen-
eral the areas |Mi| in the sum (22.2) should be weighted by the density of initial
conditions ρ(0). For example, an overall measuring unit rescaling |Mi| → α|Mi|
introduces 1/n corrections in s(n) defined by the log of the sum (22.8): s(n) →
s(n) + lnα/n. This problem can be ameliorated by defining a level average as a
function of s, 8

〈
eβA(s)

〉
(n)

:=
∑

i∈Fix f n

eβAn(xi)esn

|Λi|
, (22.17)

and determining the nth level estimate s(n) by requiring that the ratios of successive
levels satisfy

1 =

〈
eβA(s(n))

〉
(n)〈

eβA(s(n))
〉

(n−1)

.

8Predrag: this has to be redone: nonsense as it stands
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Mandelbrot set
period!doubling!repeller
fractal!aggregates
measure!equipartition
measure!cylinder

This avoids the worst problem with formula (22.15), the 1/n corrections due to
its lack of rescaling invariance. However, even though much published ponder-
ing of “chaos” relies on it, there is no need for such gymnastics: dynamical zeta
functions and spectral determinants are already invariant not only under linear
rescalings, but under all smooth nonlinear conjugacies x → h(x), and require no
n → ∞ extrapolations to asymptotic times. Comparing this with cycle expansions
(20.7), we see the difference; in the level sum approach, we keep increasing expo-
nentially the number of terms with no reference to the fact that most are already
known from shorter estimates, but in cycle expansions short terms dominate and
longer ones enter only as exponentially small corrections.

22.5.1 Flow conservation sum rules

The trace formula version of the flow conservation sum rule (20.17) comes in two
varieties (one for maps and another for flows). By flow conservation, the leading
eigenvalue is s0 = 0, which for maps (22.16) yields

trLn =
∑

i∈Fix f n

1
|det (1 − Mn(xi)) |

= 1 + es1n + . . . . (22.18)

For flows, one can apply this rule by grouping together cycles from t = T to
t = T + ΔT 9

1
ΔT

T≤rT p≤T+ΔT∑
p,r

Tp∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ =
1
ΔT

∫ T+ΔT

T
dt

(
1 + es1t + . . .

)
= 1 +

1
ΔT

∞∑
α=1

esαT

sα

(
esαΔT − 1

)
≈ 1 + es1T + · · · .(22.19)

As is usual for fixed level trace sums, the convergence of (22.18) is controlled
by the gap between the leading and next-to-leading eigenvalues of the evolution
operator. ⇓PRIVATE

22.5.2 Equipartition measures

There exist many strange sets which cannot be partitioned by the topology
of a dynamical flow: well-known examples include the Mandelbrot set, the pe-
riod doubling repeller, and probabilistically generated fractal aggregates. In such
cases, the choice of measure is wide open. One easy choice is the equipartition
or cylinder measure: given a symbolic dynamics partition, weigh all symbol se-
quences of length n equally. The equipartition measure is also easy to implement.

9Predrag: restore the discussion
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symbolic dynamics
dynamics!symbolic

The growth rate of the number of admissible symbol sequences Kn the sequence
length n is given by the topological entropy h (discussed in sect. 15.1) and the
equipartition measure for the ith region Mi is simply

Δμi = 1/Kn → e−nh . (22.20)

The problem with the equipartition measure is twofold: it usually has no physical
basis, and it is not an intrinsic invariant property of the strange set, as it depends
on the choice of partition. One is by no means forced to use either the natural
or the equipartition measure; there is a variety of other choices, depending on the
problem. The Floquet multipliers Λi also need not refer to motion in the dynam-
ical space; in more general settings it can be a renormalization scaling function
(see sect. 34.2), or even a scaling function describing a non–wandering set in the

⇓PRIVATEparameter space (see sect. 30.3).
⇑PRIVATE

⇑PRIVATE

Résumé

10 We conclude this chapter by a general comment on the relation of finite trace
sums such as (22.2) to spectral determinants and dynamical zeta functions. One
might be tempted to believe that given a deterministic rule, a sum like (22.2)
can be evaluated to any desired precision. For short times, this is indeed true:
every region Mi in (22.2) can be accurately delineated, and there is no need for
any fancy theory. However, if the dynamics is unstable, local variations in initial
conditions grow exponentially and in finite time attain the size of the system. 11

The difficulty with estimating the n → ∞ limit from (22.2) is then at least twofold:

1. Due to the exponential growth in number of intervals, and the exponen-
tial decrease in attainable accuracy, the maximal n attainable experimentally or
numerically is in practice of order of something between 5 to 20;

2. The pre-asymptotic sequence of finite estimates γn is not unique, because
the sums Γ̂n depend on how we define the escape region, and because in general
the areas |Mi| in the sum (22.2) should be weighted by the density of initial x0.

In contrast, dynamical zeta functions and spectral determinants are invariant
under all smooth nonlinear conjugacies x → h(x), not only linear rescalings, and
require no n → ∞ extrapolations.

Commentary

Remark 22.1 Nonhyperbolic measures. The measure μi = 1/|Λi| is the natural
measure only for the strictly hyperbolic systems. For non-hyperbolic systems, the mea-
sure might develop cusps. For example, for Ulam maps (unimodal maps with quadratic

10Predrag: expand this to cover the chapter
11Predrag: repeat of the text already used, fix!
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non-
hyperbolic!systems

natural measure
measure!natural
Hannay-Ozorio de

Almeida sum rule

critical point mapped onto the “left” unstable fixed point x 0, discussed in more detail in
chapter 24), the measure develops a square-root singularity on the 0 cycle:

μ0 =
1

|Λ0|1/2
. (22.21)

Thermodynamic averages are still expected to converge in the “hyperbolic” phase in
which the positive entropy of unstable orbits dominates the marginal orbits, but they fail
in the “non-hyperbolic” phase. The general case remains unclear [ 13, 2, 3, 4, 6].

Remark 22.2 Trace formula periodic orbit averaging. The cycle averaging formulas
are not the first thing one intuitively writes down; the approximate trace formulas are
more accessibly heuristically. Trace formula for averaging ( 22.19) seems to have been
discussed for the first time by Hannay and Ozorio de Almeida [9, 9]. Another novelty of
cycle averaging formulas is one of their main virtues, in contrast to the explicit analytical
results such as those of ref. [4]. Their evaluation does not require any explicit construction
of the (coordinate dependent) eigenfunctions of the Perron-Frobenius operator (i.e., the
natural measure ρ0).

Remark 22.3 Role of noise in dynamical systems. In any physical application,
the dynamics is always accompanied by external noise in addition to deterministic chaos.
The former can be characterized by its strength σ and distribution. Lyapunov exponents,
correlation decay, and dynamo rate can be defined in this case the same way as in the
deterministic case. One might think that noise completely destroys the results derived
here. However, as we show chapter 32, deterministic formulas remain valid to accuracy
comparable with noise width if the noise level is small. A small level of noise even helps,
as it makes the dynamics more ergodic. Deterministically non-communicating parts of
state space become weakly connected due to noise. This argument explains why periodic
orbit theory is also applicable to non-ergodic systems. For small amplitude noise, one can
expand perturbatively

a = a0 + a1σ
2 + a2σ

4 + ... ,

around the deterministic averages a0. The expansion coefficients a1, a2, ... can also be
expressed in terms of periodic orbit formulas. Calculating these coefficients is one of the
challenges facing periodic orbit theory, discussed in refs. [ 9, 10, 11].

⇓PRIVATE

Remark 22.4 Entropies. Calcagnile et al. [17] test numerically the method of non-
sequential recursive pair substitutions to estimate the entropy of an ergodic source and
compare performance with other methods to estimate the entropy (empirical frequencies,
return times, Lyapunov exponent) for systems with different statistical properties: renewal
processes, dynamical systems provided and not provided with a Markov partition, slow
or fast decay of correlations.

Reread So [18], check if something needs to be cited there.

⇑PRIVATE
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22.1. Escape rate of the logistic map.

(a) Calculate the fraction of trajectories remaining trapped
in the interval [0, 1] for the logistic map

f (x) = A(1 − (2x − 1)2), (22.22)

and determine the A dependence of the escape rate
γ(A) numerically.

(b) Develop a numerical method for calculating the lengths
of intervals of trajectories remaining stuck for n it-
erations of the map.

(c) Describe the dependence of A near the critical value
Ac = 1?

22.2. Four-scale map correlation decay rate. Consider the
piecewise-linear map

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f00 = Λ0x
f01 = s01(x − b) + 1
f11 = Λ1(x − b) + 1
f10 = s10(x − 1)

with a 4-interval state space Markov partition

M = {M00,M01,M10,M11}
= {[0, b/Λ0], (b/Λ0, b](b, c](c, 1]} .

(a) compute s01, s10, c.

(b) Show that the 2-cycle Floquet multiplier does not
depend on b,

Λ01 = s01 s10 = −
Λ0Λ1

(Λ0 − 1)(Λ1 + 1)
.

(c) Write down the [2×2] Perron-Frobenius operator
acting on the space of densities piecewise constant
over the four partitions.

(d) Construct the corresponding transition graph.

(e) Write down the corresponding spectral determin-
ant.

(f) Show that the escape rate vanishes, γ = − ln(z0) =
0.

exerGetused - 1sep2007 boyscout version14.4, Mar 19 2013
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(g) Determine the spectrum of the Perron-Frobenius oper-
ator on the space of densities piecewise constant
over the four partitions. Show that the second largest
eigenvalue of the is 1

z1
= −1 + 1

Λ0
− 1
Λ1

.

(h) Is this value consistent with the tent map value pre-
viously computed in exercise 16.4 (with the appro-
priate choice of {Λ0,Λ1, c}).

(i) (optional) Is this next-to leading eigenvalue still cor-
rect if the Perron-Frobenius operator acts on the
space of analytic functions?

22.3. Lyapunov exponents for 1-dimensional maps. Extend
your cycle expansion programs so that the first and the
second moments of observables can be computed. Use
it to compute the Lyapunov exponent for the following
maps: 12

(a) the piecewise-linear skew tent (flow conserving map)

f (x) =

{
Λ0x if 0 ≤ x < Λ−1

0 ,
Λ1(1 − x) if Λ−1

0 ≤ x ≤ 1.
,

Λ1 = Λ0/(Λ0 − 1).

(b) the Ulam map f (x) = 4x(1 − x) .

(c) the skew Ulam map (X.74) ⇓PRIVATE

⇑PRIVATEf (x) = Λ0x(1 − x)(1 − bx) , (22.23)

1/Λ0 = xc(1 − xc)(1 − bxc) . In our numerical work
we fix (arbitrarily, the value chosen in ref. [3]) b =
0.6, so

f (x) = 0.1218 x(1− x)(1 − 0.6 x)

with a peak f (xc) = 1 at xc = 0.7.

(d) the repeller of f (x) = Ax(1 − x), for either A = 9/2
or A = 6 (this is a continuation of exercise 20.2).

(e) the 2-branch flow conserving map

f0(x) =
1

2h

(
h − p +

√
(h − p)2 + 4hx

)
f1(x) =

1
2h

(h + p − 1) (22.24)

+
1

2h

√
(h + p − 1)2 + 4h(x − p) ,

with a 2-interval state space Markov partition M =
{M0,M1} = {[0, p], (p, 1]} . This is a nonlinear per-
turbation of the Bernoulli shift map, for which h =
0 (23.6); the first 15 eigenvalues of the Perron-Frobenius
operator are listed in ref. [1] for p = 0.8, h = 0.1.
Use these parameter values when computing the
Lyapunov exponent.

12Predrag: draw the piecewise-linear skew tent
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Cases (a) and (b) can be computed analytically; cases (c),
(d) and (e) require numerical computation of cycle sta-
bilities. Just to see whether the theory is worth the trou-
ble, also check your cycle expansions results for cases (c)
and (d) with Lyapunov exponents computed by direct nu-
merical averaging along trajectories of randomly chosen
initial points:

(f) trajectory-trajectory separation (6.1) (hint: rescale
δx every so often, to avoid numerical overflows),

(g) iterated stability (6.11).

How good is the numerical accuracy compared with peri-
odic orbit theory predictions for (a) - (g)? ⇓PRIVATE

22.4. Tent map spectral determinant zeros, Per’s pp.31.

22.5. Cycle expansions of Fredholm determinants. Use
ref. [23] table - derive it here.

22.6. Sequence of orbital measures for the Ulam map. (L.
Rondoni)

As an example, let us develop the sequence of orbital
measures for the quadratic map, even if it is not precisely
of the form we discussed above. Indeed, this illustrates
how some of our assumptions could be relaxed, and still
get correct results. Moreover, although for such a simple
case it is possible to explicitly find all periodic points up
to the desired period, we will only use those that are found
by looking at close returns of a generic chaotic trajectory.
Consider the Ulam map

xn+1 = 4xn(1 − xn) . (22.25)

This is quadratic, and it has two fixed points, four period
two periodic points (including the two repeats of the fixed
points) and, in general, 2n periodic points of period n, as
explained in exercise 11.4. How these are structured is
given in table 15.2.
13 The natural measure of the Ulam map (22.25), fig-
ure C.2b is explicitly expressed by 14

dμ(x) =
dx

π
√

x − x2
. (22.26)

15 We can now calculate the average values of 〈x〉 and of〈
x2

〉
exactly using the known analytic distribution func-

tion (22.26), and also numerically using the cycle expan-
sion. This exercise illustrates well the use of orbital mea-
sures to calculate averages. The results are given in ta-
ble 22.1, where we have used the periodic points of order
2 to 12 which are found by a generic chaotic trajectory,
and we have neglected the cycles of a given period which

13Predrag: make exercise, draw the figure
14Predrag: need to derive this somewhere, refer to Ulam
15Predrag: this explicitly shows that periodic points do not have equal weights? But smooth

conjugacy to tent map justifies it.
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n 〈x〉
〈
x2

〉 ∑
Nk

2 0.62500 0.46875 2
3 0.54167 0.40625 6
4 0.50000 0.37500 12
5 0.50833 0.38125 30
6 0.50354 0.37766 52(54)
7 0.51240 0.38430 120(126)
8 0.51017 0.38263 230(240)
9 0.50914 0.38185 482(504)

10 0.50904 0.38178 940(990)
11 0.50795 0.38097 1962(2046)
12 0.50731 0.38049 3853(4020)

exact 0.5 0.375

Table 22.1: An approximate cycle expansion using only periodic points of prime orbits,
and only those found by a probabilistic exploration of the state space. (In the parenthesis
the correct total number of such periodic points, see table 15.3).

are repeats of cycles of smaller period. 16 This because
the contributions of non prime (repeat) cycles become
less and less important as the period grows, as one can
see also from table 15.2. Note also, that the number of
cycles found numerically differs from the exact number
(given in parenthesis for period 6 and larger). All this
mimics what actually can be done, when sampling peri-
odic points from the state space of more realistic systems.
Indeed, not being able to find all the existing cycles is a
common numerical difficulty, linked to their instability.
That can easily be remedied for the quadratic map, but
in general one does not even know how many cycles of a
certain period should be found. Note the convergence of
the method, despite these difficulties. 17

We have introduced the idea of periodic orbit expansions
for simple maps, as an example of a theory of much wider
generality. The reason why the method is expected to
work in more general situations, is that the relevant attrac-
tors can be proven, or have been observed to be hierarchi-
cally approximated through sets of progressively longer
and longer unstable periodic orbits. Indeed, the weak
limit of these measures has been rigorously proved to be
the natural measure for Axiom-A systems, independently
of the (finite) dimensions of the relevant state spaces.
18

Remark 22.5 Nonhyperbolicity. In the above example
we have succeeded in developing a sequence of orbital
measures for the Ulam map, even though the Ulam map
does not satisfy the hyperbolicity hypothesis (the critical
point is superstable) invoked in the derivation. This illus-
trates how some of our assumptions could be relaxed, and

16Predrag: terrible; compare with the AACII calculation
17Predrag: yes, I note no convergence whatsoever
18Predrag: plot log10 error from table 22.1, numbers are useless. Also plot the error of the correct

cycle computation
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still get sensible results. To solve this example exactly the
cyclist way, consult refsect.?! 19

(L. Rondoni)

⇑PRIVATE
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Chapter 23

Why does it work?

Bloch: “Space is the field of linear operators.”
Heisenberg: “Nonsense, space is blue and birds fly
through it.”

—Felix Bloch, Heisenberg and the early days of
quantum mechanics

(R. Artuso, H.H. Rugh and P. Cvitanović)

As we shall see, the trace formulas and spectral determinants work well,
sometimes very well. The question is: Why? And it still is. The heuris-
tic manipulations of chapter 18 were naive and reckless, as we are facing

infinite-dimensional vector spaces and singular integral kernels. 1

We now outline the key ingredients of proofs that put the trace and determi-
nant formulas on solid footing. This requires taking a closer look at the evolution
operators from a mathematical point of view, since up to now we have talked
about eigenvalues without any reference to what kind of a function space the cor-
responding eigenfunctions belong to. We shall restrict our considerations to the
spectral properties of the Perron-Frobenius operator for maps, as proofs for more
general evolution operators follow along the same lines. What we refer to as a “the
set of eigenvalues” acquires meaning only within a precisely specified functional
setting: this sets the stage for a discussion of the analyticity properties of spectral
determinants. In example 23.1 we compute explicitly the eigenspectrum for the
three analytically tractable piecewise linear examples. In sect.23.4 we review the
basic facts of the classical Fredholm theory of integral equations. The program
is sketched in sect. 23.5, motivated by an explicit study of eigenspectrum of the
Bernoulli shift map, and in sect. 23.6 generalized to piecewise real-analytic hy-
perbolic maps acting on appropriate densities. We show on a very simple example
that the spectrum is quite sensitive to the regularity properties of the functions
considered.

1Predrag: give ref to Bloch
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For expanding and hyperbolic finite-subshift maps analyticity leads to a very
strong result; not only do the determinants have better analyticity properties than
the trace formulas, but the spectral determinants are singled out as entire functions
in the complex s plane. 2

remark 23.1

The goal of this chapter is not to provide an exhaustive review of the rigorous the-
ory of the Perron-Frobenius operators and their spectral determinants, but rather
to give you a feeling for how our heuristic considerations can be put on a firm
basis. The mathematics underpinning the theory is both hard and profound.

If you are primarily interested in applications of the periodic orbit theory, you
should skip this chapter on the first reading.

fast track:

chapter 13, p. 314

23.1 Linear maps: exact spectra

We start gently; in example 23.1 we work out the exact eigenvalues and eigen-
functions of the Perron-Frobenius operator for the simplest example of unstable,
expanding dynamics, a linear 1-dimensional map with one unstable fixed point3.
Ref. [6] shows that this can be carried over to d-dimensions. Not only that, but
in example 23.5 we compute the exact spectrum for the simplest example of a
dynamical system with an infinity of unstable periodic orbits, the Bernoulli shift.

Example 23.1 The simplest eigenspectrum - a single fixed point: In order to get
some feeling for the determinants defined so formally in sect. 19.2, let us work out a
trivial example: a repeller with only one expanding linear branch

f (x) = Λx , |Λ| > 1 ,

and only one fixed point xq = 0. The action of the Perron-Frobenius operator (16.10) is

Lφ(y) =
∫

dx δ(y − Λx)φ(x) =
1
|Λ|

φ(y/Λ) . (23.1)

From this one immediately gets that the monomials yk are eigenfunctions:

Lyk =
1

|Λ|Λk
yk , k = 0, 1, 2, . . . (23.2)

What are these eigenfunctions? Think of eigenfunctions of the Schrödinger
equation: k labels the kth eigenfunction xk in the same spirit in which the number
of nodes labels the kth quantum-mechanical eigenfunction. A quantum-mechanical

2Predrag: define entire function
3Predrag: fix!
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amplitude with more nodes has more variability, hence a higher kinetic energy.
Analogously, for a Perron-Frobenius operator, a higher k eigenvalue 1/|Λ|Λk is
getting exponentially smaller because densities that vary more rapidly decay more
rapidly under the expanding action of the map.

Example 23.2 The trace formula for a single fixed point: The eigenvalues Λ−k−1

fall off exponentially with k, so the trace of L is a convergent sum

trL =
1
|Λ|

∞∑
k=0

Λ−k =
1

|Λ|(1 − Λ−1)
=

1
| f (0)′ − 1|

,

in agreement with (18.7). A similar result follows for powers of L, yielding the single-
fixed point version of the trace formula for maps (18.10):

∞∑
k=0

zesk

1 − zesk
=

∞∑
r=1

zr

|1 − Λr |
, esk =

1
|Λ|Λk

. (23.3)

The left hand side of (23.3) is a meromorphic function, with the leading zero
at z = |Λ|. So what?

Example 23.3 Meromorphic functions and exponential convergence: As an
illustration of how exponential convergence of a truncated series is related to analytic
properties of functions, consider, as the simplest possible example of a meromorphic
function, the ratio

h(z) =
z − a
z − b

with a, b real and positive and a < b. Within the spectral radius |z| < b the function h
can be represented by the power series

h(z) =
∞∑

k=0

σkzk ,

where σ0 = a/b, and the higher order coefficients are given by σ j = (a − b)/b j+1.
Consider now the truncation of order N of the power series

hN(z) =
N∑

k=0

σkzk =
a
b
+

z(a − b)(1 − zN/bN)
b2(1 − z/b)

.

Let ẑN be the solution of the truncated series hN(ẑN) = 0. To estimate the distance
between a and ẑN it is sufficient to calculate hN(a). It is of order (a/b)N+1, so finite order
estimates converge exponentially to the asymptotic value.

This example shows that: (1) an estimate of the leading pole (the leading
eigenvalue of L) from a finite truncation of a trace formula converges exponen-
tially, and (2) the non-leading eigenvalues of L lie outside of the radius of con-
vergence of the trace formula and cannot be computed by means of such cycle
expansion. However, as we shall now see, the whole spectrum is reachable at no
extra effort, by computing it from a determinant rather than a trace.

converg - 9nov2008 boyscout version14.4, Mar 19 2013
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Figure 23.1: The Bernoulli shift map.

Example 23.4 The spectral determinant for a single fixed point: The spectral
determinant (19.3) follows from the trace formulas of example 23.2:

det (1 − zL) =
∞∏

k=0

(
1 − z

|Λ|Λk

)
=

∞∑
n=0

(−t)n Qn , t =
z
|Λ|

, (23.4)

where the cummulants Qn are given explicitly by the Euler formula
exercise 23.3

Qn =
1

1 − Λ−1

Λ−1

1 − Λ−2
· · · Λ

−n+1

1 − Λ−n
. (23.5)

⇓PRIVATE
(If you cannot figure out how to derive this formula, the solutions on p. 1391 offer several
proofs.) ⇑PRIVATE

The main lesson to glean from this simple example is that the cummulants Qn

decay asymptotically faster than exponentially, as Λ−n(n−1)/2. For example, if we
approximate series such as (23.4) by the first 10 terms, the error in the estimate of
the leading zero is ≈ 1/Λ50!

So far all is well for a rather boring example, a dynamical system with a single
repelling fixed point. What about chaos? Systems where the number of unstable
cycles increases exponentially with their length? We now turn to the simplest
example of a dynamical system with an infinity of unstable periodic orbits.

Example 23.5 Eigenfunction of Bernoulli shift map. (continued from example 11.7) The
Bernoulli shift map figure 23.1 4

f (x) =

{
f0(x) = 2x , x ∈ I0 = [0, 1/2)
f1(x) = 2x − 1 , x ∈ I1 = (1/2, 1] (23.6)

models the 50-50% probability of a coin toss. The associated Perron-Frobenius oper-
ator (16.9) assembles ρ(y) from its two preimages

Lρ(y) =
1
2
ρ
( y
2

)
+

1
2
ρ

(
y + 1

2

)
. (23.7)

4Predrag: copy Driebe p. 19
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For this simple example the eigenfunctions can be written down explicitly: they coincide,
up to constant prefactors, with the Bernoulli polynomials Bn(x). These polynomials are
generated by the Taylor expansion of the generating function

G(x, t) =
text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
, B0(x) = 1 , B1(x) = x −

1
2
, . . .

The Perron-Frobenius operator (23.7) acts on the generating function G as

LG(x, t) =
1
2

(
text/2

et − 1
+

tet/2ext/2

et − 1

)
=

t
2

ext/2

et/2 − 1
=

∞∑
k=1

Bk(x)
(t/2)k

k!
,

hence each Bk(x) is an eigenfunction of L with eigenvalue 1/2k. 5

The full operator has two components corresponding to the two branches. For
the n times iterated operator we have a full binary shift, and for each of the 2n branches
the above calculations carry over, yielding the same trace (2n − 1)−1 for every cycle on
length n. Without further ado we substitute everything back and obtain the determinant,

det (1 − zL) = exp

⎛⎜⎜⎜⎜⎜⎝−∑
n=1

zn

n
2n

2n − 1

⎞⎟⎟⎟⎟⎟⎠ =∏
k=0

(
1 −

z

2k

)
, (23.8)

verifying that the Bernoulli polynomials are eigenfunctions with eigenvalues 1, 1/2, . . .,
1/2n, . . . .

The Bernoulli map spectrum looks reminiscent of the single fixed-point spec-
trum (23.2), with the difference that the leading eigenvalue here is 1, rather than
1/|Λ|. The difference is significant: the single fixed-point map is a repeller, with
escape rate (1.7) given by the L leading eigenvalue γ = ln |Λ|, while there is no
escape in the case of the Bernoulli map. As already noted in discussion of the
relation (19.23), for bounded systems the local expansion rate (here ln |Λ| = ln 2)

section 19.4
is balanced by the entropy (here ln 2, the log of the number of preimages Fs ),
yielding zero escape rate.

So far we have demonstrated that our periodic orbit formulas are correct for
two piecewise linear maps in 1 dimension, one with a single fixed point, and one
with a full binary shift chaotic dynamics. For a single fixed point, eigenfunctions
are monomials in x. For the chaotic example, they are orthogonal polynomials on
the unit interval. What about higher dimensions? We check our formulas on a
2-dimensional hyperbolic map next.

Example 23.6 The simplest of 2-dimensional maps - a single hyperbolic fixed
point: We start by considering a very simple linear hyperbolic map with a single
hyperbolic fixed point,

f (x) = ( f1(x1, x2), f2(x1, x2)) = (Λsx1,Λux2) , 0 < |Λs| < 1 , |Λu| > 1 .

5Predrag: I do not get your drift here: The persistence of a finite essential spectral radius would
suggest that traces and determinants do not exist in this case either. The pleasant surprise is that
they do, see remark 23.3.
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The Perron-Frobenius operator (16.10) acts on the 2-dimensional density functions as

Lρ(x1, x2) =
1

|ΛsΛu|
ρ(x1/Λs, x2/Λu) (23.9)

What are good eigenfunctions? Cribbing the 1-dimensional eigenfunctions for the sta-
ble, contracting x1 direction from example 23.1 is not a good idea, as under the iter-
ation of L the high terms in a Taylor expansion of ρ(x1, x2) in the x1 variable would
get multiplied by exponentially exploding eigenvalues 1/Λ k

s. This makes sense, as in
the contracting directions hyperbolic dynamics crunches up initial densities, instead of
smoothing them. So we guess instead that the eigenfunctions are of form

ϕk1k2 (x1, x2) = xk2
2 /xk1+1

1 , k1, k2 = 0, 1, 2, . . . , (23.10)

a mixture of the Laurent series in the contraction x1 direction, and the Taylor series in
the expanding direction, the x2 variable. The action of Perron-Frobenius operator on
this set of basis functions

Lϕk1k2 (x1, x2) =
σ

|Λu|
Λ

k1
s

Λ
k2
u

ϕk1k2(x1, x2) , σ = Λs/|Λs|

is smoothing, with the higher k1, k2 eigenvectors decaying exponentially faster, by
Λ

k1
s /Λ

k2+1
u factor in the eigenvalue. One verifies by an explicit calculation (undoing

the geometric series expansions to lead to (19.9)) that the trace of L indeed equals
1/|det (1−M)| = 1/|(1−Λu)(1−Λs)| , from which it follows that all our trace and spectral
determinant formulas apply. The argument applies to any hyperbolic map linearized
around the fixed point of form f (x1...., xd) = (Λ1x1,Λ2x2, . . . ,Λd xd).

So far we have checked 6 the trace and spectral determinant formulas derived
heuristically in chapters 18 and 19, but only for the case of 1-dimensional and
2-dimensional linear maps. But for infinite-dimensional vector spaces this game
is fraught with dangers, and we have already been mislead by piecewise linear
examples into spectral confusions: contrast the spectra of example16.1 and ex-
ample 17.4 with the spectrum computed in example 18.2.

We show next that the above results do carry over to a sizable class of piece-
wise analytic expanding maps.

23.2 Evolution operator in a matrix representation

The standard, and for numerical purposes sometimes very effective way to look at
operators is through their matrix representations. Evolution operators are moving
density functions defined over some state space, and as in general we can imple-
ment this only numerically, the temptation is to discretize the state space as in
sect. 16.3. The problem with such state space discretization approaches that they
sometimes yield plainly wrong spectra (compare example 17.4 with the result of
example 18.2), so we have to think through carefully what is it that we really
measure.

6Predrag: recheck
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An expanding map f (x) takes an initial smooth density φn(x), defined on a
subinterval, stretches it out and overlays it over a larger interval, resulting in a new,
smoother density φn+1(x). Repetition of this process smoothes the initial density,
so it is natural to represent densities φn(x) by their Taylor series. Expanding

φn(y) =
∞∑

k=0

φ(k)
n (0)

yk

k!
, φn+1(y)k =

∞∑
�=0

φ(�)
n+1(0)

y�

�!
,

φ(�)
n+1(0) =

∫
dx δ(�)(y − f (x))φn(x)

∣∣∣
y=0 , x = f−1(0) ,

and substitute the two Taylor series into (16.6):

φn+1(y) = (Lφn) (y) =
∫
M

dx δ(y − f (x))φn(x) .

The matrix elements follow by evaluating the integral

L�k =
∂�

∂y�

∫
dxL(y, x)

xk

k!

∣∣∣∣∣∣
y=0

. (23.11)

we obtain a matrix representation of the evolution operator7

∫
dxL(y, x)

xk

k!
=

∑
k′

yk′

k′!
Lk′k , k, k′ = 0, 1, 2, . . .

which maps the xk component of the density of trajectories φn(x) into the yk′ com-
ponent of the density φn+1(y) one time step later, with y = f (x). 8 9

We already have some practice with evaluating derivatives δ(�)(y) = ∂�

∂y�
δ(y) from

sect. 16.2. This yields a representation of the evolution operator centered on the
fixed point, evaluated recursively in terms of derivatives of the map f :

L�k =

∫
dx δ(�)(x − f (x))

xk

k!

∣∣∣∣∣∣
x= f (x)

(23.12)

=
1
| f ′|

(
d
dx

1
f ′(x)

)� xk

k!

∣∣∣∣∣∣∣
x= f (x)

.

7Predrag: in a remark: credit Rugh [19] for this matrix rep
8Predrag: add exercises
9Predrag: Rytis says drop 1 − x = f (x)
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Figure 23.2: A nonlinear one-branch repeller with a
single fixed point wq. 0 0.5 1

w
0

0.5

1

f(w)

w *

The matrix elements vanish for � < k, so L is a lower triangular matrix. The
diagonal and the successive off-diagonal matrix elements are easily evaluated it-
eratively by computer algebra

Lkk =
1

|Λ|Λk
, Lk+1,k = −

(k + 2)! f ′′

2k!|Λ|Λk+2
, · · · .

For chaotic systems the map is expanding, |Λ| > 1. Hence the diagonal terms drop
off exponentially, as 1/|Λ|k+1, the terms below the diagonal fall off even faster, and
truncating L to a finite matrix introduces only exponentially small errors.

The trace formula (23.3) takes now a matrix form

tr
zL

1 − zL
= tr

zL
1 − zL

. (23.13)

In order to illustrate how this works, we work out a few examples.

In example 23.7 we show that these results carry over to any analytic single-
branch 1-dimensional repeller. Further examples motivate the steps that lead to
a proof that spectral determinants for general analytic 1-dimensional expanding
maps, and - in sect. 23.6, for 1-dimensional hyperbolic mappings - are also entire
functions.

Example 23.7 Perron-Frobenius operator in a matrix representation: 10 As in
example 23.1, we start with a map with a single fixed point, but this time with a nonlinear
piecewise analytic map f with a nonlinear inverse F = f −1, sign of the derivative σ =
σ(F′) = F′/|F′| , and the Perron-Frobenius operator acting on densities analytic in an
open domain enclosing the fixed point x = wq, 11

Lφ(y) =
∫

dx δ(y − f (x))φ(x) = σ F ′(y) φ(F(y)) .

10Predrag: compare to the Dettmann? papers
11Predrag: rewrite in Cauchy int form
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spectral!determinant!entire
exponential!convergence
convergence!super-

exponential

Assume that F is a contraction of the unit disk in the complex plane, i.e.,

|F(z)| < θ < 1 and |F ′(z)| < C < ∞ for |z| < 1 , (23.14)

and expand φ in a polynomial basis with the Cauchy integral formula

φ(z) =
∞∑

n=0

znφn =

∮
dw
2πi

φ(w)
w − z

, φn =

∮
dw
2πi

φ(w)
wn+1

12 Combining this with (23.22), we see that in this basis Perron-Frobenius operator L
is represented by the matrix

Lφ(w) =
∑
m,n

wmLmnφn , Lmn =

∮
dw
2πi

σ F′(w)(F(w))n

wm+1
. (23.15)

Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =

∮
dw
2πi

σ F′(w)
w − F(w)

.

13 This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).
Hence

exercise 23.6

tr L = σ F′(w∗)
1 − F′(w∗)

=
1

| f ′(w∗) − 1|
.

This super-exponential decay of cummulants Qk ensures that for a repeller
consisting of a single repelling point the spectral determinant (23.4) is entire in
the complex z plane.

In retrospect, the matrix representation method for solving the density evolu-
tion problems is eminently sensible — after all, that is the way one solves a close
relative to classical density evolution equations, the Schrödinger equation. When
available, matrix representations for L enable us to compute many more orders
of cumulant expansions of spectral determinants and many more eigenvalues of
evolution operators than the cycle expensions approach. Ronnie: The formula

for product of zetas is
missingNow, if the spectral determinant is entire, formulas such as (19.25) imply that

the dynamical zeta function is a meromorphic function. The practical import of
this observation is that it guarantees that finite order estimates of zeroes of dyn-
amical zeta functions and spectral determinants converge exponentially, or - in
cases such as (23.4) - super-exponentially to the exact values, and so the cycle
expansions to be discussed in chapter20 represent a true perturbative approach to
chaotic dynamics. ⇓PRIVATE

This result says that the single fixed-point piecewise-linear map example (23.2)
applies to any analytic 1-dimensional map with a single fixed point, with eigen-
functions φn = yn, and in this basis L diagonal, Lnm = δnm/|Λ|Λ−n. Thus we have
rederived rigorously the trace formula (18.9) derived heuristically in sect. 18.1, so
far only for the case of a 1-dimensional expanding analytic map with a single fixed
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finite!matrix
truncations

matrix!truncations

point. The requirement that the map be analytic is needed to substitute the bound
(23.14) into the contour integral (23.15) in order to bound the L matrix elements

appendix L.4

|Lmn| ≤ sup
|w|≤1

|F′(w)| |F(w)|n ≤ Cθn

which shows that finite [N×N] matrix truncations approximate the operator within
an error exponentially small in N. It also follows that eigenvalues decay as θn. In
higher dimensions similar considerations show that the entries in the matrix decay
as 1/Λk1+1/d

and eigenvalues decay as 1/Λk1/d
.

The size of such matrices is infinite, but if the matrix entries decay exponen-
tially fast with the index size, calculations based on finite matrix truncations have
exponentially small errors.

Furthermore, from bounds on the elements Lmn one calculates bounds on the
cummulants (??) tr

(
∧kL

)
and verifies that they fall off as Λ−k2/2, concluding that

the L eigenvalues fall off exponentially for a general Axiom A 1-dimensional
map.

23.3 Eigenfunctions, an attractive fixed point

We have been hinting darkly all along that - in contrast to the more familiar
quantum evolution operators acting on Hilbert spaces - evolution operators are
in general not self-adjoint operators. For a finite-dimensional matrix lack of self-
adjointness implies that the matrix cannot be brought to a diagonal form, and
that its left and right eigenvectors are not (complex conjugate) transposes of each
other.

For the infinite-dimensional evolution operators the implications are stark.
Consider a single fixed point as an example. For a repelling fixed point the action
of the Perron-Frobenius operator is to expand and smooth out the initial distri-
bution, and hence the natural basis for densities an expanding maps evolves are
smooth functions, such as polynomials: the right eigenfunctions are smooth.

Consider now the action of the Perron-Frobenius operator for the same map
backward in time. Now the fixed point is attractive, densities get more contracted
and kinkier with time, concentrating asymptotical on the fixed point itself; the left
eigenfunctions are highly singular. ⇑PRIVATE

Before turning to specifics we summarize a few facts about classical theory
of integral equations, something you might prefer to skip on first reading. The
purpose of this exercise is to understand that the Fredholm theory, a theory that
works so well for the Hilbert spaces of quantum mechanics does not necessarily
work for deterministic dynamics - the ergodic theory is much harder.

12Predrag: forward reference to (23.22)
13Predrag: do it for several poles
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Fredholm!theory
Fredholm!theory
Hilbert-

Schmidt!condition

fast track:

sect. 23.5, p. 552

23.4 Classical Fredholm theory

He who would valiant be ’gainst all disaster
Let him in constancy follow the Master.

—John Bunyan, Pilgrim’s Progress

The Perron-Frobenius operator

Lφ(x) =
∫

dy δ(x − f (y)) φ(y)

has the same appearance as a classical Fredholm integral operator

Kϕ(x) =
∫
M

dyK(x, y)ϕ(y) , (23.16)

and one is tempted to resort to classical Fredholm theory in order to establish
analyticity properties of spectral determinants. This path to enlightenment is
blocked by the singular nature of the kernel, which is a distribution, whereas the
standard theory of integral equations usually concerns itself with regular kernels
K(x, y) ∈ L2(M2). Here we briefly recall some steps of Fredholm theory, before
working out the example of example 23.5.

The general form of Fredholm integral equations of the second kind is

ϕ(x) =
∫
M

dyK(x, y)ϕ(y) + ξ(x) (23.17)

where ξ(x) is a given function in L2(M) and the kernel K(x, y) ∈ L2(M2) (Hilbert-
Schmidt condition). The natural object to study is then the linear integral operator
(23.16), acting on the Hilbert space L2(M): the fundamental property that follows
from the L2(Q) nature of the kernel is that such an operator is compact, that is close
to a finite rank operator (see appendix N). A compact operator has the property ⇓PRIVATE

⇑PRIVATE
that for every δ > 0 only a finite number of linearly independent eigenvectors exist
corresponding to eigenvalues whose absolute value exceeds δ, so we immediately
realize (figure 23.5) that much work is needed to bring Perron-Frobenius operators
into this picture.

We rewrite (23.17) in the form

Tϕ = ξ , T = 11 − K . (23.18)
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resolvent!kernel
kernel!resolving

The Fredholm alternative is now applied to this situation as follows: the equation
Tϕ = ξ has a unique solution for every ξ ∈ L2(M) or there exists a non-zero
solution of Tϕ0 = 0, with an eigenvector of K corresponding to the eigenvalue
1. 14 The theory remains the same if instead of T we consider the operator Tλ =
11−λK with λ � 0. AsK is a compact operator there is at most a denumerable set

of λ for which the second part of the Fredholm alternative holds: apart from this
set the inverse operator ( 11 − λT )−1 exists and is bounded (in the operator sense).
When λ is sufficiently small we may look for a perturbative expression for such
an inverse, as a geometric series

( 11 − λK)−1 = 11 + λK + λ2K2 + · · · = 11 + λW , (23.19)

where Kn is a compact integral operator with kernel

Kn(x, y) =
∫
Mn−1

dz1 . . . dzn−1 K(x, z1) · · · K(zn−1, y) ,

and W is also compact, as it is given by the convergent sum of compact operators.
The problem with (23.19) is that the series has a finite radius of convergence,
while apart from a denumerable set of λ’s the inverse operator is well defined.
A fundamental result in the theory of integral equations consists in rewriting the
resolving kernel W as a ratio of two analytic functions of λ

W(x, y) =
D(x, y; λ)

D(λ)
.

If we introduce the notation

K
(

x1 . . . xn
y1 . . . yn

)
=

∣∣∣∣∣∣∣∣
K(x1, y1) . . . K(x1, yn)

. . . . . . . . .
K(xn, y1) . . . K(xn, yn)

∣∣∣∣∣∣∣∣
we may write the explicit expressions

D(λ) = 1 +
∞∑

n=1

(−1)n λ
n

n!

∫
Mn

dz1 . . . dzn K
(

z1 . . . zn
z1 . . . zn

)

= exp

⎛⎜⎜⎜⎜⎜⎝− ∞∑
m=1

λm

m
trKm

⎞⎟⎟⎟⎟⎟⎠ (23.20)

D(x, y; λ) = K
(

x
y

)
+

∞∑
n=1

(−λ)n

n!

∫
Mn

dz1 . . . dzn K
(

x z1 . . . zn
y z1 . . . zn

)

The quantity D(λ) is known as the Fredholm determinant (see (19.24)(and ap- ⇓PRIVATE
pendix N):. it is an entire analytic function of λ, and D(λ) = 0 if and only if 1/λ

⇑PRIVATEis an eigenvalue of K .

Worth emphasizing again: 15 the Fredholm theory is based on the compact-
14Predrag: explain why ”alternative”
15Predrag: say error � e−nInn
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essential!spectrum
spectral!radius
essential!spectral

radius

ness of the integral operator, i.e., on the functional properties (summability) of its
kernel. As the Perron-Frobenius operator is not compact, there is a bit of wishful
thinking involved here.

23.5 Analyticity of spectral determinants

They savored the strange warm glow of being much more
ignorant than ordinary people, who were only ignorant of
ordinary things.

—Terry Pratchett

16 Spaces of functions integrable L1, or square-integrable L2 on interval [0, 1]
are mapped into themselves by the Perron-Frobenius operator, and in both cases
the constant function φ0 ≡ 1 is an eigenfunction with eigenvalue 1. If we focus
our attention on L1 we also have a family of L1 eigenfunctions,

φθ(y) =
∑
k�0

exp(2πiky)
1
|k|θ

(23.21)

with complex eigenvalue 2−θ, parameterized by complex θ with Re θ > 0. By
varying θ one realizes that such eigenvalues fill out the entire unit disk. Such
essential spectrum, the case k = 0 of figure 23.5, hides all fine details of the
spectrum.

What’s going on? Spaces L1 and L2 contain arbitrarily ugly functions, allow-
ing any singularity as long as it is (square) integrable - and there is no way that
expanding dynamics can smooth a kinky function with a non-differentiable singu-
larity, let’s say a discontinuous step, and that is why the eigenspectrum is dense
rather than discrete. Mathematicians love to wallow in this kind of muck, but there
is no way to prepare a nowhere differentiable L1 initial density in a laboratory. The
only thing we can prepare and measure are piecewise smooth (real-analytic) den-
sity functions.

17 For a bounded linear operator A on a Banach space Ω, the spectral radius
is the smallest positive number ρspec such that the spectrum is inside the disk of
radius ρspec, while the essential spectral radius is the smallest positive number
ρess such that outside the disk of radius ρess the spectrum consists only of isolated
eigenvalues of finite multiplicity (see figure 23.5).

exercise 23.5

We may shrink the essential spectrum by letting the Perron-Frobenius oper-
ator act on a space of smoother functions, exactly as in the one-branch repeller
case of sect. 23.1. We thus consider a smaller space, Ck+α, the space of k times
differentiable functions whose k’th derivatives are Hölder continuous with an ex-
ponent 0 < α ≤ 1: the expansion property guarantees that such a space is mapped

16Predrag: insert text from ”Beyond periodic orbit theory”
17Predrag: move this somewhere; define Banach space
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Bernoulli!shift
Dirac delta

into itself by the Perron-Frobenius operator. In the strip 0 < Re θ < k + α most φθ
will cease to be eigenfunctions in the space Ck+α; the function φn survives only for
integer valued θ = n. In this way we arrive at a finite set of isolated eigenvalues
1, 2−1, · · · , 2−k, and an essential spectral radius ρess = 2−(k+α).

18 We follow a simpler path and restrict the function space even further, namely
to a space of analytic functions, i.e., functions for which the Taylor expansion is
convergent at each point of the interval [0, 1]. With this choice things turn out easy
and elegant. To be more specific, let φ be a holomorphic and bounded function on
the disk D = B(0,R) of radius R > 0 centered at the origin. Our Perron-Frobenius
operator preserves the space of such functions provided (1 + R)/2 < R so all we
need is to choose R > 1. If Fs , s ∈ {0, 1}, denotes the s inverse branch of the
Bernoulli shift (23.6), the corresponding action of the Perron-Frobenius operator
is given by Lsh(y) = σ F′

s (y) h ◦ Fs (y), using the Cauchy integral formula along
the ∂D boundary contour: 19

Lsh(y) = σ
∮
∂D

dw
2πi

h(w)F′
s (y)

w − Fs(y)
. (23.22)

20 For reasons that will be made clear later we have introduced a sign σ = ±1
of the given real branch |F′(y)| = σ F′(y). For both branches of the Bernoulli
shift s = 1, but in general one is not allowed to take absolute values as this could
destroy analyticity. In the above formula one may also replace the domain D by
any domain containing [0, 1] such that the inverse branches maps the closure of
D into the interior of D. Why? simply because the kernel remains non-singular
under this condition, i.e., w − F(y) � 0 whenever w ∈ ∂D and y ∈ Cl D. 21

The problem is now reduced to the standard theory for Fredholm determinants,
sect. 23.4. The integral kernel is no longer singular, traces and determinants are
well-defined, and we can evaluate the trace ofLF by means of the Cauchy contour
integral formula:

tr LF =

∮
dw
2πi

σF′(w)
w − F(w)

.

Elementary complex analysis shows that since F maps the closure of D into its
own interior, F has a unique (real-valued) fixed point x∗ with a multiplier strictly
smaller than one in absolute value. Residue calculus therefore yields

exercise 23.6

tr LF =
σF′(x∗)

1 − F′(x∗)
=

1
| f ′(x∗) − 1| ,

justifying our previous ad hoc calculations of traces using Dirac delta functions.

18Predrag: this is not Bernuolli specific
19Predrag: copy Driebe p. 19, draw figure
20Predrag: MAP: this exposition is confusing.
21Predrag: MAP:explain Cl D notation
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Example 23.8 Perron-Frobenius operator in a matrix representation: 22 As in
example 23.1, we start with a map with a single fixed point, but this time with a nonlinear
piecewise analytic map f with a nonlinear inverse F = f −1, sign of the derivative σ =
σ(F′) = F′/|F′| 23

Lφ(z) =
∫

dx δ(z − f (x))φ(x) = σ F ′(z) φ(F(z)) .

Assume that F is a contraction of the unit disk, i.e.,

|F(z)| < θ < 1 and |F ′(z)| < C < ∞ for |z| < 1 , (23.23)

and expand φ in a polynomial basis by means of the Cauchy formula

φ(z) =
∑
n≥0

znφn =

∮
dw
2πi

φ(w)
w − z

, φn =

∮
dw
2πi

φ(w)
wn+1

Combining this with (23.22), we see that in this basis L is represented by the matrix

Lφ(w) =
∑
m,n

wmLmnφn , Lmn =

∮
dw
2πi

σ F′(w)(F(w))n

wm+1
. (23.24)

24 Taking the trace and summing we get:

tr L =
∑
n≥0

Lnn =

∮
dw
2πi

σ F′(w)
w − F(w)

.

25 This integral has but one simple pole at the unique fixed point w∗ = F(w∗) = f (w∗).
Hence

tr L = σ F′(w∗)
1 − F′(w∗)

=
1

| f ′(w∗) − 1|
.

26

We worked out a very specific example, yet our conclusions can be gener-
alized, provided a number of restrictive requirements are met by the dynamical
system under investigation:

exercise 23.6

1) the evolution operator is multiplicative along the flow,
2) the symbolic dynamics is a finite subshift,
3) all cycle eigenvalues are hyperbolic (exponentially bounded in
magnitude away from 1),
4) the map (or the flow) is real analytic, i.e., it has a piecewise ana-
lytic continuation to a complex extension of the state space.

22Predrag: compare to the Dettmann? papers
23Predrag: rewrite in Cauchy int form
24Predrag: this is repeat of (23.15)?
25Predrag: do it for several poles
26Predrag: the Bernuolli continues here
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three-disk@3-
disk!convergence

These assumptions are romantic expectations not satisfied by the dynamical
systems that we actually desire to understand. Still, they are not devoid of physical
interest; for example, nice repellers like our 3-disk game of pinball do satisfy the
above requirements.

Properties 1 and 2 enable us to represent the evolution operator as a finite
matrix in an appropriate basis; properties 3 and 4 enable us to bound the size
of the matrix elements and control the eigenvalues. To see what can go wrong,
consider the following examples:

Property 1 is violated for flows in 3 or more dimensions by the following
weighted evolution operator

Lt(y, x) = |Λt(x)|βδ
(
y − f t(x)

)
,

where Λt(x) is an eigenvalue of the Jacobian matrix transverse to the flow. Semi-
classical quantum mechanics suggest operators of this form with β = 1/2, (see ⇓PRIVATE
chapter 39). The problem with such operators arises from the fact that when

⇑PRIVATEconsidering the Jacobian matrices Jab = JaJb for two successive trajectory seg-
ments a and b, the corresponding eigenvalues are in general not multiplicative,
Λab � ΛaΛb (unless a, b are iterates of the same prime cycle p, so JaJb = Jra+rb

p ).
Consequently, this evolution operator is not multiplicative along the trajectory.
The theorems require that the evolution be represented as a matrix in an appro-
priate polynomial basis, and thus cannot be applied to non-multiplicative kernels,
i.e., kernels that do not satisfy the semi-group property Lt′Lt = Lt′+t. The cure ⇓PRIVATE
for this problem in this particular case is given in appendixJ.1.

⇑PRIVATE

Property 2 is violated by the 1-dimensional tent map (see figure23.3 (a))

f (x) = α(1 − |1 − 2x|) , 1/2 < α < 1 .

27 All cycle eigenvalues are hyperbolic, but in general the critical point xc = 1/2
is not a pre-periodic point, so there is no finite Markov partition and the sym-
bolic dynamics does not have a finite grammar (see sect. 12.4 for definitions). In
practice, this means that while the leading eigenvalue of L might be computable,
the rest of the spectrum is very hard to control; as the parameter α is varied, the
non-leading zeros of the spectral determinant move wildly about.

Property 3 is violated by the map (see figure 23.3 (b))

f (x) =

{
x + 2x2 , x ∈ I0 = [0, 1

2 ]
2 − 2x , x ∈ I1 = [ 1

2 , 1]
.

28 Here the interval [0, 1] has a Markov partition into two subintervals I0 and I1,
and f is monotone on each. However, the fixed point at x = 0 has marginal stabil-
ity Λ0 = 1, and violates condition 3. This type of map is called “intermittent” and

27Predrag: define pre-periodic
28Predrag: draw figure

converg - 9nov2008 boyscout version14.4, Mar 19 2013



CHAPTER 23. WHY DOES IT WORK? 556

intermittency
marginal!stability
doubling map

Figure 23.3: (a) A (hyperbolic) tent map without
a finite Markov partition. (b) A Markov map with
a marginal fixed point.
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necessitates much extra work. The problem is that the dynamics in the neighbor-
hood of a marginal fixed point is very slow, with correlations decaying as power
laws rather than exponentially. We will discuss such flows in chapter24.

Property 4 is required as the heuristic approach of chapter18 faces two major
hurdles:

1. The trace (18.8) is not well defined because the integral kernel is singular.

2. The existence and properties of eigenvalues are by no means clear.

Actually, property 4 is quite restrictive, but we need it in the present approach,
so that the Banach space of analytic functions in a disk is preserved by the Perron-
Frobenius operator.

In attempting to generalize the results, we encounter several problems. First,
in higher dimensions life is not as simple. Multi-dimensional residue calculus is
at our disposal but in general requires that we find poly-domains (direct product
of domains in each coordinate) and this need not be the case. Second, and per-
haps somewhat surprisingly, the ‘counting of periodic orbits’ presents a difficult
problem. For example, instead of the Bernoulli shift consider the doubling map
(11.8) of the circle, x �→ 2x mod 1, x ∈ R/Z. Compared to the shift on the interval
[0, 1] the only difference is that the endpoints 0 and 1 are now glued together. Be-
cause these endpoints are fixed points of the map, the number of cycles of length
n decreases by 1. The determinant becomes: 29

det(1 − zL) = exp

⎛⎜⎜⎜⎜⎜⎝−∑
n=1

zn

n
2n − 1
2n − 1

⎞⎟⎟⎟⎟⎟⎠ = 1 − z. (23.25)

The value z = 1 still comes from the constant eigenfunction, but the Bernoulli
polynomials no longer contribute to the spectrum (as they are not periodic). Proofs
of these facts, however, are difficult if one sticks to the space of analytic functions.

Third, our Cauchy formulas a priori work only when considering purely ex-
panding maps. When stable and unstable directions co-exist we have to resort to
stranger function spaces, as shown in the next section.

29Predrag: add a cat-map exercise
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23.6 Hyperbolic maps

I can give you a definion of a Banach space, but I do not
know what that means.

—Federico Bonnetto, Banach space

(H.H. Rugh)

Proceeding to hyperbolic systems, one faces the following paradox: If f is an
area-preserving hyperbolic and real-analytic map of, for example, a 2-dimensional
torus then the Perron-Frobenius operator is unitary on the space of L2 functions,
and its spectrum is confined to the unit circle. On the other hand, when we
compute determinants we find eigenvalues scattered around inside the unit disk.
Thinking back to the Bernoulli shift example 23.5 30 one would like to imagine
these eigenvalues as popping up from the L2 spectrum by shrinking the function
space. Shrinking the space, however, can only make the spectrum smaller so this
is obviously not what happens. Instead one needs to introduce a ‘mixed’ function
space where in the unstable direction one resorts to analytic functions, as before,
but in the stable direction one instead considers a ‘dual space’ of distributions on
analytic functions. Such a space is neither included in nor includes L2 and we
have thus resolved the paradox. However, it still remains to be seen how traces
and determinants are calculated.

The linear hyperbolic fixed point example23.6 is somewhat misleading, as we
have made explicit use of a map that acts independently along the stable and unsta-
ble directions. For a more general hyperbolic map, there is no way to implement
such direct product structure, and the whole argument falls apart. Her comes an
idea; use the analyticity of the map to rewrite the Perron-Frobenius operator acting
as follows (where σ denotes the sign of the derivative in the unstable direction):

Lh(z1, z2) =
∮ ∮

σ h(w1,w2)
(z1 − f1(w1,w2)( f2(w1,w2) − z2)

dw1

2πi
dw2

2πi
. (23.26)

Here the function φ should belong to a space of functions analytic respectively
outside a disk and inside a disk in the first and the second coordinates; with the
additional property that the function decays to zero as the first coordinate tends
to infinity. The contour integrals are along the boundaries of these disks. It is
an exercise in multi-dimensional residue calculus to verify that for the above lin-
ear example this expression reduces to (23.9). Such operators form the building
blocks in the calculation of traces and determinants. One can prove the following:

Theorem: The spectral determinant for 2-dimensional hyperbolic analytic maps
is entire.

remark 23.13

The proof, apart from the Markov property that is the same as for the purely
expanding case, relies heavily on the analyticity of the map in the explicit con-
struction of the function space. The idea is to view the hyperbolicity as a cross

30Zazy: check this!
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Axiom A

Figure 23.4: For an analytic hyperbolic map, specify-
ing the contracting coordinate wh at the initial rectangle
and the expanding coordinate zv at the image rectangle
defines a unique trajectory between the two rectangles.
In particular, wv and zh (not shown) are uniquely spec-
ified.

product of a contracting map in forward time and another contracting map in back-
ward time. In this case the Markov property introduced above has to be elaborated
a bit. Instead of dividing the state space into intervals, one divides it into rectan-
gles. The rectangles should be viewed as a direct product of intervals (say hor-
izontal and vertical), such that the forward map is contracting in, for example,
the horizontal direction, while the inverse map is contracting in the vertical di-
rection. 31 For Axiom A systems (see remark 23.13) one may choose coordinate
axes close to the stable/unstable manifolds of the map. With the state space di-
vided into N rectangles {M1,M2, . . . ,MN}, Mi = Ih

i × Iv
i one needs a complex

extension Dh
i ×Dv

i , with which the hyperbolicity condition (which simultaneously
guarantees the Markov property) can be formulated as follows:

Analytic hyperbolic property: Either f (Mi) ∩ Int(M j) = ∅, or for each pair

wh ∈ Cl(Dh
i ), zv ∈ Cl(Dv

j) there exist unique analytic functions of wh, zv: wv =

wv(wh, zv) ∈ Int(Dv
i ), zh = zh(wh, zv) ∈ Int(Dh

j), such that f (wh,wv) = (zh, zv).

Furthermore, if wh ∈ Ih
i and zv ∈ Iv

j , then wv ∈ Iv
i and zh ∈ Ih

j (see figure 23.4).

In plain English, this means for the iterated map that one replaces the coor-
dinates zh, zv at time n by the contracting pair zh,wv, where wv is the contracting
coordinate at time n + 1 for the ‘partial’ inverse map.

In two dimensions the operator in (23.26) acts on functions analytic outside
Dh

i in the horizontal direction (and tending to zero at infinity) and inside Dv
i in

the vertical direction. The contour integrals are precisely along the boundaries of
these domains.

A map f satisfying the above condition is called analytic hyperbolic and the
theorem states that the associated spectral determinant is entire, and that the trace
formula (18.8) is correct.

Examples of analytic hyperbolic maps are provided by small analytic pertur-
bations of the cat map, the 3-disk repeller, and the 2-dimensional baker’s map.
32

31Predrag: define “Axiom A” somewhere
32Predrag: check linear horseshoes in Nitecki book
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23.7 Physics of eigenvalues and eigenfunctions

By now we appreciate that any honest attempt to look at the spectral prop-
erties of the Perron-Frobenius operator involves hard mathematics, but the reward
is of this effort is that we are able to control the analyticity properties of dynamical
zeta functions and spectral determinants, and thus substantiate the claim that these
objects provide a powerful and well-founded theory.

Often (see chapter 17) physically important part of the spectrum is just the
leading eigenvalue, which gives us the escape rate from a repeller, or, for a gen-
eral evolution operator, formulas for expectation values of observables and their
higher moments. Also the eigenfunction associated to the leading eigenvalue has
a physical interpretation (see chapter16): it is the density of the natural measures,
with singular measures ruled out by the proper choice of the function space. 33

This conclusion is in accord with the generalized Perron-Frobenius theorem for
evolution operators. In a finite dimensional setting, the statement is:

remark 23.8

• Perron-Frobenius theorem: Let Li j be a non-negative matrix, such that
some finite n exists for which any initial state has reached any other state,
(Ln)i j > 0 ∀i, j: then

1. The maximal modulus eigenvalue is non-degenerate, real, and posi-
tive,

2. The corresponding eigenvector (defined up to a constant) has non-
negative coordinates.

34 We may ask what physical information is contained in eigenvalues beyond the
leading one: suppose that we have a probability conserving system (so that the
dominant eigenvalue is 1), for which the essential spectral radius satisfies 0 <

ρess < θ < 1 on some Banach space B. Denote by P the projection corresponding
to the part of the spectrum inside a disk of radius θ. We denote by λ1, λ2 . . . , λM

the eigenvalues outside of this disk, ordered by the size of their absolute value,
with λ1 = 1. Then we have the following decomposition 35

Lϕ =
M∑

i=1

λiψiLiψ
∗
i ϕ + PLϕ (23.27)

when Li are (finite) matrices in Jordan canomical form (L0 = 0 is a [1×1] matrix,
as λ0 is simple, due to the Perron-Frobenius theorem), whereas ψi is a row vector

33Predrag: replace “coherent”
34Predrag: explain Li j > 0 means that (Lk) is growing with no cancellations, maximal growth
35Predrag: This all looks wrong. We never said that Li j is a matrix of probabilities, or that L acts

on a compact space (no escape). In ChaosBook λj refers to ith Lyapunov exponent; eigenvalues
of evolution operator are defined in (18.2) to be of form esα for both continuous and discrete time
cases. (We find it convenient to write the eigenvalues as exponents esα rather than as multipliers
λα). If λ1 = 1 then the Perron-Frobenius theorem is about the next maximal eigenvalue. Next we
refer to λ0, while this formula starts with λi.
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whose elements form a basis on the eigenspace corresponding to λi, and ψ∗i is
a column vector of elements of B∗ (the dual space of linear functionals over B)
spanning the eigenspace of L∗ corresponding to λi. For iterates of the Perron-
Frobenius operator, (23.27) becomes

Lnϕ =

M∑
i=1

λn
i ψiL

n
i ψ

∗
i ϕ + PLnϕ . (23.28)

If we now consider, for example, correlation between initial ϕ evolved n steps and
final ξ,

〈ξ|Ln|ϕ〉 =
∫
M

dy ξ(y)
(Lnϕ

)
(y) =

∫
M

dw (ξ ◦ f n)(w)ϕ(w) , (23.29)

it follows that

〈ξ|Ln|ϕ〉 = λn
1ω1(ξ, ϕ) +

L∑
i=2

λn
i ω

(n)
i (ξ, ϕ) + O(θn) , (23.30)

where

ω(n)
i (ξ, ϕ) =

∫
M

dy ξ(y)ψiL
n
i ψ

∗
i ϕ .

36

The eigenvalues beyond the leading one provide two pieces of information:
they rule the convergence of expressions containing high powers of the evolution
operator to leading order (the λ1 contribution). Moreover if ω1(ξ, ϕ) = 0 then

exercise 23.7
(23.29) defines a correlation function: as each term in (23.30) vanishes exponen-
tially in the n → ∞ limit, the eigenvalues λ2, . . . , λM determine the exponential
decay of correlations for our dynamical system. The prefactors ω depend on the
choice of functions, whereas the exponential decay rates (given by logarithms of
λi) do not: the correlation spectrum is thus a universal property of the dynamics
(once we fix the overall functional space on which the Perron-Frobenius operator
acts).

Example 23.9 Bernoulli shift eigenfunctions: Let us revisit the Bernoulli shift ex-
ample (23.6) on the space of analytic functions on a disk: apart from the origin we have
only simple eigenvalues λk = 2−k, k = 0, 1, . . .. The eigenvalue λ0 = 1 corresponds to
probability conservation: the corresponding eigenfunction B0(x) = 1 indicates that the
natural measure has a constant density over the unit interval. If we now take any ana-
lytic function η(x) with zero average (with respect to the Lebesgue measure), it follows

36Predrag: replace λ with s
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that ω1(η, η) = 0, and from (23.30) the asymptotic decay of the correlation function is
(unless also ω1(η, η) = 0)

Cη,η(n) ∼ exp(−n log 2) . (23.31)

Thus, − logλ1 gives the exponential decay rate of correlations (with a prefactor that
depends on the choice of the function). Actually the Bernoulli shift case may be treated
exactly, as for analytic functions we can employ the Euler-MacLaurin summation for-
mula

η(z) =
∫ 1

0
dw η(w) +

∞∑
m=1

η(m−1)(1) − η(m−1)(0)
m!

Bm(z) . (23.32)

As we are considering functions with zero average, we have from (23.29) and the fact
that Bernoulli polynomials are eigenvectors of the Perron-Frobenius operator that

Cη,η(n) =
∞∑

m=1

(2−m)n(η(m)(1) − η(m)(0))
m!

∫ 1

0
dz η(z)Bm(z) .

The decomposition (23.32) is also useful in realizing that the linear functionals ψ∗i are
singular objects: if we write it as

η(z) =
∞∑

m=0

Bm(z)ψ∗m[η] ,

we see that these functionals are of the form 37

ψ∗i [ε] =
∫ 1

0
dwΨi(w)ε(w) ,

where

Ψi(w) =
(−1)i−1

i!

(
δ(i−1)(w − 1) − δ(i−1)(w)

)
, (23.33)

when i ≥ 1 and Ψ0(w) = 1. This representation is only meaningful when the function ε
is analytic in neighborhoods of w,w − 1.

23.8 Troubles ahead

The above discussion confirms that for a series of examples of increasing gener-
ality formal manipulations with traces and determinants are justified: the Perron-
Frobenius operator has isolated eigenvalues, the trace formulas are explicitly ver-
ified, and the spectral determinant is an entire function whose zeroes yield the
eigenvalues. Real life is harder, as we may appreciate through the following
considerations:
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space
Figure 23.5: Spectrum of the Perron-Frobenius oper-
ator acting on the space of Ck+α Hölder-continuous
functions: only k isolated eigenvalues remain between
the spectral radius, and the essential spectral radius
which bounds the “essential,” continuous spectrum.

essential spectrum

isolated eigenvaluespectral radius

• Our discussion tacitly assumed something that is physically entirely reason-
able: our evolution operator is acting on the space of analytic functions, i.e.,
we are allowed to represent the initial density ρ(x) by its Taylor expansions
in the neighborhoods of periodic points. This is however far from being the

exercise 23.1
only possible choice: mathematicians often work with the function space
C

k+α, i.e., the space of k times differentiable functions whose k’th deriva-
tives are Hölder continuous with an exponent 0 < α ≤ 1: then every yη with
Re η > k is an eigenfunction of the Perron-Frobenius operator and we have
38

Lyη =
1

|Λ|Λη
yη , η ∈ C .

This spectrum differs markedly from the analytic case: only a small number
of isolated eigenvalues remain, enclosed between the spectral radius and a
smaller disk of radius 1/|Λ|k+1, see figure 23.5. In literature the radius of
this disk is called the essential spectral radius. 39

In sect. 23.5 we discussed this point further, with the aid of a less trivial
1-dimensional example. 40 The physical point of view is complementary to
the standard setting of ergodic theory, where many chaotic properties of a
dynamical system are encoded by the presence of a continuous spectrum,
used to prove asymptotic decay of correlations in the space of L2 square-
integrable functions. 41 42

exercise 23.2

• A deceptively innocent assumption is hidden beneath much that was dis-
cussed so far: that (23.1) maps a given function space into itself. The ex-
panding property of the map guarantees that: if f (x) is smooth in a do-
main D then f (x/Λ) is smooth on a larger domain, provided |Λ| > 1. For
higher-dimensional hyperbolic flows this is not the case, and, as we saw in
sect. 23.6, extensions of the results obtained for expanding 1-dimensional
maps are highly nontrivial.

37Predrag: might use Driebe sect 3.5.2 here; also say it as a left eigenstate B̂ j(x) = 1
j!

d j

dx j

38Predrag: define Hölder continuity
39Predrag: define the essential spectral radius?
40Predrag: rewrite!
41Predrag: OK in QM, dumb in classical dynamics
42Roberto: exercises 7.9 and 7.19 have to be removed (7.9 migrated to chapter 8, while 7.19 is

actually solved in the text ..).
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• It is not at all clear that the above analysis of a simple one-branch, one fixed
point repeller can be extended to dynamical systems with Cantor sets of
periodic points: we showed this in sect. 23.5.

Résumé

Examples of analytic eigenfunctions for 1-dimensional maps are seductive, and
make the problem of evaluating ergodic averages appear easy; just integrate over
the desired observable weighted by the natural measure, right? No, generic natural
measure sits on a fractal set and is singular everywhere. The point of this book
is that you never need to construct the natural measure, cycle expansions will do
that job.

A theory of evaluation of dynamical averages by means of trace formulas
and spectral determinants requires a deep understanding of their analyticity and
convergence. We worked here through a series of examples:

1. exact spectrum (but for a single fixed point of a linear map)

2. exact spectrum for a locally analytic map, matrix representation

3. rigorous proof of existence of discrete spectrum for 2-dimensional hyper-
bolic maps

In the case of especially well-behaved “Axiom A” systems, where both the
symbolic dynamics and hyperbolicity are under control, it is possible to treat
traces and determinants in a rigorous fashion, and strong results about the ana-
lyticity properties of dynamical zeta functions and spectral determinants outlined
above follow.

43 Most systems of interest are not of the “axiom A” category; they are neither
purely hyperbolic nor (as we have seen in chapters 11 and 12 ) do they have
finite grammar. The importance of symbolic dynamics is generally grossly under
appreciated; the crucial ingredient for nice analyticity properties of zeta functions
is the existence of a finite grammar (coupled with uniform hyperbolicity).

The dynamical systems which are really interesting - for example, smooth
bounded Hamiltonian potentials - are presumably never fully chaotic, and the
central question remains: How do we attack this problem in a systematic and
controllable fashion?

43Predrag: this paragraph is already used elsewhere?
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Bernoulli!shiftTheorem: Conjecture 3 with technical hypothesis is true
in a lot of cases.

— M. Shub

Commentary

Remark 23.1 Surveys of rigorous theory. We recommend the references listed in
remark 1.1 for an introduction to the mathematical literature on this subject. For a physi-
cist, Driebe’s monograph [19] might be the most accessible introduction into mathemat-
ics discussed briefly in this chapter. There are a number of reviews of the mathematical
approach to dynamical zeta functions and spectral determinants, with pointers to the orig-
inal references, such as refs. [1, 2]. An alternative approach to spectral properties of the
Perron-Frobenius operator is given in ref. [3].

Ergodic theory, as presented by Sinai [14] and others, tempts one to describe the
densities on which the evolution operator acts in terms of either integrable or square-
integrable functions. For our purposes, as we have already seen, this space is not suitable.
An introduction to ergodic theory is given by Sinai, Kornfeld and Fomin [ 15]; more ad-
vanced old-fashioned presentations are Walters [12] and Denker, Grillenberger and Sig-
mund [16]; and a more formal one is given by Peterson [17].

44

Remark 23.2 Fredholm theory. Our brief summary of Fredholm theory is based on
the exposition of ref. [4]. A technical introduction of the theory from an operator point of
view is given in ref. [5]. The theory is presented in a more general form in ref. [ 6]. 45

Remark 23.3 Bernoulli shift. For a more in-depth discussion, consult chapter 3
of ref. [19]. The extension of Fredholm theory to the case or Bernoulli shift on C k+α

(in which the Perron-Frobenius operator is not compact – technically it is only quasi-
compact. That is, the essential spectral radius is strictly smaller than the spectral radius)
has been given by Ruelle [7]: a concise and readable statement of the results is contained
in ref. [8]. We see from (23.31) that for the Bernoulli shift the exponential decay rate
of correlations coincides with the Lyapunov exponent: while such an identity holds for a
number of systems, it is by no means a general result, and there exist explicit counterex-
amples. 46

⇓PRIVATE
47

Remark 23.4 Higher dimensions and generalized Fredholm theory. When studying
the Bernoulli shift in higher dimensions, extensions of Fredholm theory [ 6] which avoid
problems with associated multi-dimensional residue calculus may be used - see ref. [ 9].

⇑PRIVATE
44Predrag: give credit to Prigopeople + ....(/)
45Predrag: MAP: add Sjos̈trend’s book for a non-understandable exposition, Rudin’s functional

analysis book.
46Predrag: give references!
47Predrag: fix this

converg - 9nov2008 boyscout version14.4, Mar 19 2013



CHAPTER 23. WHY DOES IT WORK? 565

hyperbolic!systems
smooth!dynamics,

spectral
determinant

ceiling function
Perron-

Frobenius!theorem

Remark 23.5 Hyperbolic dynamics. When dealing with hyperbolic systems one
might try to reduce to the expanding case by projecting the dynamics along the unstable
directions. As mentioned in the text this can be quite involved technically, as such unstable
foliations are not characterized by strong smoothness properties. For such an approach,
see ref. [3].

Remark 23.6 Spectral determinants for smooth flows. The theorem on page 557 also
applies to hyperbolic analytic maps in d dimensions and smooth hyperbolic analytic flows
in (d + 1) dimensions, provided that the flow can be reduced to a piecewise analytic map
by a suspension on a Poincaré section, complemented by an analytic “ceiling” function
(3.5) that accounts for a variation in the section return times. For example, if we take
as the ceiling function g(x) = esT (x), where T (x) is the next Poincaré section time for a
trajectory staring at x, we reproduce the flow spectral determinant ( 19.13). Proofs are
beyond the scope of this chapter; details are discussed in ref.(?).

⇓PRIVATE

⇑PRIVATE
Remark 23.7 Explicit diagonalization. For 1-dimensional repellers a diagonalization
of an explicit truncated Lmn matrix evaluated in a judiciously chosen basis may yield
many more eigenvalues than a cycle expansion (see refs. [ 10, 11]). The reasons why one
persists in using periodic orbit theory are partially aesthetic and partially pragmatic. The
explicit calculation of Lmn demands an explicit choice of a basis and is thus non-invariant,
in contrast to cycle expansions which utilize only the invariant information of the flow. In
addition, we usually do not know how to construct L mn for a realistic high-dimensional
flow, such as the hyperbolic 3-disk game of pinball flow of sect. 1.3, whereas periodic
orbit theory is true in higher dimensions and straightforward to apply.

Remark 23.8 Perron-Frobenius theorem. A proof of the Perron-Frobenius the-
orem may be found in ref. [12]. For positive transfer operators, this theorem has been
generalized by Ruelle [13].

⇓PRIVATE
48

Remark 23.9 Fried estimates. The form of the decay of the coefficients in the F(z)
expansion, as un1+1/d

, agrees with the estimates of Fried [18] for the spectral determinants
of d-dimensional expanding flows.

Remark 23.10 Spectral gap. A formula (not shown here) for the essential spectral
radius was introduced by Keller [15] for piecewise monotone maps and by Pollicott [2]
for weighted subsfhifts of finite type. The existence of the spectral gap was proved first by
Hofbauer and Keller [14, 15] for the weight 1/| f ′| (see also [16] for the correspondence
with zeta functions, but for piecewise linear maps only), then by Baladi and Keller [ 17] for
general weights. The results by Ruelle and Baladi [15, 16, ?, 18, 17, 23] generalize this to
the case where one considers compositions of 1-dimensional monotone maps which are
not necessarily inverse branches of a single interval map, and one allows infinity or even
uncountable infinities of periodic points the domain of definition of a composition (see
also [23] for a similar extension to compositions of holomorphic maps).

48Predrag: move into the Predrag appendix
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Remark 23.11 The choice of observables. We have been quite sloppy mathe-
matically, as in discussing the spectral features of L; the choice of the function space is
crucial (especially when one is looking beyond the dominant eigenvalue). As a matter
of fact in the function space where ergodic properties are usually defined, L 2(dμ), there
is no gap, due to unitarity property of the Koopman operator: this means that functions
(ugly yet summable) exist for which no exponential decay is present even if the Fredholm
determinant has isolated zeroes. A particularly nice example is worked out in [ 25], and a
more mathematical argument is presented in [26].

Remark 23.12 Lattice models. The relationship between the spectral gap and expo-
nential decay properties is very well known in the statistical mechanics, where one deals
with spatial correlations in lattice systems and connects them to the spectral gap of the
transfer matrix.

⇑PRIVATE

Remark 23.13 Axiom A systems. 49 50 51 The proofs in sect. 23.6 follow the
thesis work of H.H. Rugh [9, 18, 19]. For a mathematical introduction to the subject,
consult the excellent review by V. Baladi [1]. It would take us too far afield to give and
explain the definition of Axiom A systems (see refs. [27, 28]). Axiom A implies, however,
the existence of a Markov partition of the state space from which the properties 2 and 3
assumed on page 544 follow.

Remark 23.14 Left eigenfunctions. We shall never use an explicit form of left eigen-
functions, corresponding to highly singular kernels like ( 23.33). Many details have been
elaborated in a number of papers, such as ref. [20], with a daring physical interpretation.
52

Remark 23.15 Ulam’s idea. The approximation of Perron-Frobenius operator defined
by (16.14) has been shown to reproduce the spectrum for expanding maps, once finer
and finer Markov partitions are used [21]. The subtle point of choosing a state space
partitioning for a “generic case” is discussed in ref. [22].

49Predrag: move ref. [19]
50Predrag: MAP define Axiam A
51Predrag: find refs
52Predrag: refer to Dettmann-Vattay
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23.1. What space doesL act on? Show that (23.2) is a com-
plete basis on the space of analytic functions on a disk
(and thus that we found the complete set of eigenvalues).

23.2. What space does L act on? What can be said about
the spectrum of (23.1) on L1[0, 1]? Compare the result
with figure 23.5.

23.3. Euler formula. Derive the Euler formula (23.5), |u| <
1:

∞∏
k=0

(1 + tuk) = 1 +
t

1 − u
+

t2u

(1 − u)(1 − u2)

+
t3u3

(1 − u)(1 − u2)(1 − u3)
· · ·

=

∞∑
k=0

tk u
k(k−1)

2

(1 − u) · · · (1 − uk)
.

23.4. 2-dimensional product expansion∗∗. We conjecture
that the expansion corresponding to exercise 23.3 is in the
2-dimensional case given by

∞∏
k=0

(1 + tuk)k+1

=

∞∑
k=0

Fk(u)
(1 − u)2(1 − u2)2 · · · (1 − uk)2

tk

= 1 +
1

(1 − u)2
t +

2u
(1 − u)2(1 − u2)2

t2

+
u2(1 + 4u + u2)

(1 − u)2(1 − u2)2(1 − u3)2
t3 + · · ·

Fk(u) is a polynomial in u, and the coefficients fall off
asymptotically as Cn ≈ un3/2

. Verify; if you have a proof
to all orders, e-mail it to the authors. (See also solu-
tion 23.3).

23.5. Bernoulli shift on L spaces. Check that the family
(23.21) belongs to L1([0, 1]). What can be said about the
essential spectral radius on L2([0, 1])? A useful reference
is [24].

23.6. Cauchy integrals. Rework all complex analysis steps
used in the Bernoulli shift example on analytic functions
on a disk.

23.7. Escape rate. Consider the escape rate from a strange
repeller: find a choice of trial functions ξ and ϕ such that
(23.29) gives the fraction on particles surviving after n
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escape rateiterations, if their initial density distribution is ρ0(x). Dis-
cuss the behavior of such an expression in the long time
limit.
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math-www.uni-paderborn.de/ froyland.
56

[23.23] V. Baladi, A. Kitaev, D. Ruelle and S. Semmes, “Sharp determinants and
kneading operators for holomorphic maps,” IHES preprint (1995).

[23.24] A. Zygmund, Trigonometric series (Cambridge Univ. Press, Cambridge
1959).

[23.25] J.D. Crawford and J.R. Cary, Physica D6, 223 (1983)

[23.26] P. Collet and S. Isola, Commun.Math.Phys. 139, 551 (1991)

[23.27] F. Christiansen, S. Isola, G. Paladin and H.H. Rugh, J. Phys. A 23, L1301
(1990).

[23.28] W. Tucker, “The Lorenz attractor exists,” C. R. Acad. Sci. Paris Sér. I
Math 328, 1197 (1999).

[23.29] W. Tucker, “A rigorous ODE solver and Smale’s 14th problem,” Found.
Comput. Math. 2, 53 (2002).

[23.30] M. Viana, “What’s new on Lorenz strange attractors?” Math. Intelli-
gencer 22, 6 (2000).

56Predrag: update ref. [23]

refsConverg - 29jan2001 boyscout version14.4, Mar 19 2013

http://math-www.uni-paderborn.de/~froyland/froyland.ps.gz


Chapter 24

Intermittency

Sometimes They Come Back
—Stephen King

(R. Artuso, P. Dahlqvist, G. Tanner and P. Cvitanović)

In the theory of chaotic dynamics developed so far we assumed that the evolu-
tion operators have discrete spectra {z0, z1, z2, . . .} given by the zeros of 1

1/ζ(z) = (· · ·)
∏

k

(1 − z/zk) .

The assumption was based on the tacit premise that the dynamics is everywhere
exponentially unstable. Real life is nothing like that - state spaces are gener-
ically infinitely interwoven patterns of stable and unstable behaviors. The

stable (in the case of Hamiltonian flows, integrable) orbits do not communicate
with the ergodic components of the phase space, and can be treated by classical
methods. In general, one is able to treat the dynamics near stable orbits as well
as chaotic components of the phase space dynamics well within a periodic orbit
approach. Problems occur at the borderline between chaos and regular dynamics
where marginally stable orbits and manifolds present difficulties and still unre-
solved challenges.

We shall use the simplest example of such behavior - intermittency in 1-
dimensional maps - to illustrate effects of marginal stability. The main message
will be that spectra of evolution operators are no longer discrete, dynamical zeta
functions exhibit branch cuts of the form

1/ζ(z) = (· · ·) + (1 − z)α(· · ·) ,

and correlations decay no longer exponentially, but as power laws.

1Predrag: must incorporate the article version
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laminar states
intermittency
Lorentz gas
KAM!tori

Figure 24.1: Typical phase space for an area-
preserving map with mixed phase space dynamics;
here the standard map for k = 1.2 .

24.1 Intermittency everywhere

In many fluid dynamics experiments one observes transitions from regular behav-
iors to behaviors where long time intervals of regular behavior (“laminar phases”)
are interrupted by fast irregular bursts. The closer the parameter is to the onset of
such bursts, the longer are the intervals of regular behavior. The distributions of
laminar phase intervals are well described by power laws.

This phenomenon is called intermittency, and it is a very general aspect of
dynamics, a shadow cast by non-hyperbolic, marginally stable state space regions.
Complete hyperbolicity assumed in (18.5) is the exception rather than the rule,
and for almost any dynamical system of interest (dynamics in smooth potentials,
billiards with smooth walls, the infinite horizon Lorentz gas, etc.) one encounters
mixed state spaces with islands of stability coexisting with hyperbolic regions,
see figure 24.1 andexample 7.8. Wherever stable islands are interspersed with
chaotic regions, trajectories which come close to the stable islands can stay ‘glued’
for arbitrarily long times. These intervals of regular motion are interrupted by
irregular bursts as the trajectory is re-injected into the chaotic part of the phase
space. How the trajectories are precisely ‘glued’ to the marginally stable region is
often hard to describe. What coarsely looks like a border of an island will under
magnification dissolve into infinities of island chains of decreasing sizes, broken
tori and bifurcating orbits, as illustrated in figure24.1.

Intermittency is due to the existence of fixed points and cycles of marginal
stability (5.8), or (in studies of the onset of intermittency) to the proximity of a
nearly marginal complex or unstable orbits. In Hamiltonian systems intermittency
goes hand in hand with the existence of (marginally stable) KAM tori. In more
general settings, the existence of marginal or nearly marginal orbits is due to in-
complete intersections of stable and unstable manifolds in a Smale horseshoe type
dynamics (see figure 12.11). Following the stretching and folding of the invariant
manifolds in time one will inevitably find state space points at which the stable and
unstable manifolds are almost or exactly tangential to each other, implying non-
exponential separation of nearby points in state space or, in other words, marginal
stability. Under small parameter perturbations such neighborhoods undergo tan-
gent bifurcations - a stable/unstable pair of periodic orbits is destroyed or created
by coalescing into a marginal orbit, so the pruning which we shall encounter in
chapter 12, and the intermittency discussed here are two sides of the same coin.

section 12.4
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marginal!stability!fixed
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Figure 24.2: A complete binary repeller with a
marginal fixed point.
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How to deal with the full complexity of a typical Hamiltonian system with
mixed phase space is a very difficult, still open problem. Nevertheless, it is pos-
sible to learn quite a bit about intermittency by considering rather simple exam-
ples. Here we shall restrict our considerations to 1-dimensional maps which in the
neighborhood of a single marginally stable fixed point at x=0 take the form

x �→ f (x) = x + O(x1+s) , (24.1)

and are expanding everywhere else. Such a map may allow for escape, like the
map shown in figure 24.2 or the dynamics may be bounded, like the Farey map

x �→ f (x) =

{
x/(1 − x) x ∈ [0, 1/2[
(1 − x)/x x ∈ [1/2, 1] (24.2)

3 4

Figure 24.3 compares a trajectory of the tent map (11.4) side by side with a
trajectory of the Farey map. In a stark contrast to the uniformly chaotic trajectory
of the tent map, the Farey map trajectory alternates intermittently between slow
regular motion close to the marginally stable fixed point, and chaotic bursts.5 6

section 24.3.5

⇓PRIVATE

section 26.3

⇑PRIVATE

The presence of marginal stability has striking dynamical consequences: cor-
relation decay may exhibit long range power law asymptotic behavior and diffu-
sion processes can assume anomalous character. Escape from a repeller of the
form figure 24.2 may be algebraic rather than exponential. In long time explo-
rations of the dynamics intermittency manifests itself by enhancement of natural
measure in the proximity of marginally stable cycles.

2Predrag: redraw figure 24.2 so axes are possible to read
3Gabor: why can one see 1 fixed point in the time series (a)? Measure is constant - is this due to

numerical errors?
4Gregor: I checked it again; it just looks like accumulating at the period one orbit because I

connect the points; when plotting only points, it seems uniform.
5Predrag: why does Figure 24.3 take whole page?
6Predrag: labels (a), (b) missing in figure ??
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Figure 24.3: (a) A tent map trajectory. (b) A
Farey map trajectory.
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The questions we shall address here are: how does marginal stability affect
zeta functions or spectral determinants? And, can we deduce power law decays of
correlations from cycle expansions?

In example 23.5 we saw that marginal stability violates one of the conditions
which ensure that the spectral determinant is an entire function. Already the sim-
ple fact that the cycle weight 1/|1−Λr

p| in the trace (18.3) or the spectral determi-
nant (19.3) diverges for marginal orbits with |Λp| = 1 tells us that we have to treat
these orbits with care.

In the following we will incorporate marginal stability orbits into cycle-expansions
in a systematic manner. To get to know the difficulties lying ahead, we will start
in sect. 24.2 with a piecewise linear map, with the asymptotics (24.1). We will
construct a dynamical zeta function in the usual way without worrying too much
about its justification and show that it has a branch cut singularity. We will cal-
culate the rate of escape from our piecewise linear map and find that it is charac-
terized by decay, rather than exponential decay, a power law. We will show that
dynamical zeta functions in the presence of marginal stability can still be written
in terms of periodic orbits, exactly as in chapters 17 and 22, with one exception:
the marginally stable orbits have to be explicitly excluded. This innocent looking
step has far reaching consequences; it forces us to change the symbolic dynamics
from a finite to an infinite alphabet, and entails a reorganization of the order of
summations in cycle expansions, sect. 24.2.4.

Branch cuts are typical also for smooth intermittent maps with isolated marginally
stable fixed points and cycles. In sect. 24.3, we discuss the cycle expansions and
curvature combinations for zeta functions of smooth maps tailored to intermit-
tency. The knowledge of the type of singularity one encounters enables us to
develop the efficient resummation method presented in sect.24.3.2.

Finally, in sect. 24.4, we discuss a probabilistic approach to intermittency that

inter - 19nov2012 boyscout version14.4, Mar 19 2013



CHAPTER 24. INTERMITTENCY 574

enemy!thy
intermittency!piecewise

linear model
piecewise!linear map,

intermittency
Bernoulli!shift

Figure 24.4: A piecewise linear intermittent map of
(24.3) type: more specifically, the map piecewise lin-
ear over intervals (24.9) of the toy example studied be-
low, a = .5, b = .6, s = 1.0.
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yields approximate dynamical zeta functions and provides valuable information
about more complicated systems, such as billiards.

24.2 Intermittency for pedestrians

Intermittency does not only present us with a large repertoire of interesting dy-
namics, it is also at the root of many sorrows such as slow convergence of cycle
expansions. In order to get to know the kind of problems which arise when study-
ing dynamical zeta functions in the presence of marginal stability we will consider
an artfully concocted piecewise linear model first. From there we will move on to
the more general case of smooth intermittant maps, sect.24.3.

24.2.1 A toy map

The Bernoulli shift map (23.6) is an idealized, but highly instructive, example
of a hyperbolic map. To study intermittency we will now construct a likewise
piecewise linear model, an intermittent map stripped down to its bare essentials.

Consider a map x �→ f (x) on the unit interval M = [0, 1] with two monotone
branches

f (x) =

{
f0(x) for x ∈ M0 = [0, a]
f1(x) for x ∈ M1 = [b, 1] . (24.3)

The two branches are assumed complete, that is f0(M0) = f1(M1) =M. The map
allows escape if a < b and is bounded if a = b (see figure 24.2 and figure 24.4).
We take the right branch to be expanding and linear:

f1(x) =
1

1 − b
(x − b) .

Next, we will construct the left branch in a way, which will allow us to model
the intermittent behavior (24.1) near the origin. We chose a monotonically de-
creasing sequence of points qn in [0, a] with q1 = a and qn → 0 as n → ∞.
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This sequence defines a partition of the left interval M0 into an infinite number of
connected intervals Mn, n ≥ 2 with

Mn = ]qn, qn−1] and M0 =

∞⋃
n=2

Mn. (24.4)

The map f0(x) is now specified by the following requirements

• f0(x) is continuous.

• f0(x) is linear on the intervals Mn for n ≥ 2.

• f0(qn) = qn−1, that is Mn = f −n+1
0 ([a, 1]) .

This fixes the map for any given sequence {qn}. The last condition ensures the
existence of a simple Markov partition. The slopes of the various linear segments
are 7

f ′0(x) = f0(qn−1)− f0(qn)
qn−1−qn

=
|Mn−1|
|Mn | for x ∈ Mn, n ≥ 3

f ′0(x) = f0(q1)− f0(q2)
q1−q2

= 1−a
|M2 | for x ∈ M2

f ′0(x) = 1
1−b =

|M|
|M1 | for x ∈ M1

(24.5)

with |Mn| = qn−1 − qn for n ≥ 2. Note that we do not require as yet that the map
exhibit intermittent behavior.

We will see that the family of periodic orbits with code 10n plays a key role
for intermittent maps of the form (24.1). An orbit 10n enters the intervals M1 →
Mn+1 → Mn → . . . → M2 successively and the family approaches the marginal
stable fixed point at x = 0 for n → ∞. The stability of a cycle 10n for n ≥ 1 is
given by the chain rule (4.41),

Λ10n = f ′0(xn+1) f ′0(xn) . . . f ′0(x2) f ′1(x1) =
1

|Mn+1|
1 − a
1 − b

, (24.6)

with xi ∈ Mi.

The properties of the map (24.3) are completely determined by the sequence
{qn}. By choosing qn = 2−n, for example, we recover the uniformly hyperbolic
Bernoulli shift map (23.6). An intermittent map of the form (24.4) having the
asymptotic behavior (24.1) can be constructed by choosing an algebraically de-
caying sequence {qn} behaving asymptotically like

qn ∼
1

n1/s
, (24.7)

7Predrag: define Markov chain/partition somewhere
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Jonqui“‘ere function
polylogarithm
Farey!map

where s is the intermittency exponent in (24.1). Such a partition leads to intervals
whose length decreases asymptotically like a power-law, that is,

|Mn| ∼
1

n1+1/s
. (24.8)

8 As can be seen from (24.6), the Floquet multipliers of periodic orbit families
approaching the marginal fixed point, such as the 10n family increase in turn only
algebraically with the cycle length.

It may now seem natural to construct an intermittent toy map in terms of a
partition |Mn| = 1/n1+1/s, that is, a partition which follows (24.8) exactly. Such
a choice leads to a dynamical zeta function which can be written in terms of so-
called Jonquière functions (or polylogarithms) which arise naturally also in the
context of the Farey map (24.2), and the anomalous diffusion of sect. 26.3. We

remark 26.7
will, however, not go along this route here; instead, we will engage in a bit of
reverse engineering and construct a less obvious partition which will simplify the
algebra considerably later without loosing any of the key features typical for inter-
mittent systems. We fix the intermittent toy map by specifying the intervals Mn

in terms of Gamma functions according to

|Mn| = C
Γ(n + m − 1/s − 1)

Γ(n + m)
for n ≥ 2, (24.9)

where m = [1/s] denotes the integer part of 1/s and C is a normalization constant
fixed by the condition

∑∞
n=2 |Mn| = q1 = a, that is,

C = a

⎡⎢⎢⎢⎢⎢⎣ ∞∑
n=m+1

Γ(n − 1/s)
Γ(n + 1)

⎤⎥⎥⎥⎥⎥⎦−1

. (24.10)

Using Stirling’s formula for the Gamma function

Γ(z) ∼ e−zzz−1/2
√

2π (1 + 1/12z + . . .) ,

we verify that the intervals decay asymptotically like n−(1+1/s), as required by the
condition (24.8).

Next, let us write down the dynamical zeta function of the toy map in terms
of its periodic orbits, that is

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)
8Predrag: remind reader of (18.1)
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One may be tempted to expand the dynamical zeta function in terms of the binary
symbolic dynamics of the map; we saw, however, in sect. 20.6 that such cycle ex-
pansion converges extremely slowly. The shadowing mechanism between orbits
and pseudo-orbits fails for orbits of the form 10n with stabilities given by (24.6),
due to the marginal stability of the fixed point 0. It is therefore advantageous to
choose as the fundamental cycles the family of orbits with code 10n or, equiva-
lently, switch from the finite (binary) alphabet to an infinite alphabet given by

10n−1 → n.

Due to the piecewise-linear form of the map which maps intervals Mn exactly
onto Mn−1, all periodic orbits entering the left branch at least twice are canceled
exactly by pseudo cycles, and the cycle expanded dynamical zeta function depends
only on the fundamental series 1, 10, 100, . . .:

1/ζ(z) =
∏
p�0

(
1 − znp

|Λp|

)
= 1 −

∞∑
n=1

zn

|Λ10n−1 |

= 1 − (1 − b)z − C1 − b
1 − a

∞∑
n=2

Γ(n + m − 1/s − 1)
Γ(n + m)

zn . (24.11)

9 The fundamental term (20.7) consists here of an infinite sum over algebraically
decaying cycle weights. The sum is divergent for |z| ≥ 1. We will see that this
behavior is due to a branch cut of 1/ζ starting at z = 1. We need to find analytic
continuations of sums over algebraically decreasing terms in (24.11). Note also
that we omitted the fixed point 0 in the above Euler product; we will discussed
this point as well as a proper derivation of the zeta function in more detail in
sect. 24.2.4.

24.2.2 Branch cuts

Starting from the dynamical zeta function (24.11), we first have to worry about
finding an analytical continuation of the sum for |z| ≥ 1. We do, however, get this
part for free here due to the particular choice of interval lengths made in (24.9).
The sum over ratios of Gamma functions in (24.11) can be evaluated analytically
by using the following identities valid for 1/s = α > 0 (the famed binomial
theorem in disguise),

• α non-integer

(1 − z)α =
∞∑

n=0

Γ(n − α)
Γ(−α)Γ(n + 1)

zn (24.12)

9Predrag: refer to cyc-exp-formula
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branch cut• α integer

(1 − z)α log(1 − z) =
α∑

n=1

(−1)ncnzn (24.13)

+ (−1)α+1α!
∞∑

n=α+1

(n − α − 1)!
n!

zn

with

cn =

(
α
n

) n−1∑
k=0

1
α − k

.

In order to simplify the notation, we restrict the intermittency parameter to the
range 1 ≤ 1/s < 2 with [1/s] = m = 1. All what follows can easily be generalized
to arbitrary s > 0 using equations (24.12) and (24.13). The infinite sum in (24.11)
can now be evaluated with the help of (24.12) or (24.13), that is,

∞∑
n=2

Γ(n − 1/s)
Γ(n + 1)

zn =

{
Γ(−1

s )
[
(1 − z)1/s − 1 + 1

s z
]

for 1 < 1/s < 2;
(1 − z) log(1 − z) + z for s = 1 .

The normalization constant C in (24.9) can be evaluated explicitly using (24.10)
and the dynamical zeta function can be given in closed form. We obtain for 1 <

1/s < 2

1/ζ(z) = 1 − (1 − b)z − a
1/s − 1

1 − b
1 − a

(
(1 − z)1/s − 1 +

1
s

z

)
. (24.14)

and for s = 1,

1/ζ(z) = 1 − (1 − b)z − a
1 − b
1 − a

(
(1 − z) log(1 − z) + z

)
. (24.15)

It now becomes clear why the particular choice of intervals Mn made in the last
section is useful; by summing over the infinite family of periodic orbits 0n1 ex-
plicitly, we have found the desired analytical continuation for the dynamical zeta
function for |z| ≥ 1. The function has a branch cut starting at the branch point z = 1
and running along the positive real axis. That means, the dynamical zeta function
takes on different values when approaching the positive real axis for Re z > 1 from
above and below. The dynamical zeta function for general s > 0 takes on the form

1/ζ(z) = 1 − (1 − b)z − a
gs(1)

1 − b
1 − a

1

zm−1

(
(1 − z)1/s − gs(z)

)
(24.16)

for non-integer s with m = [1/s] and

1/ζ(z) = 1−(1−b)z− a
gm(1)

1 − b
1 − a

1

zm−1

(
(1 − z)m log(1 − z) − gm(z)

)
(24.17)
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branch cut!singularity
singularity!branch cut

for 1/s = m integer and gs(z) are polynomials of order m = [1/s] which can
be deduced from (24.12) or (24.13). We thus find algebraic branch cuts for non
integer intermittency exponents 1/s and logarithmic branch cuts for 1/s integer.
We will see in sect. 24.3 that branch cuts of that form are generic for 1-dimensional
intermittent maps.

Branch cuts are the all important new feature of dynamical zeta functions due
to intermittency. So, how do we calculate averages or escape rates of the dynamics
of the map from a dynamical zeta function with branch cuts? We take ‘a learning
by doing’ approach and calculate the escape from our toy map for a < b.

24.2.3 Escape rate

Our starting point for the calculation of the fraction of survivors after n time steps,
is the integral representation (19.19)

Γn =
1

2πi

∮
γ−r

z−n
(

d
dz

log ζ−1(z)

)
dz , (24.18)

where the contour encircles the origin in the clockwise direction. If the contour
lies inside the unit circle |z| = 1, we may expand the logarithmic derivative of
ζ−1(z) as a convergent sum over all periodic orbits. Integrals and sums can be
interchanged, the integrals can be solved term by term, and the formula (18.26)
is recovered. For hyperbolic maps, cycle expansion methods or other techniques
may provide an analytic extension of the dynamical zeta function beyond the lead-
ing zero; we may therefore deform the original contour into a larger circle with ra-
dius R which encircles both poles and zeros of ζ−1(z), see figure 24.5 (a). Residue
calculus turns this into a sum over the zeros zα and poles zβ of the dynamical zeta
function, that is

Γn =

zeros∑
|zα |<R

1
zn
α
−

poles∑
|zβ |<R

1
zn
β

+
1

2πi

∮
γ−R

dz z−n d
dz

log ζ−1, (24.19)

where the last term gives a contribution from a large circle γ−R . We thus find ex-
ponential decay of Γn dominated by the leading zero or pole of ζ−1(z), see chap- ⇓PRIVATE
ter O.1 for more details. 10

⇑PRIVATE

11

Things change considerably in the intermittent case. The point z = 1 is a
branch cut singularity and there exists no Taylor series expansion of ζ−1 around
z = 1. Second, the path deformation that led us to (24.19) requires more care, as it

10Predrag: Gregor, send me the source for figure 24.5, needed for future edits as well as fig-
ure 19.1

11Predrag: put a), b) on the bottom, as in the figs in web-book
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Figure 24.5: The survival probability Γn calcu-
lated by contour integration; integrating (24.18)
inside the domain of convergence |z| < 1 (shaded
area) of 1/ζ(z) in periodic orbit representation
yields (18.26). A deformation of the contour γ−r
(dashed line) to a larger circle γ−R gives contribu-
tions from the poles and zeros (x) of 1/ζ(z) be-
tween the two circles. These are the only contribu-
tions for hyperbolic maps (a), for intermittent sys-
tems additional contributions arise, given by the
contour γcut running along the branch cut (b).
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must not cross the branch cut. When expanding the contour to large |z| values, we
have to deform it along the branch Re (z) ≥ 1, Im (z) = 0 encircling the branch cut
in anti-clockwise direction, see figure 24.5 (b). We will denote the detour around
the cut as γcut. We may write symbolically

∮
γr

=

zeros∑
−

poles∑
+

∮
γR

+

∮
γcut

where the sums include only the zeros and the poles in the area enclosed by the
contours. The asymptotics is controlled by the zero, pole or cut closest to the
origin.

Let us now go back to our intermittent toy map. The asymptotics of the sur-
vival probability of the map is here governed by the behavior of the integrand
d
dz log ζ−1 in (24.18) at the branch point z = 1. We restrict ourselves again to the
case 1 < 1/s < 2 first and write the dynamical zeta function (24.14) in the form

1/ζ(z) = a0 + a1(1 − z) + b0(1 − z)1/s ≡ G(1 − z)

and

a0 =
b − a
1 − a

, b0 =
a

1 − 1/s
1 − b
1 − a

.

Setting u = 1 − z, we need to evaluate

1
2πi

∮
γcut

(1 − u)−n d
du

log G(u)du (24.20)

where γcut goes around the cut (i.e., the negative u axis). Expanding the integrand
d

du log G(u) = G′(u)/G(u) in powers of u and u1/s at u = 0, one obtains

d
du

log G(u) =
a1

a0
+

1
s

b0

a0
u1/s−1 + O(u) . (24.21)
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Figure 24.6: The asymptotic escape from an intermit-
tent repeller is a power law. Normally it is preceded
by an exponential, which can be related to zeros close
to the cut but beyond the branch point z = 1, as in
figure 24.5 (b).
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The integrals along the cut may be evaluated using the general formula

1
2πi

∮
γcut

uα(1 − u)−ndu =
Γ(n − α − 1)
Γ(n)Γ(−α)

∼ 1

nα+1
(1 + O(1/n)) (24.22)

which can be obtained by deforming the contour back to a loop around the point
u = 1, now in positive (anti-clockwise) direction. The contour integral then picks
up the (n−1)st term in the Taylor expansion of the function uα at u = 1, cf. (24.12).
For the continuous time case the corresponding formula is

1
2πi

∮
γcut

zαeztdz =
1
Γ(−α)

1
tα+1

. (24.23)

Plugging (24.21) into (24.20) and using (24.22) we get the asymptotic result

Γn ∼
b0

a0

1
s

1
Γ(1 − 1/s)

1

n1/s
=

a
s − 1

1 − b
b − a

1
Γ(1 − 1/s)

1

n1/s
. (24.24)

We see that, asymptotically, the escape from an intermittent repeller is described
by power law decay rather than the exponential decay we are familiar with for
hyperbolic maps; a numerical simulation of the power-law escape from an inter-
mittent repeller is shown in figure 24.6.

For general non-integer 1/s > 0, we write

1/ζ(z) = A(u) + (u)1/sB(u) ≡ G(u)

with u = 1 − z and A(u), B(u) are functions analytic in a disc of radius 1 around
u = 0. The leading terms in the Taylor series expansions of A(u) and B(u) are

a0 =
b − a
1 − a

, b0 =
a

gs(1)
1 − b
1 − a

,

see (24.16). Expanding d
du log G(u) around u = 0, one again obtains leading or-

der contributions according to (24.21) and the general result follows immediately
using (24.22), that is,

Γn ∼
a

sgs(1)
1 − b
b − a

1
Γ(1 − 1/s)

1

n1/s
. (24.25)
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escape
rate!intermittency

intermittency!escape
rate

Applying the same arguments for integer intermittency exponents 1/s = m, one
obtains

Γn ∼ (−1)m+1 a
sgm(1)

1 − b
b − a

m!
nm . (24.26)

So far, we have considered the survival probability for a repeller, that is we
assumed a < b. The formulas (24.25) and (24.26) do obviously not apply for the
case a = b, that is, for the bounded map. The coefficient a0 = (b − a)/(1 − a)
in the series representation of G(u) is zero, and the expansion of the logarithmic
derivative of G(u) (24.21) is no longer valid. We get instead

d
du

log G(u) =

⎧⎪⎪⎨⎪⎪⎩ 1
u

(
1 + O(u1/s−1)

)
s < 1

1
u

(
1
s + O(u1−1/s)

)
s > 1

,

assuming non-integer 1/s for convenience. One obtains for the survival probabil-
ity.

Γn ∼
{

1 + O(n1−1/s) s < 1
1/s + O(n1/s−1) s > 1

.

For s > 1, this is what we expect. There is no escape, so the survival probability
is equal to 1, which we get as an asymptotic result here. The result for s > 1 is
somewhat more worrying. It says that Γn defined as sum over the instabilities of
the periodic orbits as in (22.18) does not tend to unity for large n. However, the
case s > 1 is in many senses anomalous. For instance, the invariant density cannot
be normalized. It is therefore not reasonable to expect that periodic orbit theories
will work without complications.

24.2.4 Why does it work (anyway)?

Due to the piecewise linear nature of the map constructed in the previous section,
we had the nice property that interval lengths did exactly coincide with the inverse
of the stability of periodic orbits of the system, that is

|Mn| = 1/|Λ10|n−1.

There is thus no problem in replacing the survival probability Γn given by (1.2),
(22.2), that is the fraction of state space M surviving n iterations of the map,

Γn =
1
|M|

(n)∑
i

|Mi| .
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hyperbolic!systemsby a sum over periodic orbits of the form (18.26). The only orbit to worry about is
the marginal fixed point 0 itself which we excluded from the zeta function (24.11).

For smooth intermittent maps, things are less clear and the fact that we had to
prune the marginal fixed point is a warning sign that interval estimates by periodic
orbit stabilities might go horribly wrong. The derivation of the survival probability
in terms of cycle stabilities in chapter22 did indeed rely heavily on a hyperbolicity
assumption which is clearly not fulfilled for intermittent maps. We therefore have
to carefully reconsider this derivation in order to show that periodic orbit formulas
are actually valid for intermittent systems in the first place.

We will for simplicity consider maps, which have a finite number of say s
branches defined on intervals Ms and we assume that the map maps each inter-
val Ms onto M, that is f (Ms ) = M. This ensures the existence of a complete
symbolic dynamics - just to make things easy (see figure24.2).

12 The generating partition is composed of the domains Ms . The nth level par-
tition C(n) = {Mi} can be constructed iteratively. Here i’s are words i = s2s2 . . . sn

of length n, and the intervals Mi are constructed recursively

Ms j = f −1
s (M j) , (24.27)

where s j is the concatenation of letter s with word j of length nj < n.

In what follows we will concentrate on the survival probability Γn , postponing
other quantities of interest, such as averages, to later considerations. In establish-
ing the equivalence of the survival probability and the periodic orbit formula for
the escape rate for hyperbolic systems we have assumed that the map is expand-
ing, with a minimal expansion rate | f′(x)| ≥ Λmin > 1. This enabled us to bound
the size of every survivor strip Mi by (22.6), the stability Λi of the periodic orbit i
within theMi, and bound the survival probability by the periodic orbit sum (22.7).

⇓PRIVATE

exercise 24.8

⇑PRIVATE
The bound (22.6)

C1
1
|Λi|

<
|Mi|
|M|

< C2
1
|Λi|

relies on hyperbolicity, and is thus indeed violated for intermittent systems. The
problem is that now there is no lower bound on the expansion rate, the minimal
expansion rate is Λmin = 1. The survivor strip M0n which includes the marginal
fixed point is thus completely overestimated by 1/|Λ0n | = 1 which is constant for
all n. 13

exercise 19.7

However, bounding survival probability strip by strip is not what is required
for establishing the bound (22.7). For intermittent systems a somewhat weaker

12Predrag: replace blah-blah up to (24.27) by DasBuch symbolic dynamics
13Predrag: move exercise 19.7 to chapter 19
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average!chaotic
observable

bound can be established, saying that the average size of intervals along a periodic
orbit can be bounded close to the stability of the periodic orbit for all but the
interval M0n . The weaker bound applies to averaging over each prime cycle p
separately 14

C1
1
|Λp|

<
1
np

∑
i∈p

|Mi|
|M|

< C2
1
|Λp|

, (24.28)

where the word i represents a code of the periodic orbit p and all its cyclic permu-
tations. It can be shown that one can find positive constants C1, C2 independent
of p. Summing over all periodic orbits leads then again to (22.7).

To study averages of multiplicative weights we follow sect.17.1 and introduce
a state space observable a(x) and the integrated quantity

An(x) =
n−1∑
k=0

a( f k(x)).

This leads us to introduce the generating function (17.10)

〈eβ An(x)〉,

where 〈.〉 denote some averaging over the distribution of initial points, which we
choose to be uniform (rather than the a priori unknown invariant density). Again,
all we have to show is, that constants C1, C2 exist, such that

C1
eβAp

|Λp|
<

1
np

∑
i∈p

1
|M|

∫
MQ

eβAn(x)dx < C2
eβAp

|Λp|
, (24.29)

is valid for all p. After performing the above average one gets

C1Γn(β) <
1
|M|

∫
M

eβA(x,n)dx < C2Γn(β), (24.30)

with

Γn(β) =
n∑
p

eβAp

|Λp|
. (24.31)

and a dynamical zeta function can be derived. In the intermittent case one can
expect that the bound (24.29) holds using an averaging argument similar to the

14Predrag: prove this? move after (24.8)?

inter - 19nov2012 boyscout version14.4, Mar 19 2013



CHAPTER 24. INTERMITTENCY 585

Figure 24.7: Transition graph corresponding to the al-
phabet {0k−11; 0 , k ≥ 1}

0 0 00 0

0

1

one discussed in (24.28). This justifies the use of dynamical zeta functions for
intermittent systems.

One lesson we should have learned so far is that the natural alphabet to use
is not {0, 1} but rather the infinite alphabet {0k−11, 0 ; k ≥ 1}. The symbol 0
occurs unaccompanied by any 1’s only in the 0 marginal fixed point which is
disconnected from the rest of the transition graph, see figure24.7.

chapter 12

What happens if we remove a single prime cycle from a dynamical zeta func-
tion? In the hyperbolic case such a removal introduces a pole in the 1/ζ and slows
down the convergence of cycle expansions. The heuristic interpretation of such a
pole is that for a subshift of finite type removal of a single prime cycle leads to
unbalancing of cancellations within the infinity of of shadowing pairs. Neverthe-
less, removal of a single prime cycle is an exponentially small perturbation of the
trace sums, and the asymptotics of the associated trace formulas is unaffected.

chapter 23

In the intermittent case, the fixed point 0 does not provide any shadowing(cf. ⇓PRIVATE
sect. L.1) , and a statement such as 15

⇑PRIVATE

Λ1·0k+1 ≈ Λ1·0kΛ0,

is meaningless. It seems therefore sensible to take out the factor (1 − t0) = 1 − z
from the product representation of the dynamical zeta function (19.15), that is, to
consider a pruned dynamical zeta function 1/ζinter(z) defined by

1/ζ(z) = (1 − z)1/ζinter(z) .

We saw in the last sections, that the zeta function 1/ζinter(z) has all the nice prop-
erties we know from the hyperbolic case, that is, we can find a cycle expansion
with - in the toy model case - vanishing curvature contributions and we can calcu-
late dynamical properties like escape after having understood, how to handle the
branch cut. But you might still be worried about leaving out the extra factor 1 − z
all together. It turns out, that this is not only a matter of convenience, omitting
the marginal 0 cycle is a dire necessity. The cycle weight Λn

0 = 1 overestimates
the corresponding interval length of M0n in the partition of the state space M by
an increasing amount thus leading to wrong results when calculating escape. By
leaving out the 0 cycle (and thus also the M0n contribution), we are guaranteed to
get at least the right asymptotical behavior.

15Predrag: ???

inter - 19nov2012 boyscout version14.4, Mar 19 2013



CHAPTER 24. INTERMITTENCY 586

Note also, that if we are working with the spectral determinant (19.3), given
in product form as

det (1 − zL) =
∏

p

∞∏
m=0

(
1 − znp

|Λp|Λm
p

)
,

for intermittent maps the marginal stable cycle has to be excluded. It introduces
an (unphysical) essential singularity at z = 1 due the presence of a factor (1 − z)∞

stemming from the 0 cycle.

24.3 Intermittency for cyclists

Admittedly, the toy map is what is says - a toy model. The piece wise linear-
ity of the map led to exact cancellations of the curvature contributions leaving
only the fundamental terms. There are still infinitely many orbits included in the
fundamental term, but the cycle weights were chosen in such a way that the zeta
function could be written in closed form. For a smooth intermittent map this all
will not be the case in general; still, we will argue that we have already seen al-
most all the fundamentally new features due to intermittency. What remains are
technicalities - not necessarily easy to handle, but nothing very surprise any more.

In the following we will sketch, how to make cycle expansion techniques work
for general 1-dimensional maps with a single isolated marginal fixed point. To
keep the notation simple, we will consider two-branch maps with a complete bi-
nary symbolic dynamics as for example the Farey map, figure24.3, or the repeller
depicted in figure 24.2. The necessary modifications for multi-branch maps will ⇓PRIVATE
briefly be discussed in the remark ??. 16 We again assume that the behavior near

⇑PRIVATEthe fixed point is given by (24.1). This implies that the stability of a family of
periodic orbits approaching the marginally stable orbit, as for example the family
10n, will increase only algebraically, that is we find again for large n

1
Λ10n

∼ 1

n1+1/s
,

where s denotes the intermittency exponent.

17 When considering zeta functions or trace formulas, we again have to take
out the marginal orbit 0; periodic orbit contributions of the form t0n1 are now
unbalanced and we arrive at a cycle expansion in terms of infinitely many fun-
damental terms as for our toy map. This corresponds to moving from our binary
symbolic dynamics to an infinite symbolic dynamics by making the identification

10n−1 → n; 10n−110m−1 → nm; 10n−110m−110k−1 → nmk; . . .

16Predrag: missing remark?
17Predrag: move the following to infinite symbolic dynamics?
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induced mapTable 24.1: Infinite alphabet versus the original binary alphabet for the shortest periodic
orbit families. Repetitions of prime cycles (11 = 12, 0101 = 012, . . .) and their cyclic
repeats (110 = 101, 1110 = 1101, . . .) are accounted for by cancelations and combination
factors in the cycle expansion (24.32).

∞ – alphabet binary alphabet
n = 1 n = 2 n = 3 n = 4 n = 5

1-cycles n 1 10 100 1000 10000
2-cycles mn

1n 11 110 1100 11000 110000
2n 101 0101 10100 101000 1010000
3n 1001 10010 100100 1001000 10010000
4n 10001 100010 1000100 10001000 100010000

3-cycles kmn
11n 111 1110 11100 111000 1110000
12n 1101 11010 110100 1101000 11010000
13n 11001 110010 1100100 11001000 110010000
21n 1011 10110 101100 1011000 10110000
22n 10101 101010 1010100 10101000 101010000
23n 101001 1010010 10100100 101001000 1010010000
31n 10011 100110 1001100 10011000 100110000
32n 100101 1001010 10010100 100101000 1001010000
33n 1001001 10010010 100100100 1001001000 10010010000

see also table 24.1. The topological length of the orbit is thus no longer determined
by the iterations of our two-branch map, but by the number of times the cycle
goes from the right to the left branch. Equivalently, one may define a new map,
for which all the iterations on the left branch are done in one step. Such a map
is called an induced map and the topological length of orbits in the 18 infinite
alphabet corresponds to the iterations of this induced map,19 see also remark ??.

⇓PRIVATE

⇑PRIVATE

exercise 12.1
For generic intermittent maps, curvature contributions in the cycle expanded

zeta function will not vanish exactly. The most natural way to organize the cycle
expansion is to collect orbits and pseudo orbits of the same topological length
with respect to the infinite alphabet. Denoting cycle weights in the new alphabet
as tnm... = t10n−110m−1..., one obtains

ζ−1 =
∏
p�0

(
1 − tp

)
= 1 −

∞∑
n=1

ce (24.32)

= 1 −
∞∑

n=1

tn −
∞∑

m=1

∞∑
n=1

1
2

(tmn − tmtn)

−
∞∑

k=1

∞∑
m=1

∞∑
n=1

(
1
3

tkmn −
1
2

tkmtn +
1
6

tktmtn) −
∞∑

l=1

∞∑
k=1

∞∑
m=1

∞∑
n=1

. . . .

20 The first sum is the fundamental term, which we have already seen in the toy

18Gregor: Reference for induced map
19Predrag: find the remark
20Gregor: Check how curvature, fundamental term etc defined
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model, (24.11). The curvature terms cn in the expansion are now e-fold infinite
sums where the prefactors take care of double counting of prime periodic orbits.

Let us consider the fundamental term first. For generic intermittent maps, we
can not expect to obtain an analytic expression for the infinite sum of the form21

f (z) =
∞∑

n=0

hnzn. (24.33)

with algebraically decreasing coefficients

hn ∼ 1
nα

with α > 0

To evaluate the sum, we face the same problem as for our toy map: the power
series diverges for z > 1, that is, exactly in the ‘interesting’ region where poles,
zeros or branch cuts of the zeta function are to be expected. By carefully subtract-
ing the asymptotic behavior with the help of (24.12) or (24.13), one can in general
construct an analytic continuation of f (z) around z = 1 of the form

f (z) ∼ A(z) + (1 − z)α−1B(z) α � N (24.34)

f (z) ∼ A(z) + (1 − z)α−1 ln(1 − z) α ∈ N ,

where A(z) and B(z) are functions analytic in a disc around z = 1. We thus again
find that the zeta function (24.32) has a branch cut along the real axis Re z ≥ 1.
From here on we can switch to auto-pilot and derive algebraic escape, decay of
correlation and all the rest. We find in particular that the asymptotic behavior
derived in (24.25) and (24.26) is a general result, that is, the survival probability
is given asymptotically by

Γn ∼ C
1

n1/s
(24.35)

for all 1-dimensional maps of the form (24.1). We have to work a bit harder if
we want more detailed information like the prefactor C, exponential precursors
given by zeros or poles of the dynamical zeta function or higher order corrections.
This information is buried in the functions A(z) and B(z) or more generally in the
analytically continued zeta function. To get this analytic continuation, one may
follow either of the two different strategies which we will sketch next. ⇓PRIVATE

21Gregor: Do we need Tauberian theorem; make into remark

inter - 19nov2012 boyscout version14.4, Mar 19 2013



CHAPTER 24. INTERMITTENCY 589

intermittency!resummation
resummation!intermittency

n = 1 2 3 4 5 6 7
t̂1 = t1 + t10 + t100 + t1000 + t10000 + t100000 + t1000000

t̂12 = t110 + t1100 + t11000 + t110000 + t1100000

t̂112 = t1110 + t11100 + t111000 + t1110000
t̂23 = t10100 + t101000 + t1010000
t̂122 = t11010 + t110100 + t1101000
t̂1112 = t11110 + t111100 + t1111000
t̂132 = t110010 + t1100100
t̂1122 = t111010 + t1110100
t̂11112 = t111110 + t1111100

t̂34 = t1001000
t̂142 = t1100010
t̂223 = t1010100
t̂1213 = t1101100
t̂1132 = t1110010
t̂1222 = t1101010
t̂11122 = t1111010
t̂11212 = t1110110
t̂111112 = t1111110

Table 24.2: The infinite sequences of cycles used in computing the curvature corrections
for binary dynamics with the 0 fixed point pruned. The left hand side is labeled by the
integer labels of eq. (?!), t̂a1···ak =

∑∞
a=ak

ta1···ak−1,a; the right hand side by the corresponding
binary labels.

24.3.1 Infinite alphabets

The meat of this section will be provided by Gregor Tanner, who promises
(7 Feb 1996): “I hope to have something different and new the next weeks. So, I
would like to wait a little bit until I have figured out, what I can do. But you get
something, .... versprochen ist versprochen!”

If plan GT fails, we follow refs. [2, 3] in which it is explained that 22 for
infinite alphabets the curvature expansions looks something like table24.2.

23

⇑PRIVATE

24.3.2 Resummation

One way to get information about the zeta function near the branch cut is to de-
rive the leading coefficients in the Taylor series of the functions A(z) and B(z) in
(24.34) at z = 1. This can be done in principle, if the coefficients hn in sums like
(24.33) are known (as for our toy model). One then considers a resummation of

22Predrag: Explain intermitent map - maybe the Farey map?
23Predrag: table 24.2: in the application of AACII, sect. ref GAUSS, the left hand side labels are

the corresponding continued fraction entries, and the right hand side are the corresponding binary
Farey labels.
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Poisson!resummationthe form

∞∑
j=0

hjz
j =

∞∑
j=0

aj(1 − z) j + (1 − z)α−1
∞∑
j=0

bj(1 − z) j, (24.36)

and the coefficients aj and bj are obtained in terms of the hj’s by expanding (1−z)j

and (1 − z) j+α−1 on the right hand side around z = 0 using (24.12) and equating
the coefficients.

In practical calculations one often has only a finite number of coefficients
hj, 0 ≤ j ≤ N, which may have been obtained by finding periodic orbits and
their stabilities numerically. One can still design a resummation scheme for the
computation of the coefficients aj and bj in (24.36). We replace the infinite sums
in (24.36) by finite sums of increasing degrees na and nb, and require that

na∑
i=0

ai(1 − z)i + (1 − z)α−1
nb∑
i=0

bi(1 − z)i =

N∑
i=0

hiz
i + O(zN+1) . (24.37)

One proceeds again by expanding the right hand side around z = 0, skipping all
powers zN+1 and higher, and then equating coefficients. It is natural to require that
|nb + α − 1 − na| < 1, so that the maximal powers of the two sums in (24.37) are
adjacent. If one chooses na + nb + 2 = N + 1, then, for each cutoff length N, the
integers na and nb are uniquely determined from a linear system of equations. The
price we pay is that the so obtained coefficients depend on the cutoff N. One can
now study convergence of the coefficients aj, and bj, with respect to increasing
values of N, or various quantities derived from aj and bj. Note that the leading
coefficients a0 and b0 determine the prefactor C in (24.35), cf. (24.24). The re-
summed expression can also be used to compute zeros, inside or outside the radius
of convergence of the cycle expansion

∑
hjz j.

The scheme outlined in this section tacitly assumes that a representation of
form (24.34) holds in a disc of radius 1 around z = 1. Convergence is improved
further if additional information about the asymptotics of sums like (24.33) is used
to improve the ansatz (24.36).

24.3.3 Analytical continuation by integral transformations

We will now introduce a method which provides an analytic continuation of sums
of the form (24.33) without explicitly relying on an ansatz (24.36). The main
idea is to rewrite the sum (24.33) as a sum over integrals with the help of the
Poisson summation formula and find an analytic continuation of each integral by
contour deformation. In order to do so, we need to know the n dependence of
the coefficients hn ≡ h(n) explicitly for all n. If the coefficients are not known
analytically, one may proceed by approximating the large n behavior in the form

h(n) = n−α(C1 +C2n−1 + . . .) , n � 0 ,
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and determine the constants Ci numerically from periodic orbit data. By using the
Poisson resummation identity

∞∑
n=−∞

δ(x − n) =
∞∑

m=−∞
exp(2πimx) , (24.38)

we may write the sum as (24.33)

f (z) =
1
2

h(0) +
∞∑

m=−∞

∫ ∞

0
dx e2πimxh(x)zx. (24.39)

The continuous variable x corresponds to the discrete summation index n and it
is convenient to write z = r exp(iσ) from now on. The integrals are still not con-
vergent for r > 0, but an analytical continuation can be found by considering the
contour integral, where the contour goes out along the real axis, makes a quarter
circle to either the positive or negative imaginary axis and goes back to zero. By
letting the radius of the circle go to infinity, we essentially rotate the line of inte-
gration from the real onto the imaginary axis. For the m = 0 term in (24.39), we
transform x → ix and the integral takes on the form

∫ ∞

0
dx h(x) rx eixσ = i

∫ ∞

0
dx h(ix) rixe−xσ.

The integrand is now exponentially decreasing for all r > 0 and σ � 0 or 2π. The
last condition reminds us again of the existence of a branch cut at Re z ≥ 1. By
the same technique, we find the analytic continuation for all the other integrals in
(24.39). The real axis is then rotated according to x → sign(m)ix where sign(m)
refers to the sign of m.

∫ ∞

0
dx e±2πi|m|xh(x) rxeixσ = ±i

∫ ∞

0
dx h(±ix) r±ixe−x(2π|m|±σ).

Changing summation and integration, we can carry out the sum over |m| explicitly
and one finally obtains the compact expression

f (z) =
1
2

h(0) + i
∫ ∞

0
dx h(ix) rixe−xσ (24.40)

+ i
∫ ∞

0
dx

e−2πx

1 − e−2πx

[
h(ix)rixe−xσ − h(−ix)r−ixexσ

]
.

24 The transformation from the original sum to the two integrals in (24.40) is exact
for r ≤ 1, and provides an analytic continuation for r > 0. The expression (24.40)
is especially useful for an efficient numerical calculations of a dynamical zeta
function for |z| > 1, which is essential when searching for its zeros and poles.

24Predrag: need explicit example, problem sets
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24.3.4 Curvature contributions

So far, we have discussed only the fundamental term
∑∞

n=1 tn in (24.32), and
showed how to deal with such power series with algebraically decreasing coef-
ficients. The fundamental term determines the main structure of the zeta function
in terms of the leading order branch cut. Corrections to both the zeros and poles
of the dynamical zeta function as well as the leading and subleading order terms
in expansions like (24.34) are contained in the curvature terms in (24.32). The
first curvature correction is the 2-cycle sum

∞∑
m=1

∞∑
n=1

1
2

(tmn − tmtn) ,

with algebraically decaying coefficients which again diverge for |z| > 1. The
analytically continued curvature terms have as usual branch cuts along the positive
real z axis. Our ability to calculate the higher order curvature terms depends on
how much we know about the cycle weights tmn. The form of the cycle stability
(24.6) suggests that tmn decrease asymptotically as

tmn ∼
1

(nm)1+1/s
(24.41)

for 2-cycles, and in general for n-cycles as

tm1m2...mn ∼
1

(m1m2 . . .mn)1+1/s
.

25 If we happen to know the cycle weights tm1m2...mn analytically, we may proceed
as in sect. 24.3.3, transform the multiple sums into multiple integrals and rotate
the integration contours.

We have reached the edge of what has been accomplished so far in computing
and what is worth the dynamical zeta functions from periodic orbit data. In the
next section, we describe a probabilistic method applicable to intermittent maps
which does not rely on periodic orbits.

24.3.5 Stability ordering for intermittent flows

Longer but less unstable cycles can give larger contributions to a cycle
expansion than short but highly unstable cycles. In such situations, truncation by
length may require an exponentially large number of very unstable cycles before

25Predrag: in AACII I argued for exponentially decreasing curvatures here as well, maybe I was
wrong?
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a significant longer cycle is first included in the expansion. This situation is best
illustrated by intermittent maps. The simplest of these is the Farey map

f (x) =

{
f0 = x/(1 − x) 0 ≤ x ≤ 1/2
f1 = (1 − x)/x 1/2 ≤ x ≤ 1 ,

. (24.42)

⇓PRIVATE
which we will revisit in chapter 30, in the context of circle maps. For the Farey ⇑PRIVATE
map, the symbolic dynamics is of complete binary type, so the lack of shadowing
is not due to the lack of a finite grammar, but rather to the intermittency caused by
the existence of the marginal fixed point x0 = 0, for which the stability multiplier
is Λ0 = 1. This fixed point does not participate directly in the dynamics and is
omitted from cycle expansions. Its presence is, however, very much felt instead
in the stabilities of neighboring cycles with n consecutive iterates of the symbol
0, whose stability falls of only as Λ ∼ n2, in contrast to the most unstable cycles
with n consecutive 1’s, which are exponentially unstable, |Λ01n | ∼ [(

√
5+ 1)/2]2n.

The symbolic dynamics is of complete binary type. A quick count in the style
of sect. 15.7.2 leads to a total of 74,248,450 prime cycles of length 30 or less,
not including the marginal point x0 = 0. Evaluating a cycle expansion to this
order is an impressive computational feat. However, stability of the least unstable
cycle omitted is roughly Λ1030 ∼ 302 = 900, so it yields a 0.1% correction. The
situation may be much worse than this estimate suggests, because the next 1031

cycle contributes a similar amount, and could easily reinforce the error. Adding
up all such omitted terms, we arrive at an estimated error of about 3%, for a cycle-
length truncated cycle expansion based on more than 109 pseudo-cycle terms! On
the other hand, if one truncates by stability atΛmax = 3000, only 409 prime cycles
suffice to attain the same accuracy of about a 3% error, figure24.8.

As the Farey map maps the unit interval onto itself, the leading eigenvalue
of the Perron-Frobenius operator should equal s0 = 0, so 1/ζ(0) = 0. Devia-
tions from this exact result give an indication of the convergence of a given cycle
expansion. Errors corresponding to different truncation schemes are indicated in
figure 24.8. We see that topological length truncation schemes are hopelessly bad
in this case; stability length truncations are somewhat better, but still rather bad.
As we showed in sect. 24.3.1, in simple cases like this one, where intermittency is

⇓PRIVATE

⇑PRIVATE
caused by a single marginal fixed point, convergence can be improved by going to
infinite alphabets. A deeper understanding of why this seemingly trivial example

⇓PRIVATEshould be so difficult to control requires introducing thermodynamic formalism
and investigating its phase transitions, discussed in sect. ??. 26

⇑PRIVATE

24.4 BER zeta functions

So far we have focused on 1-d models as the simplest setting in which to
investigate dynamical implications of marginal fixed points. We now take an al-
together different track and describe how probabilistic methods may be employed

26Predrag: why is error in figure 24.8 larger when smoothed?
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function
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Figure 24.8: Comparison of cycle expansion trun-
cation schemes for the Farey map (24.42); the
deviation of the truncated cycles expansion for
|1/ζN (0)| from the exact flow conservation value
1/ζ(0) = 0 is a measure of the accuracy of the
truncation. The jagged line is the logarithm of
the stability ordering truncation error; the smooth
line is smoothed according to sect. 20.6.2; the di-
amonds indicate the error due to the topological
length truncation, with the maximal cycle length N
shown. They are placed along the stability cutoff
axis at points determined by the condition that the
total number of cycles is the same for both trunca-
tion schemes.
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in order to write down approximate dynamical zeta functions for intermittent sys-
tems.

We will discuss the method in a very general setting, for a flow in arbitrary
dimension. The key idea is to introduce a surface of section P such that all tra-
jectories traversing this section will have spent some time both near the marginal
stable fixed point and in the chaotic phase. An important quantity in what follows
is (3.5), the first return time τ(x), or the time of flight of a trajectory starting in
x to the next return to the surface of section P. The period of a periodic orbit p
intersecting the P section np times is

Tp =

np−1∑
k=0

τ( f k(xp)),

where f (x) is the Poincaré map, and xp ∈ P is a periodic point. The dynamical
zeta function (19.15)

1/ζ(z, s, β) =
∏

p

(
1 − znpeβAp−sTp

|Λp|

)
, Ap =

np−1∑
k=0

a( f k(xp)), (24.43)

chapter 17

associated with the observable a(x) captures the dynamics of both the flow and the
Poincaré map. The dynamical zeta function for the flow is obtained as 1/ζ(s, β) =
1/ζ(1, s, β), and the dynamical zeta function for the discrete time Poincaré map is
1/ζ(z, β) = 1/ζ(z, 0, β).

Our basic assumption will be probabilistic. We assume that the chaotic in-
terludes render the consecutive return (or recurrence) times T (xi), T (xi+1) and ob-
servables a(xi), a(xi+1) effectively uncorrelated. Consider the quantity eβA(x0,n)−sT (x0 ,n)

averaged over the surface of section P. With the above probabilistic assumption
the large n behavior is 27

〈eβA(x0,n)−sT (x0 ,n)〉P ∼
(∫

P
eβa(x)−sτρ(x)dx

)n

,

27Predrag: refer to some earlier definition of T (x0, n)
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where ρ(x) is the invariant density of the Poincaré map. This type of behavior is
equivalent to there being only one zero z0(s, β) =

∫
eβa(x)−sτ(x)ρ(x)dx of 1/ζ(z, s, β)

in the z-β plane. In the language of Ruelle-Pollicott resonances this means that
there is an infinite gap to the first resonance. This in turn implies that 1/ζ(z, s, β)
may be written as

remark 17.1

1/ζ(z, s, β) = z −
∫
P

eβa(x)−sτ(x)ρ(x)dx , (24.44)

where we have neglected a possible analytic and non-zero prefactor. The dynam-
ical zeta function of the flow is now

1/ζ(s, β) = 1/ζ(1, s, β) = 1 −
∫
P

eβa(x)ρ(x)e−sτ(x)dx . (24.45)

Normally, the best one can hope for is a finite gap to the leading resonance of
the Poincaré map. with the above dynamical zeta function only approximatively
valid. As it is derived from an approximation due to Baladi, Eckmann, and Ruelle,
we shall refer to it as the BER zeta function 1/ζBER(s, β) in what follows.

A central role is played by the probability distribution of return times

ψ(τ) =
∫
P
δ(τ − τ(x))ρ(x)dx (24.46)

exercise 26.6

The BER zeta function at β = 0 is then given in terms of the Laplace transform of
this distribution

1/ζBER(s) = 1 −
∫ ∞

0
ψ(τ)e−sτdτ.

exercise 24.5

Example 24.1 Return times for the Bernoulli map. For the Bernoulli shift map
(23.6)

x �→ f (x) = 2x mod 1,

one easily derives the distribution of return times

ψn =
1
2n

n ≥ 1.

The BER zeta function becomes (by the discrete Laplace transform (18.9))

1/ζBER(z) = 1 −
∞∑

n=1

ψnzn = 1 −
∞∑

n=1

zn

2n

=
1 − z

1 − z/2
= ζ−1(z)/(1 − z/Λ0) . (24.47)

Thanks to the uniformity of the piecewise linear map measure (16.13) the “approximate”
zeta function is in this case the exact dynamical zeta function, with the periodic point 0
pruned.
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Example 24.2 Return times for the model of sect. 24.2.1. For the toy model of
sect. 24.2.1 one gets ψ1 = |M1|, and ψn = |Mn|(1 − b)/(1 − a), for n ≥ 2, leading to a
BER zeta function

1/ζBER(z) = 1 − z|M1| −
∞∑

n=2

|Mn|zn,

which again coincides with the exact result, (24.11). 28

29 It may seem surprising that the BER approximation produces exact results
in the two examples above. The reason for this peculiarity is that both these sys-
tems are piecewise linear and have complete Markov partitions. As long as the
map is piecewise linear and complete, and the probabilistic approximation is ex-
actly fulfilled, the cycle expansion curvature terms vanish. The BER zeta function
and the fundamental part of a cycle expansion discussed in sect. 20.1.1 are in-
deed intricately related, but not identical in general. In particular, note that the
BER zeta function obeys the flow conservation sum rule (20.17) by construction,
whereas the fundamental part of a cycle expansion as a rule does not.

Résumé

The presence of marginally stable fixed points and cycles changes the analytic
structure of dynamical zeta functions and the rules for constructing cycle ex-
pansions. The marginal orbits have to be omitted, and the cycle expansions
now need to include families of infinitely many longer and longer unstable or-
bits which accumulate toward the marginally stable cycles. Correlations for such
non-hyperbolic systems may decay algebraically with the decay rates controlled
by the branch cuts of dynamical zeta functions. Compared to pure hyperbolic
systems, the physical consequences are drastic: exponential decays are replaced
by slow power-law decays, and transport properties, such as the diffusion may
become anomalous. 30

Commentary

Remark 24.1 What about the evolution operator formalism? The main virtue of
evolution operators was their semigroup property ( 17.27). This was natural for hyper-
bolic systems where instabilities grow exponentially, and evolution operators capture this
behavior due to their multiplicative nature. Whether the evolution operator formalism is a
good way to capture the slow, power law instabilities of intermittent dynamics is less clear.
The approach taken here leads us to a formulation in terms of dynamical zeta functions

28Gregor: Check formula for ψn; differs from PD, but PD’s result does not give the exact zeta
function

29Predrag: wrong! it is because they are linear
30Predrag: link to different chapters
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rather than spectral determinants, circumventing evolution operators altogether. It is not
known if the spectral determinants formulation would yield any benefits when applied to
intermittent chaos. Some results on spectral determinants and intermittency can be found
in [2]. A useful mathematical technique to deal with isolated marginally stable fixed point
is that of inducing, that is, replacing the intermittent map by a completely hyperbolic map
with infinite alphabet and redefining the discrete time; we have used this method implic-
itly by changing from a finite to an infinite alphabet. We refer to refs. [ 3, 20] for detailed
discussions of this technique, as well as applications to 1-dimensional maps.

31

Remark 24.2 Intermittency. Intermittency was discovered by Manneville and Pomeau [ 1]
in their study of the Lorenz system. They demonstrated that in neighborhood of parameter
value rc = 166.07 the mean duration of the periodic motion scales as (r− r c)1/2. In ref. [5]
they explained this phenomenon in terms of a 1-dimensional map (such as ( 24.1)) near
tangent bifurcation, and classified possible types ofintermittency.

Piecewise linear models like the one considered here have been studied by Gaspard
and Wang [6]. The escape problem has here been treated following ref. [ 7], resummations
following ref. [8]. The proof of the bound (24.28) is given in P. Dahlqvist’s notes, see
ChaosBook.org/extras/PDahlqvistEscape.pdf.

Farey map (24.42) has been studied widely in the context of intermittent dynamics,
for example in refs. [16, 17, 3, 18, 19, 16, 2]. The Fredholm determinant and the dyn-
amical zeta functions for the Farey map (24.42) and the related Gauss shift map (30.38) ⇓PRIVATE
have been studied by Mayer [16]. He relates the continued fraction transformation to the

⇑PRIVATERiemann zeta function, and constructs a Hilbert space on which the evolution operator is
self-adjoint, and its eigenvalues are exponentially spaced, just as for the dynamical zeta
functions [24] for “Axiom A” hyperbolic systems. 32

Remark 24.3 Tauberian theorems. In this chapter we used Tauberian theorems for
power series and Laplace transforms: Feller’s monograph [9] is a highly recommended
introduction to these methods.

Remark 24.4 Probabilistic methods, BER zeta functions. Probabilistic description
of intermittent chaos was introduced by Geisal and Thomae [ 10]. The BER approximation
studied here is inspired by Baladi, Eckmann and Ruelle [14], with further developments
in refs. [13, 15].

⇓PRIVATE

Remark 24.5 Ulam map, its Misiurewicz family generalization. Gao, Xie and
Lan [27] accelerate convergence of cycle expansions by dynamical conjugacies.

31Predrag: Kaufmann etc. references
32Predrag: define “Axiom A” somewhere
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The key idea of this paper, of replacing the stability of an unstable fixed-point or
periodic orbit that a critical point is preperiodic to, by the root corresponding to the order
of the critical point was developed in detail in a careful study of convergence by Artuso
et al. [3], where it is shown that the change in convergence is due to a single fixed point
whose preimage is the critical point. It is shown how to modify the cycle expansion to
fix the convergence. The original 1/ζ is kept, but the pole induced by the critical point
singularity is explicitly factored out. The method is essentially a quadratic conjugacy
restricted to the critical point (Ulam map to tent map being the trivial example).

The innovation of this paper that goes beyond ref. [ 3] is the explicit study of natural
measures of such maps and use of conjugacies to excise the singularities in the Ulam map
(and its Misiurewicz family generalization) settings. While ref. [3] motivates excision
of the singularity by a detailed study of many families of periodic orbits, the authors
accomplish this more elegantly, by a simple, well designed conjugacy.

They are looking at the series of generalized Ulam maps, or what Ruelle calls “Misi-
urewicz maps”, where the critical point is preperiodic to, ie mapped onto an unstable cycle
and thus rendered non-contracting. Period 2 below is the next in sequence. The interest-
ing new one is the “Golden mean” map, see for example exercise 11.6 in ChaosBook.org.
There the critical point is a part of the 3-cycle, so you know (at least numerically) where
the 3 measure singularities are. The answer is somewhere in the literature. Perhaps in
L. Billings and E. M. Bollt, “Invariant densities for skew tent maps,” Chaos Solitons and
Fractals 12, 365 (2001).

The step in ρ(x) at x f is suspicious - perhaps the problem is that the prefactor of the
1/

√
|x − x f | singularity is different on the two sides of x f . How can a half-singularity at

x = 0 map into both sides of x f neighborhood? Presumably the conjugacy (which they do
not explain) should be piecewise analytic, not smooth as in their figures.

Their g(x) is a bad news - they seem to have introduced infinite slope at an arbitrary
point of the map. It’s probably an artifact of the unexplained method for constructing
conjugacies - nothing interesting happens here in the original dynamics. If they can argue
that any periodic orbit that includes critical point has this problem, that is interesting.
Again, the good conjugacy is probably piecewise analytic - the natural measure they get
has worrisome steps.

Here (and in all finite grammar cases they study) working out the symbolic dynamics
and Markov graphs of this map would help - they have to understand which cycles form
the fundamental set and which (families of) shadowed cycles are causing wild oscillations
in their figures, before embarking on constructing a conjugacy. Original map has no cycles
of infinite instability, so their subsequent troubles presumably come from a badly chosen
conjugacy.

There can no be analytic conjugacy in higher dimensions - measure singularities al-
ways sit on fractal sets, just observe pictures of natural measure on the Hénon attractor.
Still, if you one find a conjugacy that excises the neighborhood of the nearly-attracting
13-cycle, that would deal with the main impediment to zeta function convergence in this
case. The method cannot be generalized to higher dimensions. For private amusement,
just try constructing a 2-d conjugacy for something like a Hénon map→ Lozi map. Good
luck.

There is immense literature on measures of 1-d maps (A. Boyarski? A. Lasota and
M.C. Mackey [12]? G. Froyland? E. Bollt? J. M. Aguirregabiria, Robust chaos with
prescribed natural invariant measure and Lyapunov exponent; arXiv:0907.3790? D.J.
Driebe, Fully Chaotic Map and Broken Time Symmetry (Kluwer, 1999)? ... and authors
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would profit from using some of that work to illustrate their ideas. They should do a lit-
erature search on measures of 1-d maps. This is reminiscent of work on natural measures
published since 1980’s by Hungarian school (Szapfalusy, Tel, ...), Bollt, and many others.

1-d maps with a single critical point are very special, and unfortunately little of this
is useful in higher dimensions - already for the Hénon attractor there is a fractal set of
critical points (ie, stable-unstable manifold tangencies) and their images. No conjugacy
or a finite set of conjugacies can help there...

⇑PRIVATE
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24.1. Integral representation of Jonquière functions. Check
the integral representation

J(z, α) =
z
Γ(α)

∫ ∞

0
dξ

ξα−1

eξ − z
for α > 0 .(24.48)

Note how the denominator is connected to Bose-Einstein
distribution. Compute J(x+ iε)− J(x− iε) for a real x > 1.

24.2. Power law correction to a power law. Expand ( 24.21)
further and derive the leading power law correction to
(24.24).

24.3. Power-law fall off. In cycle expansions the stabilities
of orbits do not always behave in a geometric fashion.
Consider the map f

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

This map behaves as f → x as x → 0. Define a symbolic
dynamics for this map by assigning 0 to the points that
land on the interval [0, 1/2) and 1 to the points that land
on (1/2, 1]. Show that the stability of orbits that spend a
long time on the 0 side goes as n2. In particular, show that

Λ 00···0︸︷︷︸
n

1 ∼ n2

24.4. Power law fall-off of Floquet multipliers in the sta-
dium billiard∗∗. From the cycle expansions point of
view, the most important consequence of the shear in J n

for long sequences of rotation bounces n k in (8.21) is that
the Λn grows only as a power law in number of bounces:

Λn ∝ n2
k . (24.49)

Check.

24.5. Probabilistic zeta function for maps. Derive the
probabilistic zeta function for a map with recurrence dis-
tribution ψn.
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24.6. Accelerated diffusion. Consider a map h, such that
ĥ = f̂ , but now running branches are turner into stand-
ing branches and vice versa, so that 1, 2, 3, 4 are standing
while 0 leads to both positive and negative jumps. Build
the corresponding dynamical zeta function and show that

σ2(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

24.7. Anomalous diffusion (hyperbolic maps). Anomalous
diffusive properties are associated to deviations from lin-
earity of the variance of the phase variable we are look-
ing at: this means the diffusion constant (17.13) either
vanishes or diverges. 33 We briefly illustrate in this exer-
cise how the local local properties of a map are crucial to
account for anomalous behavior even for hyperbolic sys-
tems.

Consider a class of piecewise linear maps, relevant to the
problem of the onset of diffusion, defined by 34

fε (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λx for x ∈
[
0, x+1

]
a − Λε,γ|x − x+| for x ∈

[
x+1 , x+2

]
1 − Λ′(x − x+2 ) for x ∈

[
x+2 , x−1

]
1 − a + Λε,γ|x − x−| for x ∈

[
x−1 , x−2

]
1 + Λ(x − 1) for x ∈

[
x−2 , 1

]
(24.50)

where Λ = (1/3 − ε1/γ)−1, Λ′ = (1/3 − 2ε1/γ), Λε,γ =
ε1−1/γ, a = 1+ ε, x+ = 1/3, x+1 = x+− ε1/γ, x+2 = x+ + ε1/γ,
and the usual symmetry properties (26.11) are satisfied.

Thus this class of maps is characterized by two escaping
windows (through which the diffusion process may take
place) of size 2ε1/γ: the exponent γ mimicks the order of
the maximum for a continuous map, while piecewise lin-
earity, besides making curvatures vanish and leading to
finite cycle expansions, prevents the appearance of stable
cycles. The symbolic dynamics is easily described once
we consider a sequence of parameter values {εm}, where
εm = Λ

−(m+1): we then partition the unit interval though
the sequence of points 0, x+1 , x+, x+2 , x−1 , x−, x−2 , 1 and la-
bel the corresponding sub–intervals 1, sa, sb, 2, db, da, 3:
symbolic dynamics is described by an unrestricted gram-
mar over the following set of symbols

{1, 2, 3, s# · 1i, d# · 3k} # = a, b i, k = m,m + 1,m + 2, . . .

This leads to the following dynamical zeta function:

ζ−1
0 (z, α) = 1 − 2z

Λ
− z
Λ′

− 4 cosh(α)ε1/γ−1
m

zm+1

Λm

(
1 − z
Λ

)−1

33Predrag: rewrite this
34Predrag: need a figure here
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from which, by (26.8) we get

D =
2ε1/γ−1

m Λ−m(1 − 1/Λ)−1

1 − 2
Λ
− 1
Λ′
− 4ε1/γ−1

m

(
m+1

Λm(1−1/Λ) +
1

Λm+1(1−1/Λ)2

) (24.51)

The main interest in this expression is that it allows ex-
ploring how D vanishes in the ε �→ 0 (m �→ ∞) limit: as
a matter of fact, from (24.51) we get the asymptotic be-
havior D ∼ ε1/γ, which shows how the onset of diffusion
is governed by the order of the map at its maximum.

Remark 24.6 Onset of diffusion for continuous maps.
The zoology of behavior for continuous maps at the on-
set of diffusion is described in refs. [15, 16, 25]: our
treatment for piecewise linear maps was introduced in
ref. [26].

⇓PRIVATE
24.8. Scaling of covering intervals for intermittent map. The

bound (22.6) is violated for intermittent systems. Show
that the problem is that and the survivor strip M i which
includes the marginal fixed scales with symol string length
differently from its estimate by 1/|Λi|. ⇑PRIVATE

⇓PRIVATE24.9. Inverse Laplace. Consider (26.32) in the case of
discrete time mappings: show that it can be rewritten in a
form analogous to (??). ⇑PRIVATE
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Chapter 25

Continuous symmetries

Hard work builds character.
— V.I. Warshavski, Private Investigator

Trace formulas relate short time dynamics (unstable periodic orbits) to long
time invariant state space densities (natural measure). Higher dimensional
dynamics requires inclusion of higher-dimensional compact invariant sets,

such as partially hyperbolic invariant tori, into trace formulas. A trace formula
for a partially hyperbolic (N + 1)-dimensional compact manifold invariant under
N global continuous symmetries is derived here. In this extension of “periodic
orbit” theory there are no or very few periodic orbits - the relative periodic orbits
that the trace formula has support on are almost never eventually periodic.

The classical trace formula for smooth continuous time flows
chapter 18

∞∑
α=0

1
s − sα

=
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
relates the spectrum of the evolution operator

etA(x′, x) = δ
(
x′ − f t(x)

)
eβ·A

t(x) (25.1)

to the unstable periodic orbits p of the flow ft(x). This formula (and the associated
spectral determinants and cycle expansions) is valid for fully hyperbolic flows.

chapter 19

Here we derive the corresponding formula for dynamics invariant under a
compact group of symmetry transformations. In what follows, a familiarity with
basic group-theoretic notions is assumed, with the definitions relegated to ap-
pendix K.1.

fast track:

chapter 21, p. 502
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25.1 Compact groups

All the group theory that we shall need here is given by the Peter-Weyl theorem,
and its corollaries: A compact Lie group G is completely reducible, its represen-
tations are fully reducible just as in the finite group representation theory, every
compact Lie group is a closed subgroup of U(n) for some n, and every continuous,
unitary, irreducible representation of a compact Lie group is finite dimensional.

The theory of semisimple Lie groups is elegant, perhaps too elegant. In what
follows, we serve group theoretic nuggets in need-to-know portions, offering a
pedestrian route through a series of simple examples of familiar aspects of group
theory and Fourier analysis, and a high, cyclist road in the text proper.

But main idea is this: the character χm(θ) of the Frobenius-Weyl representation
theory is a generalization to all compact continuous Lie groups of the weight eiθm

in the Fourier decomposition of a smooth function on a circle into eigenmodes
of translation. mth Fourier component fits m node function around the circle;
(m1,m2, . . . ,mN) representation of a compact Lie group fits a corresponding multi-
mode function onto the smooth manifold swept out by the action of the group. So a
basis of for a d-dimensional representation (m1,m2, . . . ,mN) of an N-dimensional
compact Lie group is a set of d linearly independent eigenfunctions on the N-
dimensional compact group manifold, with m1, m2, . . ., mN “nodes” along the N
directions needed to span the manifold. For a circle this is Fourier analysis; for
a sphere these are spherical harmonics, and the Peter-Weyl theorem states that
analogous expansion exists for every compact Lie group. We will never need to
construct these explicitly.

exercise 25.1
exercise 25.3

25.1.1 Group representations

The vector space qa.

Repeated indices summed throughout this chapter.

The symmetry group, i.e. the group of all linear transformations

q′a = Ga
bqb a, b = 1, 2, . . . , d ,

which leaves invariant (equivariant) the form of the dynamical equations. The
[d×d] matrices G form a representation of the group G. Vectors in the dual space
q transform as

q′a = Ga
bqb .

Tensors transform as

h′ab
c = Ga

f Gb
eGc

dh f e
d .
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group!integral—(textbfA function is an invariant function if (and only if) for any transformation g ∈ G
and for any set of vectors q, r, s, . . .

H(Gq,Gr, . . .Gs) = H(q, r, . . . , s) . (25.2)

Unitary transformations can be generated by sequences of infinitesimal trans-
formations

Ga
b � δa

b + iεi(Ti)
b
a εi ∈ R , Ti hermitian .

In this chapter we consider only infinitesimal transformations of form G = 1+ iD,
|Da

b| � 1, i.e., the transformations connected to the identity. In general, we
also need to study invariance under discrete coordinate transformations (see chap-
ter 21).

Consider a multilinear invariant function

H(q, r, . . . , s) = h ...c
ab... qarb . . . sc

In terms of the generators Ti, H is invariant if Ti “annihilate” it,

Ti · h = 0

(Ti)
a′
a h c...

a′b... + (Ti)
b′
b h c...

ab′... − (Ti)
c
c′h

c′...
ab... + . . . = 0 . (25.3)

Example 25.1 Lie algebra. As one does not want the rules to change at every step,
the generators Ti are themselves invariant tensors,

(Ti) a
b = Ga

a′Gb
b′Gii′ (Ti′ ) a′

b′ , (25.4)

where Gi j is the adjoint [N×N] matrix representation of g ∈ G.

The [d×d] matrices Ti are in general non-commuting, and from (25.3) it follows
that they close N-element Lie algebra

TiT j − T jTi = iCi jkTk i, j, k = 1, 2, ...,N ,

where Ci jk are the structure constants.

Vector space V is irreducible if the only invariant subspaces of V under the
action of G are (0) and V . If every V on which G acts can be written as a direct
sum of irreducible subspaces, then G is completely reducible.

Consider a group integral of form

∫
dg Ga

bGc
d , (25.5)
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where Ga
b is a unitary [d×d] matrix representation of g ∈ G, G a compact Lie

group, and Ga
b is unitary. G† is the matrix representation of the action of g on the

dual vector space, which we write as

Ga
b = (G†)b

a ,

and the integration is over the entire range of g ∈ G, G a compact Lie group. The
integral (25.5) is defined by two requirements:

(1) Normalization:

∫
dg = 1 . (25.6)

(2) Orthonormality of irreducible representations: How do we define
∫

dg Ga
b

? The action of g ∈ G is to rotate a vector xa into x′a = Ga
bxb

Surface traced out by action of G
for all possible group elements

G

x
x’

The averaging smears x in all directions, hence the second integration rule

∫
dg Ga

b = 0 , G is a non-trivial representation of g , (25.7)

simply states that the average of a vector is zero.

A representation is trivial if G = 1 for all group elements g. In this case no
averaging is taking place, and the first integration rule (25.6) applies.

What happens if we average a bilinear combination of a pair of vectors x, y?
There is no reason why a pair should average to zero; for example, we know that
|x|2 =

∑
a xax∗a = xaxa is invariant (we are considering only unitary representa-

tions), so it cannot have a vanishing average. Therefore, in general

∫
dg Ga

bGc
d � 0 . (25.8)

To get a feeling of what the right-hand side looks like, let us work out an example:
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singletExample 25.2 A group integral for SU(n) V × V space: Let Ga
b be the defining

[n×n] matrix representation of SU(n). The defining representation is non-trivial, so it
averages to zero by (25.7). The first non-vanishing average involves G†, the matrix
representation of the action of g on the conjugate vector space. To avoid dealing with
the multitude of dummy indices, we resort to diagrammatic notation:

Ga
b =

��
��
��
��

��
��
��
��a b , Ga

b = ��
��
��
��

��
��
��
��a b . (25.9)

For G the arrows and the triangle point the same way, while for G† they point the
opposite way. Unitarity G†G = 1 is given by

Gc
aGc

b = Ga
cGb

c = δb
a

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
��

��
��
��
��

��
��
��
�� =

��
��
��
�� .

(25.10)

In this notation, the GG† integral (25.8) to be evaluated is

∫
dg

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

c

d

b

a
. (25.11)

For SU(n) the V ⊗ V tensors decompose into the singlet and the adjoint rep

��
��
��
��

��
��
��
��

= 1
n ������������ + ������������

δd
aδ

b
c = 1

nδ
b
aδ

d
c + 1

a (Ti)b
a (Ti)d

c .
(25.12)

We multiply (25.11) with the above decomposition of the identity. The unitarity relation
(25.10) eliminates G’s from the singlet:

��
��
��
��

��
��
��
��

=
1
n

������������ + ���
���
���
���

����
����
����
���� . (25.13)

The generators Ti are invariant tensors, and transform under G according to (25.4).
Multiplying by G−1

ii , we obtain

= . (25.14)

Hence, the pair GG† in the defining representation can be traded in for a single G in the
adjoint rep

Ga
dGb

c = 1
d δ

d
cδ

b
a + 1

a (Ti)b
a Gi j

(
T j

)d

c

= 1
n + .

(25.15)

The adjoint representation Gi j is non-trivial, so it gets averaged to zero by (25.7). Only
the singlet survives

∫
dg =

1
d∫

dg Ga
dGb

c =
1
d
δd

cδ
b
a . (25.16)
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irreducible!representation
representation!irreducible
Schur’s Lemma
Clebsch-

Gordan!series
character—(textbf
representation!character
character!orthonormality
character—)
group!integral—)

Now let G be any irreducible [d×d] rep. Irreducibility (known in this context
as “Schur’s Lemma”) means that any invariant [d×d] tensor Aa

b is proportional to
δa

b. As the only bilinear invariant is δab, the Clebsch-Gordan series

=
1
d

+

irreps∑
λ

λ (25.17)

contains one and only one singlet. Only the singlet survives the group averaging,
and (25.16) is true for any [d×d] irreducible rep. If we take G(μ)

α
β and G(λ)

d
c in

inequivalent representations λ, μ (there is no matrix K such that G(λ) = KG(μ)K−1

for any g ∈ G), then there is no way of forming a singlet, and

∫
dg G(λ)

a
dG(μ)

β
α = 0 if λ � μ . (25.18)

The trace of an irreducible [d×d] matrix representation λ of g is called the
character of the representation:

χλ(g) = tr G(λ) = G(λ)
a

a . (25.19)

The character of the conjugate representation is

χλ(g) = tr G(λ)† = G(λ)a
a = χλ(g)∗ . (25.20)

Contracting (25.17) with two arbitrary invariant [d×d] tensors hd
a and ( f †)b

c, we
obtain the character orthonormality relation

∫
dg χλ(hg)χμ(g f ) = δμλ

1
dλ
χλ(h f †) (25.21)

The character orthonormality tells us that if two group invariant quantities share
a GG† pair, the group averaging sews them into a single group invariant quantity.
The replacement of Ga

b by the character χλ(h†g) does not mean that any of the
tensor index structure is lost; Ga

b can be recovered by differentiating

Ga
b =

d
dhb

aχλ(h†g) . (25.22)

The diagrammatic notation and the characters are two equivalent notations for
evaluating group integrals.

All the group theory we shall need here is most compactly summarized by the
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group!representation
representation!matrix

Group Orthogonality Theorem: Let Dm, Dm′ be two irreducible matrix repre-
sentations of a compact group G of dimensions dm, dm′ ,

∫
G

dg Dm(g)abD∗
m′(g)a′b′ =

1
dm
δm,m′δaa′δbb′ .

Here dg is the Haar measure, invariant under group transformations

∫
G

dg =
∫

G
dμ(x) =

∫
G

dμ(gx) ,

and normalized∫
G

dg = 1 ,

so that the group average of an invariant scalar quantity is the quantity itself. For a
finite group G with |G| group elements the normalized Haar measure is a discrete
sum.

dμ(x) =
1
|G|

∑
g

δ(gx) .

The new trace formula follows from the full reducibility of representations
of a compact group G acting linearly on a vector space V , with irreducible rep-
resentations labeled by sets of integers m = (m1, · · · ,mN), and the vector space
V decomposed into invariant subspaces Vm. For a N-dimensional compact Lie
group G the fundamental result is the Weyl1 full reducibility theorem, with pro-
jection operator onto the Vm irreducible subspace given by

Pm = dm

∫
G

dg χm(g−1)Og . (25.23)

The group elements g = g(θ1, . . . , θN) = eiθ·T are parameterized by N real numbers
{θ1, . . . , θN} of finite range, hence designation “compact.” The N group generators
Ta, a = 1, · · · ,N close the Lie algebra of G.

25.1.2 Transformation operators, projection operators

2 3 How does the group act on a function f (x) of x? The transformed function
should have the same value at gx as the initial function has at x, or, denoting by

1Predrag: Weyl reference
2Bartsch: I can’t make sense out of the projector (25.23). Pm must operate on the big, reducible

representation space. Dm(g−1) is a matrix of dimension dm, which operates on the irreducible repre-
sentation. Should the formula have the total representation matrix D(g−1) instead of Dm?

3Predrag: credit [46]
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characterOg the desired transformation:

Og f (D(g)x) = f (x) .

Here the operator Og acts on functions, whereas D(g) is a matrix representation of
the group element g that acts on position vectors x ∈ V .

Replacing x with D(g−1)x,

Og f (x) = f (D(g−1)x)

we have the conventional, Wigner’s definition of the effect of transformations on
functions.

Now, consider the effect of two successive transformations g1g2 = g. We have

Og2Og1 f (x) = Og2 f (g−1
1 x) = f (g−1

2 [g−1
1 x]) = f ((g1g2)−1x) = Og f (x)

Hence if g1g2 = g, we have Og2Og1 = Og. 4

We will not use the Og notation in what follows, but g operating on functions.

Suppose we have an arbitrary function or set of functions. How do we obtain
functions with desired symmetry properties? If f is an arbitrary function,

Pαi j f =
dα
|G|

∑
G

Dα
i j(g

−1)∗g f = Fα
i j

which is either zero or a basis function for the ith row of irrep α: a function of
symmetry species (α, i).

5

Example 25.3 Irreducible representations of the SO(2)N abelian group: (Exam-
ple 10.2 continued) All irreducible representations of the SO(2)N abelian group acting
on torus T N are are 1-dimensional and labeled by N integers m = (m1, · · · ,mN). The
character of m representation is 6

χm(g) = e−im·φ

4Predrag: recheck web
5Predrag: [46], p. 16 as a solution to the problem of proving the projection property.
6Predrag: character formula looks wrong - should be a sum, not a product? Also, this is U(1),

not SO(2)
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group!integration
integration!group
Haar measure
symmetry!dynamical

system
dynamics!symmetry
flow!generator of
generator!of flow

Example 25.4 Haar measure for SO(2): The normalized Haar measure is dg =
dφ/(2π).

Example 25.5 Haar measure for SO(3):

SO(3) : dg =
1

2π2
sin2(φ/2)dΩedφ

with dΩe solid angle surface element for unit vector e.∫
SO(3)

dg = 8π2

see ref. [19].

The character χ is the trace χm(g) = tr Dm(g) =
∑dm

i=1 Dm(g)ii , where Dm(g) is
a [dm ×dm]-dimensional matrix representation of action of the group element g on
the irreducible subspace Vm. We will sometimes employ notation g as a shorthand
for D(g), i.e., by x′ = gx we mean the matrix operation x′i =

∑d
j=1 D(g)i j x j, and

by f ′(x) = g f (x) = f (gx), f (x) a smooth function over the state space x ∈ M, we
mean f ′(x) = f (D(g)x).

For an invariant scalar quantity the average over the group in (25.23) must
be the quantity itself, so the group integral is weighted by the normalized Haar
measure,

∫
G

dg = 1, and dm is the multiplicity of degenerate eigenvalues in repre-
sentation m.

25.2 Continuous symmetries of dynamics

7 If action of every element g of a compact group G commutes with the flow
ẋ = v(x),

D(g)v(x) = v(D(g)x) , D(g) f t(x) = f t(D(g)x) ,

G is a global symmetry of the dynamics. The finite time evolution operator (25.1)
can be written as Lt = etA in terms of the time-evolution generator (16.27)

Aρ(x) = lim
δτ→0+

1
δτ

(
Lδτ− I

)
ρ(x) = −∂i(vi(x)ρ(x)) . (25.24)

The operator etA commutes with all symmetry transformations eiθ·T . For a given
state space point x together they sweep out a (N+1)-dimensional manifold of
equivalent orbits.

7Predrag: reintroduce shorthand g here
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In other words, the time evolution itself is a noncompact 1-parameter Lie
group. Thus all continuous symmetries can be considered as being on on the
same footing.

A symmetry group element acts on L(x, y), the kernel of Lt in the state space
representation (25.1), as

g−1L(y, x) = L(D(g−1)y, x) = L(y,D(g)x) . (25.25)

Here we have used |det D(g)| = 1. The irreducible eigenspaces of G are also
eigenspaces of the dynamical evolution operator Lt, with the decomposition of the
evolution operator to irreducible subspaces, L =∑

m Lm , following immediately
by application of the projection operator (25.23):

Lt
m(y, x) = dm

∫
G

dg χm(g)Lt(Dm(g−1)y, x) . (25.26)

As G commutes with f t, all eigenfunctions ρ of Lt must be invariant under G,
ρ(x) = ρ(gx). Infinitesimally, in terms of Lie algebra generators Tφρ(x) = 0.

25.2.1 Relative periodic orbits

Relative periodic orbits are orbits x(t) in state space M which exactly recur

x(t) = gx(t + T) (25.27)

for a fixed relative period T and a fixed group action g ∈ G of M. This group
action is sometimes referred to as a “phase,” or a “shift.” Relative periodic orbits
are to periodic solutions what relative equilibria (traveling waves) are to equilibria
(steady solutions).

For dynamical systems with continuous symmetries relative periodic orbits are
almost never eventually periodic, i.e., they almost never lie on periodic trajectories
in the full state space. As almost any such orbit explores ergodically the manifold
swept by action of G, they are sometimes referred to as “quasiperiodic.” However,
an orbit can be periodic if it satisfies a special symmetry. If gm = 1 is of finite
order m, then the corresponding orbit is periodic with period mT . If g is not of
finite order k, orbits can be periodic only after the action of g.

chapter 21

In either case, we refer to the orbits inM satisfying (25.27) as relative periodic
orbits. ⇓PRIVATE

As G commutes with f t, all eigenfunctions ρ of Lt must be invariant under G,
ρ(x) = ρ(gx). Infinitesimally, in terms of Lie algebra generators Tφρ(x) = 0. ⇑PRIVATE
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marginal!stability
Lagrangian!coordinates
Eulerian coordinates
cycle!marginal

stability
marginal

stability!cycle

25.2.2 Stability of relative periodic orbits

8 A infinitesimal group transformation maps globally a trajectory in a nearby tra-
jectory, so we expect the initial point perturbations along to group manifold to
be marginal, growing at rates slower than exponential. The argument is akin
to (4.8), the proof of marginality of perturbations along the trajectory. Con-
sider two nearby initial points separated by an infinitesimal group rotation δθ:
δx0 = f δθ(x0) − x0 = v(x0)δθ. By the commutativity of the group with the flow,
f t+δt = f δt+t. Expanding both sides of ft( f δt(x0)) = f δt( f t(x0)), keeping the lead-
ing term in δt, and using the definition of the Jacobian matrix (4.5), we observe
that Jt(x0) transports the velocity vector at x0 to the velocity vector at x(t) at time
t:

v(x(t)) = Jt(x0) v(x0) . (25.28)

In nomenclature of page 88, the Jacobian matrix maps the initial, Lagrangian
coordinate frame into the current, Eulerian coordinate frame.

However, already at this stage we see that if the orbit is periodic, gpx(Tp) =
x(0), at any point along cycle p the velocity v is an eigenvector of the Jacobian
matrix Jp = JTp with an eigenvalue of unit magnitude,

JTp(x) v(x) = v(x) , x ∈ Mp . (25.29)

Two successive points along the cycle separated by δx0 have the same separation
after a completed period δx(Tp) = gpδx0, hence eigenvalue of magnitude 1.

25.3 Symmetry reduced trace formula for flows

9 As any pair of nearby points on a periodic orbit returns to itself exactly at each
cycle period, the eigenvalue of the Jacobian matrix corresponding to the eigen-
vector along the flow necessarily equals unity for all periodic orbits. In presence of
N-dimensional symmetry Lie group G, further N eigenvalues equal unity. Hence
the trace integral trLt 10 requires a separate treatment for the direction along the
flow and for the N group transformation directions.

To evaluate the contribution of a prime cycle p of period Tp, restrict the inte-
gration to an infinitesimally thin manifold Mp enveloping the cycle and all of its
rotations by G, 11 pick a point on the cycle, and choose a local coordinate system
with a longitudinal coordinate dx‖ along the direction of the flow, N coordinates

8Predrag: finish this section
9Predrag: not quite true, fix

10Predrag: Ole: clarify this — draw a picture.
11Predrag: draw figure

rpo - 29oct2007 boyscout version14.4, Mar 19 2013



CHAPTER 25. CONTINUOUS SYMMETRIES 616

dxG along the invariant manifold swept by p under the action of the symmetry
group G, and (d−N−1) transverse coordinates x⊥

tr pLt
m = dm

∫
G

dg χm(g)
∫
Mp

dx⊥dx‖dxG δ
(
x − Dm(g) f t(x)

)
. (25.30)

The integral along the longitudinal coordinate was computed in (18.20). Elimi-
nating the time dependence by Laplace transform one obtains

∫ ∞

0
e−st

∮
p

dx‖ δ
(
x‖ − f t(x‖)

)
= Tp

∞∑
r=1

e−sTpr . (25.31)

Example 25.6 Trace group integral for SO(2): Parameterize rotations on a circle
by φ ∈ [0, 2π). The normalized Haar measure is dg = dφ/(2π), and a trajectory point
advanced by time t and shifted by φ can be denoted x(t, φ). The character is e−imφ.
For a circle this is just Fourier analysis, for a general compact semisimple Lie group
Weyl’s generalization of Fourier analysis. Consider projection on the mth subspace of
the integral along the rotational direction

IG =

∫
G

dg χm(g)
∮

dxG δ(xG − Dm(g)xG(t, 0)) .

Coordinate xG is the set of points swept by [0, 2π] rotation of a point x0 = xG(0, 0), so it
is natural to parametrize it by the rotation angle φ′: xG = x(0, φ′), and rewrite the circle
integral as∮

dxG δ(xG − Dm(g)xG(t, 0)) =
∫ 2π

0
dφ′

dx
dφ

(0, φ′) δ
(
x(0, φ′) − x(t, φ′ + φ)

)
.

Inverting the order of integrations,

IG =

∫ 2π

0
dφ′

∫ 2π

0

dφ
2π

e−imφ dx
dφ

(0, φ′) δ
(
x(0, φ′) − x(t, φ′ + φ)

)
.

The integral is novanishing for smallest φp for which x(0, φ′) = x(t, φ′+φp), and for all its
repeats. Expand the argument of δ function in each such neighborhood φ′ = φp + φ

′′.

x(t, φ′ + φp + φ
′′) = x(t, φ′ + φp) + φ′′

dx
dφ

(t, φ′ + φp) + · · ·

= x(t, φ′) + φ′′
dx
dφ

(t, φ′) + · · · .

substituting back yields

IG =

∫ 2π

0

dφ′

2π

∞∑
r=1

e−imφpr dx(0, φ′)
dφ

∫ ε

−ε
dφ′′ e−imφ′′δ(φ′′

dx
dφ

(0, φ′))

=

∞∑
r=1

e−imφpr .
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trace!formula!symmetry
reduced

periodic orbit!relative
relative!periodic orbit

The m subspace group integral is simple:∫
G

dg χm(g)
∫
Mp

dxG δ
(
xG − Dm(g) f rTp(xG)

)
= χm(gr

p). (25.32)

For the remaining transverse coordinates the Jacobian matrix is defined in a (N+1)-
dimensional surface of section P of constant (x‖, xG). Linearization of the periodic
flow transverse to the orbit yields∫

P
dx⊥δ

(
x⊥ − Dm(gr

p) f rTp(x⊥)
)
=

1∣∣∣∣det
(
1 − M̃r

m,p

)∣∣∣∣ , (25.33)

12 where M̃m,p = Dm(gp)Mp is the p-cycle [(d − 1 − N)×(d − 1 − N)] symmetry
reduced Jacobian matrix, computed on the reduced surface of section and rotated
by gp. As in (18.5), we assume hyperbolicity, i.e., that the magnitudes of all
transverse eigenvalues are bounded away from unity.

The classical symmetry reduced trace formula for flows follows by substitut-
ing (25.31) - (25.33) into (25.30):

∞∑
β=0

1
s − sm,β

= dm

∑
p

Tp

∞∑
r=1

χm(gr
p)

er(βAp−sTp)∣∣∣∣det
(
1 − M̃r

m,p

)∣∣∣∣ . (25.34)

13 (we can restore eβAp from (25.1) provided that the observable a(x) also com-
mutes with G.) The sum is over all prime relative periodic orbits p and their
repeats, orbits in state space which satisfy

x(t) = D(gp)x(t + Tp) (25.35)

for a fixed relative period Tp and a fixed shift gp.

The m = (0, 0, · · · , 0) subspace is the one of most relevance to chaotic dynam-
ics, as its leading eigenfunction, with the fewest nodes and the slowest decay rate,
corresponds to the natural measure observed in the long time dynamics. ⇓PRIVATE

For a compact Lie group the prefactor dm in (25.23) counts degenerate eigen-
value multiplicities.

For example, the special case for SO(3)) where m = { j}, the degenerate eigen-
value multiplicity dm = (2 j + 1) is familiar from quantum mechanics. ⇑PRIVATE

In contrast to the case of continuous symmetries, where relative periodic or-
bits are almost never eventually periodic, i.e., they almost never lie on periodic
trajectories in the full state space [26], for discrete symmetries all relative peri-
odic orbits are eventually periodic. 14

12Predrag: switch from J to M
13Predrag: add the determinant
14Predrag: add here parts of PER’s Appendix B.
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Harter, W. G.
Weyl, H.
class algebra

Résumé

Commentary

Remark 25.1 Semisimple Lie groups: 15 Here we need only basic results, on the level
of any standard group theory textbook [ 2]. We found Tinkham [8] the most enjoyable as
a no-nonsense, the user friendliest introduction to the basic concepts. The construction
of projection operators given here is taken from refs. [ 23, 24]. Who wrote this down
first we do not know, but we like Harter’s exposition [42, 41, 43] best. The theory of
class algebras [42, 41, 43] offers a more elegant and systematic way of constructing the
maximal set of commuting invariant matrices M i than the sketch offered here. Chapter
2. of ref. [9] offers a clear and pedagogical introduction to Lie groups of transformations.
For the Group Orthogonality Theorem see, for example, [ 16, 18], or Google.

Remark 25.2 Full reducibility of semisimple Lie groups:

The study of integrals over compact Lie groups with respect to Haar measure is
important in many areas of mathematics and physics, see Mehta [20]. In 1896-1897
Frobenius introduced notions of “characters” and group “representations,” and proved the
full reducibility of representations of finite groups. The characters χm(g) for all compact
semisimple Lie groups were constructed and the full reducibility proven by Weyl, extend-
ing Cartan’s local Lie algebra classification to a global theory of group representations.
For the history of this period, see the excellent essay by Hawkins [15].

Diagrammatic notation for group theory is explained in the birtracks.euwebbook.

Remark 25.3 A brief history of relativity: In context of semiclassical quantization
Creagh and Littlejohn [23, 24] concentrate on the case when the continuous symmetry
family of orbits includes a true periodic orbit (they use infinitesimal variation around true
periodic orbit), not the symmetry reduced case considered here (where almost every rela-
tive periodic orbit of the symmetry-reduced dynamics is not a periodic orbit in the full
space). They emphasize generalized surface of section dynamics. They refer to relative
periodic orbits as “generalized periodic orbits,” with “generalized period” T p = (Tp,mp).
They mention, but do not go to irreducible reps of the symmetry groups, hence no equiv-
ariant trace formula in these papers. Instead, the explicitly compute group volumes. In
addition to the reduced dynamics |det (1−M⊥)| they get ∂θ/∂J which we do not have. The
Berkeley group did it right for discrete symmetries [17, 4]. 16

This is done in ref. [5] which we follow here, and in ref. [26] for axially-symmetric
case. Creagh [5] refers to relative periodic orbits as “pseudoperiodic” orbits. Ref. [ 26]
refers to relative periodic orbits as “reduced periodic” orbits, and to the corresponding
orbits in the full state space as “quasiperiodic.”17 Creagh remarks at the very end of his
paper to his formula (6.4) as the “pleasing result that the quantally reduced spectrum
is determined by the classically reduced periodic orbits in the usual way.” 18 Ref. [34]
discusses a trace formula in symmetry-reduced space. Muratore-Ginanneschi [ 27] gives

15Predrag: find good reference on Peter-Weyl theorem
16Predrag: Probably suffices to refer to Creagh [5] only
17Predrag: use word quasiperiodic
18Predrag: but no character weight in (6.4)?
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an elegant discussion of “zero-modes” in the path integral formulation, but does not go to
irreps either.

Ref. [25] applies the method to the problems of noninteracting identical particles,

19

One of the goals of nonlinear dynamics is to describe the long time evolu-
tion of ensembles of trajectories, when individual trajectories are exponentially
unstable. The main tool in this effort have been trace formulas because they make
explicit the duality between individual short time trajectories, and long time in-
variant densities (natural measures, eigenfunctions of evolution operators). So
far, the main successes have been in applications to low dimensional flows and
iterated mappings, where the compact invariant sets of short-time dynamics are
equilibria, periodic points and periodic orbits. Dynamics in higher dimensions re-
quires extension of trace formulas to higher-dimensional compact invariant sets,
such as partially hyperbolic invariant tori.

Here we have used a particularly simple direct product structure of a global
symmetry that commutes with the flow to reduce the dynamics to a symmetry
reduced (d−1−N)-dimensional state spaceM/G. The trace formulas do not require
explicit construction (in general difficult) neither of the reduced state space, nor
of the Haar measures.

Amusingly, in this extension of “periodic orbit” theory from unstable 1-dimensional
closed orbits to unstable (N + 1)-dimensional compact manifolds invariant under
continuous symmetries, there are no or very few periodic orbits. Relative periodic
orbits are almost never eventually periodic, i.e., they almost never lie on periodic
trajectories in the full state space [26], unless forced to do so by a discrete sym-
metry, so looking for periodic orbits in systems with continuous symmetries is a
fool’s errand.

Restriction to compact Lie groups in derivation of the trace formula (25.34)
was a matter of convenience, as the general case is more transparent than particu-
lar implementations (such as SO(2) and SO(3) rotations, with their explicit Haar
measures and characters). This can be relaxed as the need arises - much powerful
group theory developed since Cartan-Weyl era is at our disposal. For example, the
time evolution is in general non-compact (a generic trajectory is an orbit of infinite
length). Nevertheless, the trace formulas have support on compact invariant sets in
M, such as periodic orbits and (N+1)-dimensional manifolds generated from them
by action of the global symmetry groups. Just as existence of a periodic orbit is
a consequence of given dynamics, not any global symmetry, higher-dimensional
flows beckon us on with nontrivial higher-dimensional compact invariant sets (for
example, partially hyperbolic invariant tori) for whom the trace formulas are still
to be written.

19Predrag: give references: [?] [?] [31] [32] [33]
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symmetry!dynamical
system

dynamics!symmetry
escape rate

Exercises boyscout

25.1. To be constructed: Derive the trace formula (??) for a
discrete symmetry

A dynamical system (M, f ) is invariant under a symmetry
group G if the map f : M → M (or the continous flow
f t) from the d-dimensional manifold M into itself (with
d finite) is invariant

f (gx) = g f (x)

for any coordinate x ∈ M and any finite non-singular lin-
ear representation g of any element g ∈ G.

Show that the evolution operator L(x, y) (25.1) satisfies
(25.25):

L(x, y) = L(gx, gy). ,

25.2. Haar measure for SU(n). SU(n) acts on vectors in C 2,
and preserves their absolute value, hence its action can be
parameterized by a 3-sphere S 3, and multiplication can
be viewed as an orthogonal transformation of S 3. This is
a special case of the formula N = n2−1 for the dimension
of SU(n). Show that the invariant Haar measure on SU(2)∫

SU(2)
f (g)dg =

1
4π2

∫ π

−π

∫ π

0

∫ π

0
sin2 φ1 sin φ2dθdφ1dφ2 f (θ, φ1, φ2)

is a normalized surface measure on S 3.

25.3. Relative periodic orbits for circles, bagels and spheres:
(a) Show that relative periodic orbits for a point scattering
specularly in a circular billiard are single scattering arcs.
Compute their stability. Compute the spectrum.

(b) Show that relative periodic orbits for a point scatter-
ing specularly in the plane that slices symmetrically up-
per half of a bagel (floating tire, torus) are single scatter-
ing arcs. Compute their stability. Compute the spectrum.
Compute the escape rate.

(c) Show that relative periodic orbits for a point scattering
specularly within a sphere billiard are single scattering
arcs. Compute their stability, spectrum.
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Flotsam

Look for rpo s in the pipe flow, relative both in the shift down the pipe and rotation
around the pipe axis.

Likelihood of finding a periodic orbit is zero. One expects some only if in
addition to a continuous symmetry one has a discrete symmetry which is not a
subgroup of the continuous symmetry. There are none such for the pipe flow.
Duct flow would have them.

However, Kuramoto-Sivashinsky and plane Coutte do have discrete symme-
tries in addition - that is why there are some equilibria (as opposed to relative
equilibria) and some periodic orbits in these cases. They belong to discrete sym-
metry subspaces. Atypical as they are (no turbulent solution will be confined to
these subspaces) they are important for periodic orbit theory, as there the shortest
orbits dominate.

I believe some but not all of Kawahara’s periodic orbits (for the reason ex-
plained above).

I have not looked at the isotropic turbulence orbits paper in detail (as I do not
think feel that there is interesting physics in such models) and do not know what
discrete symmetries they have; if any periodic orbits are found, they should be in
the discrete symmetry reduced subspaces.

Vector space V is irreducible if the only invariant subspaces of V under the
action of G are (0) and V . If every V on which G acts can be written as a direct
sum of irreducible subspaces, then G is completely reducible.

Replacing x with D(g−1)x,

Og f (x) = f (D(g−1)x)
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we have the conventional, Wigner’s definition of the effect of transformations on
functions.

Now, consider the effect of two successive transformations g1g2 = g. We have

Og2Og1 f (x) = Og2 f (g−1
1 x) = f (g−1

2 [g−1
1 x]) = f ((g1g2)−1x) = Og f (x)

Hence if g1g2 = g, we have Og2Og1 = Og. 22

We will not use the Og notation in what follows, but g operating on functions.

Suppose we have an arbitrary function or set of functions. How do we obtain
functions with desired symmetry properties? If f is an arbitrary function,

Pαi j f =
dα
|G|

∑
G

Dα
i j(g

−1)∗g f = Fα
i j

which is either zero or a basis function for the ith row of irrep α: a function of
symmetry species (α, i). 23

Thomas comments

The transformation (5) of the Liouville operator is not clear to me. I transform
densities according to ρ(x) → ρg(x) = ρ(gx), and covariance of the Liouville
operator requires that qg = L[ρg] if q = L[ρ], with two densities q, ρ. To achieve
that, the kernel must satisfy L(gy, gx) = L(y, x) (if the representation matrices have
unit determinant). I would therefore define the transformed kernel by gL(y, x) =
L(gy, gx).

Thomas: In your example of the flow with periodic boundary conditions, the
group of symmetries induced by the boundary conditions is a 2-dimensional lat-
tice, which is discrete and non-compact. The derivations of the paper do not apply.

Predrag: No - both plane Couette and KS are compactified on periodic domain
and have compact continuous symmetries: S1 (circle) or SO(2) for Kuramoto-
Sivashinsky, T2 (torus) or SO(2)2 for plane Couette. There is no 2-dimensional
Z2 non-compact discrete lattice.

Remember to check this paper: ref. [30].

The symmetry is spatial translation by an arbitrary amount, and you are look-
ing for eigenfunctions with the space dependence exp(ikx), with integer k, which
belongs to a representation space of S1. Relative periodic orbits are then orbits
that return to the initial configuration up to an arbitrary shift. Right?

22Predrag: recheck web
23Predrag: [46], p. 16 as a solution to the problem of proving the projection property.
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Right - except shift in not arbitrary, it is as fixed as the time period is. Currently
shifts are mod L (system size) as with both Kuramoto-Sivashinsky and plane Cou-
ette we turn translational directions into finite boxes with periodic b.c.

Eventual goal is to find these relative periodic orbit for spatially infinite sys-
tems (just like we find unstable periodic orbits of finite period along the infinite
time direction). But we have not done it, except for equilibria.

Paolo’s comments

Paolo Muratore-Ginanneschi 24 Oct 2006

1)In my opinion difference between your calculation and the one I present
in the phys. rep. (which reproduces by other means a result by Littlejohn and
Creagh J. Phys A 25 1992) consists only in the fact that localization for classical
trace formulae is exact.

2) This (obvious) observation has though an important consequence. The re-
sult for classical trace formulae must be interpreted as distribution valued as you
explained long ago in your paper with Eckhard.

Finite results may be obtained by integrating the trace over smooth test func-
tions as you did in the subspace associated to the zero mode associated with the
time derivative of the flow.

Rather than doing this, it seems to me that in the subspace spanned the zero
modes generated by the “Jacobi fields” induced by the symmetry group you used
the “completeness relation” for the matrix elements of irreducible representations
to express the “delta-function” otherwise emerging from the calculation of the
trace.

This choice is at the origin of the discrepancy with my calculation. There lo-
calization is not exact and the trace of the unitary operator I am computing can be
easily regularized for example by defining it as the limit of an euclidean continua-
tion. This latter choice provide in general the simplest way to make mathematical
sense of Feynman path integrals. So I do not need to decompose the result in its
irreducible components. This difference accounts in my opinion for the differ-
ence in the weights. It seems to me that a formal resummation over irreducible
representation in your formula provides a positive check of my claim.

3) What the two calculations have in common is the need to separate fluc-
tuations around the periodic orbit into longitudinal and transversal ones. In my
report I tried to show as clearly as I could that this change of variable is the core
of any degenerate by continuous symmetry stationary point calculation disregard-
ing whether localization is exact or not.

Such technique is in the path-integral context generally referred to as the
Faddeev-Popov trick. Over last weekend I became aware of two further references
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where the above claim is proved for finite dimensional systems and formally for
infinite dimensional ones in full generality. It enjoyed the reading of them so I
thought to advertise them

Fainberg and Semikhatok, Nuclear Physics B Volume 226, Issue 1 , 26 Septem-
ber 1983, Pages 253-268

this is the pedagogic version of Appendix 2 of

A.S. Schwarts Comm. Math. Phys 64 233

4) Coming to the detail of the calculation, I was assuming that the symmetry
group acts freely on the periodic orbit manifold. So the integral over the transver-
sal fluctuation trivially coincided with the group volume time period T×G .Maybe
I am missing something it but it seems to me that a similar assumption is also
needed in your calculation. In the absence of such an assumption the inner in-
tegral (i.e. over dxG) over the group orbit space may not include a non-trivial
isotropy subgroup. The weight would be in such a case

μ(G/H) , μ is the measure and H the stabilizer

The outer integral involving the group characteristic may become then non-
trivial. A partial example of this situation would be in my opinion an ODE with
SO(3) symmetry. In such a case the xG variables would be described by two angles
rather than three.

24

Spectrum (Lt) = {es0t, es1t, es2t, · · ·} , Re sα ≥ Re sα+1 (25.36)

and fixing the conjugate variables pφ to irreducible representation values φ.

Duality between t and s, φ and m endows this extended space with a natu-
ral symplectic structure: In deriving trace formulas, we switch from (x, t, g) to
(x⊥, s,m) representation.

The summation is over orbits that start at x with “angular momentum” m and
end at y after time t and “rotation” by g.

Consider the dynamics on the extended state space M× R × G where R cor-
responds to time.

(x′, t, g′) → (g f t(x′), t + t′, gg′)

in generalized “time” (t, g).

24Predrag: move this to trace.tex
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need to evaluate Jacobian for transformation

dx‖

∣∣∣∣∣∂(· · · , s,m)
∂(· · · , t, φ)

∣∣∣∣∣ = dtdφ .

Need to evaluate

Wp =

∫
p

dtdg = TpVp .

Or do we? Isn’t Vp

∫
G

dg = 1 for any relative periodic orbit? Creagh [5] gets to
that point (modulo discrete symmetry) by the end of his paper.

Consider motion of a test particle of mass μ � 1 in the restricted three-body
problem [21], under the influence of the gravitational force of two heavy bodies
with masses 1 and μ � 1 fixed at (−μ, 0) and (1 − μ, 0).

Historical notes

(On group characters ) presented to the Berlin Academy on July 16 1896 is of
fundamental importance. The following year that representations of groups began
to enter the picture, and again it was a concept due to Frobenius. Hence 1897 is
the year in which the representation theory of groups was born. Only in 1897 did
Frobenius learn of Molien’s work which he described in a letter to Dedekind as
“very beautiful but difficult.” He reformulated Molien’s work in terms of matrices
and then showed that his characters are the traces of the irreducible representa-
tions. This work was published in 1897. Frobenius’s character theory was used
with great effect by Burnside and was beautifully written up in Burnside’s 1911
edition of his Theory of Groups of Finite Order.

Consider a smooth continuous time flow

x(t) = f t(x0) = x0 +

∫ t

0
dτ v(x(τ)) , x(0) = x0 . (25.37)

obtained by integrating a d-dimensional set of ODEs ẋ = v(x).

Spectrum (Lt) = {es0t, es1t, es2t, · · ·} , Re sα ≥ Re sα+1 (25.38)

(assumed discrete)

Definition: A Lie group is a topological group G such that (1) G has the
structure of a smooth differential manifold. (2) The composition map G × G →
G : (g, h) → gh−1 is smooth.
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By “smooth” we here always mean C∞ differentiable.

Definition. Let πV : G → GL(V) be a representation, then the character of V
is χV = tr πV .

Character of the identity group element is χ(e) = d, since Di j(e) = δi j for
1 ≤ i, j ≤ d.

Essentially, this is a special case of what we have discussed above. The pro-
jection operator onto the m irreducible subspace of dimension dm is given by
Pm = (dm/|G|)

∑
χm(h)h−1, where χm(h) = tr Dm(h) 25 are the group characters,

and the transfer operator L splits into a sum of inequivalent irreducible subspace
contributions

∑
m trLm, 26

Lm(y, x) =
dm

|G|

∑
g∈G

χm(g)L(h−1y, x) . (25.39)

The prefactor dm in the above reflects the fact that a dm-dimensional representation
occurs dm times.

in terms the time-evolution generator (16.27)

A = −(∂ · v) −
d∑

i=1

vi(x)∂i . (25.40)

We ignore for the time being the question of what function space the eigen-
functions belong to, as we shall compute the eigenvalue spectrum without con-
structing any explicit eigenfunctions.

The reduced state space is the quotient M/G. This amounts to ignoring “an-
gles” θ and fixing the conjugate variables pθ to irreducible representation values
φ.

Duality between t and s, φ and m endows this extended space with a natu-
ral symplectic structure: In deriving trace formulas, we switch from (x, t, g) to
(x⊥, s,m) representation.

The summation is over orbits that start at x with “angular momentum” m and
end at y after time t and “rotation” by g.

need to evaluate Jacobian for transformation

dx‖

∣∣∣∣∣∂(· · · , s,m)
∂(· · · , t, φ)

∣∣∣∣∣ = dtdφ .

25Predrag: where is Dm defined
26Predrag: why h and not g?
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character!orthonormalitityNeed to evaluate

Wp =

∫
p

dtdg = TpVp .

Or do we? Isn’t Vp

∫
G

dg = 1 for any relative periodic orbit? Creagh [5] gets to
that point (modulo discrete symmetry) by the end of his paper.

Consider motion of a test particle of mass μ � 1 in the restricted three-body
problem [21], under the influence of the gravitational force of two heavy bodies
with masses 1 and μ � 1 fixed at (−μ, 0) and (1 − μ, 0).

A reduction of the translation symmetry is obtained by fixing the center of
mass at the origin or, considering a configuration as an element of the disposition
space RD/(1, ..., 1)R introduced in [2] in the spirit of Jacobi.

Berry and Tabor should be re-derived here in this approach.

Note the following laws

∫
G

dg D(g) = 0,

Furthermore, if we consider all non-equivalent irreducible representations of a
group G, then the quantities Dm

i j(g) for fixed m, i and j 27

∫
G

dg χm(hg)χm(g−1k−1) = χm(hk−1) with h, k ∈ G fixed

Characters are orthonormal.

Pm = dm

∫
G

dg χ∗m(g)Dm(g)

Orthonormality of the set {Pm}. For compact groups left- and right-invariant
Haar measures coincide. As all we shall do here is integrate over a Dirac delta
function, we shall not need here any explicit formula for dμ(x) (though it pays to
work through a few examples, for one’s own comfort).

Completeness of the set {Pm}. If operator X commutes with the symmetry, the
reduced operator Xm acts on Vm. Such operators:

time-evolution Lt = etA

27Predrag: recheck
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resolvent 1/(s −A)

Study eigenvalues sm,α restricted to subspace Vm.

Symmetries can be used to reduce dynamics to a system with fewer degrees
of freedom, elimination of ignorable coordinates.

Consider the dynamics on the extended state space M× R × G where R cor-
responds to time.

(x′, t, g′) → (g f t(x′), t + t′, gg′)

in generalized “time” (t, g).

Let G be a group, X a set, and · : G × X −→ X a group action. For any x ∈ X,
the orbit of x under the group action is the set

{g · x | g ∈ G} ⊂ X.

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”: 28

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every group G; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.” ⇑PRIVATE

28Predrag: find NB21 ref 16, p. 30
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⇑PRIVATE
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Chapter 26

Deterministic diffusion

This is a bizzare and discordant situation.
—M.V. Berry

(R. Artuso and P. Cvitanović)

The advances in the theory of dynamical systems have brought a new life to
Boltzmann’s mechanical formulation of statistical mechanics. Sinai, Ruelle
and Bowen (SRB) have generalized Boltzmann’s notion of ergodicity for a

constant energy surface for a Hamiltonian system in equilibrium to dissipative sys-
tems in nonequilibrium stationary states. In this more general setting the attractor
plays the role of a constant energy surface, and the SRB measure of sect.16.1 is
a generalization of the Liouville measure. Such measures are purely microscopic
and indifferent to whether the system is at equilibrium, close to equilibrium or far
from it. “Far for equilibrium” in this context refers to systems with large devia-
tions from Maxwell’s equilibrium velocity distribution. Furthermore, the theory
of dynamical systems has yielded new sets of microscopic dynamics formulas for
macroscopic observables such as diffusion constants and the pressure, to which
we turn now.

We shall apply cycle expansions to the analysis of transport properties of
chaotic systems.

The resulting formulas are exact; no probabilistic assumptions are made, and
the all correlations are taken into account by the inclusion of cycles of all periods.
The infinite extent systems for which the periodic orbit theory yields formulas for
diffusion and other transport coefficients are spatially periodic, the global state
space being tiled with copies of a elementary cell. The motivation are physical
problems such as beam defocusing in particle accelerators or chaotic behavior of
passive tracers in 2-dimensional rotating flows, problems which can be described
as deterministic diffusion in periodic arrays.

In sect. 26.1 we derive the formulas for diffusion coefficients in a simple phys-
ical setting, the 2-dimensional periodic Lorentz gas. This system, however, is not

632



CHAPTER 26. DETERMINISTIC DIFFUSION 633

hyperbolic!systems
Lorentz gas

Figure 26.1: Deterministic diffusion in a finite horizon
periodic Lorentz gas. (T. Schreiber)

the best one to illustrate the theory, due to its complicated symbolic dynamics.
Therefore we apply the theory first to diffusion induced by a 1-dimensional maps
in sect. 26.2and return to the Lorentz systems in sect.26.4, after a brief discussion

⇓PRIVATEof anomalous diffusion in sect. 26.3.
⇑PRIVATE

26.1 Diffusion in periodic arrays

Chaos happens - let’s make a better use of it.

— Edward Tenner

The 2-dimensional Lorentz gas is an infinite scatterer array in which diffusion of a
light molecule in a gas of heavy scatterers is modeled by the motion of a point par-
ticle in a plane bouncing off an array of reflecting disks. The Lorentz gas is called
“gas” as one can equivalently think of it as consisting of any number of pointlike
fast “light molecules” interacting only with the stationary “heavy molecules” and
not among themselves. As the scatterer array is built up from only defocusing
concave surfaces, it is a pure hyperbolic system, and one of the simplest non-
trivial dynamical systems that exhibits deterministic diffusion, figure 26.1. We
shall now show that the periodic Lorentz gas is amenable to a purely determin-
istic treatment. In this class of open dynamical systems quantities characterizing
global dynamics, such as the Lyapunov exponent, pressure and diffusion constant,
can be computed from the dynamics restricted to the elementary cell. The method
applies to any hyperbolic dynamical system that is a periodic tilingM̂ =

⋃
n̂∈T Mn̂

of the dynamical state space M̂ by translates Mn̂ of an elementary cell M, with
T the abelian group of lattice translations. If the scattering array has further dis-
crete symmetries, such as reflection symmetry, each elementary cell may be built
from a fundamental domainM̃ by the action of a discrete (not necessarily abelian)
group G. The symbol M̂ refers here to the full state space, i.e.,, both the spatial
coordinates and the momenta. The spatial component ofM̂ is the complement of
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Figure 26.2: Tiling of M̂, a periodic lattice of reflect-
ing disks, by the fundamental domain M̃. Indicated is
an example of a global trajectory x̂(t) together with the
corresponding elementary cell trajectory x(t) and the
fundamental domain trajectory x̃(t). (Courtesy of J.-P.
Eckmann)

the disks in the whole space.

We shall now relate the dynamics in M to diffusive properties of the Lorentz
gas in M̂.

These concepts are best illustrated by a specific example, a Lorentz gas based
on the hexagonal lattice Sinai billiard of figure 26.2. We distinguish two types
of diffusive behavior; the infinite horizon case, which allows for infinite length
flights, and the finite horizon case, where any free particle trajectory must hit a
disk in finite time. In this chapter we shall restrict our consideration to the finite
horizon case, with disks sufficiently large so that no infinite length free flight is
possible. In this case the diffusion is normal, with x̂(t)2 growing like t. We shall
discuss the anomalous diffusion case in sect. 26.3. 1

As we will work with three kinds of state spaces, good manners require that
we repeat what tildes, nothings and hats atop symbols signify:

˜ fundamental domain, triangle in figure 26.2

elementary cell, hexagon in figure 26.2

ˆ full state space, lattice in figure 26.2 (26.1)

It is convenient to define an evolution operator for each of the 3 cases of fig-
ure 26.2. x̂(t) = f̂ t(x̂) denotes the point in the global space M̂ reached by the
flow in time t. x(t) = f t(x0) denotes the corresponding flow in the elementary
cell; the two are related by

n̂t(x0) = f̂ t(x0) − f t(x0) ∈ T , (26.2)

the translation of the endpoint of the global path into the elementary cell M. The
quantity x̃(t) = f̃ t(x̃) denotes the flow in the fundamental domain M̃; f̃ t(x̃) is
related to f t(x̃) by a discrete symmetry g ∈ G which maps x̃(t) ∈ M̃ to x(t) ∈ M .

chapter 21
1Predrag: ask J.-P. Eckmann for permission to use his figures
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Fix a vector β ∈ Rd, where d is the dimension of the state space. We will
compute the diffusive properties of the Lorentz gas from the leading eigenvalue of
the evolution operator (17.11)

s(β) = lim
t→∞

1
t

log〈eβ·(x̂(t)−x)〉M , (26.3)

where the average is over all initial points in the elementary cell, x ∈ M.

If all odd derivatives vanish by symmetry, there is no drift and the second
derivatives

2dDi j =
∂

∂βi

∂

∂β j
s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
t
〈(x̂(t) − x)i(x̂(t) − x) j〉M ,

yield a diffusion matrix. This symmetric matrix can, in general, be anisotropic
(i.e., have d distinct eigenvalues and eigenvectors). The spatial diffusion constant
is then given by the Einstein relation (17.13)

D =
1

2d

∑
i

∂2

∂β2
i

s(β)

∣∣∣∣∣∣
β=0

= lim
t→∞

1
2dt

〈(q̂(t) − q)2〉M ,

where the i sum is restricted to the spatial components qi of the state space vectors
x = (q, p), i.e., if the dynamics is Hamiltonian, the sum is over the d the degrees
of freedom. 2

We now turn to the connection between (26.3) and periodic orbits in the ele-
mentary cell. As the full M̂ → M̃ reduction is complicated by the non-abelian

remark 26.5
nature of G, we discuss only the abelian M̂ → M reduction.

26.1.1 Reduction from M̂ to M

The key idea follows from inspection of the relation

〈
eβ·(x̂(t)−x)

〉
M
=

1
|M|

∫
x∈M
ŷ∈M̂

dxdŷ eβ·(ŷ−x)δ(ŷ − f̂ t(x)) .

|M| =
∫
M dx is the volume of the elementary cell M. Due to translational symme-

try, it suffices to start with a density of trajectories defined over a single elementary
cell M. As in sect. 17.2, we have used the identity 1 =

∫
Mdy δ(y − x̂(t)) to moti-

vate the introduction of the evolution operator Lt(ŷ, x). There is a unique lattice
translation n̂ such that ŷ = y − n̂, with the endpoint y ∈ M translated back to the

2Predrag: reinstate mass, velocity, size to get β, m, σ dependencies right
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standing orbit!Lorentz
gas

running orbit!Lorentz
gas

accelerator mode

elementary cell, and f t(x) given by (26.2). The difference is a translation by a
constant lattice vector n̂, and the Jacobian for changing integration from dŷ to dy
equals unity. Therefore, and this is the main point, translation invariance can be
used to reduce this average to the elementary cell:

〈eβ·(x̂(t)−x)〉M =
1
|M|

∫
x,y∈M

dxdy eβ·( f̂ t (x)−x)δ(y − f t(x)) . (26.4)

As this is a translation, the Jacobian is |∂ŷ/∂y| = 1. In this way the global f̂ t(x)
flow, infinite volume state space averages can be computed by following the flow
f t(x0) restricted to the compact, finite volume elementary cell M. The equation
(26.4) suggests that we study the evolution operator

Lt(y, x) = eβ·(x̂(t)−x)δ(y − f t(x)) , (26.5)

where x̂(t) = f̂ t(x) ∈ M̂ is the displacement in the full space, but x, ft(x), y ∈ M.
It is straightforward to check that this operator satisfies the semigroup property
(17.27),

∫
M

dzLt2 (y, z)Lt1 (z, x) = Lt2+t1 (y, x) .

For β = 0, the operator (26.5) is the Perron-Frobenius operator (16.10), with the
leading eigenvalue es0 = 1 because there is no escape from this system (see the
flow conservation sum rule (20.17)).

The rest is old hat. The spectrum of L is evaluated by taking the trace
section 18.2

trLt =

∫
M

dx eβ·n̂t(x)δ(x − x(t)) .

Here n̂t(x) is the discrete lattice translation defined in (26.2). Two kinds of orbits
periodic in the elementary cell contribute. 3 A periodic orbit is called standing
if it is also periodic orbit of the infinite state space dynamics, f̂ Tp(x) = x, and it
is called running if it corresponds to a lattice translation in the dynamics on the
infinite state space, f̂ Tp(x) = x + n̂p. We recognize the shortest repeating segment
of a running orbit as our old ‘relative periodic orbit’ friend from chapter9. In the
theory of area–preserving maps such as the standard map of example 7.8 these
orbits are called accelerator modes, as the diffusion takes place along the momen-
tum rather than the position coordinate. The traveled distance n̂p = n̂Tp(x0) is
independent of the starting point x0, as can be easily seen by continuing the path
periodically in M̂.

3Predrag: recheck usage “standing,” “running” with the literature.
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The final result is the spectral determinant (19.6)

det (s(β) −A) =
∏

p

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝− ∞∑
r=1

1
r

e(β·n̂p−sTp)r∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (26.6)

or the corresponding dynamical zeta function (19.15)

1/ζ(β, s) =
∏

p

(
1 − e(β·n̂p−sTp)

|Λp|

)
. (26.7)

The dynamical zeta function cycle averaging formula (20.24) for the diffusion
constant (17.13), zero mean drift 〈x̂i〉 = 0 , is given by

D =
1

2d

〈
x̂2

〉
ζ

〈T〉ζ
=

1
2d

1
〈T〉ζ

∑′ (−1)k+1(n̂p1 + · · · + n̂pk )
2

|Λp1 · · ·Λpk |
. (26.8)

where the sum is over all distinct non-repeating combination of prime cycles. The
derivation is standard, still the formula is strange. Diffusion is unbounded motion
across an infinite lattice; nevertheless, the reduction to the elementary cell enables
us to compute relevant quantities in the usual way, in terms of periodic orbits.

A sleepy reader might protest that x(Tp) − x(0) is manifestly equal to zero for
a periodic orbit. That is correct; n̂p in the above formula refers to a displacement
x̂(Tp) on the infinite periodic lattice, while p refers to closed orbit of the dynamics
f t(x) reduced to the elementary cell, with xp a periodic point in the closed prime
cycle p.

Even so, this is not an obvious formula. Globally periodic orbits have x̂2p = 0,
and contribute only to the time normalization 〈T〉ζ . The mean square displace-

ment
〈
x̂2

〉
ζ

gets contributions only from the periodic runaway trajectories; they

are closed in the elementary cell, but on the periodic lattice each one grows like
x̂(t)2 = (n̂p/Tp)2t2 = v2

pt2. So the orbits that contribute to the trace formulas
and spectral determinants exhibit either ballistic transport or no transport at all:
diffusion arises as a balance between the two kinds of motion, weighted by the
1/|Λp| measure. If the system is not hyperbolic such weights may be abnormally
large, with 1/|Λp| ≈ 1/Tp

α rather than 1/|Λp| ≈ e−Tpλ, where λ is the Lyapunov
exponent, and they may lead to anomalous diffusion - accelerated or slowed down
depending on whether the probabilities of the running or the standing orbits are
enhanced.

section 26.3

We illustrate the main idea, tracking of a globally diffusing orbit by the as-
sociated confined orbit restricted to the elementary cell, with a class of simple
1-dimensional dynamical systems where all transport coefficients can be evalu-
ated analytically. We return to the Lorentz gas in sect.26.4. ⇓PRIVATE

⇑PRIVATE
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Figure 26.3: (a) f̂ (x̂), the full space sawtooth map
(26.9), Λ > 2. (b) f (x), the sawtooth map re-
stricted to the unit circle (26.12), Λ = 6.

(a) (b)

26.2 Diffusion induced by chains of 1-dimensional maps

In a typical deterministic diffusive process, trajectories originating from a given
scatterer reach a finite set of neighboring scatterers in one bounce, and then the
process is repeated. As was shown in chapter 11, the essential part of this pro-
cess is the stretching along the unstable directions of the flow, and in the crud-
est approximation the dynamics can be modeled by 1-dimensional expanding
maps. This observation motivates introduction of a class of particularly simple
1-dimensional systems.

Example 26.1 Chains of piecewise linear maps. We start by defining the map f̂ on
the unit interval as

f̂ (x̂) =

{
Λx̂ x̂ ∈ [0, 1/2)
Λx̂ + 1 − Λ x̂ ∈ (1/2, 1] , Λ > 2 , (26.9)

and then extending the dynamics to the entire real line, by imposing the translation
property

f̂ (x̂ + n̂) = f̂ (x̂) + n̂ n̂ ∈ Z . (26.10)

As the map is discontinuous at x̂ = 1/2, f̂ (1/2) is undefined, and the x = 1/2 point
has to be excluded from the Markov partition. The map is antisymmetric under the
x̂-coordinate flip

f̂ (x̂) = − f̂ (−x̂) , (26.11)

so the dynamics will exhibit no mean drift; all odd derivatives of the generating function
(17.11) with respect to β, evaluated at β = 0, will vanish.

The map (26.9) is sketched in figure 26.3 (a). Initial points sufficiently close to
either of the fixed points in the initial unit interval remain in the elementary cell for one
iteration; depending on the slope Λ, other points jump n̂ cells, either to the right or to
the left. Repetition of this process generates a random walk for almost every initial
condition.
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circle map
critical!value

The translational symmetry (26.10) relates the unbounded dynamics on the
real line to dynamics restricted to the elementary cell - in the example at hand, the unit
interval curled up into a circle. Associated to f̂ (x̂) we thus also consider the circle map

f (x) = f̂ (x̂) −
[
f̂ (x̂)

]
, x = x̂ − [x̂] ∈ [0, 1] (26.12)

4 figure 26.3 (b), where [· · ·] stands for the integer part (26.2). For the piecewise linear
map of figure 26.3 we can evaluate the dynamical zeta function in closed form. Each
branch has the same value of the slope, and the map can be parameterized by a single
parameter, for example its critical value a = f̂ (1/2), the absolute maximum on the
interval [0, 1] related to the slope of the map by a = Λ/2. The larger Λ is, the stronger
is the stretching action of the map.

As noted in sect. 26.1.1, the elementary cell cycles correspond to either stand-
ing or running orbits for the map on the full line: we shall refer to n̂p ∈ Z as the
jumping number of the p cycle, and take as the cycle weight

tp = znpeβn̂p/|Λp| . (26.13)

The diffusion constant formula (26.8) for 1-dimensional maps is

D =
1
2

〈
n̂2

〉
ζ

〈n〉ζ
, (26.14)

where the “mean cycle time” is given by (20.25)

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1
= −

∑′
(−1)k np1 + · · · + npk

|Λp1 · · ·Λpk |
, (26.15)

and the “mean cycle displacement squared” by (20.28)

〈
n̂2

〉
ζ
=

∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk )2

|Λp1 · · ·Λpk |
, (26.16)

the primed sum indicating all distinct non-repeating combinations of prime cy-
cles. The evaluation of these formulas for the simple system of example26.1 will
require nothing more than pencil and paper.

Example 26.2 Unrestricted symbolic dynamics. Whenever Λ is an integer num-
ber, the symbolic dynamics is exceedingly simple. For example, for the case Λ = 6 illus-
trated in figure 26.3 (b), the elementary cell map consists of 6 full branches, with uniform
stretching factor Λ = 6. The branches have different jumping numbers: for branches 1
and 2 we have n̂ = 0, for branch 3 we have n̂ = +1, for branch 4 n̂ = −1, and finally for

4Predrag: define n̂ here as well
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branches 5 and 6 we have respectively n̂ = +2 and n̂ = −2. The same structure reap-
pears whenever Λ is an even integer Λ = 2a: all branches are mapped onto the whole
unit interval and we have two n̂ = 0 branches, one branch for which n̂ = +1 and one for
which n̂ = −1, and so on, up to the maximal jump |n̂| = a − 1. The symbolic dynamics
is thus full, unrestricted shift in 2a symbols {0+, 1+, . . . , (a − 1)+, (a − 1)−, . . . , 1−, 0−},
where the symbol indicates both the length and the direction of the corresponding jump.

For the piecewise linear maps with uniform stretching the weight associated
with a given symbol sequence is a product of weights for individual steps, t sq = tstq. For
the map of figure 26.3 there are 6 distinct weights (26.13):

t1 = t2 = z/Λ

t3 = eβz/Λ , t4 = e−βz/Λ , t5 = e2βz/Λ , t6 = e−2βz/Λ .

The piecewise linearity and the simple symbolic dynamics lead to the full cancelation
of all curvature corrections in (20.7). The exact dynamical zeta function (15.15) is given
by the fixed point contributions: 5

1/ζ(β, z) = 1 − t0+ − t0− − · · · − t(a−1)+ − t(a−1)−

= 1 − z
a

⎛⎜⎜⎜⎜⎜⎜⎝1 + a−1∑
j=1

cosh(β j)

⎞⎟⎟⎟⎟⎟⎟⎠ . (26.17)

The leading (and only) eigenvalue of the evolution operator (26.5) is

s(β) = log

⎧⎪⎪⎪⎨⎪⎪⎪⎩1
a

⎛⎜⎜⎜⎜⎜⎜⎝1 + a−1∑
j=1

cosh(β j)

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , Λ = 2a, a integer . (26.18)

The flow conservation (20.17) sum rule is manifestly satisfied, so s(0) = 0. The first
derivative s(0)′ vanishes as well by the left/right symmetry of the dynamics, implying
vanishing mean drift 〈x̂〉 = 0. The second derivative s(β)′′ yields the diffusion constant
(26.14):

〈n〉ζ = 2a
1
Λ
= 1 ,

〈
x̂2

〉
ζ
= 2

02

Λ
+ 2

12

Λ
+ 2

22

Λ
+ · · · + 2

(a − 1)2

Λ
(26.19)

Using the identity
∑n

k=1 k2 = n(n + 1)(2n + 1)/6 we obtain

D =
1
24

(Λ − 1)(Λ − 2) , Λ even integer . (26.20)

Similar calculation for odd integer Λ = 2k − 1 yields
exercise 26.1

D =
1
24

(Λ2 − 1) , Λ odd integer . (26.21)

5Predrag: why not 1/2 cosh?
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Burnett coefficients
Gaussian!integral
Burnett coefficient
kurtosis
Markov!partition

26.2.1 Higher order transport coefficients

The same approach yields higher order transport coefficients

Bk =
1
k!

dk

dβk
s(β)

∣∣∣∣∣∣
β=0

, B2 = D , (26.22)

known for k > 2 as the Burnett coefficients. 6 The behavior of the higher or-
der coefficients yields information on the relaxation to the asymptotic distribution
function generated by the diffusive process. 7 Here x̂t is the relevant dynamical
variable and Bk’s are related to moments

〈
x̂k

t

〉
of arbitrary order.

Were the diffusive process purely Gaussian 8

ets(β) =
1

√
4πDt

∫ +∞

−∞
dx̂ eβx̂e−x̂2/(4Dt) = eβ

2Dt (26.23)

the only Bk coefficient different from zero would be B2 = D. Hence, nonvan-
ishing higher order coefficients signal deviations of deterministic diffusion from a
Gaussian stochastic process.

Example 26.3 B4 Burnett coefficient. For the map under consideration the first
Burnett coefficient coefficient B4 (or kurtosis (17.21)) is easily evaluated. For example,
using (26.18) in the case of even integer slope Λ = 2a we obtain

exercise 26.2

B4 = − 1
4! · 60

(a − 1)(2a − 1)(4a2 − 9a + 7) . (26.24)

We see that deterministic diffusion is not a Gaussian stochastic process. Higher
order even coefficients may be calculated along the same lines.

26.2.2 Finite Markov partitions

For piecewise-linear maps exact results may be obtained whenever the critical
points are mapped in finite numbers of iterations onto partition boundary points,
or onto unstable periodic orbits. We will work out here an example for which
this occurs in two iterations, leaving other cases as exercises. 9 10 The key idea
is to construct a Markov partition (11.2), with intervals mapped onto unions of
intervals.

6Predrag: Study Helfand moments in Gaspard, and his student Viscardy arXiv:cond-
mat/0510445? etc...

7Predrag: discuss Kulso (??) formula
8Predrag: recheck
9Predrag: fix figure 26.4 (c)

10Predrag: credits in acknowledgments
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Figure 26.4: (a) A partition of the unit interval
into six intervals, labeled by the jumping number
n̂(x) I = {0+, 1+, 2+, 2−, 1−, 0−}. The partition is
Markov, as the critical point is mapped onto the
right border of M1+ . (b) The transition graph for
this partition. (c) The transition graph in the com-
pact notation of (26.26) (introduced by Vadim Mo-
roz).

(a)

0+ 0 -

0+

0 -

1+ 1 -

1+

1 -

2+ 2 -

2+

2 -

(b)

0+
1+

0--1

22+ -

0+ 0-

-11+

(c)

6
7

4
5

2 31

1 3

Example 26.4 A finite Markov partition. As an example we determine a value
of the parameter 4 ≤ Λ ≤ 6 for which f ( f (1/2)) = 0. As in the integer Λ case,
we partition the unit interval into six intervals, labeled by the jumping number n̂(x) ∈
{M0+ ,M1+ ,M2+ ,M2− ,M1− ,M0−}, ordered by their placement along the unit interval,
figure 26.4 (a).

In general the critical value a = f̂ (1/2) will not correspond to an interval border,
but now we choose a such that the critical point is mapped onto the right border of
M1+ . Equating f (1/2) with the right border of M1+ , x = 1/Λ, we obtain a quadratic
equation with the expanding solutionΛ = 2(

√
2+1). For this parameter value f (M1+ ) =

M0+
⋃
M1+ , f (M2− ) = M0−

⋃
M1− , while the remaining intervals map onto the whole

unit interval M. The transition matrix (14.1) is given by

φ′ = Tφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 1
1 1 1 0 1 1
1 1 0 0 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ0+
φ1+
φ2+
φ2−
φ1−
φ0−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26.25)

One could diagonalize (26.25) on a computer, but, as we saw in chapter 14, the tran-
sition graph of figure 26.4 (b) corresponding to map figure 26.4 (a) offers more insight
into the dynamics. Figure 26.4 (b) can be redrawn more compactly as transition graph
figure 26.4 (c) by replacing parallel lines in a graph by their sum

2

3

2 311
= t1 + t2 + t3 . (26.26)

The dynamics is unrestricted in the alphabet

A = {0+, 1+, 2+0+, 2+1+, 2−1−, 2−0−, 1−, 0−} .

Applying the loop expansion (15.15) of sect. 15.3, we are led to the dynamical zeta
function

1/ζ(β, z) = 1 − t0+ − t1+ − t2+0+ − t2+1+ − t2−1− − t2−0− − t1− − t0−

= 1 − 2z
Λ

(1 + cosh(β)) − 2z2

Λ2
(cosh(2β) + cosh(3β)) . (26.27)

For grammar as simple as this one, the dynamical zeta function is the sum over fixed
points of the unrestricted alphabet. As the first check of this expression for the dynam-
ical zeta function we verify that

1/ζ(0, 1) = 1 − 4
Λ
− 4
Λ2
= 0 ,
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Bernoulli!shift
structural stability
stability!structural
hyperbolic!systems

as required by the flow conservation (20.17). Conversely, we could have started by
picking the desired Markov partition, writing down the corresponding dynamical zeta
function, and then fixing Λ by the 1/ζ(0, 1) = 0 condition. For more complicated transi-
tion graphs this approach, together with the factorization (26.36), is helpful in reducing
the order of the polynomial condition that fixes Λ.

The diffusion constant follows from (26.14)
exercise 26.3

〈n〉ζ = 4
1
Λ
+ 4

2
Λ2

,
〈
n̂2

〉
ζ
= 2

12

Λ
+ 2

22

Λ2
+ 2

32

Λ2

D =
15 + 2

√
2

16 + 8
√

2
. (26.28)

It is by now clear how to build an infinite hierarchy of finite Markov partitions:
tune the slope in such a way that the critical value f (1/2) is mapped into the fixed
point at the origin in a finite number of iterations p fP(1/2) = 0. By taking higher
and higher values of p one constructs a dense set of Markov parameter values,
organized into a hierarchy that resembles the way in which rationals are densely
embedded in the unit interval. For example, each of the 6 primary intervals can
be subdivided into 6 intervals obtained by the 2-nd iterate of the map, and for the
critical point mapping into any of those in 2 steps the grammar (and the corre-
sponding cycle expansion) is finite. So, if we can prove continuity of D = D(Λ),
we can apply the periodic orbit theory to the sawtooth map (26.9) for a random
“generic” value of the parameter Λ, for example Λ = 4.5. The idea is to bracket
this value of Λ by a sequence of nearby Markov values, compute the exact diffu-
sion constant for each such Markov partition, and study their convergence toward
the value of D for Λ = 4.5. Some details of how this is accomplished are given ⇓PRIVATE
in appendix G.2 for a related problem, the pruned Bernoulli shift. Judging how

⇑PRIVATEdifficult such problem is already for a tent map (see sect. 15.5and appendix G.1),
⇓PRIVATEthis is not likely to take only a week of work.
⇑PRIVATE

Expressions like (26.20) may lead to an expectation that the diffusion coeffi-
cient (and thus transport properties) are smooth functions of parameters control-
ling the chaoticity of the system. For example, one might expect that the diffusion
coefficient increases smoothly and monotonically as the slope Λ of the map (26.9)
is increased, or, perhaps more physically, that the diffusion coefficient is a smooth
function of the Lyapunov exponent λ. This turns out not to be true: D as a func-
tion of Λ is a fractal, nowhere differentiable curve illustrated in figure26.5. The
dependence of D on the map parameter Λ is rather unexpected - even though for
larger Λmore points are mapped outside the unit cell in one iteration, the diffusion
constant does not necessarily grow.

This is a consequence of the lack of structural stability, even of purely hyper-
bolic systems such as the Lozi map and the 1-dimensional diffusion map (26.9).
The trouble arises due to non-smooth dependence of the topological entropy on
system parameters - any parameter change, no mater how small, leads to creation
and destruction of infinitely many periodic orbits. As far as diffusion is concerned
this means that even though local expansion rate is a smooth function of Λ, the
number of ways in which the trajectory can re-enter the initial cell is an irregular
function of Λ.
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observable
spectral!stability
stability!spectral
structural stability
anomalous diffusion
diffusion!anomalous
intermittency
intermittency!anomalous

diffusion

Figure 26.5: The dependence of D on the map
parameter a is continuous, but not monotone. Here
a stands for the slope Λ in (26.9). (From ref. [9].)

0

0.5

1

1.5

2

2 3 4 5 6 7 8

D
(a

)

a

1

1.2

1.4

1.6

1.8

2

6 6.2 6.4 6.6 6.8 7

D
(a

)

a

0.805

0.815

0.825

0.835

5.6 5.62 5.64 5.66

D
(a

)

a

0.8

0.85

0.9

0.95

1

1.05

5 5.2 5.4 5.6 5.8 6

D
(a

)

a

0.22

0.26

0.3

0.34

0.38

3 3.2 3.4 3.6 3.8 4

D
(a

)

a

0.33

0.34

0.35

0.36

3 3.02 3.04 3.06 3.08 3.1

D
(a

)

a

(a)

(d)

(f) (e)

(b) (c)

The lesson is that lack of structural stability implies lack of spectral stability,
and no global observable is expected to depend smoothly on the system param-
eters. If you want to master the material, working through the project sect. T.1

⇓PRIVATEand/or project sect. T.2 is strongly recommended.
⇑PRIVATE

26.3 Marginal stability and anomalous diffusion

What effect does the intermittency of chapter 24 have on transport properties? A
marginal fixed point affects the balance between the running and standing orbits,
thus generating a mechanism that may result in anomalous diffusion.

Example 26.5 Anomalous diffusion. Consider a 1-dimensional map of the real line
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circle map
Jonquière function

Figure 26.6: (a) A map with marginal fixed point.
(b) The map restricted to the unit circle.

(a) (b)

on itself shown in figure 26.6 (a), with the same properties as in sect. 26.2, except for a
marginal fixed point at x = 0. The corresponding circle map is given in figure 26.6 (b).
As in sect. 24.2.1, a branch with support in Mi, i = 1, 2, 3, 4 has constant slope Λi,

while f |M0 is of intermittent form. To keep you nimble, this time we take a slightly
different choice of slopes. The toy example of sect. 24.2.1 was cooked up so that the
1/s branch cut in dynamical zeta function was the whole answer. Here we shall take a
slightly different route, and pick piecewise constant slopes such that the dynamical zeta
function for intermittent system can be expressed in terms of the Jonquière function

remark 26.7

J(z, s) =
∞∑

k=1

zk/ks . (26.29)

Once the 0 fixed point is pruned away, the symbolic dynamics is given by the
infinite alphabet {1, 2, 3, 4, 0 i1, 0 j2, 0k3, 0l4}, i, j, k, l = 1, 2, . . . (compare with table 24.1).
The partitioning of the subinterval M0 is induced by M0k(right) = f̂ −k

(right)(M3
⋃
M4)

(where f̂ −1
(right) denotes the inverse of the right branch of f̂ |M0) and the same reason-

ing applies to the leftmost branch. These are regions over which the slope of f̂ |M0 is
constant. Thus we have the following stabilities and jumping numbers associated to
letters: 11

0k3, 0k4 Λp =
k1+α

q/2 n̂p = 1

0l1, 0l2 Λp =
l1+α

q/2 n̂p = −1

3, 4 Λp = ±Λ n̂p = 1

2, 1 Λp = ±Λ n̂p = −1 , (26.30)

where α = 1/s is determined by the intermittency exponent (24.1), while q is to be

11Predrag: fix up the f̂ −k
(right) notation
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Riemann zeta
function

determined by the flow conservation (20.17) for f̂ : 12

4
Λ
+ 2qζ(α + 1) = 1

(where ζ is the Riemann zeta function), so that q = (Λ−4)/(2Λζ(α+1)). The dynamical
zeta function picks up contributions just by the alphabet’s letters, as we have imposed
piecewise linearity, and can be expressed in terms of a Jonquière function (26.29): 13

1/ζ0(z, β) = 1 − 4
Λ

z cosh β − Λ − 4
Λζ(1 + α)

z cosh β · J(z, α + 1) . (26.31)

Its first zero z(β) is determined by

4
Λ

z +
Λ − 4
Λζ(1 + α)

z · J(z, α + 1) =
1

cosh β
.

D vanishes by the implicit function theorem, z′′(β)|β=1 = 0 when α ≤ 1. The

physical interpretation is that a typical orbit will stick for long times near the 0
marginal fixed point, and the ‘trapping time’ will be larger for higher values of
the intermittency parameter s (recall α = 1/s). As always, we need to look more
closely at the behavior of traces of high powers of the transfer operator.

The evaluation of transport coefficient requires one more derivative with re-
spect to expectation values of state space observables (see sect.26.1): if we use
the diffusion dynamical zeta function (26.7), we may write the diffusion coeffi-
cient as an inverse Laplace transform, in such a way that the distinction between
maps and flows has vanished. In the case of 1-dimensional diffusion we thus have ⇓PRIVATE

exercise 24.9

⇑PRIVATE
D = lim

t→∞

d2

dβ2

1
2πi

∫ a+i∞

a−i∞
ds est ζ

′(β, s)
ζ(β, s)

∣∣∣∣∣∣
β=0

(26.32)

where the ζ′ refers to the derivative with respect to s.

The evaluation of inverse Laplace transforms for high values of the argument
is most conveniently performed using Tauberian theorems. 14 We shall take

ω(λ) =
∫ ∞

0
dx e−λxu(x) ,

with u(x) monotone as x → ∞; then, as λ �→ 0 and x �→ ∞ respectively (and
ρ ∈ (0,∞),

ω(λ) ∼ 1
λρ

L

(
1
λ

)
12Predrag: dropped R from Roberto’s ζR
13Predrag: dropped R from ζR
14Predrag: add a remark giving literature pointers to these famed ‘Tauberian theorems’
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Jonqui“‘ere function
Lorentz gas

if and only if

u(x) ∼ 1
Γ(ρ)

xρ−1L(x) ,

where L denotes any slowly varying function with limt→∞ L(ty)/L(t) = 1. Now

1/ζ0
′(e−s, β)

1/ζ0(e−s, β)
=

(
4
Λ
+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1) + J(e−s, α)

))
cosh β

1 − 4
Λ

e−s cosh β − Λ−4
Λζ(1+α) e−s(e−s, α + 1) cosh βJ

.

15 Taking the second derivative with respect to β we obtain

d2

dβ2

(
1/ζ0

′(e−s, β)/ζ−1(e−s, β)
)
β=0

=

4
Λ
+ Λ−4
Λζ(1+α)

(
J(e−s, α + 1) + J(e−s, α)

)(
1 − 4

Λ
e−s − Λ−4

Λζ(1+α) e−s J(e−s, α + 1)
)2
= gα(s) . (26.33)

The asymptotic behavior of the inverse Laplace transform (26.32) may then be
evaluated via Tauberian theorems, once we use our estimate for the behavior of
Jonquière functions near z = 1. The deviations from normal behavior correspond
to an explicit dependence of D on time. Omitting prefactors (which can be calcu-
lated by the same procedure) we have 16

gα(s) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s−2 for α > 1
s−(α+1) for α ∈ (0, 1)
1/(s2 ln s) for α = 1 .

The anomalous diffusion exponents follow:
exercise 26.6

〈(x − x0)2〉t ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
tα for α ∈ (0, 1)
t/ ln t for α = 1
t for α > 1 .

(26.34)

⇓PRIVATE

26.4 Lorentz gas

15Predrag: why 0?
16Predrag: I’m confused - are we to say ‘(recall α = 1/s)?’ here?
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In economics, reflexivity runs counter to the notion of
equilibrium which an free market system is supposed to
tend towards. It is, indeed, the reason why open systems
do not reach equilibrium but are prone to instability and
self-increasing trends, cycles of boom and bust. Devel-
opment is not linear but feeds on itself. Instead of bal-
ancing towards the point of equilibrium self-reinforcing
trends create unstable far-from-equilibrium conditions.

— George Soros, “The Crisis of Global Capitalism”

(L. Rondoni, R. Artuso and P. Cvitanović)

We now return to the problem of computing the diffusion coefficient for a “finite
horizon” Lorentz gas on a hexagonal lattice introduced in sect.26.1.

LR: Comment by
Lamberto

We are not going to describe in full detail all the calculations that have per-
formed for such a system, our main goal is to provide a physically relevant ex-
ample where the symbolic dynamics is enormously complicated, and application
of formulas like (26.8) is problematic. The complexity of symbolic dynamics for
this system has a very clear and profound mathematical justification: Markov par-
titions for disperse billiards are made of an infinite countable collection of pieces,
very unevenly sized. The source of troubles are the grazing singularities, corre-
sponding to the orbits that are tangent to a disk: a cone of trajectories close to the
tangent one is split into two pieces at the tangency point, and the process repeats
at every tangency. This mechanism causes the global unstable and stable mani-
folds to consist of a countable number of smooth components. Thus the presence
of singularities in a sense weakens the strong chaotic properties induced by com-
plete hyperbolicity (due to the fact that any single collision leads to defocusing,
and that the time between two successive collisions if bounded from above by a
finite quantity).

Let us first define the parameters of the model: we set the disk radius R = 1
and denote by w the disk to disk distance, so that the centers of two neighboring
disks are separated by a distance 2 + w. For a hexagonal lattice we require 0 ≤
w ≤ 4/

√
3 − 2 in order that the finite horizon condition be satisfied.

26.4.1 Lorentz gas: symbolic dynamics

If we start a trajectory from any scatterer in the lattice, under the condition of finite
horizon, there are two possibilities for the next hit: either it takes place on one of
the six neighboring disks, or on one of the six next-to-nearest disks. Hence we
may introduce an alphabet, by labeling these disks clockwise from 0 to 11: if we
assign the label 0 to one of the closest obstacles, even labels will then correspond
to short flights, see figure 26.7.

Then, any trajectory (without grazing collisions) may be uniquely identified
by assigning one of these twelve symbols to each free flight. The way this is
done is to let the symbol for a free flight depend on the vector separation between
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Figure 26.7: Symbolic dynamics for closely
packed Lorentz gas.
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Orbit Degeneracy τλ

(0 6) 3 1.51286399
(1 7) 3 3.51394510
(1 5) 6 4.65944481
(0 5) 12 3.15831208

(0 4 8) 4 3.27128792
(0 2 7) 12 6.23520184
(0 2 6) 24 6.31880379
(0 2 5) 24 8.30080318

Table 26.1: Dynamical properties of length-2 and 3 cycles, at w = 0.3.

initial and final point of such a segment of trajectory. Then, one should imagine
that the center of figure 26.7 is always translated to the scatterer where the free
flight starts, and that the symbol for the flight is the one of the scatterer where it
ends. So, in practice, for a spacing w = 0.3, which is just below the finite horizon
condition, one has only four types of cycles with two collisions, i.e., orbits which
indefinitely repeat the same symbol sequence of two symbols: the are of course
short orbits between two neighboring scatterers, like (0 6) (next neighbors) or
(1 7) (next to nearest neighbors), as well as (1 5) and (0 5) orbits. All these
orbits belong to groups, characterized by the same layout, and differing just in the
orientation: this is of course due to the symmetry properties of the system: as the
symmetry group is discrete there is a maximum number of different orbits in each
group (which is 24 in the case under consideration). The fact that the different

exercise 26.5
orbits of one kind are oriented in different directions does not affect their length
τ and their Lyapunov exponent λ, which are exactly the same for all orbits within
a group. The number of distinct orbits within one group, and the corresponding
product τλ, which appears in the definition of the Floquet multipliers are listed in
table 26.1, for cycles of length 2 and 3.

It is clear from these considerations that not all possible symbol strings actu-
ally give rise to cycles. This is because the symbolic dynamics for the Lorentz gas
is marred by a large amount of pruning. For instance, there is an obvious pruning
rule that the same symbol cannot be repeated twice, as this would correspond to a
trajectory crossing a disk. Many more pruning rules are present: for instance, in
the dense gas we consider here not only a letter cannot repeat, but the next symbol
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Table 26.2: Elementary cell, w=0.3. The cycles are sorted with the method of remark X.12.
The last column is taken from ref. [2].

length # cycles ζ(0,0) λ D
1 0 - - -
2 24 -0.31697 1.330 0.375
3 64 -0.54152 1.435 0.338
4 156 -0.09718 1.902 0.282
5 492 0.02383 2.324 0.212
6 1484 0.02812 1.931 0.129
7 5244 0.02044 1.836 0.185
8 19008 -0.00036 1.754 0.256

ref. [1], numerical experiment 0.25(1)
ref. [2], numerical experiment 0.2492(3)

has to vary at least by two units after a short flight, and by three units after a long
flight. The immense amount of pruning present in the problem may be appreciated
by looking at the second column of table 26.2, in which the number of cycles is
reported as a function of cycle length: order by order we get roughly an increase
by 3, instead of the factor 11 which would come from an unrestricted grammar
(keeping into account only the non–crossing condition, which effectively reduces
by one the possible symbols that can follow any given one).

26.4.2 Diffusion

We now apply the formula (26.8) for a particular value of the spacing w = 0.3.

Together with estimates of the diffusion coefficient we may also provide es-
timates for the Lyapunov exponent (see sect. ??). Moreover, since no trajectory
escapes, the escape rate is zero, and the spectral determinant and the dynamical
zeta function must satisfy the material flow conservation rule (20.17): the results
for all these quantities are reported in table 26.2, where cells have been sampled
with the variational method described in remarkX.12.

LR: column 5 fixed by
Lamberto

As mentioned above a lot of symbol sequences are pruned when the required
finite horizon is achieved by making the spacing between disks small enough. So
very poor convergence of cycle expansions has to be expected. With this in mind
the numbers given in table 26.2 are in a reasonable accord with the probability
conservation and offer a rather poor, but not unreasonable, estimate of the Lya-
punov exponent. Nevertheless, the estimates of the diffusion constant up to the
number of cycles employed so far appear to converge very slowly. They seem
to be more sensitive to the bad shadowing than the Lyapunov exponent and the
probability conservation. Of course, one should remember that the diffusion co-
efficient is a higher order moment of the generating function, hence it should be
expected to be harder to get.

A way to circumvent the poorness of shadowing, due to severe and badly

diffusion - 12jan2009 boyscout version14.4, Mar 19 2013



CHAPTER 26. DETERMINISTIC DIFFUSION 651

stosszahlansatz
Boltzmann!equation

Figure 26.8: Finite order estimates for the diffu-
sion coefficient from cycle expansions and trace
formulas.

controllable pruning, is just going back to trace formulas (??)

Dtr =
1
4

lim
n→∞

∑
x∈Fix(n) n̂2

x/|Λx|∑
x∈Fix(n) Tx/|Λx|

(26.35)

For cycle length 9 ref. [2] reports Dtr � 0.240, and for cycle length 10 Dtr �
0.2501, which is not too far from the result of direct simulations (see figure26.8).
17 The apparent better performance of trace formulas over cycle expansions in
this context is rather unexpected, and no strong theoretical clue is offered to justify
this observation, but the very simple fact that trace formulas automatically include
probability conservation, as the average is always computed by using a normalized
measure. This fact suggests that the performance of cycle expansions for systems
with strong pruning, might be improved by imposing by hand the condition of
probability conservation at all orders of approximation. 18

⇑PRIVATE

Résumé

Perfection itself is imperfection.

— Vladimir Horowitz

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is predictable
only to the finite Lyapunov time TLyap ≈ λ−1 ln |L/δx| . Beyond that, chaos rules.
We have discussed the implications in sect.1.8: chaos is good news for prediction
of long term observables such as transport in statistical mechanics.

The classical Boltzmann equation for evolution of 1-particle density is based
on stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle
collision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. 19 In the theory
developed here, no correlations are neglected - they are all included in the cycle
averaging formula such as the cycle expansion for the diffusion constant

D =
1

2d
1
〈T〉ζ

∑′
(−1)k+1 (n̂p1 + · · · + n̂pk )2

|Λp1 · · ·Λpk |
.

Such formulas are exact; the issue in their applications is what are the most ef-
fective schemes of estimating the infinite cycle sums required for their evaluation.

17Predrag: figure 26.8 tex file is using too much memory, cannot latex book
18Predrag: add to remarks, index: far from equilibrium: NESS = nonequilibrium steady state,

perhaps with some snide Loch Ness monster quote
19Predrag: Boltzmann refs.

diffusion - 12jan2009 boyscout version14.4, Mar 19 2013



CHAPTER 26. DETERMINISTIC DIFFUSION 652

Burnett coefficients
structural stability
Lorentz gas

Unlike most statistical mechanics, here there are no phenomenological macro-
scopic parameters; quantities such as transport coefficients are calculable to any
desired accuracy from the microscopic dynamics.

For systems of a few degrees of freedom these results are on rigorous footing,
but there are indications that they capture the essential dynamics of systems of
many degrees of freedom as well.

Though superficially indistinguishable from the probabilistic random walk
diffusion, deterministic diffusion is quite recognizable, at least in low dimen-
sional settings, through fractal dependence of the diffusion constant on the system
parameters, and through non-Gaussion relaxation to equilibrium (non-vanishing
Burnett coefficients).

That Smale’s “structural stability” conjecture turned out to be wrong is not a
bane of chaotic dynamics - it is actually a virtue, perhaps the most dramatic ex-
perimentally measurable prediction of chaotic dynamics. As long as microscopic
periodicity is exact, the prediction is counterintuitive for a physicist - transport
coefficients are not smooth functions of system parameters, rather they are non-
monotonic, nowhere differentiable functions.

Actual evaluation of transport coefficients is a test of the techniques developed
above in physical settings. In cases of severe pruning the trace formulas and er-
godic sampling of dominant cycles might be more effective strategy than the cycle
expansions of dynamical zeta functions and systematic enumeration of all cycles.

Commentary

Remark 26.1 Lorentz gas. The original pinball model proposed by Lorentz [ 4]
consisted of randomly, rather than regularly placed scatterers.

Remark 26.2 Who’s dunnit? Cycle expansions for the diffusion constant of a particle
moving in a periodic array have been introduced by R. Artuso [ 5] (exact dynamical zeta
function for 1-dimensional chains of maps (26.8)), by W.N. Vance [6](the trace formula ⇓PRIVATE
(26.35) for the Lorentz gas), and by P. Cvitanović, J.-P. Eckmann, and P. Gaspard [ 7] (the

⇑PRIVATEdynamical zeta function cycle expansion (26.8) applied to the Lorentz gas).

20

Remark 26.3 Lack of structural stability for D. Expressions like (26.20) may lead
to an expectation that the diffusion coefficient (and thus transport properties) are smooth
functions of the chaoticity of the system (parameterized, for example, by the Lyapunov
exponent λ = lnΛ). This turns out not to be true: D as a function ofΛ is a fractal, nowhere

20Predrag: add Schreiber ref.; write about Gallavotti-Cohen
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Lorentz gasdifferentiable curve shown in figure 26.5. The dependence of D on the map parameter Λ
is rather unexpected - even though for larger Λ more points are mapped outside the unit
cell in one iteration, the diffusion constant does not necessarily grow. We refer the reader
to refs. [15, 16] for early work on the deterministic diffusion induced by 1-dimensional
maps. The sawtooth map (26.9) was introduced by Grossmann and Fujisaka [17] who
derived the integer slope formulas (26.20) for the diffusion constant. The sawtooth map is
also discussed in refs. [18]. The fractal dependence of diffusion constant on the map pa-
rameter is discussed in refs. [9, 8, 10]. Sect. 1.8 gives a brief summary of the experimental
implications; for the the current state of the art of fractal transport coefficients consult the
first part of Klage’s monograph [12]. Would be nice if someone would eventually check
these predictions in experiments... Statistical mechanicians tend to believe that such com-
plicated behavior is not to be expected in systems with very many degrees of freedom, as
the addition to a large integer dimension of a number smaller than 1 should be as unno-
ticeable as a microscopic perturbation of a macroscopic quantity. No fractal-like behavior
of the conductivity for the Lorentz gas has been detected so far [ 14]. (P. Cvitanović and
L. Rondoni)

Remark 26.4 Symmetry factorization in one dimension. In the β = 0 limit the
dynamics (26.11) is symmetric under x → −x, and the zeta functions factorize into prod-
ucts of zeta functions for the symmetric and antisymmetric subspaces, as described in
sect. 21.1.1:

1
ζ(0, z)

=
1

ζs(0, z)
1

ζa(0, z)
∂

∂z
1
ζ
=

1
ζs

∂

∂z
1
ζa
+

1
ζa

∂

∂z
1
ζs
. (26.36)

The leading (material flow conserving) eigenvalue z = 1 belongs to the symmetric sub-
space 1/ζs(0, 1) = 0, so the derivatives (26.15) also depend only on the symmetric sub-
space:

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1

=
1

ζa(0, z)
z
∂

∂z
1

ζs(0, z)

∣∣∣∣∣
z=1

. (26.37)

Implementing the symmetry factorization is convenient, but not essential, at this level of
computation.

Remark 26.5 Lorentz gas in the fundamental domain. The vector valued nature of
the generating function (26.3) in the case under consideration makes it difficult to perform
a calculation of the diffusion constant within the fundamental domain. Yet we point out
that, at least as regards scalar quantities, the full reduction to M̃ leads to better estimates.
A proper symbolic dynamics in the fundamental domain has been introduced in ref. [ 19], ⇓PRIVATEnumerical estimates for scalar quantities are reported in table 26.3, taken from ref. [20].

⇑PRIVATE

In order to perform the full reduction for diffusion one should express the dynamical
zeta function (26.7) in terms of the prime cycles of the fundamental domain M̃ of the
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intermittency
Jonqui“‘ere function

length # cycles ζ(0,0) λ

1 5 -1.216975 -
2 10 -0.024823 1.745407
3 32 -0.021694 1.719617
4 104 0.000329 1.743494
5 351 0.002527 1.760581
6 1243 0.000034 1.756546

Table 26.3: Fundamental domain, w=0.3 .

lattice (see figure 26.2) rather than those of the elementary (Wigner-Seitz) cell M. This
problem is complicated by the breaking of the rotational symmetry by the auxiliary vector
β, or, in other words, the non-commutativity of translations and rotations: see ref. [ 7].

Remark 26.6 Anomalous diffusion. Anomalous diffusion for 1-dimensional inter-
mittent maps was studied in the continuous time random walk approach in refs. [ 10, 11].
The first approach within the framework of cycle expansions (based on truncated dynam-
ical zeta functions) was proposed in ref. [12]. Our treatment follows methods introduced
in ref. [13], applied there to investigate the behavior of the Lorentz gas with unbounded
horizon.

Remark 26.7 Jonquière functions. In statistical mechanics Jonquière function
(26.29) appears in the theory of free Bose-Einstein gas, see refs. [22, 23].

⇓PRIVATE

Remark 26.8 Molecular chaos. Read Gilbert and Lefevere [24], “Heat conductivity
from molecular chaos hypothesis in locally confined billiard systems,”

21 22 23

⇑PRIVATE

21Predrag: Read “From Deterministic Chaos to Deterministic Diffusion” by R. Klages,
arXiv:0804.3068: “ A set of easy-to-read lecture notes for a short first-year Ph.D. student course.
The notes cover five hours of lectures and do not require any prior knowledge on dynamical sys-
tems. The first part introduces to deterministic chaos in one-dimensional maps in form of Lyapunov
exponents and the metric entropy. The second part first outlines the concept of deterministic dif-
fusion. Then the escape rate formalism for deterministic diffusion, which expresses the diffusion
coefficient in terms of the above two chaos quantities, is worked out for a simple map. The notes
conclude with a very brief sketch of anomalous diffusion.

22Predrag: for ‘fundamental domain’ in hyperbolic geometry, see for example these notes by
Kimball Martin.

23Predrag: 2013-02-03 Roberto: incorporate kneading determinants from G. Cristadoro [25]
Fractal diffusion coefficient from dynamical zeta functions.
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Lorentz gas

Exercises boyscout

26.1. Diffusion for odd integer Λ. Show that when the slope
Λ = 2k − 1 in (26.9) is an odd integer, the diffusion con-
stant is given by D = (Λ2 − 1)/24, as stated in (26.21).

26.2. Fourth-order transport coefficient. Verify (26.24). You
will need the identity

n∑
k=1

k4 =
1
30

n(n + 1)(2n + 1)(3n2 + 3n − 1) .

26.3. Finite Markov partitions. Verify (26.28).

26.4. Maps with variable peak shape: Consider the follow-
ing piecewise linear map

fδ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3x

1−δ x ∈ M1
3
2 −

(
2
δ

∣∣∣ 4−δ
12 − x

∣∣∣) x ∈ M2

1 − 3
1−δ

(
x − 1

6 (2 + δ)
)

x ∈ M3

(26.38)

where M1 =
[
0, 1

3 (1 − δ)
]
, M2 =

[
1
3 (1 − δ), 1

6 (2 + δ)
]
,

M3 =
[

1
6 (2 + δ), 1

2

]
, and the map in [1/2, 1] is obtained

by antisymmetry with respect to x = 1/2, y = 1/2, Write
the corresponding dynamical zeta function relevant to dif-
fusion and then show that

D =
δ(2 + δ)
4(1 − δ)

See refs. [21, 22] for further details. 24

26.5. Two-symbol cycles for the Lorentz gas. Write down
all cycles labeled by two symbols, such as (0 6), (1 7),
(1 5) and (0 5). ⇓PRIVATE
Appendix T contains several project-length deterministic
diffusion exercises.

⇑PRIVATE
26.6. Accelerated diffusion. (medium difficulty) Consider a

map h, such that ĥ = f̂ of figure 26.6 (b), but now running
branches are turned into standing branches and vice versa,
so that 1, 2, 3, 4 are standing while 0 leads to both positive
and negative jumps. Build the corresponding dynamical
zeta function and show that

σ2(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
t for α > 2
t ln t for α = 2
t3−α for α ∈ (1, 2)
t2/ ln t for α = 1
t2 for α ∈ (0, 1)

24Predrag: rescue
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26.7. Recurrence times for Lorentz gas with infinite hori-
zon. Consider the Lorentz gas with unbounded hori-
zon with a square lattice geometry, with disk radius R and
unit lattice spacing. Label disks according to the (integer)
coordinates of their center: the sequence of recurrence
times {t j} is given by the set of collision times. Con-
sider orbits that leave the disk sitting at the origin and
hit a disk far away after a free flight (along the horizontal
corridor). Initial conditions are characterized by coordi-
nates (φ, α) (φ determines the initial position along the
disk, while α gives the angle of the initial velocity with
respect to the outward normal: the appropriate measure
is then dφ cosα dα (φ ∈ [0, 2π), α ∈ [−π/2, π/2]. Find
how φ(T ) scales for large values of T : this is equivalent to
investigating the scaling of portions of the state space that
lead to a first collision with disk (n, 1), for large values of
n (as n �→ ∞ n � T ).

26.8. Diffusion reduced to the fundamental domain. Maps
such as figure 26.3 are antisymmetric. Reduce such an-
tisymmetric maps as in example 9.4, and write down the
formula (26.14) for the diffusion constant D in terms of
the fundamental domain cycles (relative periodic orbits)
alone (P. Gaspard says it cannot be done [7]).
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infinite-dimensional
flows—(

flow!infinite-
dimensional—(

Navier-Stokes
equation

turbulence!problem of
PDEs
ODEsChapter 27

Turbulence?

I am an old man now, and when I die and go to Heaven
there are two matters on which I hope enlightenment. One
is quantum electro-dynamics and the other is turbulence of
fluids. About the former, I am rather optimistic.

—Sir Horace Lamb

There is only one honorable cause that would justify sweating through so much
formalism - this is but the sharpening of a pencil 1 in order that we may at-
tack the Navier-Stokes equation,

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p + ν∇2u + f , (27.1)

and solve the problem of turbulence.

Flows described by partial differential equations [PDEs] are said to be ‘in-
finite dimensional’ because if one writes them down as a set of ordinary dif-
ferential equations [ODEs], one needs infinitely many of them to represent the
dynamics of one partial differential equation. Even though the state space is
infinite-dimensional, the long-time dynamics of many systems of physical inter-
est is finite-dimensional, contained within an inertial manifold.

Being realistic, we are not so foolhardy to immediately plunge into the prob-
lem – there are too many dimensions and indices. Instead, we start small, in one
spatial dimension, u → u, u · ∇u → u∂x, assume constant ρ, forget about the pres-
sure p, and so on. This line of reasoning, as well as many other equally sensible
threads of thought, such as the amplitude equations obtained via weakly nonlin-
ear stability analysis of steady flows, leads to a small set of frequently studied
nonlinear PDEs, like the one that we turn to now.

1Predrag: ref to Poul Martin: En dansk students eventyr [18]
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spatiotemporal chaos
chaos!spatiotemporal

27.1 Fluttering flame front

Romeo: ‘Misshapen chaos of well seeming forms!’
—W. Shakespeare, Romeo and Julliet, Act I, Scene I

The Kuramoto-Sivashinsky [KS] system describes the flame front flutter of
gas burning on your kitchen stove, figure 27.1 (a), and many other problems of
greater import, is one of the simplest nonlinear systems that exhibit ‘turbulence’
(in this context often referred to more modestly as ‘spatiotemporally chaotic be-
havior’). The time evolution of the ‘flame front velocity’ u = u(x, t) on a periodic
domain u(x, t) = u(x + L, t) is given by

ut +
1
2 (u2)x + uxx + νuxxxx = 0 , x ∈ [0, L] . (27.2)

In this equation t is the time and x is the spatial coordinate. The subscripts x and t
denote partial derivatives with respect to x and t: ut = ∂u/d∂, uxxxx stands for the
4th spatial derivative of u = u(x, t) at position x and time t. In what follows we
use interchangeably the “dimensionless system size” L̃, or the periodic domain
size L = 2πL̃, as the system parameter. We take note, as in the Navier-Stokes
equation (27.1), of the “inertial” term u∂xu, the “anti-diffusive” term ∂2

xu (with a
“wrong” sign), “(hyper-)viscosity” ν, etc..

The term (u2)x makes this a nonlinear system. This is one of the simplest
conceivable nonlinear PDE, playing the role in the theory of spatially extended
systems a bit like the role that the x2 nonlinearity plays in the dynamics of iterated
mappings. The time evolution of a typical solution of the Kuramoto-Sivashinsky

section 3.3
system is illustrated by figure 27.1 (b).

remark 27.1

Spatial periodicity u(x, t) = u(x + L, t) makes it convenient to work in the
Fourier space,

u(x, t) =
+∞∑

k=−∞
ak(t)eikx/L̃ , (27.3)

with the 1-dimensional PDE (27.2) replaced by an infinite set of ODEs for the
complex Fourier coefficients ak(t):

ȧk = vk(a) = ((k/L̃)2 − (k/L̃)4) ak − i
k

2L̃

+∞∑
m=−∞

amak−m . (27.4)

Since u(x, t) is real, ak = a∗−k , and we can replace the sum in (27.4) by a sum over
k > 0.
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structural stabilityFigure 27.1: (a) Kuramoto-Sivashinsky dynam-
ics visualized as the Bunsen burner flame flutter,
with u = u(x, t) the “velocity of the flame front” at
position x and time t. (b) A typical “turbulent” so-
lution of the Kuramoto-Sivashinsky equation, sys-
tem size L = 88.86. The color (gray scale) in-
dicates the value of u at a given position and in-
stant in time. The x coordinate is scaled with the
most unstable wavelength 2π

√
2, which is approx-

imately also the mean wavelength of the turbulent
flow. The dynamics is typical of a large system,
in this case approximately 10 mean wavelengths
wide. (from ref. [14])
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2 Due to the hyperviscous damping uxxxx, long time solutions of Kuramoto-
Sivashinsky equation are smooth, ak drop off fast3 with k, and truncations of (27.4)
to N terms, 16 ≤ N ≤ 128, yield highly accurate solutions for system sizes con-
sidered here. Robustness of the Fourier representation of KS as a function of the
number of modes kept in truncations of (27.4) is, however, a subtle issue. Adding
an extra mode to a truncation introduces a small perturbation. However, this can
(and often will) throw the dynamics into a different asymptotic state. A chaotic
attractor for N = 15 can collapse into an attractive period-3 cycle for N = 16, and
so on. If we compute, for example, the Lyapunov exponent λN for a strange at-
tractor of the system (27.4), there is no reason to expect λN to smoothly converge
to a limit value λ, as N → ∞, because of the lack of structural stability both as
a function of truncation N, and the system size L̃. However, later in this chapter
we explore both equilibria and short periodic orbits, which are robust under mode
truncations and small system parameter L̃ changes.

Spatial representations of PDEs (such as figure 27.1 (b) and the 3D snapshots
of velocity and vorticity fields in Navier-Stokes) offer little insight into detailed
dynamics of low-Re flows. Much more illuminating are the state space represen-
tations. 4

27.1.1 Scaling and symmetries

The Kuramoto-Sivashinsky equation (27.2) is space translationally invariant, time
translationally invariant, and invariant under reflection x → −x, u → −u.

2Predrag: this text to be moved to a more appropriate place
3Predrag: how fast?
4Predrag: expand this into a visualization subsection: how we use d-dimensional vectors (sta-

bility eigenvectors, etc) to project from d-dimensions to 2 or 3 dimensions. Not Fourier modes as
coordinates!
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Galilean invariance
invariance!Galilean

Comparing ut and (u2)x terms we note that u has dimensions of [x]/[t], hence u
is the “velocity,” rather than the “height” of the flame front. Indeed, the Kuramoto-
Sivashinsky equation is Galilean invariant: if u(x, t) is a solution, then v + u(x −
vt, t), with v an arbitrary constant velocity, is also a solution. Without loss of
generality, in our calculations we shall work in the mean velocity zero frame

∫
dx u = 0 . (27.5)

In terms of the system size L, the only length scale available, the dimensions
of terms in (27.2) are [x] = L, [t] = L2, [u] = L−1, [ν] = L2 . Scaling out the
“viscosity” ν

x → xν
1
2 , t → tν , u → uν−

1
2 ,

brings the Kuramoto-Sivashinsky equation (27.2) to a non-dimensional form

ut = (u2)x − uxx − uxxxx , x ∈ [0, Lν−
1
2 ] = [0, 2πL̃] . (27.6)

In this way we trade in the “viscosity” ν and the system size L for a single dimen-
sionless system size parameter

L̃ = L/(2π
√
ν) (27.7)

which plays the role of a “Reynolds number” for the Kuramoto-Sivashinsky sys-
tem.

In the literature sometimes L is used as the system parameter, with ν fixed to
1, and at other times ν is varied with L fixed to either 1 or 2π. Physically, varying
L is the right thing to do if one is interested in taking L large, and studying ‘spatio-
temporal chaos.’ To minimize confusion, in what follows we shall state results of
all calculations in units of dimensionless system size L̃. 5 Note that the time units
also have to be rescaled; for example, if T∗p is a period of a periodic solution of
(27.2) with a given ν and L = 2π, then the corresponding solution of the non-
dimensionalized (27.6) has period

Tp = T ∗
p/ν . (27.8)

6

5Predrag: motivate 2π factor by the mean wavelength, refer to the equation number
6Predrag: MAKE SURE that all periods in tables of computed cycles are stated for that case,

and not for L = 2π.
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27.1.2 Fourier space representation

Spatial periodic boundary condition u(x, t) = u(x + 2πL̃, t) makes it convenient to
work in the Fourier space, 7

u(x, t) =
+∞∑

k=−∞
bk(t)eikx/L̃ . (27.9)

with (27.6) replaced by an infinite tower of ODEs for the Fourier coefficients: 8

ḃk = (k/L̃)2
(
1 − (k/L̃)2

)
bk + i(k/L̃)

+∞∑
m=−∞

bmbk−m . (27.10)

This is the infinite set of ordinary differential equations promised in this chapter’s
introduction.

Since u(x, t) is real, bk = b∗−k , so we can replace the sum over m in (27.4) by
a sum over m > 0. As ḃ0 = 0, b0 is a conserved quantity, in our calculations fixed
to b0 = 0 by the vanishing mean 〈u〉 condition (27.5) for the front velocity. 9

Example 27.1 Kuramoto-Sivashinsky antisymmetric subspace: The Fourier co-
efficients bk are in general complex numbers. 10 We can isolate the antisymmetric
subspace u(x, t) = −u(−x, t) by considering the case of ak pure imaginary, ak → iak,
where ak = −a−k are real, with the evolution equations

ȧk = (k/L̃)2
(
1 − (k/L̃)2

)
ak − (k/L̃)

+∞∑
m=−∞

amak−m . (27.11)

By picking this subspace we eliminate the continuous translational symmetry from our
considerations; that is not an option for an experimentalist, but will do for our purposes.
In the antisymmetric subspace the translational invariance of the full system reduces
to the invariance under discrete translation by half a spatial period L. In the Fourier
representation (27.11) this corresponds to invariance under

a2m → a2m , a2m+1 → −a2m+1 . (27.12)

The antisymmetric condition amounts to imposing u(0, t) = 0 boundary condition.

7Predrag: repeat of (27.3)?
8Predrag: repeat of (27.4)?
9Predrag: be explicit

10Predrag: make antisymmetric space into an exercise
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inertial manifold
Galerkin@G“”alerkin

truncation
truncation!G“”alerkinFigure 27.2: Spatiotemporally periodic solution

u0(x, t), with period T0 = 30.0118 . The antisymmetric
subspace, u(x, t) = −u(−x, t), so we plot x ∈ [0, L/2].
System size L̃ = 2.89109, N = 16 Fourier modes trun-
cation. (From ref. [5])

27.2 Infinite-dimensional flows: Numerics

The computer is not a mere mathematical excrescence,
useful for technological ends. Rather, I believe that it
is a meta-development that might very well change what
mathematics is considered to be.

— P. J. Davis [1]

The trivial solution u(x, t) = 0 is an equilibrium point of (27.2), but that is basically
all we know as far as useful analytical solutions are concerned. To develop some
intuition about the dynamics we turn to numerical simulations.

How are solutions such as figure 27.1 (b) computed? The salient feature of
such partial differential equations is a theorem saying that for state space con-
tracting flows, the asymptotic dynamics is describable by a finite set of “inertial
manifold” ordinary differential equations. 11 How you solve the equation (27.2)
numerically is up to you. Here are some options:

Discrete mesh: You can divide the x interval into a sufficiently fine discrete grid of
N points, replace space derivatives in (27.2) by approximate discrete derivatives,
and integrate a finite set of first order differential equations for the discretized
spatial components uj(t) = u( jL/N, t), by any integration routine you trust.

Fourier modes: You can integrate numerically the Fourier modes (27.4), trun-
cating the ladder of equations to a finite number of modes N, i.e., set ak = 0 for
k > N. In the applied mathematics literature more sophisticated variants of such

exercise 2.6
truncations are called Gälerkin truncations, or Gälerkin projections. You need to
worry about “stiffness” of the equations and the stability of your integrator. For
the parameter values explored in this chapter, truncations N in range 16 to 64 yield
sufficient accuracy.

Pseudo-spectral methods: You can mix the two methods, exploiting the speed
of Fast Fourier Transforms. 12 13

Example 27.2 Kuramoto-Sivashinsky simulation, antisymmetric subspace: To
get started, we set ν = 0.029910, L = 2π in the Kuramoto-Sivashinsky equation (27.2),

11Predrag: define inertial manifold
12Predrag: link Trefethen
13Predrag: add Ruslan’s appendix
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Figure 27.3: Projections of a typical 16-
dimensional trajectory onto different 3-
dimensional subspaces, coordinates (a) {a1, a2, a3},
(b) {a1, a2, a4}. System size L̃ = 2.89109, N = 16
Fourier modes truncation. (From ref. [5].)
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or, equivalently, ν = 1, L = 36.33052 in the non-dimensionalized (27.11). Consider
the antisymmetric subspace (27.11), so the non-dimensionalized system size is L̃ =
L/2π = 2.89109. Truncate (27.11) to 0 ≤ k ≤ 16, and integrate an arbitrary initial
condition. Let the transient behavior settle down.

14 Why this L̃? For this system size L̃ the dynamics appears to be chaotic,
as far as can be determined numerically. Why N = 16? In practice one repeats the
same calculation at different truncation cutoffs N, and makes sure that the inclusion of
additional modes has no effect within the desired accuracy. For this system size N = 16
suffices.

Once a trajectory is computed in Fourier space, we can recover and plot the
corresponding spatiotemporal pattern u(x, t) over the configuration space using (27.3),
as in figure 27.1 (b) and figure 27.2. Such patterns give us a qualitative picture of the
flow, but no detailed dynamical information; for that, tracking the evolution in a high-
dimensional state space, such as the space of Fourier modes, is much more informa-
tive.

27.3 Visualization

The ultimate goal, however, must be a rational theory of
statistical hydrodynamics where [· · ·] properties of turbu-
lent flow can be mathematically deduced from the funda-
mental equations of hydromechanics.

—E. Hopf

15 The problem with high-dimensional representations, such as truncations of
the infinite tower of equations (27.4), is that the dynamics is difficult to visualize.
The best we can do without much programming is to examine the trajectory’s

section 27.3
projections onto any three axes ai, aj, ak, as in figure 27.3. 16

The question is: how is one to look at such a flow? It is not clear that restricting
the dynamics to a Poincaré section necessarily helps - after all, a section reduces
a (d + 1)-dimensional flow to a d-dimensional map, and how much is gained by

14Predrag: add period-doubling tree
15Predrag: distinction between spacetime dependent velocity field u(x, t) ∈ R3 and a point x in

the ∞-dimensional state space M.
16Predrag: make figure 27.2, figure 27.3, figure 27.4 into a problem set
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Figure 27.4: The attractor of the Kuramoto-Sivashin-
sky system (27.4), plotted as the a6 component of the
a1 = 0 Poincaré section return map. Here 10,000
Poincaré section returns of a typical trajectory are plot-
ted. Also indicated are the periodic points 0, 1, 01 and
10. System size L̃ = 2.89109, N = 16 Fourier modes
truncation. (From ref. [5].)

replacing a continuous flow in 16 dimensions by a set of points in 15 dimensions?
The next example illustrates the utility of visualization of dynamics by means of
Poincaré sections.

Example 27.3 Kuramoto-Sivashinsky Poincaré return maps: Consider the
Kuramoto-Sivashinsky equation in the N Fourier modes representation. We pick (arbi-
trarily) the hyperplane a1 = 0 as the Poincaré section, and integrate (27.4) with a1 = 0,
and an arbitrary initial point (a2, . . . , aN). When the flow crosses the a1 = 0 hyper-
plane in the same direction as initially, the initial point is mapped into (a ′

2, . . .a
′
N) =

P(a2, . . . , aN). This defines P, the Poincaré return map (3.1) of the (N − 1)-dimensional
a1 = 0 hyperplane into itself.

Figure 27.4 is a typical result. We have picked - again arbitrarily - a subspace
such as a6(n+ 1) vs. a6(n) in order to visualize the dynamics. While the topology of the
attractor is still obscure, one thing is clear: even though the flow state space is infinite
dimensional, the attractor is finite and thin, barely thicker than a line. 17

The above example illustrates why a Poincaré section gives a more informa-
tive snapshot of the flow than the full flow portrait. While no fine structure is
discernible in the full state space flow portraits of the Kuramoto-Sivashinsky dy-
namics, figure 27.3, the Poincaré return map figure 27.4 reveals the fractal struc-
ture in the asymptotic attractor.

In order to find a better representation of the dynamics, we now turn to its
topological invariants.

27.4 Equilibria of equilibria

(Y. Lan and P. Cvitanović)

The set of equilibria and their stable / unstable manifolds form the coarsest topo-
logical framework for organizing state space orbits.

17Mason: duplicate this example for CGL
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The equilibrium condition ut = 0 for the Kuramoto-Sivashinsky equation PDE
(27.6) is the ODE

1
2

(u2)x + uxx + uxxxx = 0

which can be analyzed as a dynamical system in its own right. Integrating once
we get

1
2

u2 + ux + uxxx = c , (27.13)

where c is an integration constant whose value strongly influences the nature of the
solutions. Written as a 3-dimensional dynamical system with spatial coordinate x
playing the role of “time,” this is a volume preserving flow

ux = v , vx = w , wx = u2 − v − c , (27.14)

with the “time” reversal symmetry,

x → −x, u → −u, v → v, w → −w .

From (27.14) we see that

(u + w)x = u2 − c .

If c < 0, u + w increases without bound with x → ∞, and every solution escapes
to infinity. If c = 0, the origin (0, 0, 0) is the only bounded solution.

For c > 0 there is much c-dependent interesting dynamics, with complicated
fractal sets of bounded solutions. The sets of the solutions of the equilibrium
condition (27.14) are themselves in turn organized by the equilibria of the equi-
librium condition, and the connections between them. For c > 0 the equilibrium
points of (27.14) are c+ = (

√
c, 0, 0) and c− = (−

√
c, 0, 0). Linearization of the

flow around c+ yields Floquet multipliers [2λ ,−λ ± iθ] with

λ =
1
√

3
sinh φ , θ = cosh φ ,

and φ fixed by sinh 3φ = 3
√

3c. Hence c+ has a 1-dimensional unstable manifold
and a 2-dimensional stable manifold along which solutions spiral in. By the x →
−x “time reversal” symmetry, the invariant manifolds of c− have reversed stability
properties.
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equilibrium!Kuramoto-
SivashinskyFigure 27.5: The non–wandering set under study

appears to consist of three patches: the left part
(S L), the center part (S C) and the right part (S R),
each centered around an unstable equilibrium: (a)
central C1 equilibrium, (b) side R1 equilibrium on
the interval [0, L].
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The non–wandering set fo this dynamical system is quite pretty, and surpris-
ingly hard to analyze. However, we do not need to explore the fractal set of the
Kuramoto-Sivashinsky equilibria for infinite size system here; for a fixed system
size L with periodic boundary condition, the only surviving equilibria are those
with periodicity L. They satisfy the equilibrium condition for (27.4) 18

(k/L̃)2
(
1 − (k/L̃)2

)
bk + i(k/L̃)

+∞∑
m=−∞

bmbk−m = 0 . (27.15)

Periods of spatially periodic equilibria are multiples of L. Every timeL̃ crosses an
integer value L̃ = n, n-cell states are generated through pitchfork bifurcations. In
the full state space they form an invariant circle due to the translational invariance
of (27.6). In the antisymmetric subspace considered here, they corresponds to two
points, half-period translates of each other of the form

u(x, t) = −2
∑

k

bkn sin(knx) ,

where bkn ∈ R.

For any fixed spatial period L the number of spatially periodic solutions is
finite up to a spatial translation. This observation can be heuristically motivated as
follows. Finite dimensionality of the inertial manifold bounds the size of Fourier
components of all solutions. 19 On a finite-dimensional compact manifold, an
analytic function can only have a finite number of zeros. So, the equilibria, i.e.,
the zeros of a smooth velocity field on the inertial manifold, are finitely many.

For a sufficiently small L the number of equilibria is small, mostly concen-
trated on the low wave number end of the Fourier spectrum. These solutions may
be obtained by solving the truncated versions of (27.15).

Example 27.4 Some Kuramoto-Sivashinsky equilibria:

20

18Predrag: [?] to remarks
19Predrag: explain the theory; say that in practice it is useless
20Predrag: say somewhere: “ The task of the theory is to describe this spatio-temporal turbulence

and yield quantitative predictions for its measurable consequences. ”
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27.5 Why does a flame front flutter?

I understood every word.

—Fritz Haake
section 18.2

We start by considering the case where aq is an equilibrium point (2.9). Ex-
panding around the equilibrium point aq, and using the fact that the matrix A =
A(aq) in (4.2) is constant, we can apply the simple formula (5.1) also to the Jaco-
bian matrix of an equilibrium point of a PDE,

Jt(aq) = eAt A = A(aq) .

Example 27.5 Stability matrix, antisymmetric subspace: The Kuramoto-Siva-
shinsky flat flame front u(x, t) = 0 is an equilibrium point of (27.2). The stability matrix
(4.3) follows from (27.4)

Ak j(a) =
∂vk(a)
∂a j

= ((k/L̃)2 − (k/L̃)4)δk j − 2(k/L̃)ak− j . (27.16)

For the u(x, t) = 0 equilibrium solution the stability matrix is diagonal, and – as in (4.30)
– so is the Jacobian matrix Jt

k j(0) = δk je((k/L̃)2−(k/L̃)4)t .

For L̃ < 1, u(x, t) = 0 is the globally attractive stable equilibrium. As the
system size L̃ is increased, the “flame front” becomes increasingly unstable and
turbulent, the dynamics goes through a rich sequence of bifurcations on which we
shall not dwell here.

The |k| <?? long wavelength perturbations of the flat-front equilibrium are lin-
⇓PRIVATE

⇑PRIVATE
early unstable, while all |k| >?? short wavelength perturbations are strongly con-

⇓PRIVATE

⇑PRIVATE

tractive. The high k eigenvalues, corresponding to rapid variations of the flame
front, decay so fast that the corresponding eigen-directions are physically irrel-
evant. To illustrate the rapid contraction in the non-leading eigen-directions we
plot in figure 27.6 the eigenvalues of the equilibrium in the unstable regime, for
relatively small system size, and compare them with the Floquet multipliers of the
least unstable cycle for the same system size. The equilibrium solution is very
unstable, in 5 eigen-directions, the least unstable cycle only in one. Note that for
k > 7 the rate of contraction is so strong that higher eigen-directions are numeri-
cally meaningless for either solution; even though the flow is infinite-dimensional,
the attracting set must be rather thin.

While in general for L̃ sufficiently large one expects many coexisting attrac-
tors in the state space, in numerical studies most random initial conditions settle
converge to the same chaotic attractor.

From (27.4) we see that the equilibrium u(x, t) = 0 has Fourier modes as
the linear stability eigenvectors. For |k| < L̃, the corresponding Fourier modes
are unstable. The most unstable mode has k = L̃/

√
2 and defines the scale of
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Figure 27.6: Lyapunov exponents λ1,k versus k for the

least unstable spatio-temporally periodic orbit 1 of the
Kuramoto-Sivashinsky system, compared with the Flo-
quet exponents of the u(x, t) = 0 stationary solution,
λk = k2 − νk4. The eigenvalue λ1,k for k ≥ 8 falls be-
low the numerical accuracy of integration and are not
meaningful. The cycle 1 was computed using meth-
ods of chapter 13. System size L̃ = 2.89109, N = 16
Fourier modes truncation. (From ref. [5])
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basic building blocks of the spatiotemporal dynamics of the Kuramoto-Sivashin-
sky equation in large system size limit.

21 Consider now the case of initial ak sufficiently small that the bilinear amak−m

terms in (27.4) can be neglected. Then we have a set of decoupled linear equa-
tions for ak whose solutions are exponentials, at most a finite number for which
k2 > νk4 is growing with time, and infinitely many with νk4 > k2 decaying in
time. The growth of the unstable long wavelengths (low |k|) excites the short
wavelengths through the amak−m nonlinear term. The excitations thus transferred
are dissipated by the strongly damped short wavelengths, and a “chaotic equilib-
rium” can emerge. The very short wavelengths |k| ( 1/

√
ν remain small for all

times, but the intermediate wavelengths of order |k| ∼ 1/
√
ν play an important role

in maintaining the dynamical equilibrium. As the damping parameter decreases,
the solutions increasingly take on shock front character poorly represented by the
Fourier basis, and many higher harmonics may need to be kept in truncations of
(27.4).

Hence, while one may truncate the high modes in the expansion (27.4), care
has to be exercised to ensure that no modes essential to the dynamics are chopped
away.

In other words, even though our starting point (27.2) is an infinite-dimensional
dynamical system, the asymptotic dynamics unfolds on a finite-dimensional at-
tracting manifold, and so we are back on the familiar territory of sect. 2.2: the
theory of a finite number of ODEs applies to this infinite-dimensional PDE as
well. 22

We can now start to understand the remark on page 47 that for infinite di-
mensional systems time reversibility is not an option: evolution forward in time
strongly damps the higher Fourier modes. There is no turning back: if we re-
verse the time, the infinity of high modes that contract strongly forward in time
now explodes, instantly rendering evolution backward in time meaningless. As so
much you are told about dynamics, this claim is also wrong, in a subtle way: if
the initial u(x, 0) is in the non–wandering set (2.3), the trajectory is well defined
both forward and backward in time. For practical purposes, this subtlety is not of

21Predrag: probably drop?
22Mason: I volunteer to write a section on amplitude equations, a la my thesis

PDEs - 24jan2013 boyscout version14.4, Mar 19 2013



CHAPTER 27. TURBULENCE? 670

Kuramoto-
Sivashinsky!equilibria

Table 27.1: Important Kuramoto-Sivashinsky equilibria: the first few Floquet exponents

S μ(1) ± iω(1) μ(2) ± iω(2) μ(3) ± iω(3)

C1 0.04422 ± i 0.26160 -0.255 ± i 0.431 -0.347 ± i 0.463
R1 0.01135 ± i 0.79651 -0.215 ± i 0.549 -0.358 ± i 0.262
T 0.25480 -0.07 ± i 0.645 -0.264

much use, as any time-reversed numerical trajectory in a finite-mode truncation
will explode very quickly, unless special precautions are taken.

When is an equilibrium important? There are two kinds of roles equilibria
play:

“Hole” in the natural measure. The more unstable eigen-directions it has (for
example, the u = 0 solution), the more unlikely it is that an orbit will recur in its
neighborhood.

Unstable manifold of a “least unstable” equilibrium. Asymptotic dynamics
spends a large fraction of time in neighborhoods of a few equilibria with only a
few unstable eigen-directions. ⇓PRIVATE

Example 27.6 Stability of Kuramoto-Sivashinsky equilibria:

spiraling out in a plane, all other directions contracting

Stability of “center” equilibrium

linearized Floquet exponents:

(μ(1) ± iω(1), μ(2) ± iω(2), · · ·) = (0.044 ± i 0.262 , −0.255 ± i 0.431 , · · ·)

The plane spanned by μ(1) ± iω(1) eigenvectors rotates with angular period
T ≈ 2π/ω(1) = 24.02.

a trajectory that starts near the C1 equilibrium point spirals away per one rota-
tion with multiplier Λradial ≈ exp(μ(1)T) = 2.9.

each Poincaré section return, contracted into the stable manifold by factor of
Λ2 ≈ exp(μ(2)T) = 0.002

The local Poincaré return map is in practice 1 − dimensional

27.6 Periodic orbits

expanding eigenvalue of the least unstable spatio-temporally periodic orbit 1:
Λ1 = −2.0 . . .

very thin Poincaré section
thickness ∝ least contracting eigenvalue Λ2 = 0.007 . . .
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center manifold

Figure 27.7: The Poincaré return map of the
Kuramoto-Sivashinsky system (27.4) figure 27.4, from
the unstable manifold of the 1 fixed point to the (neigh-
borhood of) the unstable manifold. Also indicated are
the periodic points 0 and 01. 0
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15-dimensional → 15-dimensional Poincaré return map projection on the
[a6 → a6] Fourier component is not even 1 → 1.

⇑PRIVATE

27.7 Intrinsic parametrization

23

Both in the Rössler flow of example 3.3, and in the Kuramoto-Sivashinsky sys-
tem of example 27.3 we have learned that the attractor is very thin, but otherwise
the return maps that we found were disquieting – neither figure3.3 nor figure 27.4
appeared to be one-to-one maps. This apparent loss of invertibility is an artifact of
projection of higher-dimensional return maps onto lower-dimensional subspaces.
As the choice of lower-dimensional subspace is arbitrary, the resulting snapshots
of return maps look rather arbitrary, too. Other projections might look even less
suggestive. 24

Such observations beg a question: Does there exist a “natural,” intrinsically
optimal coordinate system in which we should plot of a return map? 25

As we shall now argue (see also sect. 13.1), the answer is yes: The intrinsic
coordinates are given by the stable/unstable manifolds, and a return map should
be plotted as a map from the unstable manifold back onto the immediate neigh-
borhood of the unstable manifold.

Examination of numerical plots such as figure27.3 suggests that a more thought-
ful approach would be to find a coordinate transformation y = h(x) to a “center
manifold,” such that in the new, curvilinear coordinates large-scale dynamics takes
place in (y1, y2) coordinates, with exponentially small dynamics in y3, y4 · · ·. But
- thinking is extra price - we do not know how to actually accomplish this, and we
do not believe it can be accomplished globally.

Both in the example of the Rössler flow and of the Kuramoto-Sivashinsky
system we sketched the attractors by running a long chaotic trajectory, and noted

23Predrag: insert into figure 27.7: This unimodal map is an approximation to the repeller given
in figure 27.8.

24Predrag: needs expanding!
25Predrag: explain return map here
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that the attractors are very thin, but otherwise the return maps that we plotted were
disquieting – neither figure 3.3 nor figure 27.4 appeared to be 1-to-1 maps. In this
section we show how to use such information to approximately locate cycles. ⇓PRIVATE

Example 27.7 Kuramoto-Sivashinsky system. 26. The full return map is (N − 1)-
dimensional a → P(a2, . . . , aN) = a′ and single-valued. For the examples we consider
the attractor is essentially 1-dimensional, but its projection into the {ak, Pk(a2, . . . , aN)}
plane, a return map for a given coordinate ak → a′k = Pk(a2, . . . , aN) can appear to be
multi-valued and self-intersecting.

The multiple-valuedness in figure 27.4 arises from the fact that the return map
is a 2-dimensional projection of a convoluted 1-dimensional curve embedded into a
high-dimensional space. One can imagine a situation where no “good” projection is
possible. That is, any projection onto any 2-dimensional plane is a multiple-valued
function. The question is: ‘Does there exist an intrinsically optimal representation of
a return map?’ The answer is ‘yes.’ As the intrinsic coordinates are given by the sta-
ble/unstable manifolds, and a return map should be plotted as a map from the unstable
manifold back onto the unstable manifold. 27

28 We now show how this works for the Kuramoto-Sivashinsky example. We
shall show that it is possible to find an intrinsic parametrization s along the unstable
manifold, such that the map s → f (s) induced by the full d-dimensional flow is ap-
proximately 1-dimensional. Strictly speaking, the attractor in figure 27.4 has a certain
thickness transverse to it, but the contraction in the transverse directions is so strong
that the invariant set is effectively 1-dimensional.

Suppose we already have determined some of the shorter cycles for our sys-
tem (i.e., the fixed points of the Poincaré map and its iterates). This is accomplished
relatively easily by checking a trajectory of a random initial point for close returns and
then using these as initial guesses for a cycle search algorithm. We now assume that
the invariant set can be approximated by a curve passing close to all periodic points,
and determine the order of periodic points along this curve. This is done as follows:
There exists a fixed point that is not connected to the attractor (the point 0 in figure 27.4)
- we choose this fixed point as the starting point and assign it the label 1. Point labeled
2 is the periodic point in the sample that is closest (in the full space) to this fixed point,
and the nth point is determined as the point with the minimum distance from the point
labeled n−1 among all the unlabeled periodic points. Proceeding this way, we order all
the periodic points that we have found so far.

Since all periodic points belong to cycles, their images are known and are sim-
ply the successive periodic points along the cycle. We use this fact to recursively con-
struct a 1-dimensional mapping si → f (si). We approximate the parametrization length
s along the invariant set by computing the Euclidean inter-distances between the suc-
cessive periodic points in the full dynamical space, s1 = 0, s2 = ‖a2 − a1‖, si − si−1 =

‖ai − ai−1‖. The ith periodic point si is mapped onto its image sσi = f (si), where σi

denotes the label of the next periodic point in the cycle. We can now find longer cycles
of the 1-dimensional map f by standard methods such as inverse iteration, and guess
the location of the corresponding points in the full N-dimensional space by interpolating
between the nearest known periodic points. These will not be exact cycles of the full
system, but are very useful as good starting guesses in a search for the exact cycles.
Iteratively, increasingly many cycles can be computed. While it only pays to refine the
1-dimensional parametrization until the density of the periodic points become so high
that the width of the attractor becomes noticeable, the 1-dimensional map continues to

26Dorte: “In sect. O.1 we developed basic understanding of” which section? ulaeseligt!
27Predrag: combine this with sect. 12.1.1
28Predrag: the reminder should go to the fixed points chapter
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Figure 27.8: The return map sn+1 = f (sn) constructed
from the images of periodic points. The diamonds
were obtained by using 34 periodic points, and the
dots were obtained by using 240 periodic points. We
have indicated the periodic points 0, 1 and 01. Note
that the transverse fractal structure of the map shows
when the number of points is increased. System size
L̃ = 2.89109, N = 16 Fourier modes truncation.
(From ref. [5])
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provide good initial guesses to longer cycles. More sophisticated methods are needed
only if high accuracy around the folding region of f (s) is required to distinguish between
long cycles.

For the values of ν with which we are working, the approximate return map
s → f (s) is unimodal.

We use the unimodal map s → f (s) to construct binary symbolic dynamics for
the system in the usual way: assign the symbol ’0’ to points to the left of the maximum,
and ’1’ to the points to the right. In the period-3 window with the stable cycle 001,
the pruning rules are very easy: except for the stable 001 cycle and the 0 fixed point
(both of which aredisjoint from the invariant set) two 0’s in a row are forbidden. In this
case it is convenient to redefine the alphabet by denoting the symbol pair 01 by a and
the symbol 1 by b. This makes the symbolic dynamics of the points on the repeller
complete binary: all sequences of the letters a and b are admissible.

⇑PRIVATE

27.8 Energy budget

29 The space average of a function a = a(x, t) on the interval L,

〈a〉 = 1
L

∫ L

0
dx a(x, t) , (27.17)

is in general time dependent. Its mean value is given by the time average

a = lim
t→∞

1
t

∫ t

0
dτ 〈a〉 = lim

t→∞

1
tL

∫ t

0

∫ L

0
dτdx a(x, τ) . (27.18)

The mean value a, a = a(u) evaluated on an equilibrium or relative equilibrium
u(x, t) = uq(x − ct) is

aq = 〈a〉q . (27.19)

29Predrag: from bounds on energy, we might be able to bound the number of equilibria as
function of systems size L, and thus be sure we have them all.
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Evaluation of the infinite time average (27.18) on a function of a period Tp peri-
odic orbit or relative periodic orbit up(x, t) requires only a single traversal of the
periodic solution,

ap =
1

Tp

∫ Tp

0
dτ 〈a〉 . (27.20)

Equation (27.2) can be written as

ut = −Vx , V(x, t) = 1
2u2 + ux + uxxx . (27.21)

u is related to the “flame-front height” h(x, t) by u = hx, so E can be interpreted
as the mean energy density (27.22). So, even though KS is a phenomenological
small-amplitude equation, the time-dependent quantity

E =
1
L

∫ L

0
dx V(x, t) =

1
L

∫ L

0
dx

u2

2
(27.22)

has a physical interpretation as the average “energy” density of the flame front.
This analogy to the corresponding definition of the mean kinetic energy density
for the Navier-Stokes will be useful in what follows. 30

The energy (27.22) is also the quadratic norm in the Fourier space,

E =
∞∑

k=1

Ek , Ek =
1
2 |ak |2 . (27.23)

Take time derivative of the energy density (27.22), substitute (27.2) and inte-
grate by parts. Total derivatives vanish by the spatial periodicity on the L domain:

Ė = 〈ut u〉 = −
〈(

u2

2
+ u ux + u uxxx

)
x

u

〉
=

〈
+ux

u2

2
+ (ux)2 + ux uxxx

〉
. (27.24)

Substitution by (??) verifies that for an equilibrium E is constant: ⇓PRIVATE

⇑PRIVATE

Ė =

〈(
u2

2
+ ux + uxxx

)
ux

〉
= E 〈ux〉 = 0 .

The first term in (27.24) vanishes by integration by parts,
〈
(u3)x

〉
= 3

〈
ux u2

〉
= 0 ,

and integrating the third term by parts yet again we find that the energy variation

Ė =
〈
(ux)2

〉
−

〈
(uxx)2

〉
(27.25)

30Predrag: bit weird: can use Galilean invariance to set E = 0 for any given u(x, t)?
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Figure 27.9: Power input
〈
(ux)2

〉
vs. dissipation〈

(uxx)2
〉

for L = 22 equilibria and relative equilibria,
for several periodic orbits and relative periodic orbits,
and for a typical ‘turbulent’ state. Note that (up,x)2 of
the (Tp, dp) = (32.8, 10.96) relative periodic orbit, fig-
ure ?? (c), which appears well embedded within the
turbulent state, is close to the turbulent expectation
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Figure 27.10: EQ1 (red), EQ2 (green), EQ3 (blue),
connections from EQ1 to A(L/4)EQ1 (green), from
A(L/4)EQ1 to EQ1 (yellow-green) and from EQ3 to
A(L/4)EQ1 (blue), along with a generic long-time
“turbulent” evolution (grey) for L = 22. Three differ-
ent projections of the (E,
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〉
,
〈
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〉
) −

〈
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representation are shown.
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balances the KS equation (27.2) power pumped in by the anti-diffusion uxx against
energy dissipated by the hypervicosity uxxxx . ⇓PRIVATE

⇑PRIVATE31 32 In figure 27.9 we plot the power input
〈
(ux)2

〉
vs. dissipation

〈
(uxx)2

〉
for all L = 22 equilibria and relative equilibria determined so far, several periodic
orbits and relative periodic orbits, and for a typical “turbulent” evolution.33 34 The
time averaged energy density E computed on a typical orbit goes to a constant, so
the expectation values (27.26) of drive and dissipation exactly balance each out:

Ė = lim
t→∞

1
t

∫ t

0
dτ Ė = (ux)2 − (uxx)2 = 0 . (27.26)

In particular, the equilibria and relative equilibria sit on the diagonal in figure27.9,
and so do time averages computed on periodic orbits and relative periodic orbits:

Ep =
1

Tp

∫ Tp

0
dτ E(τ)

(ux)2
p =

1
Tp

∫ Tp

0
dτ

〈
(ux)2

〉
= (uxx)2

p . (27.27)

31Predrag: Implementing Ruslan: all axes in figure 27.10 changed by a factor of 4?
32Predrag: ks22TurbConn2 xfig.eps for figure 27.10 not checked in?
33Predrag: Re figure 27.9: (b) current type figure, with chaotic trajectory, all equilibria,

(32. · · · , 11) as example of well embedded, and a typical periodic orbit not embedded into the “tur-
bulent” attractor. (c) a separate figure with more periodic orbits, no “turbulent” attractor. (e) replace
gray window with a white background, black font. (f) in the publication version replace colored
dots with symbols of varying shapes, fine black border, can be filled in with colors.

34Predrag: believe it or not, we are now set to compute u2 and (ux)2 using cycle expansions
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turbulenceIn the Fourier basis (27.23) the conservation of energy on average takes form

0 =
+∞∑
k=1

((k/L̃)2 − (k/L̃)4) Ek , Ek(t) = |ak(t)|2 . (27.28)

The large k convergence of this series is insensitive to the system size L; Ek have
to decrease much faster than 1/(k/L̃)4. 35 Deviation of Ek from this bound for
small k determines the active modes. This may be useful to bound the number
of equilibria, with the upper bound given by zeros of a small number of long
wavelength modes.

Résumé

Turbulence is the graveyard of theories
— Hans W. Liepmann

36 We have learned that an instanton is an analytic solution of Yang-Mills
equations of motion, but shouldn’t a strongly nonlinear field theory dynamics be
dominated by turbulent solutions? How are we to think about systems where every
spatiotemporal solution is unstable?

Here we think of turbulence in terms of recurrent spatiotemporal patterns.
Pictorially, dynamics drives a given spatially extended system through a repertoire
of unstable patterns; as we watch a turbulent system evolve, every so often we
catch a glimpse of a familiar pattern: 37

=⇒ other swirls =⇒

For a finite spatial resolution and a finite time, a pattern belonging to a finite al-
phabet of admissible patterns is observed; the long term dynamics can be thought
of as a walk through the space of such patterns. Recasting this image into mathe-
matics is the subject of this book.

The problem one faces with high-dimensional flows is that their topology is
hard to visualize, and that even with a decent starting guess for a point on a peri-
odic orbit, methods like the Newton-Raphson method are likely to fail. Methods

chapter 33
35Predrag: determine the decay rate, presumably exponential in k
36Predrag: Google only returns Doyle as a source, and that I do not find reliable. Amazon.com

finds it in Chance and Chaos by D. Ruelle, p. 52 as “Turbulence is a [not “the”] graveyard of
theories,” without attribution. Then The Self-Made Tapestry: Pattern Formation in Nature by P.
Ball ascribes it to Ruelle (!).

37Predrag: replace by the color original
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heteroclinic!orbit
dimension!intrisic
degree of freedom
inertial manifold
Kuramoto, Y.
Sivashinsky, G.I.
Holmes, P.
Kuramoto-

Sivashinsky!system

that start with initial guesses for a number of points along the cycle, such as the
multipoint shooting method of sect. 13.3, are more robust. The relaxation (or
variational) methods take this strategy to its logical extreme, and start by a guess
of not a few points along a periodic orbit, but a guess of the entire orbit. As
these methods are intimately related to variational principles and path integrals,
we postpone their introduction to chapter 33. ⇓PRIVATE

This is a detailed attempt to understand the dynamics and geometry of state
space of a model chaotic partial differential equation, the Kuramoto-Sivashinsky
(KS) equation, tackling the challenges introduced by continuous symmetry, espe-
cially the considerable increase in the diversity of allowed solutions.

The goal is to understand the dynamics of a particular (fixed L) KS system via
extensive computation of its equilibria, relative equilibria, periodic and relative
periodic orbits, and the heteroclinic connections between these; these computed
solutions, though unstable, form (in the authors words) a cage for the full state
space geometry. The domain size chosen, L = 22, which lies in the interval of
smallest L-values for which the PDE displays chaotic behavior, is such that the
chaos is still fairly low-dimensional, and does not yet display all the features of
full spatiotemporal (extensive) chaos observed in larger domains (there is only
one positive Lyapunov exponent); but as the study makes clear, the state space is
already quite complicated, with in particular a large number of relative periodic
and pre-periodic orbits even of relatively low period (T ¡ 200). The authors hope
and goal is to extend these geometric ideas to larger domains, and ultimately to
fully spatiotemporally chaotic or turbulent regimes; this study makes progress in
this direction but also gives an indication of the high complexity that might be
expected.

The discussions of symmetries and visualization

The discussion of the use of the terms ‘chaos’, ‘spatiotemporal chaos’ and
‘turbulence’ in the introduction section clarifies the perspective on this tricky is-
sue.

The story is by no means yet complete, even for the L = 22 KS equation. How-
ever, the present work is already a significant contribution to the understanding of
the state space geometry of a high-dimensional system

⇑PRIVATE

At present the theory is in practice applicable only to systems with a low
intrinsic dimension – the minimum number of coordinates necessary to capture its
essential dynamics. If the system is very turbulent (a description of its long time
dynamics requires a space of very high intrinsic dimension) we are out of luck.

Commentary

Remark 27.1 Model PDE systems. The theorem on finite dimensionality of inertial
manifolds of state space contracting PDE flows is proven in ref. [2]. The Kuramoto-
Sivashinsky equation was introduced in refs. [3, 4]. Holmes, Lumley and Berkooz [6]
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plane Couette
flow!energy

offer a delightful discussion of why this system deserves study as a staging ground for
studying turbulence in full-fledged Navier-Stokes equation. How good a description of a
flame front this equation is not a concern here; suffice it to say that such model amplitude
equations for interfacial instabilities arise in a variety of contexts - see e.g. ref. [ 7] - and
this one is perhaps the simplest physically interesting spatially extended nonlinear system.
38 39 40

For equilibria the L-independent bound on E is given by Michelson [ 8]. The best
current bound[9, 10] on the long-time limit of E as a function of the system size L scales
as E ∝ L3/2. 41 42

The work described in this chapter was initiated by Putkaradze’s 1996 term project
(see ChaosBook.org/extras), and continued by Christiansen, Cvitanović, Davidchack,
Gibson, Halcrow, Lan, and Siminos [5, 11, 12, 16, 15, 14, 15, 13].

⇓PRIVATE

Remark 27.2 Kuramoto-Sivashinsky system, truncations. We describe here our
criterion for reliable truncations of the infinite ladder of ordinary differential equations
(27.4).

Adding an extra dimension to a truncation of the system ( 27.4) introduces a small per-
turbation, and this can (and often will) throw the system into a totally different asymptotic
state. A chaotic attractor for N = 15 can become a period three window for N = 16, and
so on. If we compute, for example, the Lyapunov exponent λ(ν,N) for the strange attractor
of the system (27.4), there is no reason to expect λ(ν,N) to smoothly converge to the limit
value λ(ν,∞) as N → ∞. The situation is different in the periodic windows, where the
system is structurally stable, and it makes sense to compute Lyapunov exponents, escape
rates, etc. for the repeller, i.e., the closure of the set of all unstable periodic orbits. Here
the power of cycle expansions comes in: to compute quantities on the repeller by direct
averaging methods is generally more difficult, because the asymptotic motion collapses to
the stable cycle.

Remark 27.3 A brief history of dynamicist’s vision of turbulence. Dynamical ap-
proaches to study of turbulence are - surprisingly - still a cutting-edge research area. You
might find Appendix A.5 amusing. 43

Remark 27.4 Steady turbulence is spatially 3D. Stream-wise constant flows, ∂u/∂x =
0, cannot be sustained [19] as the energy of a flow restricted to the (y, z) plane de-
cays to zero, and with this restriction there is steady state other than the laminar one (
for the paper, click here). 44

38Mason: I disagree - CGL is more important
39Predrag: Comment om MAWs, BECS and CGLe
40Predrag: refer to Trefethen’s program for fast integration [17]
41Predrag: Constantin says that the answer is in refs. [?]. Eckmann says: the best bound is by

Otto[9]; the only bound close to k=0, better in essential way. See also ref. [?]. Eckmann had L8/5,
but conceptually Otto is the best. Recheck whether it is |u| or E ∝ L3/2. When the solution is big,
how long can it stay big? They found it cannot stay big for long.

42Predrag: Next for fluid guys: read Lieb and Ruelle to learn how to bound E for plane Couette
by Sobolev bounds

43Predrag: reference Kawahara-Kida
44Predrag: We have some other references to this, plus references to wrong papers - remember to

include them here...
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invariance!Galilean
smooth!dynamical

system
dynamical

system!infinite

Remark 27.5 Self-sustaining process. The work of ref. [20] began a very fruitful line
of research; it identified from numerical simulations a well-defined, quasi-cyclic process
among streamwise streaks and vortices (or ‘rolls’) in low-Reynolds number plane Cou-
ette flow. Waleffe [21, 22] further developed these ideas into a ‘self-sustaining process
theory’ that explains the quasi-cyclic roll-streak behavior in terms of the forced response
of streaks to rolls, growth of streak instabilities, and nonlinear feedback from streak in-
stabilities to rolls. Starting with physical insights from the self-sustaining process, Wal-
effe [23, 24, 25] generated, ab initio, families of exact 3D equilibria and traveling waves
of plane Couette and Poiseuille flows for a variety of boundary conditions and Reynolds
numbers, using a 104-dimensional Newton search and continuation from non-equilibrium
states that approximately represented the self-sustained process mechanisms. As noted in
ref. [25], these solutions, and ref. [26]’s equilibria of plane Couette flow with Rayleigh-
Benard convection, are homotopic to the Nagata equilibria under smooth transformations
in the flow conditions. Refs. [27, 28] carried the idea of a self-sustaining process over to
pipe flow and applied Waleffe’s continuation strategy to derive families of traveling-wave
solutions for pipes.

⇑PRIVATE

Exercises boyscout

27.1. Galilean invariance of the Kuramoto-Sivashinsky equation.

(a) Verify that the Kuramoto-Sivashinsky equation is
Galilean invariant: if u(x, t) is a solution, then v +
u(x + 2vt, t), with v an arbitrary constant velocity, i
s also a solution.

(b) Verify that mean

〈u〉 = 1
L

∫
L
dx u

is conserved by the flow.

(c) Argue that the choice (27.5) of the vanishing mean
velocity, 〈u〉 = 0 leads to no loss of generality in
calculations that follow.

(d) [thinking is extra cost] Inspection of vari-
ous “turbulent” solutions of Kuramoto-Sivashinsky
equation reveals subregions of “traveling waves”
with locally nonzero 〈u〉. Is there a way to use
Galilean invariance locally, even though we elim-
inated it by the 〈u〉 = 0 condition?

27.2. Infinite dimensional dynamical systems are not smooth.
Many of the operations we consider natural for finite di-

mensional systems do not have smooth behavior in infi-
nite dimensional vector spaces. Consider, as an example,

exerPDEs - 22apr2007 boyscout version14.4, Mar 19 2013
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a concentration φ diffusing on R according to the diffu-
sion equation

∂tφ =
1
2
∇2φ .

(a) Interpret the partial differential equation as an infi-
nite dimensional dynamical system. That is, write
it as ẋ = F(x) and find the velocity field.

(b) Show by examining the norm

‖φ‖2 =

∫
R

dx φ2(x)

that the vector field F is not continuous.

(c) Try the norm

‖φ‖ = sup
x∈R

|φ(x)| .

Is F continuous?

(d) Argue that the semi-flow nature of the problem is
not the cause of our difficulties.

(e) Do you see a way of generalizing these results?
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Chapter 28

Universality in transitions to
chaos

When you come to a fork in the road, take it!
—Yogi Berra

The developments that we shall describe next are one of those pleasing demon-
strations of the unity of physics. The key discovery was made by a physicist
not trained to work on problems of turbulence. In the fall of 1975 Mitchell

J. Feigenbaum, an elementary particle theorist, discovered a universal transition to
chaos in 1-dimensional unimodal map dynamics. At the time the physical implica-
tions of the discovery were nil. During the next few years, however, numerical and
mathematical studies established this universality in a number of realistic models
in various physical settings, and in 1980 the universality theory passed its first
experimental test.

The discovery was that large classes of nonlinear systems exhibit transitions
to chaos which are universal and quantitatively measurable. This advance was
akin to (and inspired by) earlier advances in the theory of phase transitions; for
the first time one could, predict and measure ‘critical exponents’ for turbulence.
But the breakthrough consisted not so much in discovering a new set of universal
numbers, as in developing a new way to solve strongly nonlinear physical prob-
lems. Traditionally, we use regular motions (harmonic oscillators, plane waves,
free particles, etc.) as zeroth-order approximations to physical systems, and ac-
count for weak nonlinearities perturbational. We think of a dynamical system as a
smooth system whose evolution we can follow by integrating a set of differential
equations. The universality theory tells us that the zeroth-order approximations
to strongly nonlinear systems should be quite different. They show an amazingly
rich structure which is not at all apparent in their formulation in terms of differen-
tial equations; instead, they exhibit self-similar structures which can be encoded
by universality equations of a type which we will describe here. To put it more
provocatively: junk your old equations and look for guidance in clouds’ repeating
patterns.
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Figure 28.1:

(a) (b)

Figure 28.2

In this chapter we reverse the chronology, describing first a turbulence experi-
ment, then a numerical experiment, and finally explain the observations using the
universality theory. We will try to be intuitive and concentrate on a few key ideas.
Even though we illustrate it by onset of turbulence, the universality theory is by
no means restricted to the problems of fluid dynamics.

28.1 Onset of turbulence

We start by describing schematically the 1980 experiment of Libchaber and Mau-
rer. In the experiment a liquid is contained in a small box heated from the bottom.
The salient points are:

1. There is a controllable parameter, the Rayleigh number, which is propor-
tional to the temperature difference between the bottom and the top of the
cell.

2. The system is dissipative. Whenever the Rayleigh number is increased, one
waits for the transients to die out.

3. The container, figure 28.1 (a), has a small “aspect ratio”; its width is a small
integer multiple of its height, approximately.

For small temperature gradients there is a heat flow across the cell, but the
liquid is static. At a critical temperature a convective flow sets in. The hot liquid
rises in the middle, the cool liquid flows down at the sides, and two convective
rolls appear. So far everything is as expected from standard bifurcation scenarios.
As the temperature difference is increased further, the rolls become unstable in a
very specific way - a wave starts running along the roll, figure28.1 (b).

As the warm liquid is rising on one side of the roll, while cool liquid is de-
scending down the other side, the position and the sideways velocity of the ridge
can be measured with a thermometer, figure 28.2. One observes a sinusoid, fig-
ure 28.3. The periodicity of this instability suggests two other ways of displaying
the measurement, figure 28.4.
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Figure 28.3:

Figure 28.4:

Now the temperature difference is increased further. After the stabilization of
the state space trajectory, a new wave is observed superimposed on the original
sinusoidal instability. The three ways of looking at it (real time, state space, fre-
quency spectrum) are sketched in figure28.5. A coarse measurement would make
us believe that T0 is the periodicity. However, a closer look reveals that the state
space trajectory misses the starting point at T0, and closes on itself only after 2T0.
If we look at the frequency spectrum, a new wave band has appeared at half the
original frequency. Its amplitude is small, because the state space trajectory is still
approximately a circle with periodicity T0.

As one increases the temperature very slightly, a fascinating thing happens:
the state space trajectory undergoes a very fine splitting, see figure28.6. We see
that there are three scales involved here. Looking casually, we see a circle with
period T0; looking a little closer, we see a pretzel of period 2T0; and looking
very closely, we see that the trajectory closes on itself only after 4T0. The same
information can be read off the frequency spectrum; the dominant frequency is f0
(the circle), then f0/2 (the pretzel), and finally, much weaker f0/4 and 3 f0/4.

The experiment now becomes very difficult. A minute increase in the temper-
ature gradient causes the state space trajectory to split on an even finer scale, with
the periodicity 23T0. If the noise were not killing us, we would expect these split-
tings to continue, yielding a trajectory with finer and finer detail, and a frequency
spectrum of figure 28.7, with families of ever weaker frequency components. For
a critical value of the Rayleigh number, the periodicity of the system is 2∞T0, and
the convective rolls have become turbulent. This weak turbulence is today usually
referred to as the ‘onset of chaos’. Globally, the rolls persist but are wiggling ir-
regularly. The ripples which are running along them show no periodicity, and the
spectrum of an idealized, noise-free experiment contains infinitely many subhar-
monics, figure 28.8. If one increases the temperature gradient beyond this critical
value, there are further surprises (see, for example, figure 28.16) which we will
not discuss here.

We now turn to a numerical simulation of a simple nonlinear oscillator in order
to start understanding why the state space trajectory splits in this peculiar fashion.
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Duffing!damped

Figure 28.5:

Figure 28.6:

28.2 Onset of chaos in a numerical experiment

In the experiment that we have just described, limited experimental resolution
makes it impossible to observe more than a few bifurcations. Much longer se-
quences can be measured in numerical experiments. A typical example is the
nonlinear oscillator 1

exercise 28.2

ẍ + γ ẋ − x + 4x3 = A cos(ωt) . (28.1)

The oscillator is driven by an external force of frequency ω, with amplitude A
period T0 = 2π/ω. The dissipation is controlled by the friction coefficient γ.
(See (2.8) and example 7.1.) Given the initial displacement and velocity one can
easily follow numerically the state state space trajectory of the system. Due to the
dissipation it does not matter where one starts; for a wide range of initial points
the state space trajectory converges to an attracting limit cycle (trajectory loops
onto itself) which for some γ = γ0 looks something like figure 28.9. If it were
not for the external driving force, the oscillator would have simply come to a
stop. As it is, executing a motion forced on it externally, independent of the initial
displacement and velocity. Starting at the point marked 1, the pendulum returns
to it after the unit period T0.

However, as one decreases, the same phenomenon is observed as in the tur-
bulence experiment; the limit cycle undergoes a series of period-doublings, fig-
ure 28.10. The trajectory keeps on nearly missing the starting point, until it hits
after exactly 2nT0. The state space trajectory is getting increasingly hard to draw;

1Predrag: cite Arecchi and Lisi (1982)
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Figure 28.7:

Figure 28.8:

however, the sequence of points 1, 2, . . ., 2n, which corresponds to the state of
the oscillator at times T0, 2T0, . . ., 2nT0, sits in a small region of the state space,
so in figure 28.11 we enlarge it for a closer look. Globally the trajectories of the
turbulence experiment and of the non-linear oscillator numerical experiment look
very different. However, the above sequence of near misses is local, and looks
roughly the same for both systems. This sequence of points lies approximately on
a straight line, figure 28.12. Let us concentrate on this line, reducing the dimen-
sionality of the state space by a Poincaré map. The Poincaré map contains all the
information we need; from it we can read off when an instability occurs, and how
large it is. One varies continuously the non-linearity parameter (friction, Rayleigh
number, etc.) and plots the location of the intersection points; in the present case,
the Poincaré surface is - for all practical purposes - a smooth 1-dimensional curve,
and the result is a bifurcation tree of figure 28.13. We already have some quali-
tative understanding of this plot. The state space trajectories we have drawn are
localized (the energy of the oscillator is bounded) so the tree has a finite span. Bi-
furcations occur simultaneously because we are cutting a single trajectory; when
it splits, it does so everywhere along its length. Finer and finer scales characterize
both the branch separations and the branch lengths.

Feigenbaum’s discovery consists of the following quantitative observations:

1. The parameter convergence is universal (i.e., independent of the particular
physical system), Δi/Δi+1 → 4.6692 . . . for i large, see figure 28.14.

2. The relative scale of successive branch splittings is universal: εi/εi+1 →
2.5029 . . . for i large, see figure 28.15.

The beauty of this discovery is that if turbulence (chaos) is arrived at through an
infinite sequence of bifurcations, we have two quantitative predictions:
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period-doubling!tree

Figure 28.9:

Figure 28.10:

1. The convergence of the critical Rayleigh numbers corresponding to the cy-
cles of length 2, 4, 8, 16, . . . is controlled by the universal convergence
parameter δ = 4.6692016 . . . .

2. The splitting of the state space trajectory is controlled by the universal scal-
ing parameter α = 2.50290787 . . . . As we have indicated in our discussion
of the turbulence experiment, the relative heights of successive subharmon-
ics measure this splitting and hence α.

⇓PRIVATE

These universal numbers are measured in a variety of experiments: a sample
of early experiments is given in table ?. ⇑PRIVATE

While this universality was derived through study of simple, few-dimensional
systems (pendulum, oscillations along a convective roll), it also applies to high- or
even infinite-dimensional systems, such as. discretizations of the Navier-Stokes
equations, and in the literature there are innumerable other examples of period-
doublings in many-dimensional systems. A wonderful thing about this universal-
ity is that it does not matter much how close our equations are to the ones chosen
by nature; as long as the model is in the same universality class (in practice this
means that it can be modeled by a mapping of form (28.2)) as the real system,
both will undergo a period-doubling sequence. That means that we can get the
right physics out of very simple models, and this is precisely what we will do
next.

Example 28.1 Period doubling tree in a flame flutter. For ν > 1, u(x, t) = 0 is the
globally attractive stable equilibrium; starting with ν = 1 the solutions go through a rich
sequence of bifurcations. 2

3

Figure 28.16 is a representative plot of the period-doubling tree for the Poincaré
map P. To obtain this figure, we took a random initial point, iterated it for a some time
to let it settle on the attractor and then plotted the a6 coordinate of the next 1000 inter-
sections with the Poincaré section. Repeating this for different values of the damping

2Predrag: use Holmes-Lumley discussion
3Predrag: might prefer articles/vachtang/feig16.ps
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Figure 28.11:

Figure 28.12:

parameter ν, one can obtain a picture of the attractor as a function of ν; the dynamics
exhibits a rich variety of behaviors, such as strange attractors, stable limit cycles, and
so on.

The reason why multidimensional dissipative systems become effectively 1-
dimensional is that: for a dissipative system state space volumes shrink. They
shrink at different rates in different directions, as in figure28.17. The direction of
the slowest convergence defines a 1-dimensional line which will contain the attrac-
tor (the region of the state space to which the trajectory is confined at asymptotic
times):

What we have presented so far are a few experimental facts; we now have to
convince you that they are universal.

28.3 What does all this have to do with fishing?

Looking at the state space trajectories shown earlier, we observe that the trajectory
bounces within a restricted region of the state space. How does this happen? One
way to describe this bouncing is to plot the (n+1)th intersection of the trajectory
with the Poincaré surface as a function of the preceding intersection. Referring
to figure 28.12 we find the map of figure 28.18. This is a Poincaré return map
for the limit cycle. If we start at various points in the state space (keeping the
non-linearity parameter fixed) and mark all passes as the trajectory converges to
the limit cycle, we trace an approximately continuous curve f (x) of figure28.19
which gives the location of the trajectory at time t+T0 as a function of its location
at time t:

xn+1 = f (xn), (28.2)

The trajectory bounces within a trough in the state space, and f (x) gives a local
description of the way the trajectories converge to the limit cycle. In principle we
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Figure 28.13:

Figure 28.14:

know f (x), as we can measure it, or compute it from the equations of motion. The
form of f (x) depends on the choice of Poincaré map, and an analytic expression
for f (x) is in general not available, but we know what f (x) should look like; it has
to fall on both sides (to confine the trajectory), so it has a maximum. Around the
maximum it looks like a parabola

f (x) = ao + a2(x − xc)2 + . . . (28.3)

like any sensible polynomial approximation to a function with a hump.

4

This brings us to the problem of a rational approach to fishery. By means
of a Poincaré map we have reduced a continuous trajectory in state space to 1-
dimensional iteration. This 1-dimensional iteration is studied in population biol-
ogy, where f (x) is interpreted as a population curve (the number of fish xn+1 in
the given year as a function of the number of fish xn the preceding year), and the
bifurcation tree figure 28.13 has been studied in considerable detail.

The first thing we need to understand is the way in which a trajectory con-
verges to a limit cycle. A numerical experiment will give us something like fig-
ure 28.21. In the Poincaré map the limit trajectory maps onto itself, xq = f (xq) .
Hence a limit trajectory corresponds to a fixed point of f (x). Take a programmable
calculator and try to determine xq. Type in a simple approximation to f (x), such
as

f (x) = λ − x2 . (28.4)

4Predrag: ask for permission to use figure 28.20
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Figure 28.15:

Figure 28.16: A period-doubling tree observed in a
small size Kuramoto-Sivashinsky system, generated
under adiabatic change of the damping parameter (sys-
tem size). The choice of projection down to the coor-
dinate a6 is arbitrary; projected down to any coordi-
nate, the tree is qualitatively the same. The two upper
arrows indicate typical values: for ν = 0.029910 dy-
namics appears chaotic, and ν = 0.029924 there is a
‘golden-mean’ repelling set coexisting with attractive
period-3 window. The lower arrow indicates the value
at which upper invariant set with this merges with its
u(x) → −u(−x) symmetry partner. N = 16 Fourier
modes truncation of (27.4). Truncation to N = 17
modes yields a similar figure, with values for specific
bifurcation points shifted by ∼ 10−5 with respect to the
N = 16 values. (from ref. [?])

Here λ is the non-linear parameter. Enter your guess x0 and press the button. The
number x1 appears on the display. Is it a fixed point? Press the button again, and
again, until xn+1 = xn to desired accuracy. Diagrammatically, this is illustrated
by the web traced out be the trajectory in figure 28.22. Note the tremendous
simplification gained by the use of the Poincaré map. Instead of computing the
entire state space trajectory by a numerical integration of the equations of motion,
we are merely pressing a button on the calculator. 5

This little calculation confirms one’s intuition about fishery. Given a fishpond,
and sufficient time, one expects the number of fish to stabilize. However, no such
luck - a rational fishery manager soon discovers that anything can happen from
year to year. The reason is that the fixed point xq need not be attractive, and our
calculator computation need not converge.

28.4 A universal equation

6 Why is the naive fishery manager wrong in concluding that the number of fish
will eventually stabilize? He is right when he says that xq = f (xq) corresponds
to the same number of fish every year. However, this is not necessarily a stable
situation. Reconsider how we got to the fixed point in figure 28.22. Starting
with a sufficiently good guess, the iterates converge to the fixed point. Now start

5Predrag: Figure 28.22: remember to refer to webFixPt.eps, program is
book/FigSrc/matlab/webFixPt.m

6Predrag: universal function → universal fixed-point function?
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Figure 28.17:

Figure 28.18:

increasing gently the non-linearity parameter (Rayleigh number, the nutritional
value of the pond, etc.). f (x) will slowly change shape, getting steeper and steeper
at the fixed point, until the fixed point becomes unstable and gives birth to a cycle
of two points. This is precisely the first bifurcation observed in our experiments.

Example 28.2 Fixed point stability.

The fixed point condition for map (28.4) x2 + x − λ = 0 yields 2 fixed points. 7

xpm =
−1 ±

√
1 + 4λ

what?

The fixed point x+ loses stability at λ = −1. Inserted into λ = f
′
(x) = −2x, this yields

λ = 3/4 , x+ = 1/2

as the value at which fixed point x+ loses stability.

This is the only gentle way in which our trajectory can become unstable (cy-
cles of other lengths can be created, but that requires delicate fiddling with param-
eters; such bifurcations are not generic). Now we return to the same point after
every second iteration

exercise 28.1

xi = f ( f (xi)) , i = 1, 2 .

so the periodic points of f (x) are the fixed points of f ( f (x)).

To study their stability, we plot f ( f (x)) alongside f (x) in figure28.24. What
happens as we continue to increase the “Rayleigh number”? f (x) becomes steeper
at its fixed point, and so does f ( f (x)). Eventually the magnitude of the slope at
the fixed points of f ( f (x)) exceeds one, and they bifurcate. Now the cycle is of
length four, and we can study the stability of the fixed points of the fourth iterate.
They too will bifurcate, and so forth. This is why the state space trajectories keep
on splitting 2 → 4 → 8 → 16 → 32 · · · in our experiments The argument does not

7Predrag: fix
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Figure 28.19:

Figure 28.20: Correspondence between (a) the Man-
delbrot set, shown in plane (Reλ, Imλ) for the map
zk+1 = λ − z2

k , and (b) the period-doubling bifurcation
tree, plane (λ, x), x, λ ∈ R. (from ref. [31])

depend on the precise form of f (x), and therefore the phenomenon of successive
period-doublings is universal.

More amazingly, this universality is not only qualitative. In our analysis of
the stability of fixed points we kept on magnifying the neighborhood of the fixed
point, figure 28.25. The neighborhoods of successive fixed points look very much
the same after iteration and rescaling. After we have magnified the neighborhoods
of fixed points many times, practically all information about the global shape of
the starting function f (x) is lost, and we are left with a universal function g(x).
Denote by T the operation indicated in figure 28.25 iterate twice and rescale by
(without changing the non-linearity parameter),

T f (x) = α f ( f (x/α)), (28.5)

g(x) is self-replicating under rescaling and iteration, figure28.26. More precisely,
this can be stated as the universal equation

g(x) = αg(g(−x/α)), (28.6)

which determines both the universal function g(x) and α = −1/g(1) = 2.50290787 . . .,
with normalization convention g(0) = 1.

Example 28.3 An approximate period doubling renormalization. 8

8Predrag: remark, contributor credits to IsaKuz05c; also Hellemann
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Figure 28.21:

Figure 28.22:
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As the simplest examples of period-doubling cascades. Consider the map

xn+1 = fλ(xn) = λ − x2
n , λ, xεR . (28.7)

The two fixed points of f , x± =
1±

√
1+4λ
2 , are the roots of x∗ = λ − x2

∗. At λ = 3/4

the Floquet multiplier Λ = f ′λ(x∗) of the fixed point x∗ =
1+

√
1+4λ
2 is marginal, Λ =

−2x∗ = −1. For λ > 3/4, the fixed point loses its stability and undergoes a period-
doubling bifurcation. Values λ for subsequent bifurcations can be found by means of
the following approximate renormalization method. 9 Apply the map (28.7) two times:

xn+2 = λ − λ2 + 2λx2
n − x4

n , (28.8)

and drop the quartic term x4
n. By the scale transformation

xn → xn/α0, α0 = −2λ , (28.9)

this can be rewritten in the original form xn+2 = λ1 − x2
n, which differs from (28.7) only

by renormalization of λ

λ1 = ϕ(λ) = −2λ(λ − λ2) . (28.10)

The map parameterized by λ, approximates two applications of the original map. Re-
peating the renormalization transformation (28.10) with scale factors αm = −2λm, one
obtains a sequence of the form

xn+2m = λm − x2
n , λm = ϕ(λm−1) . (28.11)

Fixed points of these maps correspond to the 2m-cycles of the original map. All
these cycles, as well as the fixed point of the map (28.7), become unstable at λm =

Λ1 = 3/4. Solving the chain of equations

Λ1 = ϕ(Λ2)Λ2 = ϕ(Λ3) ...Λm−1 = ϕ(Λm) , (28.12)

9Predrag: cite Hellemann, ask about Landau
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Floquet!multiplier

Figure 28.23:

Figure 28.24:

we get the corresponding sequence of bifurcation values of parameter λ (with λ ≈
Λm the 2m-cycle of (28.7)). From iteration diagram of figure 28.27 it is evident, that
this sequence converges with m → ∞ to a definite limit Λ∞, the fixed point of the
renormalization transformation. It satisfies the equation Λ∞ = ϕ(Λ∞), thus Λ∞ = (1 +√

3)/2 ≈ 1.37. The scaling factors also converge to the limit: αm → α, where α =
−2Λ∞ ≈ 2.74. The multipliers (Floquet multipliers of the 2m-cycles) converge to μm →
μ =

√
1 − 4Λ∞ ≈ −1.54.

From transformation (28.11) on can also describe the convergence of the bifur-
cation sequence:

Λm = ϕ(Λ∞) + ϕ′(Λ∞)(Λm+1 − Λ∞) =
= Λ∞ + δ(Λm+1 − Λ∞) , (28.13)

where the Feigenbaum δ = ϕ′(Λ∞) = 4 +
√

3 ≈ 5.73 characterizes parameter rescaling
for each successive period doubling.

The approximate values of Feigenbaum’s universal space and parameter scal-
ing constants are reasonably close to the exact values,

exact approximate
α = -2.502· · · -2.74
δ = 4.669· · · 5.73 ,

considering the crudeness of the approximation: the universal fixed-point function g(x)
is here truncated to a quadratic polynomial.

(O.B. Isaeva and S.P. Kuznetsov)

If you arrive at g(x) the way we have, by successive bifurcations and rescaling,
you can hardly doubt its existence. However, if you start with (28.6) as an equation
to solve, it is not obvious what its solutions should look like. The simplest thing to
do is to approximate g(x) by a finite polynomial and solve the universal equation
numerically, by Newton method. This way you can compute α and δ to much
higher accuracy than you can ever hope to measure them to experimentally.

There is much pretty mathematics in universality theory. Despite its simplic-
ity, nobody seems to have written down the 10 universal equation before 1976, so

10Predrag: comment about universal equation
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intermittency

Figure 28.25:

Figure 28.26:

the subject is still young. We do not have a series expansion for α, or an analytic
expression for g(x); the numbers that we have are obtained by boring numerical
methods. So far, all we know is that g(x) exists. What has been proved is that the
Newton iteration converges, so we are no wiser for the result. 11 In some situa- ⇓PRIVATE
tions the universal equation (28.6) has analytic solutions; we shall return to this in
the discussion of intermittency (SECTION 10). The universality theory has also
been extended to iterations of complex polynomials (SECTION 12). ⇑PRIVATE

To see why the universal function must be a rather crazy function, consider
high iterates of f (x) for parameter values corresponding to 2-, 4- and 8-cycles,
figure 28.28. If you start anywhere in the unit interval and iterate a very large
number of times, you end up in one of the periodic points. For the 2-cycle there
are two possible limit values, so f ( f (. . . f (x))) resembles a castle battlement. Note
the infinitely many intervals accumulating at the unstable x = 0 fixed point. In a
bifurcation of the 2-cycle into the 4-cycle each of these intervals gets replaced
by a smaller battlement. After infinitely many bifurcations this becomes a fractal
(i.e., looks the same under any enlargement), with battlements within battlements
on every scale. Our universal function g(x) does not look like that close to the ori-
gin, because we have enlarged that region by the factor α = 2.5029 . . . after each
period-doubling, but all the wiggles are still there; you can see them in Feigen-
baum’s 12 (1978) plot of g(x). For example, (28.6) implies that if xq is a fixed
point of g(x), so is α(xq). Hence g(x) must cross the lines y = x and y = −x
infinitely many times. It is clear that while around the origin g(x) is roughly a
parabola and well approximated by a finite polynomial, something more clever is
needed to describe the infinity of g(x)’s wiggles further along the real axis and in
the complex plane.

All this is fun, but not essential for understanding the physics of the on-
set of chaos. The main thing is that we now understand where the universality
comes from. We start with a complicated many-dimensional dynamical system.
A Poincaré map reduces the problem from a study of differential equations to
a study of discrete iterations, and dissipation reduces this further to a study of

11Predrag: make up a example
12Predrag: remark 1978
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Figure 28.27: Iteration of the approximate renor-
malization transformation (28.10). Dashed line
designates the backward iterations starting at the
first period doubling bifurcation point, λ1 = 3/4,
and mapping to the further bifurcation points λm.

Figure 28.28:

1-dimensional iterations (now we finally understand why the state space trajec-
tory in the turbulence experiment undergoes a series of bifurcations as we turn
the heat up!). The successive bifurcations take place in smaller and smaller re-
gions of the state space. After n bifurcations the trajectory splittings are of order
α−n = (0.399 . . .)−n and practically all memory of the global structure of the orig-
inal dynamical system is lost (see figure 28.29). The asymptotic self-similarities
can be encoded by universal equations. The physically interesting scaling num-
bers can be quickly estimated by simple truncations of the universal equations,
such as example 28.3 (May and Oster 1980, Derrida and Pomeau 1980, Helleman ⇓PRIVATE
1980a, Hu 1981). The full universal equations are designed for accurate determi-

⇑PRIVATEnations of universal numbers; as they have built-in rescaling, the round-off errors
do not accumulate, and the only limit on the precision of the calculation is the
machine precision of the computer.

Anything that can be extracted from the asymptotic period-doubling regime
is universal; the trick is to identify those universal features that have a chance of
being experimentally measurable. We will discuss several such extensions of the
universality theory in the remainder of this introduction.

28.5 The unstable manifold

Feigenbaum delta

δ = lim
n→∞
=

rn−1 − rn

rn − rn+1

= 4.6692016 . . . (28.14)
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Figure 28.29:

is the universal number of the most immediate experimental import - it tells us
that in order to reach the next bifurcation we should increase the Rayleigh number
(or friction, or whatever the controllable parameter is in the given experiment) by
about one fifth of the preceding increment. Which particular parameter is being
varied is largely a question of experimental expedience; if r is replaced by another
parameter R = R(r), then the Taylor expansion

R(r) = R(r∞) + (r − r∞)R′(r∞) + (r − r∞)2R′′(r∞)/2 + · · ·

yields the same asymptotic delta
exercise 28.3

δ � R(rn−1) − R(rn)
R(rn) − R(rn+1)

=
rn+1 − rn

rn − rn+1
+ O(δn) (28.15)

providing, of course, that R′(r∞) is non-vanishing (the chance that a physical sys-
tem just happens to be parameterized in such a way that R′(r∞) = 0 is nil).

In deriving the universal equation (28.6) we were intentionally sloppy, be-
cause we wanted to introduce the notion of encoding self-similarity by universal
equations without getting entangled in too much detail. We obtained a universal
equation which describes the self-similarity in the x-space, under iteration and
rescaling by α. However, the bifurcation tree figure 28.13 is self-similar both in
the x-space and the parameter space: each branch looks like the entire bifurcation
tree. We will exploit this fact to construct a universal equation which determines
both α and δ.

Let T ∗ denote the operation of iterating twice, rescaling x by α, shifting the
non-linearity parameter to the corresponding value at the next bifurcation (more
precisely, the value of the nonlinearity parameter with the same stability, i.e., the
same slope at the periodic points), and rescaling it by δ:

T ∗ fRn+Δn p(x) = αn f (2)
Rn+Δn(1+p/δn)(x/αn) (28.16)
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Figure 28.30:

Figure 28.31:

Here Rn is a value of the non-linearity parameter for which the limit cycle is of
length 2n, Δn is the distance to Rn+1, δn = Δn/Δn+1, p provides a continuous
parametrization, and we apologize that there are so many subscripts. T∗ operation
encodes the self-similarity of the bifurcation tree figure28.13, see figure 28.30:

For example, if we take the fish population curve f (x) (28.4) with R value
corresponding to a cycle of length 2n, and act with T∗, the result will be a similar
cycle of length 2n, but on a scale α times smaller. If we apply T∗ infinitely many
times, the result will be a universal function with a cycle of length 2n:

gp(x) = (T∗)∞ fR+pΔ(x) (28.17)

If you can visualize a space of all functions with quadratic maximum, you will
find figure 28.31 helpful. Each transverse sheet is a manifold consisting of func-
tions with 2n-cycle of given stability. T∗ moves us across this transverse manifold
toward gp.

gp(x) is invariant under the self-similarity operation T∗, so it satisfies a uni-
versal equation

gp(x) = αg1+p/δ(g1+p/δ(x/α)) (28.18)

p parameterizes a 1-dimensional continuum family of universal functions. Our
first universal equation (28.6) is the fixed point of the above equation:

p∗ = 1 + p∗/δ (28.19)

and corresponds to the asymptotic 2∞-cycle.
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The family of universal functions parameterized by p is called the unstable
manifold because T -operation (28.5) drives p away from the fixed point value
g(x) = gp∗(x).

You have probably forgotten by now, but we started this section promising a
computation of δ. This we do by linearizing the equations (28.18) around the fixed
point p∗. Close to the fixed point gp(x) does not differ much from g(x), so one can
treat it as a small deviation from g(x):

gp(x) = g(x) + (p − p∗)h(x)

Substitute this into (28.18), keep the leading term in p − p∗, and use the universal
equation (28.6). This yields a universal equation for δ:

g′(g(x))h(x) + h(g(x)) = (δ/α)h(x) (28.20)

We already know g(x) and α, so this can be solved numerically by polynomial
approximations, yielding δ = 4.6692016 . . ., together with a part of the spectrum
of eigenvalues and eigenvectors h(x).

Actually, one can do better with less work; T∗-operation treats the coordi-
nate x and the parameter p on the same footing, which suggests that we should
approximate the entire unstable manifold by a double power series

gp(x) =
N∑

j=0

N∑
k=0

c jk x2 j pk (28.21)

The scale of x and p is arbitrary. We will fix it by the normalization conditions

g0(0) = 0 , (28.22)

g1(0) = 1
g1(1) = 0 , (28.23)

The first condition means that the origin of p corresponds to the superstable fixed
point. The second condition sets the scale of x and p by the superstable 2-cycle.
(Superstable cycles are the cycles which have the maximum of the map as one of
the periodic points.) Start with any simple approximation to gp(x) which satisfies
the above conditions (for example, g(x) = p− x2). Apply the T∗-operation (28.16)
to it. This involves polynomial expansions in which terms of order higher than M
and N in (28.21) are dropped. Now find by Newton method the value of δ which
satisfies normalization (28.23). This is the only numerical calculation you have to
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do; the condition (28.23) automatically yields the value of α. The result is a new
approximation to gp. Keep applying T∗ until the coefficients in (28.21) repeat;
this has moved the approximate gp toward the unstable manifold along the trans-
verse sheets indicated in figure 28.31. Computationally this is straightforward,
the accuracy of the computation is limited only by computer precision, and at the
end you will have α, δ and a polynomial approximation to the unstable manifold
gp(x).

As δ controls the convergence of the high iterates of the initial mapping toward
their universal limit g(x), it also controls the convergence of most other numbers
toward their universal limits, such as the scaling number αn = α+O(δ−n), or even
δ itself, δn = δ + O(δ−n). As 1/δ = 0.2141 . . ., the convergence is very rapid, and
already after a few bifurcations the universality theory is good to a few per cent.
This rapid convergence is both a blessing and a curse. It is a theorist’s blessing
because the asymptotic theory applies already after a few bifurcations; but it is
an experimentalist’s curse because a measurement of every successive bifurcation
requires a fivefold increase in the experimental accuracy of the determination of
the non-linearity parameter r. ⇓PRIVATE

28.6 Cookie-cutter’s universality

Refs. [2, 6]: cycle expansion for δ.

Ref. [29]: method for computation of the generalized dimensions of fractal
attractors at the period-doubling transition to chaos, via an eigenvalue problem
formulated in terms of functional equations, with a coefficient expressed in terms
of Feigenbaum’s universal fixed-point function.

Résumé
⇑PRIVATE

Commentary

Remark 28.1 A brief history of period doubling universality. Mitchell J. Feigenbaum
discovered universality in one-dimensional iterative maps in August 1975. Following
Feigenbaum’s functional formulation of the problem, in March 1976 Cvitanović derived
collaboration with M.J. the equation (28.6) for the period doubling fixed point function
(not a big step, it is the limit of Feigenbaum functional recursion sequence), which has
since played a key role in the theory of transitions to turbulence. The first published
report on Feigenbaum’s discovery is dated August 1976 (Los Alamos Theoretical Division
Annual Report 1975-1976, pp. 98-102, read it here). By that time the work had became
widely known through many seminars Feigenbaum gave in US and Europe. His first
paper, submitted to Advances in Mathematics in Nov 1976 was rejected. The second
paper was submitted to SIAM Journal of Applied Mathematics in April 1977 and rejected
in October 1977. Finally, J. Lebowitz published both papers [ 1, 2] without further referee
pain (M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978) and 21, 6 (1979)).
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circle map
golden

mean!renormalization
renormalization!golden

mean

A very informative review by May [3] describes what was known before Feigen-
baum’s contribution. The geometric parameter convergence was first noted by Myrberg
(1958), and independently of Feigenbaum, by Grossmann and Thomae [ 4] (without not-
ing the universality of δ). The theory of period-doubling universal equations and scaling
functions is developed in Kenway’s notes of Feigenbaum 1984 Edinburgh lectures [ 5] (tri-
fle hard to track down). The elegant unstable manifold formulation of universality given in
ChaosBook.org is due to Vul and Khanin (1982) and Goldberg, Sinai and Khanin (1983).
The most thorough exposition available is the Collet and Eckmann [ 6] monograph. By
1978 Coullet and Tresser [7, 8] have proposed similar equations. Daido (1981a) has
introduced a different set of universal equations. Derrida, Gervois and Pomeau (1979)
have extracted a great many metric universalities from the asymptotic regime. Grass-
berger (1981) has computed the Hausdorff dimension of the asymptotic attractor. Lorenz
(1980) and Daido (1981b) have found a universal ratio relating bifurcations and reverse
bifurcations. If f (x) is not quadratic around the maximum, the universal numbers will
be different - see Villela Mendés (1981) and Hu and Mao (1982b) for their values. Ac-
cording to Kuramoto and Koga (1982) such mappings can arise in chemical turbulence.
Dragt [9] says “Sometimes Feigenbaum diagrams are called bifurcation diagrams. How-

⇓PRIVATEever, strictly speaking, bifurcation diagrams should also display the unstable fixed points,
and Feigenbaum diagrams generally do not.” Nonlinear oscillator; quadratic potential ⇑PRIVATEwith damping and harmonic driving force exhibit cascades of period-doubling bifurca-
tions [10, 34]. Refs. [12, 13, 14] compute solutions of the period-doubling fixed point
equation using methods of Schöder and Abel, yielding what are so far the most accurate
δ and α. See also ref. [15].

Since then we have generalized the universal equations to period n-tuplings; con-
structed universal scaling functions for all winding numbers in circle maps, and estab-
lished universality of the Hausdorff dimension of the critical staircase. A nice discussion
of circle maps and their physical applications is given in refs. [3, 4, 5]. The universality
theory for golden mean scalings is developed in refs. [ 12, 8, 10, 11]. The scaling functions
for circle maps are discussed in ref. [13].

The theory would have remained a curiosity, were it not for the beautiful experiment
by Libchaber and Maurer (1981), and many others that followed. Crucial insights came
from Collet and Eckmann (1980a) and Collet, Eckmann and Koch (1980) who explained
how the dynamics of dissipative system (such as a viscous fluid) can become becomes
1-dimensional. The experimental and theoretical developments up to 1990’s are summa-
rized in reprint collections by P. Cvitanović [5] and B.-L. Hao [26]. We also recommend
Hu (1982), Crutchfield, Farmer and Huberman (1982), Eckmann (1981) and Ott (1981).
The period-doubling route to turbulence that is by no means the only way to get there; see
Eckmann (1981) discussion of other routes to chaos.

By 1979 mathematicians also understood that the numerical methods used by Feigen-
baum and Cvitanović to solve the universal equations were in fact convergent. Mathemati-
cians did what they do; they attached various names to the equations, and they changed
letters around to make the equations unintelligible to physicists. The re-lettering did not
stick, but the renamings did. (This chapter is based on a Nordita lecture prepared together
with Mogens Høgh Jensen (Cvitanović and Høgh Jensen 1982). Ulla Selmer prepared the
drawings, Oblivia Kaypro stood for the initial execution.)

13

⇓PRIVATE
13Predrag: 2012-05-29 harmonize with appendHist.tex
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Remark 28.2 Universality theory for conservative systems. The details of the
universality theory are different for dissipative and conservative systems; however, the
spirit is the same. Almost all that we shall say applies to dissipative systems we will not
discuss conservative systems, but refer the reader to ???.

Cite Twentieth Century Physics - Page 1848 by Laurie M. Brown, Abraham Pais, A.
B. Pippard (1995) for Feigenbaum’s history of Feigenbaum-Cvitanovic equation.

⇑PRIVATE

boyscout

28.1. Period doubling in your pocket: Take a programmable
pocket calculator or Matlab or whatever makes you feel
good and program the function

f (x) = λ − x2 .

The game consists in staring at the display, and looking
for regularities in the sequences of iterates.

(a) (no thinking) Try to determine fixed point x ∗ =
f (x∗) by blind iteration. Chose some value of λ a bit
bigger than 0, and initial x between -1 and 1. Enter
the initial x0 and read off the next x1. Start again,
with x1 as input. The number x2 appears on the dis-
play. Is it a fixed point? Press the button again, and
again, until xn = x∗ to desired accuracy.

(f) (no thinking) Increase λ in small steps, as long as
the trajectory does not blow up, let transients die,
and then plot few hundred consecutive xn. Generate
a figure to replace the hand drawn figure 28.14.

(c) (thinking) Determine the smallest positive λ for which
almost any initial x0 iterates to −∞.

(b) (no thinking) Try λ = 3/4. How’s the convergence
now?

(c) (thinking) Determine λ for which the fixed point x ∗
goes unstable.

(d) (no thinking) Try also λ: 1, 1.31070274134,1.38154748443,
1.3979453597.

(e) (thinking) Compute the next number in this series.
Estimate Feigenbaum δ.

(g) (thinking) Determine numerically scaling factors αm

which overlay (approximately) neighborhood of x =
0 for superstable f 2(m−1)(x) over the neighborhood
for αm f 2m

( f 2m
(x/αm)) for 4, 8, 16, · · · superstable

cycles. Draw a figure to replace the hand drawn
figure 28.26.
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14 F. Vivaldi: period doubling problem set
⇓PRIVATE

⇑PRIVATE
(P. Cvitanović)

28.2. Period doubling in a 3-dimensional flow: This is
a more time consuming problem, but it gives you a feel
for how numerical experiments in nonlinear dynamics are
really done, and sets you up for doing real-life problems
later on.

Consider the nonlinear oscillator

d2

dt2
x + k

d
dt

x − x + 4x3 = A cos(ωt) . (28.24)

The oscillator is driven by an external force of frequency
ω, with amplitude A and the natural time unit T 0 = 2π/ω.
The dissipation is controlled by the friction coefficient k.

Given the initial displacement and velocity one can easily
follow numerically (by the Runge-Kutta method, for ex-
ample) the state space trajectories of the system. Due to
the dissipation it does not matter where one starts in the
state space. For a strong friction or a weak forcing a wide
range of initial points converge to a fixed point or a limit
cycle (trajectory loops onto itself). However, as one de-
creases the friction, bifurcations and chaos are observed.

(a) Rewrite as a nonautonomous system of 2 first order
ODEs.

(b) Rewrite as an autonomous system of 3 first order
ODEs (add an equation whose solution is cos(ωt)).

(c) Observe long-time trajectories for k = 0.154, ω =
1.2199778 and A in some range like A = 0.05 to
0.2. Anything interessting happening? [Helpful
tips: let the system run for sufficiently long time
that the transients have had time to die out. When-
ever changing the parameter (in this case, parame-
ter A), increase parameter in small steps (adiabati-
cally), and then restart the trajectory from the last
point of the preceeding simulation. This minimizes
the transients.]

(d) Construct a stroboscopic Poincaré section by record-
ing values of (xn, ẋn) at times separated T0, 2T0, · · ·,
2nTn, · · ·

(e) Play a bit with plotting various combinations of x n,
xn+1, ẋn, and ẋn+1. Often a Poincaré return map
- such as (xn, xn+1) - is more informative than a
Poincaré section, such as (xn, ẋn).

(f) Increase A in small steps, as long as the trajectory
does not blow up, let transients die, and then plot
a few hundred consecutive xn (or whatever variable
you like best). Plot a (A, xn) period-doubling tree to
replace the hand drawn figure 28.14.

14Predrag: check Sethna, Vivaldi

exerUFO - 16sep2006 boyscout version14.4, Mar 19 2013

http://www.maths.qmul.ac.uk/~fv/teaching/chaos/cwork3.pdf


REFERENCES 706

(g) Observe long-time trajectories for (k, ω) = (0.154, 1.2199778)
and A = 0.1, 0.11, 0.114, 0.11437, . . .. Do you ob-
serve bifurcations?

There is nothing special about these parameter values; we
give them just to help you with finding your first bifurca-
tion sequence in a realistic nonlinear flow.

(P. Cvitanović)

28.3. Renormalization in a 3-dimensional flow: Con-
sider the nonlinear oscillator (28.24).

(a) For (k, ω) = (0.154, 1.2199778) determine accu-
rately amplitude values A1, A2, · · · , An, · · · , for which
2n-cycle bifurcates into 2n+1-cycle. [Tip: use the
Newton method on the Poincaré section. You’ll
need to also integrate the linearized stability ma-
trix.]

(b) Estimate Feigenbaum δ.

(g) Estimate Feigenbaum α.

(P. Cvitanović)
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border of order

Chapter 29

Complex universality

In its original form, the existence of δ seems a technical
analytic result. Now it proves to be an aspect of a broader
property of fractal scaling.

—Benoit B. Mandelbrot

1 2

The easy part of dynamical systems theory is the regular, “ordered” motions;
attracting fixed points and limit cycles, integrable “elliptic” regions. As
we now know, fully chaotic dynamics is often not much harder: it can be

described by Smale horseshoes, finite grammars and unstable periodic orbits. The
hard part lies in between, the dynamics to which we shall refer to here as the
“border of order” - trajectories that are neither stable nor unstable.

The closer to the border of order, the harder it is to decide whether a given
trajectory is stable or unstable. We need to inspect the trajectory with a higher and
higher resolution, for longer and longer times, as in figure29.1. In general this is a
hopeless undertaking. However, there are situations where the border of order is a
self-similar fractal. By a magnification of spatial scales and a replacement of time
by logarithmic time, the dynamics close to the border of order can be turned into a
clean, uniformly hyperbolic dynamics, and described to exponential accuracy by
techniques developed for nice chaotic sets. Not only that, but the fine structure of
the border turns out to be topologically and quantitatively universal, i.e., common
to large classes of dynamical systems.

In this chapter we illustrate the key concepts underlying the renormalization
theory of transitions to chaos by studying sequences of period n-tuplings for com-
plex maps. We have chosen this example for its beauty and simplicity; here you
should be able to visualize the renormalization transformations and the univer-
sal scalings as encodings of the self-similar patterns generated by deterministic
dynamics.

1Predrag: uncomment ref in preface
2Predrag: find a sillier quote

709



CHAPTER 29. COMPLEX UNIVERSALITY 710

Holomorphic
dynamics

Fatou and Julia maps

Figure 29.1: Renormalization is the process of
magnifying a neighborhood of the border of order,
and inspecting closer and closer returns for longer
and longer times. RE

NO
RM
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29.1 Holomorphic dynamics

3 We shall study properties of the asymptotic iterates of

zn+1 = f (zn) , (29.1)

where f (z) is a polynomial in the complex variable z with a quadratic critical
point, i.e., with Taylor series expansion of the form

f (z) = a0 + a2(z − zc)2 + . . . .

Typical model mappings of this type are the Fatou and Julia maps, respectively:

f (z) = λ − z2 (29.2)

f (z) = λ z(1 − z) . (29.3)

4 When such mappings are used to model dynamical systems with z a real variable
and the “nonlinearity” parameter λ real, the asymptotic attractor is conveniently
represented by a “bifurcation tree” of figure 28.13, i.e., by a 2-dimensional plot
with λ as one axis and values of the asymptotic iterates for given λ plotted along
the other axis.

It is not possible to visualize asymptotics of complex iterations in this way,
as their iteration space has two (real) dimensions, and period n-tuplings are in-
duced by tuning a pair of (real) parameters. To describe the asymptotic iterates of
complex maps we proceed in two steps.

5

3Predrag: define Holomorphic
4Predrag: change (29.3) parameters
5Predrag: ask for permission to use figure 29.2
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“em critical point
$z˙c$

Mandelbrot set $M$
basin of attraction
attractor
Julia set $J$

Figure 29.2: (a) The Mandelbrot set. Gray: crit-
ical point trajectory converges to an attractive pe-
riodic orbit of period 1, 2, . . . , 6. White: the criti-
cal point trajectory escapes to infinity. Julia sets
for the quadratic map zk+1 = λ − z2 parameter
values (b) λ = 0.5, (c) λ = 0.8, (d) λ = 1.42,
(e) λ = 0.5 + 0.7i, (f) λ = 0.123 − 0.745i, (g)
λ = 0.0315 − 0.7908i, (h) λ = −0.282 + 0.530i, (i)
λ = 1.16 + 0.25i. (from ref. [3])

Figure 29.3: The basin of attraction for the su-
perstable 3-cycle of mapping (29.3), λ = 0.123 −
0.745i. Any initial z from the black region con-
verges toward the superstable 3-cycle, denoted by
the three white dots. The basin of attraction for
mapping (29.2) superstable 3-cycle is the same, up
to a coordinate shift and rescaling.

First, we describe the parameter space by its Mandelbrot set M. The Mandel-
brot set is the set of all values of the mapping parameter (parameter p in the model
mapping (29.2)) for which iterates of the critical point do not escape to infinity. A
critical point zc is a value of z for which the mapping f (z) has vanishing deriva-
tive, f ′(zc) = 0. For example z = 0 in (29.2) is the critical point. The Mandelbrot
set for the mapping (29.2) is plotted in figure 29.2.

Second, we characterize the asymptotic iterates for a given value of the pa-
rameter either by their basin of attraction, or by their attractor. The basin of
attraction K is the set of all values of z which are attracted toward the attractor
under iteration by f (z). A typical basin of attraction is plotted in figure29.3.

The boundary of K, or the Julia set J, is the closure of all unstable fixed points
of all iterates of f (z).

Theorem. For parameter values within the Mandelbrot set M, the Julia set J is
connected. If all critical points iterate to infinity, J is a Cantor set.

If the nth iterate of f (z) equals z, the set of points zk = f k(z0), k = 0, 1, 2, ..., n−
1 form a periodic orbit (or cycle) of length n. If

|d f n(zk)/dz| < 1 (29.4)

complex - 24oct2006 boyscout version14.4, Mar 19 2013
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superstable
“em Mandelbrot

cactus

Figure 29.4: The Mandelbrot cactus for the Julia
mapping (29.3). Inside the big circle (left open
for clarity) iterations converge to a fixed point.
The full region has two symmetry axes, Re λ = 1
and Im λ = 0, so only one quarter is shown.
The period-doubling sequence is on the real axis.
The winding numbers of the periodic orbits corre-
sponding to larger leafs of M are indicated. See
ref. [9] for detailed scans of the set.

the cycle is attractive, with the attractor L the periodic orbit z0, z1, ..., zn−1. If the
derivative (29.4) is vanishing, the orbit is superstable, and (by the chain rule) a
critical point is one of the periodic points. For polynomial mappings z = ∞ plays
a special role; it is always a superstable fixed point. The following theorem eases
attractor searches:

Theorem. The basin of attraction K contains at least one critical point.

The precise shape of the Mandelbrot set M depends on f (z), but it always
resembles a cactus, see figure 29.4. Here we are not so much interested in the
entire M, as in the Mandelbrot cactus, figure 29.4, the set of components of M
generated from a single fixed point by all possible sequences of all 6 possible
period n-tuplings.

To summarize, the parameter dependence of asymptotic iterates of mapping
f (z) is described by the Mandelbrot set M. For each point inside M, the asymptotic
iterates are characterized by their basin of attraction K, the Julia set J and the
attractor L.

29.2 Mandelbrot cactus

Now that the general setting is established, we can turn to a detailed study of
the way in which a fixed point of the complex mapping (29.1) branches into an
n-cycle. The fact that the same analysis applies to period n-tupling of any k-
cycle into an nk-cycle will be seen to be the origin of the self-similarity of the
Mandelbrot cactus.

Denote the stability of a fixed point by

Λ =
d
dz

f (z) . (29.5)

Example 29.1 Border of fixed-print stability: Fixed point condition for map (29.2),
z2 + z − λ = 0 yields fixed points. The one of interest here is

6Predrag: n-tuplings not defined
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Smooth conjugacieswith stability (29.5)

Λ = f ′(z∗) = −2z∗ = 1 −
√

1 + 4λ

The fixed point loses its stability on the marginal stability curve Λ = eiϕ. In the complex
λ parameter plane, ϕ = [0, 2π] traces cut a cardioid

λ =
1
4

(ei2φ − zeid) , (29.6)

the border of the central component of the Mandelbrot set in figure 29.2.

We take, without loss of generality, the fixed point to be at z = 0, and f (z) a
power series expansion

f (z) = Λz +
∞∑
j=2

ajz
j . (29.7)

7 To bring the map into a normal form, we change the variable

w = z +
∞∑
j=2

hjz
j , (29.8)

and “flatten” out the mapping close to the fixed point by choosing successively
h2, h3, . . . in such a way that as many leading nonlinear terms as possible vanish
in (29.7).

Example 29.2 Smooth conjugacies of a fixed point: The idea is to perform a
smooth nonlinear change of coordinates that flattens out the vicinity of a fixed point and
makes the map linear in an open neighborhood. 8 This can be implemented only for an
isolated nondegenerate fixed point (as we shall see here, higher terms will contribute
to the normal form expansion around the point), and only in a finite neighborhood of
a point, as the conjugating function in general has a finite radius of convergence. For
example, a quadratic map has two zeros, and there is no global linear map that can
capture more one zero. 9

10 Let the fixed point of analytic function f (z) be z = 0 and the stability of that
point be Λ = f ′(0). If |Λ| � 1, there exists a smooth conjugation h(x) satisfying h(0) = 0
such that:

f (z) = h(Λh−1(z)) . (29.9)

In several dimensions, Λ is replaced by the Jacobian matrix, and one has to check that
its eigenvalues are non-resonant, that is, there is no integer linear relation between

7Predrag: explain normal form
8Predrag: Next sentence exact repeat of conjug.tex; mention period doubling operator spectrum
9Predrag: remark that h−1 is entire if f is?

10Predrag: explain word “conjugation”
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their logarithms. If h(z) is a conjugation, so is any scaling h(αz) of the function for a
case number α. Hence the value of h′(0) is not determined by the functional equation
(29.9); we shall set h′(0) = 1. 11

To compute the conjugation h we use the functional equation h(Λz) = f (h(z))
and the expansions

f (z) = Λz + z2 f2 + z3 f3 + . . .

h(z) = z + z2h2 + z3h3 + . . . . (29.10)

In the present context absorbing the factorials into the definition of expansion coef-
ficients turns out to be more convenient than the usual Taylor expansion. Equating
recursively coefficients in expansions in terms of z=h(u)

h(Λu) − Λh(u) =
∞∑

m=2

fm (h(u))m

∞∑
n=2

(Λn − Λ)hnun =

∞∑
m=2

fmum

⎛⎜⎜⎜⎜⎜⎝1 + ∞∑
k=2

hkuk−1

⎞⎟⎟⎟⎟⎟⎠m

(29.11)

yields

h2 =
f2

Λ(Λ − 1)
, h3 =

2 f 2
2 + Λ(Λ − 1) f3

Λ2(Λ − 1)(Λ2 − 1)
, · · · (29.12)

As long as |Λ| � 1, all is well. But if Λ is n-th root of unity Λ = e2π prefactor in
the conjugation (29.11) vanishes, un can not be eliminated, justify the local normal for
(29.14).

12 We find it convenient to factorize hn as

hn =
bn

Dn
, Dn =

(
1 −

1
Λ

) (
1 −

1
Λ2

)
· · ·

(
1 −

1
Λn−1

)
Λ

(n+2)(n−1)
2 .

Computer algebra then yields

b2 = f2
b3 = 2 f 2

2 + Λ (Λ − 1) f3 (29.13)

b4 = (5 + Λ) f 3
2 − Λ(5 − 2Λ − 3Λ2) f2 f3 + Λ

2(Λ − 1)(Λ2 − 1) f4 .

If Λ is sufficiently close to nth root of unity, ω = exp(i2πm/n), and z is close to 0,
the typical behavior of the new iteration function is the same as

f (z) = Λz + zn+1 . (29.14)

The normal function (29.14) has an n-cycle

z j = ω
jz0 , zn

0 = ω − Λ . (29.15)

11Predrag: explain word “resonsnt”
12Predrag: mention Euler formula?
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For Λ = ω this n-cycle coincides with the fixed point z = 0. In the neighborhood
of Λ = ω we have

dzn

dz0
= f ′(z0) f ′(z1)... f ′(zn−1) =

(
Λ + (n + 1)zn

0

)n

= 1 − (Λ − ω)n2/ω + ... . (29.16)

For Λ = (1 + ε)ω the n-cycle (29.15) of the mapping (29.14) is stable if

|1 − n2ε| < 1 , (29.17)

while the fixed point is stable if

|1 + ε| < 1 . (29.18)

The mapping (29.14) is equivalent to (29.7) only for small z, so the above analysis
of how a fixed point of (29.7) becomes unstable and branches into the n-cycle is
valid only for infinitesimal nε.

In conclusion, whenever a fixed point becomes unstable at Λ = nth root of
unity, it branches into an n-cycle which immediately becomes stable. As any
stable cycle becomes unstable in the same fashion, branching into a new stable
cycle with a multiple of the original cycle length, and as any such cycle is stable
inside a disklike region in the complex parameter plane, the union of all these
stability regions form a self-similar Mandelbrot cactus of figure29.4.

Next we turn to a study of infinite sequences of period n-tuplings, each branch-
ing characterized by the same ratio m/n.

As discussed above, a stable nk-cycle becomes unstable and branches into an
nk+1-cycle when the parameter λ passes 13 through a value such that the stability
Λk(λ) (as defined in (29.5)) is the nth root of unity,

Λ(λ) = ω = ei2πm/n .

For λ sufficiently close to this value the system is modeled by (29.14). From
(29.16) it follows that near the transition from an nk-cycle to an nk+1-cycle

Λk+1 = 1 − (Λk − ω)n2/ω + · · · , (29.19)

hence

dΛk+1

dλ

∣∣∣∣∣
Λk+1=1

= −n2

ω

dΛk

dλ

∣∣∣∣∣∣
Λk=ω

, (29.20)

and at the transition there is a scale change by the complex factor −n2/ω which is
independent of k.

13Predrag: explain f n fix points
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Renormalization
universality
Feigenbaum $“delta$

29.3 Renormalization and universality

Each leaf of the Mandelbrot cactus figure 29.4 corresponds to an m/n cycle, and
the parameter value for the superstable m/n cycle corresponds to the center of the
leaf. The above argument suggests that the leaf is approximately n2 times smaller
than the cactus, and that it is rotated by a phase factor −1/ω. The very geome-
try of the Mandelbrot cactus, figure 29.4, suggests such scaling. This scaling is
not exact, because the above analysis applies only to the infinitesimal neighbor-
hood of the junction of a leaf to the cactus; however, the evaluation of the exact
scaling numbers shows that this is a rather good approximation to the exact scal-
ing. Numerical evaluation of δm/n’s supports the conjecture that δm/n → −n2/ω as
m/n → 0, exactly.

The exact scaling is obtained by comparing values of the parameter λ corre-
sponding to successive (m/n)k superstable cycles, i.e., λ values such that Λk(λk) =
0. As each cactus leaf is similar to the entire cactus, the ratios of the sizes of the
successive stability regions corresponding to successive (m/n)k-cycles tend to a
limit as k →∞:

δm/n = lim
k→∞

λk − λk−1

λk+1 − λk
. (29.21)

The scaling number δ tells us by how much we have to change the parameter λ
in order to cause the next m/n period n-tupling. δ1/2 = 4.669... is the Feigen-
baum δ for the period doublings in the real 1-dimensional mappings, discussed in
chapter 28.

Scaling in the parameter space (generalized Feigenbaum δ) is a consequence
of the self-similarity of the Mandelbrot cacti. In the same way the self-similarity
of the Julia sets (or the asymptotic attractors) suggests a scaling law in the iteration
space z, which we discuss next. This law will characterize the scales of successive
trajectory splittings (generalized Feigenbaum α).

The self-similarity we are alluding to can be seen by comparing the basin
of attraction for the superstable 3-cycle, figure 29.3, and for the superstable 9-
cycle, figure 29.5. In the latter figure the 3-cycle basin of attraction is visible
in the center, rotated and scaled down by a factor whose asymptotic limit is the
generalization of Feigenbaum α to period triplings.

This scaling number α can be computed by comparing the successive super-
stable cycles, at successive parameter values λk, λk+1. As k → ∞, the sequence of
λ’s converges to λ∞, and the superstable nk-cycles converge to an n∞-cycle. The
attractor is self-similar: the orbits on succeeding levels are related by rescaling
and rotation by a complex number which asymptotically approaches

exercise 29.1

αm/n = lim
k→∞

znk − z0

znk+1 − z0
. (29.22)

complex - 24oct2006 boyscout version14.4, Mar 19 2013
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Feigenbaum “alpha

Figure 29.5: The basin of attraction for the super-
stable 9-cycle for iterates of the model mapping
(29.3). The scaled down version of the 3-cycle
basin of attraction, figure 29.3, is visible in the
center.

α characterizes the scale of trajectory splitting at each period n-tupling. For m/n =
1/2 this is the Feigenbaum α = −2.5029 . . .,

So period n-tuplings are self-similar both in the iteration space and in the pa-
rameter space: not only does the asymptotic orbit resembles itself under rescaling
and rotation by α, but also each leaf of the Mandelbrot cactus resembles the entire
cactus under rescaling and rotation by δ.

These self-similarities can be described by means of the following three oper-
ations:

The first operation is a rescaling of the parameter and iteration spaces:

[R f ]p(z) = a fp/d(z/a) . (29.23)

With the appropriate choice of complex numbers d and a, a leaf of the Mandelbrot
cactus (a part of the attractor) can be rescaled and rotated to approximately overlap
the entire cactus (entire attractor, respectively).

We fix the origin of p and z by requiring that z = 0 be a critical point of the
mapping fp(z), and, for the parameter value p = 0, a superstable fixed point as
well. Mapping (29.2) is an example. We fix the scale of p and z by requiring that
the superstable m/n cycle occurs for the parameter value p = 1 and that

f1(0) = 1 . (29.24)

The second operation shifts the origin of the parameter space to the center of the
m/n-leaf of the Mandelbrot cactus (p corresponding to the superstable m/n cycle):

[S f ]p(z) = f1+p(z) . (29.25)

complex - 24oct2006 boyscout version14.4, Mar 19 2013
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universal
unstable manifold

Figure 29.6: The unstable manifold method illus-
trated by period triplings. The parameter is shifted
from the center of a cactus leaf to its 1/3 leaf, the
1/3 leaf is rescaled and rotated by δ, and the basin
of attraction of third iterates is rescaled and ro-
tated by α. The Mandelbrot cactus and the basin
of attraction for the unstable manifold gp(z) is self-
similar under such shifting and rescaling.

The third operation iterates fp(z) n times:

[N f ]p(z) = f n
p (z) . (29.26)

By definition, [S f ]0(z) = f1(z) has a superstable m/n cycle, so its nth iterate has a
superstable fixed point, [NS f ]0(0) = 0.

The parameter shift S overlays the Mandelbrot cactus over its m/n leaf, and
the Julia set for [N f ]1(z) resembles the Julia set for the superstable fixed point
f0(z) (compare figure 29.3 with figure 29.5, for example). Finally we adjust the
scale of the new M, J sets by requiring that the scale factors a, d in (29.23) are
such that [RNS f ]p(z) satisfies the same normalization condition (29.24) as the
initial function f0(z). This shifting and rescaling is illustrated in figure29.6.

The combined effect of the rescaling, parameter shift and iteration is summa-
rized by the operator T∗ = RNS

[T ∗ f ]p(z) = a f n
1+p/d(z/a) . (29.27)

If we take a polynomial fp(z) and act on it with T∗, the result will be a longer
polynomial with similar M and J sets. For a finite number of T∗ operations the
scaling numbers d and a depend on the choice of the initial mapping fp(z). If we
apply T∗ infinitely many times, a and d converge to the universal numbers α and
δ, and T ∗ fp(z) converges to a one-parameter family of universal functions which
is the fixed line of the operator T∗:

gp(z) = [T∗g]p(z) = αgn
1+p/δ(z/α) . (29.28)

This universal equation determines both gp(z) and the universal numbers α and
δ. The 1-dimensional family of universal functions gp(z) parameterized by p is
called the unstable manifold. 14

14Predrag: explain “unstable manifold”
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Farey numbers
circle map

To summarize, the T∗ operation encodes simultaneously the self-similarity
of the parameter space (Mandelbrot cacti) and of the iteration space (Julia sets).
Being no more than a redefinition of variables, it is an explicit implementation
of the above self-similarities; T∗ magnifies the nth iterate of the (m/n)k+1-cycle
and overlays it onto the (m/n)k-cycle (see figure 29.6). Asymptotically the self-
similarities are exact, and the procedure converges to the unstable manifold, a
1-dimensional line of universal functions gp.

Not only are the N, S , R operations the natural encoding of the complex uni-
versality, but they are also useful computational tools.

The universal equation (29.28) can be solved numerically by approximating
the unstable manifold by a truncation of the double power series expansion

gp(z) =
N,M∑
j,k≥0

c jkz2 j pk . (29.29)

We start with (29.2) as a two term approximation to gp(z). Repeated applications
of the T∗ operation (29.27) generate a longer and longer double polynomial in z
and p; this procedure converges asymptotically to the unstable manifold gp(z). We
implement the shifting and iteration operations S and N as numerical polynomial
substitution routines, truncating all polynomials as in (29.29). The T ∗ operation
is completed by the rescaling operation R, equation (29.23). The scaling numbers
d and a are fixed by the normalization conditions (29.24). We use the Newton
method to find the parameter value corresponding to the superstable m/n-cycle.
This determines d, and a then follows directly from the condition (29.24). The
result is a new approximation to gp(z). Asymptotically d’s converge to δ and a’s
converge to α. We keep applying the truncated T∗ operation until the coefficients
in (29.29) stabilize to desired accuracy.

The self-similar structure of the Mandelbrot cactus, figure 29.4, suggests a
systematic way of presenting the universal numbers that we have computed in
the previous section. Observe that roughly halfway between any two large leafs
on the periphery of a Mandelbrot cactus (such as 1/2 and 1/3) there is the next
largest leaf (such as 2/5). Furthermore, we know from (29.20) that the size of
the “cactus leaf” corresponding to period n-tupling is of order n−2. Hence the
natural hierarchy is provided by an interpolation scheme which organizes rational
numbers m/n into self-similar levels of increasing period lengths n. Such scheme
is provided by Farey numbers.

Implicit in the Farey numbers are scaling laws that relate the universal num-
bers. It turns out that the same Farey structure is a very useful tool for the study
of mode-locking intervals for circle maps. We shall discuss this at length in chap-
ter 30. ⇓PRIVATE
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Mandelbrot
Set
Douady’s rabbits
Mandelbrot!My Book

Résumé

Commentary

Remark 29.1 Complex universality. This chapter is based on a collaboration with
Jan Myrheim. The universality theory for complex period n-tuplings was developed in
ref. [30, 7]. 15 As we were so rash as to submit the 2nd paper to the Communications in
Mathematical Physics, it took 6 years before it appeared in print. The referee report, when
it arrived, asked authors to change “universality” to “universal” throughout. We shall
never make that error again. Unbeknownst to us, accumulation points for period-tripling
and period-quadrupling bifurcation cascades were studied a bit earlier by Golberg, Sinai
and Khanin [8].

16 A computer picture of what B.B. Mandelbrot calls My Set was first published by 17.
Today the credit tends to be given to 1980 Mandelbrot’s paper [ 1]. Unaware of existence
of such pictures, Jan Myrhaim constructed during the summer of 1982 the “cactus” part of
this set by thinking (he developed the bifurcation analysis of sect. 29.2), assisted by pencil
and paper. We then plotted this on Jan’s own proto-home computer, using Jan’s machine-
language coded graphics for a dot-printer, wholly innocent of Mandelbrot’s dragons and
Douady’s rabbits. 18 Very pretty early depictions of the Mandelbrot cactus, figure 29.4, are
given on pp. 180-192 of book that Mandelbrot used to lovingly refer to as ‘My Book’ [ 2].
Today any mathematically inclined 12-year old can produce prettier pictures than best of
IBM printers of 1980’s.

“Mandelbrot, Mandelbrot, Mandelbrot! That should be enough.” Adrian Douady,
starting a seminar (in which there is no further mention of Benoit).

Add June 1984 Noble Symposium portrait of Benoit B. Mandelbrot

19

Siegel disks [12, 13, 14].

Violation of the analyticity leads to drastic changes of the dynamics [ 26, 15, 16, 17,
18].

The physical applications of complex dynamics: renormalization group in phase tran-
sitions theory of a percolation [19, 20, 21, 22].

possibility of the construction of the physical system, in which the Mandelbrot set
would arise, Beck [24]

accumulation points for period-tripling and period-quadrupling bifurcation cascades
Goldberg, Sinai and Khanin [28].

first experimental observation of the Mandelbrot set [25]

15Predrag: move to appeHistory
16Predrag: move to appeHistory
17Predrag: find the reference
18Predrag: keep here, add Demidov website
19Predrag: REST is clipped from Isaeva paper, reedit in entirety
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Henon@Hénon
map!complex

The special structure of the Fourier spectrum of signal generated by experimental
system at the period-tripling accumulation point is presented in [ 27].

period multiplication cascades survive in complex Hénon map [ 31]

⇑PRIVATE

Exercises boyscout

29.1. Approximate period tripling renormalization:

Implement an approximate renormalization for period-
tripling sequence of figure 29.6, using the approximate
period-doubling renormalization scheme of example 28.3,
applied to the complex polynomial

zn+1 = λ − z2
n .

The idea is to drop from fλ ◦ fλ ◦ fλ(z) all terms higher
than z2 in each period-tripling step. Evaluate numerically
the complex coordinate and parameter rescaling universal
constants α1/3 and δ1/3.

(O.B. Isaeva and S.P. Kuznetsov)
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Chapter 30

Irrationally winding

I don’t care for islands, especially very small ones.

—D.H. Lawrence

(R. Artuso and P. Cvitanović)

This chapter is concerned with the mode locking problems for circle maps:
besides its physical relevance it nicely illustrates the use of cycle expan-
sions away from the dynamical setting, in the realm of renormalization

theory at the transition to chaos. 1

The physical significance of circle maps is connected with their ability to
model the two–frequencies mode–locking route to chaos for dissipative systems.
In the context of dissipative dynamical systems one of the most common and
experimentally well explored routes to chaos is the two-frequency mode-locking
route. Interaction of pairs of frequencies is of deep theoretical interest due to the
generality of this phenomenon; as the energy input into a dissipative dynamical
system (for example, a Couette flow) is increased, typically first one and then two
of intrinsic modes of the system are excited. After two Hopf bifurcations (a fixed
point with inward spiralling stability has become unstable and outward spirals to
a limit cycle) a system lives on a two-torus. Such systems tend to mode-lock:
the system adjusts its internal frequencies slightly so that they fall in step and
minimize the internal dissipation. In such case the ratio of the two frequencies
is a rational number. An irrational frequency ratio corresponds to a quasiperiodic
motion - a curve that never quite repeats itself. If the mode-locked states overlap,
chaos sets in. The likelihood that a mode-locking occurs depends on the strength
of the coupling of the two frequencies.

Our main concern in this chapter is to illustrate the “global” theory of circle
maps, connected with universality properties of the whole irrational winding set.
We shall see that critical global properties may be expressed via cycle expansions
involving “local” renormalization critical exponents. The renormalization theory

1Predrag: out of the main line of argument, move to an appendix?
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circle map
inflection point
winding number

Figure 30.1: Unperturbed circle map (k = 0 in (30.1))
with golden mean rotation number.
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of critical circle maps demands rather tedious numerical computations, and our
intuition is much facilitated by approximating circle maps by number-theoretic
models. The models that arise in this way are by no means mathematically triv-
ial, they turn out to be related to number-theoretic abysses such as the Riemann
conjecture, already in the context of the “trivial” models.

30.1 Mode locking

The simplest way of modeling a nonlinearly perturbed rotation on a circle is by
1-dimensional circle maps x → x′ = f (x), restricted to the one dimensional torus,
such as the sine map

xn+1 = f (xn) = xn + Ω − k
2π

sin(2πxn) mod 1 . (30.1)

f (x) is assumed to be continuous, have a continuous first derivative, and a con-
tinuous second derivative at the inflection point (where the second derivative van-
ishes). For the generic, physically relevant case (the only one considered here) the
inflection is cubic. Here k parametrizes the strength of the nonlinear interaction,
and Ω is the bare frequency.

The state space of this map, the unit interval, can be thought of as the elemen-
tary cell of the map

x̂n+1 = f̂ (x̂n) = x̂n + Ω − k
2π

sin(2πx̂n) . (30.2)

where ˆ is used in the same sense as in chapter 26.

The winding number is defined as

W(k,Ω) = lim
n→∞

(x̂n − x̂0)/n. (30.3)

and can be shown to be independent of the initial value x̂0.
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shift!map
circle map

For k = 0, the map is a simple rotation (the shift map) see figure30.1 2

xn+1 = xn + Ω mod 1 , (30.4)

and the rotation number is given by the parameter Ω.

W(k = 0,Ω) = Ω .

For given values of Ω and k the winding number can be either rational or irra-
tional. For invertible maps and rational winding numbers W = P/Q the asymptotic
iterates of the map converge to a unique attractor, a stable periodic orbit of period
Q

f̂ Q(x̂i) = x̂i + P, i = 0, 1, 2, · · · ,Q − 1 .

This is a consequence of the independence of x̂0 previously mentioned. There is
also an unstable cycle, repelling the trajectory. For any rational winding number,
there is a finite interval of values of Ω values for which the iterates of the circle
map are attracted to the P/Q cycle. This interval is called the P/Q mode-locked

exercise 30.1
(or stability) interval, and its width is given by 3

ΔP/Q = Q−2μP/Q = Ω
right
P/Q −Ωle f t

P/Q . (30.5)

where Ωright
P/Q (Ωle f t

P/Q) denote the biggest (smallest) value of Ω for which W(k,Ω) =
P/Q. Parametrizing mode lockings by the exponent μ rather than the width Δ
will be convenient for description of the distribution of the mode-locking widths,
as the exponents μ turn out to be of bounded variation. The stability of the P/Q
cycle is

ΛP/Q =
∂xQ

∂x0
= f ′(x0) f ′(x1) · · · f ′(xQ−1)

For a stable cycle |ΛP/Q| lies between 0 (the superstable value, the “center” of the
stability interval) and 1 (the Ωright

P/Q , Ωle f t
P/Q endpoints of (30.5)). For the shift map

(30.4), the stability intervals are shrunk to points. As Ω is varied from 0 to 1,
the iterates of a circle map either mode-lock, with the winding number given by
a rational number P/Q ∈ (0, 1), or do not mode-lock, in which case the winding
number is irrational. A plot of the winding number W as a function of the shift
parameter Ω is a convenient visualization of the mode-locking structure of circle
maps. It yields a monotonic “devil’s staircase” of figure 30.2 whose self-similar
structure we are to unravel. Circle maps with zero slope at the inflection point xc

2Dahlqvist: Exciting figure
3Predrag: define right, left
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winding number
circle map!critical

Figure 30.2: The critical circle map (k = 1 in (30.1))
devil’s staircase [3]; the winding number W as function
of the parameter Ω.

Figure 30.3: Critical circle map (k = 1 in (30.1)) with
golden mean bare rotation number.
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(see figure 30.3)

f ′(xc) = 0 , f ′′(xc) = 0

(k = 1, xc = 0 in (30.1)) are called critical: they delineate the borderline of chaos
in this scenario. As the nonlinearity parameter k increases, the mode-locked
intervals become wider, and for the critical circle maps (k = 1) they fill out the
whole interval. A critical map has a superstable P/Q cycle for any rational P/Q,
as the stability of any cycle that includes the inflection point equals zero. If the
map is non-invertible (k > 1), it is called supercritical; the bifurcation structure of
this regime is extremely rich and beyond the scope of this exposition.

The physically relevant transition to chaos is connected with the critical case,
however the apparently simple “free” shift map limit is quite instructive: in essence
it involves the problem of ordering rationals embedded in the unit interval on a hi-
erarchical structure. From a physical point of view, the main problem is to identify
a (number-theoretically) consistent hierarchy susceptible of experimental verifi-
cation. We will now describe a few ways of organizing rationals along the unit
interval: each has its own advantages as well as its drawbacks, when analyzed
from both mathematical and physical perspective.

30.1.1 Hierarchical partitions of the rationals

Intuitively, the longer the cycle, the finer the tuning of the parameter Ω required to
attain it; given finite time and resolution, we expect to be able to resolve cycles up
to some maximal length Q. This is the physical motivation for partitioning mode
lockings into sets of cycle length up to Q. In number theory such sets of rationals
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Farey!series
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totient function
Gauss map

are called Farey series. They are denoted by FQ and defined as follows. The
Farey series of order Q is the monotonically increasing sequence of all irreducible
rationals between 0 and 1 whose denominators do not exceed Q. Thus Pi/Qi

belongs to FQ if 0 < Pi ≤ Qi ≤ Q and (Pi|Qi) = 1. For example

F5 =

{1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

1
1

}
A Farey series is characterized by the property that if Pi−1/Qi−1 and Pi/Qi are
consecutive terms of FQ, then

PiQi−1 − Pi−1Qi = 1.

The number of terms in the Farey series FQ is given by

Φ(Q) =
Q∑

n=1

φ(Q) =
3Q2

π2
+ O(Q ln Q). (30.6)

Here the Euler function φ(Q) is the number of integers not exceeding and rel-
atively prime to Q. For example, φ(1) = 1, φ(2) = 1, φ(3) = 2, . . . , φ(12) =
4, φ(13) = 12, . . .

From a number-theorist’s point of view, the continued fraction partitioning of
the unit interval is the most venerable organization of rationals, preferred already
by Gauss. The continued fraction partitioning is obtained by ordering rationals
corresponding to continued fractions of increasing length. If we turn this ordering
into a way of covering the complementary set to mode-lockings in a circle map,
then the first level is obtained by deleting Δ[1], Δ[2], · · · ,Δ[a1], · · · mode-lockings;
their complement are the covering intervals �1, �2, . . . , �a1 , . . . which contain all
windings, rational and irrational, whose continued fraction expansion starts with
[a1, . . .] and is of length at least 2. The second level is obtained by deleting
Δ[1,2], Δ[1,3], · · · ,Δ[2,2], Δ[2,3], · · · ,Δ[n,m], · · · and so on.

The nth level continued fraction partition Sn = {a1a2 · · · an} is defined as the
monotonically increasing sequence of all rationals Pi/Qi between 0 and 1 whose
continued fraction expansion is of length n:

Pi

Qi
= [a1, a2, · · · , an] =

1

a1 +
1

a2 + . . .
1

an

The object of interest, the set of the irrational winding numbers, is in this partition-
ing labeled by S∞ = {a1a2a3 · · ·}, ak ∈ Z+, i.e., the set of winding numbers with
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Gauss map
Farey!tree
Farey!mediant

infinite continued fraction expansions. The continued fraction labeling is particu-
larly appealing in the present context because of the close connection of the Gauss
shift to the renormalization transformation R, discussed below. The Gauss map

T (x) =
1
x
−

[
1
x

]
x � 0

0 , x = 0 (30.7)

([· · ·] denotes the integer part) acts as a shift on the continued fraction representa-
tion of numbers on the unit interval

x = [a1, a2, a3, . . .] → T (x) = [a2, a3, . . .] . (30.8)

into the “mother” interval �a2a3....

However natural the continued fractions partitioning might seem to a number
theorist, it is problematic in practice, as it requires measuring infinity of mode-
lockings even at the first step of the partitioning. Thus numerical and experimental
use of continued fraction partitioning requires at least some understanding of the
asymptotics of mode–lockings with large continued fraction entries.

The Farey tree partitioning is a systematic bisection of rationals: it is based
on the observation that roughly halfways between any two large stability intervals
(such as 1/2 and 1/3) in the devil’s staircase of figure30.2 there is the next largest
stability interval (such as 2/5). The winding number of this interval is given by the
Farey mediant (P+P′)/(Q+Q′) of the parent mode-lockings P/Q and P′/Q′. This
kind of cycle “gluing” is rather general and by no means restricted to circle maps;
it can be attained whenever it is possible to arrange that the Qth iterate deviation
caused by shifting a parameter from the correct value for the Q-cycle is exactly
compensated by the Q′th iterate deviation from closing the Q′-cycle; in this way
the two near cycles can be glued together into an exact cycle of length Q+Q′. The
Farey tree is obtained by starting with the ends of the unit interval written as 0/1
and 1/1, and then recursively bisecting intervals by means of Farey mediants.

We define the nth Farey tree level Tn as the monotonically increasing sequence
of those continued fractions [a1, a2, . . . , ak] whose entries ai ≥ 1, i = 1, 2, . . . , k −
1, ak ≥ 2, add up to

∑k
i=1 ai = n + 2. For example

T2 =
{
[4], [2, 2], [1, 1, 2], [1, 3]

}
=

(1
4
,

1
5
,

3
5
,

3
4

)
. (30.9)

The number of terms in Tn is 2n. Each rational in Tn−1 has two “daughters” in Tn,
given by 4

[· · · , a]
[· · · , a − 1, 2] [· · · , a + 1]

4Predrag: draw in the arrows
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Figure 30.4: Farey tree: alternating binary or-
dered labeling of all Farey denominators on the nth
Farey tree level.
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Iteration of this rule places all rationals on a binary tree, labeling each by a unique
binary label, figure 30.4.

The smallest and the largest denominator in Tn are respectively given by

[n − 2] =
1

n − 2
, [1, 1, . . . , 1, 2] =

Fn+1

Fn+2
∝ ρn , (30.10)

where the Fibonacci numbers Fn are defined by Fn+1 = Fn+Fn−1; F0 = 0, F1 =

1, and ρ is the golden mean ratio

ρ =
1 +

√
5

2
= 1.61803 . . . (30.11)

Note the enormous spread in the cycle lengths on the same level of the Farey tree:
n ≤ Q ≤ ρn. The cycles whose length grows only as a power of the Farey tree level
will cause strong non-hyperbolic effects in the evaluation of various averages.

Having defined the partitioning schemes of interest here, we now briefly sum-
marize the results of the circle-map renormalization theory.

30.2 Local theory: “Golden mean” renormalization

The way to pinpoint a point on the border of order is to recursively ad-
just the parameters so that at the recurrence times t = n1, n2, n3, · · · the trajectory
passes through a region of contraction sufficiently strong to compensate for the
accumulated expansion of the preceding ni steps, but not so strong as to force the
trajectory into a stable attracting orbit. The renormalization operation R imple-
ments this procedure by recursively magnifying the neighborhood of a point on
the border in the dynamical space (by rescaling by a factor α), in the parameter
space (by shifting the parameter origin onto the border and rescaling by a factor δ),
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circle map
golden

mean!renormalization
renormalization!golden

mean

and by replacing the initial map f by the nth iterate fn restricted to the magnified
neighborhood

fp(x) → R fp(x) = α f n
p/δ(x/α)

There are by now many examples of such renormalizations in which the new func-
tion, framed in a smaller box, is a rescaling of the original function, i.e., the fix-
point function of the renormalization operator R. The best known is the period
doubling renormalization, with the recurrence times ni = 2i. The simplest circle
map example is the golden mean renormalization, with recurrence times ni = Fi

given by the Fibonacci numbers (30.10). Intuitively, in this context a metric self-
similarity arises because iterates of critical maps are themselves critical, i.e., they
also have cubic inflection points with vanishing derivatives.

The renormalization operator appropriate to circle maps acts as a generaliza-
tion of the Gauss shift (30.38); it maps a circle map (represented as a pair of
functions (g, f ), of winding number [a, b, c, . . .] into a rescaled map of winding
number [b, c, . . .]:

Ra

(
g
f

)
=

(
αga−1 ◦ f ◦ α−1

αga−1 ◦ f ◦ g ◦ α−1

)
, (30.12)

Acting on a map with winding number [a, a, a, . . .], Ra returns a map with the same
winding number [a, a, . . .], so the fixed point of Ra has a quadratic irrational wind-
ing number W = [a, a, a, . . .]. This fixed point has a single expanding eigenvalue
δa. Similarly, the renormalization transformation Rap . . .Ra2Ra1 ≡ Ra1a2...ap has
a fixed point of winding number Wp = [a1, a2, . . . , anp , a1, a2, . . .], with a single
expanding eigenvalue δp.

For short repeating blocks, δ can be estimated numerically by comparing suc-
cessive continued fraction approximants to W . Consider the Pr/Qr rational ap-
proximation to a quadratic irrational winding number Wp whose continued frac-
tion expansion consists of r repeats of a block p. LetΩr be the parameter for which
the map (30.1) has a superstable cycle of rotation number Pr/Qr = [p, p, . . . , p].
The δp can then be estimated by extrapolating from

Ωr −Ωr+1 ∝ δ−r
p . (30.13)

What this means is that the “devil’s staircase” of figure 30.2 is self-similar under
magnification by factor δp around any quadratic irrational Wp.

The fundamental result of the renormalization theory (and the reason why all
this is so interesting) is that the ratios of successive Pr/Qr mode-locked intervals
converge to universal limits. The simplest example of (30.13) is the sequence of
Fibonacci number continued fraction approximants to the golden mean winding
number W = [1, 1, 1, ...] = (

√
5 − 1)/2.
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circle map!criticalWhen global problems are considered, it is useful to have at least and idea on
extemal scaling laws for mode–lockings. This is achieved, in a first analysis, by
fixing the cycle length Q and describing the range of possible asymptotics.

For a given cycle length Q, it is found that the narrowest interval shrinks with
a power law

Δ1/Q ∝ Q−3 (30.14)

For fixed Q the widest interval is bounded by P/Q = Fn−1/Fn, the nth con-
tinued fraction approximant to the golden mean. The intuitive reason is that the
golden mean winding sits as far as possible from any short cycle mode-locking.

The golden mean interval shrinks with a universal exponent

ΔP/Q ∝ Q−2μ1 (30.15)

where P = Fn−1, Q = Fn and μ1 is related to the universal Shenker number δ1
(30.13) and the golden mean (30.11) by

μ1 =
ln |δ1|
2 ln ρ

= 1.08218 . . . (30.16)

The closeness of μ1 to 1 indicates that the golden mean approximant mode-lockings
barely feel the fact that the map is critical (in the k=0 limit this exponent is μ = 1).

To summarize: for critical maps the spectrum of exponents arising from the
circle maps renormalization theory is bounded from above by the harmonic scal-
ing, and from below by the geometric golden-mean scaling:

3/2 > μm/n ≥ 1.08218 · · · . (30.17)

30.3 Global theory: Thermodynamic averaging

Consider the following average over mode-locking intervals (30.5):

Ω(τ) =
∞∑

Q=1

∑
(P|Q)=1

Δ−τP/Q. (30.18)

The sum is over all irreducible rationals P/Q, P < Q, and ΔP/Q is the width of the
parameter interval for which the iterates of a critical circle map lock onto a cycle
of length Q, with winding number P/Q.
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The qualitative behavior of (30.18) is easy to pin down. For sufficiently neg-
ative τ, the sum is convergent; in particular, for τ = −1, Ω(−1) = 1, as for the
critical circle maps the mode-lockings fill the entire Ω range [15]. However, as τ
increases, the contributions of the narrow (large Q) mode-locked intervals ΔP/Q

get blown up to 1/ΔτP/Q, and at some critical value of τ the sum diverges. This oc-
curs for τ < 0, as Ω(0) equals the number of all rationals and is clearly divergent.

The sum (30.18) is infinite, but in practice the experimental or numerical
mode-locked intervals are available only for small finite Q. Hence it is necessary
to split up the sum into subsets Sn = {i} of rational winding numbers Pi/Qi on
the “level” n, and present the set of mode-lockings hierarchically, with resolution
increasing with the level:

Z̄n(τ) =
∑
i∈Sn

Δ−τi . (30.19)

The original sum (30.18) can now be recovered as the z = 1 value of a “gener-
ating” function Ω(z, τ) =

∑
n znZ̄n(τ). As z is anyway a formal parameter, and

n is a rather arbitrary “level” in some ad hoc partitioning of rational numbers,
we bravely introduce a still more general, P/Q weighted generating function for
(30.18):

Ω(q, τ) =
∞∑

Q=1

∑
(P|Q)=1

e−qνP/Q Q2τμP/Q . (30.20)

The sum (30.18) corresponds to q = 0. Exponents νP/Q will reflect the importance
we assign to the P/Q mode-locking, i.e., the measure used in the averaging over
all mode-lockings. Three choices of of the νP/Q hierarchy that we consider here
correspond respectively to the Farey series partitioning

Ω(q, τ) =
∞∑

Q=1

Φ(Q)−q
∑

(P|Q)=1

Q2τμP/Q , (30.21)

the continued fraction partitioning

Ω(q, τ) =
∞∑

n=1

e−qn
∑

[a1 ,...,an]

Q2τμ[a1,...,an ] , (30.22)

and the Farey tree partitioning

Ω(q, τ) =
∞∑

k=n

2−qn
2n∑
i=1

Q2τμi
i , Qi/Pi ∈ Tn . (30.23)

We remark that we are investigating a set arising in the analysis of the parameter
space of a dynamical system: there is no “natural measure” dictated by dynamics,
and the choice of weights reflects only the choice of hierarchical presentation.
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30.4 Hausdorff dimension of irrational windings

A finite cover of the set irrational windings at the “nth level of resolution” is
obtained by deleting the parameter values corresponding to the mode-lockings in
the subset Sn; left behind is the set of complement covering intervals of widths

�i = Ω
min
Pr/Qr

−Ωmax
Pl/Ql

. (30.24)

Here Ωmin
Pr/Qr

(Ωmax
Pl/Ql

) are respectively the lower (upper) edges of the mode-locking
intervals ΔPr/Qr (ΔPl/Ql) bounding �i and i is a symbolic dynamics label, for ex-
ample the entries of the continued fraction representation P/Q = [a1, a2, ..., an] of
one of the boundary mode-lockings, i = a1a2 · · · an. �i provide a finite cover for
the irrational winding set, so one may consider the sum

Zn(τ) =
∑
i∈Sn

�−τi (30.25)

The value of −τ for which the n → ∞ limit of the sum (30.25) is finite is the
Hausdorff dimension DH of the irrational winding set. Strictly speaking, this is
the Hausdorff dimension only if the choice of covering intervals �i is optimal;
otherwise it provides an upper bound to DH. As by construction the �i intervals
cover the set of irrational winding with no slack, we expect that this limit yields
the Hausdorff dimension. This is supported by all numerical evidence, but a proof
that would satisfy mathematicians is lacking.

The physically relevant statement is that for critical circle maps DH = 0.870 . . .
is a (global) universal number.

exercise 30.2

30.4.1 The Hausdorff dimension in terms of cycles

Estimating the n → ∞ limit of (30.25) from finite numbers of covering intervals
�i is a rather unilluminating chore. Fortunately, there exist considerably more
elegant ways of extracting DH . We have noted that in the case of the “trivial”
mode-locking problem (30.4), the covering intervals are generated by iterations
of the Farey map (30.37) or the Gauss shift (30.38). The nth level sum (30.25) can
be approximated by Ln

τ, where

Lτ(y, x) = δ(x − f−1(y))| f ′(y)|τ

This amounts to approximating each cover width �i by |d f n/dx| evaluated on the
ith interval. We are thus led to the following determinant

det (1 − zLτ) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

zrnp

r

|Λr
p|τ

1 − 1/Λr
p

⎞⎟⎟⎟⎟⎟⎟⎠
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=
∏

p

∞∏
k=0

(
1 − znp |Λp|τ/Λk

p

)
. (30.26)

The sum (30.25) is dominated by the leading eigenvalue of Lτ; the Hausdorff
dimension condition Zn(−DH) = O(1) means that τ = −DH should be such that
the leading eigenvalue is z = 1. The leading eigenvalue is determined by the
k = 0 part of (30.26); putting all these pieces together, we obtain a pretty formula
relating the Hausdorff dimension to the prime cycles of the map f (x):

0 =
∏

p

(
1 − 1/|Λp|DH

)
. (30.27)

For the Gauss shift (30.38) the stabilities of periodic cycles are available analytical-
ly, as roots of quadratic equations: For example, the xa fixed points (quadratic
irrationals with xa = [a, a, a . . .] infinitely repeating continued fraction expansion)
are given by

xa =
−a +

√
a2 + 4

2
, Λa = −

⎛⎜⎜⎜⎜⎜⎝a +
√

a2 + 4
2

⎞⎟⎟⎟⎟⎟⎠2

(30.28)

and the xab = [a, b, a, b, a, b, . . .] 2–cycles are given by

xab =
−ab +

√
(ab)2 + 4ab
2b

(30.29)

Λab = (xabxba)−2 =

(
ab + 2 +

√
ab(ab + 4)

2

)2

We happen to know beforehand that DH = 1 (the irrationals take the full mea-
sure on the unit interval, or, from another point of view, the Gauss map is not a
repeller), so is the infinite product (30.27) merely a very convoluted way to com-
pute the number 1? Possibly so, but once the meaning of (30.27) has been grasped,
the corresponding formula for the critical circle maps follows immediately:

0 =
∏

p

(
1 − 1/|δp|DH

)
. (30.30)

The importance of this formula relies on the fact that it expresses DH in terms
of universal quantities, thus providing a nice connection from local universal ex-
ponents to global scaling quantities: actual computations using (30.30) are rather
involved, as they require a heavy computational effort to extract Shenker’s scaling
δp for periodic continued fractions, and moreover dealing with an infinite alpha-
bet requires control over tail summation if an accurate estimate is to be sought. In
table 30.1 we give a small selection of computed Shenker’s scalings.
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Table 30.1: Shenker’s δp for a few periodic continued fractions, from ref. [ 1].

p δp

[1 1 1 1 ...] -2.833612
[2 2 2 2 ...] -6.7992410
[3 3 3 3 ...] -13.760499
[4 4 4 4 ...] -24.62160
[5 5 5 5 ...] -40.38625
[6 6 6 6 ...] -62.140
[1 2 1 2 ...] 17.66549
[1 3 1 3 ...] 31.62973
[1 4 1 4 ...] 50.80988
[1 5 1 5 ...] 76.01299
[2 3 2 3 ...] 91.29055

30.5 Thermodynamics of Farey tree: Farey model

We end this chapter by giving an example of a number theoretical model
motivated by the mode-locking phenomenology. We will consider it by means of
the thermodynamic formalism of chapter O, by looking at the free energy.

Consider the Farey tree partition sum (30.23): the narrowest mode-locked
interval (30.15) at the nth level of the Farey tree partition sum (30.23) is the golden
mean interval

ΔFn−1/Fn ∝ |δ1|−n. (30.31)

It shrinks exponentially, and for τ positive and large it dominates q(τ) and bounds
dq(τ)/dτ:

q′max =
ln |δ1|
ln 2

= 1.502642 . . . (30.32)

However, for τ large and negative, q(τ) is dominated by the interval (30.14) which
shrinks only harmonically, and q(τ) approaches 0 as

q(τ)
τ
=

3 ln n
n ln 2

→ 0. (30.33)

So for finite n, qn(τ) crosses the τ axis at −τ = Dn, but in the n → ∞ limit, the
q(τ) function exhibits a phase transition; q(τ) = 0 for τ < −DH , but is a non-trivial
function of τ for −DH ≤ τ. This non-analyticity is rather severe - to get a clearer
picture, we illustrate it by a few number-theoretic models (the critical circle maps
case is qualitatively the same).

An approximation to the “trivial” Farey level thermodynamics is given by the
“Farey model,” in which the intervals �P/Q are replaced by Q−2:

Zn(τ) =
2n∑
i=1

Q2τ
i . (30.34)
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Here Qi is the denominator of the ith Farey rational Pi/Qi. For example (see
figure 30.4),

Z2(1/2) = 4 + 5 + 5 + 4.

By the annihilation property (30.38) of the Gauss shift on rationals, the nth Farey
level sum Zn(−1) can be written as the integral

Zn(−1) =
∫

dx δ( f n(x)) =
∑

1/| f ′a1 ...ak
(0)| ,

and in general

Zn(τ) =
∫

dxLn
τ(0, x) ,

with the sum restricted to the Farey level a1 + . . . + ak = n + 2. It is easily checked
that f ′a1 ...ak

(0) = (−1)kQ2
[a1,...,ak], so the Farey model sum is a partition generated by

the Gauss map preimages of x = 0, i.e., by rationals, rather than by the quadratic
irrationals as in (30.26). The sums are generated by the same transfer operator, so
the eigenvalue spectrum should be the same as for the periodic orbit expansion, but
in this variant of the finite level sums we can can evaluate q(τ) exactly for τ = k/2,
k a nonnegative integer. First, one observes that Zn(0) = 2n. It is also easy to check
that Zn(1/2) =

∑
i Qi = 2 · 3n. 5 More surprisingly, Zn(3/2) =

∑
i Q3 = 54 · 7n−1.

A few of these “sum rules” are listed in the table 30.2, they are consequence of
the fact that the denominators on a given level are Farey sums of denominators on
preceding levels.

exercise 30.3

A bound on DH can be obtained by approximating (30.34) by

Zn(τ) = n2τ + 2nρ2nτ. (30.35)

In this approximation we have replaced all �P/Q, except the widest interval �1/n,
by the narrowest interval �Fn−1/Fn (see (30.15)). The crossover from the harmonic
dominated to the golden mean dominated behavior occurs at the τ value for which
the two terms in (30.35) contribute equally:

Dn = D̂ + O

(
ln n
n

)
, D̂ =

ln 2
2 ln ρ

= .72 . . . (30.36)

For negative τ the sum (30.35) is the lower bound on the sum (30.25) , so D̂ is
a lower bound on DH.

5Predrag: add the plot of q(τ)
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τ/2 Zn(τ/2)/Zn−1(τ/2)
0 2
1 3
2 (5 +

√
17)/2

3 7
4 (5 +

√
17)/2

5 7 + 4
√

6
6 26.20249 . . .

Table 30.2: Partition function sum rules for the Farey model.

From a general perspective the analysis of circle maps thermodynamics has
revealed the fact that physically interesting dynamical systems often exhibit mix-
tures of hyperbolic and marginal stabilities. In such systems there are orbits that
stay ‘glued’ arbitrarily close to stable regions for arbitrarily long times. This is a
generic phenomenon for Hamiltonian systems, where elliptic islands of stability
coexist with hyperbolic homoclinic tangles. Thus the considerations of chapter24
are important also in the analysis of renormalization at the onset of chaos.

Résumé

The mode locking problem, and the quasiperiodic transition to chaos offer an
opportunity to use cycle expansions on hierarchical structures in parameter space:
this is not just an application of the conventional thermodynamic formalism, but
offers a clue on how to extend universality theory from local scalings to global
quantities.

Commentary

Remark 30.1 The physics of circle maps. Mode–locking phenomenology is re-
viewed in ref. [6], a more theoretically oriented discussion is contained in ref. [ 3]. While
representative of dissipative systems we may also consider circle maps as a crude ap-
proximation to Hamiltonian local dynamics: a typical island of stability in a Hamiltonian
2-dimensional map is an infinite sequence of concentric KAM tori and chaotic regions. In
the crudest approximation, the radius can here be treated as an external parameter Ω, and
the angular motion can be modeled by a map periodic in the angular variable [ 9, 12]. By
losing all of the ‘island-within-island’ structure of real systems, circle map models skirt
the problems of determining the symbolic dynamics for a realistic Hamiltonian system,
but they do retain some of the essential features of such systems, such as the golden mean
renormalization [5, 9] and non-hyperbolicity in form of sequences of cycles accumulating
toward the borders of stability. In particular, in such systems there are orbits that stay
“glued” arbitrarily close to stable regions for arbitrarily long times. As this is a generic
phenomenon in physically interesting dynamical systems, such as the Hamiltonian sys-
tems with coexisting elliptic islands of stability and hyperbolic homoclinic tanglees, de-
velopment of good computational techniques is here of utmost practical importance.
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Gauss mapRemark 30.2 Critical mode–locking set The fact that mode-lockings completely fill
the unit interval at the critical point has been proposed in refs. [ 3, 14]. The proof that the
set of irrational windings is of zero Lebesgue measure in given in ref. [ 15].

Remark 30.3 Counting noise for Farey series. The number of rationals in the Farey
series of order Q is φ(Q), which is a highly irregular function of Q: incrementing Q by 1
increases Φ(Q) by anything from 2 to Q terms. We refer to this fact as the “Euler noise.”

The Euler noise poses a serious obstacle for numerical calculations with the Farey
series partitionings; it blocks smooth extrapolations to Q → ∞ limits from finite Q data.
While this in practice renders inaccurate most Farey-sequence partitioned averages, the
finite Q Hausdorff dimension estimates exhibit (for reasons that we do not understand)
surprising numerical stability, and the Farey series partitioning actually yields the best
numerical value of the Hausdorff dimension (30.25) of any methods used so far; for ex-
ample the computation in ref. [16] for critical sine map (30.1), based on 240 ≤ Q ≤ 250
Farey series partitions, yields DH = .87012 ± .00001. The quoted error refers to the vari-
ation of DH over this range of Q; as the computation is not asymptotic, such numerical
stability can underestimate the actual error by a large factor.

Remark 30.4 Farey tree presentation function. The Farey tree rationals can be
generated by backward iterates of 1/2 by the Farey presentation function [ 17]:

f0(x) = x/(1 − x) 0 ≤ x < 1/2
f1(x) = (1 − x)/x 1/2 < x ≤ 1 . (30.37)

The Gauss shift (30.7) corresponds to replacing the binary Farey presentation function
branch f0 in (30.37) by an infinity of branches

fa(x) = f1 ◦ f (a−1)
0 (x) =

1
x
− a,

1
a − 1

< x ≤ 1
a
,

fab···c(x) = fc ◦ · ◦ fb ◦ fa(x) . (30.38)

A rational x = [a1, a2, . . . , ak] is annihilated by the kth iterate of the Gauss shift, fa1a2···ak (x) =
0. The above maps look innocent enough, but note that what is being partitioned is not
the dynamical space, but the parameter space. The flow described by ( 30.37) and by its
non-trivial circle-map generalizations will turn out to be a renormalization group flow
in the function space of dynamical systems, not an ordinary flow in the state space of a
particular dynamical system.

The Farey tree has a variety of interesting symmetries (such as “flipping heads and
tails” relations obtained by reversing the order of the continued-fraction entries) with as
yet unexploited implications for the renormalization theory: some of these are discussed
in ref. [13].

An alternative labeling of Farey denominators has been introduced by Knauf [ 7] in
context of number-theoretical modeling of ferromagnetic spin chains: it allows for a num-
ber of elegant manipulations in thermodynamic averages connected to the Farey tree hi-
erarchy.
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Remark 30.5 Circle map renormalization The idea underlying golden mean renor-
malization goes back to Shenker [12]. A renormalization group procedure was formu-
lated in refs. [8, 10, 11], where moreover the uniqueness of the relevant eigenvalue is
claimed. This statement has been confirmed by a computer–assisted proof [ 18], and in the
following we will always assume it. There are a number of experimental evidences for
local universality, see refs. [19, 20].

On the other side of the scaling tale, the power law scaling for harmonic fractions
(discussed in refs. [2, 13]) 6 is derived by methods akin to those used in describing inter-
mittency [24]: 1/Q cycles accumulate toward the edge of 0/1 mode-locked interval, and
as the successive mode-locked intervals 1/Q, 1/(Q−1) lie on a parabola, their differences
are of order Q−3.

Remark 30.6 Farey series and the Riemann hypothesis The Farey series thermo-
dynamics is of a number theoretical interest, because the Farey series provide uniform
coverings of the unit interval with rationals, and because they are closely related to the
deepest problems in number theory, such as the Riemann hypothesis [ 25, 26] . The dis-
tribution of the Farey series rationals across the unit interval is surprisingly uniform -
indeed, so uniform that in the pre-computer days it has motivated a compilation of an
entire handbook of Farey series [27]. A quantitative measure of the non-uniformity of the
distribution of Farey rationals is given by displacements of Farey rationals for P i/Qi ∈ FQ

from uniform spacing:

δi =
i
Φ(Q)

− Pi

Qi
, i = 1, 2, · · · ,Φ(Q)

The Riemann hypothesis states that the zeros of the Riemann zeta function lie on the
s = 1/2 + iτ line in the complex s plane, and would seem to have nothing to do with
physicists’ real mode-locking widths that we are interested in here. However, there is
a real-line version of the Riemann hypothesis that lies very close to the mode-locking
problem. According to the theorem of Franel and Landau [ 28, 25, 26], the Riemann
hypothesis is equivalent to the statement that

∑
Qi≤Q

|δi| = o(Q
1
2+ε)

for all ε as Q → ∞. The mode-lockings ΔP/Q contain the necessary information for
constructing the partition of the unit interval into the � i covers, and therefore implicitly
contain the δi information. The implications of this for the circle-map scaling theory have
not been worked out, and is not known whether some conjecture about the thermodynam-
ics of irrational windings is equivalent to (or harder than) the Riemann hypothesis, but the
danger lurks.

Remark 30.7 Farey tree partitioning. The Farey tree partitioning was introduced
in refs. [29, 30, 13] and its thermodynamics is discussed in detail in refs. [16, 17]. The
Farey tree hierarchy of rationals is rather new, and, as far as we are aware, not previously
studied by number theorists. It is appealing both from the experimental and from the

6Predrag: track down the original ref{kane,1}
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circle mapgolden-mean renormalization point of view, but it has a serious drawback of lumping
together mode-locking intervals of wildly different sizes on the same level of the Farey
tree. 7

Remark 30.8 Local and global universality. Numerical evidences for global universal
behavior have been presented in ref. [3]. The question was reexamined in ref. [16], where
it was pointed out how a high-precision numerical estimate is in practice very hard to
obtain. It is not at all clear whether this is the optimal global quantity to test but at least
the Hausdorff dimension has the virtue of being independent of how one partitions mode-
lockings and should thus be the same for the variety of thermodynamic averages in the
literature.

The formula (30.30), linking local to global behavior, was proposed in ref. [ 1].

The derivation of (30.30) relies only on the following aspects of the “hyperbolicity
conjecture” of refs. [13, 21, 22, 23]:

1. limits for Shenker δ’s exist and are universal. This should follow from the renor-
malization theory developed in refs. [8, 10, 11, 18], though a general proof is still
lacking.

2. δp grow exponentially with n p, the length of the continued fraction block p.

3. δp for p = a1a2 . . . n with a large continued fraction entry n grows as a power
of n. According to (30.14), limn→∞ δp ∝ n3. In the calculation of ref. [1] the
explicit values of the asymptotic exponents and prefactors were not used, only the
assumption that the growth of δ p with n is not slower than a power of n.

Remark 30.9 Farey model. The Farey model (30.33) has been proposed in ref. [16];
though it might seem to have been pulled out of a hat, the Farey model is as sensible
description of the distribution of rationals as the periodic orbit expansion ( 30.26).

Remark 30.10 Symbolic dynamics for Hamiltonian rotational orbits. 8 The rotational
codes of ref. [40] are closely related to those for maps with a natural angle variable, for
example for circle maps [37, 39] and cat maps [41]. Ref. [40] also offers a systematic rule
for obtaining the symbolic codes of “islands around islands” rotational orbits [ 43]. These
correspond, for example, to orbits that rotate around orbits that rotate around the elliptic
fixed point; thus they are defined by a sequence of rotation numbers.

A different method for constructing symbolic codes for “islands around islands” was
given in refs. [46, 44]; however in these cases the entire set of orbits in an island was
assigned the same sequence and the motivation was to study the transport implications for
chaotic orbits outside the islands [43, 45].

7Predrag: use text from ref. [29] here
8Predrag: extracted verbatim from [40]
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30.1. Mode-locked intervals. Check that when k � 0 the
interval ΔP/Q have a non-zero width (look for instance at
simple fractions, and consider k small). Show that for
small k the width of Δ0/1 is an increasing function of k.

30.2. Bounds on Hausdorff dimension. By making use of
the bounds (30.17) show that the Hausdorff dimension for
critical mode lockings may be bounded by

2/3 ≤ DH ≤ .9240 . . .

30.3. Farey model sum rules. Verify the sum rules reported
in table 30.2. An elegant way to get a number of sum
rules for the Farey model is by taking into account an
lexical ordering introduced by Contucci and Knauf, see
ref. [31].

30.4. Metric entropy of the Gauss shift. Check that the
Lyapunov exponent of the Gauss map (30.7) is given by
π2/6 ln 2. This result has been claimed to be relevant in
the discussion of “mixmaster” cosmologies, see ref. [33].

30.5. Refined expansions. Show that the above estimates
can be refined as follows:

F(z, 2) ∼ ζ(2) + (1 − z) log(1 − z) − (1 − z)

and

F(z, s) ∼ ζ(s) + Γ(1 − s)(1 − z)s−1 − S (s)(1 − z)

for s ∈ (1, 2) (S (s) being expressed by a converging sum).
You may use either more detailed estimate for ζ(s, a) (via
Euler summation formula) or keep on subtracting leading
contributions [34]. ⇓PRIVATE

30.6. Hitting condition. Prove (S.107). Hint: together
with the real trajectory consider the line passing through
the starting point, with polar angle θm,n: then draw the
perpendiculars to the actual trajectory, passing through
the center of the (0, 0) and (m, n) disks. 9

⇑PRIVATE
30.7. jn and αcr. Look at the integration region and how it

scales by plotting it for increasing values of n.

30.8. Estimates of the Riemann zeta function. Try to
approximate numerically the Riemann zeta function for
s = 2, 4, 6 using different acceleration algorithms: check
your results with refs. [35, 36].

30.9. Farey tree and continued fractions I. Consider the
Farey tree presentation function f : [0, 1] �→ [0, 1], such
that if I = [0, 1/2) and J = [1/2, 1], f | I = x/(1 − x) and
f |J = (1 − x)/x. Show that the corresponding induced
map is the Gauss map g(x) = 1/x − [1/x].

9Predrag: refers to (S.107) in soluDiff.tex. fix
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30.10. Farey tree and continued fraction II. (Lethal weapon
II). Build the simplest piecewise linear approximation
to the Farey tree presentation function (hint: substitute
first the righmost, hyperbolic branch with a linear one):
consider then the spectral determinant of the induced map
ĝ, and calculate the first two eigenvalues besides the prob-
ability conservation one. Compare the results with the
rigorous bound deduced in ref. [17].
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Chapter 31

Periodic orbit sum rules

(P. Cvitanović, Kim Hansen and G. Vattay)

A family of exact sum rules for stabilities of periodic points of d-dimensional
polynomial mappings is derived. Associated spectral determinants are of
particularly simple polynomial form. The sum rules are applied to the 3-

disk repeller and the Hénon map periodic orbits, and other possible applications
to periodic orbit calculations for continuous time flows are discussed.

this chapter to be still written, check the “Beyond periodic orbit theory” paper
on my the homepage

Predrag 2012-02-20: Check whether the McShane’s identity can be inter-
preted as one of our sum rules?
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Part IV

The rest is noise
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Qunadry: all these cycles, but how many do I need?. Any physical system suffers
background noise, any numerical prediction suffers computational roundoff noise,
and any set of equations models nature up to a given accuracy, since degrees of

freedom are always neglected. If the noise is weak, the short-time dynamics is not altered

significantly: short periodic orbits of the deterministic flow still partition coarsely the state
space.
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Chapter 32

Noise

He who establishes his argument by noise and command
shows that his reason is weak.

—M. de Montaigne

This chapter (which reader can safely skip on the first reading) is about noise,
how it affects classical dynamics, and the ways it mimics quantum dynam-
ics. 1

⇓PRIVATE
fast track:

chapter 39, p. 867
⇑PRIVATE

Why - in a monograph on deterministic and quantum chaos - start discussing
noise? First, in physical settings any dynamics takes place against a noisy back-
ground, and whatever prediction we might have, we have to check its robustness to
noise. Second, as we show in this chapter, to the leading order in noise strength,
the semiclassical Hamilton-Jacobi formalism applies to weakly stochastic flows
in toto. As classical noisy dynamics is more intuitive than quantum dynamics,
understanding effects of noise helps demystify some of the formal machinery of
semiclassical quantization. Surprisingly, symplectic structure emerges here not
as a deep principle of mechanics, but an artifact of the leading approximation to
quantum/noisy dynamics. Third, the variational principle derived here turns out
to be a powerful tool for determining periodic orbits, see chapter33. And, last but
not least, upon some reflection, the whole enterprize of replacing deterministic
trajectories by deterministic evolution operators, chapters16 to 20, seems fatally
flowed; if we have given up infinite precision in specifying initial conditions, why
do we alow ourselves the infinite precision in the specification of evolution laws,
i.e., define the evolution operator by means of the Dirac delta function δ(y− ft(x))?
It will be comforting to learn that the deterministic evolution operators survive un-
scathed, as the leading approximation to the noisy ones in the limit of weak noise.

1Predrag: cite Rest is noise, http://www.therestisnoise.com/ NY Times bestseller on music
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Another key result derived here is the evolution law (32.45) for the covariance
matrix Qa of a linearly evolved Gaussian density,

Qa+1 = MaQaMa
� + Δa .

To keep things simple we shall describe covariance evolution in the discrete time
dynamics context, but the results apply both to the continuous and discrete time
flows. The most important lesson, however, is that physicist’s Brownian diffusion
intuition -that the effect of the noise is to spread out the trajectory as

√
t- is wrong:

In nonlinear dynamics the noise is always local, determined by balancing local
nonlinear dynamics against the memory of the noise past.

section 32.5

We start by deriving the continuity equation for purely deterministic, noiseless
flow, and then incorporate noise in stages: diffusion equation, Langevin equation,
Fokker-Planck equation, stochastic path integrals, Hamilton-Jacobi formulation.

32.1 Deterministic transport

(E.A. Spiegel and P. Cvitanović)

The large body of accrued wisdom on the subject of flows called fluid dynamics
is about physical flows of media with continuous densities. On the other hand, the
flows in state spaces of dynamical systems frequently require more abstract tools.
To sharpen our intuition about those, it is helpful to outline the more tangible fluid
dynamical vision. ⇓PRIVATE

(2) A similar relation holds for time derivatives of fluid properties: the time
rate of change observed on a specific fluid parcel, in the Lagrangian system, has
a counterpart in the Eulerian system, called the material derivative. The material
derivative at a given position is equal to the Lagrangian time rate of change of the
parcel present at that position.

(3) The physical conservation laws apply to extensive quantities, i.e., the mass
or the momentum of a specific fluid volume. The time derivative of an integral
over a moving fluid volume (a Lagrangian quantity) can be transformed into the
equivalent Eulerian conservation law for the corresponding intensive quantity, i.e.,
mass density or momentum density, by means of the Reynolds Transport Theo-
rem. ⇑PRIVATE

Consider first the simplest property of a fluid flow called material invariant.
A material invariant I(x) is a property attached to each point x that is preserved
by the flow, I(x) = I( f t(x)); for example, at point x(t) = ft(x)) a green particle
(more formally: a passive scalar) is embedded into the fluid. As I(x) is invariant,
its total time derivative vanishes, İ(x) = 0. Written in terms of partial derivatives

noise - 29dec2012 boyscout version14.4, Mar 19 2013
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material invariant
passive scalar
conservation!equation
density
continuity equation

this is the conservation equation for the material invariant2

∂tI + v · ∂I = 0 . (32.1)

Let the density of representative points be ρ(x, t). The manner in which the flow
redistributes I(x) is governed by a partial differential equation whose form is rel-
atively simple because the representative points are neither created nor destroyed.
This conservation property is expressed in the integral statement

∂t

∫
V

dx ρI = −
∫
∂V

dσ n̂iviρI ,

where V is an arbitrary volume in the state space M, ∂V is its surface, n̂ is its out-
ward normal, and repeated indices are summed over throughout. The divergence
theorem turns the surface integral into a volume integral,

∫
V

[
∂t(ρI) + ∂i(viρI)

]
dx = 0 ,

where ∂i is the partial derivative operator with respect to xi. Since the integration
is over an arbitrary volume, we conclude that

∂t(ρI) + ∂i(ρIvi) = 0 . (32.2)

The choice I ≡ 1 yields the continuity equation for the density:

∂tρ + ∂i(ρvi) = 0 . (32.3)

Here we have used the language of fluid mechanics to ease the visualization, but,
as we have seen in our previous derivation of the continuity equation (16.25), any
deterministic state space flow satisfies the continuity equation in any dimension.

Why -even though the dynamics is nonlinear- is this equation linear? As each
deterministic orbit is distinct and intersects no other orbit, no ‘particles’ are cre-
ated or destroyed, they are non-interacting, hence description in terms of linear
evolution operators possible.

32.2 Brownian diffusion

Consider tracer molecules, let us say big, laggardly green molecules, embedded
in a denser gas of light molecules. Assume that the density of tracer molecules ρ

2Predrag: ’Lagrange label’?
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Fick law
diffusion!equation
heat!equation
diffusion!anisotropic
diffusion!tensor

compared to the background gas density is low, so we can neglect green-green col-
lisions. Each green molecule, jostled by frequent collisions with the background
gas, executes its own Brownian motion. The molecules are neither created nor
destroyed, so their number within an arbitrary volume V changes with time only
by the current density ji flow through its surface ∂V (with n̂ its outward normal):

∂t

∫
V

dx ρ = −
∫
∂V

dσ n̂i ji . (32.4)

The divergence theorem turns this into the conservation law for tracer density:

∂tρ + ∂i ji = 0 . (32.5)

The tracer density ρ is defined as the average density of a ‘material particle,’ av-
eraged over a subvolume large enough to contain many green (and still many
more background) molecules, but small compared to the macroscopic observa-
tional scales. What is j? If the density is constant, on the average as many
molecules leave the material particle volume as they enter it, so a reasonable phe-
nomenological assumption is that the average current density (not the individual
particle current density ρvi in (32.3)) is driven by the density gradient

ji = −D
∂ρ

∂xi
. (32.6)

This is the Fick law, with the diffusion constant D a phenomenological parameter.
Substituting this current into (32.5) yields the diffusion or heat equation,

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t) . (32.7)

More generally, diffusion is described by a space- and time-dependent symmet-
ric diffusion tensor Δi j = Δ ji, with ji = − 1

2Δi j∂ j ρ , leading to the anisotropic
diffusion equation

∂tρ(x, t) =
1
2
∂i

(
Δi j(x) ∂ j ρ(x, t)

)
. (32.8)

For sake of streamlining the argument we have assumed above that diffusion in d
dimensions is homogenous and iso tro pic, Δ(x) = 2 D 1. In practice, the diffusion
tensor is almost always an iso tro pic: for example, physicist’s Brownian diffusion
is a flow in the 6-dimensional {configuration, velocity} phase space, with white
noise probability distribution exp(−v2/2kBT ), modeling random force kicks ap-
plied only to the 3 velocity variables v. In this case one thinks of diffusion coeffi-
cient D = kBT/2 as temperature.
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Dirac delta
Einstein!diffusion

formula
random!walk

32.2.1 Heat kernel

Fourier transforming the heat equation (32.7),

∂

∂t
ρ̃(k, t) = −D k2ρ̃(k, t) , ρ(x, t) =

∫
dk
2π
ρ̃(k, t) eikx , (32.9)

integrating,

ρ(x, t) =
∫

dk
2π
ρ̃(k, 0) eikx−D k2t ,

and Fourier transforming back we obtain an exact solution of the heat equation in
terms of an initial Dirac delta density distribution, ρ(x, 0) = δ(x − x0), 3

ρ(x, t) = LFP(x, t; x0, 0) =
1

(4πDt)d/2
e−

(x−x0)2

4Dt , (32.10)

in the spirit of the quantum free particle propagation of sect.38.2.2. The average
distance covered in time t obeys the diffusion formula

〈
(x − x0)2

〉
t
=

∫
dx ρ(x, t)(x − x0)2 = 2dDt . (32.11)

The classical Einstein formula describes 3-dimensional Brownian motion; here
the diffusion takes place in the dynamical state space of dimension d.

32.2.2 Random walks

So far we have considered the evolution of the density of tracer molecules. One
can alternatively consider a d-dimensional random walk of an individual tracer
molecule kicked by a stochastic term,

dx
dt
= ξ̂(t) . (32.12)

A way to make sense of ξ̂(t) is to first construct the probability distribution for
additive noise ξ at short but finite time steps δτ, with tn+1 = tn + δτ, and the
particle xn = x(tn) at time tn executing a random walk, xn+1 = xn + ξ(tn) , where x
is a d-dimensional state vector, and xn, j is its jth component at time n. The natural

3Predrag: link here to Field Theory notes, Chapter “”.
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Brownian noise
noise!Brownian

choice is that probability that the trajectory reaches xn+1 is given by a normalized
Gaussian

LFP(xn+1, tn+1; xn, tn) =
1√

(2πδτ)ddetΔ
exp

[
− 1

2 δτ
(ξn

� 1
Δ
ξn)

]
, (32.13)

ξn = xn+1 − xn , characterized by zero mean and the diffusion tensor (covariance
matrix),

〈
ξ j(tn)

〉
= 0 ,

〈
ξi(tm) ξ j

�(tn)
〉
= δτΔi j δnm , (32.14)

where 〈· · ·〉 stands for ensemble average over many realizations of the noise, and
the superfix � indicates a transpose. As the time discretization δτ is arbitrary,
the diffusing cloud of noisy trajectories should be described by a distribution that
keeps its form as δτ→ 0. Indeed, the semigroup property of a Gaussian kernel,4

LFP(x, t; x′′, t′′) =
∫

dx′LFP(x, t; x′, t′)LFP(x′, t′; x′′, t′′) , (32.15)

ensures that the distribution keeps its form under successive diffusive steps.
LFP(x, t; x0, 0) describes the diffusion at any time, including the integer time in-
crements {tn} = {δτ, 2δτ, · · · , nδτ, · · ·}, and thus provides a bridge between the
continuous and discrete time formulations of noisy evolution.

Example 32.1 Random walk in one dimension The white noise ξn = xn+1 − xn

for a 1-dimensional diffusion process is a normally distributed random variable, with
standard normal (i.e., Gaussian) probability distribution function,

LFP(x, t; x′, t′)
1

√
4πD(t − t′)

exp

[
− (x − x′)2

4D(t − t′)

]
, (32.16)

of mean 0, variance 2D(t− t′), and standard deviation
√

2D(t − t′), uncorrelated in time:

〈xn+1 − xn〉 = 0 , 〈(xm+1 − xm)(xn+1 − xn)〉 = 2D δτ δmn . (32.17)

section 32.4

32.3 Noisy trajectories: Continuous time

The connection between path integration and Brownian
motion is so close that they are nearly indistinguishable.
Unfortunately though, like a body and its mirror image,
the sum over paths for Brownian motion is a theory hav-
ing substance, while its path integral image exists mainly
in the eye of the beholder.

—L. S. Schulman

4Predrag: 2012-12-20 make into an exercise
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Langevin equation
multiplicative noise
noise!multiplicative

(P. Cvitanović and D. Lippolis)

So far we have considered tracer molecule dynamics which is purely Brownian,
with no deterministic “drift.” Consider next a d-dimensional deterministic flow
ẋ = v(x) perturbed by a stochastic term ξ(t), 5

dx
dt
= v(x) + ξ̂(t) , (32.18)

where the deterministic velocity field v(x) is called ‘drift’ in the stochastic litera-
ture, and ξ̂(t) is additive noise, uncorrelated in time. We shall refer to equations
of this type as Langevin equations. The more general case of a tensor Δ(x) which
is a state space position dependent but time independent can be treated along the
same lines. In this case the stochastic flow (32.18) is written as

dx = v(x) dt + σ(x) dξ̂(t) ,
〈
ξn ξ

�
m

〉
= 1 δnm , Δ = σσ� . (32.19)

σ(x) is called the ‘diffusion matrix’, and the noise is referred to as ‘multiplicative’.
Explicit time dependence in Δ(x, t) would take us into world of non-autonomous,
externally driven flows, beyond the comfort zone of ChaosBook.org.

6 As in (32.12), a way to make sense of (32.18) is to first construct the prob-
ability distribution for additive noise ξ at a short but finite time δτ. In time δτ
the deterministic trajectory advances by v(xn) δτ. As δτ is arbitrary, it is desirable
that the diffusing cloud of noisy trajectories is given by a distribution that keeps
its form as δτ → 0. This holds if the noise is Brownian, i.e., the probability that
the trajectory reaches xn+1 is given by a normalized Gaussian (32.13),

LFP(xn+1, δτ; xn, 0) =
1
N

exp

[
− 1

2 δτ
(ξn

� 1
Δn
ξn)

]
. (32.20)

Here ξn = δxn − v(xn) δτ , the deviation of the noisy trajectory from the deter-
ministic one, can be viewed either in terms of velocities {ẋ, v(x)} (continuous time
formulation), or finite time maps {xn → xn+1, xn → f δτ(xn)} (discrete time formu-
lation), 7

δxn = xn+1 − xn � ẋn δτ , f δτ(xn) − xn � v(xn) δτ , (32.21)

where 8

{x0, x1, · · · , xn, · · · , xk} = {x(0), x(δτ), · · · , x(nδτ), · · · , x(t)} (32.22)

5Predrag: explain what |v(x)| > |ξ| means
6Predrag: 2012-12-20 rewrite this paragraph, repeat of preceding
7Predrag: 2012-12-26 improve the discussion
8Predrag: copy random walk figure from Field Theory notes
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Fokker-Planck
equation

continuity equation

is a sequence of k + 1 points xn = x(tn) along the noisy trajectory, separated by
time increments δτ = t/k.

The phenomenological Fick law current (32.6) is now a sum of two compo-
nents, the material particle deterministic drift v(x) and the weak noise term

ji = viρ − D
∂ρ

∂xi
,

[
= viρ −

1
2
Δi j(x) ∂ j ρ(x, t)

]
, (32.23)

with the full, anisotropic and space-dependent version indicated in [· · ·]. Substi-
tuting this j into (32.5) yields the Fokker-Planck equation

∂tρ + ∂i(ρvi) = D ∂2ρ ,

[
=

1
2
∂i

(
Δi j(x) ∂ j ρ(x, t)

) ]
. (32.24)

The left hand side, dρ/dt = ∂tρ + ∂ · (ρv), is deterministic, with the continuity
equation (32.3) recovered in the weak noise limit D → 0. The right hand side
describes the diffusive transport in or out of the material particle volume. If the
density is lower than in the immediate neighborhood, the local curvature is posi-
tive, ∂2ρ > 0, and the density grows. Conversely, for negative curvature diffusion
lowers the local density, thus smoothing the variability of ρ. Where is the density
going globally?

If the system is bound, the probability density vanishes sufficiently fast outside
the central region, ρ(x, t) → 0 as |x| → ∞, and the total probability is conserved

∫
dx ρ(x, t) = 1 .

Any initial density ρ(x, 0) is smoothed by diffusion and with time tends to the
natural measure, the invariant density

ρ0(x) = lim
t→∞

ρ(x, t) , (32.25)

an eigenfunction ρ(x, t) = est ρ0(x) of the time-independent Fokker-Planck equa-
tion 9

⇓PRIVATE

section 32.7.1

⇑PRIVATE
(
∂ivi − D ∂2 + sα

)
ρα = 0 , (32.26)

with vanishing eigenvalue s0 = 0. Provided the noiseless classical flow is hyper-
bolic, in the vanishing noise limit the leading eigenfunction of the Fokker-Planck
equation tends to natural measure (16.17) of the corresponding deterministic flow,
the leading eigenvector of the Perron-Frobenius operator. 10

9Predrag: do Laplace transform first
10Predrag: when bringing this chapter up to snuff, refer to figure 6.1.
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escape rateIf the system is open, there is a continuous outflow of probability from the
region under study, the leading eigenvalue is contracting, s0 < 0, and the density
of the system tends to zero. In this case the leading eigenvalue s0 of the time-
independent Fokker-Planck equation (32.26) can be interpreted by saying that a
finite density can be maintained by pumping back probability into the system at
a constant rate γ = −s0. The value of γ for which any initial probability density
converges to a finite stationary equilibrium density is called the escape rate. In
the noiseless limit this coincides with the deterministic escape rate (17.36).

The distribution (32.13) describes how an initial density of particles concen-
trated in a Dirac delta function at xn spreads in time δτ. In the Fokker-Planck
description individual noisy Langevin trajectories (32.18) are replaced by the evo-
lution of the density of noisy trajectories. The finite time Fokker-Planck evolution
ρ(x, t) =

[
Lt

FP ◦ ρ
]

(x, 0) of an initial density ρ(x0, 0) is obtained by a sequence of
consecutive short-time steps (32.13)

LFP(xk, t; x0, 0) =
∫

[dx] exp

⎧⎪⎪⎨⎪⎪⎩− 1
4Dδτ

k−1∑
n=0

[xn+1 − f δτ(xn)]2

⎫⎪⎪⎬⎪⎪⎭ , (32.27)

where t = k δτ, and the Gaussian normalization factor in (32.13) is absorbed into
intermediate integrations by defining

[dx] =
k−1∏
n=0

dxd
n

Nn

Nn = (2πδτ)d/2[detΔ(xn)]1/2 (anisotropic diffusion tensor Δ)

= (4Dδτ)d/2 (isotropic diffusion, Δ(x) = 2 D 1) . (32.28)

As D → 0, the distribution tends to the noiseless, deterministic Dirac delta func-
tion Perron-Frobenius operator (16.10). The stochastic flow (32.18) can now be
understood as the continuous time, δτ → 0 limit, with the velocity noise ξ̂(t) a
Gaussian random variable of zero mean and covariance matrix〈

ξ̂ j(t)
〉
= 0 ,

〈
ξ̂i(t) ξ̂ j(t

′)
〉
= Δi j δ(t − t′) . (32.29)

11 It is worth noting that the continuous time flow noise ξ̂(t) in (32.18) and (32.29)
is dimensionally a velocity [x]/[t], as LFP(xn+1, δτ; xn, 0) is a probability density
for velocity ξ, while the discrete time noise ξn in (32.13), (32.14) is dimensionally
a length [x], as ρ(x, t) is a probability density for position x. The important point is
that the same diffusion tensor Δ(x) describes the diffusion both in the configuration
space and the velocity space.

The continuous time limit of (32.27), δτ = t/k → 0, defines formally the
Fokker-Planck evolution operator

LFP(x, t; x0, 0) =
∫

[dx] exp

{
− 1

4D

∫ t

0
[ẋ(τ) − v(x(τ))]2dτ

}
(32.30)

11Predrag: 2012-12-24 rewrite, recheck this
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as a stochastic path (or Wiener) integral for a noisy flow, and the associated con-
tinuous time Fokker-Planck (or forward Kolmogorov) equation (32.24) describes
the time evolution of a density of noisy trajectories. We have introduced noise
phenomenologically, and used the weak noise assumption in retaining only the
first derivative of ρ in formulating the Fick law (32.6) and including noise addi-
tively in (32.23). The δτ → 0 limit and the proper definition of ẋ(τ) are delicate
issues of no import for the applications studied here. A full theory of stochastic
ODEs is much subtler, but this will do for our purposes.

The exponent

− 1
4D δτ

[
xn+1 − f δτ(xn)

]2
� − δτ

4D
[ ẋ(τ) − v(x(τ))]2 (32.31)

can be interpreted as a cost function which penalizes deviation of the noisy trajec-
tory δx from its deterministic prediction v δτ, or, in the continuous time limit, the
deviation of the noisy trajectory tangent ẋ from the deterministic velocity field v.
Its minimization is one of the most important tools of the optimal control theory,
with velocity ẋ(τ) along a trial path varied with aim of minimizing its distance to
the target v(x(τ)).

⇓PRIVATE

The key ideas are easier to illustrate by the noisy, strictly equivalent discrete-
time dynamics of sect. 32.7.1, rather than by pondering the meaning of the stochas-
tic differential equation (32.52). The finite time step formulation (32.27) of the
Fokker-Planck evolution operator motivates the exposition of sect. 32.4, which
starts by setting δτ = 1. In the linearized, Ornstein-Uhlenbeck setting of (32.7),
the continuous and discrete time formulations are fully equivalent.

⇑PRIVATE

32.4 Noisy maps: Discrete time

(P. Cvitanović and D. Lippolis)

For pedagogical reasons we shall often find it convenient to consider a noisy dis-
crete time dynamical system

xn+1 = f (xn) + ξn , (32.32)

where x is a d-dimensional state vector, and xn, j is its jth component at time n.
In the Fokker-Planck description individual noisy trajectories are replaced by the
evolution of the density of noisy trajectories, with the ξn = xn+1− f (xn) probability
distribution of zero mean and diffusion tensor, and the time increment in (32.14)
set to δτ = 1,

〈
ξn, j

〉
= 0 ,

〈
ξn,i ξ

�
m, j

〉
= Δi j(xn) δnm . (32.33)

noise - 29dec2012 boyscout version14.4, Mar 19 2013



CHAPTER 32. NOISE 762

multiplicative noise
noise!multiplicative

As we shall show, in nonlinear dynamics the noise is never isotropic and/or ho-
mogeneous. Even if the infinitesimal time step noise (32.13) covariance matrix
in (32.19) were independent of the state space position x, this cannot be true of
Δ(x) for the discrete time flow (32.32) obtained by the Poincaré section reduction
method of sect. 3.1, as the return times (3.1) and the noise accumulated along the
corresponding trajectory segments depend on the starting Poincaré section point.
Indeed, as we shall argue in sect. 32.5, in nonlinear dynamics all noise is local.
As long as the noise distribution at x is autonomous (not explicitly dependent on
time) the stochastic flow (32.32) can be written as xn+1 = xn + σ(xn) ξn , where
Δ = σσ�, and σ(x) is the multiplicative noise diffusion matrix defined in (32.19).

The action of discrete one-time step Fokker-Planck evolution operator on the
density distribution ρ at time k,

ρk+1(y) = [LFP ρk](y) =
∫

dxLFP(y, x) ρk(x)

LFP(y, x) =
1

N(x)
e−

1
2 (y− f (x))� 1

Δ(x) (y− f (x)) , (32.34)

is centered on the deterministic step f (x) and smeared out diffusively by noise.
Were diffusion uniform and isotropic, Δ(x) = 2 D 1, the Fokker-Planck evolution
operator would be proportional to exp

(
−{y − f (x)}2/2Δ

)
, i.e., the penalty for stray-

ing from the deterministic path is just a quadratic error function. The kth iterate
of Lk

FP(xk; x0) = LFP(xk, t; x0, 0) is a d-dimensional path integral over the k − 1
intermediate noisy trajectory points,

Lk
FP(xk; x0) =

∫
[dx] e−

1
2
∑

n(xn+1− f (xn)�) 1
Δ(xn ) (xn+1− f (xn)) , (32.35)

where the Gaussian normalization factor in (32.34) is absorbed into intermediate
integrations by defining

[dx] =
k−1∏
n=1

dxd
n

Nn
, Nn =

√
(2π)ddetΔ(xn) . (32.36)

We shall also need to determine the effect of noise accumulated along the
trajectory points preceding x. As the noise is additive forward in time, one cannot
simply invert the Fokker-Planck evolution operator; instead, the past is described
by the adjoint Fokker-Planck evolution operator,

ρ̃k−1(x) = [L†FP ρ̃k](x) =
∫

[dy] e−
1
2 (y− f (x))� 1

Δ
(y− f (x)) ρ̃k(y) , (32.37)

which transports a density concentrated around the point f (x) to a density con-
centrated around the previous point x and adds noise to it. In the deterministic,
vanishing noise limit this is the Koopman operator (I.1).
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The Fokker-Planck evolution operator (32.34) is non-hermitian and non-unitary.
For example, if the deterministic flow is contracting, the natural measure (the lead-
ing right eigenvector of the evolution operator) will be concentrated and peaked,
but then the corresponding left eigenvector has to be broad and flat, as backward
in time the deterministic flow is expanding. We shall denote by ρα the right eigen-
vectors of LFP, and by ρ̃α its left eigenvectors, i.e., the right eigenvectors of the
adjoint operator L†FP.

32.5 All nonlinear noise is local

I ain’t gonna work for Maggie’s pa no more
No, I ain’t gonna work for Maggie’s pa no more
Well, he puts his cigar
Out in your face just for kicks

— Bob Dylan, Maggie’s Farm

(P. Cvitanović and D. Lippolis)

Our main goal in this section is to convince the reader that the diffusive dynamics
of nonlinear flows is fundamentally different from Brownian motion, with the flow
inducing a local, history dependent noise. In order to accomplish this, we gener-
alize here the notion of invariant deterministic recurrent solutions, such as fixed
points and periodic orbits, to noisy flows. While a Langevin trajectory (32.32)
can never return exactly to the initial point and thus cannot ever be periodic, in
the Fokker-Planck formulation (32.35) a recurrent motion can be defined as one
where a peaked distribution returns to the initial neighborhood after time n. Re-
currence so defined not only coincides with the classical notion of a recurrent orbit
in the vanishing noise limit, but it also enables us to derive exact formulas for how
this local, history dependent noise is to be computed.

As the function xn+1 − f (xn) is a nonlinear function, in general the path inte-
gral (32.35) can only be evaluated numerically. In the vanishing noise limit the
Gaussian kernel sharpens into the Dirac δ-function, and the Fokker-Planck evo-
lution operator reduces to the deterministic Perron-Frobenius operator (16.10).
For weak noise the Fokker-Planck evolution operator can be evaluated perturba-
tively as an asymptotic series in powers of the diffusion constant, centered on the
deterministic trajectory. Here we retain only the linear term in this series, which
has a particulary simple dynamics given by a covariance matrix evolution formula
(see (32.45) 12 below) that we now derive.

We shift local coordinates labeled at time ‘a′ to the deterministic trajectory
{. . . , x−1, x0, x1, x2, . . . , } centered coordinate frame x = xa + za, Taylor expand
f (x) = fa(za) = xa+1 + Maza + · · ·, and approximate the noisy map (32.32) by its

12Predrag: and (??)

noise - 29dec2012 boyscout version14.4, Mar 19 2013

http://rapgenius.com/Bob-dylan-maggies-farm-lyrics


CHAPTER 32. NOISE 764

linearization, 13

za+1 = Maza + ξa , Mi j(x) = ∂ fi/∂x j , (32.38)

with the deterministic trajectory points at za = za+1 = 0, and Ma = M(xa) the
one time step Jacobian matrix. The corresponding linearized Fokker-Planck evo-
lution operator (32.34) action on density ρa(za) = ρ(xa+ za, a) is given in the local
coordinates by

ρa+1(za+1) =
∫

dza La
FP(za+1, za) ρa(za) (32.39)

by the linearization (32.38) centered on the deterministic trajectory 14

La
FP(za+1, za) =

1
N

e−
1
2 (za+1−Maza)� 1

Δa
(za+1−Maza) . (32.40)

The superscript ‘a’ in La
FP distinguishes the local, linearized Fokker-Planck evo-

lution operator coordinate frame za = x − xa centered on the deterministic trajec-
tory point xa from the full global evolution operator (32.35), in global coordinate
system x.

The kernel of the linearized Fokker-Planck evolution operator (32.40) is a
Gaussian. As a convolution of a Gaussian with a Gaussian is again a Gaussian,
we investigate the action of the linearized Fokker-Planck evolution operator on a
normalized, cigar-shaped Gaussian density distribution

ρa(z) =
1

Ca
e−

1
2 z� 1

Qa
z , Ca = (2π)d/2(det Qa)1/2 , (32.41)

and the action of the linearized adjoint Fokker-Planck evolution operator on den-
sity

ρ̃a(z) =
1

Ca
e−

1
2 z� 1

Q̃a
z
, Ca = (2π)d/2(det Q̃a)1/2 , (32.42)

also centered on the deterministic trajectory, with strictly positive [d×d] covari-
ance matrices Q, Q̃. Label ‘a’ plays a double role, and {a + 1, a} stands both for
the {next, initial} space partition and for the times the trajectory lands in these
partitions. 15 The linearized Fokker-Planck evolution operator (32.40) maps the
Gaussian ρa(za) into the Gaussian

ρa+1(za+1) =
1

Ca

∫
[dza] e−

1
2

[
(za+1−Maza)� 1

Δa
(za+1−Maza)+ za

� 1
Qa

za

]
(32.43)

13Predrag: 2012-12-20 bring deterministic appendix discussion here
14Predrag: emphasize that in these coordinates the deterministic dynamics is linearized, not the

global Fokker-Planck evolution operator
15Predrag: link to chapter ??
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multiplicative noise
noise!multiplicative
noise!Gaussian
Gaussian!probability

density
probability!density,

Gaussian
white noise
noise!white

one time step later. Likewise, linearizing the adjoint Fokker-Planck evolution
operator (32.37) around the xa trajectory point yields:

ρ̃a(za) =
1

Ca+1

∫
[dza+1] e

− 1
2 [(za+1−Maza)� 1

Δa
(za+1−Maza)+ za+1

� 1
˜̃Qa+1

za+1]
.(32.44)

Completing the squares, integrating and substituting (32.41), respectively (32.42)
we obtain the formula for covariance matrix evolution forward in time,

Qa+1 = MaQaMa
� + Δa . (32.45)

In the adjoint case, the evolution of the Q̃ is given by

MaQ̃aM�
a = Q̃a+1 + Δa . (32.46)

The two covariance matrices differ, as the adjoint evolution Q̃a is computed by
going backwards along the trajectory. These covariance evolution rules are the
basis of all that follows. 16

Think of the initial covariance matrix (32.41) as an error matrix describing
the precision of the initial state, a cigar-shaped probability distribution ρa(za). In
one time step this density is deterministically advected and deformed into density
with covariance MQM�, and then the noise Δ is added: the two kinds of inde-
pendent uncertainties add up as sums of squares, hence the covariance evolution
law (32.45), resulting in the Gaussian ellipsoid whose widths and orientation are
given by the singular values and singular vectors (6.13) of the covariance matrix.
After n time steps, the variance Qa is built up from the deterministically propa-
gated Mn

aQa−nMnT
a initial distribution, and the sum of noise kicks at intervening

times, Mk
aΔa−k MkT

a , also propagated deterministically. 17

18 The pleasant surprise is that the evaluation of this noise requires no Fokker-
Planck PDE formalism. The width of a Gaussian packet centered on a trajectory
is fully specified by a deterministic computation that is already a pre-computed
byproduct of the periodic orbit computations; the deterministic orbit and its linear
stability. We have attached label ‘a’ to Δa = Δ(xa) in (32.45) to account for
the noise distributions that are inhomogeneous, state space dependent, but time
independent multiplicative noise.

32.6 Weak noise: Hamiltonian formulation

All imperfection is easier to tolerate if served up in small
doses.

— Wislawa Szymborska

16Predrag: refer to the article? “except for the ‘flat-top’ of refsect DL:flat top”
17Predrag: add the CviLip12.tex text
18Predrag: rederive ala ISIT
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Hamilton!principal
function

Hamilton!-Jacobi
equation

matrix!stability
stability!matrix

(G. Vattay and P. Cvitanović)

In the spirit of the WKB approximation (to be fully developed in chapter37), we
shall now study the evolution of the probability distribution by rewriting it as

ρ(x, t) = e
1

2D R(x,t) . (32.47)

The time evolution of R is given by

∂tR + v∂R + (∂R)2 = D∂v + D∂2R .

Consider now the weak noise limit and drop the terms proportional to D. The
remaining equation

∂tR + H(x, ∂R) = 0

is known as the Hamilton-Jacobi equation (38.5). The function R can be inter-
⇓PRIVATE

⇑PRIVATE
preted as the Hamilton’s principal function, corresponding to the Hamiltonian

H(x, p) = p v(x) + p2/2 ,

with the Hamilton’s equations of motion

ẋ = ∂pH = v + p

ṗ = −∂xH = −A�p , (32.48)

where A is the stability matrix (4.3)

Ai j(x) =
∂vi(x)
∂x j

.

⇓PRIVATE
19

∂∂H =

(
A
∂Ap

2
−A

)
,

⇑PRIVATE

The noise Lagrangian (38.13) is then ⇓PRIVATE

⇑PRIVATE

L(x, ẋ) = ẋ · p − H =
1
2

[ẋ − v(x)]2 . (32.49)

19Predrag: recheck, put indices in
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Wiener integral
variational principle

We have come the full circle - the Lagrangian is the exponent of our assumed
Gaussian distribution (32.31) for noise ξ2 = [ẋ − v(x)]2. What is the meaning
of this Hamiltonian, Lagrangian? Consider two points x0 and x. Which noisy
path is the most probable path that connects them in time t? The probability of a
given path P is given by the probability of the noise sequence ξ(t) which generates
the path. This probability is proportional to the product of the noise probability
functions (32.31) along the path, and the total probability for reaching x from x0
in time t is given by the sum over all paths, or the stochastic path integral (Wiener
integral)

P(x, x0, t) ∼
∑
P

∏
j

p(ξ(τ j), δτ j) =
∫ ∏

j

dξ j

(
δτ j

4πD

)d/2

e−
ξ(τ j)

2

4D δτi

→ 1
Z

∑
P

exp

(
− 1

4D

∫ t

0
dτ ξ2(τ)

)
, (32.50)

where δτi = τi − τi, and the normalization constant is

1
Z
= lim

∏
i

(
δτi

2πD

)d/2

.

The most probable path is the one maximizing the integral inside the exponential.
If we express the noise (32.18) as

ξ(t) = ẋ(t) − v(x(t)) ,

the probability is maximized by the variational principle

min
∫ t

0
dτ[ẋ(τ) − v(x(τ))]2 = min

∫ t

0
L(x(τ), ẋ(τ))dτ .

By the standard arguments, for a given x, x′ and t the probability is maximized by
a solution of Hamilton’s equations (32.48) that connects the two points x0 → x′

in time t. The solution is a bit boring: ẋ = v , p = 0 , and lives in the initial,
d-dimensional state space, so not much is to be made of this surprising appearance
of Hamiltonians. ⇓PRIVATE

32.7 Ornstein-Uhlenbeck process

20 The variance (32.66) is stationary under the action of LFP, and the correspond-
ing Gaussian is thus an eigenfunction. Indeed, for the linearized flow the entire

20Predrag: add Maribor sect. DL:locEig1; merge, eliminate repeated text between here and
sect. 32.7.1
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eigenspectrum is available analytically, and as Qa can always be brought to a diag-
onal, factorized form in its orthogonal frame, it suffices to understand the simplest
case, the Ornstein-Uhlenbeck process in one dimension. This simple example will
enable us to show that the noisy measure along unstable directions is described by
the eigenfunctions of the adjoint Fokker-Planck evolution operator.

The simplest example of a stochastic flow (32.18) is the Langevin flow in one
dimension,

dx
dt
= λ x + ξ̂(t) , (32.51)

with ‘drift’ v(x) linear in x, and the single deterministic equilibrium solution
x = 0. The associated Fokker-Planck equation (32.24) is known as the Ornstein-
Uhlenbeck process:

∂tρ(x, t) + ∂x(λ x ρ(x, t)) = D ∂2
xρ(x, t) . (32.52)

(Here Δ = 2D, D = diffusion constant.) One can think of this equation as the
linearization of the Fokker-Planck equation (32.24) around an equilibrium point.
For negative constant λ the spreading of noisy trajectories by random kicks is
balanced by the linear damping term (linear drift) v(x) = λ x which contracts
them toward zero. 21

32.7.1 Ornstein-Uhlenbeck spectrum

The variance (32.66) is stationary under the action of LFP, and the corresponding
Gaussian is thus an eigenfunction. Indeed, as we shall now show, for the linear
flow (??) the entire eigenspectrum is available analytically, and as Qa can always
be brought to a diagonal, factorized form in its orthogonal frame, it suffices to
understand the simplest case, the Ornstein-Uhlenbeck process (see appendix32.7)
in one dimension. The linearized Fokker-Planck operator is a Gaussian, so it is
natural to consider the set of Hermite polynomials, H0(x) = 1, H1(x) = 2 x,
H2(x) = 4 x2 − 2, · · ·, as candidates for its eigenfunctions. Hn(x) is an nth-degree
polynomial, orthogonal with respect to the Gaussian kernel

1

2nn!
√
π

∫
dx Hm(x) e−x2

Hn(x) = δmn . (32.53)

There are three cases to consider:

|Λ| > 1 expanding case: The form of the left ρ̃0 eigenfunction (??) suggests
that we rescale x → x/

√
2 Q̃ and absorb the Gaussian kernel in (32.53) into left

21Predrag: add appendix Hermite polynomials (32.53), refer to ref. [38, 39].
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eigenfunctions ρ̃0, ρ̃1, · · ·,

ρ̃k(z) =
1

√
2π 23k/2k! Q̃(k+1)/2

Hk((2Q̃)−1/2 z) e−z2/2Q̃ , (32.54)

The right eigenfunctions are then

ρk(z) = (2Q̃)k/2Hk((2Q̃)−1/2 z) , (32.55)

By construction the left, right eigenfunctions are orthonormal to each other:

∫
dx ρ̃k(x) ρ j(x) = δk j . (32.56)

One can verify [3] that for the fixed point z = 0, these are the right, left eigen-
functions of the adjoint Fokker-Planck operator (32.37), where the kth eigenvalue
is 1/|Λ|Λk. 22 Note that the Floquet multipliers Λk are independent of the noise
strength, so they are the same as for the Δ → 0 deterministic Perron-Frobenius
operator (16.10).

|Λ| = 1 marginal case: This is the pure diffusion limit, and the behavior is not
exponential, but power-law. If the map is nonlinear, one needs to go to the first
non-vanishing nonlinear order in Taylor expansion (??) to reestablish the con-
trol [57]. This we do in sect. ??.

|Λ| < 1 contracting case: In each iteration the map contracts the cloud of noisy
trajectories by Floquet multiplier Λ toward the x = 0 fixed point, while the noise
smears them out with variance Δ. Now what was the left eigenfunction for the
expanding case (32.54) is the peaked right eigenfunction of the Fokker-Planck
operator, {ρ0, ρ1, ρ2,· · ·}, with eigenvalues {1, Λ, Λ2,· · ·} [56, 57]

ρk(x) = N−1
k Hk((2Q)−1/2 x) e−x2/2Q , Q = Δ/(1 − Λ2) , (32.57)

where Hk(x) is the kth Hermite polynomial, and N−1
k follows from the prefactor in

(32.54).

These discrete time results can be straightforwardly generalized to continuous
time flows of sect. 32.3, as well as to higher dimensions. So far we have used only
the leading eigenfunctions (the natural measure), but in sect. ?? we shall see that
knowing the whole spectrum in terms of Hermite polynomial is a powerful tool
for the computation of weak-noise corrections. ⇑PRIVATE

22Predrag: here we are not being nice to r=the reader: “one can verify” is a bit of work
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noise!Gaussian
Langevin equation
Einstein, diffusion

formula
multiplicative noise
noise!multiplicative

Résumé

When a deterministic trajectory is smeared out under the influence of Gaussian
noise of strength D, the deterministic dynamics is recovered in the weak noise
limit D → 0. The effect of the noise can be taken into account by adding noise
corrections to the classical trace formula. 23 24 25 26 27

Symplectic structure emerges here not as a deep principle of mechanics, but
an artifact of the leading approximation to quantum/noisy dynamics, not respected
by higher order corrections. The same is true of semiclassical quantum dynamics;
higher corrections do not respect canonical invariance.

Commentary

Remark 32.1 A brief history of noise. The theory of stochastic processes is a vast
subject, starting with the Laplace 1810 memoir [42], spanning over centuries, and over
disciplines ranging from pure mathematics to impure finance. The presentation given here
is based on the Cvitanović and Lippolis 2012 Maribor lectures [ 1]. The material reviewed
is standard [2, 3, 43], but needed in order to set the notation for what is new here, the role
that local Fokker-Planck operators play in defining stochastic neighborhoods of periodic
orbits. We enjoyed reading van Kampen classic [2], especially his railings against those
who blunder carelessly into nonlinear landscapes. Having committed this careless chapter
to print, we shall no doubt be cast to a special place on the long list of van Kampen’s sin-
ners (and not for the first time, either). A more specialized monograph like Risken’s [ 3]
will do just as well. Schulman’s monograph [12] contains a very readable summary of
Kac’s [13] exposition of Wiener’s integral over stochastic paths. The standard Langevin
equation [40] is a stochastic equation for a Brownian particle, in which one replaces the
Newton’s equation for force by two counter-balancing forces: random accelerations ξ(t)
which tend to smear out a particle trajectory, and a damping term which drives the ve-
locity to zero. In this context D is Einstein diffusion constant, and (32.11) is the Einstein
diffusion formula [41]. Here we denote by ‘Langevin equation’ a more general family
of stochastic differential equations (32.18) with additive or multiplicative [47, 48] weak
noise. Noisy discrete time dynamical systems are discussed in refs. [60, 61, 62].

In probabilist literature [58] the differential operator −∇ · (v(x)ρ(x, t)) + D∇2ρ(x, t) is
called ‘Fokker-Planck operator;’ here we reserve the term ‘Fokker-Planck evolution oper-
ator’ for the finite time, ‘Green’s function’ integral operator ( 32.30), i.e., the stochastic
path (Wiener) integral [53, 54, 3] for a noisy flow, with the associated continuous time
Fokker-Planck [2, 3, 55] (or forward Kolmogorov) equation (32.24). ⇓PRIVATE

If a flow is linear (in Hamiltonian case, with harmonic oscillator potential) with an
attractive fixed point, the associated Fokker-Planck equation ( 32.24) is known as the
Ornstein-Uhlenbeck process [21, 56, 57, 11, 3] (introduced already by Laplace in 1810,
see ref. [22]). This is the simplest example of a continuous time stochastic flow (32.18),

23Predrag: Add Fogedby reference
24Mason: expand
25Predrag: recheck whether something can be used from chapter/refsQmnoise
26Predrag: remark 32.4 statement not true? rethink
27Mason: make sure no ref. refer to volume 1
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Langevin equation
Onsager-Machlup
van Kampen, N. G.

the Langevin flow (32.51) in one dimension. In this case, nothing is lost by consider-
ing discrete-time dynamics which is strictly equivalent to the continuous time Ornstein-
Uhlenbeck process discussed in sect. 32.7. For v(x) = λ x choice of v(x) in (32.52),
and this choice only, the Fokker-Planck equation can be rewritten in the Sturm-Lioville
self-adjoint form [59] as the Schrödinger equation for the quantum harmonic oscillator,
with its well-known Hermite polynomial eigenfunctions. This relation between Ornstein-
Uhlenbeck process and the Schrödinger equation for the quantum harmonic oscillator is
much older than quantum mechanics: Laplace [42] wrote down in 1810 what is now
known as the Fokker-Planck equation and computed the Ornstein-Uhlenbeck process
eigenfunctions [22] in terms of Hermite polynomials (32.53). ⇑PRIVATE

The cost function (32.31) appears to have been first introduced by Wiener as the exact
solution for a purely diffusive Wiener-Lévy process in one dimension, see ( 32.16). On-
sager and Machlup [19, 24] use it in their variational principle to study thermodynamic
fluctuations in a neighborhood of single, linearly attractive equilibrium point (i.e., without
any dynamics). It plays important role in the optimal control theory [ 63, 64]. Gaussians
are often rediscovered, so Onsager-Machlup seminal paper, which studies the same at-
tractive linear fixed point, is in literature often credited for being the first to introduce a
variational method -the “principle of least dissipation”- based on the Lagrangian of form
(32.49). They, in turn, credit Rayleigh [20] with introducing the least dissipation principle
in hydrodynamics. Onsager-Machlup paper deals only with a finite set of linearly damped
thermodynamic variables, and not with a nonlinear flow or unstable periodic orbits. 28

Gaspard [23] derives a trace formula for the Fokker-Planck equation associated with
Itó stochastic differential equations describing noisy time-continuous nonlinear dynamical
systems. In the weak-noise limit, the trace formula provides estimations of the eigenval-
ues of the Fokker-Planck operator on the basis of the Pollicott-Ruelle resonances of the
noiseless deterministic system, which is assumed to be non-bifurcating. At first order
in the noise amplitude, the effect of noise on a periodic orbit is given in terms of the
period and the derivative of the period with respect to the pseudo-energy of the Onsager-
Machlup-Freidlin-Wentzell scheme [24]. The dynamical ‘action’ Lagrangian in the ex-
ponent of (32.30), and the associated symplectic Hamiltonian were first written down in
1970’s by Freidlin and Wentzell [24], whose formulation of the ‘large deviation princi-
ple’ was inspired by the Feynman quantum path integral [ 49]. Feynman, in turn, followed
Dirac [50] who was the first to discover that in the short-time limit the quantum propa-
gator (imaginary time, quantum sibling of the Wiener stochastic distribution ( 32.16)) is
exact. Gaspard [23] thus refers to the ‘pseudo-energy of the Onsager-Machlup-Freidlin-
Wentzell scheme.’ M. Roncadelli [51, 52] refers to the Fokker-Planck exponent in (32.30)
as the ‘Wiener-Onsager-Machlup Lagrangian,’ constructs weak noise saddle-point expan-
sion and writes transport equations for the higher order coefficients. In our exposition
the setting is more general: we study fluctuations over a state space-varying velocity field
v(x).

Remark 32.2 Weak noise perturbation theory. DasBuch omits any discussion of the
Martin-Siggia-Rose [69] type weak noise corrections. For an overview of possible ways
for improvement of diagrammatic summation in noisy field theories, see Chaotic Field
Theory: a Sketch [70]. The details are in the three papers on trace formulas for stochastic
evolution operators (see also ref. [51]): Weak noise perturbation theory [9], smooth con-
jugation method [10], and local matrix representation approach [11]. Such corrections

28Predrag: read ref. [20]
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have not been evaluated before, probably because one is so unsure about nature of the
noise itself that nth order correction is beyond the point. Doing continuous time flows
requires the same kind of corrections, with diagrams standing for integrals rather than
sums, though no one ever tried weakly stochastic flows in continuous time.

Remark 32.3 Covariance evolution. In quantum mechanics the linearized evolu-
tion operator corresponding to the linearized Fokker-Planck evolution operator ( 32.40) is
known as the Van Vleck propagator, the basic block in the semi-classical periodic orbit
quantization [2], see chapter 38. Q covariance matrix composition rule (32.45) or its con-
tinuous time version is called ‘covariance evolution’ (for example, in ref. [ 65]), but it goes
all the way back to Lyapunov’s 1892 thesis [66]. In the Kalman filter literature [67, 68] it
is called ‘prediction’.

Remark 32.4 Operator ordering. According to L. Arnold [43] review of the original
literature, the derivations are much more delicate than what is presented here: the noise
is colored rather than Dirac delta function in time. He refers only to the linear case
(32.51) as the ‘Langevin equation’. The δτ→ 0 limit and the proper definition of ẋ(τ) are

⇓PRIVATE

⇑PRIVATE
delicate issues [44, 45, 43, 46] of no import for the applications of stochasticity studied
here: Itó and Stratanovich operator ordering issues arise in the order beyond the leading
approximation considered here.
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d-dimensional
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Exercises boyscout

32.1. Who ordered
√
π ? 29 Derive the Gaussian integral

1
√

2π

∫ ∞

−∞
dx e−

x2

2a =
√

a , a > 0 .

assuming only that you know to integrate the exponen-
tial function e−x. Hint, hint: x2 is a radius-squared of
something. π is related to the area or circumference of
something.

32.2. D-dimensional Gaussian integrals. Show that the Gaus-
sian integral in D-dimensions is given by

1
(2π)d/2

∫
ddφe−

1
2φ

�·M−1·φ+φ·J = |det M|
1
2 e

1
2 J�·M·J ,(32.58)

where M is a real positive definite [d × d] matrix, i.e.,
a matrix with strictly positive eigenvalues. x, J are D-
dimensional vectors, and x� is the transpose of x.

32.3. Convolution of Gaussians. Show that the Fourier trans-
form of convolution

[ f ∗ g](x) =
∫

ddy f (x − y)g(y)

of two Gaussians

f (x) = e−
1
2 x�· 1

Δ1
·x
, g(x) = e−

1
2 x�· 1

Δ2
·x

factorizes as

[ f ∗ g](x) =
1

(2π)d

∫
dk F(k)G(k)eik·x , (32.59)

where

F(k) =
1

(2π)d

∫
dd x f (x)e−ik·x = |detΔ1|1/2e

1
2 k�·Δ1·k

G(k) =
1

(2π)d

∫
dd x g(x)e−ik·x = |detΔ2|1/2e

1
2 k�·Δ2·k .

Hence

[ f ∗ g](x) =
1

(2π)d
|detΔ1detΔ1|1/2

∫
dd p e

1
2 p�·(Δ1+Δ2)·p+ip·x

=

∣∣∣∣∣ detΔ1detΔ2

det (Δ1 + Δ2)

∣∣∣∣∣1/2 e−
1
2 x�·(Δ1+Δ2)−1 ·x . (32.60)

⇓PRIVATE
29Predrag: 17sep2011 REMEMBER: return lippolis/noise/exerNoise.tex to ChaosBook
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32.4. Convolution of d-dimensional Gaussians. In general,
noise is anisotropic, with the isotropic diffusion weight
2Dδi j replaced by a symmetric diffusion matrix Δ i j,

δD(x) =
1
N

e−
1
2 (y− f x)�· 1

Δ
·(y− f x) . (32.61)

Assume that the eigenvalues of Δ are strictly positive, so
under one step of noisy dynamics an initial Dirac-δ local-
ized density distribution is smeared out into a Gaussian
ellipsoid whose widths and orientation are controlled by
the eigenvalues and eigenvectors of Δ. 30 For isotropic
noise Δ = 2D 1, where D is the diffusion coefficient. The
normalization constant N is fixed by

∫
[dx]dδD(x) = 1.

Consider a smooth map

xn+1 = f (xn) + ξn (32.62)

with a fixed point at x∗ = 0. In a neighborhood x =
x∗+y we approximate the map by the linear map (Jacobian
matrix) M = ∂ f (x∗) with the fixed point at x = 0:

yn+1 = Myn (32.63)

acting on a Gaussian density distribution, also centered
on x = 0:

ρ(x, n) =
1

Nn
e−

1
2 x�· 1

Qn
·x . (32.64)

Nn is a normalization constant, fixed by
∫

dxdρ(x, n) = 1.
If the eigenvalues of Qn are distinct, the distribution is a
“cigar-shaped” ellipsoid, with eigenvectors of Qn giving
the orientation of various axes.

Convolution of a Gaussian with a Gaussian is again a
Gaussian, so the noisy evolution operator (32.61) maps
the ellipsoid ρ(x, n) into a ellipsoid ρ(x, n + 1) one time
step later

ρ(y, n + 1) =
1

Nn

∫
dxd e−

1
2 [(y−Mx)� 1

Δ
(y−Mx)+x�· 1

Qn
·x]

=
1

Nn+1
e−

1
2 y�· 1

Qn+1
·y
. (32.65)

Complete the square, integrate over x, get the initial dis-
tribution squished by the flow and spread out by the noise:

Qn+1 = MQn M� + Δ .

This says the two variances (the noise matrix Δ and the
deterministically transported Qn → MQn M�) add up as
Gaussian variances, i.e., sums of squares.

If M has all eigenvalues strictly contracting, |Λ j| < 1, any
initial compact measure (not only a initial distribution ρ1

30Predrag: include Kadanoff book argument why eigs are non-negative
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of Gaussian form) converges to the invariant natural mea-
sure ρ0 whose variance satisfies the fixed point condition
31

Q∗ = MQ∗M� + Δ

= Δ + MΔM� + M2Δ(M�)2 + M3Δ(M�)3 + · · ·

=

∞∑
m,n=0

MnΔ(M�)mδm,n (32.66)

This is a convergent series as long as all eigenvalues of
the Jacobian matrix are strictly contracting. To get rid of
the δm,n, use some integral representation of Kronecker
δ (which one is natural?). For example, with a Fourier
representation, get

δmn =

∫
dθ
2π

eiθ(m−n) ,

Q∗ =

∫
dθ
2π

∑
m,n

(e−iθM)nΔ(eiθM�)m

=

∫
dθ
2π

1
1 − e−iθM

Δ
1

1 − eiθM� (32.67)

gives an expression for the fixed point Q∗ in d dimen-
sions. But how do you evaluate it? Remember, we do not
really need Q∗, we probably need its eigenvalues only. 32

For d = 1 the width of the natural measure is

Q∗ =
2D

1 − |Λ|2
, (32.68)

a balance between exponential contraction by Λ and dif-
fusive smearing out by 2D. For strongly contracting Λ,
the width is due to the noise only. As |Λ| → 1 the width
diverges, as the trajectories are no longer confined, but
diffuse by Brownian motion. ⇑PRIVATE

31Predrag: introduce expansion in terms of derivatives of Dirac δ’s
32Predrag: not sure this is true
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Chapter 33

Relaxation for cyclists

Cycles, i.e., solutions of the periodic orbit condition (13.1)

f t+T (x) = f t(x) , T > 0 (33.1)

are prerequisite to chapters 18 and 19 evaluation of spectra of classical evo-
lution operatorsand, as we shall see in chapter 39, the semiclassical ap-

⇓PRIVATEproximations to quantum evolution operators. Chapter13 offered an intro-
⇑PRIVATEductory, hands-on guide to extraction of periodic orbits by means of the Newton-

Raphson method. Here we take a very different tack, drawing inspiration from
variational principles of classical mechanics, and path integrals of quantum me-
chanics.

1

In sect. 13.2.1 we converted orbits unstable forward in time into orbits stable
backwards in time. Indeed, all methods for finding unstable cycles are based on
the idea of constructing a new dynamical system such that (i) the position of the
cycle is the same for the original system and the transformed one, (ii) the unstable
cycle in the original system is a stable cycle of the transformed system.

The Newton-Raphson method for determining a fixed point x∗ for a map x′ =
f (x) is an example. The method replaces iteration of f (x) by iteration of the
Newton-Raphson map (13.5)

x′i = gi(x) = xi −
(

1
M(x) − 1

)
i j

( f (x) − x) j . (33.2)

A fixed point x∗ for a map f (x) is also a fixed point of g(x), indeed a superstable
fixed point since ∂gi(x∗)/∂x j = 0. This makes the convergence to the fixed point
super-exponential.

1Predrag: emphasize importance of equilibrium points!
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cost functionWe also learned in chapter 13 that methods that start with initial guesses for
a number of points along a cycle are considerably more robust and safer than
searches based on direct solution of the fixed-point condition (33.1). The relax-
ation (or variational) methods that we shall now describe take this multipoint ap-
proach to its logical extreme, and start by a guess of not a few points along a
periodic orbit, but a guess of the entire orbit.

The idea is to make an informed rough guess of what the desired periodic orbit
looks like globally, and then use variational methods to drive the initial guess
toward the exact solution. Sacrificing computer memory for robustness of the
method, we replace a guess that a point is on the periodic orbit by a guess of
the entire orbit. And, sacrificing speed for safety, in sect. 33.1 we replace the
Newton-Raphson iteration by a fictitious time flow that minimizes a cost function
computed as deviation of the approximate flow from the true flow along a loop
approximation to a periodic orbit.

If you have some insight into the topology of the flow and its symbolic dy-
namics, or have already found a set of short cycles, you might be able to con-
struct an initial approximation to a longer cycle p as a sequence of N points
(x̃(0)

1 , x̃(0)
2 , · · · , x̃(0)

N ) with the periodic boundary condition x̃N+1 = x̃1. Suppose
you have an iterative method for improving your guess; after k iterations the cost
function 2

F2(x̃(k)) =
N∑
i

(
x̃(k)

i+1 − f (x̃(k)
i )

)2
(33.3)

or some other more cleverly constructed function (for classical mechanics - action)
is a measure of the deviation of the kth approximate cycle from the true cycle. This
observation motivates variational approaches to determining cycles.

We give here three examples of such methods, two for maps, and one for bil-
liards. In sect. 33.1 we start out by converting a problem of finding an unstable
fixed point of a map into a problem of constructing a differential flow for which
the desired fixed point is an attracting equilibrium point. Solving differential equa-
tions can be time intensive, so in sect. 33.2 we replace such flows by discrete iter-
ations. In sect. 33.3 we show that for 2D-dimensional billiard flows variation of D
coordinates (where D is the number of Hamiltonian degrees of freedom) suffices
to determine cycles in the full 2D-dimensional phase space.

3

33.1 Fictitious time relaxation

(O. Biham, C. Chandre and P. Cvitanović)

2Predrag: normalize to take account of a continuous time limit?
3Predrag: preface with crete02.tex?

relax - 29mar2004 boyscout version14.4, Mar 19 2013



CHAPTER 33. RELAXATION FOR CYCLISTS 782

periodic!orbit!relaxation
algorithm

relaxation algorithm
gradient!algorithm
Henon@H“’enon

map!cycles
map!H“’enon

Figure 33.1: “Potential” Vi(x) (33.7) for a typical
point along an initial guess trajectory. For σi = +1
the flow is toward the local maximum of Vi(x), and for
σi = −1 toward the local minimum. A large devia-
tion of xi’s is needed to destabilize a trajectory passing
through such local extremum of Vi(x), hence the basin
of attraction is expected to be large.

−1 0 1 xi

−1

0

1

Vi(x)

The relaxation (or gradient) algorithm for finding cycles is based on the observa-
tion that a trajectory of a map such as the Hénon map (3.17),

xi+1 = 1 − ax2
i + byi

yi+1 = xi , (33.4)

is a stationary solution of the relaxation dynamics defined by the flow

dxi

dτ
= vi, i = 1, . . . , n (33.5)

for any vector field vi = vi(x) which vanishes on the trajectory. Here τ is a “ficti-
tious time” variable, unrelated to the dynamical time (in this example, the discrete
time of map iteration). As the simplest example, take vi to be the deviation of an
approximate trajectory from the exact 2-step recurrence form of the Hénon map
(3.18)

vi = xi+1 − 1 + ax2
i − bxi−1. (33.6)

For fixed xi−1, xi+1 there are two values of xi satisfying vi = 0. These solutions
are the two extremal points of a local “potential” function (no sum on i)4

vi =
∂

∂xi
Vi(x) , Vi(x) = xi(xi+1 − bxi−1 − 1) +

a
3

x3
i . (33.7)

Assuming that the two extremal points are real, one is a local minimum of Vi(x)
and the other is a local maximum. Now here is the idea; replace (33.5) by

dxi

dτ
= σivi, i = 1, . . . , n, (33.8)

where σi = ±1.

The modified flow will be in the direction of the extremal point given by the
local maximum of Vi(x) if σi = +1 is chosen, or in the direction of the one corre-
sponding to the local minimum if we take σi = −1. This is not quite what happens

4Predrag: cannot write a global potential function V(x) =
∑

i Vi(x)!
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Figure 33.2: The repeller for the Hénon map at a =
1.8, b = 0.3 .
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in solving (33.8) - all xi and Vi(x) change at each integration step - but this is the
observation that motivates the method. The differential equations (33.8) then drive
an approximate initial guess toward the exact trajectory. A sketch of the landscape
in which xi converges towards the proper fixed point is given in figure 33.1. As
the “potential” function (33.7) is not bounded for a large |xi|, the flow diverges for
initial guesses which are too distant from the true trajectory. However, the basin
of attraction of initial guesses that converge to a given cycle is nevertheless very
large, with the spread in acceptable initial guesses for figure 33.1 of order 1, in
contrast to the exponential precision required of initial guesses by the Newton-
Raphson method.

Example 33.1 Hénon map cycles. Our aim in this calculation is to find all periodic
orbits of period n for the Hénon map (33.4), in principle at most 2n orbits. We start by
choosing an initial guess trajectory (x1, x2, · · · , xn) and impose the periodic boundary
condition xn+1 = x1. The simplest and a rather crude choice of the initial condition
in the Hénon map example is xi = 0 for all i. In order to find a given orbit one sets
σi = −1 for all iterates i which are local minima of Vi(x), and σi = 1 for iterates which
are local maxima. In practice one runs through a complete list of prime cycles, such
as the table 15.1. The real issue for all searches for periodic orbits, this one included,
is how large is the basin of attraction of the desired periodic orbit? There is no easy
answer to this question, but empirically it turns out that for the Hénon map such initial
guess almost always converges to the desired trajectory as long as the initial |x| is not
too large compared to 1/

√
a. Figure 33.1 gives some indication of a typical basin of

attraction of the method (see also figure 33.3).
⇓PRIVATE

5 (Work through exercise ??). The calculation is carried out by solving the set⇑PRIVATEof n ordinary differential equations (33.8) using a simple Runge-Kutta method with a
relatively large step size (h = 0.1) until |v| becomes smaller than a given value ε (in a
typical calculation ε ∼ 10−7). Empirically, in the case that an orbit corresponding to the
desired itinerary does not exist, the initial guess escapes to infinity since the “potential”
Vi(x) grows without bound.

exercise 33.3
Applied to the Hénon map at the Hénon’s parameters choice a = 1.4, b = 0.3,

the method has yielded all periodic orbits to periods as long as n = 28, as well as
selected orbits up to period n = 1000. All prime cycles up to period 10 for the Hénon
map, a = 1.4 and b = 0.3, are listed in table 33.1. The number of unstable periodic
orbits for periods n ≤ 28 is given in table 33.2. 6 Comparing this with the list of all
possible 2-symbol alphabet prime cycles, table 15.1, we see that the pruning is quite

5Predrag: find this? for table 33.1
6Predrag: recheck 0.4645, 1.592
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Table 33.1: All prime cycles up to period 10 for the Hénon map, a = 1.4 and b = 0.3.
The columns list the period n p, the itinerary (defined in remark 33.4), a periodic point
(yp, xp), and the cycle Lyapunov exponent λ p = ln |Λp|/np. While most of the cycles have
λp ≈ 0.5, several significantly do not. The 0 periodic point is very unstable, isolated and
transient fixed point, with no other cycles returning close to it. At period 13 one finds a
pair of cycles with exceptionally low Lyapunov exponents. The cycles are close for most
of the trajectory, differing only in the one symbol corresponding to two periodic points
straddle the (partition) fold of the attractor. As the system is not hyperbolic, there is no
known lower bound on cycle Lyapunov exponents, and the Hénon’s strange “attractor”
might some day turn out to be nothing but a transient on the way to a periodic attractor of
some long period.

n p ( yp , xp ) λp
1 0 (-1.13135447 , -1.13135447) 1.18167262

1 (0.63135447 , 0.63135447) 0.65427061
2 01 (0.97580005 , -0.47580005) 0.55098676
4 0111 (-0.70676677 , 0.63819399) 0.53908457
6 010111 (-0.41515894 , 1.07011813) 0.55610982

011111 (-0.80421990 , 0.44190995) 0.55245341
7 0011101 (-1.04667757 , -0.17877958) 0.40998559

0011111 (-1.08728604 , -0.28539206) 0.46539757
0101111 (-0.34267842 , 1.14123046) 0.41283650
0111111 (-0.88050537 , 0.26827759) 0.51090634

8 00011101 (-1.25487963 , -0.82745422) 0.43876727
00011111 (-1.25872451 , -0.83714168) 0.43942101
00111101 (-1.14931330 , -0.48368863) 0.47834615
00111111 (-1.14078564 , -0.44837319) 0.49353764
01010111 (-0.52309999 , 0.93830866) 0.54805453
01011111 (-0.38817041 , 1.09945313) 0.55972495
01111111 (-0.83680827 , 0.36978609) 0.56236493

9 000111101 (-1.27793296 , -0.90626780) 0.38732115
000111111 (-1.27771933 , -0.90378859) 0.39621864
001111101 (-1.10392601 , -0.34524675) 0.51112950
001111111 (-1.11352304 , -0.36427104) 0.51757012
010111111 (-0.36894919 , 1.11803210) 0.54264571
011111111 (-0.85789748 , 0.32147653) 0.56016658

10 0001111101 (-1.26640530 , -0.86684837) 0.47738235
0001111111 (-1.26782752 , -0.86878943) 0.47745508
0011111101 (-1.12796804 , -0.41787432) 0.52544529
0011111111 (-1.12760083 , -0.40742737) 0.53063973
0101010111 (-0.48815908 , 0.98458725) 0.54989554
0101011111 (-0.53496022 , 0.92336925) 0.54960607
0101110111 (-0.42726915 , 1.05695851) 0.54836764
0101111111 (-0.37947780 , 1.10801373) 0.56915950
0111011111 (-0.69555680 , 0.66088560) 0.54443884
0111111111 (-0.84660200 , 0.34750875) 0.57591048

13 1110011101000 (-1.2085766485 , -0.6729999948) 0.19882434
1110011101001 (-1.0598110494 , -0.2056310390) 0.21072511
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Table 33.2: The number of unstable periodic orbits of the Hénon map for a = 1.4, b = 0.3,
of all periods n ≤ 28. Mn is the number of prime cycles of length n, and N n is the total
number of periodic points of period n (including repeats of shorter prime cycles).

n Mn Nn
11 14 156
12 19 248
13 32 418
14 44 648
15 72 1082
16 102 1696

n Mn Nn
17 166 2824
18 233 4264
19 364 6918
20 535 10808
21 834 17544
22 1225 27108

n Mn Nn
23 1930 44392
24 2902 69952
25 4498 112452
26 6806 177376
27 10518 284042
28 16031 449520

Figure 33.3: Typical trajectories of the vector field
(33.9) for the stabilization of a hyperbolic fixed
point of the Ikeda map (33.11) located at (x, y) ≈
(0.53275, 0.24689). The circle indicates the position
of the fixed point. Note that the basin of attraction of
this fixed point is large, larger than the entire Ikeda at-
tractor.

0 1

−2

0

x
y

x
*
 

extensive, with the number of periodic points of period n growing as e0.4645·n = (1.592)n

rather than as 2n . 7

As another example we plot all unstable periodic points up to period n = 14 for
a = 1.8, b = 0.3 in figure 33.2. 8 Comparing this repelling set with the strange attractor
for the Hénon’s parameters figure 3.6, we note the existence of gaps in the set, cut out
by the preimages of the escaping regions.

remark 33.2
In practice, the relaxation flow (33.8) finds (almost) all periodic orbits which

exist and indicates which ones do not. For the Hénon map the method enables us to
calculate almost all unstable cycles of essentially any desired length and accuracy.

The idea of the relaxation algorithm illustrated by the above Hénon map ex-
ample is that instead of searching for an unstable periodic orbit of a map, one
searches for a stable attractor of a vector field. More generally, consider a d-
dimensional map x′ = f (x) with a hyperbolic fixed point x∗. Any fixed point x∗ is
by construction an equilibrium point of the fictitious time flow

dx
dτ
= f (x) − x. (33.9)

If all eigenvalues of the Jacobian matrix J(x∗) = D f (x∗) have real parts smaller
than unity, then x∗ is a stable equilibrium point of the flow.

If some of the eigenvalues have real parts larger than unity, then one needs to
modify the vector field so that the corresponding directions of the flow are turned

7Predrag: construct grammar
8Predrag: replot figure 33.2 with the correct scale for (33.4), with xt−1 horizontally, xt vertically

(so it looks like a parabola, becomes on in the b → 0 limit)
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Figure 33.4: Typical trajectories of the vector
field (33.10) for a hyperbolic fixed point (x, y) ≈
(−0.13529,−0.37559) of f3, where f is the Ikeda
map (33.11). The circle indicates the position of
the fixed point. For the vector field corresponding
to (a) C = 1, x∗ is a hyperbolic equilibrium point
of the flow, while for (b) C =

(
1
0

0
−1

)
, x∗ is an at-

tracting equilibrium point.
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into stable directions in a neighborhood of the fixed point. In the spirit of (33.8),
modify the flow by

dx
dτ
= C ( f (x) − x) , (33.10)

where C is a [d×d] invertible matrix. The aim is to turn x∗ into a stable equilib-
rium point of the flow by an appropriate choice of C. It can be shown that a set ⇓PRIVATE

appendix F.2

⇑PRIVATE

of permutation / reflection matrices with one and only one non-vanishing entry
±1 per row or column (for d-dimensional systems, there are d!2d such matrices)
suffices to stabilize any fixed point. In practice, one chooses a particular matrix
C, and the flow is integrated. For each choice of C, one or more hyperbolic fixed
points of the map may turn into stable equilibria of the flow.

Example 33.2 Ikeda map: We illustrate the method with the determination of the
periodic orbits of the Ikeda map:

x′ = 1 + a(x cos w − y sin w)

y′ = a(x sin w + y cos w) (33.11)

where w = b −
c

1 + x2 + y2
,

with a = 0.9, b = 0.4, c = 6. The fixed point x∗ is located at (x, y) ≈ (0.53275, 0.24689),
with eigenvalues of the Jacobian matrix (Λ1,Λ2) ≈ (−2.3897,−0.3389), so the flow is
already stabilized with C = 1. Figure 33.3 depicts the flow of the vector field around the
fixed point x∗.

In order to determine x∗, one needs to integrate the vector field (33.9) forward
in time (the convergence is exponential in time), using a fourth order Runge-Kutta or
any other integration routine.

In contrast, determination of the 3-cycles of the Ikeda map requires nontrivial
C matrices, different from the identity. Consider for example the hyperbolic fixed point
(x, y) ≈ (−0.13529,−0.37559) of the third iterate f 3 of the Ikeda map. The flow of the
vector field for C = 1, Figure 33.4 (a), indicates a hyperbolic equilibrium point, while for
C =

(
1
0

0
−1

)
the flow of the vector field, figure 33.4 (b) indicates that x∗ is an attracting

equilibrium point, reached at exponential speed by integration forward in time.

The generalization from searches for fixed points to searches for cycles is
straightforward. In order to determine a prime cycle x = (x1, x2, . . . , xn) of a
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d-dimensional map x′ = f (x), we modify the multipoint shooting method of
sect. 13.3, and consider the nd-dimensional vector field

dx
dτ
= C ( f (x) − x) , (33.12)

where f (x) = ( f (xn), f (x1), f (x2), . . . , f (xn−1)), and C is an invertible [nd×nd]
matrix. For the Hénon map, it is sufficient to consider a set of 2n diagonal matrices
with eigenvalues ±1. Risking a bit of confusion, we denote by x, f (x) both the
d-dimensional vectors in (33.10), and nd-dimensional vectors in (33.12), as the
structure of the equations is the same.

33.2 Discrete iteration relaxation method

(C. Chandre, F.K. Diakonos and P. Schmelcher)9

The problem with the Newton-Raphson iteration (33.2) is that it requires very
precise initial guesses. For example, the nth iterate of a unimodal map has as
many as 2n periodic points crammed into the unit interval, so determination of all
cycles of length n requires that the initial guess for each one of them has to be
accurate to roughly 2−n. This is not much of a problem for 1-dimensional maps,
but making a good initial guess for where a cycle might lie in a d-dimensional
state space can be a challenge.

Emboldened by the success of the cyclist relaxation trick (33.8) of manually
turning instability into stability by a sign change, we now (i) abandon the Newton-
Raphson method altogether, (ii) abandon the continuous fictitious time flow (33.9)
with its time-consuming integration, replacing it by a map g with a larger basin
of attraction (not restricted to a linear neighborhood of the fixed point). The idea
is to construct a very simple map g, a linear transformation of the original f , for
which the fixed point is stable. We replace the Jacobian matrix prefactor in (33.2)
(whose inversion can be time-consuming) by a constant matrix prefactor

x′ = g(x) = x + ΔτC( f (x) − x), (33.13)

where Δτ is a positive real number, and C is a [d×d] permutation and reflection
matrix with one and only one non-vanishing entry ±1 per row or column. A fixed
point of f is also a fixed point of g. Since C is invertible, the inverse is also true.

This construction is motivated by the observation that for small Δτ → dτ the
map (33.13) is the Euler method for integrating the modified flow (33.10), with
the integration step Δτ.

The argument why a suitable choice of matrix C can lead to the stabilization
of an unstable periodic orbit is similar to the one used to motivate the construction

9Predrag: add to the coauthors list
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of the modified vector field in sect. 33.1. Indeed, the flow (33.8) is the simplest
example of this method, with the infinitesimal fictitious time increment Δτ→ dτ,
the infinitesimal coordinate correction (x − x′) → dxi, and the [n×n] diagonal
matrix C → σi = ±1.

For a given fixed point of f (x) we again chose a C such that the flow in the
expanding directions of M(x∗) is turned into a contracting flow. The aim is to
stabilize x∗ by a suitable choice of C. In the case where the map has multiple fixed
points, the set of fixed points is obtained by changing the matrix C (in general
different for each unstable fixed point) and varying initial conditions for the map
g. For example, for 2-dimensional dissipative maps it can be shown that the 3

remark 33.3
matrices ⇓PRIVATE

appendix F.2

⇑PRIVATEC ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)}

suffice to stabilize all kinds of possible hyperbolic fixed points.

If Δτ is chosen sufficiently small, the magnitude of the eigenvalues of the
fixed point x∗ in the transformed system are smaller than one, and one has a stable
fixed point. However, Δτ should not be chosen too small: Since the convergence
is geometrical with a ratio 1 − αΔτ (where the value of constant α depends on
the stability of the fixed point in the original system), small Δτ can slow down
the speed of convergence. The critical value of Δτ, which just suffices to make
the fixed point stable, can be read off from the quadratic equations relating the
stability coefficients of the original system and those of the transformed system. In
practice, one can find the optimal Δτ by iterating the dynamical system stabilized
with a given C and Δτ. In general, all starting points converge on the attractor
provided Δτ is small enough. If this is not the case, the trajectory either diverges
(if Δτ is far too large) or it oscillates in a small section of the state space (if Δτ is
close to its stabilizing value).

The search for the fixed points is now straightforward: A starting point cho-
sen in the global neighborhood of the fixed point iterated with the transformed
dynamical system g converges to the fixed point due to its stability. Numerical
investigations show that the domain of attraction of a stabilized fixed point is a
rather extended connected area, by no means confined to a linear neighborhood.
At times the basin of attraction encompasses the complete state space of the attrac-
tor, so one can be sure to be within the attracting basin of a fixed point regardless
of where on the on the attractor on picks the initial condition.

The step size |g(x)− x| decreases exponentially when the trajectory approaches
the fixed point. To get the coordinates of the fixed points with a high precision,
one therefore needs a large number of iterations for the trajectory which is already
in the linear neighborhood of the fixed point. To speed up the convergence of the
final part of the approach to a fixed point we recommend a combination of the
above approach with the Newton-Raphson method (33.2).

The fixed points of the nth iterate fn are periodic points of a cycle of period
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n. If we consider the map

x′ = g(x) = x + ΔτC( f n(x) − x) , (33.14)

the iterates of g converge to a fixed point provided that Δτ is sufficiently small
and C is a [d×d] constant matrix chosen such that it stabilizes the flow. As n
grows, Δτ has to be chosen smaller and smaller. In the case of the Ikeda map
example 33.2 the method works well for n ≤ 20. As in (33.12), the multipoint
shooting method is the method of preference for determining longer cycles. Con-
sider x = (x1, x2, . . . , xn) and the nd-dimensional map

x′ = f (x) = ( f (xn), f (x1), . . . , f (xn−1)) .

Determining cycles with period n for the d-dimensional f is equivalent to deter-
mining fixed points of the multipoint dn-dimensional f . The idea is to construct a
matrix C such that the fixed point of f becomes stable for the map:

x′ = x + ΔτC( f (x) − x),

where C is now a [nd×nd] permutation/reflection matrix with only one non-zero
matrix element ±1 per row or column. For any given matrix C, a certain fraction
of the cycles becomes stable and can be found by iterating the transformed map
which is now a nd dimensional map.

From a practical point of view, the main advantage of this method compared to
the Newton-Raphson method is twofold: (i) the Jacobian matrix of the flow need
not be computed, so there is no large matrix to invert, simplifying considerably
the implementation, and (ii) empirical basins of attractions for individual C are
much larger than for the Newton-Raphson method. The price is a reduction in the
speed of convergence. 10

33.3 Least action method

(P. Dahlqvist)

The methods of sects. 33.1 and 33.2 are somewhat ad hoc, as for general
flows and iterated maps there is no fundamental principle to guide us in choosing
the cost function, such as (33.3), to vary.

11 For Hamiltonian dynamics, we are on much firmer ground; Maupertuis
least action principle. You yawn your way through it in every mechanics course–
but as we shall now see, it is a very hands-on numerical method for finding cycles.

10Predrag: Explain the fundamental domain reflections signs in table 33.3; link it to a 3-disk
figure

11Predrag: include Per’s section 5.5.
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Table 33.3: All prime cycles up to 6 bounces for the 3-disk fundamental domain, center-
to-center separation R = 6, disk radius a = 1. The columns list the cycle itinerary, its
expanding eigenvalue Λ p, and the length of the orbit (if the velocity=1 this is the same as
its period or the action). Note that the two 6 cycles 001011 and 001101 are degenerate
due to the time reversal symmetry, but are not related by any discrete spatial symmetry.
(Computed by P.E. Rosenqvist.)

p Λp Tp
0 9.898979485566 4.000000000000
1 -1.177145519638×101 4.267949192431
01 -1.240948019921×10 2 8.316529485168
001 -1.240542557041×10 3 12.321746616182
011 1.449545074956×10 3 12.580807741032
0001 -1.229570686196×10 4 16.322276474382
0011 1.445997591902×10 4 16.585242906081
0111 -1.707901900894×10 4 16.849071859224
00001 -1.217338387051×10 5 20.322330025739
00011 1.432820951544×10 5 20.585689671758
00101 1.539257907420×10 5 20.638238386018
00111 -1.704107155425×10 5 20.853571517227
01011 -1.799019479426×10 5 20.897369388186
01111 2.010247347433×10 5 21.116994322373
000001 -1.205062923819×10 6 24.322335435738
000011 1.418521622814×10 6 24.585734788507
000101 1.525597448217×10 6 24.638760250323
000111 -1.688624934257×10 6 24.854025100071
001011 -1.796354939785×10 6 24.902167001066
001101 -1.796354939785×10 6 24.902167001066
001111 2.005733106218×10 6 25.121488488111
010111 2.119615015369×10 6 25.165628236279
011111 -2.366378254801×10 6 25.384945785676



CHAPTER 33. RELAXATION FOR CYCLISTS 791

three-disk@3-
disk!prime
cycles

prime cycle!3-disk
cycle!prime!3-disk

Indeed, the simplest and numerically most robust method for determining cy-
cles of planar billiards is given by the principle of least action, or equivalently,
by extremizing the length of an approximate orbit that visits a given sequence of
disks. In contrast to the multipoint shooting method of sect.13.3 which requires
variation of 2n phase-space points, extremization of a cycle length requires varia-
tion of only n bounce positions si.

The problem is to find the extremum values of cycle length L(s) where s =
(s1, . . . , sn), that is find the roots of ∂iL(s) = 0. Expand to first order

∂iL(s0 + δs) = ∂iL(s0) +
∑

j

∂i∂ jL(s0)δs j + . . .

exercise 33.1

and use Mi j(s0) = ∂i∂ jL(s0) in the n-dimensional Newton-Raphson iteration
scheme of sect. 13.2.2

si �→ si −
∑

j

(
1

M(s)

)
i j
∂ jL(s) (33.15)

The extremization is achieved by recursive implementation of the above algo-
rithm, with proviso that if the dynamics is pruned, one also has to check that the
final extremal length orbit does not penetrate a billiard wall.

exercise 33.2
exercise 13.14

As an example, the short periods and stabilities of 3-disk cycles computed this
way are listed table 33.3. ⇓PRIVATE

33.4 Newton descent in the loop space

For a flow described by a set of ODEs, multipoint shooting method of sect. 13.3
can be quite efficient. However, multipoint shooting requires a set of state space
Poincaré sections such that an orbit leaving one section reaches the next one in a
qualitatively predictable manner, without traversing other sections along the way.
In turbulent, high-dimensional flows such sequences of sections are hard to come
by. One cure for this ill might be a large set of Poincaré sections, with the inter-
vening flight segments short and controllable. Here we shall take another path,
and discard fixed Poincaré sections altogether.

Emboldened by success of methods such as the multipoint shooting (which
eliminates the long-time exponential instability by splitting an orbit into a number
of short segments, each with a controllable expansion rate) and the cyclist relax-
ation methods of sect.?! (which replace map iteration by a contracting flow whose
attractor is the desired periodic orbit of the original iterative dynamics), we now
describe a method in which the initial guess is not a finite set of points, but an
entire smooth, differentiable closed loop.
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(c) (b)
L

x(s)v

(c)
p

v(x)
x(t)

Figure 33.5: (a) A continuous path; (b) a loop L with its tangent velocity vector ṽ; (c) a periodic
orbit p defined by the vector field v(x).

A general flow (??) has no extremal principle associated with it, the simplifi-
cation of so there is a great deal of arbitrariness in constructing a flow in a loop
space. We shall introduce here several simplest conceivable cost functions which
penalize mis-orientation of the local loop tangent vector ṽ(x̃) relative to the dy-
namical velocity field v(x̃) of (??), and construct a flow in the loop space which
minimizes this function. This flow is corralled by general topological features of
the dynamics, equilibrium point- with rather distant initial guesses converging to
the desired orbit. Once the loop is sufficiently close to the periodic orbit, faster
numerical algorithms can be employed to pin it down. 12

In order to set the notation, we shall distinguish between (see figure33.5):

closed path: any closed (not necessarily differentiable) continuous curve J ⊂ M.

loop: a smooth, differentiable closed curve x̃(s) ∈ L ⊂ M, parameterized by
s ∈ [0, 2π] with x̃(s) = x̃(s + 2π), with the magnitude of the loop tangent vector
fixed by the (so far arbitrary) parametrization of the loop,

ṽ(x̃) =
dx̃
ds

, x̃ = x̃(s) ∈ L .

annulus: a smooth, differentiable surface x̃(s, τ) ∈ L(τ) swept by a family of
loops L(τ), by integration along a fictitious time flow (see figure33.6 (a))

˙̃x =
∂x̃
∂τ

.

periodic orbit: given a smooth vector field v = v(x), (x, v) ∈ TM, periodic orbit
x(t) ∈ Mp is a solution of

dx
dt
= v(x) , such that x(t) = x(t + Tp),

where Tp is the shortest period of p.

12Predrag: back reference to sect. 13.4.2 quality of cycles
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33.4.1 Loop parametrizations

Euclidean length

d2s =
∑

i

dx2
i

then

ṽ(x̃) =
dx̃
ds
= n̂ .

is the unit tnagent vector: geometrically intrinsic, dimensionless and geometri-
cally natural - but dynamically unnutural, knows nothing about the flow v.

Some immediate choices of the metric

d2s = gi jdxidx j

Euclidean

gi j = δi j

Parallel velocity (1-dimensional)

gi j =
viv j

v2

Transverse velocity ((d-1)-dimensional)

gi j = δi j − viv j

v2

Local shear (too local to be appealing)

gi j =
(
A�A

)i j

where

Ai j(x) =
∂vi(x)
∂x j

from (33.21).
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(a)

x

L(0)

L(    )=p

τL(  )

(b)

τ

p

L(   )

v
v

Figure 33.6: (a) An annulus L(τ) with vector field ˙̃x connecting smoothly the initial loop L(0) to a
periodic orbit p. (b) In general the orientation of the loop tangent ṽ(x̃) does not coincide with the
orientation of the velocity field v(x̃); for a periodic orbit p it does so at every x ∈ Mp.

The deformation after a finite time t is described by the Jacobian matrix

Mt(x0) = Te
∮

L

dx‖
v‖

A(x(τ))
,

where T stands for the time-ordered integration. Its eigenvalues and eigen-directions
describe the deformation of an initial infinitesimal sphere of neighboring trajecto-
ries into an ellipsoid a finite time t later.

Symmetric and diagonalizable matrix M =
(
Mt)�Mt, with real positive eigen-

values {|Λ1|2 ≥ . . . ≥ |Λd |2}, and a complete orthonormal set of eigenvectors of
{e(1), . . . , e(d)}. In the Me(i) = |Λi|e(i) eigenbasis, we have (??)

e(i)� ·M · e( j) = δi j|Λi|2 , (33.16)

Preferable, as intrinsic to the loop (prove: Λi smooth conjugacy invariants), and
the eigen-directions describe the invariant unstable/stable manifolds. The cost
functional now measures the growth of an error along the loop

F2[x̃] =
∮

L
ds (ṽ − v)i |Λi|2 , (33.17)

penalizing errors in unstable directions, and ignoring the errors in the strongly
contracting directions (as the flow anyway takes care of them).

33.4.2 Newton descent in the loop space

In the spirit of (??), we now define a cost functional for a loop and the associated
fictitious time τ flow which sends an initial loop L(0) via a loop family L(τ) into
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the periodic orbit p = L(∞), see figure 33.6 (a). The only thing that we are given
is the velocity field v(x), and we want to “comb” the loop L(τ) in such a way that
its tangent field ṽ aligns with v everywhere, see figure33.6 (b). The simplest cost
functional for the job is

F2[x̃] =
1

2π

∮
L

ds (ṽ − v)2 , ṽ = ṽ(x̃(s, τ)) , v = v(x̃(s, τ)) . (33.18)

Need to match the magnitude of the tangent field ṽ (measured in the loop parametriza-
tion units s) to the velocity field v (measured in the dynamical time units t). |v|
cannot vanish anywhere along the loop L(τ), as in that case the loop would be
passing through an equilibrium point, and have infinite period.

Take a derivative of the cost functional F2[x̃] with respect to the (yet undeter-
mined) fictitious time τ,

dF2

dτ
=

1
π

∮
L

ds (ṽ − v)
d
dτ

(ṽ − v) .

The simplest, exponentially decreasing cost functional is obtained by taking the
x̃(s, τ) dependence on τ to be pointwise proportional to the deviation of the two
vector fields

d
dτ

(ṽ − v) = −(ṽ − v) , (33.19)

so the fictitious time flow drives the loop to L(∞) = p, see figure 33.6 (a):

ṽ − v = e−τ(ṽ − v)|τ=0 . (33.20)

Making the x̃ dependence in (33.19) explicit we obtain our main result, the
Newton descent PDE which evolves the initial loop L(0) into the desired periodic
orbit p

∂2 x̃
∂s∂τ

− A
∂x̃
∂τ

− ∂

∂τ
v = v − ṽ , Ai j(x) =

∂vi(x)
∂x j

(33.21)

in the fictitious time τ→ ∞. Here A is the stability matrix of the flow (its integral
around p yields the linearized Jacobian matrix for the periodic orbit p).

33.4.3 A metric for the fictitous time flow?

Ideas:
invariant manifold wiath a few unstable directions
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∞ strongly contarcting directions.
“noise” should be uniform in the rescaled coordinates.

As any pair of nearby points on a cycle returns to itself exactly at each cycle
period, the eigenvalue of the Jacobian matrix corresponding to the eigenvector
along the flow necessarily equals unity for all periodic orbits. Hence flows require
a separate treatment for the longitudinal direction. To find an isolated prime cycle
p of period Tp, restrict the search to an infinitesimally thin tubeMp enveloping the
cycle (see figure 1.13), and choose a local coordinate system with a longitudinal
coordinate dx‖ along the direction of the flow, and d transverse coordinates x⊥

∫
Mp

dx⊥dx‖ δ
(
x⊥ − f t

⊥(x)
)
δ
(
x‖ − f t

‖ (x)
)
. (33.22)

Let v(x) the velocity at the point x along the flow. v(x) is strictly positive, as
otherwise the orbit would stagnate for infinite time at v(x) = 0 points, and that
would get us nowhere. Therefore we can parametrize the longitudinal coordinate
x‖ by the flight time 13

x‖(τ) =
∫ τ

0
dσ v(σ)

where v(σ) = v(x‖(σ)), and Lp is the length of the circuit on which the periodic
orbit lies, τ ∈ [0, Tp]).

(
f t
‖ (x) − x‖

)
=

∫ t+τ

τ
dσ v(σ)

∣∣∣∣∣∣
mod Lp

so that the integral around the longitudinal coordinate is rewritten as

∫ Lp

0
dx‖ δ

(
x‖ − f t

‖ (x)
)

(33.23)

For the remaining transverse integration variables the Jacobian matrix is de-
fined in a reduced Poincaré surface of section P of constant x‖. Linearization of
the periodic flow transverse to the orbit yields

∫
P

dx⊥δ
(
x⊥ − f

rTp
⊥ (x)

)
=

1∣∣∣∣det
(
1 − Mr

p

)∣∣∣∣ , (33.24)

where Mp is the p-cycle [d×d] transverse Jacobian matrix, and as in (18.5) we have
to assume hyperbolicity, i.e., that the magnitudes of all transverse eigenvalues are
bounded away from unity. ⇓PRIVATE

13Predrag: change σ→ τ′ here
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33.5 Straying from the True Path: the cost

As machines become more and more efficient and perfect,
so it will become clear that imperfection is the greatness
of man.

— Ernst Fischer

14 Newton descent derived from path integral for a weakly stochastic Langevin
flow. Stepwise error

Fi = x̃i+1 − f δτi (x̃i)

where x̃i+1 is the next path point, and fδτi (x̃i) is the point to which the flow trans-
ports x̃i. Cost function for discrete time iterations

F2 =

N∑
i=0

1
δτi

(
x̃i+1 − f δτi(x̃i)

)2

Dimensionally F2 = [lenght]2/[time] = diffusion

rewrite as

F2 =

N∑
i=0

1
δτi

(
x̃i+1 − x̃i − f δτi (x̃i) − x̃i

)2

=

N∑
i=0

δτi

(
x̃i+1 − x̃i

δτi
− f δτi(x̃i) − x̃i

δτi

)2

δτi → 0 continuous time limit:

F2 =

∫ T

0
dt

(
dx̃
dt
− v(x̃)

)2

where T = cycle period. Reparametrize

F2 =

∫ T

0
dt

(
dx̃
dt
− v(x̃)

)2

= =

∫ T

0
dt

(
ds
dt

)2 (
ṽ(x̃) − v(x̃)

dt
ds

)2

. (33.25)

To relate time t and the path parameter s consider the Euclidean lengths

14Predrag: Penalizing deviations from the True Path?
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True Path: dx = vdt
Strayed: dx̃ = ṽds
related by projecting path step ṽds onto the true trajectory step vdt

|v|dt
|ṽ|ds

= cos θ , (33.26)

where θ is the angle between v to ṽ

cos θ =
ṽ · v
|ṽ||v| (33.27)

and thus

dt
ds
=

ṽ · v

v2
. (33.28)

F2 =

∫ T

ti=0
dt

(
v2

ṽ · v

)2 (
ṽ(x̃) − v(x̃)

ṽ · v

v2

)2

. (33.29)

decomposing

ṽ = (1 − v ⊗ v

v2
+

v ⊗ v

v2
)ṽ

= = P⊥v + v
v · ṽ

v2
(33.30)

where

P⊥ = 1 − v ⊗ v

v2

projects any vector components transverse to v

Parametrized by the Euclidean length s measured along the guess path L the
cost function is

F2 =

∫ s f

si

ds
v2

v · ṽ
(P⊥ṽ)2 (33.31)

The projection operator P⊥ in the cost function penalizes the local misorien-
tation of the path by projecting on the directions perpendicular to the dynamical
flow vector. ⇑PRIVATE
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33.5.1 Evolution operator for Lyapunov exponents

The key idea is to extending the dynamical system by the tangent space of the
flow, suggested by the standard numerical methods for evaluation of Lyapunov
exponents: start at x0 with an initial infinitesimal tangent space vector η(0) ∈
TMx, and let the flow transport it along the trajectory x(t) = ft(x0).

The dynamics in the (x, η) ∈ U × TUx space is governed by the system of
equations of variations [1]:

ẋ = v(x) , η̇ = Dv(x)η .

Here Dv(x) is the derivative matrix of the flow. We write the solution as

x(t) = f t(x0) , η(t) = Mt(x0) · η0 , (33.32)

with the tangent space vector η transported by the Jacobian matrix Mt(x0) =
∂x(t)/∂x0.

As explained in sect. 4.1, the growth rate of this vector is multiplicative along
the trajectory and can be represented as η(t) = |η(t)|/|η(0)|u(t) where u(t) is a
“unit” vector in some norm ||.||. For asymptotic times and for almost every initial
(x0, η(0)), this factor converges to the leading eigenvalue of the linearized Jacobian
matrix of the flow.

We implement this multiplicative evaluation of Floquet multipliers by adjoin-
ing the d-dimensional transverse tangent space η ∈ TMx; η(x)v(x) = 0 to the
(d+1)-dimensional dynamical evolution space x ∈ M ⊂ Rd+1. In order to deter-
mine the length of the vector η we introduce a homogeneous differentiable scalar
function g(η) = ||η||. It has the property g(Λη) = |Λ|g(η) for any Λ. An example is
the projection of a vector to its dth component

g

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
η1
η2
· · ·
ηd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = |ηd | .

Any vector η ∈ TUx can now be represented by the product η = Λu, where u
is a “unit” vector in the sense that its norm is ||u|| = 1, and the factor

Λt(x0, u0) = g(η(t)) = g(Mt(x0) · u0) (33.33)

is the multiplicative “stretching” factor.
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Unlike the leading eigenvalue of the Jacobian the stretching factor is multi-
plicative along the trajectory:

Λt′+t(x0, u0) = Λt′(x(t), u(t))Λt(x0, u0).
exercise J.1

The u evolution constrained to ETg,x, the space of unit transverse tangent vectors,
is given by rescaling of (33.32):

u′ = Rt(x, u) =
1

Λt(x, u)
Mt(x) · u . (33.34)

Eqs. (33.32), (33.33) and (33.34) enable us to define a multiplicative evolution
operator on the extended space U × ETg,x

Lt(x′, u′; x, u) = δ
(
x′ − f t(x)

) δ(u′ − Rt(x, u)
)

|Λt(x, u)|β−1
, (33.35)

where β is a variable.

We note next that if the trajectory ft(x) is periodic with period T , the tangent
space contains d periodic solutions

e(i)(x(T + t)) = e(i)(x(t)) , i = 1, ..., d,

corresponding to the d unit eigenvectors {e(1), e(2), · · · , e(d)} of the transverse Jaco-
bian matrix, with “stretching” factors (33.33) given by its eigenvalues

Mp(x) · e(i)(x) = Λp,i e(i)(x) , i = 1, ..., d. (no summation on i)

The
∫

du integral in (??) picks up contributions from these periodic solutions. In
order to compute the stability of the ith eigen-direction solution, it is convenient to
expand the variation around the eigenvector e(i) in the Jacobian matrix eigenbasis
δu =

∑
δu� e(�) . The variation of the map (33.34) at a complete period t = T is

then given by

δRT (e(i)) =
M · δu

g(M · e(i))
− M · e(i)

g(M · e(i))2

(
∂g(e(i))
∂u

· M · δu
)

=
∑
k�i

Λp,k

Λp,i

(
e(k) − e(i) ∂g(e(i))

∂uk

)
δuk . (33.36)

The δui component does not contribute to this sum since g(e(i) + duie(i)) = 1 + dui

implies ∂g(e(i))/∂ui = 1. Indeed, infinitesimal variations δu must satisfy

g(u + δu) = g(u) = 1 =⇒
d∑
�=1

δu�
∂g(u)
∂u�

= 0 ,
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periodic!orbit!extraction—)
stationary phase

so the allowed variations are of form

δu =
∑
k�i

(
e(k) − e(i) ∂g(e(i))

∂uk

)
ck , |ck | � 1 ,

and in the neighborhood of the e(i) eigenvector the
∫

du integral can be expressed
as

∫
g

du =
∫ ∏

k�i

dck .

⇑PRIVATE
15 16 17 18 19

Résumé

Unlike the Newton-Raphson method, variational methods are very robust. As each
step around a cycle is short, they do not suffer from exponential instabilities, and
with rather coarse initial guesses one can determine cycles of arbitrary length.

Commentary

Remark 33.1 Piecewise linear maps. The Lozi map (3.19) is linear, and 100,000’s
of cycles can be easily computed by [2x2] matrix multiplication and inversion.

Remark 33.2 Relaxation method. The relaxation (or gradient) algorithm is one of the
methods for solving extremal problems [13]. The method described above was introduced
by Biham and Wenzel [1], who have also generalized it (in the case of the Hénon map)
to determination of all 2n cycles of period n, real or complex [2]. The applicability and
reliability of the method is discussed in detail by Grassberger, Kantz and Moening [ 5],
who give examples of the ways in which the method fails: (a) it might reach a limit
cycle rather than a equilibrium saddle point (that can be remedied by the complex Biham-
Wenzel algorithm [2]) (b) different symbol sequences can converge to the same cycle
(i.e., more refined initial conditions might be needed). Furthermore, Hansen (ref. [ 7]
and chapter 4. of ref. [23]) has pointed out that the method cannot find certain cycles
for specific values of the Hénon map parameters. In practice, the relaxation method for
determining periodic orbits of maps appears to be effective almost always, but not always.
It is much slower than the multipoint shooting method of sect. 13.3, but also much quicker
to program, as it does not require evaluation of stability matrices and their inversion. If the
complete set of cycles is required, the method has to be supplemented by other methods.

15Predrag: “exercise” - formulate such method for flows
16Predrag: Prepare Lozi map exercise
17Predrag: fill in Resume
18Predrag: (33.37) is not checked at all yet
19Predrag: In remark 33.5recheck 0.4645, 0.463, 1.274 ; give references
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attractor

Lyapunov!exponent!Hénon
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Remark 33.3 Hybrid Newton-Raphson/relaxation methods. The method discussed
in sect. 33.2 was introduced by Schmelcher et al [9]. The method was extended to flows
by means of the Poincaré surface of section technique in ref. [ 10]. It is also possible to
combine the Newton-Raphson method and (33.13) in the construction of a transformed
map [14]. In this approach, each step of the iteration scheme is a linear superposition of
a step of the stability transformed system and a step of the Newton-Raphson algorithm.
Far from the linear neighborhood the weight is dominantly on the globally acting stability
transformation algorithm. Close to the fixed point, the steps of the iteration are dominated
by the Newton-Raphson procedure.

Remark 33.4 Relation to the Smale horseshoe symbolic dynamics. For a complete
horseshoe Hénon repeller (a sufficiently large), such as the one given in figure 33.2, the
signs σi ∈ {1,−1} are in a 1-to-1 correspondence with the Smale horsheshoe symbolic
dynamics si ∈ {0, 1}:

si =

{
0 if σi = −1 , xi < 0
1 if σi = +1 , xi > 0 . (33.37)

For arbitrary parameter values with a finite subshift symbolic dynamics or with arbitrar-
ily complicated pruning, the relation of sign sequences {σ 1, σ2, · · · , σn} to the itineraries
{s1, s2, · · · , sn} can be much subtler; this is discussed in ref. [5].

⇓PRIVATE

Remark 33.5 A compilation of the Hénon map numerical results. For the record -
the most accurate estimates of various averages for the Hénon map, Hénon’s parameters
choice a = 1.4, b = 0.3, known to the authors, are: the topological entropy ( 15.1) is
h = 0.4645??, the Lyapunov exponent = 0.463, the Hausdorff dimension D H = 1.274(2). ⇓PRIVATE

⇑PRIVATE

Remark 33.6 Software for searching for periodic solutions. Herb Keller and col-
laborators [?, ?, 28] like to think of periodic orbit searches as ‘2-point boundary value’
problems. By rescaling the period from T p to 2π and adding T p as an additional vari-
able to be determined, they keep fixed discretization of the time interval. We ensure that
the end point is on the Poincaré section by the Hénon trick described in sect. 3.2; that is
perhaps not as elegant.

Bard Ermentrout’s description of AUTO makes it look very much like our variational
method [15, 16]: AUTO solves boundary value problems by solving

xn+1 − xn

Δt
− F(xn) = 0 (33.38)

as a big system of algebraic equations, G(x) = 0. One needs to fix marginal directions;
that is called the colocation method.

⇑PRIVATE

Remark 33.7 Ikeda map. Ikeda map (33.11) was introduced in ref. [12] is a model
which exhibits complex dynamics observed in nonlinear optical ring cavities.
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Remark 33.8 Relaxation for continuous time flows. For a d-dimensional flow
ẋ = v(x), the method described above can be extended by considering a Poincaré sur-
face of section. The Poincaré section yields a map f with dimension d-1, and the above
discrete iterative maps procedures can be carried out. A method that keeps the trial or-
bit continuous throughout the calculation is the Newton descent, a variational method for
finding periodic orbits of continuous time flows, is described in refs. [ 15, 16].

Remark 33.9 Stability ordering. The parameter Δτ in (33.13) is a key quantity
here. It is related to the stability of the desired cycle in the transformed system: The
more unstable a fixed point is, the smaller Δτ has to be to stabilize it. With increasing
cycle periods, the unstable eigenvalue of the Jacobian matrix increases and therefore Δτ
has to be reduced to achieve stabilization of all fixed points. In many cases the least
unstable cycles of a given period n are of physically most important [ 11]. In this context

section 20.6
Δτ operates as a stability filter. It allows the selective stabilization of only those cycles
which posses Lyapunov exponents smaller than a cut-off value. If one starts the search
for cycles within a given period n with a value Δτ ≈ O(10−1), and gradually lowers Δτ
one obtains the sequence of all unstable orbits of order n sorted with increasing values
of their Lyapunov exponents. For the specific choice of C the relation between Δτ and
the stability coefficients of the fixed points of the original system is strictly monotonous.
Transformed dynamical systems with other C’s do not obey such a strict behavior but
show a rough ordering of the sequence of Floquet multipliers of the fixed points stabilized
in the course of decreasing values for Δτ. As explained in sect. 20.6, stability ordered
cycles are needed to order cycle expansions of dynamical quantities of chaotic systems
for which a symbolic dynamics is not known. For such systems, an ordering of cycles
with respect to their stability has been proposed [15, 16, ?], and shown to yield good
results in practical applications.

Remark 33.10 Action extremization method. The action extremization (sect. 33.3)
as a numerical method for finding cycles has been introduced independently by many
people. We have learned it from G. Russberg, and from M. Sieber’s and F. Steiner’s
hyperbola billiard computations [17, 18]. The convergence rate is really impressive, for
the Sinai billiard some 5000 cycles are computed within CPU seconds with rather bad
initial guesses.

Variational methods are the key ingredient of the Aubry-Mather theory of area-preserving
twist maps (known in the condensed matter literature as the Frenkel-Kontorova models of
1-dimensional crystals), discrete-time Hamiltonian dynamical systems particularly suited
to explorations of the K.A.M. theorem. Proofs of the Aubry-Mather theorem [ 20] on
existence of quasi-periodic solutions are variational. It was quickly realized that the vari-
ational methods can also yield reliable, high precision computations of long periodic or-
bits of twist map models in 2 or more dimensions, needed for K.A.M. renormalization
studies [19].

A fictitious time gradient flow similar to the one discussed here in sect. 33.1 was
introduced by Anegent [21] for twist maps, and used by Gole [22] in his proof of the
Aubry-Mather theorem. Mathematical bounds on the regions of stability of K.A.M. tori
are notoriously restrictive compared to the numerical indications, and de la Llave, Fal-
colini and Tompaidis [23, 24] have found the gradient flow formulation advantageous
both in studies of the analyticity domains of the K.A.M. stability, as well as proving the
Aubry-Mather theorem for extended systems (for a pedagogical introduction, see the lat-
tice dynamics section of ref. [25]).
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generating functionAll of the twist-maps work is based on extremizing the discrete dynamics version of
the action S (in this context sometimes called a “generating function”). However, in their
investigations in the complex plane, Falcolini and de la Llave [23] do find it useful to
minimize instead S S̄ , analogous to our cost function (33.3).
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Exercises boyscout

33.1. Evaluation of billiard cycles by minimization∗. Given
a symbol sequence, you can construct a guess trajectory
by taking a point on the boundary of each disk in the
sequence, and connecting them by straight lines. If this
were a rubber band wrapped through 3 rings, it would
shrink into the physical trajectory, which minimizes the
action (in this case, the length) of the trajectory.

Write a program to find the periodic orbits for your bil-
liard simulator. Use the least action principle to extremize
the length of the periodic orbit, and reproduce the peri-
ods and stabilities of 3-disk cycles, table 33.3. (One such
method is given in sect. 33.3.) After that check the ac-
curacy of the computed orbits by iterating them forward
with your simulator. What is your error | f Tp (x) − x|?

33.2. Tracking cycles adiabatically∗. Once a cycle has been
found, orbits for different system parameters values may
be obtained by varying slowly (adiabatically) the param-
eters, and using the old orbit points as starting guesses in
the Newton method. Try this method out on the 3-disk
system. It works well for R : a sufficiently large. For
smaller values, some orbits change rather quickly and re-
quire very small step sizes. In addition, for ratios below
R : a = 2.04821419 . . . families of cycles are pruned, i.e.
some of the minimal length trajectories are blocked by
intervening disks. (See sect. ??.)

⇓PRIVATE

⇑PRIVATE33.3. Cycles of the Hénon map. Apply the method of
sect. 33.1 to the Hénon map at the Hénon’s parameters
choice a = 1.4, b = 0.3, and compute all prime cycles
for at least n ≤ 6. Estimate the topological entropy, either
from the definition (15.1), or as the zero of a truncated
topological zeta function (15.29). Do your cycles agree
with the cycles listed in table 33.1?
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Chapter 34

Limbo

The “thermodynamic” functions extracted from the partition sum (?!) exhibit
a phenomenon that might have gone unnoticed were it not for the thermo-
dynamic formalism. They can undergo “phase transitions.”

34.1 Phase transitions
Ronnie: When stability
goes to one the scaling
function falls off slower
than 1/n2 and there is a
phase transition.

These phase transitions can be visualized in the following way: the exponent τ
acts as a “magnifying lens” which blows up some of the covering intervals, and
(relatively) shrinks the others, figure 34.1. For negative τ, the fat intervals are ex-
panded, and the thin ones are made even thinner. For positive τ, the thin intervals
are (relatively) blown up. Below the phase transition, the sum is dominated by a
few fat intervals. Visually, the cover consists of a few black blocks and vanishing
amount of fine “dust.” Above the phase transition, the large number of thin inter-
vals overwhelms the few fat ones; visually, the set looks gray. The phase transition
can be of first order, or infinite order.

34.2 Scaling, presentation functions
Ronnie: How to in-
terpret the dynamics in
terms of statistical me-
chanics by thinking of
the scaling function as
the potential.

1
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1Predrag: remember to incorporate book/chapter/scaling.tex
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Figure 34.1: A phase transition visualized.
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Chapter 35

Prologue

Anyone who uses words “quantum” and “chaos” in the
same sentence should be hung by his thumbs on a tree in
the park behind the Niels Bohr Institute.

—Joseph Ford

(G. Vattay, G. Tanner and P. Cvitanović)

You have read the first volume of this book. So far, so good – anyone can
play a game of classical pinball, and a skilled neuroscientist can poke rat
brains. We learned that information about chaotic dynamics can be ob-

tained by calculating spectra of linear operators such as the evolution operator
of sect. 17.2 or the associated partial differential equations such as the Liouville
equation (16.36). The spectra of these operators can be expressed in terms of pe-
riodic orbits of the deterministic dynamics by means of periodic orbit expansions.
1

But what happens quantum mechanically, i.e., if we scatter waves rather than
point-like pinballs? Can we turn the problem round and study linear PDE’s in
terms of the underlying deterministic dynamics? And, is there a link between
structures in the spectrum or the eigenfunctions of a PDE and the dynamical prop-
erties of the underlying classical flow? The answer is yes, but . . . things are be-
coming somewhat more complicated when studying 2nd or higher order linear
PDE’s. We can find classical dynamics associated with a linear PDE, just take ge-
ometric optics as a familiar example. Propagation of light follows a second order
wave equation but may in certain limits be well described in terms of geometric
rays. A theory in terms of properties of the classical dynamics alone, referred ⇓PRIVATE

chapter 45

chapter 44

⇑PRIVATE

to here as the semiclassical theory, will not be exact, in contrast to the classi-
cal periodic orbit formulas obtained so far. Waves exhibit new phenomena, such
as interference, diffraction, and higher � corrections which will only be partially
incorporated into the periodic orbit theory. 2

⇓PRIVATE
1Predrag: add Per sect 5.8.
2Predrag: pointer to � corrections chapter here
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Keplerian orbit
orbit!Keplerian
Balmer spectrum
spectrum!Balmer
Bohr-Sommerfeld

quantization
Bohr-de˜Broglie

picture
quantization!Bohr-

Sommerfeld

What is “Quantum Chaos”? The approaches tried fall roughly into four cate-
gories:

• semiclassics - quantum manifestations of dynamics that is classically chaotic.
This is the operational definition of “Quantum Chaos” for purposes of this
book.

• random matrix theory of spetral statistics and its connections to semiclassics

• statistical properties of quantum wavefunctions, scars due to underlying
classical dynamics

• quantum suppresion of diffusion; localization, quantum incoherence

This book covers, rather incompletely, only the first topic: semiclassical mani-
festations of quantum chaos. Random matrix theory has its own rich methodology
unrelated to the themes developed here. Physically the most profound (but not
discussed here either) is the quantum suppresion of diffusion, observed in atomic
systems and ultra cold gases.

The real issue here is the issue of “delocalization time” TE , or the time of
validity of semiclassics in describing quantum evolution. On intuitive grounds,
this is often assumed to be the Ehrenfest time TE ≈ 1

λ ln 1
�
, the time at which the

finest classical fractal structure (typical length e−λTE ) becomes comparable to size
of quantum phase space cells: N = volume/�D, ln(1/N1/D) ≈ ln�. 3 The question
of in which order one is allow to take the limits t → ∞, 1/� → ∞ is subtler than
the Ehrenfest time estimate would imply.

⇑PRIVATE

35.1 Quantum pinball

In what follows, we will restrict the discussion to the non-relativistic Schrödinger
equation. 4 The approach will be very much in the spirit of the early days of quan-
tum mechanics, before its wave character has been fully uncovered by Schrödinger
in the mid 1920’s. Indeed, were physicists of the period as familiar with classical
chaos as we are today, this theory could have been developed 80 years ago. It was
the discrete nature of the hydrogen spectrum which inspired the Bohr - de Broglie
picture of the old quantum theory: one places a wave instead of a particle on a
Keplerian orbit around the hydrogen nucleus. The quantization condition is that
only those orbits contribute for which this wave is stationary; from this followed
the Balmer spectrum and the Bohr-Sommerfeld quantization which eventually led
to the more sophisticated theory of Heisenberg, Schrödinger and others. Today
we are very aware of the fact that elliptic orbits are an idiosyncracy of the Kepler
problem, and that chaos is the rule; so can the Bohr quantization be generalized
to chaotic systems?

3Predrag: replace ≈ by similar
4Gregor: Reference to diffusion equation?

introQM - 10jul2006 boyscout version14.4, Mar 19 2013



CHAPTER 35. PROLOGUE 816

resonances!quantum
quantum!resonances

The question was answered affirmatively by M. Gutzwiller, as late as 1971: a
chaotic system can indeed be quantized by placing a wave on each of the infinity
of unstable periodic orbits. Due to the instability of the orbits the wave does not
stay localized but leaks into neighborhoods of other periodic orbits. Contributions
of different periodic orbits interfere and the quantization condition can no longer
be attributed to a single periodic orbit: A coherent summation over the infinity of
periodic orbit contributions gives the desired spectrum. 5

The pleasant surprise is that the zeros of the dynamical zeta function (1.10)
derived in the context of classical chaotic dynamics,

chapter 19

1/ζ(z) =
∏

p

(1 − tp) ,

also yield excellent estimates of quantum resonances, with the quantum amplitude
associated with a given cycle approximated semiclassically by the weight

tp =
1

|Λp|
1
2

e
i
�

S p−iπmp/2 , (35.1)

whose magnitude is the square root of the classical weight (19.10)

tp =
1
|Λp|

eβ·Ap−sTp ,

6 and the phase is given by the Bohr-Sommerfeld action integral Sp, together with
an additional topological phase mp, the number of caustics along the periodic
trajectory, points where the naive semiclassical approximation fails.

chapter 38

In this approach, the quantal spectra of classically chaotic dynamical systems
are determined from the zeros of dynamical zeta functions, defined by cycle ex-
pansions of infinite products of form

chapter 20

1/ζ =
∏

p

(1 − tp) = 1 −
∑

f

t f −
∑

k

ck (35.2)

with weight tp associated to every prime (non-repeating) periodic orbit (or cycle)
p.

The key observation is that the chaotic dynamics is often organized around a
few fundamental cycles. These short cycles capture the skeletal topology of the
motion in the sense that any long orbit can approximately be pieced together from

5Predrag: credit Brack
6Niall: I am confused. The first weight is only the square root of the classical one if you set

beta=s=0...
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hyperbolic!systems
intermittency
resonances!complex
open system

the fundamental cycles. In chapter 20 it was shown that for this reason the cy-
cle expansion (35.2) is a highly convergent expansion dominated by short cycles
grouped into fundamental contributions, with longer cycles contributing rapidly
decreasing curvature corrections. Computations with dynamical zeta functions
are rather straightforward; typically one determines lengths and stabilities of a fi-
nite number of shortest periodic orbits, substitutes them into (35.2), and estimates
the zeros of 1/ζ from such polynomial approximations.

From the vantage point of the dynamical systems theory, the trace formulas
(both the exact Selberg and the semiclassical Gutzwiller trace formula) fit into
a general framework of replacing phase space averages by sums over periodic
orbits. For classical hyperbolic systems this is possible since the invariant density

chapter 39
can be represented by sum over all periodic orbits, with weights related to their
instability. The semiclassical periodic orbit sums differ from the classical ones
only in phase factors and stability weights; such differences may be traced back
to the fact that in quantum mechanics the amplitudes rather than the probabilities
are added.

The type of dynamics has a strong influence on the convergence of cycle ex-
pansions and the properties of quantal spectra; this necessitates development of
different approaches for different types of dynamical behavior such as, on one
hand, the strongly hyperbolic and, on the other hand, the intermittent dynamics
of chapters 20 and 24. For generic nonhyperbolic systems (which we shall not

chapter 20

chapter 24
discuss here), with mixed phase space and marginally stable orbits, periodic orbit
summations are hard to control, and it is still not clear that the periodic orbit sums
should necessarily be the computational method of choice.

Where is all this taking us? The goal of this part of the book is to demonstrate
that the cycle expansions, developed so far in classical settings, are also a powerful
tool for evaluation of quantum resonances of classically chaotic systems.

First, we shall warm up playing our game of pinball, this time in a quan-
tum version. Were the game of pinball a closed system, quantum mechanically
one would determine its stationary eigenfunctions and eigenenergies. For open
systems one seeks instead complex resonances, where the imaginary part of the
eigenenergy describes the rate at which the quantum wave function leaks out of
the central scattering region. This will turn out to work well, except who truly
wants to know accurately the resonances of a quantum pinball? 7

chapter 40

35.2 Quantization of helium

Once we have derived the semiclassical (35.1) weight associated with the periodic
orbit p, we will finally be in position to accomplish something altogether remark-
able. We are now able to put together all ingredients that make the game of pinball
unpredictable, and compute a “chaotic” part of the helium spectrum to shocking

7Niall: Do you want to mention why you look at open systems: complete grammars and so on...
PC perhaps develop this theme?
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three body@3-body
problem

collinear helium
helium!collinear
repeller
quantum!chaos

Figure 35.1: A typical collinear helium trajectory in
the r1 – r2 plane; the trajectory enters along the r1 axis
and escapes to infinity along the r2 axis.
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accuracy. From the classical dynamics point of view, helium is an example of
Poincaré’s dreaded and intractable 3-body problem. Undaunted, we forge ahead
and consider the collinear helium, with zero total angular momentum, and the
two electrons on the opposite sides of the nucleus.

8

++- -

We set the electron mass to 1, the nucleus mass to ∞, the helium nucleus charge
chapter 43

to 2, the electron charges to -1. The Hamiltonian is

H =
1
2

p2
1 +

1
2

p2
2 −

2
r1
− 2

r2
+

1
r1 + r2

. (35.3)

Due to the energy conservation, only three of the phase space coordinates (r1, r2, p1, p2)
are independent. The dynamics can be visualized as a motion in the (r1, r2), ri ≥ 0
quadrant, figure 35.1, or, better still, by a well chosen 2-dimensional Poincaré
section.

The motion in the (r1, r2) plane is topologically similar to the pinball motion
in a 3-disk system, except that the motion is not free, but in the Coulomb poten-
tial. The classical collinear helium is also a repeller; almost all of the classical
trajectories escape. Miraculously, the symbolic dynamics for the survivors turns
out to be binary, just as in the 3-disk game of pinball, so we know what cycles
need to be computed for the cycle expansion (1.11). A set of shortest cycles up to
a given symbol string length then yields an estimate of the helium spectrum. This

chapter 43
simple calculation yields surprisingly accurate eigenvalues; even though the cycle
expansion was based on the semiclassical approximation (35.1) which is expected
to be good only in the classical large energy limit, the eigenenergies are good to
1% all the way down to the ground state.

Before we can get to this point, we first have to recapitulate some basic notions
of quantum mechanics; after having defined the main quantum objects of interest,
the quantum propagator and the Green’s function, we will relate the quantum
propagation to the classical flow of the underlying dynamical system. We will then
proceed to construct semiclassical approximations to the quantum propagator and

8Predrag: thank Kai
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random matrix theory
quantum!chaos

the Green’s function. A rederivation of classical Hamiltonian dynamics starting
from the Hamilton-Jacobi equation will be offered along the way. The derivation
of the Gutzwiller trace formula and the semiclassical zeta function as a sum and as
a product over periodic orbits will be given in chapter39. In subsequent chapters
we buttress our case by applying and extending the theory: a cycle expansion
calculation of scattering resonances in a 3-disk billiard in chapter40, the spectrum
of helium in chapter 43, and the incorporation of diffraction effects in chapters44 ⇓PRIVATE
and 45. 9 10

⇑PRIVATE

Commentary

Remark 35.1 Guide to literature. A key prerequisite to developing any theory of
“quantum chaos” is solid understanding of Hamiltonian mechanics. For that, Arnol’d
monograph [5] is the essential reference. Ozorio de Almeida’s monograph [ 9] offers a
compact introduction to the aspects of Hamiltonian dynamics required for the quantization
of integrable and nearly integrable systems, with emphasis on periodic orbits, normal
forms, catastrophy theory and torus quantization. The book by Brack and Bhaduri [ 1]
is an excellent introduction to the semiclassical methods. Gutzwiller’s monograph [ 2]
is an advanced introduction focusing on chaotic dynamics both in classical Hamiltonian
settings and in the semiclassical quantization. This book is worth browsing through for
its many insights and erudite comments on quantum and celestial mechanics even if one
is not working on problems of quantum chaos. More suitable as a graduate course text is
Reichl’s exposition [3]. 11

This book does not discuss the random matrix theory approach to chaos in quantal
spectra; no randomness assumptions are made here, rather the goal is to milk the deter-
ministic chaotic dynamics for its full worth. The book concentrates on the periodic orbit
theory. For an introduction to “quantum chaos” that focuses on the random matrix theory
the reader is referred to the excellent monograph by Haake [ 4], among others.

Remark 35.2 The dates. Schrödinger’s first wave mechanics paper [3] (hydrogen
spectrum) was submitted 27 January 1926. Submission date for Madelung’s ‘quantum
theory in hydrodynamical form’ paper [ 2] was 25 October 1926.

9Predrag: add Bluhmel to literature
10Mason: do you discuss “scarring” anywhere? PC: no, I do not find it compelling, neither

mathematically nor physically
11Predrag: include the Stöckmann experimental book

introQM - 10jul2006 boyscout version14.4, Mar 19 2013



REFERENCES 820

References

[35.1] M. Brack and R.K. Bhaduri, Semiclassical Physics (Addison-Wesley, New
York 1997).

[35.2] M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer,
New York 1990).

[35.3] L.E. Reichl, The Transition to Chaos in Conservative Classical Systems:
Quantum Manifestations (Springer-Verlag, New York 1992).

[35.4] F. Haake, Quantum Signatures of Chaos, 3. edition (Springer-Verlag, New
York 2010).

[35.5] V.I. Arnold, Mathematical Methods in Classical Mechanics (Springer-
Verlag, Berlin 1978).

refsIntroQM - 13jun2008 boyscout version14.4, Mar 19 2013



quantum!mechanics
mechanics!quantum
Schr“”odinger!equation
Hamiltonian!separable
Schr“”odinger!equation,
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Chapter 36

Quantum mechanics
the short short version

We start with a review of standard quantum mechanical concepts prereq-
uisite to the derivation of the semiclassical trace formula.

In coordinate representation, the time evolution of a quantum mechanical
wave function is governed by the Schrödinger equation

i�
∂

∂t
ψ(q, t) = Ĥ

(
q,
�

i
∂

∂q

)
ψ(q, t), (36.1)

where the Hamilton operator Ĥ(q,−i�∂q) is obtained from the classical Hamilto-
nian by substituting p → −i�∂q. Most of the Hamiltonians we shall consider here
are of the separable form

H(q, p) = T (p) + V(q) , T (p) = p2/2m , (36.2)

describing dynamics of a particle in a D-dimensional potential V(q). For time-
independent Hamiltonians we are interested in finding stationary solutions of the
Schrödinger equation of the form

ψn(q, t) = e−iEnt/�φn(q), (36.3)

where En are the eigenenergies of the time-independent Schrödinger equation

Ĥφ(q) = Eφ(q) . (36.4)

⇓PRIVATE
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Hilbert!space
open system

If the kinetic term T (p) can be separated as in (36.2), the time-independent Schrödinger
equation 1

− �
2

2m
∂2φ(q) + V(q)φ(q) = Eφ(q) (36.5)

can be rewritten in terms of a local wavenumber

[
∂2 + k2(q)

]
φ = 0 , �k(q) =

√
2m(E − V(q)) . (36.6)

⇑PRIVATE

For bound systems, the spectrum is discrete and the eigenfunctions form an
orthonormal, 2

∫
dqφn(q)φ∗m(q) = δnm , (36.7)

and complete,

∑
n

φn(q)φ∗n(q′) = δ(q − q′) , (36.8)

set of functions in a Hilbert space. Here and throughout the text,

∫
dq =

∫
dq1dq2...dqD. (36.9)

For simplicity, we will assume that the system is bound, although most of the
results will be applicable to open systems, where one has complex resonances

chapter 40
instead of real energies, and the spectrum has continuous components.

A given wave function can be expanded in the energy eigenbasis

ψ(q, t) =
∑

n

cne−iEnt/�φn(q) , (36.10)

where the expansion coefficient cn is given by the projection of the initial wave
function ψ(q, 0) onto the nth eigenstate

cn =

∫
dqφ∗n(q)ψ(q, 0). (36.11)

1Predrag: 2012-10-25 move this to WKB.tex.
2Mason: there are exceptions, see Ford and (I think) Ily, refer to and discuss in the remarks.
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evolution!operator!quantum
quantum!evolution
quantum!propagator
propagator
delta function!Dirac
Green’s

function!energy
dependent

Laplace!transform

By substituting (36.11) into (36.10), we can cast the evolution of a wave function
into a multiplicative form

ψ(q, t) =
∫

dq′K(q, q′, t)ψ(q′, 0) ,

with the kernel

K(q, q′, t) =
∑

n

φn(q) e−iEn t/�φ∗n(q′) (36.12)

called the quantum evolution operator, or the propagator. Applied twice, first for
time t1 and then for time t2, it propagates the initial wave function from q′ to q′′,
and then from q′′ to q

K(q, q′, t1 + t2) =
∫

dq′′ K(q, q′′, t2)K(q′′, q′, t1) (36.13)

forward in time (hence the name ‘propagator’). In non-relativistic quantum me-
chanics, the range of q′′ is infinite, so that the wave can propagate at any speed;
in relativistic quantum mechanics, this is rectified by restricting the propagation
to the forward light cone.

Because the propagator is a linear combination of the eigenfunctions of the
Schrödinger equation, it too satisfies this equation

i�
∂

∂t
K(q, q′, t) = Ĥ

(
q,

i
�

∂

∂q

)
K(q, q′, t) , (36.14)

and is thus a wave function defined for t ≥ 0; from the completeness relation
(36.8), we obtain the boundary condition at t = 0:

⇓PRIVATE

exercise ??
⇑PRIVATElim

t→0+
K(q, q′, t) = δ(q − q′) . (36.15)

The propagator thus represents the time-evolution of a wave packet starting out as
a configuration space delta-function localized at the point q′ at initial time t = 0.

For time-independent Hamiltonians, the time dependence of the wave func-
tions is known as soon as the eigenenergies En and eigenfunctions φn have been
determined. With time dependence taken care of, it makes sense to focus on the
Green’s function, which is the Laplace transform of the propagator3 4

⇓PRIVATE

exercise 36.2

⇑PRIVATE

3Predrag: IOP usage is: Green function
4Mason: Philosophical question - why do physicists use iε instead of the principal value? Might

want to mention that the stuff can be written in another way...
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Green’s function!trace
density of

states!quantum
Green’s

function!density of
states

density of
states!Green’s
function

spectral!staircase
staircase!spectral

G(q, q′, E + iε) =
1
i�

∫ ∞

0
dt e

i
�

Et− ε
�

tK(q, q′, t) =
∑

n

φn(q)φ∗n(q′)

E − En + iε
. (36.16)

Here, ε is a small positive number, ensuring the existence of the integral. The
eigenenergies show up as poles in the Green’s function with residues correspond-
ing to the wave function amplitudes. If one is only interested in spectra, one may
restrict oneself to the (formal) trace of the Green’s function,

tr G(q, q′, E) =
∫

dq G(q, q, E) =
∑

n

1
E − En

, (36.17)

where E is complex, with a positive imaginary part, and we have used the eigen-
function orthonormality (36.7). This trace is formal, because the sum in (36.17)
is often divergent. 5 We shall return to this point in sects. 39.1.1 and 39.1.2. 6

A useful characterization of the set of eigenvalues is given in terms of the
density of states, with a delta function peak at each eigenenergy, figure36.1 (a),

d(E) =
∑

n

δ(E − En). (36.18)

Using the identity
exercise 36.1

δ(E − En) = − lim
ε→+0

1
π

Im
1

E − En + iε
(36.19)

we can express the density of states in terms of the trace of the Green’s function.
That is,

d(E) =
∑

n

δ(E − En) = − lim
ε→0

1
π

Im tr G(q, q′, E + iε). (36.20)

section 39.1.1

As we shall see (after “some” work), a semiclassical formula for the right-hand-
side of this relation yields the quantum spectrum in terms of periodic orbits.

The density of states can be written as the derivative d(E) = dN(E)/dE of the
spectral staircase function

N(E) =
∑

n

Θ(E − En) (36.21)

5Niall: The convergence depends on the density of states. For a 1D infinite square well the
energies are proportional to n2 and the equation above would converge. I think (but may be wrong,
I am going on memory) that there is a complementarity. If the trace of the propagator converges the
trace of the Green’s function does not and vice-versa. By the way, you may want to write down the
trace of the propagator as K(t) =

∑
n exp(−iEnt/�).

6Gregor: Cite Voros, Sieber ...
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Heaviside function
Dirac delta
Lorentzian
Green’s function

Figure 36.1: Schematic picture of a) the density
of states d(E), and b) the spectral staircase func-
tion N(E). The dashed lines denote the mean den-
sity of states d̄(E) and the average number of states
N̄(E) discussed in more detail in sect. 39.1.1.

which counts the number of eigenenergies below E, figure36.1 (b). Here Θ is the
Heaviside function

Θ(x) = 1 if x > 0; Θ(x) = 0 if x < 0 . (36.22)

7 The spectral staircase is a useful quantity in many contexts, both experimen-
tal and theoretical. This completes our lightning review of quantum mechanics. 8

9

10

11

Exercises boyscout

36.1. Dirac delta function, Lorentzian representation. 12

Derive the representation (36.19)

δ(E − En) = − lim
ε→+0

1
π

Im
1

E − En + iε

of a delta function as imaginary part of 1/x.

(Hint: read up on principal parts, positive and negative
frequency part of the delta function, the Cauchy theorem
in a good quantum mechanics textbook).

36.2. Green’s function. Verify Green’s function Laplace
transform (36.16),

G(q, q′, E + iε) =
1
i�

∫ ∞

0
dt e

i
�

Et− ε
�

tK(q, q′, t)

=
∑ φn(q)φ∗n(q′)

E − En + iε

7Predrag: add spect determinant here
8Mason: Maybe add more stuff: Weyl formula?
9Predrag: use acoustics as an example

10Predrag: propagator (31.12), Green’s function (31.16), density of states (31.20)
11Predrag: prepare refsQmech.tex, soluQmech.tex
12Predrag: (23.18) in edition 10?
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argue that positive ε is needed (hint: read a good quantum
mechanics textbook).
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Chapter 37

WKB quantization

The wave function for a particle of energy E moving in a constant potential V
is 1

ψ = Ae
i
�

pq (37.1)

with a constant amplitude A, and constant wavelength λ = 2π/k, k = p/�,
and p = ±

√
2m(E − V) is the momentum. Here we generalize this solution

to the case where the potential varies slowly over many wavelengths. This
semiclassical (or WKB) approximate solution of the Schrödinger equation fails at
classical turning points, configuration space points where the particle momentum
vanishes. In such neighborhoods, where the semiclassical approximation fails,
one needs to solve locally the exact quantum problem, in order to compute con-
nection coefficients which patch up semiclassical segments into an approximate
global wave function.

Two lessons follow. First, semiclassical methods can be very powerful - classi-
cal mechanics computations yield surprisingly accurate estimates of quantal spec-
tra, without solving the Schrödinger equation. Second, semiclassical quantization
does depend on a purely wave-mechanical phenomena, the coherent addition of
phases accrued by all fixed energy phase space trajectories that connect pairs of
coordinate points, and the topological phase loss at every turning point, a topo-
logical property of the classical flow that plays no role in classical mechanics.
2

1Predrag: spelling Brillouin?
2Predrag: move this paragraph to conclusions?
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Figure 37.1: A 1-dimensional potential, location of
the two turning points at fixed energy E.

37.1 WKB ansatz

Consider a time-independent Schrödinger equation in 1 spatial dimension:

− �
2

2m
ψ′′(q) + V(q)ψ(q) = Eψ(q) , (37.2)

with potential V(q) growing sufficiently fast as q → ±∞ so that the classical
particle motion is confined for any E. Define the local momentum p(q) and the
local wavenumber k(q) by

p(q) = ±
√

2m(E − V(q)), p(q) = �k(q) . (37.3)

The variable wavenumber form of the Schrödinger equation

ψ′′ + k2(q)ψ = 0 (37.4)

sugests that the wave function be written as ψ = Ae
i
�

S , A and S real functions of
q. Substitution yields two equations, one for the real and other for the imaginary
part:

(S ′)2 = p2 + �2 A′′

A
(37.5)

S ′′A + 2S ′A′ =
1
A

d
dq

(S ′A2) = 0 . (37.6)

The Wentzel-Kramers-Brillouin (WKB) or semiclassical approximation consists
of dropping the �2 term in (37.5). Recalling that p = �k, this amounts to assuming
that k2 ( A′′

A , which in turn implies that the phase of the wave function is changing
much faster than its overall amplitude. So the WKB approximation can interpreted
either as a short wavelength/high frequency approximation to a wave-mechanical
problem, or as the semiclassical, �� 1 approximation to quantum mechanics.

3

3Predrag: redraw figure 37.1 so asymmetric (this one is copied from Brack, not publishable as
is)
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actionSetting � = 0 and integrating (37.5) we obtain the phase increment of a wave
function initially at q, at energy E

S (q, q′, E) =
∫ q

q′
dq′′p(q′′) . (37.7)

This integral over a particle trajectory of constant energy, called the action, will
play a key role in all that follows. The integration of (37.6) is even easier

A(q) =
C

|p(q)| 12
, C = |p(q′)|

1
2ψ(q′) , (37.8)

where the integration constant C is fixed by the value of the wave function at the
initial point q′. The WKB (or semiclassical) ansatz wave function is given by4

ψsc(q, q′, E) =
C

|p(q)| 12
e

i
�

S (q,q′,E) . (37.9)

In what follows we shall suppress dependence on the initial point and energy in
such formulas, (q, q′, E) → (q).

The WKB ansatz generalizes the free motion wave function (37.1), with the
probability density |A(q)|2 for finding a particle at q now inversely proportional
to the velocity at that point, and the phase 1

�
q p replaced by 1

�

∫
dq p(q), the in-

tegrated action along the trajectory. This is fine, except at any turning point q0,
figure 37.1, where all energy is potential, and

p(q) → 0 as q → q0 , (37.10)

5 so that the assumption that k2 ( A′′
A fails. What can one do in this case? ⇓PRIVATE

The answer, in the form given in standard quantum mechanics textbooks, will
be reviewed in sect. 37.4. However, for the task at hand, a simple physical picture,
due to Maslov, does the job. In the q coordinate, the turning points are defined ⇑PRIVATEby the zero kinetic energy condition (see figure37.1), and the motion appears sin-
gular. This is not so in the full phase space: the trajectory in a smooth confining
1-dimensional potential is always a smooth loop (see figure37.2), with the “spe-
cial” role of the turning points qL, qR seen to be an artifact of a particular choice
of the (q, p) coordinate frame. Maslov proceeds from the initial point (q′, p′) to a
point (qA, pA) preceding the turning point in the ψ(q) representation, then switch
to the momentum representation 6

ψ̃(p) =
1

√
2π�

∫
dq e−

i
�

qpψ(q) , (37.11)

4Predrag: introduce G(q, q′, E) already here
5Predrag: fix up A → ∞
6Predrag: redraw figure 37.2!
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degree of freedom
stationary

phase!approximation
stationary phase
extremal point

Figure 37.2: A 1-dof phase space trajectory of a par-
ticle moving in a bound potential.

continue from (qA, pA) to (qB, pB), switch back to the coordinate representation,

ψ(q) =
1

√
2π�

∫
dp e

i
�

qp ψ̃(p) , (37.12)

and so on. 7

The only rub is that one usually cannot evaluate these transforms exactly. But,
as the WKB wave function (37.9) is approximate anyway, it suffices to estimate
these transforms to the leading order in � accuracy. This is accomplished by the
method of stationary phase.

37.2 Method of stationary phase

All “semiclassical” approximations are based on saddle point evaluations of inte-
grals of the type 8

I =
∫

dx A(x) eisΦ(x) , x,Φ(x) ∈ R , (37.13)

where s is a real parameter, and Φ(x) is a real-valued function. In our applications
s = 1/� will always be assumed large.

For large s, the phase oscillates rapidly and “averages to zero” everywhere
except at the extremal points Φ′(x0) = 0. The method of approximating an integral
by its values at extremal points is called the method of stationary phase. Consider
first the case of a 1-dimensional integral, and expand Φ(x0 + δx) around x0 to
second order in δx,

I =
∫

dx A(x) eis(Φ(x0 )+ 1
2Φ

′′(x0)δx2+...) . (37.14)

Assume (for time being) that Φ′′(x0) � 0, with either sign, sgn[Φ′′] = Φ′′/|Φ′′| =
±1. If in the neighborhood of x0 the amplitude A(x) varies slowly over many

7Predrag: define dof
8Mason: explain “saddle point”
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Fresnel integral
WKB!quantization
quantization!WKB

oscillations of the exponential function, we may retain the leading term in the
Taylor expansion of the amplitude, and approximate the integral up to quadratic
terms in the phase by

I ≈ A(x0) eisΦ(x0)
∫

dx e
1
2 isΦ′′(x0)(x−x0 )2

. (37.15)

The one integral that we know how to integrate is the Gaussian integral
∫

dx e−
x2
2b =√

2πb For for pure imaginary b = i a one gets instead the Fresnel integral formula

exercise 37.1

1
√

2π

∫ ∞

−∞
dx e−

x2
2ia =

√
ia = |a|1/2 ei π4

a
|a| (37.16)

9 we obtain

I ≈ A(x0)
∣∣∣∣∣ 2π
sΦ′′(x0)

∣∣∣∣∣1/2 eisΦ(x0)±i π4 , (37.17)

where ± corresponds to the positive/negative sign of sΦ′′(x0).

37.3 WKB quantization

We can now evaluate the Fourier transforms (37.11), (37.12) to the same order in
� as the WKB wave function using the stationary phase method,

ψ̃sc(p) =
C

√
2π�

∫
dq

|p(q)| 12
e

i
�

(S (q)−qp)

≈ C
√

2π�

e
i
�

(S (q∗)−q∗p)

|p(q∗)| 12

∫
dq e

i
2� S ′′(q∗)(q−q∗)2

, (37.18)

where q∗ is given implicitly by the stationary phase condition

0 = S ′(q∗) − p = p(q∗) − p

and the sign of S ′′(q∗) = p′(q∗) determines the phase of the Fresnel integral
(37.16)

ψ̃sc(p) =
C

|p(q∗)p′(q∗)| 12
e

i
�

[S (q∗)−q∗p]+ iπ
4 sgn[S ′′(q∗)] . (37.19)

9Predrag: recheck the i factor in (37.16)
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As we continue from (qA, pA) to (qB, pB), nothing problematic occurs - p(q∗) is
finite, and so is the acceleration p′(q∗). Otherwise, the trajectory would take in-
finitely long to get across. We recognize the exponent as the Legendre transform

S̃ (p) = S (q(p)) − q(p)p

which can be used to expresses everything in terms of the p variable,

q∗ = q(p),
d

dq
q = 1 =

dp
dq

dq(p)
dp

= q′(p)p′(q∗) . (37.20)

As the classical trajectory crosses qL, the weight in (37.19),

d
dq

p2(qL) = 2p(qL)p′(qL) = −2mV ′(q) , (37.21)

is finite, and S ′′(q∗) = p′(q∗) < 0 for any point in the lower left quadrant, includ-
ing (qA, pA). Hence, the phase loss in (37.19) is −π

4 . To go back from the p to
the q representation, just turn figure 37.2 quarter-turn anticlockwise. Everything
is the same if you replace (q, p) → (−p, q); so, without much ado we get the
semiclassical wave function at the point (qB, pB),

ψsc(q) =
e

i
�

(S̃ (p∗)+qp∗)− iπ
4

|q∗(p∗)| 12
ψ̃sc(p∗) =

C

|p(q)| 12
e

i
�

S (q)− iπ
2 . (37.22)

The extra |p′(q∗)|1/2 weight in (37.19) is cancelled by the |q′(p∗)|1/2 term, by the
Legendre relation (37.20).

The message is that going through a smooth potential turning point the WKB
wave function phase slips by −π2 . This is equally true for the right and the left
turning points, as can be seen by rotating figure 37.2 by 180o, and flipping co-
ordinates (q, p) → (−q,−p). While a turning point is not an invariant concept
(for a sufficiently short trajectory segment, it can be undone by a 45o turn), for a
complete period (q, p) = (q′, p′) the total phase slip is always −2 · π/2, as a loop
always has m = 2 turning points. 10

The WKB quantization condition follows by demanding that the wave function
computed after a complete period be single-valued. With the normalization (37.8),
we obtain

ψ(q′) = ψ(q) =
∣∣∣∣∣ p(q′)

p(q)

∣∣∣∣∣ 1
2

ei( 1
�

∮
p(q)dq−π)ψ(q′) .

10Niall: It is also possible to have +π/2 phase slips if the trajectory plotted in p-q space has con-
cave dimples and is not purely convex. In that case S ′′ > 0 although it may not be very pedagogical
to get into that... PC: forget this comment unless there is an example of interest.
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Figure 37.3: S p(E), the action of a periodic orbit p at
energy E, equals the area in the phase space traced out
by the 1-dof trajectory.

The prefactor is 1 by the periodic orbit condition q = q′, so the phase must be a
multiple of 2π,

1
�

∮
p(q)dq = 2π

(
n +

m
4

)
, (37.23)

where m is the number of turning points along the trajectory - for this 1-dof prob-
lem, m = 2.

The action integral in (37.23) is the area (see figure 37.3) enclosed by the
classical phase space loop of figure 37.2, and the quantization condition says that
eigen-energies correspond to loops whose action is an integer multiple of the unit
quantum of action, Planck’s constant �. The extra topological phase, which, al-
though it had been discovered many times in centuries past, had to wait for its ⇓PRIVATE

appendix A.8

⇑PRIVATE

most recent quantum chaotic (re)birth until the 1970’s. Despite its derivation in a
noninvariant coordinate frame, the final result involves only canonically invariant
classical quantities, the periodic orbit action S , and the topological index m.

37.3.1 Harmonic oscillator quantization

Let us check the WKB quantization for one case (the only case?) whose quantum
mechanics we fully understand: the harmonic oscillator

E =
1

2m

(
p2 + (mωq)2

)
.

The loop in figure 37.2 is now a circle in the (mωq, p) plane, the action is its area
S = 2πE/ω, and the spectrum in the WKB approximation

En = �ω(n + 1/2) (37.24)

turns out to be the exact harmonic oscillator spectrum. The stationary phase condi-
tion (37.18) keeps V(q) accurate to order q2, which in this case is the whole answer
(but we were simply lucky, really). For many 1-dof problems the WKB spectrum
turns out to be very accurate all the way down to the ground state. Surprisingly
accurate, if one interprets dropping the �2 term in (37.5) as a short wavelength
approximation.

WKB - 4nov2010 boyscout version14.4, Mar 19 2013
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stationary phase
Airy!integral
Airy!equation
WKB!connection

formulas
connection formulas
Airy!function

37.4 Beyond the quadratic saddle point

We showed, with a bit of Fresnel/Maslov voodoo, that in a smoothly varying po-
tential the phase of the WKB wave function slips by a π/2 for each turning point.
This π/2 came from a

√
i in the Fresnel integral (37.16), one such factor for every

time we switched representation from the configuration space to the momentum
space, or back. Good, but what does this mean?

11 The stationary phase approximation (37.14) fails whenever Φ′′(x) = 0, or,
in our the WKB ansatz (37.18), whenever the momentum p′(q) = S ′′(q) vanishes.
12 In that case we have to go beyond the quadratic approximation (37.15) to the
first nonvanishing term in the Taylor expansion of the exponent. If Φ′′′(x0) � 0,
then

I ≈ A(x0)eisΦ(x0)
∫ ∞

−∞
dx eisΦ′′′(x0)

(x−x0)3

6 . (37.25)

13 Airy functions can be represented by integrals of the form

Ai(x) =
1

2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (37.26)

With a bit of Fresnel/Maslov voodoo we have shown that at each turning point
a WKB wave function loses a bit of phase. Derivations of the WKB quantization
condition given in standard quantum mechanics textbooks rely on expanding the
potential close to the turning point

V(q) = V(q0) + (q − q0)V ′(q0) + · · · ,

solving the Airy equation (with V′(q0) → z after appropriate rescalings),

ψ′′ = zψ , (37.27)

and matching the oscillatory and the exponentially decaying “forbidden” region
wave function pieces by means of the WKB connection formulas. That requires
staring at Airy functions (see (37.4)) and learning about their asymptotics - a chal-
lenge that we will have to eventually overcome, in order to incorporate diffraction
phenomena into semiclassical quantization. ⇓PRIVATE

chapter ??

⇑PRIVATE

⇓PRIVATE

2) what does the wave function look like? 3) generically useful when Gaussian
approximations fail

⇑PRIVATE
11Predrag: this paragraph is nonsense?
12Predrag: RECHECK
13Predrag: move to later on??
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three body@3-body
problem

Figure 37.4: Airy function Ai(q).

Figure 37.5: EBK quantization.

The physical origin of the topological phase is illustrated by the shape of the
Airy function, figure 37.4. For a potential with a finite slope V′(q) the wave func-
tion penetrates into the forbidden region, and accommodates a bit more of a sta-
tionary wavelength then what one would expect from the classical trajectory alone.
For infinite walls (i.e., billiards) a different argument applies: the wave function
must vanish at the wall, and the phase slip due to a specular reflection is −π, rather
than −π/2.

⇓PRIVATE

37.5 EBK quantization

If there exist fewer than � integrals of type (14), as is the
case, for example, according to POINCARÉ in the three-
body problem, then the pi are not expressible by the qi

and the quantum condition of SOMMERFELD- EPSTEIN
fails also in the slightly generalized form that has been
given here.

—A. Einstein, Zum Quantensatz von Sommerfeld
und Epstein (1917)

All 1-dimensional Hamiltonian problems are integrable (see sect.7.1).

14

D-dimensional version of eqs. (37.3) and (37.4) will be given below, in (38.3)
and (38.4). ⇑PRIVATE

14Predrag: refer to figure 37.5
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stationary phase
Airy!function
WKB!quantization
quantization!WKB

Résumé

The WKB ansatz wave function for 1-degree of freedom problems fails at the
turning points of the classical trajectory. While in the q-representation the WKB
ansatz at a turning point is singular, along the p direction the classical trajectory in
the same neighborhood is smooth, as for any smooth bound potential the classical
motion is topologically a circle around the origin in the (q, p) space. The simplest
way to deal with such singularities is as follows; follow the classical trajectory in
q-space until the WKB approximation fails close to the turning point; then insert∫

dp|p〉〈p| and follow the classical trajectory in the p-space until you encounter
the next p-space turning point; go back to the q-space representation, an so on.
Each matching involves a Fresnel integral, yielding an extra e−iπ/4 phase shift, for
a total of e−iπ phase shift for a full period of a semiclassical particle moving in a
soft potential. The condition that the wave-function be single-valued then leads to
the 1-dimensional WKB quantization, and its lucky cousin, the Bohr-Sommerfeld
quantization.

Alternatively, one can linearize the potential around the turning point a, V(q) =
V(a)+(q−a)V′(a)+· · ·, and solve the quantum mechanical constant linear potential
V(q) = qF problem exactly, in terms of an Airy function. An approximate wave
function is then patched together from an Airy function at each turning point, and
the WKB ansatz wave-function segments in-between via the WKB connection
formulas. The single-valuedness condition again yields the 1-dimensional WKB
quantization. This a bit more work than tracking the classical trajectory in the full
phase space, but it gives us a better feeling for shapes of quantum eigenfunctions,
and exemplifies the general strategy for dealing with other singularities, such as
wedges, bifurcation points, creeping and tunneling: patch together the WKB seg-
ments by means of exact QM solutions to local approximations to singular points. ⇓PRIVATE

———————

then instead of doing an integral over eiq2S ′′/2, one has to keep the cubic term,
and do an integral of form

∫
dpei(p3/3−qp). As this integral has no simple analytic

solution, it has a name: Airy function. 15

⇑PRIVATE

Commentary

Remark 37.1 Airy function. The stationary phase approximation is all that is needed
for the semiclassical approximation, with the proviso that D in (38.36) has no zero eigen-
values. The zero eigenvalue case would require going beyond the Gaussian saddle-point
approximation, which typically leads to approximations of the integrals in terms of Airy
functions [9].

exercise 37.4
⇓PRIVATE

Remark 37.2 WKB quantization.

15Niall: In (37.1) referring to a formula that is yet to come. That might be confusing for readers.

WKB - 4nov2010 boyscout version14.4, Mar 19 2013



CHAPTER 37. WKB QUANTIZATION 837

Bohr-Sommerfeld
quantization

refs. [12, 1] and Mark Holmer?

16

⇑PRIVATE

Remark 37.3 Bohr-Sommerfeld quantization. 17 Bohr-Sommerfeld quantization
condition was the key result of the old quantum theory, in which the electron trajectories
were purely classical. They were lucky - the symmetries of the Kepler problem work out
in such a way that the total topological index m = 4 amount effectively to numbering
the energy levels starting with n = 1. They were unlucky - because the hydrogen m =
4 masked the topological index, they could never get the helium spectrum right - the
semiclassical calculation had to wait for until 1980, when Leopold and Percival [?] added
the topological indices. 18 19

⇓PRIVATE

Remark 37.4 EBK quantization. Review: Percival [10].

blab about Einstein [1], Poincaré, Keller

⇑PRIVATE

16Mason: I volunteer to write a chapter on the Berry phase
17Predrag: find the Bohr-Sommerfeld reference
18Predrag: add references to Maslov trick
19Mason: I never understood why Duffing quantization was not solved completely, in terms of

elliptic functions
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Fresnel integral
Sterling formula
stationary

phase!approximation
Airy!function
bifurcation!Airy

function
approximation

Airy!function!at a
bifurcation

boyscout

37.1. WKB ansatz. Try to show that no other
ansatz other than (38.1) gives a meaningful definition of
the momentum in the �→ 0 limit. 20

37.2. Fresnel integral. Derive the Fresnel integral

1
√

2π

∫ ∞

−∞
dx e−

x2

2ia =
√

ia = |a|1/2ei π4
a
|a| .

37.3. Sterling formula for n!. Compute an approximate
value of n! for large n using the stationary phase approx-
imation. Hint: n! =

∫ ∞
0

dt tne−t. 21

37.4. Airy function for large arguments. Im-
portant contributions as stationary phase points may arise
from extremal points where the first non-zero term in a
Taylor expansion of the phase is of third or higher order.
Such situations occur, for example, at bifurcation points
or in diffraction effects, (such as waves near sharp cor-

ners, waves creeping around obstacles, etc.). 22 In such
calculations, one meets Airy functions integrals of the
form

Ai(x) =
1

2π

∫ +∞

−∞
dy ei(xy− y3

3 ) . (37.28)

Calculate the Airy function Ai(x) using the stationary phase
approximation. What happens when considering the limit
x → 0. Estimate for which value of x 23 the stationary
phase approximation breaks down.
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Chapter 38

Semiclassical evolution

William Rowan Hamilton was born in 1805. At three
he could read English; by four he began to read Latin,
Greek and Hebrew, by ten he read Sanskrit, Persian, Ara-
bic, Chaldee, Syrian and sundry Indian dialects. At age
seventeen he began to think about optics, and worked out
his great principle of “Characteristic Function.”

— Turnbull, Lives of Mathematicians

(G. Vattay, G. Tanner and P. Cvitanović)

Semiclassical approximations to quantum mechanics are valid in the regime
where the de Broglie wavelength λ ∼ �/p of a particle with momentum
p is much shorter than the length scales across which the potential of the

system changes significantly. In the short wavelength approximation the particle
is a point-like object bouncing off potential walls, the same way it does in the
classical mechanics. The novelty of quantum mechanics is the interference of the
point-like particle with other versions of itself traveling along different classical
trajectories, a feat impossible in classical mechanics. The short wavelength – or

remark 38.1
semiclassical – formalism is developed by formally taking the limit � → 0 in
quantum mechanics in such a way that quantum quantities go to their classical
counterparts. 1 2 3

38.1 Hamilton-Jacobi theory

We saw in chapter 37 that for a 1-dof particle moving in a slowly varying poten-
tial, it makes sense to generalize the free particle wave function (37.1) to a wave

1Gregor: Debatable; this limit is quite tricky in general ....
2Predrag: find the full reference to Turnbull
3Predrag: Brack has a nice discussion of de Broglie wavelength
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equation
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function 4

ψ(q, t) = A(q, t)eiR(q,t)/� , (38.1)

with slowly varying (real) amplitude A(q, t) and rapidly varying (real) phase R(q, t).
its phase and magnitude. The time evolution of the phase and the magnitude of ψ

exercise 37.1
follows from the Schrödinger equation (36.1)

(
i�
∂

∂t
+
�

2

2m
∂2

∂q2
− V(q)

)
ψ(q, t) = 0 . (38.2)

Assume A � 0, and separate out the real and the imaginary parts. We get two
equations: The real part governs the time evolution of the phase

∂R
∂t
+

1
2m

(
∂R
∂q

)2

+ V(q) − �
2

2m
1
A
∂2

∂q2
A = 0 , (38.3)

and the imaginary part the time evolution of the amplitude
exercise 38.6
exercise 38.7

∂A
∂t
+

1
m

D∑
i=1

∂A
∂qi

∂R
∂qi
+

1
2m

A
∂2R

∂q2
= 0 . (38.4)

exercise 38.8

In this way a linear PDE for a complex wave function is converted into a set of
coupled non-linear PDE’s for real-valued functions R and A. The coupling term
in (38.3) is, however, of order �2 and thus small in the semiclassical limit �→ 0.

Now we generalize the Wentzel-Kramers-Brillouin (WKB) ansatz for 1-dof
dynamics to the Van Vleck ansatz in arbitrary dimension: we assume the mag-
nitude A(q, t) varies slowly compared to the phase R(q, t)/�, so we drop the �-
dependent term. In this approximation the phase R(q, t) and the corresponding
“momentum field” ∂R

∂q (q, t) can be determined from the amplitude independent
equation

∂R
∂t
+ H

(
q,
∂R
∂q

)
= 0 . (38.5)

In classical mechanics this equation is known as the Hamilton-Jacobi equation.
We will refer to this step (as well as all leading order in � approximations to
follow) as the semiclassical approximation to wave mechanics, and from now on
work only within this approximation.

5

4Predrag: include qm.tex remarks
5Predrag: add Artuso lects. p.29 density, semicl. momentum
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Hamilton!equations
Hamiltonian

Figure 38.1: (a) A phase R(q, t) plotted as a
function of the position q for two infinitesimally
close times. (b) The phase R(q, t) transported by
a swarm of “particles”; The Hamilton’s equations
(38.10) construct R(q, t) by transporting q0 → q(t)
and the slope of R(q0, t0), that is p0 → p(t).

f t
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0

p

q
p

0

q

dR

0q
0

q + dq
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38.1.1 Hamilton’s equations

We now solve the nonlinear partial differential equation (38.5) in a way the 17
year old Hamilton might have solved it. The main step is the step leading from
the nonlinear PDE (38.9) to Hamilton’s ODEs (38.10). If you already understand
the Hamilton-Jacobi theory, you can safely skip this section.

fast track:

sect. 38.1.3, p. 846

The wave equation (36.1) describes how the wave function ψ evolves with
time, and if you think of ψ as an (infinite dimensional) vector, position q plays a
role of an index. In one spatial dimension the phase R plotted as a function of the
position q for two different times looks something like figure38.1 (a): The phase
R(q, t0) deforms smoothly with time into the phase R(q, t) at time t. Hamilton’s
idea was to let a swarm of particles transport R and its slope ∂R/∂q at q at initial
time t = t0 to a corresponding R(q, t) and its slope at time t, figure 38.1 (b). For
notational convenience, define

pi = pi(q, t) :=
∂R
∂qi

, i = 1, 2, . . . ,D . (38.6)

We saw earlier that (38.3) reduces in the semiclassical approximation to the Hamilton-
Jacobi equation (38.5). To make life simple, we shall assume throughout this
chapter that the Hamilton’s function H(q, p) does not depend explicitly on time t,
i.e., the energy is conserved.

To start with, we also assume that the function R(q, t) is smooth and well
defined for every q at the initial time t. This is true for sufficiently short times;
as we will see later, R develops folds and becomes multi-valued as t progresses.
Consider now the variation of the function R(q, t) with respect to independent
infinitesimal variations of the time and space coordinates dt and dq, figure38.1 (a)

dR =
∂R
∂t

dt +
∂R
∂q

dq . (38.7)
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Dividing through by dt and substituting (38.5) we obtain the total derivative of
R(q, t) with respect to time along the as yet arbitrary direction q̇, that is,

dR
dt

(q, q̇, t) = −H(q, p) + q̇ · p . (38.8)

Note that the “momentum” p = ∂R/∂q is a well defined function of q and t.
In order to integrate R(q, t) with the help of (38.8) we also need to know how
p = ∂R/∂q changes along q̇. Varying p with respect to independent infinitesimal
variations dt and dq and substituting the Hamilton-Jacobi equation (38.5) yields

d
∂R
∂q
=
∂2R
∂q∂t

dt +
∂2R

∂q2
dq = −

(
∂H
∂q
+
∂H
∂p

∂p
∂q

)
dt +

∂p
∂q

dq .

Note that H(q, p) depends on q also through p(q, t) = ∂R/∂q, hence the ∂H
∂p term

in the above equation. Dividing again through by dt we get the time derivative of
∂R/∂q, that is,

ṗ(q, q̇, t) +
∂H
∂q
=

(
q̇ − ∂H

∂p

)
∂p
∂q

. (38.9)

Time variation of p depends not only on the yet unknown q̇, but also on the second
derivatives of R with respect to q with yet unknown time dependence. However, if
we choose q̇ (which was arbitrary, so far) such that the right hand side of the above
equation vanishes, we can calculate the function R(q, t) along a specific trajectory
(q(t), p(t)) given by integrating the ordinary differential equations

q̇ =
∂H(q, p)
∂p

, ṗ = −∂H(q, p)
∂q

(38.10)

with initial conditions

q(t0) = q′, p(t0) = p′ =
∂R
∂q

(q′, t0). (38.11)

section 7.1

We recognize (38.10) as Hamilton’s equations of motion of classical mechanics.
The miracle happens in the step leading from (38.5) to (38.9) – if you missed it,
you have missed the point. Hamilton derived his equations contemplating optics
- it took him three more years to realize that all of Newtonian dynamics can be
profitably recast in this form.

q̇ is no longer an independent function, and the phase R(q, t) can now be com-
puted by integrating equation (38.8) along the trajectory (q(t), p(t))

R(q, t) = R(q′, t0) + R(q, t; q′, t0)

R(q, t; q′, t0) =
∫ t

t0
dτ

[
q̇(τ) · p(τ) − H(q(τ), p(τ))

]
, (38.12)
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Lagrangian
Hamilton!principal

function
Legendre transform
action

with the initial conditions (38.11). In this way the Hamilton-Jacobi partial differ-
ential equation (38.3) is solved by integrating a set of ordinary differential equa-
tions, Hamilton’s equations. In order to determine R(q, t) for arbitrary q and t we
have to find a q′ such that the trajectory starting in (q′, p′ = ∂qR(q′, t0)) reaches
q in time t and then compute R along this trajectory, see figure 38.1 (b). The
integrand of (38.12) is known as the Lagrangian,

L(q, q̇, t) = q̇ · p − H(q, p, t) . (38.13)

A variational principle lurks here, but we shall not make much fuss about it as yet.

Throughout this chapter we assume that the energy is conserved, and that the
only time dependence of H(q, p) is through (q(τ), p(τ)), so the value of R(q, t; q′, t0)
does not depend on t0, but only on the elapsed time t− t0. To simplify notation we
will set t0 = 0 and write

R(q, q′, t) = R(q, t; q′, 0) .

The initial momentum of the particle must coincide with the initial momentum of
the trajectory connecting q′ and q: 6

p′ =
∂

∂q′
R(q′, 0) = − ∂

∂q′
R(q, q′, t). (38.14)

exercise 38.5

The function R(q, q′, t) is known as Hamilton’s principal function.
exercise 38.9

To summarize: Hamilton’s achievement was to trade in the Hamilton-Jacobi
partial differential equation (38.5) describing the evolution of a wave front for a
finite number of ordinary differential equations of motion, with the initial phase
R(q, 0) incremented by the integral (38.12) evaluated along the phase space trajec-
tory (q(τ), p(τ)).

38.1.2 Action

Before proceeding, we note in passing a few facts about Hamiltonian dynamics
that will be needed for the construction of semiclassical Green’s functions. If the
energy is conserved, the

∫
H(q, p)dτ integral in (38.12) is simply Et. The first

term, or the action

S (q, q′, E) =
∫ t

0
dτ q̇(τ) · p(τ) =

∫ q

q′
dq · p (38.15)

6Predrag: rethink
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Lagrangian!manifold
Stokes theorem

is integrated along a trajectory from q′ to q with a fixed energy E. By (38.12) the
action is a Legendre transform of Hamilton’s principal function

S (q, q′, E) = R(q, q′, t) + Et . (38.16)

The time of flight t along the trajectory connecting q′ → q with fixed energy E is
given by

∂

∂E
S (q, q′, E) = t . (38.17)

The way to think about the formula (38.16) for action is that the time of flight is a
function of the energy, t = t(q, q′, E). The left hand side is explicitly a function of
E; the right hand side is an implicit function of E through energy dependence of
the flight time t.

Going in the opposite direction, the energy of a trajectory E = E(q, q′, t)
connecting q′ → q with a given time of flight t is given by the derivative of
Hamilton’s principal function

∂

∂t
R(q, q′, t) = −E , (38.18)

and the second variations of R and S are related in the standard way of Legendre
transforms:

∂2

∂t2
R(q, q′, t)

∂2

∂E2
S (q, q′, E) = −1 . (38.19)

A geometric visualization of what the phase evolution looks like is very helpful
in understanding the origin of topological indices to be introduced in what fol-
lows. Given an initial phase R(q, t0), the gradient ∂qR defines a D-dimensional

section 38.1.5
Lagrangian manifold (q, p = ∂qR(q)) in the full 2d dimensional phase space
(q, p). The defining property of this manifold is that any contractible loop γ in
it has zero action,

0 =
∮
γ

dq · p,

a fact that follows from the definition of p as a gradient, and the Stokes theorem.
Hamilton’s equations of motion preserve this property and map a Lagrangian man-
ifold into a Lagrangian manifold at a later time. t

Returning back to the main line of our argument: so far we have determined
the wave function phase R(q, t). Next we show that the velocity field given by the
Hamilton’s equations together with the continuity equation determines the ampli-
tude of the wave function.
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continuity equation38.1.3 Density evolution

To obtain the full solution of the Schrödinger equation (36.1), we also have to
integrate (38.4).

ρ(q, t) := A2 = ψ∗ψ

plays the role of a density. To the leding order in �, the gradient of R may be
interpreted as the semiclassical momentum density

ψ(q, t)∗(−i�
∂

∂q
)ψ(q, t) = −i�A

∂A
∂q
+ ρ

∂R
∂q

.

Evaluated along the trajectory (q(t), p(t)), the amplitude equation (38.4) is equiv-
alent to the continuity equation (16.35) after multiplying (38.4) by 2A, that is ⇓PRIVATE

exercise 38.10

⇑PRIVATE
∂ρ

∂t
+

∂

∂qi
(ρvi) = 0 . (38.20)

Here, vi = q̇i = pi/m denotes a velocity field, which is in turn determined by the
gradient of R(q, t), or the Lagrangian manifold (q(t), p(t) = ∂qR(q, t)),

v =
1
m
∂

∂q
R(q, t).

As we already know how to solve the Hamilton-Jacobi equation (38.5), we can
also solve for the density evolution as follows:

The density ρ(q) can be visualized as the density of a configuration space
flow q(t) of a swarm of hypothetical particles; the trajectories q(t) are solutions
of Hamilton’s equations with initial conditions given by (q(0) = q′, p(0) = p′ =
∂qR(q′, 0)).

If we take a small configuration space volume dDq around some point q at time
t, then the number of particles in it is ρ(q, t)dDdq. They started initially in a small
volume dDq′ around the point q′ of the configuration space. For the moment, we
assume that there is only one solution, the case of several paths will be considered
below. The number of particles at time t in the volume is the same as the number
of particles in the initial volume at t = 0,

ρ(q(t), t)dDq = ρ(q′, 0)dDq′ ,

see figure 38.2. 7 The ratio of the initial and the final volumes can be expressed as
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function

wave
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Figure 38.2: Density evolution of an initial surface
(q′, p′ = ∂qR(q′, 0) into (q(t), p(t)) surface time t later,
sketched in 1 dimension. While the number of trajec-
tories and the phase space Liouville volume are con-
served, the density of trajectories projected on the q
coordinate varies; trajectories which started in dq′ at
time zero end up in the interval dq.

ρ(q(t), t) =
∣∣∣∣∣det

∂q′

∂q

∣∣∣∣∣ ρ(q′, 0) . (38.21)

section 16.2

As we know how to compute trajectories (q(t), p(t)), we know how to compute
this Jacobian and, by (38.21), the density ρ(q(t), t) at time t. ⇓PRIVATE

38.1.4 Topological index

8

⇑PRIVATE

38.1.5 Semiclassical wave function

Now we have all ingredients to write down the semiclassical wave function at
time t. Consider first the case when our initial wave function can be written in
terms of single-valued functions A(q′, 0) and R(q′, 0). For sufficiently short times,
R(q, t) will remain a single-valued function of q, and every dDq configuration
space volume element keeps its orientation. The evolved wave function is in the
semiclassical approximation then given by

ψsc(q, t) = A(q, t)eiR(q,t)/� =

√
det

∂q′

∂q
A(q′, 0)ei(R(q′ ,0)+R(q,q′,t))/�

=

√
det

∂q′

∂q
eiR(q,q′,t)/� ψ(q′, 0) .

As the time progresses the Lagrangian manifold ∂qR(q, t) can develop folds, so
for longer times the value of the phase R(q, t) is not necessarily unique; in gen-
eral more than one trajectory will connect points q and q′ with different phases
R(q, q′, t) accumulated along these paths, see figure 38.3.

7Gregor: Better picture needed
8Predrag: Start with 1-dimensional WKB here to motivate. Move more parts of the previous

versions here!
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We thus expect in general a collection of different trajectories from q′ to q
which we will index by j, with different phase increments Rj(q, q′, t). The hy-
pothetical particles of the density flow at a given configuration space point can
move with different momenta p = ∂qR j(q, t). This is not an ambiguity, since in
the full (q, p) phase space each particle follows its own trajectory with a unique
momentum.

Whenever the Lagrangian manifold develops a fold, the density of the phase
space trajectories in the fold projected on the configuration coordinates diverges.
9 As illustrated in figure 38.3, when the Lagrangian manifold develops a fold at
q = q1; the volume element dq1 in the neighborhood of the folding point is pro-
portional to

√
dq′ instead of dq′. The Jacobian ∂q′/∂q diverges like 1/

√
q1 − q(t)

when computed along the trajectory going trough the folding point at q1. After
the folding the orientation of the interval dq′ has changed when being mapped
into dq2; in addition the function R, as well as its derivative which defines the
Lagrangian manifold, becomes multi-valued. Distinct trajectories starting from
different initial points q′ can now reach the same final point q2. (That is, the point
q′ may have more than one pre-image.) The projection of a simple fold, or of an
envelope of a family of phase space trajectories, is called a caustic; this expres-
sion comes from the Greek word for “capable of burning,” evoking the luminous
patterns that one observes swirling across the bottom of a swimming pool.

The folding also changes the orientation of the pieces of the Lagrangian man-
ifold (q, ∂qR(q, t)) with respect to the initial manifold, so the eigenvalues of the
Jacobian determinant change sign at each fold crossing. We can keep track of the
signs by writing the Jacobian determinant as

det
∂q′

∂q

∣∣∣∣∣
j
= e−iπmj(q,q′,t)

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣
j
,

where mj(q, q′, t) counts the number of sign changes of the Jacobian determinant
on the way from q′ to q along the trajectory indexed with j, see figure38.3. 10 We
shall refer to the integer mj(q, q′, t) as the topological of the trajectory. 11 12 So in
general the semiclassical approximation to the wave function is thus a sum over
possible trajectories that start at any inital q′ and end in q in time t

ψsc(q, t) =
∫

dq′
∑

j

∣∣∣∣∣det
∂q′

∂q

∣∣∣∣∣1/2
j

eiR j(q,q′,t)/�−iπmj(q,q′,t)/2ψ(q′j, 0) , (38.22)

each contribution weighted by corresponding density, phase increment and the
topological index. 13

9Predrag: finish editing
10Gregor: Better picture is needed
11Predrag: Morse index into Keller remark
12Gregor: Check topological index
13Bartsch: need ||∂q′∂q||, not ||∂p′∂q||
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Figure 38.3: Folding of the Lagrangian surface
(q, ∂qR(q, t)).

That the correct topological index is obtained by simply counting the number
of eigenvalue sign changes and taking the square root is not obvious - the careful
argument requires that quantum wave functions evaluated across the folds remain
single valued. 14 15

16

38.2 Semiclassical propagator

We saw in chapter 36 that the evolution of an initial wave function ψ(q, 0) is com-
pletely determined by the propagator (36.12). As K(q, q′, t) itself satisfies the
Schrödinger equation (36.14), we can treat it as a wave function parameterized
by the configuration point q′. In order to obtain a semiclassical approximation to
the propagator we follow now the ideas developed in the last section. There is,
however, one small complication: the initial condition (36.15) demands that the
propagator at t = 0 is a δ-function at q = q′, that is, the amplitude is infinite at
q′ and the phase is not well defined. Our hypothetical cloud of particles is thus
initially localized at q = q′ with any initial velocity. This is in contrast to the situ-
ation in the previous section where we assumed that the particles at a given point q
have well defined velocity (or a discrete set of velocities) given by q̇ = ∂pH(q, p).
We will now derive at a semiclassical expression for K(q, q′, t) by considering the
propagator for short times first, and extrapolating from there to arbitrary times t.

38.2.1 Short time propagator

For infinitesimally short times δt away from the singular point t = 0 we assume
that it is again possible to write the propagator in terms of a well defined phase
and amplitude, that is

K(q, q′, δt) = A(q, q′, δt)e
i
�

R(q,q′,δt) .

14Predrag: this argument is worse than the earlier version
15Gregor: Include littlejohn reference refref Litt92
16Predrag: draw multiple initial conditions in figure 38.3
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$d$-dimensional

Dirac delta
propagator!short time

As all particles start at q = q′, R(q, q′, δt) will be of the form (38.12), that is

R(q, q′, δt) = pq̇δt − H(q, p)δt , (38.23)

with q̇ ≈ (q−q′)/δt. For Hamiltonians of the form (36.2) we have q̇ = p/m, which
leads to

R(q, q′, δt) =
m(q − q′)2

2δt
− V(q)δt .

Here V can be evaluated any place along the trajectory from q to q′, for example
at the midway point V((q+q′)/2). Inserting this into our ansatz for the propagator
we obtain

Ksc(q, q′, δt) ≈ A(q, q′, δt)e
i
�
( m

2δt (q−q′)2−V(q)δt) . (38.24)

For infinitesimal times we can neglect the term V(q)δt, so Ksc(q, q′, δt) is a d-
dimensional Gaussian with width σ2 = i�δt/m. This Gaussian is a finite width
approximation to the Dirac delta function

δ(z) = lim
σ→0

1
√

2πσ2
e−z2/2σ2

(38.25)

if A = (m/2πi�δt)D/2, with A(q, q′, δt) fixed by the Dirac delta function normal-
ization condition. The correctly normalized propagator for infinitesimal times δt

exercise 38.1
is therefore

Ksc(q, q′, δt) ≈
( m
2πi�δt

)D/2
e

i
�

( m(q−q′)2
2δt −V(q)δt) . (38.26)

The short time dynamics of the Lagrangian manifold (q, ∂qR) which corresponds
to the quantum propagator can now be deduced from (38.23); one obtains

∂R
∂q
= p ≈ m

δt
(q − q′) ,

i.e., is the particles start for short times on a Lagrangian manifold which is a plane
in phase space, see figure 38.4. 17 Note, that for δt → 0, this plane is given by
the condition q = q′, that is, particles start on a plane parallel to the momentum
axis. As we have already noted, all particles start at q = q′ but with different
velocities for t = 0. The initial surface (q′, p′ = ∂qR(q′, 0)) is mapped into the

17Gregor: make a figure here
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Figure 38.4: Evolution of the semiclassical propaga-
tor. The configuration which corresponds to the initial
conditions of the propagator is a Lagrangian manifold
q = q′, that is, a plane parallel to the p axis. The hy-
pothetical particles are thus initially all placed at q′ but
take on all possible momenta p′. The Jacobian matrix
C (38.29) relates an initial volume element in momen-
tum space dp′ to a final configuration space volume
dq.

surface (q(t), p(t)) some time t later. The slope of the Lagrangian plane for a short
finite time is given as

∂pi

∂qj
= − ∂2R

∂qj∂q′i
= −

∂p′i
∂qj
=

m
δt
δi j .

The prefactor (m/δt)D/2 in (38.26) can therefore be interpreted as the determinant
of the Jacobian of the transformation from final position coordinates q to initial
momentum coordinates p′, that is

Ksc(q, q′, δt) =
1

(2πi�)D/2

(
det

∂p′

∂q

)1/2

eiR(q,q′,δt)/�, (38.27)

where

∂p′i
∂qj

∣∣∣∣∣∣
t,q′
=
∂2R(q, q′, δt)
∂qj∂q′i

(38.28)

The subscript · · ·|t,q′ indicates that the partial derivatives are to be evaluated with
t, q′ fixed.

18 The propagator in (38.27) has been obtained for short times. It is, however,
already more or less in its final form. We only have to evolve our short time
approximation of the propagator according to (38.22) 19

Ksc(q′′, q′, t′ + δt) =
∑

j

∣∣∣∣∣det
∂q
∂q′′

∣∣∣∣∣1/2
j

eiR j(q′′,q,t′)/�−iπmj(q′′,q,t′)/2K(q, q′j, δt) ,

and we included here already the possibility that the phase becomes multi-valued,
that is, that there is more than one path from q′ to q′′. The topological index mj =

m j(q′′, q′, t) is the number of singularities in the Jacobian along the trajectory j
from q′ to q′′. We can write Ksc(q′′, q′, t′ + δt) in closed form using the fact that

18Predrag: figure 38.4
19Bartsch: cheat! need to do a saddle point integral here
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propagator!Van Vleck
Van Vleck!propagator
stationary

phase!approximation

R(q′′, q, t′) + R(q, q′, δt) = R(q′′, q′, t′ + δt) and the multiplicativity of Jacobian
determinants, that is

det
∂q
∂q′′

∣∣∣∣∣
t
det

∂p′

∂q

∣∣∣∣∣
q′,δt
= det

∂p′

∂q′′

∣∣∣∣∣
q′,t′+δt

. (38.29)

The final form of the semiclassical or Van Vleck propagator, is thus20

Ksc(q, q′, t) =
∑

j

1

(2πi�)D/2

∣∣∣∣∣det
∂p′

∂q

∣∣∣∣∣1/2 eiRj(q,q′,t)/�−imjπ/2 . (38.30)

This Van Vleck propagator is the essential ingredient of the semiclassical quanti-
zation to follow.

The apparent simplicity of the semiclassical propagator is deceptive. The
wave function is not evolved simply by multiplying by a complex number of mag-
nitude

√
det ∂p′/∂q and phase R(q, q′, t); the more difficult task in general is to

find the trajectories connecting q′ and q in a given time t.

In addition, we have to treat the approximate propagator (38.30) with some
care. Unlike the full quantum propagator, which satisfies the group property
(36.13) exactly, the semiclassical propagator performs this only approximately,
that is

Ksc(q, q′, t1 + t2) ≈
∫

dq′′ Ksc(q, q′′, t2)Ksc(q′′, q′, t1) . (38.31)

The connection can be made explicit by the stationary phase approximation, sect.37.2.
Approximating the integral in (38.31) by integrating only over regions near points
q′′ at which the phase is stationary, leads to the stationary phase condition

∂R(q, q′′, t2)
∂q′′i

+
∂R(q′′, q′, t1)

∂q′′i
= 0. (38.32)

Classical trajectories contribute whenever the final momentum for a path from q′

to q′′ and the initial momentum for a path from q′′ to q coincide. 21 Unlike the
classical evolution of sect. 17.2, the semiclassical evolution is not an evolution by
linear operator multiplication, but evolution supplemented by a stationary phase
condition pout = pin that matches up the classical momenta at each evolution step.

22

⇓PRIVATE

exercise 38.14

⇑PRIVATE

20Gregor: Reference in the remarks
21Predrag: crosslink with sect. 37.2
22Predrag: for notes: written in 1928; topological phase introduced by Gutzwiller
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Feynman path integral38.2.2 Free particle propagator

To develop some intuition about the above formalism, consider the case of a free
particle. For a free particle the potential energy vanishes, the kinetic energy is
m
2 q̇2, and the Hamilton’s principal function (38.12) is

R(q, q′, t) =
m(q − q′)2

2t
. (38.33)

The weight det ∂p′

∂q from (38.28) can be evaluated explicitly, and the Van Vleck
propagator is

Ksc(q, q′, t) =
( m
2πi�t

)D/2
eim(q−q′)2/2�t , (38.34)

identical to the short time propagator (38.26), with V(q) = 0. This case is rather
exceptional: for a free particle the semiclassical propagator turns out to be the
exact quantum propagator K(q, q′, t), as can be checked by substitution in the
Schrödinger equation (38.2). The Feynman path integral formalism uses this fact

remark 38.4
to construct an exact quantum propagator by integrating the free particle propaga-
tor (with V(q) treated as constant for short times) along all possible (not necessar-
ily classical) paths from q′ to q. 23

exercise 38.11
exercise 38.12
exercise 38.13

38.3 Semiclassical Green’s function

So far we have derived semiclassical formulas for the time evolution of wave func-
tions, that is, we obtained approximate solutions to the time dependent Schrödinger
equation (36.1). Even though we assumed in the calculation a time-independent
Hamiltonian of the special form (36.2), the derivation would lead to the same
final result (38.30) were one to consider more complicated or explicitly time de-
pendent Hamiltonians. The propagator is thus important when we are interested
in finite time quantum mechanical effects. For time-independent Hamiltonians,
the time dependence of the propagator as well as of wave functions is, how-
ever, essentially given in terms of the energy eigen-spectrum of the system, as
in (36.10). It is therefore advantageous to switch from a time representation to
an energy representation, that is from the propagator (36.12) to the energy de-
pendent Green’s function (36.16). A semiclassical approximation of the Green’s
function Gsc(q, q′, E) is given by the Laplace transform (36.16) of the Van Vleck
propagator Ksc(q, q′, t):

Gsc(q, q′, E) =
1
i�

∫ ∞

0
dt eiEt/�Ksc(q, q′, t) . (38.35)

23Predrag: migh move this to a remark

VanVleck - 8dec2010 boyscout version14.4, Mar 19 2013



CHAPTER 38. SEMICLASSICAL EVOLUTION 854

stationary phase
zero eigenvalue
eigenvalue!zero

The expression as it stands is not very useful; in order to evaluate the integral, at
least to the leading order in �, we need to turn to the method of stationary phase
again. 24

38.3.1 Stationary phase in higher dimensions

25 Generalizing the method of sect. 37.2 to d dimensions, consider stationary
exercise 37.1

phase points fulfilling

d
dxi
Φ(x)

∣∣∣∣∣
x=x0

= 0 ∀i = 1, . . . d .

An expansion of the phase up to second order involves now the symmetric matrix
of second derivatives of Φ(x), that is

Di j(x0) =
∂2

∂xi∂x j
Φ(x)

∣∣∣∣∣∣
x=x0

.

After choosing a suitable coordinate system which diagonalizes D, we can ap-
proximate the d-dimensional integral by d 1-dimensional Fresnel integrals; the
stationary phase estimate of (37.13) is then

I ≈
∑
x0

(2πi/s)d/2 |det D(x0)|−1/2A(x0) eisΦ(x0)− iπ
2 m(x0) , (38.36)

where the sum runs over all stationary phase points x0 of Φ(x) and m(x0) counts
the number of negative eigenvalues of D(x0).

exercise 32.2
exercise 38.2
exercise 37.3The stationary phase approximation is all that is needed for the semiclassical

approximation, with the proviso that D in (38.36) has no zero eigenvalues. ⇓PRIVATE

38.3.2 Topological index

How do we actually determine the topological index? The argument goes some-
thing like this:

An interpretation is that as the trajectory went through a turning point, the
d2R/dq2 has changed sign.

In D-dof the argument is that this folding of the Lagrangian manifold (tra-
jectory reversing direction) happens generically separately for each (qi, pi) pair,

24Predrag: Add a section on Lagendre transforms here
25Predrag: misplaced, need only 1-dimensional case here
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i = 1, 2, ..., d. Exceptions are classified by the catastrophe theory and do not con-
cern us here and now. Hence at a turning point in the ith direction the remaining
directions can be integrated in the Gaussian way as usual, and the ith one picks up
e−iπ/2 phase shift; one interpretation is that the ith eigenvalue of d2R/dqjdqk has
changed sign.

There is another claim - that one is counting the number of times the neigh-
borhood of the classical periodic trajectory twists around before reconnecting after
one period, but I do not know how to make that a simple argument. ⇑PRIVATE

38.3.3 Long trajectories

When evaluating the integral (38.35) approximately we have to distinguish be-
tween two types of contributions: those coming from stationary points of the phase
and those coming from infinitesimally short times. The first type of contributions
can be obtained by the stationary phase approximation and will be treated in this
section. The latter originate from the singular behavior of the propagator for t → 0
where the assumption that the amplitude changes slowly compared to the phase
is not valid. The short time contributions therefore have to be treated separately,
which we will do in sect. 38.3.4.

The stationary phase points t∗ of the integrand in (38.35) are given by the
condition

∂

∂t
R(q, q′, t∗) + E = 0 . (38.37)

We recognize this condition as the solution of (38.18), the time t∗ = t∗(q, q′, E) in
which a particle of energy E starting out in q′ reaches q. Taking into account the
second derivative of the phase evaluated at the stationary phase point,

R(q, q′, t) + Et = R(q, q′, t∗) + Et∗ +
1
2

(t − t∗)2 ∂
2

∂t2
R(q, q′, t∗) + · · ·

the stationary phase approximation of the integral corresponding to a classical
trajectory j in the Van Vleck propagator sum (38.30) yields 26

G j(q, q
′, E) =

1

i�(2iπ�)(D−1)/2

∣∣∣∣∣∣∣det C j

⎛⎜⎜⎜⎜⎝∂2R j

∂t2

⎞⎟⎟⎟⎟⎠−1
∣∣∣∣∣∣∣
1/2

e
i
�

S j− iπ
2 mj , (38.38)

where mj = m j(q, q′, E) now includes a possible additional phase arising from the
time stationary phase integration (37.16), and C j = C j(q, q′, t∗), R j = R j(q, q′, t∗)

26Predrag: FML? The C j’s are back?

VanVleck - 8dec2010 boyscout version14.4, Mar 19 2013



CHAPTER 38. SEMICLASSICAL EVOLUTION 856

actionare evaluated at the transit time t∗. We re-express the phase in terms of the energy
dependent action (38.16)

S (q, q′, E) = R(q, q′, t∗) + Et∗ , with t∗ = t∗(q, q′, E) , (38.39)

the Legendre transform of Hamilton’s principal function. Note that the partial
derivative of the action (38.39) with respect to qi

∂S (q, q′, E)
∂qi

=
∂R(q, q′, t∗)

∂qi
+

(
∂R(q, q′, t)

∂t∗
+ E

)
∂t
∂qi

.

is equal to

∂S (q, q′, E)
∂qi

=
∂R(q, q′, t∗)

∂qi
, (38.40)

due to the stationary phase condition (38.37), so the definition of momentum as a
partial derivative with respect to q remains unaltered by the Legendre transform
from time to energy domain.

exercise 38.15

Next we will simplify the amplitude term in (38.38) and rewrite it as an ex-
plicit function of the energy. Consider the [(D + 1)×(D + 1)] matrix

D(q, q′, E) =

( ∂2S
∂q′∂q

∂2S
∂q′∂E

∂2S
∂q∂E

∂2S
∂E2

)
=

⎛⎜⎜⎜⎜⎜⎝ −∂p′

∂q −∂p′

∂E
∂t
∂q

∂t
∂E

⎞⎟⎟⎟⎟⎟⎠ , (38.41)

where S = S (q, q′, E) and we used (38.14–38.17) here to obtain the left hand side
of (38.41). The minus signs follow from the definition of (38.15), which implies
that that S (q, q′, E) = −S (q′, q, E). Note that D is nothing but the Jacobian matrix
of the coordinate transformation (q, E) → (p′, t) for fixed q′. We can therefore
use the multiplication rules of determinants of Jacobians, which are just ratios of
volume elements, to obtain 27

⇓PRIVATE

exercise 38.17

⇑PRIVATEdet D = (−1)D+1
(
det

∂(p′, t)
∂(q, E)

)
q′
= (−1)D+1

(
det

∂(p′, t)
∂(q, t)

∂(q, t)
∂(q, E)

)
q′

= (−1)D+1
(
det

∂p′

∂q

)
t,q′

(
det

∂t
∂E

)
q′,q
= det C

(
∂2R

∂t2

)−1

.

We use here the notation (det .)q′,t for a Jacobian determinant with partial deriva-
tives evaluated at t, q′ fixed, and likewise for other subscripts. Using the relation
(38.19) which relates the term ∂t

∂E to ∂2
t R we can write the determinant of D as

a product of the Van Vleck determinant (38.28) and the amplitude factor arising

27Predrag: C is back?
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longitudinal!coordinate
coordinate!longitudinal

from the stationary phase approximation. The amplitude in (38.38) can thus be
interpreted as the determinant of a Jacobian of a coordinate transformation which
includes time and energy as independent coordinates. This causes the increase in
the dimensionality of the matrix D relative to the Van Vleck determinant (38.28).

We can now write down the semiclassical approximation of the contribution
of the jth trajectory to the Green’s function (38.38) in explicitly energy dependent
form: 28

G j(q, q
′, E) =

1

i�(2iπ�)(D−1)/2

∣∣∣det Dj

∣∣∣1/2 e
i
�

S j− iπ
2 mj . (38.42)

However, this is still not the most convenient form of the Green’s function.

The trajectory contributing to Gj(q, q′, E) is constrained to a given energy
E, and will therefore be on a phase space manifold of constant energy, that is
H(q, p) = E. Writing this condition as a partial differential equation for S (q, q′, E),
that is

H(q,
∂S
∂q

) = E ,

one obtains

∂

∂q′i
H(q, p) = 0 =

∂H
∂pj

∂pj

∂q′i
= q̇ j

∂2S
∂qj∂q′i

∂

∂qi
H(q′, p′) = 0 =

∂2S
∂qi∂q′j

q̇′j , (38.43)

that is the sub-matrix ∂2S/∂qi∂q′j has (left- and right-) eigenvectors corresponding
to an eigenvalue 0. Rotate the local coordinate system at the either end of the
trajectory

(q1, q2, q3, · · · , qd) → (q‖, q⊥1, q⊥2, · · · , q⊥(D−1))

so that one axis points along the trajectory and all others are perpendicular to it

(q̇1, q̇2, q̇3, · · · , q̇d) → (q̇, 0, 0, · · · , 0) .

With such local coordinate systems at both ends, with the longitudinal coordinate
axis q‖ pointing along the velocity vector of magnitude q̇, the stability matrix of
S (q, q′, E) has a column and a row of zeros as (38.43) takes form

q̇
∂2S
∂q‖∂q′i

=
∂2S
∂qi∂q′‖

q̇′ = 0 .

28Predrag: what’s Dj?
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transverse stability
Green’s

function!trace!long
orbits

Green’s
function!short
distance

The initial and final velocities are non-vanishing except for points |q̇| = 0. These
are the turning points (where all energy is potential), and we assume that neither q
nor q′ is a turning point (in our application - periodic orbits - we can always chose
q = q′ not a turning point). In the local coordinate system with one axis along
the trajectory and all other perpendicular to it the determinant of (38.41) is of the
form

det D(q, q′, E) = (−1)D+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝det

0 0 ∂2S
∂E∂q′‖

0 ∂2 S
∂q⊥∂q′⊥

∗
∂2S
∂q‖∂E ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (38.44)

The corner entries can be evaluated using (38.17)

∂2S
∂q‖∂E

=
∂

∂q‖
t =

1
q̇
,

∂2S
∂E∂q′‖

=
1
q̇′
.

As the q‖ axis points along the velocity direction, velocities q̇, q̇′ are by construc-
tion almost always positive non-vanishing numbers. In this way the determinant
of the [(D + 1)× (D + 1)] dimensional matrix D(q, q′, E) can be reduced to the
determinant of a [(D − 1)×(D − 1)] dimensional transverse matrix D⊥(q, q′, E)

det D(q, q′, E) =
1

q̇q̇′
det D⊥(q, q′, E)

D⊥(q, q′, E)ik = −∂
2S (q, q′, E)
∂q⊥i∂q′⊥k

. (38.45)

Putting everything together we obtain the jth trajectory contribution to the semi-
classical Green’s function

exercise 38.18

G j(q, q
′, E) =

1

i�(2πi�)(D−1)/2

1

|q̇q̇′|1/2
∣∣∣∣det Dj

⊥

∣∣∣∣1/2 e
i
�

S j− iπ
2 mj , (38.46)

where the topological index mj = m j(q, q′, E) now counts the number of changes
of sign of det Dj

⊥ along the trajectory j which connects q′ to q at energy E.

The endpoint velocities q̇, q̇′ also depend on (q, q′, E) and the trajectory j. 29

38.3.4 Short trajectories

29Bartsch: omit this: “ While in the case of the propagator the initial momentum variations δp′

are unrestricted, for the Green’s function the (δq′, δp′) variations are restricted to the constant energy
shell; the appearance of the 1/q̇q̇′ weights in the Green’s function can be traced to this constraint.
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propagator!short time
Hankel function
Green’s

function!short
distance

The stationary phase method cannot be used when t∗ is small, both because we
cannot extend the integration in (37.16) to −∞, and because the amplitude of
K(q, q′, t) is divergent. In this case we have to evaluate the integral involving the
short time form of the exact quantum mechanical propagator (38.26)

G0(q, q′, E) =
1
i�

∫ ∞

0
dt

( m
2πi�t

)D/2
e

i
�

( m(q−q′)2
2t −V(q)t+Et) . (38.47)

30 By introducing a dimensionless variable τ = t
√

2m(E − V(q))/m|q − q′|, 31

the integral can be rewritten as

G0(q, q′, E) =
m

i�2(2πi)D/2

( √
2m(E − V)
�|q − q′|

) D
2 −1 ∫ ∞

0

dτ

τD/2
e

i
2� S 0(q,q′,E)(τ+1/τ),

where S 0(q, q′, E) =
√

2m(E − V)|q − q′| is the short distance form of the action.
Using the integral representation of the Hankel function of first kind

H+ν (z) = − i
π

e−iνπ/2
∫ ∞

0
e

1
2 iz(τ+1/τ)τ−ν−1dτ

we can write the short distance form of the Green’s function as

G0(q, q′, E) ≈ − im

2�2

( √
2m(E − V)

2π�|q − q′|

) D−2
2

H+D−2
2

(S 0(q, q′, E)/�) . (38.48)

Hankel functions are stabdard, and their the short wavelength asymptotics is de-
scribed in standard reference books. The short distance Green’s function approx-
imation is valid when S0(q, q′, E) ≤ �.

Résumé

The aim of the semiclassical or short-wavelength methods is to approximate a
solution of the Schrödinger equation with a semiclassical wave function

ψsc(q, t) =
∑

j

A j(q, t)e
iRj(q,t)/� ,

accurate to the leading order in �. Here the sum is over all classical trajectories
that connect the initial point q′ to the final point q in time t. “Semi–” refers to �,

30Predrag: handwritten insert ”A” here
31Predrag: simplify �k(q) =

√
2m(E − V(q))
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Hamilton!-Jacobi
equation

Green’s
function!semiclassical

semiclassical!Green’s
function

Laplace!transform

the quantum unit of phase in the exponent. The quantum mechanics enters only
through this atomic scale, in units of which the variation of the phase across the
classical potential is assumed to be large. “–classical” refers to the rest - both the
amplitudes Aj(q, t) and the phases Rj(q, t) - which are determined by the classical
Hamilton-Jacobi equations.

In the semiclassical approximation the quantum time evolution operator is
given by the semiclassical propagator

Ksc(q, q′, t) =
1

(2πi�)D/2

∑
j

∣∣∣∣∣det
∂p′

∂q

∣∣∣∣∣1/2
j

e
i
�

R j− iπ
2 mj ,

where the topological index mj(q, q′, t) counts the number of the direction reversal
along the jth classical trajectory that connects q′ → q in time t. Until very recently
it was not possible to resolve quantum evolution on quantum time scales (such as
one revolution of electron around a nucleus) - physical measurements are almost
always done at time scales asymptotically large compared to the intrinsic quantum
time scale. Formally this information is extracted by means of a Laplace trans-
form of the propagator which yields the energy dependent semiclassical Green’s
function

Gsc(q, q′, E) = G0(q, q′, E) +
∑

j

G j(q, q
′, E)

G j(q, q
′, E) =

1

i�(2πi�)
(D−1)

2

∣∣∣∣∣∣ 1
q̇q̇′

det
∂p′⊥
∂q⊥

∣∣∣∣∣∣1/2
j

e
i
�

S j− iπ
2 mj (38.49)

where G0(q, q′, E) is the contribution of short trajectories with S0(q, q′, E) ≤ �,
while the sum is over the contributions of long trajectories (38.46) going from q′

to q with fixed energy E, with S j(q, q′, E) ( �.

Commentary

Remark 38.1 Limit � → 0. The semiclassical limit “� → 0” discussed in sect. 38.1
is a shorthand notation for the limit in which typical quantities like the actions R or S in
semiclassical expressions for the propagator or the Green’s function become large com-
pared to �. In the world that we live in the quantity � is a fixed physical constant whose
value [8] is 1.054571596(82) 10−34 Js.

Remark 38.2 Madelung’s fluid dynamics. Already Schrödinger [3] noted that

ρ = ρ(q, t) := A2 = ψ∗ψ
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quantum!potential
hydrodynamical!interpretation

of QM
Poincaré-Cartan

theorem
Morse index
index!Morse

plays the role of a density, and that the gradient of R may be interpreted as a local semi-
classical momentum, as the momentum density is

ψ(q, t)∗(−i�
∂

∂q
)ψ(q, t) = −i�A

∂A
∂q
+ ρ

∂R
∂q

.

A very different interpretation of (38.3–38.4) has been given by Madelung [2], and then
built upon by Bohm [6] and others [3, 7]. Keeping the � dependent term in (38.3), the
ordinary differential equations driving the flow (38.10) have to be altered; if the Hamilto-
nian can be written as kinetic plus potential term V(q) as in (36.2), the �2 term modifies
the p equation of motion as

ṗi = −
∂

∂qi
(V(q) + Q(q, t)) , (38.50)

where, for the example at hand,

Q(q, t) = − �
2

2m
1
√
ρ

∂2

∂q2

√
ρ (38.51)

interpreted by Bohm [6] as the “quantum potential.” Madelung observed that Hamilton’s
equation for the momentum (38.50) can be rewritten as

∂vi

∂t
+

(
v · ∂

∂q

)
vi = −

1
m
∂V
∂qi

− 1
mρ

∂

∂q j
σi j , (38.52)

where σi j =
�

2ρ
4m

∂2 ln ρ
∂qi∂qj

is the “pressure” stress tensor, vi = pi/m, and ρ = A2 as de-

fined [3] in sect. 38.1.3. We recall that the Eulerian ∂
∂t +

∂qi

∂t
∂
∂qi

is the ordinary derivative

of Lagrangian mechanics, that is d
dt . For comparison, the Euler equation for classical

hydrodynamics is

∂vi

∂t
+

(
v · ∂

∂q

)
vi = −

1
m
∂V
∂qi

− 1
mρ

∂

∂q j
(pδi j) ,

where pδi j is the pressure tensor.

The classical dynamics corresponding to quantum evolution is thus that of an “hypo-
thetical fluid” experiencing � and ρ dependent stresses. The “hydrodynamic” interpreta-
tion of quantum mechanics has, however, not been very fruitful in practice.

⇓PRIVATE

Remark 38.3 Lagrangian manifolds. Hamilton’s equations of motion map a La-
grangian manifold into a Lagrangian manifold time t later. This fact is called the Poincaré-
Cartan theorem. 32 V. P. Maslov [6] derived the topological index by the Lagrangian mani-
fold technique in 1965-1967, apparently unaware at the time of Keller’s work. V.I. Arnol’d
knew Keller’s papers, but when he showed that there exist a connection between the Morse
index and the topological index in his 1967 article [ 8], the Lagrangian manifold formal-
ism was more to his taste, and he chose to name the index after Maslov. The name
“Maslov index” stuck.

appendix A.8
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Dirac path integral
Feynman path integral
Gutzwiller path

integral

⇑PRIVATE

Remark 38.4 Path integrals. The semiclassical propagator (38.30) can also be derived
from Feynman’s path integral formalism. Dirac was the first to discover that in the short-
time limit the quantum propagator (38.34) is exact. Feynman noted in 1946 that one can
construct the exact propagator of the quantum Schrödinger equation by formally summing
over all possible (and emphatically not classical) paths from q ′ to q , i.e., ⇓PRIVATE

Feynman path integral here . (38.53)

⇑PRIVATE

Gutzwiller started from the path integral to rederive Van Vleck’s semiclassical ex-
pression for the propagator; Van Vleck’s original derivation is very much in the spirit
of what has presented in this chapter. He did, however, not consider the possibility of
the formation of caustics or folds of Lagrangian manifolds and thus did not include the
topological phases in his semiclassical expression for the propagator. Some 40 years later
Gutzwiller [4] added the topological indices when deriving the semiclassical propagator
from Feynman’s path integral by stationary phase conditions. 33

⇓PRIVATE

Remark 38.5 Method of characteristics. Perhaps the credit for the method should
go to Monge, the inventor of the method of characteristics; see for ex. chapter 22.7 of
Kline [15].

Remark 38.6 An Irish tragedy. For a more jaundiced view of young Hamilton, consult
Bell’s Men of Mathematics, chapter 19 [16].

Remark 38.7 What does this mean? The �2 term in (38.50) is called the ‘quantum
potential’ by Bohm [6], ‘enthalpy’ by Spiegel [14], by fluid dynamics analogy, or ‘quan-
tum pressure’ by Feynman [17]. While Schrödinger in his 21 june 1926 paper noted that
ρ satisfies the continuity equation, it was Born who (in a footnote of his 24 june 1926
paper) identified ρ as the probability density. Interpretations of quantum mechanics bifur-
cate here; keeping the � term in the potential (??) leads to the Madelung/de Broglie/Bohm
‘pilot wave’ theory. Shifting the � term into the continuity equation (??) leads to Nelson’s
‘stochastic quantum mechanics.’ 34 Those bereft of gift for philosophy can follow the path
we take here–we simply work the stuff out, first the quasiclassics, then the � and the tun-
neling and/or creeping corrections, without attempting to interpret quantum mechanics.

Remark 38.8 More general Hamiltonians. GT: Maybe remark here on non ki-
netic+potential Hamiltonians?

32Gregor: Reference here
33Gregor: Could add some blah-blah about Morse, Keller and Maslov here; I would have to read

that up, though. Bummer.
34Predrag: refernce to Nelson?
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catastrophe theory
Green’s

function!semiclassical

Remark 38.9 Catastrophe theory. In more exceptional cases when several eigenval-
ues diverge simultaneously one encounters higher order caustics, whose classification is
the subject of catastrophe theory, see for example refref ?? for details.

Remark 38.10 Where does the symplectic structure come from? The Hamiltonian
or symplectic structure of the equations describing the most probable path was not present
in the original deterministic equation ẋ = v(x). It is a property of the approximation we
made. Instead of x and p, one can introduce other canonical coordinates via a canon-
ical transformation. But then their ‘quantization’ will not reproduce the Fokker-Planck
equation. We get the Fokker-Planck equation only if the system is quantized in Cartesian
coordinates. We can say that the symplectic symmetry is present only on the first level
of the approximation. Thinking about the correspondence between classical and quantum
mechanics, we see that the Hamilton equations of motion are the first approximation of
quantum mechanics. However, there is no way to quantize systems in general canonical
coordinates. In this line of thought, the symplectic structure is not a deep symmetry of
nature, but an artifact of a semiclassical approximation to quantum dynamics. (Gábor
Vattay)

⇑PRIVATE

Remark 38.11 Applications of the semiclassical Green’s function. The semiclas-
sical Green’s function is the starting point of the semiclassical approximation in many
applications. The generic semiclassical strategy is to express physical quantities (for ex-
ample scattering amplitudes and cross section in scattering theory, oscillator strength in
spectroscopy, and conductance in mesoscopic physics) in terms of the exact Green’s func-
tion and then replace it with the semiclassical formula.

Remark 38.12 The quasiclassical approximation The quasiclassical approximation
was introduced by Maslov [7]. 35 The term ‘quasiclassical’ is more appropriate than semi-
classical since the Maslov type description leads to a pure classical evolution operator in
a natural way. Following mostly ref. [8], we give a summary of the quasiclassical approx-
imation, which was worked out by Maslov [7] in this form. One additional advantage of
this description is that the wave function evolves along one single classical trajectory 36

and we do not have to compute sums over increasing numbers of classical trajectories as
in computations involving Van Vleck formula [28].

35Predrag: unsure about Maslov ref. [7], ref. [8]
36Predrag: add more about Tomsovich, Heller
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Dirac delta
Gaussian!integral
stationary phase

boyscout

38.1. Dirac delta function, Gaussian representation. Con-
sider the Gaussian distribution function

δσ(z) =
1

√
2πσ2

e−z2/2σ2
.

Show that in σ→ 0 limit this is the Dirac delta function∫
M

dx δ(x) = 1 if 0 ∈ M , zero otherwise .

38.2. Stationary phase approximation in higher dimensions.
All semiclassical approximations are based on saddle point
evaluations of integrals of type

I =
∫

dDxA(x)eiΦ(x)/� (38.54)

for small values of �. Obtain the stationary phase estimate

I ≈
∑

n

A(xn)eiΦ(xn)/� (2πi�)D/2√
det D2Φ(xn)

,

where D2Φ(xn) denotes the second derivative matrix.

38.3. Schrödinger equation in the Madelung form. Verify
the decomposition of Schrödinger equation into real and
imaginary parts, eqs. (38.3) and (38.4).

38.4. Transport equations. Write the wave-function
in the asymptotic form

ψ(q, t) = e
i
�

R(x,t)+ i
�
εt

∑
n≥0

(i�)nAn(x, t) .

Derive the transport equations for the An by substitut-
ing this into the Schrödinger equation and then collect-
ing terms by orders of �. Note that equation for Ȧn only
requires knowledge of An−1 and R.

38.5. Easy examples of the Hamilton’s principal function. Cal-
culate R(q, q′, t) for

a) a D-dimensional free particle

b) a 3-dimensional particle in constant magnetic field

c) a 1-dimensional harmonic oscillator.

(continuation: exercise 38.15.)
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38.6. 1-dimensional harmonic oscillator. 37 Take a 1-dimensional
harmonic oscillator U(q) = 1

2 kq2. Take a WKB wave
function of form A(q, t) = a(t) and R(q, t) = r(t) + b(t)q +
c(t)q2, where r(t), a(t), b(t) and c(t) are time dependent
coefficients. Derive ordinary differential equations by us-
ing (38.3) and (38.4) and solve them. (continuation: ex-
ercise 38.9.)

38.7. 1-dimensional linear potential. Take a 1-dimensional
linear potential U(q) = −Fq. Take a WKB wave function
of form A(q, t) = a(t) and R(q, t) = r(t) + b(t)q + c(t)q 2,
where r(t), a(t), b(t) and c(t) are time dependent coeffi-
cients. Derive and solve the ordinary differential equa-
tions from (38.3) and (38.4).

38.8. D-dimensional quadratic potentials. Generalize the
above method to general D-dimensional quadratic poten-
tials. 38

38.9. Time evolution of R. (continuation of exercise 38.6) Cal-
culate the time evolution of R(q, 0) = a+bq+ cq 2 for a 1-
dimensional harmonic oscillator using (38.12) and (38.14).

⇓PRIVATE
38.10. Checking text - continuity equation. Check (38.20) ⇑PRIVATE
38.11. D-dimensional free particle propagator. Verify the re-

sults in sect. 38.2.2; show explicitly that (38.34), the semi-
classical Van Vleck propagator in D dimensions, solves
the Schrödinger’s equation.

38.12. Propagator, charged particle in constant magnetic field.
Calculate the semiclassical propagator for a charged par-
ticle in constant magnetic field in 3 dimensions. Verify
that the semiclassical expression coincides with the exact
solution.

38.13. 1-dimensional harmonic oscillator propagator. Cal-
culate the semiclassical propagator for a 1-dimensional
harmonic oscillator and verify that it is identical to the
exact quantum propagator.

⇓PRIVATE
38.14. Exact vs. semiclassical propagator. What is the differ-

ence between the exact and the semiclassical propagator?
39

⇑PRIVATE
40

38.15. Free particle action. Calculate the energy dependent
action for a free particle, a charged particle in a constant
magnetic field and for the harmonic oscillator.

38.16. Zero length orbits. Derive the classical trace
(18.1) rigorously and either add the t → 0+ zero length

37Predrag: rethink - what is the point of this exercise?
38Mason: what’s the point? exercise 38.6 and exercise 38.7 are the same?
39Gregor: Predrag: Question very unspecific; don’t know what you are up to. Not included in

text yet
40Dorte: PC fills in systems of exercises....
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Green’s
function!semiclassical

semiclassical!Green’s
function

contribution to the trace formula, or show that it vanishes.
Send us a reprint of Phys. Rev. Lett. with the correct
derivation. ⇓PRIVATE

38.17. A usefull determinant identity. Show that the follow-
ing two determinants equal each other:
41 A[(n + 1) × (n + 1)]determinant

n + 1

det (M′
n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 . . . x1,n y1
...

. . .
...

...
xn,1 . . . xn,n yn
z1 . . . zn E

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ n + 1 (38.55)

and the [n × n] determinant:

n

E det (Mn) = E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 − y1z1E−1 . . . x1,n − y1znE−1

...
. . .

...
xn,1 − ynz1E−1 . . . xn,n − ynznE−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ n (38.56)

⇑PRIVATE
38.18. Free particle semiclassical Green’s functions. Cal-

culate the semiclassical Green’s functions for the systems
of exercise 38.15.
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Chapter 39

Semiclassical quantization

(G. Vattay, G. Tanner and P. Cvitanović)

We derive here the Gutzwiller trace formula and the semiclassical zeta func-
tion, the central results of the semiclassical quantization of classically
chaotic systems. In chapter 40 we will rederive these formulas for the

case of scattering in open systems. Quintessential wave mechanics effects such as
creeping, diffraction and tunneling will be taken up in chapters44 and 45. If you ⇓PRIVATE
still feel you got no satisfaction, we derive the trace formulas one more time in
appendix Q, this time both for quantum and stochastic flows. ⇑PRIVATE

39.1 Trace formula

Our next task is to evaluate the Green’s function trace (36.17) in the semiclassical
approximation. The trace

tr Gsc(E) =
∫

dDq Gsc(q, q, E) = tr G0(E) +
∑

j

∫
dDq G j(q, q, E)

receives contributions from “long” classical trajectories labeled by j which start
and end in q after finite time, and the “zero length” trajectories whose lengths
approach zero as q′ → q.

First, we work out the contributions coming from the finite time returning
classical orbits, i.e., trajectories that originate and end at a given configuration
point q. 1 As we are identifying q with q′, taking of a trace involves (still another!)
stationary phase condition in the q′ → q limit,

∂S j(q, q′, E)

∂qi

∣∣∣∣∣∣
q′=q

+
∂S j(q, q′, E)

∂q′i

∣∣∣∣∣∣
q′=q

= 0 ,

1Predrag: add periodic trajectory to figure 39.1

867



CHAPTER 39. SEMICLASSICAL QUANTIZATION 868

periodic!orbit
orbit!periodic
stationary

phase!approximation
Figure 39.1: A returning trajectory in the configura-
tion space. The orbit is periodic in the full phase space
only if the initial and the final momenta of a returning
trajectory coincide as well.

Figure 39.2: A romanticized sketch of S p(E) =
S (q, q, E) =

∮
p(q, E)dq landscape orbit. Unstable

periodic orbits traverse isolated ridges and saddles of
the mountainous landscape of the action S (q‖, q⊥, E).
Along a periodic orbit S p(E) is constant; in the trans-
verse directions it generically changes quadratically.

meaning that the initial and final momenta (38.40) of contributing trajectories
should coincide

pi(q, q, E) − p′i (q, q, E) = 0 , q ∈ jth periodic orbit , (39.1)

so the trace receives contributions only from those long classical trajectories which
are periodic in the full phase space.

For a periodic orbit the natural coordinate system is the intrinsic one, with q‖
axis pointing in the q̇ direction along the orbit, and q⊥, the rest of the coordinates
transverse to q̇. The jth periodic orbit contribution to the trace of the semiclassical
Green’s function in the intrinsic coordinates is

tr G j(E) =
1

i�(2π�)(d−1)/2

∮
j

dq‖
q̇

∫
j
dd−1q⊥|det Dj

⊥|
1/2e

i
�

S j− iπ
2 mj ,

where the integration in q‖ goes from 0 to Lj, the geometric length of small tube
around the orbit in the configuration space. As always, in the stationary phase ap-
proximation we worry only about the fast variations in the phase Sj(q‖, q⊥, E),
and assume that the density varies smoothly and is well approximated by its
value Dj

⊥(q‖, 0, E) on the classical trajectory, q⊥ = 0 . The topological index
m j(q‖, q⊥, E) is an integer which does not depend on the initial point q‖ and not
change in the infinitesimal neighborhood of an isolated periodic orbit, so we set
m j(E) = m j(q‖, q⊥, E).

The transverse integration is again carried out by the stationary phase method,
with the phase stationary on the periodic orbit, q⊥ = 0. The result of the transverse
integration can depend only on the parallel coordinate2

tr G j(E) =
1
i�

∮
dq‖
q̇

∣∣∣∣∣∣∣det D⊥ j(q‖, 0, E)

det D′
⊥ j(q‖, 0, E)

∣∣∣∣∣∣∣
1/2

e
i
�

S j− iπ
2 mj ,

2Predrag: additional phase accrued?

traceSemicl - 2mar2004 boyscout version14.4, Mar 19 2013



CHAPTER 39. SEMICLASSICAL QUANTIZATION 869

where the new determinant in the denominator, det D′⊥ j =

det

⎛⎜⎜⎜⎜⎜⎝∂2S (q, q′, E)
∂q⊥i∂q⊥ j

+
∂2S (q, q′, E)
∂q′⊥i∂q⊥ j

+
∂2S (q, q′, E)
∂q⊥i∂q′⊥ j

+
∂2S (q, q′, E)
∂q′⊥i∂q′⊥ j

⎞⎟⎟⎟⎟⎟⎠ ,
is the determinant of the second derivative matrix coming from the stationary
phase integral in transverse directions. Mercifully, this integral also removes most ⇓PRIVATEof the 2π� prefactors in (??). 3 4 5

⇑PRIVATE

The ratio det D⊥ j/det D′
⊥ j is here to enforce the periodic boundary condition

for the semiclassical Green’s function evaluated on a periodic orbit. It can be given
a meaning in terms of the monodromy matrix of the periodic orbit by following
observations 6

det D⊥ =

∥∥∥∥∥∥∂p′⊥
∂q⊥

∥∥∥∥∥∥ =
∥∥∥∥∥∥∂(q′⊥, p′⊥)

∂(q⊥, q′⊥)

∥∥∥∥∥∥
det D′

⊥ =

∥∥∥∥∥∥∂p⊥
∂q⊥

−
∂p′⊥
∂q⊥
+
∂p⊥
∂q′⊥

−
∂p′⊥
∂q′⊥

∥∥∥∥∥∥ =
∥∥∥∥∥∥∂(p⊥ − p′⊥, q⊥ − q′⊥),

∂(q⊥, q′⊥)

∥∥∥∥∥∥ .
Defining the 2(D − 1)-dimensional transverse vector x⊥ = (q⊥, p⊥) in the full
phase space we can express the ratio

det D′
⊥

det D⊥
=

∥∥∥∥∥∥∂(p⊥ − p′⊥, q⊥ − q′⊥)

∂(q′⊥, p′⊥)

∥∥∥∥∥∥ =
∥∥∥∥∥∥∂(x⊥ − x′⊥)

∂x′⊥

∥∥∥∥∥∥
= det (M − 1) , (39.2)

in terms of the monodromy matrix M for a surface of section transverse to the
orbit within the constant energy E = H(q, p) shell, discussed already in sect. ??. ⇓PRIVATE

⇑PRIVATEThe classical periodic orbit action S j(E) =
∮

p(q‖, E)dq‖ is an integral around
a loop defined by the periodic orbit, and does not depend on the starting point q‖
along the orbit, see figure 39.2. The eigenvalues of the monodromy matrix are
also independent of where Mj is evaluated along the orbit, so det (1−Mj) can also
be taken out of the q‖ integral

tr G j(E) =
1
i�

∑
j

1

|det (1 − Mj)|1/2
er( i

�
S j− iπ

2 mj)
∮

dq‖
q̇‖

.

Here we have assumed that Mj has no marginal eigenvalues. The determinant
of the monodromy matrix, the action S p(E) =

∮
p(q‖, E)dq‖ and the topological

3Niall: Don’t forget to add the equation reference.
4Predrag: refers to refeq(22.64)
5Predrag: Credit Creagh, Brack, Stockmann
6Predrag: recheck signs
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periodic!orbit
orbit!periodic
Gutzwiller trace

formula
trace!formula!Gutzwiller
topological!index@“maslov“

index

index are all classical invariants of the periodic orbit. The integral in the parallel
direction we now do exactly.

First, we take into account the fact that any repeat of a periodic orbit is also a
periodic orbit. The action and the topological index are additive along the trajec-
tory, so for rth repeat they simply get multiplied by r. The monodromy matrix of
the rth repeat of a prime cycle p is (by the chain rule for derivatives) Mr

p, where
Mp is the prime cycle monodromy matrix. Let us denote the time period of the
prime cycle p, the single, shortest traversal of a periodic orbit by Tp. The remain-
ing integral can be carried out by change of variables dt = dq‖/q̇(t)

∫ Lp

0

dq‖
q̇(t)
=

∫ Tp

0
dt = Tp .

Note that the spatial integral corresponds to a single traversal. If you do not see
why this is so, rethink the derivation of the classical trace formula (18.23) - that
derivation takes only three pages of text. Regrettably, in the quantum case we do
not know of an honest derivation that takes less than 30 pages. The final result,
the Gutzwiller trace formula

tr Gsc(E) = tr G0(E) +
1
i�

∑
p

Tp

∞∑
r=1

1

|det (1 − Mr
p)|1/2

er( i
�

S p− iπ
2 mp) , (39.3)

an expression for the trace of the semiclassical Green’s function in terms of peri-
odic orbits, is beautiful in its simplicity and elegance.

The topological index mp(E) counts the number of changes of sign of the ma-
trix of second derivatives evaluated along the prime periodic orbit p. By now we
have gone through so many stationary phase approximations that you have surely
lost track of what the total mp(E) actually is. The rule is this: The topological
index of a closed curve in a 2D phase space is the sum of the number of times
the partial derivatives ∂pi

∂qi
for each dual pair (qi, pi), i = 1, 2, . . . ,D (no sum on i)

change their signs as one goes once around the curve.

39.1.1 Average density of states

We still have to evaluate tr G0(E), the contribution coming from the infinitesimal
trajectories. 7 The real part of tr G0(E) is infinite in the q′ → q limit, so it makes
no sense to write it down explicitly here. However, the imaginary part is finite,
and plays an important role in the density of states formula, which we derive next.

The semiclassical contribution to the density of states (36.17) is given by
the imaginary part of the Gutzwiller trace formula (39.3) multiplied with −1/π.

7Predrag: keep ”tr” here
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density of
states!average

Weyl!rule

The contribution coming from the zero length trajectories is the imaginary part of
(38.48) for q′ → q integrated over the configuration space

d0(E) = −1
π

∫
dDq Im G0(q, q, E),

The resulting formula has a pretty interpretation; it estimates the number of
quantum states that can be accommodated up to the energy E by counting the
available quantum cells in the phase space. 8 This number is given by the Weyl
rule , 9 as the ratio of the phase space volume bounded by energy E divided by
hD, the volume of a quantum cell,

Nsc(E) =
1

hD

∫
dD pdDqΘ(E − H(q, p)) . (39.4)

where Θ(x) is the Heaviside function (36.22). Nsc(E) is an estimate of the spectral
staircase (36.21), so its derivative yields the average density of states

d0(E) =
d
dE

Nsc(E) =
1

hD

∫
dD pdDq δ(E − H(q, p)) , (39.5)

precisely the semiclassical result (39.6). 10 For Hamiltonians of type p2/2m +
V(q), the energy shell volume in (39.5) is a sphere of radius

√
2m(E − V(q)). The

surface of a d-dimensional sphere of radius r is πd/2rd−1/Γ(d/2), so the average
exercise 39.3

density of states is given by

d0(E) =
2m

�D2dπD2Γ(D/2)

∫
V(q)<E

dDq [2m(E − V(q))]D/2−1 , (39.6)

and

Nsc(E) =
1

hD

πD/2

Γ(1 + D/2)

∫
V(q)<E

dDq [2m(E − V(q))]D/2 . (39.7)

Physically this means that at a fixed energy the phase space can support Nsc(E)
distinct eigenfunctions; anything finer than the quantum cell hD cannot be re-
solved, so the quantum phase space is effectively finite dimensional. The average
density of states is of a particularly simple form in one spatial dimension

exercise 39.4

d0(E) =
T (E)
2π�

, (39.8)

8Predrag: refer to the harm. oscill. to motivate this
9Predrag: Thomas-Fermi formula?

10Predrag: redirect the (39.6) reference
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density of
states!average

semiclassical!density
of states

ultraviolet divergence
divergence ultraviolet

where T (E) is the period of the periodic orbit of fixed energy E. In two spatial
dimensions the average density of states is

d0(E) =
mA(E)

2π�2
, (39.9)

whereA(E) is the classically allowed area of configuration space for which V(q) <
E.

exercise 39.5

⇓PRIVATE11

Im G0(q, q, E) = − lim
q′→q

m

2�2

( √
2m(E − V)

2π�|q − q′|

) d−2
2

J+d−2
2

(S 0(q, q′, E)/�).

where G0(q, q′, E) is the short time Green’s function (38.48). Using the Bessel
function J+ν = Im H+ν asymptotic estimate

Jν(z) ≈ 1
Γ(ν + 1)

( z
2

)ν
for |z| << 1.

we obtain the zero length trajectories contribution to the density of states

d0(E) =
m

�D2d−1πD/2Γ(D/2)

∫
V(q)<E

dDq [2m(E − V(q))](d−2)/2 . (39.10)

12 The result is the same as (39.6), the average density estimate d0(E). The initial
wild guess is indeed correct, and ⇑PRIVATE

The semiclassical density of states is a sum of the average density of states and
the oscillation of the density of states around the average, dsc(E) = d0(E)+dosc(E),
where

dosc(E) =
1
π�

∑
p

Tp

∞∑
r=1

cos(rS p(E)/� − rmpπ/2)

|det (1 − Mr
p)|1/2

(39.11)

follows from the trace formula (39.3).

39.1.2 Regularization of the trace

The real part of the q′ → q zero length Green’s function (38.48) is ultraviolet
divergent in dimensions d > 1, and so is its formal trace (36.17). The short

11Predrag: into appendix? or into a remark?
12Predrag: rescue the original argument, say it is called ”Weyl term”
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Green’s
function!regularized

regularization!Green’s
function

Green’s
function!regularized

quantum!chaos
Hadamard product
regularization

distance behavior of the real part of the Green’s function can be extracted from
the real part of (38.48) by using the Bessel function expansion for small z

Yν(z) ≈
⎧⎪⎪⎨⎪⎪⎩ − 1

πΓ(ν)
(

z
2

)−ν
for ν � 0

2
π (ln(z/2) + γ) for ν = 0

,

where γ = 0.577... is the Euler constant. The real part of the Green’s function for
short distance is dominated by the singular part

Gsing(|q − q′|, E) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− m

2�2π
d
2
Γ((d − 2)/2) 1

|q−q′ |d−2 for d � 2

m
2π�2 (ln(2m(E − V)|q − q′|/2�) + γ) for d = 2

.

The regularized Green’s function

Greg(q, q′, E) = G(q, q′, E) −Gsing(|q − q′|, E)

13 is obtained by subtracting the q′ → q ultraviolet divergence. For the regularized
Green’s function the Gutzwiller trace formula is

tr Greg(E) = −iπd0(E) +
1
i�

∑
p

Tp

∞∑
r=1

er( i
�

S p(E)− iπ
2 mp(E))

|det (1 − Mr
p)|1/2

. (39.12)

Now you stand where Gutzwiller stood in 1990. You hold the trace formula in
your hands. You have no clue how good is the � → 0 approximation, how to
take care of the sum over an infinity of periodic orbits, and whether the formula
converges at all.

39.2 Semiclassical spectral determinant

The problem with trace formulas is that they diverge where we need them, at
the individual energy eigenvalues. What to do? Much of the quantum chaos
literature responds to the challenge of wrestling the trace formulas by replacing
the delta functions in the density of states (36.18) by Gaussians. But there is no
need to do this - we can compute the eigenenergies without any further ado by
remembering that the smart way to determine the eigenvalues of linear operators
is by determining zeros of their spectral determinants.

A sensible way to compute energy levels is to construct the spectral determin-
ant whose zeroes yield the eigenenergies, det (Ĥ − E)sc = 0. A first guess might
be that the spectral determinant is the Hadamard product of form

det (Ĥ − E) =
∏

n

(E − En),

13Predrag: sure there is no finite term leftover?
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semiclassical!zeta
function@“qS

cycle!expansionFigure 39.3: A sketch of how spectral determinants
convert poles into zeros: The trace shows 1/(E − En)
type singularities at the eigenenergies while the spec-
tral determinant goes smoothly through zeroes.

14 but this product is not well defined, since for fixed E we multiply larger and
larger numbers (E − En). This problem is dealt with by regularization, discussed
below in appendix 39.1.2. Here we offer an impressionistic sketch of regulariza-
tion.

The logarithmic derivative of det (Ĥ − E) is the (formal) trace of the Green’s
function

− d
dE

ln det (Ĥ − E) =
∑

n

1
E − En

= tr G(E).

This quantity, not surprisingly, is divergent again. The relation, however, opens a
way to derive a convergent version of det (Ĥ − E)sc, by replacing the trace with
the regularized trace

− d
dE

ln det (Ĥ − E)sc = tr Greg(E).

The regularized trace still has 1/(E −En) poles at the semiclassical eigenenergies,
poles which can be generated only if det (Ĥ − E)sc has a zero at E = En, see
figure 39.3. By integrating and exponentiating we obtain

det (Ĥ − E)sc = exp

(
−

∫ E

dE′ tr Greg(E′)

)

Now we can use (39.12) and integrate the terms coming from periodic orbits,
using the relation (38.17) between the action and the period of a periodic orbit,
dS p(E) = Tp(E)dE, and the relation (36.21) between the density of states and the
spectral staircase, dNsc(E) = d0(E)dE. We obtain the semiclassical zeta function

det (Ĥ − E)sc = eiπNsc(E) exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

eir(S p/�−mpπ/2)

|det (1 − Mr
p)|1/2

⎞⎟⎟⎟⎟⎟⎟⎠ . (39.13)

chapter 20

We already know from the study of classical evolution operator spectra of chap-
ter 19 that this can be evaluated by means of cycle expansions. The beauty of this
formula is that everything on the right side – the cycle action Sp, the topological
index mp and monodromy matrix Mp determinant – is intrinsic, coordinate-choice
independent property of the cycle p. 15

14Predrag: finger here to appendix 23.1: tosect
15Predrag: We also neglected the slow energy dependence of the Jacobian determinant
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Bohr-Sommerfeld
quantization

39.3 One-dof systems

It has been a long trek, a stationary phase upon stationary phase. Let us check
whether the result makes sense even in the simplest case, for quantum mechanics
in one spatial dimension.

In one dimension the average density of states follows from the 1-dof form of
the oscillating density (39.11) and of the average density (39.8)

d(E) =
Tp(E)

2π�
+

∑
r

Tp(E)

π�
cos(rS p(E)/� − rmp(E)π/2). (39.14)

The classical particle oscillates in a single potential well with period Tp(E). There
is no monodromy matrix to evaluate, as in one dimension there is only the parallel
coordinate, and no transverse directions. The r repetition sum in (39.14) can be
rewritten by using the Fourier series expansion of a delta spike train

∞∑
n=−∞

δ(x − n) =
∞∑

k=−∞
ei2πkx = 1 +

∞∑
k=1

2 cos(2πkx).

We obtain

d(E) =
Tp(E)

2π�

∑
n

δ(S p(E)/2π� − mp(E)/4 − n). (39.15)

This expression can be simplified by using the relation (38.17) between Tp and
S p, and the identity (16.7) δ(x − x∗) = | f ′(x)|δ( f (x)), where x∗ is the only zero of
the function f (x∗) = 0 in the interval under consideration. We obtain

d(E) =
∑

n

δ(E − En),

where the energies En are the zeroes of the arguments of delta functions in (39.15)

S p(En)/2π� = n − mp(E)/4 ,

where mp(E) = mp = 2 for smooth potential at both turning points, and mp(E) =
mp = 4 for two billiard (infinite potential) walls. These are precisely the Bohr-
Sommerfeld quantized energies En, 16 defined by the condition

∮
p(q, En)dq = h

(
n −

mp

4

)
. (39.16)

16Predrag: WKB eq ref here

traceSemicl - 2mar2004 boyscout version14.4, Mar 19 2013



CHAPTER 39. SEMICLASSICAL QUANTIZATION 876

spectral!determinant!1-
“dof

In this way the trace formula recovers the well known 1-dof quantization rule.
In one dimension, the average of states can be expressed from the quantization
condition. At E = En the exact number of states is n, while the average number
of states is n − 1/2 since the staircase function N(E) has a unit jump in this point

Nsc(E) = n − 1/2 = S p(E)/2π� − mp(E)/4 − 1/2. (39.17)

The 1-dof spectral determinant follows from (39.13) by dropping the mon-
odromy matrix part and using (39.17)

det (Ĥ − E)sc = exp
(
− i

2�
S p +

iπ
2

mp

)
exp

⎛⎜⎜⎜⎜⎜⎝−∑
r

1
r

e
i
�

rS p− iπ
2 rmp

⎞⎟⎟⎟⎟⎟⎠ . (39.18)

Summation yields a logarithm by
∑

r tr/r = − ln(1 − t) and we get

det (Ĥ − E)sc = e−
i

2� S p+
imp

4 +
iπ
2 (1 − e

i
�

S p−i
mp
2 )

= 2 sin
(
S p(E)/� − mp(E)/4

)
.

So in one dimension, where there is only one periodic orbit for a given energy E,
nothing is gained by going from the trace formula to the spectral determinant. The
spectral determinant is a real function for real energies, and its zeros are again the
Bohr-Sommerfeld quantized eigenenergies (39.16).

39.4 Two-dof systems

For flows in two configuration dimensions the monodromy matrix Mp has two
eigenvalues Λp and 1/Λp, as explained in sect. 7.3. Isolated periodic orbits can
be elliptic or hyperbolic. Here we discuss only the hyperbolic case, when the
eigenvalues are real and their absolute value is not equal to one. The determinant
appearing in the trace formulas can be written in terms of the expanding eigen-
value as

|det (1 − Mr
p)|1/2 = |Λr

p|1/2
(
1 − 1/Λr

p

)
,

and its inverse can be expanded as a geometric series

1

|det (1 − Mr
p)|1/2

=

∞∑
k=0

1

|Λr
p|1/2Λkr

p
.
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17 With the 2-dof expression for the average density of states (39.9) the spec-
tral determinant becomes

det (Ĥ − E)sc = ei mAE
2�2 exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

∞∑
k=0

eir(S p/�−mpπ/2)

r|Λr
p|1/2Λkr

p

⎞⎟⎟⎟⎟⎟⎟⎠
= ei mAE

2�2
∏

p

∞∏
k=0

⎛⎜⎜⎜⎜⎜⎝1 − e
i
�

S p− iπ
2 mp

|Λp|1/2Λk
p

⎞⎟⎟⎟⎟⎟⎠ . (39.19)

⇓PRIVATE

39.5 Semiclassical zeta function

18

39.6 Noisy trace formula

⇓PRIVATE

In fact I’m Vattay Gábor, just these Indo-Europeans mix
up the right order. ⇑PRIVATE

(G. Vattay and P. Cvitanović)

The Fokker-Planck equation (32.24) can be viewed as the ‘Schrödinger’ prob-
lem of the ‘quantized’ Hamiltonian. The quantization means the introduction of
operators x̂ = x and p̂ = −D∇. D plays the role of i�. The noisy commutators
fulfill

[x̂, p̂] = D. (39.20)

The Schrödinger equation is then

D∂tψ = Ĥψ = −D∇vψ + D2∇2ψ. (39.21)

The noise Hamilton operator is not a hermitian one, therefore the eigenenergies
En defined as

Ĥψn = Enψn (39.22)

are complex numbers and their conjugates. Another special feature is that the
eigenenergies of the Hamilton operator are proportional with D, due to the ab-
sence of a D independent potential term. It is then convenient to absorb the D

17Predrag: restore this section and exercises
18Predrag: add a section on the k = 0 zeta function part
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Green’s function!time
dependent

dependence into sn = En/D, which is then the eigenvalue of the Fokker-Planck
equation.

19 The Feynman path integral formalism can now be extended for this case.
The time domain Green’s function or in other words the evolution operator in
Feynman formalism reads

Lt(x, x′) =
∫
Dx exp

(
− 1

D

∫ t

0
L(t′)dt′

)
, (39.23)

where Dx denotes the continuous limit of the usual discretized path summation
for all possible paths connecting x with x′ in time t and the integral in the exponent
is the noise action computed for the path.

The analog of the Gutzwiller trace formula in this case is easy to write down:

TrL(E) =
∫ ∞

0
dteEt/D

∫
dxLt(x, x′)

=
1
D

∞∑
p,r=1

e−
r
D

∫ T p
0 dt(Lp(t)−E)−irνpπ

|det (Mr
p − 1)|1/2

, (39.24)

where the summation is over over all repaeats of the prime periodic orbits of
Hamilton’s equations. The action in the exponent, the monodromy matrix, and the
topological index are the analogs of those in the Gutzwiller trace20 formula, with
i� → 2D. The periodic orbits of the underlying noiseless dynamics are also the
periodic orbits of the Hamilton’s equations, with zero momentum p = 0. Other
periodic orbits are possible. 21 The monodromy matrix, action and topological
index for the old periodic orbits have some nice features. 22 The monodromy
matrix Mp then has two separate diagonal blocks, each of which is the Jacobian
matrix Jp of the orbit in the noiseless dynamics. Using this, we can express the
semiclassical amplitude as

1

|det (Mr
p − 1)|1/2

=
1

|det (Jr
p − 1)| . (39.25)

The topological index counts the number of conjugate points. They come in pairs
due to the structure of the matrix, so no phase factor goes into the exponent. For
the deterministic periodic orbits, the Lagrangian is zero and by using s = E/D,
the exponent becomes esrT p . Each deterministic periodic orbit p contributes to the
trace formula a term of form

trL|p ∼
1
D

∑
r

esrT p

|det (Jr
p − 1)| ,

19Predrag: not Feynman? this is Wiener path integral?
20Predrag: link gutz. trace
21Predrag: how do you know this: “if the original dynamics is not uniformly hyperbolic”?
22Mason: define monodromy matrix, action and topological index
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23 This is exactly the classical trace formula.24

25 On the new periodic orbits, which were not present in the noiseless case,
these simplifications cannot be carried out.

In the exponent, an extra − 1
D

∫ Tp

0 Lp(t)dt term shows up and the monodromy

matrix cannot be factorized as above. The quantity Rp =
∫ Tp

0
Lp(t)dt is a posi-

tive number independent of D. In the weak noise limit, these orbits are strongly
suppressed due to the small term e−Rp/D.

We have shown the analogy of the quantum and noise problems. 26

⇑PRIVATE

Résumé

27 Spectral determinants and dynamical zeta functions arise both in classical and
quantum mechanics because in both the dynamical evolution can be described by
the action of linear evolution operators on infinite-dimensional vector spaces. In
quantum mechanics the periodic orbit theory arose from studies of semi-conductors,
and the unstable periodic orbits have been measured in experiments on the very
paradigm of Bohr’s atom, the hydrogen atom, this time in strong external fields.

In practice, most “quantum chaos” calculations take the stationary phase ap-
proximation to quantum mechanics (the Gutzwiller trace formula, possibly im-
proved by including tunneling periodic trajectories, diffraction corrections, etc.)
as the point of departure. Once the stationary phase approximation is made, what
follows is classical in the sense that all quantities used in periodic orbit calcu-
lations - actions, stabilities, geometrical phases - are classical quantities. The
problem is then to understand and control the convergence of classical periodic
orbit formulas.

While various periodic orbit formulas are formally equivalent, practice shows
that some are preferable to others. Three classes of periodic orbit formulas are
frequently used:

Trace formulas. The trace of the semiclassical Green’s function

tr Gsc(E) =
∫

dq Gsc(q, q, E)

is given by a sum over the periodic orbits (39.12). While easiest to derive, in cal-
culations the trace formulas are inconvenient for anything other than the leading

23Gabor: 1/D is just because the argument of the trace is E instead of s. In TrL(s) the 1/D
factor is not present.

24Predrag: eq link, CvitEck here
25Predrag: local minima, where variational searches fail
26Mason: you have not
27Predrag: to “Why does it work”?
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hyperbolic!systemseigenvalue estimates, as they tend to be divergent in the region of physical interest.
28 In classical dynamics trace formulas hide under a variety of appellations such
as the f −α or multifractal formalism; in quantum mechanics they are known as
the Gutzwiller trace formulas.

Zeros of Ruelle or dynamical zeta functions 29

1/ζ(s) =
∏

p

(1 − tp), tp =
1

|Λp|1/2
e

i
�

S p−iπmp/2

yield, in combination with cycle expansions, the semiclassical estimates of quan-
tum resonances. For hyperbolic systems the dynamical zeta functions have good
convergence and are a useful tool for determination of classical and quantum me-
chanical averages.

Spectral determinants, Selberg-type zeta functions, Fredholm determinants,
functional determinants are the natural objects for spectral calculations, with con-
vergence better than for dynamical zeta functions, but with less transparent cycle
expansions. The 2-dof semiclassical spectral determinant (39.19)

det (Ĥ − E)sc = eiπNsc(E)
∏

p

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 − eiS p/�−iπmp/2

|Λp|1/2Λk
p

⎞⎟⎟⎟⎟⎠
is a typical example. Most periodic orbit calculations are based on cycle expan-
sions of such determinants.

As we have assumed repeatedly during the derivation of the trace formula that
the periodic orbits are isolated, and do not form families (as is the case for inte-
grable systems or in KAM tori of systems with mixed phase space), the formulas
discussed so far are valid only for hyperbolic and elliptic periodic orbits.

For deterministic dynamical flows and number theory, spectral determinants
and zeta functions are exact. The quantum-mechanical ones, derived by the Gutzwiller
approach, are at best only the stationary phase approximations to the exact quan-
tum spectral determinants, and for quantum mechanics an important conceptual
problem arises already at the level of derivation of the semiclassical formulas; how
accurate are they, and can the periodic orbit theory be systematically improved?
30

Commentary

Remark 39.1 Gutzwiller quantization of classically chaotic systems. The deriva-
tion given here and in sects. 38.3 and 39.1 follows closely the excellent exposition [2] by

28Predrag: refeq 7.19
29Predrag: refeq ??
30Predrag: define “Axiom A” somewhere
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stationary phase
conjunction

Martin Gutzwiller, the inventor of the trace formula. The derivation presented here is self
contained, but refs. [3, 1] might also be of help to the student.

⇓PRIVATE

Remark 39.2 Gutzwiller trace formula. The relation of the quasiclassical trace
formula (??) to the celebrated Gutzwiller trace formula is elucidated in sect. ??. We have
chosen not to derive it here for two reasons: (1) it cannot be recast into the evolution
operator formulation, and this reflects itself in a smaller domain of convergence even for
nice hyperbolic systems [5]. (2) usual derivation requires seemingly endless gymnastics
with successive saddle points and Jacobians [2, 3]. For an elegant derivation of the Gutz-
willer trace formula we recommend the exposition of Littlejohn [ 3].

Muller et al. [?] develop a periodic-orbit theory of universal level correlations in
quantum chaos.

Remark 39.3 Validity of the semiclassical quantization. For a scholarly discus-
sion of the many puzzles that arise in the study of the validity and applicability of the
semiclassical quantization developed above, see the review by Voros [?].

The main problem is that the semiclassical Van Vleck propagators are not multiplica-
tive - the more appropriate term for the operation of joining them by evaluating saddle
points is Mather’s conjunction that plays the same role in the variational theory of area
preserving twist maps.

Remark 39.4 Excessive pessimism. It is amusing to note that Voros used his re-
sult [7] to give five reasons while such determinants cannot be used to evaluate quantum
spectra: quote him! Recent advances have proven this pessimism to be excessive.

Remark 39.5 Convergence? The main virtue of the determinant (??) is that the
theorem of H.H. Rugh (see chapter 23), applicable to multiplicative evolution operators
such as (??), implies that this determinant is entire for the Axiom A flows, i.e., free of
poles in the entire complex s or complex energy plane. One consequence of this general
result is that the cycle expansions of the new spectral determinant converge faster than
exponentially with the maximal cycle length truncation, in contrast to the more familiar
semiclassical zeta function and Ruelle type zeta functions which converge exponentially.

Remark 39.6 What is it good for? The practical advantage of (??) over the semi-
classical zeta function and Ruelle type zeta functions was demonstrated by detailed nu-
merical studies[27] of the related quantum spectral determinant [9]. It can be shown[?]
that the spectral determinant obtained by keeping only one of the terms in the sum in (??)
is an entire function in the whole energy plane. This enables us to show that the semi-
classical zeta function for Axiom A flows is meromorphic in the complex E plane, as it
can be written as a ratio of entire functions[6]. The non-physical eigenvalues of (??) can
be removed.

Remark 39.7 Who’s dunne it? Eckhardt and Russberg [11] found numerically that in
the semiclassical zeta function (??) product representation 1/ζ 0 has a double pole coincid-
ing with the leading zero of 1/ζ1. Consequently 1/ζ0, 1/ζ0ζ1 and det (Ĥ−E)sc all have the
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same leading pole, and coefficients in their cycle expansions fall off exponentially with
the same slope.

Remark 39.8 Smeared out traces (F. Steiner approach) 31 One possible solution
of the convergence problem is to introduce smeared trace formulas or spectral determi-
nants. These methods limit the accuracy of the resonances and allows only qualitative
comparison of the exact quantum and the semiclassical spectra.

Remark 39.9 Other names for semiclassical zeta function. In order to increase no-
tational confusion, various 32 authors [12, 13] versed in quantum mechanics have decided
to refer to the semiclassical zeta function as the Selberg zeta function or, regrettably, as
the ‘dynamical zeta function.’ As we have explained in chapter 19, the appellation ‘dy-
namical zeta function’ has already been taken–this is what Ruelle calls his classical zeta
function which is emphatically not not the classical analogue of the semiclassical zeta
function: spectral determinant plays that role. The Selberg zeta function is at least the
special case of the semiclassical zeta function evaluated on 2-dimensional manifold of a
constant negative curvature. We recommend appellation semiclassical zeta function as it
happens to be precisely the Zeta function that was first introduced and discussed by A.
Voros [7].

Remark 39.10 Selberg zeta. It therefore comes as something of a shock to learn that
for the genuine Selberg zeta [43, ?], interpretable as the quantum mechanical spectrum
of a Laplacian on a space of negative constant curvature, this unlikely conspiracy takes
place, and the cycle expansion in this context is exact.

⇑PRIVATE

Remark 39.11 Zeta functions. For “zeta function” nomenclature, see remark 19.4 on
page 465.

31Predrag: refer to FrankSteiner
32Predrag: add Stainer, Berry here
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Exercises boyscout

39.1. Monodromy matrix from second variations of the ac-
tion. Show that

D⊥ j/D′
⊥ j = (1 − M) (39.26)

⇓PRIVATE
39.2. Jacobi gymnastics. Prove that the ratio of determinants

in (S.116) can be expressed as

det D′
⊥ j(q‖, 0, E)

det D⊥ j(q‖, 0, E)
= det

(
I − Mqq −Mqp
−Mpq I − Mpp

)
= det (1−M j) , (39.27)

where M j is the monodromy matrix of the periodic orbit.
33

⇑PRIVATE
39.3. Volume of d-dimensional sphere. Show that the vol-

ume of a d-dimensional sphere of radius r equals π d/2rd/Γ(1+
d/2). Show that Γ(1 + d/2) = Γ(d/2)d/2.

39.4. Average density of states in 1 dimension. Show that
in one dimension the average density of states is given by
(39.8)

d̄(E) =
T (E)
2π�

,

where T (E) is the time period of the 1-dimensional mo-
tion and show that

N̄(E) =
S (E)
2π�

, (39.28)

where S (E) =
∮

p(q, E) dq is the action of the orbit.

39.5. Average density of states in 2 dimensions. Show that
in 2 dimensions the average density of states is given by
(39.9)

d̄(E) =
mA(E)

2π�2
,

where A(E) is the classically allowed area of configura-
tion space for which U(q) < E.
34

⇓PRIVATE
39.6. 2-dimensional Hamiltonian flows. The simplest ap-

plication of (??) is to 2-dimensional hyperbolic Hamilto-
nian flows. In this case the derivation of the quasiclassi-
cal trace formula is very simple. The [2× 2]-dimensional
phase space Jacobian matrix is(

δq′ δp′
)
= M

(
δq δp

)
.

33Predrag: fix: (S.116) refers to soluTraceScl.tex
34Dorte: not sure how to appendix this - and the fax not very clear, so you are on your own!!
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In 2-dimensional phase space the curvature matrix M is
[1×1], ie. the scalar κ := ∂p/∂q. Divide through with δq.

dq′

dq

(
1 κ′

)
= M

(
1 κ

)
. (39.29)

Writing M =

(
A B
C D

)
we have

dq′

dq
= A + Bκ , κ′ = M(κ) =

A + Bκ
C + Dκ

.

For a periodic orbit there are two solutions

M
(

1 κ±
)
= Λ±

(
1 κ±

)
so the configuration volume ratio dq′

dq is for a periodic orbit
simply the eigenvalue of the phase space Jacobian. The κ
part of the trace is∫

dκ δ(κ − M(κ)) =
1∣∣∣1 − ∂M
∂κ

∣∣∣ . ∂M
∂κ
=

1
(A + Bκ)2

=
1

Λ2
±

so the curvature matrix contribution to the trace is∫
dκ δ(κ − M(κ))

∣∣∣∣∣dq′

dq

∣∣∣∣∣1/2 = |Λ+|1/2∣∣∣1 − 1/Λ2
+

∣∣∣ + |Λ−|1/2∣∣∣1 − 1/Λ2
−
∣∣∣

Substituting into (19.6) yields the spectral determinant

det (1 − L) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p,r

1
r | Λr

p |
eirS p(E)+itopologicalpπ

(1 − 1/Λr
p)2

Δp,r

⎞⎟⎟⎟⎟⎟⎟⎠
Δp,r =

| Λr
p |1/2

1 − 1/Λ2r
p
+
| Λr

p |−5/2

1 − 1/Λ2r
p
, (39.30)
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Chapter 40

Quantum scattering

Scattering is easier than gathering.
—Irish proverb

(A. Wirzba, P. Cvitanović and N. Whelan)

So far the trace formulas have been derived assuming that the system under
consideration is bound. As we shall now see, we are in luck - the semiclas-
sics of bound systems is all we need to understand the semiclassics for open,

scattering systems as well. We start by a brief review of the quantum theory of
elastic scattering of a point particle from a (repulsive) potential, and then develop
the connection to the standard Gutzwiller theory for bound systems. We do this
in two steps - first, a heuristic derivation which helps us understand in what sense
density of states is “density,” and then we sketch a general derivation of the cen-
tral result of the spectral theory of quantum scattering, the Krein-Friedel-Lloyd
formula. The end result is that we establish a connection between the scatter-
ing resonances (both positions and widths) of an open quantum system and the
poles of the trace of the Green’s function, which we learned to analyze in earlier
chapters. 1

40.1 Density of states

For a scattering problem the density of states (36.18) appear ill defined since for-
mulas such as (39.6) involve integration over infinite spatial extent. What we will
now show is that a quantity that makes sense physically is the difference of two
densities - the first with the scatterer present and the second with the scatterer
absent.

1Niall: I think there needs to be something like the above sentence to motivate why we are
bothering with this chapter at all.
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scattering!elastic
elastic!scattering
scattering!matrix
Smatrix@$S$-matrix

In non-relativistic dynamics the relative motion can be separated from the
center-of-mass motion. Therefore the elastic scattering of two particles can be
treated as the scattering of one particle from a static potential V(q). We will study
the scattering of a point-particle of (reduced) mass m by a short-range potential
V(q), excluding inter alia the Coulomb potential. (The Coulomb potential decays
slowly as a function of q so that various asymptotic approximations which apply
to general potentials fail for it.) Although we can choose the spatial coordinate
frame freely, it is advisable to place its origin somewhere near the geometrical
center of the potential. The scattering problem is solved, if a scattering solution
to the time-independent Schrödinger equation (36.5)

(
− �

2

2m
∂2

∂q2
+ V(q)

)
φ�k(q) = Eφ�k(q) (40.1)

can be constructed. Here E is the energy, �p = ��k the initial momentum of the
particle, and �k the corresponding wave vector.

When the argument r = |q| of the wave function is large compared to the typ-
ical size a of the scattering region, the Schrödinger equation effectively becomes
a free particle equation because of the short-range nature of the potential. In the
asymptotic domain r ( a, the solution φ�k(q) of (40.1) can be written as superpo-
sition of ingoing and outgoing solutions of the free particle Schrödinger equation
for fixed angular momentum:

φ(q) = Aφ(−)(q) + Bφ(+)(q) , (+ boundary conditions) ,

where in 1-dimensional problems φ(−)(q), φ(+)(q) are the “left,” “right” moving
plane waves, and in higher-dimensional scattering problems the “incoming,” “out-
going” radial waves, with the constant matrices A, B fixed by the boundary con-
ditions. 2 What are the boundary conditions? The scatterer can modify only the
outgoing waves (see figure 40.1), since the incoming ones, by definition, have yet
to encounter the scattering region. This defines the quantum mechanical scattering
matrix, or the S matrix

φm(r) = φ(−)
m (r) + S mm′φ(+)

m′ (r) . (40.2)

All scattering effects are incorporated in the deviation of S from the unit matrix,
the transition matrix T

S = 1 − iT . (40.3)

For concreteness, we have specialized to two dimensions, although the final for-
mula is true for arbitrary dimensions. The indices m and m′ are the angular mo-
menta quantum numbers for the incoming and outgoing state of the scattering
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Figure 40.1: (a) Incoming spherical waves run-
ning into an obstacle. (b) Superposition of outgo-
ing spherical waves scattered from an obstacle.

(a) (b)

wave function, labeling the S -matrix elements Smm′ . More generally, given a set
of quantum numbers β, γ, the S matrix is a collection Sβγ of transition amplitudes
β → γ normalized such that |Sβγ |2 is the probability of the β → γ transition. The
total probability that the ingoing state β ends up in some outgoing state must add
up to unity

∑
γ

|S βγ |2 = 1 , (40.4)

so the S matrix is unitary: S†S = SS† = 1.

We have already encountered a solution to the 2-dimensional problem; free
particle propagation Green’s function (38.48) is a radial solution, given in terms
of the Hankel function

G0(r, 0, E) = − im

2�2
H(+)

0 (kr) ,

where we have used S0(r, 0, E)/� = kr for the action. 3 The mth angular mo-
mentum eigenfunction is proportional to φ(±)

m (q) ∝ H(±)
m (kr), and given a potential

V(q) we can in principle compute the infinity of matrix elements Smm′ . We will
not need much information about H(t)

m (kr), other than that for large r its asymptotic
form is

H± ∝ e±ikr

In general, the potential V(q) is not radially symmetric and (40.1) has to be
solved numerically, by explicit integration, or by diagonalizing a large matrix in
a specific basis. To simplify things a bit, we assume for the time being that a ra-
dially symmetric scatterer is centered at the origin; the final formula will be true
for arbitrary asymmetric potentials. Then the solutions of the Schrödinger equa-
tion (36.5) are separable, φm(q) = φ(r)eimθ , r = |q|, the scattering matrix cannot

2Predrag: - means incoming
3Niall: inserted this to clarify that S 0 does not refer to the scattering matrix.
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mix different angular momentum eigenstates, and S is diagonal in the radial basis
(40.2) with matrix elements given by

S m(k) = e2iδm(k). (40.5)

The matrix is unitary so in a diagonal basis all entries are pure phases. This means
that an incoming state of the form H(−)

m (kr)eimθ gets scattered into an outgoing state
of the form S m(k)H(+)

m (kr)eimθ, where H(∓)
m (z) are incoming and outgoing Hankel

functions respectively. We now embed the scatterer in a infinite cylindrical well
of radius R, and will later take R → ∞. Angular momentum is still conserved so
that each eigenstate of this (now bound) problem corresponds to some value of m.
For large r ( a each eigenstate is of the asymptotically free form

φm(r) ≈ eimθ
(
S m(k)H(+)

m (kr) + H(−)
m (kr)

)
≈ · · · cos(kr + δm(k) − χm) , (40.6)

where · · · is a common prefactor, and χm = mπ/2+π/4 is an annoying phase factor
from the asymptotic expansion of the Hankel functions that will play no role in
what follows.

The state (40.6) must satisfy the external boundary condition that it vanish at
r = R. This implies the quantization condition

knR + δm(kn) − χm = π (n + 12) .

We now ask for the difference in the eigenvalues of two consecutive states of
fixed m. Since R is large, the density of states is high, and the phase δm(k) does
not change much over such a small interval. Therefore, to leading order we can
include the effect of the change of the phase on state n+1 by Taylor expanding. is

kn+1R + δm(kn) + (kn+1 − kn)δ′m(kn) − χm ≈ π + π(n + 12) .

Taking the difference of the two equations we obtain Δk ≈ π(R + δ′m(k))−1. This
is the eigenvalue spacing which we now interpret as the inverse of the density of
states within m angular momentum sbuspace

dm(k) ≈ 1
π

(
R + δ′m(k)

)
.

The R term is essentially the 1 − d Weyl term (39.8), appropriate to 1 − d radial
quantization. For large R, the dominant behavior is given by the size of the circular
enclosure with a correction in terms of the derivative of the scattering phase shift,
approximation accurate to order 1/R. However, not all is well: the area under
consideration tends to infinity. We regularize this by subtracting from the result
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Figure 40.2: The “difference” of two bounded refer-
ence systems, one with and one without the scattering
system.

b b

-

from the free particle density of states d0(k), for the same size container, but this
time without any scatterer, figure 40.2. We also sum over all m values so that

d(k) − d0(k) =
1
π

∑
m

δ′m(k) =
1

2πi

∑
m

d
dk

log S m

=
1

2πi
Tr

(
S † dS

dk

)
. (40.7)

The first line follows from the definition of the phase shifts (40.5) while the second
line follows from the unitarity of S so that S−1 = S †. We can now take the limit
R → ∞ since the R dependence has been cancelled away.

This is essentially what we want to prove since for the left hand side we al-
ready have the semiclassical theory for the trace of the difference of Green’s func-
tions,

d(k) − d0(k) = − 1
2πk

Im (tr (G(k) −G0(k)) . (40.8)

There are a number of generalizations. This can be done in any number of
dimensions. It is also more common to do this as a function of energy and not
wave number k. However, as the asymptotic dynamics is free wave dynamics
labeled by the wavenumber k, we have adapted k as the natural variable in the
above discussion.

Finally, we state without proof that the relation (40.7) applies even when there
is no circular symmetry. The proof is more difficult since one cannot appeal to the
phase shifts δm but must work directly with a non-diagonal S matrix.

40.2 Quantum mechanical scattering matrix

The results of the previous section indicate that there is a connection between the
scattering matrix and the trace of the quantum Green’s function (more formally
between the difference of the Green’s function with and without the scattering
center.) We now show how this connection can be derived in a more rigorous
manner. We will also work in terms of the energy E rather than the wavenumber
k, since this is the more usual exposition. 4 Suppose particles interact via forces of
sufficiently short range, so that in the remote past they were in a free particle state

4Niall: I feel the various sections need to be glued together better than they were.
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labeled β, and in the distant future they will likewise be free, in a state labeled γ.
In the Heisenberg picture the S -matrix is defined as S = Ω−Ω

†
+ in terms of the

Møller operators

Ω± = lim
t→±∞

eiHt/�e−iH0t/� , (40.9)

where H is the full Hamiltonian, whereas H0 is the free Hamiltonian. In the
interaction picture the S -matrix is given by

S = Ω
†
+Ω− = lim

t→∞
eiH0t/�e−2iHt/�eiH0t/�

= T exp

(
−i

∫ +∞

−∞
dtH′(t)

)
, (40.10)

where H′ = V = H −H0 is the interaction Hamiltonian and T is the time-ordering
operator. In stationary scattering theory the S matrix has the following spectral
representation

S =

∫ ∞

0
dE S (E)δ(H0 − E)

S (E) = Q+(E)Q−1
− (E), Q±(E) = 1 + (H0 − E ± iε)−1V , (40.11)

such that 5

Tr

[
S †(E)

d
dE

S (E)

]
= Tr

[
1

H0 − E − iε
− 1

H − E − iε
− (ε ↔ −ε)

]
.(40.12)

The manipulations leading to (40.12) are justified if the operators Q±(E) can be
appendix N

linked to trace-class operators.

We can now use this result to derive the Krein-Lloyd formula which is the
central result of this chapter. The Krein-Lloyd formula provides the connection
between the trace of the Green’s function and the poles of the scattering matrix,
implicit in all of the trace formulas for open quantum systems which will be pre-
sented in the subsequent chapters.

40.3 Krein-Friedel-Lloyd formula

The link between quantum mechanics and semiclassics for scattering problems is
provided by the semiclassical limit of the Krein-Friedel-Lloyd sum for the spectral

5Niall: Are the above expressions just to be accepted or have we somehow derived them? If
the former, we should at least cite somebody for the result. Also, how is S on the left side of the
top equation distinct from S (E); is it defined somewhere? I must admit that the step from (27.9) to
(27.11) is vague in my mind.
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Green’s
function!scattering

scattering!Green’s
function

density which we now derive. This derivation builds on the results of the last
section and extends the discussion of the opening section.

In chapter 38 we linked the spectral density (see (36.18)) of a bounded system

d(E) ≡
∑

n

δ(En − E) (40.13)

via the identity

δ(En − E) = − lim
ε→0

1
π

Im
1

E − En + iε

= − lim
ε→0

1
π

Im〈En|
1

E − H + iε
|En〉

=
1

2π i
lim
ε→0

〈
En

∣∣∣∣∣ 1
E − H − iε

− 1
E − H + iε

∣∣∣∣∣ En

〉
(40.14)

to the trace of the Green’s function (39.1.1). Furthermore, in the semiclassical
approximation, the trace of the Green’s function is given by the Gutzwiller trace
formula (39.12) in terms of a smooth Weyl term and an oscillating contribution of
periodic orbits.

Therefore, the task of constructing the semiclassics of a scattering system is
completed, if we can find a connection between the spectral density d(E) and the
scattering matrix S . We will see that (40.12) provides the clue. Note that the right
hand side of (40.12) has nearly the structure of (40.14) when the latter is inserted
into (40.13). The principal difference between these two types of equations is that
the S matrix refers to outgoing scattering wave functions which are not normal-
izable and which have a continuous spectrum, whereas the spectral density d(E)
refers to a bound system with normalizable wave functions with a discrete spec-
trum. Furthermore, the bound system is characterized by a hermitian operator,
the Hamiltonian H, whereas the scattering system is characterized by a unitary
operator, the S -matrix. How can we reconcile these completely different classes
of wave functions, operators and spectra? The trick is to put our scattering system
into a finite box as in the opening section. We choose a spherical conatiner with
radius R and with its center at the center of our finite scattering system. Our scat-
tering potential V(�r) will be unaltered within the box, whereas at the box walls we
will choose an infinitely high potential, with the Dirichlet boundary conditions at
the outside of the box:

φ(�r)|r=R = 0 . (40.15)

In this way, for any finite value of the radius R of the box, we have mapped our
scattering system into a bound system with a spectral density d(E; R) over dis-
crete eigenenergies En(R). It is therefore important that our scattering potential
was chosen to be short-ranged to start with. (Which explains why the Coulomb
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Krein-Friedel-Lloyd
formula

potential requires special care.) The hope is that in the limit R → ∞ we will
recover the scattering system. But some care is required in implementing this.
The smooth Weyl term d̄(E; R) belonging to our box with the enclosed potential V
diverges for a spherical 2-dimensional box of radius R quadratically, as πR2/(4π)
or as R3 in the 3-dimensional case. This problem can easily be cured if the spec-
tral density of an empty reference box of the same size (radius R) is subtracted
(see figure 40.2). Then all the divergences linked to the increasing radius R in
the limit R → ∞ drop out of the difference. Furthermore, in the limit R → ∞
the energy-eigenfunctions of the box are only normalizable as a delta distribution,
similarly to a plane wave. So we seem to recover a continous spectrum. Still the
problem remains that the wave functions do not discriminate between incoming
and outgoing waves, whereas this symmetry, namely the hermiticity, is broken in
the scattering problem. The last problem can be tackled if we replace the spec-
tral density over discrete delta distributions by a smoothed spectral density with a
small finite imaginary part η in the energy E:

d(E + iη; R) ≡ 1
i 2π

∑
n

{
1

E − En(R) − iη
− 1

E − En(R) + iη

}
. (40.16)

Note that d(E + iη; R) � d(E − iη; R) = −d(E + iη; R). By the introduction of the
positive finite imaginary part η the time-dependent behavior of the wave function
has effectively been altered from an oscillating one to a decaying one and the
hermiticity of the Hamiltonian is removed. Finally the limit η→ 0 can be carried
out, respecting the order of the limiting procedures. First, the limit R → ∞ has
to be performed for a finite value of η, only then the limit η → 0 is allowed. In
practice, one can try to work with a finite value of R, but then it will turn out (see
below) that the scattering system is only recovered if R

√
η( 1.

Let us summarize the relation between the smoothed spectral densities d(E +
iη; R) of the boxed potential and d(0)(E + iη; R) of the empty reference system and
the S matrix of the corresponding scattering system:

lim
η→+0

lim
R→∞

(
d(E+iη; R) − d(0)(E+iη; R)

)
=

1
2πi

Tr

[
S †(E)

d
dE

S (E)

]
=

1
2πi

Tr
d

dE
ln S (E) =

1
2πi

d
dE

ln det S (E) . (40.17)

This is the Krein-Friedel-Lloyd formula. It replaces the scattering problem by
the difference of two bounded reference billiards of the same radius R which fi-
nally will be taken to infinity. The first billiard contains the scattering region or
potentials, whereas the other does not (see figure 40.2). Here d(E + iη; R) and
d(0)(E + iη; R) are the smoothed spectral densities in the presence or in the ab-
sence of the scatterers, respectively. In the semiclassical approximation, they are
replaced by a Weyl term (39.11) and an oscillating sum over periodic orbits. As in
(39.2), the trace formula (40.17) can be integrated to give a relation between the
smoothed staircase functions and the determinant of the S -matrix:

lim
η→+0

lim
R→∞

(
N(E+iη; R) − N(0)(E+iη; R)

)
=

1
2πi

ln det S (E) . (40.18)
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Furthermore, in both versions of the Krein-Friedel-Lloyd formulas the energy ar-
gument E+ iη can be replaced by the wavenumber argument k+ iη′. These expres-
sions only make sense for wavenumbers on or above the real k-axis. In particular,
if k is chosen to be real, η′ must be greater than zero. Otherwise, the exact left
hand sides (40.18) and (40.17) would give discontinuous staircase or even delta
function sums, respectively, whereas the right hand sides are continuous to start
with, since they can be expressed by continuous phase shifts. Thus the order of
the two limits in (40.18) and (40.17) is essential.

The necessity of the +iη prescription can also be understood by purely phe-
nomenological considerations in the semiclassical approximation: Without the iη
term there is no reason why one should be able to neglect spurious periodic or-
bits which are there solely because of the introduction of the confining boundary.
The subtraction of the second (empty) reference system removes those spurious
periodic orbits which never encounter the scattering region – in addition to the re-
moval of the divergent Weyl term contributions in the limit R → ∞. The periodic
orbits that encounter both the scattering region and the external wall would still
survive the first limit R → ∞, if they were not exponentially suppressed by the
+iη term because of their

eiL(R)
√

2m(E+iη) = eiL(R)k e−L(R)η′

behavior. As the length L(R) of a spurious periodic orbit grows linearly with the
radius R. The bound Rη′ ( 1 is an essential precondition on the suppression of
the unwanted spurious contributions of the container if the Krein-Friedel-Lloyd
formulas (40.17) and (40.18) are evaluated at a finite value of R.

exercise 40.1

Finally, the semiclassical approximation can also help us in the interpretation
of the Weyl term contributions for scattering problems. In scattering problems the
Weyl term appears with a negative sign. The reason is the subtraction of the empty
container from the container with the potential. If the potential is a dispersing bil-
liard system (or a finite collection of dispersing billiards), we expect an excluded
volume (or the sum of excluded volumes) relative to the empty container. In other
words, the Weyl term contribution of the empty container is larger than of the
filled one and therefore a negative net contribution is left over. Second, if the
scattering potential is a collection of a finite number of non-overlapping scatter-
ing regions, the Krein-Friedel-Lloyd formulas show that the corresponding Weyl
contributions are completely independent of the position of the single scatterers,
as long as these do not overlap.

6 7

6Predrag: ask N. Søndergaard for premission to include this
7Niall: Although this section does refer to scattering I am not sure how it fits into the entire flow

of the book. Are Wigner time delays used anywhere else in this course? If not, it might better be
used as an appendix.
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time!delay, Wigner
Wigner delay time
scattering!phase shift

40.4 Wigner time delay

The term d
dE ln det S in the density formula (40.17) is dimensionally time. This

suggests another, physically important interpretation of such formulas for scatter-
ing systems, the Wigner delay, defined as

d(k) =
d
dk

Argdet (S(k))

= −i
d
dk

log det (S(k)

= −i tr

(
S†(k)

dS
dk

(k)

)
(40.19)

and can be shown to equal the total delay of a wave packet in a scattering system.
We now review this fact.

A related quantity is the total scattering phase shift Θ(k) defined as

det S(k) = e+iΘ(k) ,

so that d(k) = d
dkΘ(k).

The time delay may be both positive and negative, reflecting attractive re-
spectively repulsive features of the scattering system. To elucidate the connection
between the scattering determinant and the time delay we study a plane wave:

The phase of a wave packet will have the form:

φ = �k · �x − ω t + Θ .

Here the term in the parenthesis refers to the phase shift that will occur if scattering
is present. 8 The center of the wave packet will be determined by the principle of
stationary phase:

0 = dφ = d�k · �x − dω t + dΘ .

Hence the packet is located at

�x =
∂ω

∂�k
t − ∂Θ

∂�k
.

The first term is just the group velocity times the given time t. Thus the packet is
retarded by a length given by the derivative of the phase shift with respect to the

8Niall: There are no parantheses. I might just kill the entire previous sentence.
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wave vector �k. The arrival of the wave packet at the position �x will therefore be
delayed. This time delay can similarly be found as

τ(ω) =
∂Θ(ω)
∂ω

.

To show this we introduce the slowness of the phase �s =�k/ω for which �s ·�vg = 1,
where �vg is the group velocity to get

d�k · �x = �s · �x dω =
x
vg

dω ,

since we may assume �x is parallel to the group velocity (consistent with the
above). Hence the arrival time becomes

t =
x
vg
+
∂Θ(ω)
∂ω

.

If the scattering matrix is not diagonal, one interprets

Δti j = Re

(
−i S −1

i j

∂S i j

∂ω

)
= Re

(
∂Θi j

∂ω

)
as the delay in the jth scattering channel after an injection in the ith. The proba-
bility for appearing in channel j goes as |Si j|2 and therefore the average delay for
the incoming states in channel i is

〈Δti〉 =
∑

j

|S i j|2Δti j = Re (−i
∑

j

S ∗
i j

∂S i j

∂ω
) = Re (−i S† · ∂S

∂ω
)ii

= −i

(
S† · ∂S

∂ω

)
ii
,

where we have used the derivative, ∂/∂ω, of the unitarity relation S · S† = 1 valid
for real frequencies. This discussion can in particular be made for wave packets
related to partial waves and superpositions of these like an incoming plane wave
corresponding to free motion. The total Wigner delay therefore corresponds to the
sum over all channel delays (40.19).

⇓PRIVATE

Résumé
⇑PRIVATE

Commentary

Remark 40.1 Krein-Friedel-Lloyd formula. The third volume of Thirring [1], sections
3.6.14 (Levison Theorem) and 3.6.15 (the proof), or P. Scherer’s thesis [ 15] (appendix)
discusses the Levison Theorem.
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lifetime!matrixIt helps to start with a toy example or simplified example instead of the general the-
orem, namely for the radially symmetric potential in a symmetric cavity. Have a look at
the book of K. Huang, chapter 10 (on the ”second virial coefficient”), or Beth and Uh-
lenbeck [5], or Friedel [7]. These results for the correction to the density of states are
particular cases of the Krein formula [3]. The Krein-Friedel-Lloyd formula (40.17) was
derived in refs. [3, 7, 8, 9], see also refs. [11, 14, 15, 17, 18]. The original papers are by
Krein and Birman [3, 4] but beware, they are mathematicans.

Also, have a look at pages 15-18 of Wirzba’s talk on the Casimir effect [ 16]. Page
16 discusses the Beth-Uhlenbeck formula [5], the predecessor of the more general Krein
formula for spherical cases.

Remark 40.2 Weyl term for empty container. For a discussion of why the Weyl term
contribution of the empty container is larger than of the filled one and therefore a negative
net contribution is left over, see ref. [15].

Remark 40.3 Wigner time delay. Wigner time delay and the Wigner-Smith time
delay matrix, are powerful concepts for a statistical description of scattering. The diagonal
elements Qaa of the lifetime matrix Q = −iS−1∂S/∂ω, where S is the [2N×2N] scattering
matrix, are interpreted in terms of the time spent in the scattering region by a wave packet
incident in one channel. 9 As shown by Smith [26], they are the sum over all ouput
channels (both in reflection and transmission) of Δt ab = Re [(−i/S ab)(∂S ab/∂ω)] weighted
by the probability of emerging from that channel. The sum of the Q aa over all 2N channels
is the Wigner time delay τW =

∑
a Qaa, which is the trace of the lifetime matrix and is

proportional to the density of states.

boyscout

40.1. Spurious orbits under the Krein-Friedel-Lloyd con-
truction. Draw examples for the three types of period
orbits under the Krein-Friedel-Lloyd construction: (a) the
genuine periodic orbits of the scattering region, (b) spuri-
ous periodic orbits which can be removed by the subtrac-
tion of the reference system, (c) spurious periodic orbits
which cannot be removed by this subtraction. What is the
role of the double limit η→ 0, container size b → ∞?

40.2. The one-disk scattering wave function. Derive the
one-disk scattering wave function.

(Andreas Wirzba)

9Predrag: unsure about ref. [26] being the right one
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40.3. Quantum two-disk scattering. Compute the quasi-
classical spectral determinant

Z(ε) =
∏
p, j,l

⎛⎜⎜⎜⎜⎜⎝1 − tp

Λ
j+2l
p

⎞⎟⎟⎟⎟⎟⎠ j+1

for the two disk problem. Use the geometry

a
a

R

The full quantum mechanical version of this problem can
be solved by finding the zeros in k for the determinant of
the matrix

Mm,n = δm,n +
(−1)n

2
Jm(ka)

H(1)
n (ka)

(
H(1)

m−n(kR) + (−1)nH(1)
m+n(kR)

)
,

where Jn is the nth Bessel function and H (1)
n is the Hankel

function of the first kind. Find the zeros of the determi-
nant closest to the origin by solving det M(k) = 0. (Hints:
note the structure M = I + A to approximate the determi-
nant; or read Chaos 2, 79 (1992))

40.4. Pinball topological index. Upgrade your pinball sim-
ulator so that it computes the topological index for each
orbit it finds. ⇓PRIVATE

40.5. Ghosts do not exist. Prove the ghost cancelation rule
(??). (Andreas Wirzba) ⇑PRIVATE
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stationary phase

Chapter 41

Chaotic multiscattering

(A. Wirzba and P. Cvitanović)

We discuss here the semiclassics of scattering in open systems with a finite
number of non-overlapping finite scattering regions. Why is this inter-
esting at all? The semiclassics of scattering systems has five advantages

compared to the bound-state problems such as the helium quantization discussed
in chapter 43. 1

• For bound-state problem the semiclassical approximation does not respect
quantum-mechanical unitarity, and the semi-classical eigenenergies are not
real. Here we construct a manifestly unitary semiclassical scattering matrix.

• The Weyl-term contributions decouple from the multi-scattering system.

• The close relation to the classical escape processes discussed in chapter1.
2

• For scattering systems the derivation of cycle expansions is more direct and
controlled than in the bound-state case: the semiclassical cycle expansion
is the saddle point approximation to the cumulant expansion of the determi-
nant of the exact quantum-mechanical multi-scattering matrix.

• The region of convergence of the semiclassical spectral function is larger
than is the case for the bound-state case.

We start by a brief review of the elastic scattering of a point particle from finite
collection of non-overlapping scattering regions in terms of the standard textbook
scattering theory, and then develop the semiclassical scattering trace formulas and
spectral determinants for scattering off N disks in a plane.

1Predrag: rigor, numerical accuracy, test bed for ideas
2Predrag: give a more precise section link

902



CHAPTER 41. CHAOTIC MULTISCATTERING 903

Helmholtz equation
Bessel function
Hankel function

41.1 Quantum mechanical scattering matrix

We now specialize to the elastic scattering of a point particle from finite collection
of N non-overlapping reflecting disks in a 2-dimensional plane. As the point par-
ticle moves freely between the static scatterers, the time-independent Schrödinger
equation outside the scattering regions is the Helmholtz equation:

(
�∇2

r +
�k2

)
ψ(�r ) = 0 , �r outside the scattering regions. (41.1)

Here ψ(�r ) is the wave function of the point particle at spatial position �r and E =
�

2�k2/2m is its energy written in terms of its mass m and the wave vector�k of the
incident wave. For reflecting wall billiards the scattering problem is a boundary
value problem with Dirichlet boundary conditions:

ψ(�r) = 0 , �r on the billiard perimeter (41.2)

As usual for scattering problems, we expand the wave function ψ(�r ) in the
(2-dimensional) angular momentum eigenfunctions basis

AW: changed Φr back
to Φk. Note, ψk

m depends
on �r.

ψ(�r ) =
∞∑

m=−∞
ψk

m(�r )e−imΦk , (41.3)

where k and Φk are the length and angle of the wave vector, respectively. A plane
wave in two dimensions expaned in the angular momentum basis is

AW: for consistency
reasons one needs both
Φk and Φr .

ei�k·�r = eikr cos(Φr−Φk) =

∞∑
m=−∞

Jm(kr)eim(Φr−Φk) , (41.4)

where r and Φr denote the distance and angle of the spatial vector �r as measured
in the global 2-dimensional coordinate system.

The mth angular component Jm(kr)eimΦr of a plane wave is split into a super-
position of incoming and outgoing 2-dimensional spherical waves by decompos-
ing the ordinary Bessel function Jm(z) into the sum

Jm(z) =
1
2

(
H(1)

m (z) + H(2)
m (z)

)
(41.5)

of the Hankel functions H(1)
m (z) and H(2)

m (z) of the first and second kind. For |z| ( 1
the Hankel functions behave asymptotically as:

H(2)
m (z) ∼

√
2
πz

e−i(z− π
2 m− π

4 ) incoming,

H(1)
m (z) ∼

√
2
πz

e+i(z− π
2 m− π

4 ) outgoing. (41.6)
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one-disk@1-
disk!scattering

Thus for r → ∞ and k fixed, the mth angular component Jm(kr)eimΦr of the plane
wave can be written as superposition of incoming and outgoing 2-dimensional
spherical waves:

Jm(kr)eimΦr ∼ 1
√

2πkr

[
e−i(kr− π

2 m− π
4 ) + ei(kr− π

2 m− π
4 )
]

eimΦr . (41.7)

In terms of the asymptotic (angular momentum) components ψk
m of the wave

function ψ(�r ), the scattering matrix (40.3) is defined as ⇓PRIVATE

exercise ??
⇑PRIVATE

ψk
m ∼ 1

√
2πkr

∞∑
m′=−∞

[
δmm′e−i(kr− π

2 m′− π
4 ) + S mm′ei(kr− π

2 m′− π
4 )
]

eim′Φr . (41.8)

The matrix element S mm′ describes the scattering of an incoming wave with an-
gular momentum m into an outgoing wave with angular momentum m′. If there

are no scatterers, then S = 1 and the asymptotic expression of the plane wave ei�k·�r

in two dimensions is recovered from ψ(�r ).

41.1.1 1-disk scattering matrix

In general, S is nondiagonal and nonseparable. An exception is the 1-disk scat-
terer. If the origin of the coordinate system is placed at the center of the disk, by
(41.5) the mth angular component of the time-independent scattering wave func-
tion is a superposition of incoming and outgoing 2-dimensional spherical waves

exercise 40.2

ψk
m =

1
2

(
H(2)

m (kr) + S mmH(1)
m (kr)

)
eimΦr

=

(
Jm(kr) − i

2
TmmH(1)

m (kr)
)

eimΦr .

The vanishing (41.2) of the wave function on the disk perimeter

0 = Jm(ka) − i
2

TmmH(1)
m (ka)

yields the 1-disk scattering matrix in analytic form:

S s
mm′(k) =

⎛⎜⎜⎜⎜⎜⎝1 − 2Jm(kas )

H(1)
m (kas )

⎞⎟⎟⎟⎟⎟⎠ δmm′ = −
H(2)

m (kas )

H(1)
m (kas )

δmm′ , (41.9)

where a = as is radius of the disk and the suffix s indicates that we are dealing
with a disk whose label is s. We shall derive a semiclassical approximation to this
1-disk S-matrix in sect. 41.3.
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Bessel
function!addition
theorem

41.1.2 Multi-scattering matrix

Consider next a scattering region consisting of N non-overlapping disks labeled
s ∈ {1, 2, · · · ,N}, following the notational conventions of sect.11.6. The strategy
is to construct the full T-matrix (40.3) from the exact 1-disk scattering matrix
(41.9) by a succession of coordinate rotations and translations such that at each
step the coordinate system is centered at the origin of a disk. Then the T-matrix
in S mm′ = δmm′ − i Tmm′ can be split into a product over three kinds of matrices,3

Tmm′(k) =
N∑

s ,s′=1

∞∑
ls ,ls′=−∞

C s
mls

(k)M−1(k)s s′

ls ls ′
Ds′

ls′m′(k) .

The outgoing spherical wave scattered by the disk s is obtained by shifting the
global coordinates origin distance Rs to the center of the disk s, and measuring
the angle Φs with respect to direction k of the outgoing spherical wave. As in
(41.9), the matrix Cs takes form

C s
mls
=

2i
πas

Jm−ls (kRs)

H(1)
ls

(kas )
eimΦs . (41.10)

If we now describe the ingoing spherical wave in the disk s′ coordinate frame by
the matrix Ds′

Ds′

ls′m′ = −πas′ Jm′−ls′ (kRs′)Jls′ (kas′)e
−im′Φs′ , (41.11)

4 and apply the Bessel function addition theorem 5

Jm(y + z) =
∞∑

�=−∞
Jm−�(y)J�(z),

we recover the T-matrix (41.9) for the single disk s = s′, M = 1 scattering. The
Bessel function sum is a statement of the completness of the spherical wave basis;
as we shift the origin from the disk s to the disk s′ by distance Rs′ , we have to
reexpand all basis functions in the new coordinate frame.

The labels m and m′ refer to the angular momentum quantum numbers of the
ingoing and outgoing waves in the global coordinate system, and ls , ls′ refer to the
(angular momentum) basis fixed at the sth and s′th scatterer, respectively. Thus,
Cs and Ds′ depend on the origin and orientation of the global coordinate system
of the 2-dimensional plane as well as on the internal coordinates of the scatterers.

3Predrag: Andreas, please recheck this equation
4Predrag: edited to here 12jun06
5Predrag: looks wrong, redo!
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multi-scattering
matrix

Figure 41.1: Global and local coordinates for a gen-
eral 3-disk problem.

R α
21 21

RR 1
2

Φ1

a 2

a 1

a 3

As they can be made separable in the scatterer label s, they describe the single
scatterer aspects of what, in general, is a multi-scattering problem.

The matrix M is called the multi-scattering matrix. If the scattering problem
consists only of one scatterer, M is simply the unit matrix Mss′

ls ls ′
= δss ′δls ls ′ .

6
AW: Note that we talk
here about quantum
mechanics. A trajectory
is not meaningful, yet.
If one wants to draw
something, it should be
wavefront.

For scattering from more than one scatterer we separate out a “single traversal”
matrix A which transports the scattered wave from a scattering region Ms to the
scattering region Ms′ , 7

Mss′

ls ls′
= δs s′δls ls′ − Ass′

ls ls ′
. (41.12)

The matrix Ass′ reads:

Ass′

ls ls ′
= −(1 − δs s′)

as

as′

Jls (kas )

H(1)
ls′

(kas′)
H(1)

ls−ls ′
(kRss ′) ei(lsαs ′s−ls ′ (αs s′−π)) . (41.13)

Here, as is the radius of the sth disk. Rs and Φs are the distance and angle,
respectively, of the ray from the origin in the 2-dimensional plane to the center of
disk s as measured in the global coordinate system. Furthermore, Rss′ = Rs′s is
the separation between the centers of the sth and s′th disk and αs′s of the ray from
the center of disk s to the center of disk s′ as measured in the local (body-fixed)
coordinate system of disk s (see figure 41.1).

Expanded as a geometrical series about the unit matrix 1, the inverse matrix
M−1 generates a multi-scattering series in powers of the single-traversal matrix A.
All genuine multi-scattering dynamics is contained in the matrix A; by construc-
tion A vanishes for a single-scatterer system.

41.2 N-scatterer spectral determinant

In the following we limit ourselves to a study of the spectral properties of the S-
matrix: resonances, time delays and phase shifts. The resonances are given by the

6Predrag: draw a multiscattered trajectory illustrating the expansion of M−1

7Predrag: Changed the sign of A throughout, in deference to DasBuch notational conventions
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trace-class operatorpoles of the S-matrix in the lower complex wave number (k) plane; more precisely,
by the poles of the S on the second Riemann sheet of the complex energy plane.
As the S-matrix is unitary, it is also natural to focus on its total phase shift η(k)
defined by det S = exp2iη(k). 8 The time-delay is proportional to the derivative of
the phase shift with respect to the wave number k.

As we are only interested in spectral properties of the scattering problem, it
suffices to study det S. This determinant is basis and coordinate-system indepen-
dent, whereas the S-matrix itself depends on the global coordinate system and on
the choice of basis for the point particle wave function.

As the S-matrix is, in general, an infinite dimensional matrix, it is not clear
whether the corresponding determinant exists at all. If T-matrix is trace-class, the
determinant does exist. What does this mean?

41.2.1 Trace-class operators

An operator (an infinite-dimensional matrix) is called trace-class if and only if,
for any choice of orthonormal basis, the sum of the diagonal matrix elements
converges absolutely; it is called “Hilbert-Schmidt,” if the sum of the absolute
squared diagonal matrix elements converges. Once an operator is diagnosed as
trace-class, we are allowed to manipulate it as we manipulate finite-dimensional
matrices. We review the theory of trace-class operators in appendix N; here we
will assume that the T-matrix (40.3) is trace-class, and draw the conlusions.

If A is trace-class, the determinant det (1 − zA), as defined by the cumulant
expansion, exists and is an entire function of z. Furthermore, the determinant is
invariant under any unitary transformation.

The cumulant expansion is the analytical continuation (as Taylor expansion in
the book-keeping variable z) of the determinant 9

det (1 − zA) = exp[tr ln(1 − zA)] = exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∞∑
n=1

zn

zn tr (An)

⎞⎟⎟⎟⎟⎟⎟⎠ .
That means

det (1 − zA) :=
∞∑

m=0

zmQm(A) , (41.14)

where the cumulants Qm(A) satisfy the Plemelj-Smithies recursion formula (N.19),
a generalization of Newton’s formula to determinants of infinite-dimensional ma-

8Predrag: δm? see (40.5)
9Predrag: add links to earlier materail, exercises
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trices, 10

Q0(A) = 1

Qm(A) = − 1
m

m∑
j=1

Qm− j(A) tr (A j) for m ≥ 1 , (41.15)

in terms of cumulants of order n < m and traces of order n ≤ m. Because of the
trace-class property of A, all cumulants and traces exist separately.

For the general case of N < ∞ non-overlapping scatterers, the T-matrix can be
shown to be trace-class, so the determinant of the S-matrix is well defined. What
does trace-class property mean for the corresponding matrices Cs , Ds and Ass ′?
Manipulating the operators as though they were finite matrices, we can perform
the following transformations:

det S = det
(
1 − iCM−1D

)
= Det

(
1 − iM−1DC

)
= Det

(
M−1(M − iDC)

)
=

Det (M − iDC)
Det (M)

. . (41.16)

In the first line of (41.16) the determinant is taken over small � (the angular mo-
mentum with respect to the global system). In the remainder of (41.16) the deter-
minant is evaluated over the multiple indices Ls = (s, ls ). In order to signal this
difference we use the following notation: det . . . and tr . . . refer to the |�〉 space,
Det . . . and Tr . . . refer to the multiple index space. The matrices in the multiple
index space are expanded in the complete basis {|Ls〉} = {|s, �s〉} which refers for
fixed index s to the origin of the sth scatterer and not any longer to the origin of
the 2-dimensional plane.

Let us explicitly extract the product of the determinants of the subsystems
from the determinant of the total system (41.16):

det S =
Det (M − iDC)

Det (M)

=
Det (M − iDC)

Det M

∏N
s=1 det Ss∏N
s=1 det Ss

=

⎛⎜⎜⎜⎜⎜⎜⎝ N∏
s=1

det Ss

⎞⎟⎟⎟⎟⎟⎟⎠ Det (M − iDC)/
∏N

s=1 det Ss

Det M
. (41.17)

The final step in the reformulation of the determinant of the S-matrix of the N-
scatterer problem follows from the unitarity of the S-matrix.11 The unitarity of
S†(k∗) implies for the determinant

det (S(k∗)†) = 1/det S(k) , (41.18)
10Predrag: fix reference to (N.19) or d-cyc-exp?
11Predrag: find refeq S-unitary
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where this manipulation is allowed because the T-matrix is trace-class. The uni-
tarity condition should apply for the S-matrix of the total system, S, as for the
each of the single subsystems, Ss , s = 1, · · · ,N. In terms of the result of (41.17),
this implies

Det (M(k) − iD(k)C(k))∏N
s=1 det Ss

= Det (M(k∗)†)

since all determinants in (41.17) exist separately and since the determinants det Ss

respect unitarity by themselves. Thus, we finally have

det S(k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∏

s=1

(
det Ss(k)

)⎫⎪⎪⎪⎬⎪⎪⎪⎭ Det M(k∗)†

Det M(k)
, (41.19)

where all determinants exist separately.

In summary: We assumed a scattering system of a finite number of non-
overlapping scatterers which can be of different shape and size, but are all of
finite extent. We assumed the trace-class character of the T-matrix belonging to
the total system and of the single-traversal matrix A and finally unitarity of the
S-matrices of the complete and all subsystems.

What can one say about the point-particle scattering from a finite number of
scatterers of arbitrary shape and size? As long as each of N < ∞ single scatterers
has a finite spatial extent, i.e., can be covered by a finite disk, the total system
has a finite spatial extent as well. Therefore, it too can be put insided a circular
domain of finite radius b, e.g., inside a single disk. If the impact parameter of the
point particle measured with respect to the origin of this disk is larger than the disk
size (actually larger than (e/2) × b), then the T matrix elements of the N-scatterer
problem become very small. If the wave number k is kept fixed, the modulus of
the diagonal matrix elements, |Tmm| with the angular momentum m > (e/2)kb, is
bounded by the corresponding quantity of the covering disk.

41.2.2 Quantum cycle expansions

In formula (41.19) the genuine multi-scattering terms are separated from the single-
scattering ones. We focus on the multi-scattering terms, i.e., on the ratio of the
determinants of the multi-scattering matrix M = 1 − A in (41.19), since they are
the origin of the periodic orbit sums in the semiclassical reduction. The reso-
nances of the multi-scattering system are given by the zeros of Det M(k) in the
lower complex wave number plane.

In order to set up the problem for the semiclassical reduction, we express the
determinant of the multi-scattering matrix in terms of the traces of the powers
of the matrix A, by means of the cumulant expansion (41.14). Because of the
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finite number N ≥ 2 of scatterers tr (An) receives contributions corresponding to
all periodic itineraries s1s2s3 · · · sn−1sn of total symbol length n with an alphabet
si ∈ {1, 2, . . . ,N}. of N symbols,

tr As1s2 As2s3 · · ·Asn−1sn Asn sn (41.20)

=

+∞∑
ls1=−∞

+∞∑
ls2=−∞

· · ·
+∞∑

lsn =−∞
As1s2

ls1 ls2
As2s3

ls2 ls3
· · · Asn−1sn

lsn−1 lsn
Asn s1

lsn ls1
.

Remember our notation that the trace tr (· · ·) refers only to the |l〉 space. By con-
struction A describes only scatterer-to-scatterer transitions, so the symbolic dy-
namics has to respect the no-self-reflection pruning rule: for admissible itineraries
the successive symbols have to be different. This rule is implemented by the factor
1 − δs s′ in (41.13).

The trace tr An is the sum of all itineraries of length n,

tr An =
∑

{s1s2···sn }
tr As1s2As2s3 · · ·Asn−1sn Asn s1 . (41.21)

We will show for the N-disk problem that these periodic itineraries correspond
in the semiclassical limit, kasi ( 1, to geometrical periodic orbits with the same
symbolic dynamics.

12 For periodic orbits with creeping sections the symbolic alphabet has to be
extended, see sect. 41.3.1. Furthermore, depending on the geometry, there might
be nontrivial pruning rules based on the so called ghost orbits, see sect.41.4.1.

41.2.3 Symmetry reductions

13 The determinants over the multi-scattering matrices run over the multiple index
L of the multiple index space. This is the proper form for the symmetry reduction
(in the multiple index space), e.g., if the scatterer configuration is characterized
by a discrete symmetry group G, we have

Det M =
∏
α

(
det MDα(k)

)dα ,

where the index α runs over all conjugate classes of the symmetry group G and
Dα is the αth representation of dimension dα. The symmetry reduction on the
exact quantum mechanical level is the same as for the classical evolution oper-
ators spectral determinant factorization (21.18) of sect. 21.4.2.

12Predrag: move this to a better place
13Predrag: change to Det M in def.tex
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one-disk@1-
disk!semiclassical
scattering

41.3 Semiclassical 1-disk scattering

We start by focusing on the single-scatterer problem. In order to be concrete, we
will consider the semiclassical reduction of the scattering of a single disk in plane.

Instead of calculating the semiclassical approximation to the determinant of
the one-disk system scattering matrix (41.9), we do so for 14

d(k) ≡ 1
2πi

d
dk

ln det S1(ka) =
1

2πi
d
dk

tr
(

ln S1(ka)
)

(41.22)

the so called time delay. 15

d(k) =
1

2πi
d
dk

tr
(

ln det S1(ka)
)
=

1
2πi

∑
m

⎛⎜⎜⎜⎜⎝H(1)
m (ka)

H(2)
m (ka)

d
dk

H(2)
m (ka)

H(1)
m (ka)

⎞⎟⎟⎟⎟⎠
=

a
2πi

∑
m

⎛⎜⎜⎜⎜⎜⎝H(2)
m

′
(ka)

H(2)
m (ka)

− H(1)
m

′
(ka)

H(1)
m (ka)

⎞⎟⎟⎟⎟⎟⎠ . (41.23)

Here the prime denotes the derivative with respect to the argument of the Hankel
functions. Let us introduce the abbreviation

χν =
H(2)
ν

′
(ka)

H(2)
ν (ka)

− H(1)
ν

′
(ka)

H(1)
ν (ka)

. (41.24)

We apply the Watson contour method to (41.23)

d(k) =
aj

2πi

+∞∑
m=−∞

χm =
aj

2πi
1
2i

∮
C

dν
e−iνπ

sin(νπ)
χν . (41.25)

Here the contour C encircles in a counter-clockwise manner a small semiinfinite
strip D which completely covers the real ν-axis but which only has a small finite
extent into the positive and negative imaginary ν direction. The contour C is then
split up in the path above and below the real ν-axis such that

d(k) =
a

4πi

{∫ +∞+iε

−∞+iε
dν

e−iνπ

sin(νπ)
χν −

∫ +∞−iε

−∞−iε
dν

e−iνπ

sin(νπ)
χν

}
.

14Predrag: why boldface d(k)?
15Predrag: might want to connect this to (20.27), the expection value of time
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Airy function
Airy function

Then, we perform the substitution ν→ −ν in the second integral so as to get

d(k) =
a

4π

{∫ +∞+iε

−∞+iε
dν

e−iνπ

sin(νπ)
χν + dν

e+iνπ

sin(νπ)
χ−ν

}
=

a
2πi

{
2
∫ +∞+iε

−∞+iε
dν

e2iνπ

1 − e2iνπ
χν +

∫ +∞

−∞
dν χν

}
, (41.26)

where we used the fact that χ−ν = χν. The contour in the last integral can be de-
formed to pass over the real ν-axis since its integrand has no Watson denominator.

We will now approximate the last expression semiclassically, i.e., under the
assumption ka ( 1. As the two contributions in the last line of (41.26) differ by
the presence or absence of the Watson denominator, they will have to be handled
semiclassically in different ways: the first will be closed in the upper complex
plane and evaluated at the poles of χν, the second integral will be evaluated on the
real ν-axis under the Debye approximation for Hankel functions.

We will now work out the first term. The poles of χν in the upper complex
plane are given by the zeros of H(1)

ν (ka) which will be denoted by ν�(ka) and by
the zeros of H(2)

ν (ka) which we will denote by −ν̄�(ka), � = 1, 2, 3, · · ·. In the Airy
approximation to the Hankel functions they are given by

ν�(ka) = ka + iα�(ka) , (41.27)

−ν̄�(ka) = −ka + i(α�(k
∗a))∗ = − (

ν�(k
∗a)

)∗ , (41.28)

with 16

iα�(ka) = ei π3

(
ka
6

)1/3

q� − e−i π3

(
6
ka

)1/3 q2
�

180
− 1

70ka

⎛⎜⎜⎜⎜⎜⎝1 − q3
�

30

⎞⎟⎟⎟⎟⎟⎠
+ ei π3

(
6
ka

) 5
3 1

3150

⎛⎜⎜⎜⎜⎜⎝29q�
62

−
281q4

�

180 · 63

⎞⎟⎟⎟⎟⎟⎠ + · · · . (41.29)

Here q� labels the zeros of the Airy integral

A(q) ≡
∫ ∞

0
dτ cos(qτ − τ3) = 3−1/3πAi(−3−1/3q) ,

with Ai(z) being the standard Airy function; approximately, q� ≈ 61/3[3π(� −
1/4)]2/3/2. In order to keep the notation simple, we will abbreviate ν� ≡ ν�(ka)
and ν̄� ≡ ν̄�(ka). Thus the first term of (41.26) becomes finally

a
2πi

{
2
∫ +∞+iε

−∞+iε
dν

e2iνπ

1 − e2iνπ
χν

}
= 2a

∞∑
�=1

(
e2iν�π

1 − e2iν�π
+

e−2iν̄�π

1 − e−2iν̄�π

)
.

16Predrag: refer to occurances of Airy fcts in simpler settings, such as in the 1 − d WKB
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In the second term of (41.26) we will insert the Debye approximations for the
Hankel functions:

H(1/2)
ν (x) ∼

√
2

π
√

x2 − ν2
exp

(
±i

√
x2 − ν2 ∓ iν arccos

ν

x
∓ i

π

4

)
for |x| > ν

(41.30)

H(1/2)
ν (x) ∼ ∓i

√
2

π
√
ν2 − x2

exp
(
−

√
ν2 − x2 + νArcCosh

ν

x

)
for |x| < ν .

Note that for ν > ka the contributions in χν cancel. Thus the second integral of
(41.26) becomes

a
2πi

∫ +∞

−∞
dν χν =

a
2πi

∫ +ka

−ka
dν

(−2i)
a

d
dk

( √
k2a2 − ν2 − ν arccos

ν

ka

)
+ · · ·

= − 1
kπ

∫ ka

−ka
dν

√
k2a2 − ν2 + · · · = −a2

2
k + · · · , (41.31)

where · · · takes care of the polynomial corrections in the Debye approximation
and the boundary correction terms in the ν integration.

In summary, the semiclassical approximation to d(k) reads

d(k) = 2a
∞∑
�=1

(
e2iν�π

1 − e2iν�π
+

e−2iν̄�π

1 − e−2iν̄�π

)
− a2

2
k + · · · .

Using the definition of the time delay (41.22), we get the following expression for
det S1(ka):

ln det S1(ka) − lim
k0→0

ln det S1(k0a) (41.32)

= 2πia
∫ k

0
dk̃

⎛⎜⎜⎜⎜⎜⎜⎝−ak̃
2
+ 2

∞∑
�=1

⎛⎜⎜⎜⎜⎜⎝ ei2πν�(k̃a)

1 − ei2πν�(k̃a)
+

e−i2πν̄�(k̃a)

1 − e−i2πν̄�(k̃a)

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ + · · ·

∼ −2πiN(k)+2
∞∑
�=1

∫ k

0
dk̃

d

dk̃

{
− ln

(
1−ei2πν�(k̃a)

)
+ ln

(
1−e−i2πν̄�(k̃a)

)}
+ · · · ,

where in the last expression it has been used that semiclassically d
dkν�(ka) ∼

d
dk ν̄�(ka) ∼ a and that the Weyl term for a single disk of radius a goes like
N(k) = πa2k2/(4π) + · · · (the next terms come from the boundary terms in the
ν-integration in (41.31)). Note that for the lower limit, k0 → 0, we have two
simplifications: First,

lim
k0→0

S 1
mm′(k0a) = lim

k0→0

−H(2)
m (k0a)

H(1)
m (k0a)

δmm′ = 1 × δmm′ ∀m,m′

→ lim
k0→0

det S1(k0a) = 1 .
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one-disk@1-
disk!creeping

creeping!1-disk

Secondly, for k0 → 0, the two terms in the curly bracket of (41.32) cancel.

41.3.1 1-disk spectrum interpreted; pure creeping

To summarize: the semiclassical approximation to the determinant S1(ka) is given
by

det S1(ka) ∼ e−i2πN(k)

∏∞
�=1

(
1 − e−2iπν̄�(ka)

)2

∏∞
�=1

(
1 − e2iπν�(ka))2

, (41.33)

with

ν�(ka) = ka + iα�(ka) = ka + e+iπ/3(ka/6)1/3q� + · · ·
ν̄�(ka) = ka − i(α�(k∗a))∗ = ka + e−iπ/3(ka/6)1/3q� + · · ·

= (ν�(k∗a))∗

and N(ka) = (πa2k2)/4π + · · · the leading term in the Weyl approximation for
the staircase function of the wavenumber eigenvalues in the disk interior. From
the point of view of the scattering particle, the interior domains of the disks are
excluded relatively to the free evolution without scattering obstacles. Therefore
the negative sign in front of the Weyl term. For the same reason, the subleading
boundary term has here a Neumann structure, although the disks have Dirichlet
boundary conditions.

Let us abbreviate the r.h.s. of (41.33) for a disk s as

det Ss(kas ) ∼
(
e−iπN(kas )

)2 Z̃ s
�
(k∗as )

∗

Z̃ s
�
(kas )

Z̃ s
r (k∗as )

∗

Z̃ s
r (kas )

, (41.34)

where Z̃ s
�
(kas ) and Z̃ s

r (kas ) are the diffractional zeta functions (here and in the fol-
lowing we will label semiclassical zeta functions with diffractive corrections by a
tilde) for creeping orbits around the sth disk in the left-handed sense and the right-
handed sense, respectively (see figure 41.2). The two orientations of the creeping
orbits are the reason for the exponents 2 in (41.33). Equation (41.33) describes
the semiclassical approximation to the incoherent part (= the curly bracket on the
r.h.s.) of the exact expression (41.19) for the case that the scatterers are disks.

In the following we will discuss the semiclassical resonances in the 1-disk
scattering problem with Dirichlet boundary conditions, i.e. the so-called shape
resonances. The quantum mechanical resonances are the poles of the S -matrix in
the complex k-plane. As the 1-disk scattering problem is separable, the S -matrix
is already diagonalized in the angular momentum eigenbasis and takes the sim-
ple form (41.9). The exact quantummechanical poles of the scattering matrix are
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Airy functionFigure 41.2: Right- and left-handed diffractive
creeping paths of increasing mode number � for
a single disk.

l

l

therefore given by the zeros kres
n m of the Hankel functions H(1)

m (ka) in the lower
complex k plane which can be labeled by two indices, m and n, where m denotes
the angular quantum number of the Hankel function and n is a radial quantum
number. As the Hankel functions have to vanish at specific k values, one cannot
use the usual Debye approximation as semiclassical approximation for the Hankel
function, since this approximation only works in case the Hankel function is dom-
inated by only one saddle. However, for the vanishing of the Hankel function, one
has to have the interplay of two saddles, thus an Airy approximation is needed as
in the case of the creeping poles discussed above. The Airy approximation of the
Hankel function H(1)

ν (ka) of complex-valued index ν reads

H(1)
ν (ka) ∼ 2

π
e−i π3

(
6
ka

)1/3

A(q(1)) ,

with

q(1) = e−i π3

(
6
ka

)1/3

(ν − ka) + O
(
(ka)−1

)
.

Hence the zeros ν� of the Hankel function in the complex ν plane follow from
the zeros q� of the Airy integral A(q) (see (41.3). Thus if we set ν� = m (with m
integer), we have the following semiclassical condition on kres 17

m ∼ kresa + iα�(k
resa)

= ei π3

(
kresa

6

)1/3

q� − e−i π3

(
6

kresa

)1/3 q2
�

180
− 1

70kresa

⎛⎜⎜⎜⎜⎜⎝1 − q3
�

30

⎞⎟⎟⎟⎟⎟⎠
+ ei π3

(
6

kresa

) 5
3 1

3150

⎛⎜⎜⎜⎜⎜⎝29q�
62

−
281q4

�

180 · 63

⎞⎟⎟⎟⎟⎟⎠ + · · · ,

with l = 1, 2, 3, · · · . (41.35)

For a given index l this is equivalent to

0 ∼ 1 − e(ikres−α�)2πa ,

17Predrag: repeat of (41.29)?
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Figure 41.3: The shape resonances of the 1-disk
system in the complex k plane in units of the disk
radius a. The boxes label the exact quantum me-
chanical resonances (given by the zeros of H(1)

m (ka)
for m = 0, 1, 2), the crosses label the diffractional
semiclassical resonances (given by the zeros of
the creeping formula in the Airy approximation
(41.35) up to the order O([ka]1/3)).
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the de-Broglie condition on the wave function that encircles the disk. Thus the
semiclassical resonances of the 1-disk problem are given by the zeros of the fol-
lowing product

∞∏
l=1

(
1 − e(ik−α� )2πa

)
,

which is of course nothing else than Z̃1-disk(k), the semiclassical diffraction zeta
function of the 1-disk scattering problem, see (41.34). Note that this expression
includes just the pure creeping contribution and no genuine geometrical parts.
Because of

H(1)
−m(ka) = (−1)mH(1)

m (ka) ,

the zeros are doubly degenerate if m � 0, corresponding to right- and left handed
creeping turns. The case m = 0 is unphysical, since all zeros of the Hankel func-
tion H(1)

0 (ka) have negative real value.

From figure 41.3 one notes that the creeping terms in the Airy orderO([ka]1/3),
which are used in the Keller construction, systematically underestimate the magni-
tude of the imaginary parts of the exact data. However, the creeping data become
better for increasing Re k and decreasing |Im k|, as they should as semiclassical
approximations. 18

In the upper panel of figure 41.4 one sees the change, when the next order
in the Airy approximation (41.35) is taken into account. The approximation is

18Predrag: explain Keller principle somewhere
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stationary phaseFigure 41.4: Same as in figure 41.3. However,
the subleading terms in the Airy approximation
(41.35) are taken into account up to the order
O([ka]−1/3) (upper panel) and up to order O([ka]−1)
(lower panel).
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nearly perfect, especially for the leading row of resonances. The second Airy
approximation using (41.35) up to order O([ka]−1) is perfect up to the drawing
scale of figure 41.4 (lower panel). ⇓PRIVATE

We shall return to creeping contributions for N > 1 disk systems in chapter44.

⇑PRIVATE

41.4 From quantum cycle to semiclassical cycle

The procedure for the semiclassical approximation of a general periodic itinerary
(41.20) of length n is somewhat laborious, and we will only sketch the procedure
here. It follows, in fact, rather closely the methods developed for the semiclassical
reduction of the determinant of the 1-disk system.

The quantum cycle

tr As1s2 · · ·Asms1 =

∞∑
ls1=−∞

· · ·
∞∑

lsm=−∞
As1s2

ls1 ls2
· · ·Asms1

lsm ls1

still has the structure of a “multi-trace” with respect to angular momentum.

Each of the sums
∑∞

lsi=−∞
– as in the 1-disk case – is replaced by a Watson

contour resummation in terms of complex angular momentum νsi . Then the paths
below the real νsi-axes are transformed to paths above these axes, and the integrals
split into expressions with and without an explicit Watson sin(νsiπ) denominator.

1. In the sin(νsiπ) -independent integrals we replace all Hankel and Bessel
functions by Debye approximations. Then we evaluate the expression in
the saddle point approximation: either left or right specular reflection at
disk si or ghost tunneling through disk si result.
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Figure 41.5: A 4-disk problem with three specular
reflections, one ghost tunneling, and distinct creeping
segments from which all associated creeping paths can
be constructed.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

j
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1

j2 3 4

Itinerary:
j

1j j4

j
2 3

2. For the sin(νsiπ) -dependent integrals, we close the contour in the upper νsi

plane and evaluate the integral at the residua H(1)
νsi

(kasi )=0. Then we use

the Airy approximation for Jνsi
(kasi ) and H(1)

νsi
(kasi ): left and right creeping

paths around disk si result.

In the above we have assumed that no grazing geometrical paths appear. If
they do show up, the analysis has to be extended to the case of coninciding saddles
between the geometrical paths with π/2 angle reflection from the disk surface and
paths with direct ghost tunneling through the disk.

There are three possibilities of “semiclassical” contact of the point particle
with the disk si:

1. either geometrical which in turn splits into three alternatives

(a) specular reflection to the right,

(b) specular reflection to the left,

(c) or ‘ghost tunneling’ where the latter induce the nontrivial pruning
rules (as discussed above)

2. or right-handed creeping turns

3. or left-handed creeping turns,

see figure 41.5. The specular reflection to the right is linked to left-handed creep-
ing paths with at least one knot. The specular reflection to the left matches a
right-handed creeping paths with at least one knot, whereas the shortest left- and
right-handed creeping paths in the ghost tunneling case are topologically trivial.
In fact, the topology of the creeping paths encodes the choice between the three
alternatives for the geometrical contact with the disk. This is the case for the
simple reason that creeping sections have to be positive definite in length: the
creeping amplitude has to decrease during the creeping process, as tangential rays
are constantly emitted. In mathematical terms, it means that the creeping angle
has to be positive. Thus, the positivity of the two creeping angles for the shortest
left and right turn uniquely specifies the topology of the creeping sections which
in turn specifies which of the three alternatives, either specular reflection to the
right or to the left or straight “ghost” tunneling through disk j, is realized for the
semiclassical geometrical path. Hence, the existence of a unique saddle point is
guaranteed.
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Figure 41.6: (a) The ghost itinerary (1, 2, 3, 4). (b)
The parent itinerary (1, 3, 4).

4

31 2_

4

31

In order to be concrete, we will restrict ourselves in the following to the scat-
tering from N < ∞ non-overlapping disks fixed in the 2-dimensional plane. The
semiclassical approximation of the periodic itinerary

tr As1s2 As2s3 · · ·Asn−1sn Asn s1

becomes a standard periodic orbit labeled by the symbol sequence s1s2 · · · sn . De-
pending on the geometry, the individual legs si−1 → si → si+1 result either from a
standard specular reflection at disk si or from a ghost path passing straight through
disk si. If furthermore creeping contributions are taken into account, the symbolic
dynamics has to be generalized from single-letter symbols {si} to triple-letter sym-
bols {si, σi × �i} with �i ≥ 1 integer valued and σi = 0,±1 19 By definition, the
value σi = 0 represents the non-creeping case, such that {si, 0 × �i} = {si, 0} = {si}
reduces to the old single-letter symbol. The magnitude of a nonzero �i corre-
sponds to creeping sections of mode number |�i|, whereas the sign σi = ±1 signals
whether the creeping path turns around the disk si in the positive or negative sense.
Additional full creeping turns around a disk si can be summed up as a geometrical
series; therefore they do not lead to the introduction of a further symbol.

41.4.1 Ghost contributions

An itinerary with a semiclassical ghost section at, say, disk si can be shown to
have the same weight as the corresponding itinerary without the si th symbol.
Thus, semiclassically, they cancel each other in the tr ln(1 −A) expansion, where
they are multiplied by the permutation factor n/r with the integer r counting the
repeats. For example, let (1, 2, 3, 4) be a non-repeated periodic itinerary with a
ghost section at disk 2 steming from the 4th-order trace tr A4. By convention,
an underlined disk index signals a ghost passage (as in figure 41.6a), with cor-
responding semiclassical ghost traversal matrices also underlined, Ai,i+1Ai+1,i+2.
Then its semiclassical, geometrical contribution to tr ln(1 − A) cancels exactly
against the one of its “parent” itinerary (1, 3, 4) (see figure41.6b) resulting from
the 3rd-order trace:

−1
4

(
4 A1,2A2,3A3,4A4,1

)
− 1

3

(
3 A1,3A3,4A4,1

)
= (+1 − 1) A1,3A3,4A4,1 = 0 .

19Actually, these are double-letter symbols as σi and li are only counted as a product.
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The prefactors −1/3 and −1/4 are due to the expansion of the logarithm, the fac-
tors 3 and 4 inside the brackets result from the cyclic permutation of the periodic
itineraries, and the cancellation stems from the rule ⇓PRIVATE

exercise 40.5

⇑PRIVATE· · ·Ai,i+1Ai+1,i+2 · · · = · · ·
(
−Ai,i+2

)
· · · . (41.36)

The reader might study more complicated examples and convince herself that the
rule (41.36)(or (??) for the cases of adjacent ghost sections) is sufficient to cancel ⇓PRIVATE

⇑PRIVATE
any primary or repeated periodic orbit with one or more ghost sections completely
out of the expansion of tr ln(1 −A) and therefore also out of the cumulant expan-
sion in the semiclassical limit: Any periodic orbit of length m with n(< m) ghost
sections is cancelled by the sum of all ‘parent’ periodic orbits of length m− i (with
1 ≤ i ≤ n and i ghost sections removed) weighted by their cyclic permutation
factor and by the prefactor resulting from the trace-log expansion. This is the way
in which the nontrivial pruning for the N-disk billiards can be derived from the
exact quantum mechanical expressions in the semiclassical limit. Note that there
must exist at least one index i in any given periodic itinerary which corresponds to
a non-ghost section, since otherwise the itinerary in the semiclassical limit could
only be straight and therefore nonperiodic. Furthermore, the series in the ghost
cancelation has to stop at the 2nd-order trace, tr A2, as tr A itself vanishes identi-
cally in the full domain which is considered here. ⇓PRIVATE

41.4.2 Semiclassical cycle weight

AW: One of us has still
to write these

regroup the terms in prime orbits (or refer to DasBuch section

write semiclassical cumulant expansion

truncated expansions

diffractive poles in 1-scatterer S -matrices ⇑PRIVATE

20

41.5 Heisenberg uncertainty

Where is the boundary ka ≈ 2m−1L̄/a coming from?

This boundary follows from a combination of the uncertainty principle with
ray optics and the non-vanishing value for the topological entropy of the 3-disk
repeller. When the wave number k is fixed, quantum mechanics can only resolve
the classical repelling set up to the critical topological order ngiven by (??). The ⇓PRIVATE

⇑PRIVATE20Predrag: restore section3-disk system
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quantum wave packet which explores the repelling set has to disentangle 2n dif-
ferent sections of size d ∼ a/2n on the “visible” part of the disk surface (which is
of order a) between any two successive disk collisions. Successive collisions are
separated spatially by the mean flight length L̄, and the flux spreads with a factor
L̄/a. In other words, the uncertainty principle bounds the maximal sensible trun-
cation in the cycle expansion order by the highest quantum resolution attainable
for a given wavenumber k. ⇓PRIVATE

The upper limit n for which cm(k) with m ≤ n approximates Qm(k) is increas-
ing with increasing Re k. For n > m(Re ka), defined in (??), the cycle expansion
terms and cumulant terms deviate so much from each other, that beyond this or-
der the contributions of longer cycle expansions have nothing to do with quantum
mechanics. The fact that ZGV(k)|n – even in its convergence regime – is a good
approximation to quantum mechanics only up to a finite n usually goes unnoticed,
as the terms in (??) are exponentially small on or close to the real axis and sum
therefore to a tiny quantity. In other words, for n > m(Re ka) and close to the real
k axis, the absolute error |cn(k)−Qn(k)| is still small, the relative error |cn(k)/Qn(k)|
on the other hand is tremendous. With increasing negative Im k, however, using
the scaling rules (??) and (??), the deviations (??) are blown up, such that the rela-
tive errors |cn(k)/Qn(k)| eventually become visible as absolute errors |cn(k)−Qn(k)|
(see e.g. the resonance calculation of ref. [1]). For Im k above the boundary of
convergence these errors still sum up to a finite quantity which might, however,
not be negligible any longer. Below the convergence line these errors sum up to
infinity.

So, the value of Imk where — for a given n — the ZGV(k)|n sum deviates from
det M(k)|n is governed by the real part of k and the scaling rules (??) and (??). It
has nothing to do with the boundary of convergence of ZGV(k), as a good approx-
imation is given by the finite sum of terms satisfying (??). Therefore, the trun-
cated semiclassical expansion can describe the quantum mechanical resonance
data even below the line of convergence of the infinite cycle expansion series, as
we have already noted above.

On the other hand, the boundary line of the convergence regime of the semi-
classical expansion is governed by cm(k), m → ∞, terms which have nothing to
do with the quantum analog Qm(k), i.e. solely by terms of type (??). The reason
is that the convergence property of an infinite sum is governed by the infinite tail
and not by the first few terms. Whether a semiclassical expansion converges or
not is a separate issue from the question whether the quantum mechanical data are
described well or not. The convergence property of a semiclassical zeta functions
on the one hand and the approximate description of quantum mechanics by these
zeta functions are therefore two different issues. It could happen that a zeta func-
tion is convergent, but not equivalent to quantum mechanics, as we have seen was
the case with the extraneous resonances in the quasiclassical calculation. Or that
it is not convergent in general, but its finite truncations nevertheless approximate
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Airy function
Debye approximation
Hankel function

well quantum mechanics, as is the case for the Gutzwiller-Voros zeta function21

ZGV(z; k) = exp

⎧⎪⎪⎨⎪⎪⎩−∑
p

∞∑
r=1

1
r

zrnp tr
p

1 − 1/Λr
p

⎫⎪⎪⎬⎪⎪⎭ =∏
p

∞∏
j=0

⎛⎜⎜⎜⎜⎜⎝1 − znptp

Λ
j
p

⎞⎟⎟⎟⎟⎟⎠ , (41.37)

where

tp = eikLp−impπ/2/|Λp|
1
2

is the weight of the p th prime cycle, np its topological length and z a book-keeping
variable for keeping track of the topological order in cycle expansions.

We conclude that the exponential rise of the number of cycles with increas-
ing cycle expansion order n is the physical reason for the breakdown of the cycle
expansion of the semiclassical zeta function(41.37) with respect to the exact quan-
tum mechanical cumulant expansion. 22

AW: still to add some
more interesting exer-
cises

exercise ??Résumé
⇑PRIVATE

Commentary

Remark 41.1 Sources. 23 This chapter is based in its entirety on ref. [1]; the reader
is referred to the full exposition for the proofs and discussion of details omitted here.
sect. 41.3 is based on appendix E of ref. [1]. We follow Franz [19] in applying the Watson
contour method [20] to (41.23). The Airy and Debye approximations to the Hankel
functions are given in ref. [21], the Airy expansion of the 1-disk zeros can be found in
ref. [22], see also ref. [?] for the expression of α�(ka) to leading order. For details see

⇓PRIVATE

⇑PRIVATE
refs. [19, 22, 23, 1]. That the interior domains of the disks are excluded relatively to the
free evolution without scattering obstacles was noted in refs. [24, 15]. 24

The procedure for the semiclassical approximation of a general periodic itinerary
(41.20) of length n can be found in ref. [1] for the case of the N-disk systems. The
reader interested in the details of the semiclassical reduction is advised to consult this
reference. For the case of grazing geometrical paths consult ref. [?]. In such cases we ⇓PRIVATEhave coinciding saddles between the geometrical paths with π/2 angle reflection from the
disk surface and paths with direct ghost tunneling through the disk.

⇑PRIVATE

The ghost orbits were introduced in refs. [12, 24].

25

21Predrag: connect this to earlier text
22Predrag: create refsMultiscat
23Predrag: change refs from Wirzba habilitation to Phys Reports throughout?
24Predrag: comment on Regge poles
25Predrag: merge with preceeding chapter?
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Remark 41.2 Krein-Friedel-Lloyd formula. In the literature (see, e.g., refs. [14,
15] 26 based on ref. [11] or ref. [1]) the transition from the quantum mechanics to the
semiclassics of scattering problems has been performed via the semiclassical limit of the
left hand sides of the Krein-Friedel-Lloyd sum for the (integrated) spectral density [ 5, 6,
8, 9]. See also ref. [13] for a modern discussion of the Krein-Friedel-Lloyd formula and
refs. [1, 17] for the connection of (40.17) to the Wigner time delay.

The order of the two limits in (40.18) and (40.17) is essential, see e.g. Balian and
Bloch [11] who stress that smoothed level densities should be inserted into the Friedel
sums.

The necessity of the +iε in the semiclassical calculation can be understood by purely
phenomenological considerations: Without the iε term there is no reason why one should
be able to neglect spurious periodic orbits which solely are there because of the introduc-
tion of the confining boundary. The subtraction of the second (empty) reference system
helps just in the removal of those spurious periodic orbits which never encounter the scat-
tering region. The ones that do would still survive the first limit b → ∞, if they were not
damped out by the +iε term.

exercise 40.1

Remark 41.3 T, Cs , Ds and As s ′ matrices are trace-class In refs. [1] 27 it has
explicitly been shown that the T-matrix as well as the C s , Ds and As s ′-matrices of the
scattering problem from N < ∞ non-overlapping finite disks are all trace-class. The
corresponding properties for the single-disk systems is particulary easy to prove.

⇓PRIVATE

Remark 41.4 Further reading. Müller et al. [1] abstract: Using Gutzwiller’s semi-
classical periodic-orbit theory we demonstrate universal behaviour of the two-point cor-
relator of the density of levels for quantum systems whose classical limit is fully chaotic.
We go beyond previous work in establishing the full correlator such that its Fourier trans-
form, the spectral form factor, is determined for all times, below and above the Heisenberg
time. We cover dynamics with and without time reversal invariance (from the orthogonal
and unitary symmetry classes). A key step in our reasoning is to sum the periodic-orbit
expansion in terms of a matrix integral, like the one known from the sigma model of
random-matrix theory.

Kuipers [2] abstract: The addition of tunnel barriers to open chaotic systems, as well
as representing more general physical systems, leads to much richer semiclassical dynam-
ics. In particular, we present here a complete semiclassical treatment for these systems,
in the regime where Ehrenfest time effects are negligible and for times shorter than the
Heisenberg time. To start we explore the trajectory structures which contribute to the sur-
vival probability, and find results that are also in agreement with random matrix theory.
Then we progress to the treatment of the probability current density and are able to show,
using recursion relation arguments, that the continuity equation connecting the current
density to the survival probability is satisfied to all orders in the semiclassical approxi-
mation. Following on, we also consider a correlation function of the scattering matrix,
for which we have to treat a new set of possible trajectory diagrams. By simplifying the
contributions of these diagrams, we show that the results obtained here are consistent with
known properties of the scattering matrix. The correlation function can be connected to
the ac and dc conductances, quantities of particular interest for which finally we present a
semiclassical expansion.

⇑PRIVATE
26Predrag: find refref pinball
27Predrag: find ref ,wh97
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Chapter 42

Quantum pinball

Semiclassical periodic orbit expansions are applied to the dynamics of a point
particle scattering elastically off several disks in a plane. Fredholm determi-
nants, zeta functions, and convergence of their cycle expansions are tested

and applied to evaluation of quantum resonances. We demonstrate the utility of
the periodic orbit description of chaotic motion by computing from a few peri-
odic orbits highly accurate estimates of a large number of quantum resonances for
the classically chaotic 3-disk scattering problem. The symmetry decompositions
of the eigenspectra are the same for the classical and the quantum problem, and
good agreement between the periodic orbit estimates and the exact quantum poles
is observed.

1 We shall here focus on an ideal quantum system, scattering off three (or
more) disks in the plane. The system that we shall discuss here is simple, yet
physical and instructive.

PREDRAG’S REMARK:
What was really done in the introductory lecture on billiards: The subject was
develop to detect a cylinder by waves (ie submarine, by radar): Frantz, Keller,
Maslov.

That 1 disk scattering resonances are known analytically; 2-disk not, but there
is no chaos; 3-disk first example of chaos, known by semi-analytic methods only
recently.

That repellers clean as purelly hyperbolic, trivial symbolic dynamics.

I explained that for elastodynamics Mark found a quartz fortune teller’s ball
from Madagascar, measured 500.000 resonaces, and theorists are happy to com-
pute 100.

That there are almost no analytic solutions known (square, circle, parallelop-
iped, perhaps sphere in isotropic case).

1Predrag: make a remark here
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escape rateThat numerics can barely do anything else but a potato.

That hard ceramics gas valves and MEMS need new quality control tech-
niques, perhaps in frequency rather than time domain.
- END PREDRAG’S REMARK -

Our classical pinball system consists of a point particle and three identical cir-
cular disks in the plane (fig. ??a). The point particle is scattered elastically off the
disks and moves freely between collisions. The dynamics with one or two disks is
simple (there is either no or one trapped trajectory), but with three or more disks
there are infinitely many trapped trajectories, forming a repeller. This repeller can
be in principle observed by measurements such as irregularly fluctuating outgoing
angles vs. impact parameter, but such measurements are difficult and very sensi-
tive to small perturbations. Much more robust are the global averages such as the
mean trapping time; resonances and the delay times.

We shall apply here the expansion (35.2) to evaluation of repeller escape rates.
The classical repeller escape rate γ is determined by the largest zero of 1/ζ(s) (s
real) with each prime cycle weighted by

tp(s) = Λ−1
p e−sTp . (42.1)

Here Tp is the period of the prime cycle p and μp = ln(Λp) is its Floquet exponent,
where Λp is the leading eigenvalue of the cycle Jacobian. The associated quantum
amplitude is essentially the square root of the classical weight.

The logarithmic derivative of the infinite product of ζ functions det (Ĥ−E)sc =∏∞
j=0 ζ

−1
j (k), where the weights of the prime cycles for the different ζj’s are

t( j)
p = e−μp(1/2+ j)+ i

�
S p(k)+iπνp/2, (42.2)

where S p(k) is the action and νp the Maslov index, and k is the quantum wavenum-
ber. The zeros of det (Ĥ − E)sc in the complex k plane determine the eigenvalues
or resonances of the quantum system; here we shall compute only those closest to
the real energy axis, which are given by the zeros of 1/ζ0(k).

We have chosen here the 3-disk scattering system because it captures the es-
sential topology, stability and phase space structure of cycles in 2-d non-integrable
potentials without the complications typical of motions in generic smooth poten-
tials (pruning of the symbolic dynamics mixed phase space, intermittency effects
due to marginally stable orbits. The billiard cycles are faster to compute than for
arbitrary smooth potentials, and we were aided much by the availability of the
exact spectra 2 in checking our results.

2Predrag: point to remark
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spectral!determinant!2-
dimensional

42.1 Spectral determinant for two-dimensional systems

For Hamiltonian flows in two configuration dimensions the monodromy matrix
Mp has two eigenvalues Λp and 1/Λp, as explained in sect. 7.3. Isolated periodic
orbits can be elliptic or hyperbolic. Here we discuss only the hyperbolic case,
when the eigenvalues are real and not equal to one in magnitude. The determinant
appearing in the trace formulas can be written in terms of the expanding eigen-
value as

|det (1 − Mr
p)|1/2 = |Λr

p|1/2
(
1 − 1/Λr

p

)
,

and its inverse can be expanded as a geometric series

1

|det (1 − Mr
p)|1/2

=

∞∑
k=0

1

|Λr
p|1/2Λkr

p
.

3 With the 2-dimensional expression for the average density of states (39.9)
the spectral determinant becomes

det (Ĥ − E)sc = ei mAE
2�2 exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

∞∑
k=0

eir(S p/�−mpπ/2)

r|Λr
p|1/2Λkr

p

⎞⎟⎟⎟⎟⎟⎟⎠
= ei mAE

2�2
∏

p

∞∏
k=0

⎛⎜⎜⎜⎜⎜⎝1 − e
i
�

S p− iπ
2 mp

|Λp|1/2Λk
p

⎞⎟⎟⎟⎟⎟⎠ . (42.3)

⇓PRIVATE

42.2 Semiclassical zeta function

4

⇑PRIVATE

42.3 Three-disk pinball

Here we shall illustrate the convergence of curvature expansions by computing the
classical escape rates and quantum resonances for scattering off three disks. 5 In
this system the classical motion can be visualized as a pinball bouncing in a plane
between three equally spaced disks of equal radius, and the quantum dynamics
is described by wave functions which vanish on the boundaries of the disks. For
billiard motion the momentum vm = �k =

√
2E/m is constant, the action S p(k) is

given by �kLp, where Lp is the length of the cycle p, and the quantum amplitude
(42.2) associated with the cycle p is simply tp = |Λp|−1/2eikLp+inpπ. 6 Here np is

3Predrag: restore links and exercises
4Predrag: add a section on the k = 0 zeta function part
5Predrag: point to remark
6Predrag: replace by back reference
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the number of bounces, and comes from the phase loss at every reflection (the
boundary condition is ψ|disk = 0).

The prerequisite for efficient use of curvature expansions is firm control of the
symbolic dynamics. 7 For sufficiently separated disks, the symbolic dynamics is a
ternary dynamics with alphabet {1, 2, 3} (the label of the disk the pinball bounces
off) and a single pruning rule prohibiting consecutive repeats of the same symbol.
The corresponding curvature expansion (35.2) is straightforward, and converges
well. The C3v point group invariance of the 3-disks problem simplifies and im-
proves the curvature expansions in a rather beautiful way. The corresponding
contributions to the Euler product (35.2) factorize as follows:

(1 − tp)2 = (1 − t1/3p )(1 − t1/3p )(1 + t1/3p + t2/3
p )2

(1 − tp)3 = (1 − t1/2p )(1 + t1/2p )(1 − (t1/2p )2)2

(1 − tp)6 = (1 − tp)(1 − tp)(1 − tp)4. (42.4)

The three factors in this product contribute to the D3 irreducible subclasses A1, A2

and E, respectively, and the 3-disk zeta function factorizes into ζ = ζ+ζ−ζ2
E . Due

to the symmetry, any 3-disk cycle can be pieced together from segments passing
through the fundamental domain (see Fig. ?1?). The t1/2p , t1/3

p weights in (42.4)
have direct physical meaning: they are the weights of the corresponding cycles
restricted to the fundamental domain.

Restriction to the fundamental domain also simplifies the symbolic dynam-
ics: it becomes binary, with no restrictions on allowed sequences [1, 29, 4]. The
ternary 3-disk {1, 2, 3} labels are converted into the binary fundamental domain
labels {0, 1} by marking the backscatter by 0 and scatter to the third disk by
1. For ex., 23 = . . . 232323 . . . maps into . . . 000 . . . = 0 (and so do 12, 13),
123 = . . . 12312 . . . maps into . . . 111 . . . = 1, and so forth. (see Fig. ?1?).

The Euler product (35.2) on each irreducible subspace is easily evaluated us-
ing the factorization (42.4). On the symmetric A1 and the antisymmetric A2 sub-
spaces, the ζ+ and ζ− are given by the standard curvature expansion for the binary
dynamics:

1/ζ∓ = (1 ± t0)(1 − t1)(1 ± t10)(1 − t100)(1 ± t101)(1 ± t1000) . . .

= 1 ± t0 − t1 ± (t10 − t1t0) − (t100 − t10t0) ± (t101 − t10t1)

−(t1001 − t1t001 − t101t0 + t10t0t1) − . . . . . . (42.5)

while for the mixed-symmetry subspace E the curvature expansion is given by

1/ζE = (1 + t1 + t2
1)(1 − t20)(1 + t100 + t2

100)(1 − t210) . . .

= 1 + t1 + (t2
1 − t2

0) + (t100 − t1t2
0) + t1001 + (t100 − t1t2

0)t1 − t2
10 . . .(42.6)

7Predrag: refer to earlier text, rather than to refs. [1, 4]
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lifetime!resonanceGiven the curvature expansions (??) and (42.6), the calculation is straightfor-
ward. We set the disk radius a = 1, fix the disk-disk center separation R = 6
(for the sample values listed here), compute the eigenvalues and lengths of prime
cycles up to 5 bounces (total of 14 cycles), substitute them into the curvature ex-
pansions, and determine the complex zeros; some hundred quantum resonances
are easily determined, with accuracy as good as 7 significant digits for the reso-
nances closest to the real axis. In Table ?1? we list a few typical results, illustrate
their convergence by computing them with different maximal length cycles, and
compare them to the numerical solutions for poles of the exact quantum scat-
tering matrix. The convergence of the curvature expansions is striking; they are
many orders of magnitude more accurate than the estimates by other methods,
and the gain in efficiency is dramatic: while the quantum scattering matrix re-
quires computation of large truncations (of order of (70 × 70)) of infinite matrices
with Bessel functions entries, the curvature expansions require evaluation of some
dozen complex exponentials and a couple of sums and differences. The judicious
use of symmetry helps considerably; for example, going to the fundamental do-
main often doubles the number of significant digits for a given cycle length. The
estimates can be further improved by extrapolations and knowledge of the analyt-
icity properties of 1/ζ, e.g. the positions of poles.

No poles of the infinite product can occur within the half-plane of absolute
convergence [15]. This also leads to an upper bound on the resonance lifetimes.
The abscissa of absolute convergence can be determined as the leading zero of
(??) with tp replaced by |tp|; Im(k) for all zeros of 1/ζ must lie below kc (for the
present a:R=1:6 example, kc = −0.121557 . . .). The convergence of the curva-
ture expansion is best near kc (the longest lived resonances) and deteriorates as
one moves further in the imaginary k direction. As Re k grows, the density of
resonances increases. Implications for the curvature expansion are that a certain
number of terms have to be included before two resonances are distinguished;
thereafter one again observes rapid convergence. This is illustrated in table ?1?
for the resonances k2 and k3, which have the same n=1 approximation.

The explicit curvature expansions like (??) and (42.6) perhaps make it easier to
explain our claims about the exponential convergence of curvature expansions. 8

A typical curvature expansion term involves a long cycle {ab}minus its shadowing
approximation by shorter cycles {a} and {b}:

tab − tatb = tab(1 − tatb/tab) = tab(1 − e−Δμab/2+ikΔS ab )

where Δμab = μa + μb − μab and ΔS ab = S a + S b − S ab. The exponential fall
off of curvatures is a consequence of the smallness of the term in the brackets;
Δμ and ΔS are exponentially small for long orbits, typically O(e−μab). Therefore,
to resolve some scale Δk, one has to keep all difference actions > 1/Δk. Their
number increases like (Δk)h/λ, i.e., roughly linearly (if the topological entropy h
equals the average Lyapunov exponent λ), and not exponentially, as one might
expect naively.

8Predrag: insert tosect{} here
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Figure caption

1. The scattering geometry for the disk radius/separation ratio a : R = 1 : 2.5.
(a) the three disks, with 12, 123 and 121232313 cycles indicated. 9

Table caption: Representative classical escape rate and quantum resonance
results, illustrating the convergence of the curvature expansions. The calculations
listed here are for disks with ratio radius to separation a : R = 1 : 6. The first col-
umn gives the maximal cycle length used, the second the estimate of the classical
escape rate from the full 3-disk cycle expansion, the third from the fundamental
domain expansion. For comparison, numerical simulation [3] yields γ = .410 . . .,
and the n = 2, 3 approximations of ref. [3]. yield 0.3102, 0.4508 respectively. The
remaining columns illustrate convergence of “typical” quantum resonances from
the A1 subspace. For comparison, the exact quantum values [3, 18] are given in
the last row; the n = 3 approximation of ref. [3] gives k1 = 8.354−i0.342.

quantum pole
n Re(k1) Im(k1) Re(k2) Im(k2) Re(k3) Im(k3)
1 8.35954 −0.32103 27.36117 −0.15486 27.36117 −0.15486
2 8.26784 −0.28354 27.25948 −0.16044 27.68086 −0.36148
3 8.27549 −0.27576 27.25883 −0.15587 27.67331 −0.33837
4 8.27662 −0.27696 27.25922 −0.15561 27.67015 −0.33556
5 8.27640 −0.27712 27.25925 −0.15562 27.66956 −0.33531

exact 8.2611 -0.2749 27.2548 -0.1555 27.6661 -0.3340

42.4 Classical pinball

42.4.1 Symmetries of the system

We have already discussed the symmetries of the 3-disk pinball and its periodic
orbits in sect. ??.

section ??

42.4.2 Symbolic coding

We have already discussed the symbolic dynamics of the 3-disk pinball and its
periodic orbits in sect. 1.4 and example 11.1.

section 1.4
example 11.1

42.4.3 Periodic orbits

There is only one length scale in the system, the ratio of the center-to-center sep-
aration to the disk radius d : R. The energy is a quadratic function of momenta,
H = p2/2m, so motion at different energies E and E0 is related by the scaling
pE → p0

√
E/E0 for momenta, tE → t0

√
E0/E for times, and

S (E) = L
√

2mE = S (E0)
√

E/E0 (42.7)
9Predrag: replace by link to exiting figure
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for the actions, where L is the geometrical length of the orbit. The eigenvalues
of the Jacobian transverse to a periodic orbit (see below) are invariant under the
above energy rescaling. These observations will be useful below in the semi-
classical context where the (38.15) will combine with � to the relevant quantum
variable, the wavenumber k =

√
2mE/�.

Each map has a fixed point, corresponding to the orbits 0 and 1. Longer
periodic orbits are fixed points of sequences of maps, e.g.

T0T0T1T0T1x10100 = x10100 , (42.8)

10

The Jacobian of the single collision map is given by11 The sign of the eigen-
value depends of the number of collisions along the cycle. 12 For the ‘0’ symbol
there are two bounces in the fundamental domain: one with the disk and one with
the reflecting wall. Since the wall can be regarded as a disk of infinite radius,
the trace changes sign two times and thus the eigenvalues are positive. Symbol
‘1’ corresponds to one bounce with the disk but two wall bounces and hence the
eigenvalues of the ‘1’-cycle are negative. For an arbitrary fundamental domain
cycle, the eigenvalue sign is given by (−1)n1 , where n1 is the number of ‘1’s in the
binary string corresponding to the cycle.

exercise 13.8

The exact lengths and eigenvalues of 0, 1 and 10 cycles follow from elemen-
tary geometrical considerations, and are left to the reader as exercises. Longer

exercise 13.9
cycles require numerical evaluation by methods such as the multipoint shooting or
orbit length minimization. 13 A typical set of the periodic orbit data, for d : R = 6
and length ≤ 6, is listed in table ?2?.

42.5 Quantum pinball

For the three disk system, the explicit expressions of the outgoing waves in terms
of the ingoing waves using the quantum scattering matrix S have been given by
Gaspard and Rice. Resonances are related to complex zeros of tr S† dS

dE , the gen-
eralization of the concept of the density of states to scattering systems. We shall
first evaluate these complex zeros in the semiclassical approximation, and then
compare them with the exact quantum-mechanical resonances.

10Predrag: check if incorporated?: (note that in our convention the maps are applied in reverse
order compared to the symbolic sequence).

11Predrag: link
12Predrag: add pointer
13Predrag: add pointers
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42.5.1 The semiclassical density of states

The group theoretic weights associated with reducing the dynamics to irreducible
representations of the discrete symmetry group can sometimes also be absorbed
into the phase indices. In the A1 representation, one has only reflections at the
disks, none at the boundaries of the fundamental domain. Therefore, μp = 2np,
since the symbol string length counts the number of the disk collisions. For the A2

representation, the wave function is antisymmetric under reflections at the sym-
metry lines, and one can associate one additional reflection with each occurence
of the symbol 0, and two reflections with each occurence of the symbol 1. The net
effect is an additional overall minus sign, if the number of 0’s in the symbol string
of the orbit is odd. 14 Furthermore, special attention should be paid to the orbits
that run along the borders of the fundamental domain. The 3-disk system studied
here does not have boundary orbits, but the 4-disk system, for example, does have
such orbits.

As mentioned above one can replace Sp(E)/� = Lpk, where Lp is the geomet-
ric length of the orbit, and k is the wavenumber.

ρ(k) = −Im
1
π

∂

∂k
logZ(k) (42.9)

where Z(k) is

Z(k) =
∞∏
j=0

∏
p

(1 − eiLpk−iμpπ/2|Λp|−1/2Λ
− j
p ) . (42.10)

The quantum Selberg zeta function can also be expressed as a product over dy-
namical zeta functions,

Z(k) =
∞∏
j=0

1/ζ j , (42.11)

this time with cycles weighted by semiclassical weights

tp = znpeiS p/�−iμpπ/2/|Λp|1/2 . (42.12)

Thousands of semiclassical and exact quantum resonances in the three sym-
metry subspaces A1, A2 and E have been computed; some of them are listed in
table ?4? and plotted in fig. ??. The accuracy and numerical convergence of the
semiclassical estimates cames as a surprise.

14Predrag: link section
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escape rate!quantum
intermittency

42.5.2 “Quantum escape rate”

The region of absolute convergence of the Gutzwiller trace formula in the k = κ−is
complex plane is determined by the convergence of the sum of absolute values of
the terms in the series (??). The sum converges absolutely for s < sc, where sc is
called the abscissa of absolute convergence. Since sc is the value of s for which
the sum

Ω̃(s) =
∑

p

Tp

|det (1 − Jp)|1/2
esTp , (42.13)

diverges, one can, by analogy to the determination of the classical escape rate by
the divergence of the sum 15 , interpret the abscissa of absolute convergence sc as
a “quantum escape rate.” In fact, sc is only a lower 16 bound on the escape rate; the
correct rate of a decay of a given initial wave function is given by a superposition
of complex resonances evaluated below. Within the same short cycles truncations
as in the classical case, one finds the sc curves shown in the lower half of fig. ??.
17

Since the trace formulas are convergent in the domain of absolute conver-
gence, one cannot have zeros of the zeta function or resonances of the S -matrix
in that domain. In particular, for sufficiently large d : R, all resonances will stay
a finite distance from the real axis. In contrast to the classical case, for d : R less
than about 2.8 the bound sc actually becomes negative. As we shall see below, the
semiclassical resonances do lie below the real axis, as they should; but this serves
as a reminder that the resonances (and the energy eigenvalues for bound systems)
are being evaluated in a region where cycle expansions are only conditionally
convergent, and one has to be very careful in ordering terms in such expansions.

The same absolute convergence arguments can be applied to the dynamical
zeta functions. Their logarithmic derivatives correspond to sums over orbits of
form

− ∂

∂k
ln ζ j = i

∑
p

Lp
eiLpk−iμpπ/2

|Λp|1/2Λ j
p

. (42.14)

Due to the extra powers of Λp’s present in 1/ζj cycle weights, the corresponding
abscissas of absolute convergence form an ordered sequence sj < s j−1 < · · · < s0.
The resonances closest to the real axis - which will be noticable as the sharpest
resonances - should be due to zeros in 1/ζ0 since the leading zeros of other 1/ζj

have larger imaginary parts. We find it often convenient to use this fact and restrict
our numerical work to the leading zeros of 1/ζ0 rather than the full Selberg zeta
functions.

15Predrag: what ref
16Predrag: upper?
17Predrag: recheck?
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42.5.3 Quantum resonances

If the same -Vedic mantra- is chanted loudly
(“Vedaghosa”) it will give divine joy to the listeners
even if they do not understand its meaning. Such a sound
has the power to make mankind happy.

— Guru Pujyasri Chandrasekharendra Sarasvati
Svami, “Hindu Dharma: The Universal Way of Life”

We evaluate the exact quantum mechanical resonances by the method described
in refsect{??}. A comparison of resonances obtained from cycle expansions trun-
cated to the 14 cycles of periods ≤ 5 with the exact quantum values is given in
table 5?. and in fig. ??, together with the difference between the semiclassical
and quantum resonances δ =

√
|kQM − ksc|. Numerically this difference seems to

decrease with increasing Re k, i.e., with approach to the semiclassical limit. As
the semiclassical approximation ignores terms of higher order in �, one expects
on general grounds this difference to approach a non-zero constant. Our data are
insufficient to estimate the asymptotic behaviour and to bound it away from zero.

Also shown in fig. ?? is the abscissa of absolute convergence sc. No semi-
classical resonance lies above it. Two of the lowest exact quantum resonances, for
which the semiclassical approximation error is largest, do lie above sc, but that is
acceptable as the bound is semiclassical.

42.5.4 Poles of dynamical zeta functions

The exponential decay of the coefficients for 1/ζ0 indicates the presence of a pole.

The double pole is not as surprising as it might seem at the first glance; indeed,
the theorem that establishes that the classical Fredholm determinant (??) is entire
implies that the poles in 1/ζj must have right multiplicities in order that they be
cancelled in the F =

∏
1/ζ j product. More explicitly, 1/ζj can be expressed in

terms of weighted Fredholm determinants

F j = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

(tp/Λ
j
p)r

(1 − 1/Λr
p)2

⎞⎟⎟⎟⎟⎟⎟⎠ (42.15)

by inserting the identity

1 =
1

(1 − 1/Λ)2
− 2
Λ

1

(1 − 1/Λ)2
+

1

Λ2

1

(1 − 1/Λ)2

into the exponential representation of 1/ζj. This yields

1/ζ j =
F jF j+2

F2
j+1

, (42.16)
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escape rate!quantumand we conclude that for 2-dimensional Hamiltonian flows the dynamical zeta
function 1/ζ j has a double leading pole coinciding with the leading zero of the
F j+1 Fredholm determinant.

The effect of such convergence properties of the coefficients on the calculation
of classical and quantum escape rates is demonstrated in table 5? and figure??.

n . Zqm . 1/ζ0
1 0.11 0.119
2 0.12153 0.12152
3 0.1215574 0.121556

d : R = 6 4 0.121557625 0.12155760
5 0.1215576283 0.121557627
6 0.1215576284 0.1215576284
7 0.1215576284 0.1215576284
1 -0.076 0.019
2 0.041 0.038
3 0.04052 0.0403
4 0.040575 0.04054

d : R = 3 5 0.0405789 0.040575
6 0.04057935 0.040578
7 0.040579405 0.0405793
8 0.0405794102 0.04057940
9 0.0405794108 0.0405794099

10 0.0405794108 0.0405794107

Table 4?. Quantum escape rates computed from the Fredholm determinant
Fcl (??), the quantum Selberg zeta function Zqm (42.10), and the dynamical zeta
function 1/ζ0, as function of the maximal cycle length. Due to the presence of the
same pole in both quantum zeta functions, the convergence of the quantum Selberg
zeta function is not significantly better than the convergence of the dynamical zeta
function. See also fig. ??.
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The scattering geometry for the disk radius : separation ratio R : d = 1 : 2.5.
(a) the three disks, with 12, 123 and 121232313 cycles indicated. (PC: REFRE
BACK TO THE FIGURE)

Re kQM Im kQM Re kzeta Im kzeta
0.69800 -0.07497 0.75831 -0.12282
2.23960 -0.11880 2.27427 -0.13305
3.76270 -0.14756 3.78787 -0.15412
4.13165 -0.61702 4.15179 -0.66591
5.27569 -0.18325 5.29607 -0.18678
6.77609 -0.22750 6.79366 -0.22986
8.26114 -0.27492 8.27663 -0.27698
9.73452 -0.13880 9.74826 -0.32121

10.33819 -0.37371 10.34656 -0.37834
11.20210 -0.35823 11.21361 -0.36168

A1 11.90760 -0.33223 11.91448 -0.33488
12.66760 -0.39467 12.67500 -0.39841
13.47692 -0.29412 13.48266 -0.29623
14.13370 -0.42883 14.13680 -0.42956
15.04170 -0.25552 15.04705 -0.25762
16.59706 -0.21700 16.60244 -0.21889
18.14115 -0.18280 18.14647 -0.18426
19.67567 -0.15653 19.68084 -0.15761
21.20308 -0.13958 21.20807 -0.14032
22.72484 -0.13187 22.72966 -0.13235
24.24120 -0.13284 24.24588 -0.13311
25.75156 -0.14130 25.75605 -0.14153

7.93363 -0.15129 7.94561 -0.15526
9.45604 -0.13196 9.46661 -0.13458

10.97616 -0.12325 10.98563 -0.12504
12.49347 -0.12432 12.50215 -0.12550
14.00693 -0.13468 14.01501 -0.13534
15.51469 -0.15329 15.52229 -0.15368

A2 17.01453 -0.17810 17.02178 -0.17836
18.50574 -0.20544 18.51273 -0.20573
19.99011 -0.23236 19.99681 -0.23275
20.54565 -0.31325 20.54989 -0.31495
21.46993 -0.25775 21.47596 -0.25817
22.10098 -0.28557 22.95261 -0.28199
22.94703 -0.28164 23.66203 -0.26365
18.85038 -0.17271 18.56037 -0.17350
19.44833 -0.25471 19.45385 -0.25454

E 20.37203 -0.17461 20.37745 -0.17502
20.94214 -0.28849 20.94718 -0.28767
21.88904 -0.19045 21.89438 -0.19059

Table 5. 18 Several subsets of semiclassical and quantum resonances for d :
R = 6. The A1 subspace resonances are plotted in Fig.??.

18Predrag: turn this into a solution to a problem
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Some examples of 3-disk cycles: (a) 12123 and 13132 are mapped into each other
by σ23, the flip across 1 axis; this cycle has degeneracy 6 under D3 symmetries.
(PC: REFER BACK TO THE FIGURE)

Classical escape rates and bounds on quantum escape rates, ie. the zeros of the
zeta functions (??) and (42.10) with absolute weights (42.13), as function of the
disk-disk separation. The top two curves show the classical escape rate. Zeros
computed from fixed points alone are shown as dotted lines, zeros from fixed
points and period two orbits as full lines, and the Monte Carlo estimates of clas-
sical escape rates are marked by diamonds. The classical escape rate should ap-
proach 0 as R : d → 0.5; in this limit cycle expansions are expected to converge
poorly due to pruning and intermittency effects. The two lower curves show sc,
the abscissa of absolute convergence of the Gutzwiller trace formula, which serves
as a crude lower bound on the imaginary part of the semiclassical quantum reso-
nances. Though this bound becomes negative near R : d ≈ 0.33, the semiclassical
resonances do remain below the real energy axis, see fig.??.

Semiclassical scattering resonances (diamonds) compared with the exact quan-
tum scattering resonances (crosses). The lines in the upper half of the diagram
indicate the (geometrical) difference between the semiclassical and quantum res-
onances for all resonances with Im k > −0.4, magnified by a factor 10. The dotted
line at kc = −0.121556 indicates the semiclassical abscissa of convergence; all
semiclassical resonances lie below this line, but the first two quantum resonances
lie above it. For the semiclassical calculation, all orbits up to symbolic length 5
have been used in the cycle expansion for ζ−1

0 .

Energy dependence of the cycle expansion coefficients for d : R = 6. Shown are
(from top to bottom) the absolute values of the coefficients C4, C6, C8, C10 and
C12 (barely visible in the lower right corner) as a function of the wavenumber k.

The coefficients of the cycle expansion for the quantum Selberg zeta function
Zqm(z) (connected with lines) and for 1/ζ0 (not connected) for ratios d : R = 6
(diamonds), 3 (squares) and 2.5 (triangles). Note that the asymptotic slope for the
quantum Selberg zeta functions and the dynamical zeta functions is the same; the
double pole present in the dynamical zeta function persists as a single pole in the
Selberg product.

The coefficients of the cycle expansion for the quantum Selberg zeta function
Zqm(z) after multiplication with (1 − z/z1) where z1 is the zero of ζ−1

1 (z). The
coefficients still decay only exponentially but with much steeper slope, indicating
the presence of yet another pole.

Convergence of zeros of zeta functions towards the asymptotic values as more
and more orbits are included. Shown are the convergence of the classical Fred-
holm determinant escape rate estimates, the quantum Selberg zeta function lowest
resonance estimates, and the quantum 1/ζ0 lowest resonance estimates for ratios
d : R = 6 and d : R = 3. The zero obtained for n = 14 has been taken as
the asymptotic value. Note the faster than exponential convergence for the clas-
sical Fredholm determinant, and the exponential approach for the quantum zeta
functions.
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42.5.5 3-disk numerical resonances

19 We start by performing our numerical tests on the 3-disk repeller. The 3-disk
repeller is the simplest physical realization of an Axiom A system, particularly
convenient for numerical investigations. The methods that we use to extract peri-
odic orbits, their periods and their Floquet multipliers are described in chapter13.
For billiards the cycle weight tp required for evaluation of the classical escape
rates and correlation spectra is given by (??). The action Sp is proportional to
the cycle period Tp, and the Maslov index changes by +2 for each disk bounce,
mp = 2np, so the quantum weight (42.12) is given by 20

tp = (−1)np
e−ikTp√
|Λp|

znp , (42.17)

where k = (momentum)/2π is the wavenumber, and we take velocity = 1, mass = 1.

Cycle expansion (??) coefficients |Cn| for different determinants and zeta func-
tions are plotted in figs. 42.1 and 42.2 as function of the topological cycle length n.
Zeta functions exhibit exponential falloff, implying a pole in the complex plane,
while both the classical and the semiclassical spectral determinants appear to ex-
hibit a faster than exponential falloff, with no indication of a finite radius of con-
vergence within the numerical validity of our cycle expansion truncations.

In particular, the semiclassical spectral determinant enables us to uncover a
larger part of the quantum resonances than what was hitherto accessible by means
of the dynamical zeta functions. The eye is conveniently guided to the zeros by
means of complex s plane contour plots, with different intervals of the absolute
value of the function under investigation assigned different colors; zeros emerge
as centers of elliptic neighborhoods of rapidly changing colors. Detailed scans of
the whole area of the complex s plane under investigation and searches for the
zeros of classical and semiclassical spectral determinants, fig. 42.3, reveal com-
plicated patterns of resonances, with the classical and the semiclassical resonance
patterns surprisingly similar. It is known [4] that the leading semiclassical res-
onances are very accurate approximations to the exact quantum resonances; the
semiclassical resonances further down in the s complex plane in fig.42.3 have not
yet been compared with the exact quantum values. It would be of interest to check
whether also all semiclassical spectral determinant resonances correspond to the
true quantum resonances.

21 An interpretation of the resonance spectrum of the semiclassical spectral
determinant is given in ref. [5], where the resonances are related to the oscillations
in N(t), the number of particles that have not escaped by the time t, with the basic
frequency ω = 2π/T given by the inverse of T , the mean flight time between the
disks. ω yields the mean spacing of the resonances along the imaginary k axis. In

19Predrag: into remark: refs. [4, 11, 3, 5]
20Predrag: define “Axiom A” somewhere
21Predrag: incorporate my notes
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the 3-disk system there are two fundamental frequencies, ω0 and ω1, determined
by the inverse periods of the two fundamental cycles 0 and 1. Corresponding
beat frequency [13] f = 2π/(T1 − T0) is clearly visible in fig. 42.3. A rough
measurement of the period of the beats in fig. 42.3 yields some 23.7 units along
the real k axis, to be compared to 2π/(T1 − T0) = 23.4.

22 Effect of sub-dominant resonances on the measurable spectra are exponen-
tially small, and presumably of little physical interest. We investigate them in
detail here mostly in order to demonstrate that our determinants indeed exhibit
better convergence than the semiclassical zeta function.

Contour plots are also helpful in comparing the domain of convergence of the
spectral determinant to that of the semiclassical zeta function. As can be seen
from fig. 42.4, the semiclassical spectral determinant can be continued consid-
erably farther down in the complex k plane, in contrast to the dynamical zeta
function scans. While the zeta functions clearly exhibit a finite radius of con-
vergence, in agreement with the arguments of sect. ??, both the semiclassical
spectral determinant and the semiclassical spectral determinant behave as en-
tire functions. We compute the abscissa of absolute convergence for the semi-
classical zeta function by means of (??); for the case at hand we obtain the lead-
ing zero at kac = 0.0 − i 0.699110157151 . . .. Indeed, comparison of the contour
plots of fig. 42.4 shows that no feature of the semiclassical zeta function countor
plot below kc is significant. Interestingly enough, the apparent border of semi-
classical zeta function convergence in fig.42.4 seems to coincide with Re(s) = 0,
Im(s) = −1.09653395 . . ., the zero obtained from F1/2(k) by removing quantum
phases, tp → |tp|, but keeping the eigenvalue Λp sign. in eq. (??).

As discussed above, for 1-dimensional systems the pole of ζ−1
0 coincides with

the leading zero of ζ−1
1 , and the resulting product remains finite and has a zero

close to the leading ζ−1
1 zero. In simple examples, such as the symmetric 1-

dimensional tent map repeller, the non-leading / leading zeros of the classical
F0 / F1 maps are identical. This suggests that some of the non-leading zeros of F
are shadows of the ζ−1

1 zeros and hence likely to lie close to the leading zeros of
F1. For example, the non-leading resonance k = 0.9915231008+i 12.5163342128
of the semiclassical spectral determinant (see fig. 42.3), while distinct from the
leading resonance of F1 at k = 0.99197582677 + i 12.5029206443798, belongs
to a family of resonances that all lie very close to the leading F1 resonances. We
are confident that such resonances are distinct, as their cycle expansions converge
super-exponentially to all digits listed above, in agreement with the general theory.

The F spectrum that is not echoed by the F1 spectrum can be isolated by “sub-
tracting” the F1 spectrum, ie. removing those resonances from the F spectrum that
lie closer than some ε to a F1 resonance. The resulting spectrum is depicted in
fig. ??.

What is particularly interesting about this spectrum is that with the resonances
associated with the F1 spectrum removed, families that connect non-leading res-
onances at Re(k) = 0 with the leading part of the resonance spectrum for larger

22Predrag: defer this to diffraction
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Re(k) are clearly visible in fig. ??. This makes it rather clear that the evaluation
of leading resonances for large Re(k) requires inclusion of longer cycles, the same
that are required to control the spectrum for large negative Im(k) at Re(k) = 0.
This is the conundrum of semiclassical cycle expansions; while semiclassical in-
tuition implies that the semiclassical zeta function should be applicable for large
Re(k), in practice the semiclassical cycle expansions work best for the bottom of
the spectrum.

In conclusion, we have tested numerically the semiclassical spectral determi-
nant.

Note: Vattay et al. have succeeded in constructing a multiplicative evolution
operator for semiclassical quantum mechanics, whose Fredholm determinant is

F(β, E) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p,r

1
r

|Λp|−rβei(S p(k)/�+νpπ/2)r

(1 − 1/Λr
p)2(1 − 1/Λ2r

p )

⎞⎟⎟⎟⎟⎟⎟⎠ . (42.18)

This determinant is entire for the Axiom A flows. In particular, the semiclassical
spectral determinant can now be written as a ratio of two Vattay determinants

Fqm(k) =
F( 1

2 , k)

F( 5
2 , k)

.

As explained in sect. ??, the abscissa of convergence for such ratio is given by
the upper bound on the leading zeros of F(5

2 , k). For example, for the 3-disk,
R : a = 6 : 1 system we find

Im(kac) = −1.276625955 . . .

so the semiclassical spectral determinant can be continued almost a factor 2 down
in the complex k plane beyond the region of applicability of the semiclassical
zeta function. This explains why for all practical purposes the semiclassical spec-
tral determinants behave as entire functions: only careful numerics reveals the
difference between the semiclassical spectral determinant and the Vattay deter-
minant in higher order terms in cycle expansions. The difference is illustrated
by fig. 42.5; the suspicious straight section visible in the semiclassical spectral
determinant ()) in fig. 42.2 turns out to indeed indicate a pole, while the Vattay
determinant converges super-exponentially. 23

23Predrag: create problems for exerQuantPin.tex
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Figure 42.1: log10 |Cn|, the contribution of cycles of topological length n to the cycle expansion∑
Cnzn for 3-disk repeller. Shown are: (◦) 1/ζ0, (∇) the semiclassical zeta function, (�) 1/ζ0ζ

2
1 ,

and ()) the semiclassical spectral determinant. Exponential falloff implies that 1/ζ0 and the semi-
classical zeta function have the same leading pole, cancelled in the 1/ζ0ζ2

1 product. For comparison,
(�) the semiclassical spectral determinant coefficients are plotted as well; cycle expansions for both
spectral determinants appear to follow the asymptotic estimate Cn ≈ Λ−n3/2

. A1 symmetric subspace,
with center spacing - disk radius ratio R : a = 3 : 1, evaluated at the lowest resonance, wavenumber
k = 7.8727 − 0.3847 i, maximal cycle length n = 8.

Figure 42.2: Same as fig. 42.1, but with R : a = 6 : 1. This illustrates possible pitfalls of numerical
tests of asymptotics; the semiclassical spectral determinant appears to have the same pole as the
quantum 1/ζ0ζ

2
1 , but as we have no estimate on the size of pre-asymptotic oscillations in cycle

expansions, it is difficult to draw reliable conclusions from such numerics. See fig. 13 for estimate
of the semiclassical spectral determinant abscissa of absolute convergence.

Figure 42.3: Leading resonances in the 3-disk repeller A1 subspace, (a) for the semiclassical spec-
tral determinant, and (b) the 952 leading resonances of the semiclassical spectral determinant Fqm.
Ratio R : a = 6 : 0, cycle expansions truncated at cycle length n = 8.

Figure 42.4: Complex s plane countor plot comparison of (a) the semiclassical zeta function
log |det (Ĥ − E)sc(s)| with (b) the semiclassical spectral determinant log |Fqm(s)|. The border of the
convergence of the semiclassical zeta function agrees with the location of the abscissa of absolute
convergence, given by the F̂1/2 leading eigenvalue at Re(s) = 0, Im(s) = −0.699110157151 . . .. The
semiclassical spectral determinant can be continued at least a factor 2 further down in the complex
plane. 3-disk repeller, R : a = 6 : 1, A1 subspace, maximal cycle length n = 8.

Figure 42.5: Same parameter values 3-disk system as fig. 42.1: (◦) the semiclassical spectral det-
erminant compared with (�) the Vattay determinant. While the semiclassical spectral determinant
is expected to have a pole at Im(k) = −1.276625955 . . ., the Vattay determinant should be entire,
and exhibits numerically faster than exponential convergence.
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Table 42.1: The “quantum” eigenvalues obtained from the semiclassical zeta function det (Ĥ −
E)sc(s) and the semiclassical spectral determinant Fqm(s) for the baker’s map. Only the leading
eigenvalues are expected to coincide. The digits listed correspond to those unchanged between the
cycle length n = 23 and n = 24 truncations.

det (Ĥ − E)sc(s) Fqm(s)
k Real part Real part Im. part
1 0.34051779186 +0.3405177918632516
2 -0.39 -0.3500689652275
3 -0.7175716624

4-5 -1.099684 ± 0.115118
6-7 -1.59 ± 0.227

Résumé

To summarize, we have demonstrated that the curvature expansions are a very
efficient way of evaluating the semiclassical periodic orbit sums. The essential
ingredient for this success has been the physical insight that the dynamical zeta
functions expanded this way utilize the shadowing of arbitrarily long orbits by
shorter cycles; the technical prerequisite for implementing this shadowing is a
good understanding of the symbolic dynamics of the classical dynamical system.
Exploiting the symmetries of the problem, we are able to compute accurately a
large number of resonances, using as input the actions and eigenvalues of as few
as 2–14 prime cycles.

We conclude with three more general comments on the relation of classical
and quantum chaotic dynamics:

1. The curvature expansion approach presented here applies to strongly chaotic
(non-integrable) systems, and is thus a quantization scheme for a class of systems
complementary to those amenable to torus quantization.

2. The symmetry factorization (42.4) of the dynamical zeta function is intrin-
sic to the classical dynamics, and not a special property of quantal spectra

3. For the strange sets studied in refs. [1, 1], the curvature expansion is be-
lieved to be the exact perturbation expansion for classical chaotic averages: even
though each cycle carries with it only its linearized neighborhood (analogue of
the stationary phase approximation in the derivation of the quantum Gutzwiller
sum), the union of the periodic points captures the invariant content of the full
underlying smoothly curved dynamics.

As we have shown in the above, the three disk system is an ideal system for
tests of periodic orbit expansions in hyperbolic systems, not only in the classical
but also in the semiclassical context. With a little bit of geometry one can obtain
very good estimates for the classical and quantum escape rates as a function of
the separation : radius ratio (figure ??), demonstrating the accuracy of approxi-
mating the repeller by a few scales. With numerically obtained periodic orbits up
to periods 14 one can test the analyticity properties of quantum Selberg zeta func-
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escape rate!quantum
hyperbolic!systems
intermittency

tions and Fredholm determinants; to our surprise we found that quantum Selberg
zeta functions have poles. Their presence spoils the faster than exponential con-
vergence typical of the classical Fredholm determinants; whether their analyticity
can be improved is still being investigated. In the case of sufficiently separated
three disks, this may not seem to be terribly important (one already has good ex-
ponential convergence), but also the more poorly converging cycle expansions for
spectra of bounded systems also seem to have poles.

This success points to the most serious problem in classical chaos, namely the
problem of Mandelbrot. (still with no solution in sight).

Commentary

Remark 42.1 Our hopes. Quite generally, despite considerable progress (see for
example the periodic orbit theory theme issue of CHAOS [14]), the semiclassical quanti-
zation of bounded systems is still not a routine calculation: all known bounded systems
have either pruning, marginally stable periodic orbits and/or accumualting sequences of
orbits, and the quantum Selberg zeta functions have poles that degrade the converegence
of cycle expansions. We remain optimistic, and believe that not so long in the future many
of these problems will be overcome.

Remark 42.2 Poles of dynamical zeta functions. Numerical investigations [20] of
both the classical and the quantum dynamical 1/ζ j functions for 2-dimensional Hamilto-
nian flows indicate that a 1/ζ j function has a double pole coinciding with the leading zero
of 1/ζ j+1. Consequently 1/ζ0, 1/ζ0ζ1 and the quantum Selberg zeta function all have the
same leading pole, and coefficients in their cycle expansions fall off exponentially with
the same slope, fig. ??. Multiplying the quantum Selberg zeta function with (1 − z/z 1),
where z1 is the leading zero of 1/ζ1(z), one obtains faster, but still exponential decay in
the coefficients, indicating further poles down in the complex plane (see fig. ??).
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[42.5] F. Christiansen, P. Cvitanović and H.H. Rugh, J. Phys A 23, L713 (1990).
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problem

Chapter 43

Helium atom

“But,” Bohr protested, “nobody will believe me unless I
can explain every atom and every molecule.” Rutherford
was quick to reply, “Bohr, you explain hydrogen and you
explain helium and everybody will believe the rest.”

—John Archibald Wheeler (1986)

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and
other curious but rather idealized dynamical systems. If you have become
impatient and started wondering what good are the methods learned so far

in solving real physical problems, we have good news for you. We will show
in this chapter that the concepts of symbolic dynamics, unstable periodic orbits,
and cycle expansions are essential tools to understand and calculate classical and
quantum mechanical properties of nothing less than the helium, a dreaded three-
body Coulomb problem. 1

This sounds almost like one step too much at a time; we all know how rich and
complicated the dynamics of the three-body problem is – can we really jump from
three static disks directly to three charged particles moving under the influence of
their mutually attracting or repelling forces? It turns out, we can, but we have to
do it with care. The full problem is indeed not accessible in all its detail, but we
are able to analyze a somewhat simpler subsystem – collinear helium. This system
plays an important role in the classical dynamics of the full three-body problem
and its quantum spectrum.

The main work in reducing the quantum mechanics of helium to a semiclassi-
cal treatment of collinear helium lies in understanding why we are allowed to do
so. We will not worry about this too much in the beginning; after all, 80 years and
many failed attempts separate Heisenberg, Bohr and others in the 1920ties from
the insights we have today on the role chaos plays for helium and its quantum

1Predrag: precede this by a chapter on 3-disk quantum scattering
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Figure 43.1: Coordinates for the helium three body
problem in the plane.
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Figure 43.2: Collinear helium, with the two electrons
on opposite sides of the nucleus.
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spectrum. We have introduced collinear helium and learned how to integrate its
trajectories in sect. B.2. Here we will find periodic orbits and determine the rele-
vant eigenvalues of the Jacobian matrix in sect.43.1. We will explain in sect. 43.5
why a quantization of the collinear dynamics in helium will enable us to find parts
of the full helium spectrum; we then set up the semiclassical spectral determinant
and evaluate its cycle expansion. A full quantum justification of this treatment of
helium is briefly discussed in sect. 43.5.1.

43.1 Classical dynamics of collinear helium

Recapitulating briefly what we learned in sect. B.2: the collinear helium system
consists of two electrons of mass me and charge −e moving on a line with respect
to a fixed positively charged nucleus of charge +2e, as in figure43.2.

The Hamiltonian can be brought to a non–dimensionalized form

H =
p2

1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
r1 + r2

= −1 . (43.1)

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states and
resonances of the quantum problem treated in sect.43.5.

There is another classical quantity important for a semiclassical treatment of
quantum mechanics, and which will also feature prominently in the discussion in
the next section; this is the classical action (38.15) which scales with energy as

S (E) =
∮

dq(E) · p(E) =
e2m1/2

e

(−E)1/2
S , (43.2)

with S being the action obtained from (43.1) for E = −1, and coordinates q =
(r1, r2), p = (p1, p2). For the Hamiltonian (43.1), the period of a cycle and its
action are related by (38.17), Tp =

1
2S p.
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Figure 43.3: (a) A typical trajectory in the r1 –
r2 plane; the trajectory enters here along the r1

axis and escapes to infinity along the r2 axis; (b)
Poincaré map (r2=0) for collinear helium. Strong
chaos prevails for small r1 near the nucleus.
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After a Kustaanheimo–Stiefel transformation

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
, (43.3)

and reparametrization of time by dτ = dt/r1r2, the equations of motion take form
(B.15)

exercise 43.1

Ṗ1 = 2Q1

⎡⎢⎢⎢⎢⎣2 − P2
2

8
− Q2

2

⎛⎜⎜⎜⎜⎝1 + Q2
2

R4
12

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ; Q̇1 =
1
4

P1Q2
2 (43.4)

Ṗ2 = 2Q2

⎡⎢⎢⎢⎢⎣2 − P2
1

8
− Q2

1

⎛⎜⎜⎜⎜⎝1 + Q2
1

R4
12

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ; Q̇2 =
1
4

P2Q2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 = 0 no longer
pose a problem to a numerical integration routine. The equations (B.15) are sin-
gular only at the triple collision R12 = 0, i.e., when both electrons hit the nucleus
at the same time.

The new coordinates and the Hamiltonian (B.14) are very useful when cal-
culating trajectories for collinear helium; they are, however, less intuitive as a
visualization of the three-body dynamics. We will therefore refer to the old coor-
dinates r1, r2 when discussing the dynamics and the periodic orbits.

43.2 Chaos, symbolic dynamics and periodic orbits

Let us have a closer look at the dynamics in collinear helium. The electrons are at-
tracted by the nucleus. During an electron–nucleus collision momentum is trans-
ferred between the inner and outer electron. The inner electron has a maximal
screening effect on the charge of the nucleus, diminishing the attractive force on
the outer electron. This electron – electron interaction is negligible if the outer
electron is far from the nucleus at a collision and the overall dynamics is regular
like in the 1-dimensional Kepler problem.

helium - 27dec2004 boyscout version14.4, Mar 19 2013
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Figure 43.4: The cycle 011 in the fundamental domain
r1 ≥ r2 (full line) and in the full domain (dashed line).
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Things change drastically if both electrons approach the nucleus nearly si-
multaneously. The momentum transfer between the electrons depends now sen-
sitively on how the particles approach the origin. Intuitively, these nearly missed
triple collisions render the dynamics chaotic. A typical trajectory is plotted in fig-
ure 43.3 (a) where we used r1 and r2 as the relevant axis. The dynamics can also
be visualized in a Poincaré surface of section, see figure43.3 (b). We plot here the
coordinate and momentum of the outer electron whenever the inner particle hits
the nucleus, i.e., r1 or r2 = 0. As the unstructured gray region of the Poincaré sec-
tion for small r1 illustrates, the dynamics is chaotic whenever the outer electron is
close to the origin during a collision. Conversely, regular motions dominate when-
ever the outer electron is far from the nucleus. As one of the electrons escapes for
almost any starting condition, the system is unbounded: one electron (say electron
1) can escape, with an arbitrary amount of kinetic energy taken by the fugative.
The remaining electron is trapped in a Kepler ellipse with total energy in the range
[−1,−∞]. There is no energy barrier which would separate the bound from the
unbound regions of the phase space. From general kinematic arguments one de-
duces that the outer electron will not return when p1 > 0, r2 ≤ 2 at p2 = 0, the
turning point of the inner electron. Only if the two electrons approach the nucleus
almost symmetrically along the line r1 = r2, and pass close to the triple collision
can the momentum transfer between the electrons be large enough to kick one of
the particles out completely. In other words, the electron escape originates from
the near triple collisions.

The collinear helium dynamics has some important properties which we now
list.

43.2.1 Reflection symmetry

The Hamiltonian (B.6) is invariant with respect to electron–electron exchange;
this symmetry corresponds to the mirror symmetry of the potential along the line
r1 = r2, figure 43.4. As a consequence, we can restrict ourselves to the dynamics
in the fundamental domain r1 ≥ r2 and treat a crossing of the diagonal r1 = r2 as
a hard wall reflection. The dynamics in the full domain can then be reconstructed
by unfolding the trajectory through back-reflections. As explained in chapter21,
the dynamics in the fundamental domain is the key to the factorization of spectral

helium - 27dec2004 boyscout version14.4, Mar 19 2013



CHAPTER 43. HELIUM ATOM 953

collinear
helium!symbolic
dynamics

symbolic dynam-
ics!binary!collinear
helium

binary!symbolic
dynamics!collinear
helium

determinants, to be implemented here in (43.15). Note also the similarity between
the fundamental domain of the collinear potential figure43.4, and the fundamental
domain figure 12.12 (b) in the 3–disk system, a simpler problem with the same
binary symbolic dynamics.

in depth:

sect. 21.6, p. 514

43.2.2 Symbolic dynamics

We have already made the claim that the triple collisions render the collinear he-
lium fully chaotic. We have no proof of the assertion, but the analysis of the
symbolic dynamics lends further credence to the claim.

The potential in (43.1) forms a ridge along the line r1 = r2. One can show
that a trajectory passing the ridge must go through at least one two-body collision
r1 = 0 or r2 = 0 before coming back to the diagonal r1 = r2. This suggests
a binary symbolic dynamics corresponding to the dynamics in the fundamental
domain r1 ≥ r2; the symbolic dynamics is linked to the Poincaré map r2 = 0 and
the symbols 0 and 1 are defined as

0: if the trajectory is not reflected from the line r1 = r2 between two collisions
with the nucleus r2 = 0;

1: if a trajectory is reflected from the line r1 = r2 between two collisions with
the nucleus r2 = 0.

Empirically, the symbolic dynamics is complete for a Poincaré map in the
fundamental domain, i.e., there exists a one-to-one correspondence between bi-
nary symbol sequences and collinear trajectories in the fundamental domain, with
exception of the 0 cycle.

43.2.3 Periodic orbits

The existence of a binary symbolic dynamics makes it easy to count the num-
ber of periodic orbits in the fundamental domain, as in sect. 15.7.2. However,
mere existence of these cycles does not suffice to calculate semiclassical spectral
determinants. We need to determine their phase space trajectories and calculate
their periods, topological indices and stabilities. A restriction of the periodic orbit
search to a suitable Poincaré surface of section, e.g. r2 = 0 or r1 = r2, leaves us
in general with a 2-dimensional search. Methods to find periodic orbits in multi-
dimensional spaces have been described in chapter13. They depend sensitively on
good starting guesses. A systematic search for all orbits can be achieved only af-
ter combining multi-dimensional Newton methods with interpolation algorithms
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Figure 43.5: Some of the shortest cycles in
collinear helium. The classical collinear electron
motion is bounded by the potential barrier −1 =
−2/r1−2/r2+1/(r1 + r2) and the condition ri ≥ 0.
The orbits are shown in the full r1–r2 domain, the
itineraries refers to the dynamics in the r1 ≥ r2

fundamental domain. The last figure, the 14-cycle
00101100110111, is an example of a typical cycle
with no symmetry.
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based on the binary symbolic dynamics phase space partitioning(see sect.13.5.2) .
⇓PRIVATE

⇑PRIVATE
All cycles up to symbol length 16 (some 8000 prime cycles) have been computed
by such methods, 2 with some examples shown in figure 43.5. All numerical ev-
idence indicates that the dynamics of collinear helium is hyperbolic, and that all
periodic orbits are unstable.

Note that the fixed point 0 cycle is not in this list. The 0 cycle would corre-
spond to the situation where the outer electron sits at rest infinitely far from the
nucleus while the inner electron bounces back and forth into the nucleus. The
orbit is the limiting case of an electron escaping to infinity with zero kinetic en-
ergy. The orbit is in the regular (i.e., separable) limit of the dynamics and is thus
marginally stable. The existence of this orbit is also related to intermittent behav-
ior generating the quasi–regular dynamics for large r1 that we have already noted
in figure 43.3 (b).

Search algorithm for an arbitrary periodic orbit is quite cumbersome to pro-
gram. There is, however, a class of periodic orbits, orbits with symmetries, which
can be easily found by a one-parameter search. The only symmetry left for the

2Predrag: into remarks: cite Tanner

helium - 27dec2004 boyscout version14.4, Mar 19 2013



CHAPTER 43. HELIUM ATOM 955

libration orbit
self-retracing cycle

dynamics in the fundamental domain is time reversal symmetry; a time reversal
symmetric periodic orbit is an orbit whose trajectory in phase space is mapped
onto itself when changing (p1, p2) → (−p1,−p2), by reversing the direction of the
momentum of the orbit. Such an orbit must be a “libration” 3 or self-retracing cy-
cle, an orbit that runs back and forth along the same path in the (r1, r2) plane. The
cycles 1, 01 and 001 in figure 43.5 are examples of self-retracing cycles. Luckily,
the shortest cycles that we desire most ardently have this symmetry.

Why is this observation helpful? A self-retracing cycle must start perpen-
dicular to the boundary of the fundamental domain, that is, on either of the axis
r2 = 0 or r1 = r2, or on the potential boundary − 2

r1
− 2

r2
+ 1′

r1+r2
= −1. 4 By

shooting off trajectories perpendicular to the boundaries and monitoring the orbits
returning to the boundary with the right symbol length we will find time reversal
symmetric cycles by varying the starting point on the boundary as the only pa-
rameter. But how can we tell whether a given cycle is self-retracing or not? All
the relevant information is contained in the itineraries; a cycle is self-retracing if
its itinerary is invariant under time reversal symmetry (i.e., read backwards) and
a suitable number of cyclic permutations. All binary strings up to length 5 fulfill
this condition. The symbolic dynamics contains even more information; we can
tell at which boundary the total reflection occurs. One finds that an orbit starts out
perpendicular

• to the diagonal r1 = r2 if the itinerary is time reversal invariant and has an
odd number of 1’s; an example is the cycle 001 in figure43.5;

• to the axis r2 = 0 if the itinerary is time reversal invariant and has an even
number of symbols; an example is the cycle 0011 in figure43.5;

• to the potential boundary if the itinerary is time reversal invariant and has
an odd number of symbols; an example is the cycle 011 in figure43.5.

5 All cycles up to symbol length 5 are time reversal invariant, the first two non-
time reversal symmetric cycles are cycles 001011 and 001101 in figure43.5. Their
determination would require a two-parameter search. The two cycles are mapped
onto each other by time reversal symmetry, i.e., they have the same trace in the
r1–r2 plane, but they trace out distinct cycles in the full phase space. 6

We are ready to integrate trajectories for classical collinear helium with the
help of the equations of motions (B.15) and to find all cycles up to length 5. There

exercise 43.5
is only one thing not yet in place; we need the governing equations for the matrix
elements of the Jacobian matrix along a trajectory in order to calculate stability
indices. We will provide the main equations in the next section, with the details
of the derivation relegated to the appendix E.5. 7

3Gregor: Explain that much earlier
4Predrag: buscar en la red: for example ”Breve dictionario del argentino exquisito” Adolfo Bioy

Cesares, for ”capicua”
5Predrag: where are these cycles in figure 43.5?
6Predrag: mention that 001101 is not in Fig. 25.5
7Gregor: Have a look at that appendix
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43.3 Local coordinates, Jacobian matrix

In this section, we will derive the equations of motion for the Jacobian matrix
along a collinear helium trajectory. The Jacobian matrix is 4-dimensional; the
two trivial eigenvectors corresponding to the conservation of energy and displace-
ments along a trajectory can, however, be projected out by suitable orthogonal
coordinates transformations, see appendix E. We will give the transformation to
local coordinates explicitly, here for the regularized coordinates (B.13), and state
the resulting equations of motion for the reduced [2 × 2] Jacobian matrix.

The vector locally parallel to the trajectory is pointing in the direction of the
phase space velocity (7.3)

vm = ẋm(t) = ωmn
∂H
∂xn
= (HP1 ,HP2 ,−HQ1 ,−HQ2)T ,

with HQi =
∂H
∂Qi

, and HPi =
∂H
∂Pi

, i = 1,2. The vector perpendicular to a trajec-
tory x(t) = (Q1(t),Q2(t), P1(t), P2(t)) and to the energy manifold is given by the
gradient of the Hamiltonian (B.14)

γ = ∇H = (HQ1 ,HQ2 ,HP1 ,HP2)T .

By symmetry vmγm = ωmn
∂H
∂xn

∂H
∂xm
= 0, so the two vectors are orthogonal.

Next, we consider the orthogonal matrix

O = (γ1, γ2, γ/R, v) (43.5)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−HP2/R HQ2 HQ1/R HP1

HP1/R −HQ1 HQ2/R HP2

−HQ2/R −HP2 HP1/R −HQ1

HQ1/R HP1 HP2/R −HQ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with R = |∇H|2 = (H2

Q1
+ H2

Q2
+ H2

P1
+ H2

P2
), which provides a transformation to

local phase space coordinates centered on the trajectory x(t) along the two vectors
(γ, v). The vectors γ1,2 are phase space vectors perpendicular to the trajectory and

exercise 43.6
to the energy manifold in the 4-dimensional phase space of collinear helium. The
Jacobian matrix (4.5) rotated to the local coordinate system by O then has the
form 8

m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
m11 m12 ∗ 0
m21 m22 ∗ 0
0 0 1 0
∗ ∗ ∗ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , M = OTmO

8Predrag: Gregor had a σ here, maybe a symplectic form ω is missing, recheck
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action!relation to
period

period!relation to
action

The linearized motion perpendicular to the trajectory on the energy manifold is
described by the [2×2] matrix m; the ‘trivial’ directions correspond to unit eigen-
values on the diagonal in the 3rd and 4th column and row.

The equations of motion for the reduced Jacobian matrix m are given by

ṁ = l(t)m(t), (43.6)

with m(0) = 1. The matrix l depends on the trajectory in phase space and has the
form

l =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l11 l12 ∗ 0
l21 l22 ∗ 0
0 0 0 0
∗ ∗ ∗ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where the relevant matrix elements li j are given by

l11 =
1
R

[2HQ1Q2(HQ2 HP1 + HQ1 HP2) (43.7)

+(HQ1 HP1 − HQ2 HP2)(HQ1Q1 − HQ2Q2 − HP1P1 + HP2P2)]

l12 = −2HQ1Q2(HQ1 HQ2 − HP1 HP2)

+(H2
Q1
+ H2

P2
)(HQ2Q2 + HP1P1) + (H2

Q2
+ H2

P1
)(HQ1Q1 + HP2P2)

l21 =
1

R2
[2(HQ1P2 + HQ2P1)(HQ2 HP1 + HQ1 HP8)

−(H2
P1
+ H2

P2
)(HQ1Q1 + HQ2Q2) − (H2

Q1
+ H2

Q2
)(HP1P1 + HP2P2)]

l22 = −l11 .

Here HQiQj , HPiP j , i, j = 1, 2 are the second partial derivatives of H with respect
to the coordinates Qi, Pi, evaluated at the phase space coordinate of the classical
trajectory. 9

10

43.4 Getting ready

Now everything is in place: the regularized equations of motion can be imple-
mented in a Runge–Kutta or any other integration scheme to calculate trajectories.
We have a symbolic dynamics and know how many cycles there are and how to
find them (at least up to symbol length 5). We know how to compute the Jacobian
matrix whose eigenvalues enter the semiclassical spectral determinant (39.13). By
(38.17) the action S p is proportional to the period of the orbit, Sp = 2Tp.

9Dorte: uforstaaeligt!
10Gregor: Check if σ in table 43.1 in multiples of π or 2π.
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Table 43.1: Action S p (in units of 2π), Lyapunov exponent |Λp|/Tp for the motion in the collinear
plane, winding number σp for the motion perpendicular to the collinear plane, and the topological
index mp for all fundamental domain cycles up to topological length 6.

p S p/2π ln |Λp| σp mp
1 1.82900 0.6012 0.5393 2

01 3.61825 1.8622 1.0918 4
001 5.32615 3.4287 1.6402 6
011 5.39451 1.8603 1.6117 6

0001 6.96677 4.4378 2.1710 8
0011 7.04134 2.3417 2.1327 8
0111 7.25849 3.1124 2.1705 8

00001 8.56618 5.1100 2.6919 10
00011 8.64306 2.7207 2.6478 10
00101 8.93700 5.1562 2.7291 10
00111 8.94619 4.5932 2.7173 10
01011 9.02689 4.1765 2.7140 10
01111 9.07179 3.3424 2.6989 10

000001 10.13872 5.6047 3.2073 12
000011 10.21673 3.0323 3.1594 12
000101 10.57067 6.1393 3.2591 12
000111 10.57628 5.6766 3.2495 12
001011 10.70698 5.3251 3.2519 12
001101 10.70698 5.3251 3.2519 12
001111 10.74303 4.3317 3.2332 12
010111 10.87855 5.0002 3.2626 12
011111 10.91015 4.2408 3.2467 12
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Bohr!helium
Rydberg series

There is, however, still a slight complication. Collinear helium is an invariant
4-dimensional subspace of the full helium phase space. If we restrict the dynamics
to angular momentum equal zero, we are left with 6 phase space coordinates. That
is not a problem when computing periodic orbits, they are oblivious to the other di-
mensions. However, the Jacobian matrix does pick up extra contributions. When
we calculate the Jacobian matrix for the full problem, we must also allow for dis-
placements out of the collinear plane, so the full Jacobian matrix for dynamics for
L = 0 angular momentum is 6 dimensional. Fortunately, the linearized dynamics
in and off the collinear helium subspace decouple, and the Jacobian matrix can
be written in terms of two distinct [2 × 2] matrices, with trivial eigen-directions
providing the remaining two dimensions. The submatrix related to displacements
off the linear configuration characterizes the linearized dynamics in the additional
degree of freedom, the Θ-coordinate in figure 43.1. It turns out that the linearized
dynamics in the Θ coordinate is stable, corresponding to a bending type motion of
the two electrons. We will need the Floquet exponents for all degrees of freedom
in evaluating the semiclassical spectral determinant in sect.43.5.

The numerical values of the actions, Floquet exponents, stability angles, and
topological indices for the shortest cycles are listed in table43.1. These numbers,
needed for the semiclassical quantization implemented in the next section, an also
be helpful in checking your own calculations.

43.5 Semiclassical quantization of collinear helium

Before we get down to a serious calculation of the helium quantum energy levels
let us have a brief look at the overall structure of the spectrum. This will give us
a preliminary feel for which parts of the helium spectrum are accessible with the
help of our collinear model – and which are not. In order to keep the discussion as
simple as possible and to concentrate on the semiclassical aspects of our calcula-
tions we offer here only a rough overview. For a guide to more detailed accounts
see remark 43.4.

43.5.1 Structure of helium spectrum

We start by recalling Bohr’s formula for the spectrum of hydrogen like one-
electron atoms. The eigenenergies form a Rydberg series

EN = −
e4me

�2

Z2

2N2
, (43.8)

where Ze is the charge of the nucleus and me is the mass of the electron. Through
the rest of this chapter we adopt the atomic units e = me = � = 1.

The simplest model for the helium spectrum is obtained by treating the two
electrons as independent particles moving in the potential of the nucleus neglect-
ing the electron–electron interaction. Both electrons are then bound in hydrogen
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like states; the inner electron will see a charge Z = 2, screening at the same time
the nucleus, the outer electron will move in a Coulomb potential with effective
charge Z − 1 = 1. In this way obtain a first estimate for the total energy

EN,n = −
2

N2
− 1

2n2
with n > N. (43.9)

This double Rydberg formula contains already most of the information we need to
understand the basic structure of the spectrum. The (correct) ionizations thresh-
olds EN = − 2

N2 are obtained in the limit n → ∞, yielding the ground and excited
states of the helium ion He+. We will therefore refer to N as the principal quantum
number. We also see that all states EN,n with N ≥ 2 lie above the first ionization
threshold for N = 1. As soon as we switch on electron-electron interaction these
states are no longer bound states; they turn into resonant states which decay into
a bound state of the helium ion and a free outer electron. This might not come as
a big surprise if we have the classical analysis of the previous section in mind: we
already found that one of the classical electrons will almost always escape after
some finite time. More remarkable is the fact that the first, N = 1 series consists
of true bound states for all n, an effect which can only be understood by quantum
arguments.

The hydrogen-like quantum energies (43.8) are highly degenerate; states with
different angular momentum but the same principal quantum number N share the
same energy. We recall from basic quantum mechanics of hydrogen atom that
the possible angular momenta for a given N span l = 0, 1 . . . N − 1. How does
that affect the helium case? Total angular momentum L for the helium three-body
problem is conserved. The collinear helium is a subspace of the classical phase
space for L = 0; we thus expect that we can only quantize helium states corre-
sponding to the total angular momentum zero, a subspectrum of the full helium
spectrum. Going back to our crude estimate (43.9) we may now attribute angular
momenta to the two independent electrons, l1 and l2 say. In order to obtain total
angular momentum L = 0 we need l1 = l2 = l and lz1 = −lz2, that is, there are
N different states corresponding to L = 0 for fixed quantum numbers N, n. That
means that we expect N different Rydberg series converging to each ionization
threshold EN = −2/N2. This is indeed the case and the N different series can
be identified also in the exact helium quantum spectrum, see figure 43.6. The
degeneracies between the different N Rydberg series corresponding to the same
principal quantum number N, are removed by the electron-electron interaction.
We thus already have a rather good idea of the coarse structure of the spectrum.

In the next step, we may even speculate which parts of the L = 0 spectrum
can be reproduced by the semiclassical quantization of collinear helium. In the
collinear helium, both classical electrons move back and forth along a common
axis through the nucleus, so each has zero angular momentum. We therefore
expect that collinear helium describes the Rydberg series with l = l1 = l2 = 0.
These series are the energetically lowest states for fixed (N, n), corresponding to
the Rydberg series on the outermost left side of the spectrum in figure43.6. We
will see in the next section that this is indeed the case and that the collinear model
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semiclassical!spectral
determi-
nant!collinear
helium

Figure 43.6: The exact quantum helium spectrum
for L = 0. The energy levels denoted by bars
have been obtained from full 3-dimensional quan-
tum calculations [3].
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holds down to the N = 1 bound state series, including even the ground state
of helium! We will also find a semiclassical quantum number corresponding to
the angular momentum l and show that the collinear model describes states for
moderate angular momentum l as long as l � N. .

remark 43.4

43.5.2 Semiclassical spectral determinant for collinear helium

Nothing but lassitude can stop us now from calculating our first semiclassical
eigenvalues. The only thing left to do is to set up the spectral determinant in terms
of the periodic orbits of collinear helium and to write out the first few terms of its
cycle expansion with the help of the binary symbolic dynamics. The semiclassic-
al spectral determinant (39.13) has been written as product over all cycles of the
classical systems. The energy dependence in collinear helium enters the classical
dynamics only through simple scaling transformations described in sect. B.2.1
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staircase!mean
eigenvalue density

open system

which makes it possible to write the semiclassical spectral determinant in the form

det (Ĥ−E)sc = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p

∞∑
r=1

1
r

eir(sS p−mp
π
2 )

(−det (1 − Mr
p⊥))1/2 |det (1 − Mr

p‖)|1/2

⎞⎟⎟⎟⎟⎟⎟⎠ , (43.10)

with the energy dependence absorbed into the variable11

s =
e2

�

√
me

−E
,

obtained by using the scaling relation (43.2) for the action. As explained in
sect. 43.3, the fact that the [4 × 4] Jacobian matrix decouples into two [2 × 2]
submatrices corresponding to the dynamics in the collinear space and perpendic-
ular to it makes it possible to write the denominator in terms of a product of two
determinants. Stable and unstable degrees of freedom enter the trace formula in
different ways, (see the discussion in sect. ??) 12 13 reflected by the absence of

⇓PRIVATE

⇑PRIVATE
the modulus sign and the minus sign in front of det (1 − M⊥). The topological in-
dex mp corresponds to the unstable dynamics in the collinear plane. Note that the
factor eiπN̄(E) present in (39.13) is absent in (43.10). Collinear helium is an open
system, i.e., the eigenenergies are resonances corresponding to the complex zeros
of the semiclassical spectral determinant and the mean energy staircaseN̄(E) not
defined. 14 In order to obtain a spectral determinant as an infinite product of
the form (39.19) we may proceed as in (19.9) by expanding the determinants in
(43.10) in terms of the eigenvalues of the corresponding Jacobian matrices. The
matrix representing displacements perpendicular to the collinear space has eigen-
values of the form exp(±2πiσ), reflecting stable linearized dynamics. σ is the full
winding number along the orbit in the stable degree of freedom, multiplicative
under multiple repetitions of this orbit , see sect. ??. 15 The eigenvalues corre-

⇓PRIVATE

⇑PRIVATE
sponding to the unstable dynamics along the collinear axis are paired as {Λ, 1/Λ}
with |Λ| > 1 and real. As in (19.9) and (39.19) we may thus write

[
−det (1 − Mr

⊥)|det (1 − Mr
‖)|

]−1/2
(43.11)

=
[
−(1 − Λr)(1 − Λ−r)|(1 − e2πirσ)(1 − e−2πirσ)

]−1/2

=

∞∑
k,�=0

1

|Λr |1/2Λrk
e−ir(�+1/2)σ .

16 The ± sign corresponds to the hyperbolic/inverse hyperbolic periodic orbits
with positive/negative eigenvalues Λ. 17 Using the relation (43.12) we see that

11Predrag: replace by k? then k → � elsewhere
12Dorte: sect. ??hat??
13Gregor: reference
14Gregor: Make reference to Andreas chapter
15Gregor: Ref to section about isolated stable orbits.
16Predrag: problem: same as Maslov
17Gregor: Discuss invers/hyperbolic orbit, even/odd maslov; ref to gutzwiller chapter.
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the sum over r in (43.10) is the expansion of the logarithm, so the semiclassical
spectral determinant can be rewritten as a product over dynamical zeta functions,
as in (19.9): 18

det (Ĥ − E)sc =

∞∏
k=0

∞∏
m=0

ζ−1
k,m =

∞∏
k=0

∞∏
m=0

∏
p

(1 − t(k,m)
p ) , (43.12)

where the cycle weights are given by

t(k,m)
p =

1

|Λ|1/2Λk
ei(sS p−mp

π
2−4π(�+1/2)σp) , (43.13)

and mp is the topological index for the motion in the collinear plane which equals
twice the topological length of the cycle. 19 The two independent directions per-
pendicular to the collinear axis lead to a twofold degeneracy in this degree of
freedom which accounts for an additional factor 2 in front of the winding num-
ber σ. The values for the actions, winding numbers and stability indices of the
shortest cycles in collinear helium are listed in table43.1. 20

The integer indices � and k play very different roles in the semiclassical spec-
tral determinant (43.12). A linearized approximation of the flow along a cycle
corresponds to a harmonic approximation of the potential in the vicinity of the
trajectory. Stable motion corresponds to a harmonic oscillator potential, unsta-
ble motion to an inverted harmonic oscillator. The index � which contributes as
a phase to the cycle weights in the dynamical zeta functions can therefore be
interpreted as a harmonic oscillator quantum number; it corresponds to vibra-
tional modes in the Θ coordinate and can in our simplified picture developed in
sect. 43.5.1 be related to the quantum number l = l1 = l2 representing the single
particle angular momenta. Every distinct � value corresponds to a full spectrum
which we obtain from the zeros of the semiclassical spectral determinant 1/ζ�
keeping � fixed. The harmonic oscillator approximation will eventually break
down with increasing off-line excitations and thus increasing �. The index k cor-
responds to ‘excitations’ along the unstable direction and can be identified with
local resonances of the inverted harmonic oscillator centered on the given orbit.21

22 The cycle contributions t(k,m)
p decrease exponentially with increasing k. Higher

k terms in an expansion of the determinant give corrections which become im-
portant only for large negative imaginary s values. As we are interested only in
the leading zeros of (43.12), i.e., the zeros closest to the real energy axis, it is
sufficient to take only the k = 0 terms into account.

Next, let us have a look at the discrete symmetries discussed in sect. 43.2.
Collinear helium has a C2 symmetry as it is invariant under reflection across

18Mason: It states, ”Using the relation (25.19)” to get equation... (25.19). Most likely possibility
is that the first 21.19 should be 21.xx for some other xx.

19Gregor: Explain why
20Predrag: Gregor, I have changed to Lyapunov exponent λp = log |Λp|/T , rather than Floquet

exponent λp = log |Λp| , for consistency with the rest of the text
21Gregor: Reference Gabor chapter
22Predrag: cross reference
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the r1 = r2 line corresponding to the electron-electron exchange symmetry. As
explained in sects. 21.1.1 and 21.5, we may use this symmetry to factorize the
semiclassical spectral determinant. The spectrum corresponding to the states sym-
metric or antisymmetric with respect to reflection can be obtained by writing the
dynamical zeta functions in the symmetry factorized form

1/ζ(�) =
∏

a

(1 − ta)2
∏

s̃

(1 − t2s̃ ) . (43.14)

23 Here, the first product is taken over all asymmetric prime cycles, i.e., cycles
that are not self-dual under the C2 symmetry. Such cycles come in pairs, as two
equivalent orbits are mapped into each other by the symmetry transformation. The
second product runs over all self-dual cycles; these orbits cross the axis r1 = r2

twice at a right angle. The self-dual cycles close in the fundamental domain r1 ≤
r2 already at half the period compared to the orbit in the full domain, and the
cycle weights ts̃ in (43.14) are the weights of fundamental domain cycles. The C2

symmetry now leads to the factorization of (43.14) 1/ζ = ζ−1
+ ζ

−1
− , with

1/ζ(�)
+ =

∏
a

(1 − ta)
∏

s̃

(1 − ts̃) ,

1/ζ(�)
− =

∏
a

(1 − ta)
∏

s̃

(1 + ts̃) , (43.15)

setting k = 0 in what follows. The symmetric subspace resonances are given
by the zeros of 1/ζ(�)

+ , antisymmetric resonances by the zeros of 1/ζ(�)− , with the
two dynamical zeta functions defined as products over orbits in the fundamental
domain. The symmetry properties of an orbit can be read off directly from its
symbol sequence, as explained in sect. 43.2. An orbit with an odd number of 1’s
in the itinerary is self-dual under the C2 symmetry and enters the spectral deter-
minant in (43.15) with a negative or a positive sign, depending on the symmetry
subspace under consideration.

43.5.3 Cycle expansion results

So far we have established a factorized form of the semiclassical spectral det-
erminant and have thereby picked up two good quantum numbers; the quantum
number m has been identified with an excitation of the bending vibrations, the
exchange symmetry quantum number ±1 corresponds to states being symmetric
or antisymmetric with respect to the electron-electron exchange. We may now
start writing down the binary cycle expansion (20.7) and determine the zeros of
spectral determinant. There is, however, still another problem: there is no cycle 0
in the collinear helium. The symbol sequence 0 corresponds to the limit of an outer
electron fixed with zero kinetic energy at r1 = ∞, the inner electron bouncing back
and forth into the singularity at the origin. This introduces intermittency in our

23Predrag: say m dependence implicit in ta = t(0,�)
a as defined in (28.14a)
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intermittencysystem, a problem discussed in chapter 24. We note that the behavior of cycles
going far out in the channel r1 or r2 → ∞ is very different from those staying in the
near core region. A cycle expansion using the binary alphabet reproduces states
where both electrons are localized in the near core regions: these are the lowest
states in each Rydberg series. The states converging to the various ionization
thresholds EN = −2/N2 correspond to eigenfunctions where the wave function
of the outer electron is stretched far out into the ionization channel r1, r2 → ∞.
To include those states, we have to deal with the dynamics in the limit of large
r1, r2. This turns out to be equivalent to switching to a symbolic dynamics with
an infinite alphabetdiscussed in sect. 24.3.1, a step beyond our ambition horizon

⇓PRIVATEright now. 24 With this observation in mind, we may write the cycle expansion
⇑PRIVATE

remark 43.5
(....) for a binary alphabet without the 0 cycle as

1/ζ�(s) = 1 − t(�)1 − t(�)
01 − [t(�)

001 + t(�)
011 − t(�)

01 t(�)
1 ]

−[t(�)
0001 + t(�)

0011 − t(�)
001t(�)

1 + t(�)
0111 − t(�)

011t(�)
1 ] − . . . . (43.16)

The weights t(�)p are given in (43.12), with contributions of orbits and composite
orbits of the same total symbol length collected within square brackets. The cycle
expansion depends only on the classical actions, stability indices and winding
numbers, given for orbits up to length 6 in table 43.1. To get reacquainted with
the cycle expansion formula (43.16), consider a truncation of the series after the
first term

1/ζ(�)(s) ≈ 1 − t1 .

The quantization condition 1/ζ(�)(s) = 0 leads to

Em,N = −
(S 1/2π)2

[m + 1
2 + 2(N + 1

2 )σ1]2
, m,N = 0, 1, 2, . . . , (43.17)

with S 1/2π = 1.8290 for the action and σ1 = 0.5393 for the winding number, see
table 43.1, the 1 cycle in the fundamental domain. This cycle can be described as
the asymmetric stretch orbit, see figure43.5. The additional quantum number N in
(43.17) corresponds to the principal quantum number defined in sect.43.5.1. The
states described by the quantization condition (43.17) are those centered closest to
the nucleus and correspond therefore to the lowest states in each Rydberg series
(for a fixed m and N values), in figure 43.6. The simple formula (43.17) gives
already a rather good estimate for the ground state of helium! Results obtained
from (43.17) are tabulated in table 43.2, see the 3rd column under j = 1 and the
comparison with the full quantum calculations.

24Predrag: replace by the intermittency table
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Table 43.2: Collinear helium, real part of the symmetric subspace resonances obtained by a cycle
expansion (43.16) up to cycle length j. The exact quantum energies [3] are in the last column. The
states are labeled by their principal quantum numbers. A dash as an entry indicates a missing zero
at that level of approximation.

N n j = 1 j = 4 j = 8 j = 12 j = 16 −Eqm

1 1 3.0970 2.9692 2.9001 2.9390 2.9248 2.9037
2 2 0.8044 0.7714 0.7744 0.7730 0.7727 0.7779
2 3 — 0.5698 0.5906 0.5916 0.5902 0.5899
2 4 — — — 0.5383 0.5429 0.5449
3 3 0.3622 0.3472 0.3543 0.3535 0.3503 0.3535
3 4 — — 0.2812 0.2808 0.2808 0.2811
3 5 — — 0.2550 0.2561 0.2559 0.2560
3 6 — — — 0.2416 0.2433 0.2438
4 4 0.2050 0.1962 0.1980 0.2004 0.2012 0.2010
4 5 — 0.1655 0.1650 0.1654 0.1657 0.1657
4 6 — — 0.1508 0.1505 0.1507 0.1508
4 7 — — 0.1413 0.1426 0.1426 0.1426

In order to obtain higher excited quantum states, we need to include more
orbits in the cycle expansion (43.16), covering more of the phase space dynamics
further away from the center. Taking longer and longer cycles into account, we
indeed reveal more and more states in each N-series for fixed m. This is illustrated
by the data listed in table 43.2 for symmetric states obtained from truncations of
the cycle expansion of 1/ζ+.

exercise 43.7

Results of the same quality are obtained for antisymmetric states by calculat-
ing the zeros of 25 1/ζ(�)

− . Repeating the calculation with � = 1 or higher in (43.15)
reveals states in the Rydberg series which are to the right of the energetically low-
est series in figure 43.6.

Résumé

We have covered a lot of ground starting with considerations of the classical prop-
erties of a three-body Coulomb problem, and ending with the semiclassical he-
lium spectrum. We saw that the three-body problem restricted to the dynamics on
a collinear appears to be fully chaotic; this implies that traditional semiclassical
methods such as WKBquantization discussed in chapter37 will not work and that ⇓PRIVATE

⇑PRIVATE
we needed the full periodic orbit theory to obtain leads to the semiclassical spec-
trum of helium. As a piece of unexpected luck the symbolic dynamics is simple,
and the semiclassical quantization of the collinear dynamics yields an important
part of the helium spectrum, including the ground state, to a reasonable accuracy.

25Dorte: ulaesligt
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Hopf, HeinzA sceptic might say: “Why bother with all the semiclassical considerations? A
straightforward numerical quantum calculation achieves the same goal with better
precision.” While this is true, the semiclassical analysis offers new insights into
the structure of the spectrum. We discovered that the dynamics perpendicular to
the collinear plane was stable, giving rise to an additional (approximate) quantum
number �. We thus understood the origin of the different Rydberg series depicted
in figure 43.6, a fact which is not at all obvious from a numerical solution of the
quantum problem.

Having traversed the long road from the classical game of pinball all the way
to a credible helium spectrum computation, we could declare victory and fold
down this enterprise. Nevertheless, there is still much to think about - what about
such quintessentially quantum effects as diffraction, tunnelling, ...? As we shall
now see, the periodic orbit theory has still much of interest to offer.

Commentary

Remark 43.1 Sources. The full 3-dimensional Hamiltonian after elimination of the
center of mass coordinates, and an account of the finite nucleus mass effects is given in
ref. [2]. The general two–body collision regularizing Kustaanheimo–Stiefel transforma-
tion [5], a generalization of Levi-Civita’s [13] Pauli matrix two–body collision regular-
ization for motion in a plane, is due to Kustaanheimo [12] who realized that the correct
higher-dimensional generalization of the “square root removal” trick ( B.11), by introduc-
ing a vector Q with property r = |Q|2 , is the same as Dirac’s trick of getting linear equation
for spin 1/2 fermions by means of spinors. Vector spaces equipped with a product and a
known satisfy |Q · Q| = |Q|2 define normed algebras. They appear in various physical ap-
plications - as quaternions, octonions, spinors. The technique was originally developed in
celestial mechanics [6] to obtain numerically stable solutions for planetary motions. The
basic idea was in place as early as 1931, when H. Hopf [14] used a KS transformation in
order to illustrate a Hopf’s invariant. The KS transformation for the collinear helium was
introduced in ref. [2].

Remark 43.2 Complete binary symbolic dynamics. No stable periodic orbit and no
exception to the binary symbolic dynamics of the collinear helium cycles have been found
in numerical investigations. A proof that all cycles are unstable, that they are uniquely
labeled by the binary symbolic dynamcis, and that this dynamics is complete is, however,
still missing. The conjectured Markov partition of the phase space is given by the triple
collision manifold, i.e., by those trajectories which start in or end at the singular point
r1 = r2 = 0. See also ref. [2].

Remark 43.3 Spin and particle exchange symmetry. In our presentation of collinear
helium we have completely ignored all dynamical effects due to the spin of the particles
involved, such as the electronic spin-orbit coupling. Electrons are fermions and that deter-
mines the symmetry properties of the quantum states. The total wave function, including
the spin degrees of freedom, must be antisymmetric under the electron-electron exchange
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transformation. That means that a quantum state symmetric in the position variables must
have an antisymmetric spin wave function, i.e., the spins are antiparallel and the total spin
is zero (singletstate). Antisymmetric states have symmetric spin wave function with total
spin 1 (tripletstates). The threefold degeneracy of spin 1 states is lifted by the spin-orbit
coupling.

Remark 43.4 Helium quantum numbers. The classification of the helium states in
terms of single electron quantum numbers, sketched in sect. 43.5.1, prevailed until the
1960’s; a growing discrepancy between experimental results and theoretical predictions
made it necessary to refine this picture. In particular, the different Rydberg series sharing
a given N-quantum number correspond, roughly speaking, to a quantization of the inter
electronic angle Θ, see figure 43.1, and can not be described in terms of single electron
quantum numbers l1, l2. The fact that something is slightly wrong with the single electron
picture laid out in sect. 43.5.1 is highlighted when considering the collinear configuration
where both electrons are on the same side of the nucleus. As both electrons again have
angular momentum equal to zero, the corresponding quantum states should also belong
to single electron quantum numbers (l1, l2) = (0, 0). However, the single electron picture
breaks down completely in the limit Θ = 0 where electron-electron interaction becomes
the dominant effect. The quantum states corresponding to this classical configuration are
distinctively different from those obtained from the collinear dynamics with electrons on
different sides of the nucleus. The Rydberg series related to the classical Θ = 0 dynamics
are on the outermost rigth side in each N subspectrum in figure 43.6, and contain the
energetically highest states for given N, n quantum numbers, see also remark 43.5. A
detailed account of the historical development as well as a modern interpretation of the
spectrum can be found in ref. [1].

Remark 43.5 Beyond the unstable collinear helium subspace. The semiclassical
quantization of the chaotic collinear helium subspace is discussed in refs. [ 7, 8, 9]. Classi-
cal and semiclassical considerations beyond what has been discussed in sect. 43.5 follow
several other directions, all outside the main of this book.

A classical study of the dynamics of collinear helium where both electrons are on the
same side of the nucleus reveals that this configuration is fully stable both in the collinear
plane and perpendicular to it. The corresponding quantum states can be obtained with
the help of an approximate EBK-quantization which reveals helium resonances with ex-
tremely long lifetimes (quasi - bound states in the continuum). These states form the
energetically highest Rydberg series for a given principal quantum number N, see fig-
ure 43.6. Details can be found in refs. [10, 11].

In order to obtain the Rydberg series structure of the spectrum, i.e., the succession
of states converging to various ionization thresholds, we need to take into account the
dynamics of orbits which make large excursions along the r 1 or r2 axis. In the chaotic
collinear subspace these orbits are characterized by symbol sequences of form (a0 n) where
a stands for an arbitrary binary symbol sequence and 0 n is a succession of n 0’s in a row.
A summation of the form

∑∞
n=0 ta0n , where tp are the cycle weights in (43.12), and cycle

expansion of indeed yield all Rydberg states up the various ionization thresholds, see
ref. [4]. For a comprehensive overview on spectra of two-electron atoms and semiclassical
treatments ref. [1].
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helium!collinear
helium!collinear!Poincaré

section
helium!collinear!cycles

boyscout

43.1. Kustaanheimo–Stiefel transformation. Check the Kustaanheimo–
Stiefel regularization for collinear helium; derive the Hamil-
tonian (B.14) and the collinear helium equations of mo-
tion (B.15).
26

43.2. Helium in the plane. Starting with the helium Hamil-
tonian in the infinite nucleus mass approximation mhe =

∞, and angular momentum L = 0, show that the three
body problem can be written in terms of three indepen-
dent coordinates only, the electron-nucleus distances r 1

and r2 and the inter-electron angle Θ, see figure B.1.

43.3. Helium trajectories. Do some trial integrations of the
collinear helium equations of motion (B.15). Due to the
energy conservation, only three of the phase space coordi-
nates (Q1,Q2, P1, P2) are independent. Alternatively, you
can integrate in 4 dimensions and use the energy conser-
vation as a check on the quality of your integrator.

The dynamics can be visualized as a motion in the origi-
nal configuration space (r1, r2), ri ≥ 0 quadrant, or, better
still, by an appropriately chosen 2-dimensional Poincaré
section, exercise 43.4. Most trajectories will run away,
do not be surprised - the classical collinear helium is un-
bound. Try to guess approximately the shortest cycle of
figure 43.4.

43.4. A Poincaré section for collinear Helium. Construct a
Poincaré section of figure 43.3b that reduces the helium
flow to a map. Try to delineate regions which corre-
spond to finite symbol sequences, i.e. initial conditions
that follow the same topological itinerary in figure 43.3a
space for a finite number of bounces. Such rough partition
can be used to initiate 2–dimensional Newton-Raphson
method searches for helium cycles, exercise 43.5.

43.5. Collinear helium cycles. The motion in the (r1, r2) plane
is topologically similar to the pinball motion in a 3-disk
system, except that the motion is in the Coulomb poten-
tial.

Just as in the 3-disk system the dynamics is simplified if
viewed in the fundamental domain, in this case the region
between r1 axis and the r1 = r2 diagonal. Modify your
integration routine so the trajectory bounces off the diag-
onal as off a mirror. Miraculously, the symbolic dynamics
for the survivors again turns out to be binary, with 0 sym-
bol signifying a bounce off the r1 axis, and 1 symbol for

26Predrag: Tanner should check this exercise
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helium!collinear!stabilities
helium!collinear!eigenenergies

a bounce off the diagonal. Just as in the 3-disk game of
pinball, we thus know what cycles need to be computed
for the cycle expansion (43.16).

Guess some short cycles by requiring that topologically
they correspond to sequences of bounces either returning
to the same ri axis or reflecting off the diagonal. Now ei-
ther Use special symmetries of orbits such as self-retracing
to find all orbits up to length 5 by a 1-dimensional New-
ton search.

43.6. Collinear helium cycle stabilities. Compute the eigen-
values for the cycles you found in exercise 43.5, as de-
scribed in sect. 43.3. You may either integrate the reduced
2×2 matrix using equations (43.6) together with the gen-
erating function l given in local coordinates by (43.7) or
integrate the full 4 × 4 Jacobian matrix, see sect. O.1. 27

Integration in 4 dimensions should give eigenvalues of the
form (1, 1,Λp, 1/Λp); The unit eigenvalues are due to the
usual periodic orbit invariances; displacements along the
orbit as well as perpendicular to the energy manifold are
conserved; the latter one provides a check of the accu-
racy of your computation. Compare with table 43.1; you
should get the actions and Lyapunov exponents right, but
topological indices and stability angles we take on faith.

43.7. Helium eigenenergies. Compute the lowest eigenener-
gies of singlet and triplet states of helium by substituting
cycle data into the cycle expansion (43.16) for the sym-
metric and antisymmetric zeta functions (43.15). Proba-
bly the quickest way is to plot the magnitude of the zeta
function as function of real energy and look for the min-
ima. As the eigenenergies in general have a small imag-
inary part, a contour plot such as figure 20.1, can yield
informed guesses. Better way would be to find the zeros
by Newton method, sect. 20.3.1. How close are you to the
cycle expansion and quantum results listed in table 43.2?
You can find more quantum data in ref. [3].
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Chapter 44

Periodic orbit theory of
diffraction

You know that love
Will creep in service when it cannot go.

—William Shakespeare: Two Gentlemen of Verona,
act iv. sc. 2.

(Andreas Wirzba)

We will cast here the leading quantum diffraction effects in scattering into
periodic orbit form, by including into the cycle expansions complex sad-
dles as well.

We start by a brief review of the elastic scattering of a point particle from finite
collection of non-overlapping scattering regions in terms of the standard textbook
scattering theory, and then develop Keller’s semiclassical diffraction theory for
scattering off n disks in a plane.

44.1 Semiclassical creeping contributions

Children learne to creepe ere they can learne to goe
—John Heywood, Proverbes 1546

For periodic orbits with creeping sections [23, ?, ?, ?, ?] the symbolic alphabet
has to be extended. Furthermore, depending on the geometry, there might be
nontrivial pruning rules based on the so called ghost orbits, see refs. [12, 24].

If the creeping contributions are taken into account, the symbolic dynam-
ics has to be generalized from single-letter symbols { ji} to triple-letter symbols
{ ji, si × �i} with �i ≥ 1 integer valued and si = 0,±1 1 By definition, the value

1Actually, these are double-letter symbols as si and li are only counted as a product.
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si = 0 represents the non-creeping case, such that { ji, 0 × �i} = { ji, 0} = { ji} re-
duces to the old single-letter symbol. The magnitude of a nonzero �i corresponds
to creeping sections of mode number |�i|, whereas the sign si = ±1 signals whether
the creeping path turns around the disk ji in the positive or negative sense. Ad-
ditional full creeping turns around a disk j′ can be summed up as a geometrical
series; therefore they do not lead to the introduction of a further symbol.

Hence, we finally obtain the semiclassical result for the determinant of S(1)(ka)

det S(1)(ka) ∼ e−i2πN(k)

∏∞
�=1

(
1 − e−2iπν̄�(ka)

)2

∏∞
�=1

(
1 − e2iπν�(ka))2

, (44.1)

with the creeping exponential

ν�(ka) = ka + e+iπ/3(ka/6)1/3q� + · · · = ka + iα�(ka) + · · · , (44.2)

ν̄�(ka) = ka + e−iπ/3(ka/6)1/3q� + · · · = ka − i(α�(k
∗a))∗ + · · ·

=
(
ν�(k

∗a)
)∗ , (44.3)

Remark 44.1 Sources. This section is based on appendix E of ref. [1].

There are three possibilities of “semiclassical” contact of the point particle
with the disk ji:

1. either geometrical which in turn splits into three alternatives

(a) specular reflection to the right,

(b) specular reflection to the left,

(c) or ‘ghost tunneling’ where the latter induce the nontrivial pruning
rules (as discussed above)

2. or right-handed creeping turns

3. or left-handed creeping turns.

2 See figure ??. The specular reflection to the right is linked to a left-handed creep-
ing path with a knot. The specular reflection to the left matches a right-handed
creeping path with a knot, whereas the creeping paths in the ghost tunneling case
are topologically trivial. In fact, the topology of the creeping paths encodes the
choice between the three alternatives for the geometrical contact of the disk. This
is the case for the simple reason that creeping sections have to be positive definite
in length: the creeping amplitude has to decrease during the creeping process, as
tangential rays are constantly emitted. In mathematical terms, it means that the
creeping angle has to be positive. Thus, the positivity of the two creeping angles
for the left and right turn uniquely specifies which of the three alternatives, either
specular reflection to the right or to the left or straight “ghost” tunneling through
disk j, is realized for the semiclassical geometrical path. Hence, the existence of
a saddle point is guaranteed.

2Predrag: exact repeat of text from multscat.tex
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Chapter 45

Diffraction distraction

(N. Whelan)

Diffraction effects characteristic to scattering off wedges are incorporated
into the periodic orbit theory.

45.1 Quantum eavesdropping

As noted in chapter 43, the classical mechanics of the helium atom is undefined
at the instant of a triple collision. This is a common phenomenon - there is often
some singularity or discontinuity in the classical mechanics of physical systems.
This discontinuity can even be helpful in classifying the dynamics. The points in
phase space which have a past or future at the discontinuity form manifolds which
divide the phase space and provide the symbolic dynamics. The general rule is that
quantum mechanics smoothes over these discontinuities in a process we interpret
as diffraction. We solve the local diffraction problem quantum mechanically and
then incorporate this into our global solution. By doing so, we reconfirm the
central leitmotif of this treatise: think locally - act globally.

While being a well-motivated physical example, the helium atom is somewhat
involved. In fact, so involved that we do not have a clue how to do it. In its
place we illustrate the concept of diffractive effects with a pinball game. There
are various classes of discontinuities which a billiard can have. There may be a
grazing condition such that some trajectories hit a smooth surface while others
are unaffected - this leads to the creeping described in chapter40. There may be a
vertex such that trajectories to one side bounce differently from those to the other
side. There may be a point scatterer or a magnetic flux line such that we do not
know how to continue classical mechanics through the discontinuities. In what
follows, we specialize the discussion to the second example - that of vertices or
wedges. To further simplify the discussion, we consider the special case of a half
line which can be thought of as a wedge of angle zero.
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Figure 45.1: Scattering of a plane wave off a half line.

III

α

I

II

We start by solving the problem of the scattering of a plane wave off a half
line (see figure 45.1). This is the local problem whose solution we will use to
construct a global solution of more complicated geometries. We define the vertex
to be the origin and launch a plane wave at it from an angle α. What is the total
field? This is a problem solved by Sommerfeld in 1896 and our discussion closely
follows his.

The total field consists of three parts - the incident field, the reflected field
and the diffractive field. Ignoring the third of these for the moment, we see that
the space is divided into three regions. In region I there is both an incident and a
reflected wave. In region II there is only an incident field. In region III there is
nothing so we call this the shadowed region. However, because of diffraction the
field does enter this region. This accounts for why you can overhear a conversation
if you are on the opposite side of a thick wall but with a door a few meters away.
Traditionally such effects have been ignored in semiclassical calculations because
they are relatively weak. However, they can be significant.

To solve this problem Sommerfeld worked by analogy with the full line case,
so let us briefly consider that much simpler problem. There we know that the
problem can be solved by images. An incident wave of amplitude A is of the form

v(r, ψ) = Ae−ikr cosψ (45.1)

where ψ = φ − α and φ is the angular coordinate. The total field is then given by
the method of images as

vtot = v(r, φ − α) − v(r, φ + α), (45.2)

where the negative sign ensures that the boundary condition of zero field on the
line is satisfied.

Sommerfeld then argued that v(r, ψ) can also be given a complex integral rep-
resentation

v(r, ψ) = A
∫

C
dβ f (β, ψ)e−ikr cos β. (45.3)
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Figure 45.2: The contour in the complex β plane.
The pole is at β = −ψ (marked by × in the figure)
and the integrand approaches zero in the shaded
regions as the magnitude of the imaginary part of
β approaches infinity. ��������
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0−2π −π π 2π
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C
D

D 2

1

1

2

This is certainly correct if the function f (β, ψ) has a pole of residue 1/2πi at β =
−ψ and if the contour C encloses that pole. One choice is

f (β, ψ) =
1

2π
eiβ

eiβ − e−iψ
. (45.4)

(We choose the pole to be at β = −ψ rather than β = ψ for reasons discussed later.)
One valid choice for the contour is shown in figure 45.2. This encloses the pole
and vanishes as |Im β| → ∞ (as denoted by the shading). The sections D1 and D2

are congruent because they are displaced by 2π. However, they are traversed in
an opposite sense and cancel, so our contour consists of just the sections C1 and
C2. The motivation for expressing the solution in this complicated manner should
become clear soon.

What have we done? We extended the space under consideration by a factor
of two and then constructed a solution by assuming that there is also a source in
the unphysical space. We superimpose the solutions from the two sources and at
the end only consider the solution in the physical space to be meaningful. Fur-
thermore, we expressed the solution as a contour integral which reflects the 2π
periodicity of the problem. The half line scattering problem follows by analogy.

Whereas for the full line the field is periodic in 2π, for the half line it is peri-
odic in 4π. This can be seen by the fact that the field can be expanded in a series
of the form {sin(φ/2), sin(φ), sin(3φ/2), · · ·}. As above, we extend the space by
thinking of it as two sheeted. The physical sheet is as shown in figure45.1 and the
unphysical sheet is congruent to it. The sheets are glued together along the half
line so that a curve in the physical space which intersects the half line is continued
in the unphysical space and vice-versa. The boundary conditions are that the total
field is zero on both faces of the half line (which are physically distinct boundary
conditions) and that as r → ∞ the field is composed solely of plane waves and
outgoing circular waves of the form g(φ) exp(ikr)/

√
kr. This last condition is a

result of Huygens’ principle.
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stationary phaseWe assume that the complete solution is also given by the method of images
as

vtot = u(r, φ − α) − u(r, φ + α). (45.5)

where u(r, ψ) is a 4π-periodic function to be determined. The second term is
interpreted as an incident field from the unphysical space and the negative sign
guarantees that the solution vanishes on both faces of the half line. Sommerfeld
then made the ansatz that u is as given in equation (45.3) with the same contour
C1 + C2 but with the 4π periodicity accounted for by replacing equation (45.4)
with

f (β, ψ) =
1

4π
eiβ/2

eiβ/2 − e−iψ/2
. (45.6)

(We divide by 4π rather than 2π so that the residue is properly normalized.) The
integral (45.3) can be thought of as a linear superposition of an infinity of plane
waves each of which satisfies the Helmholtz equation (∇2 + k2)v = 0, and so their
combination also satisfies the Helmholtz equation. We will see that the diffracted
field is an outgoing circular wave; this being a result of choosing the pole at β =
−ψ rather than β = ψ in equation (45.4). Therefore, this ansatz is a solution of
the equation and satisfies all boundary conditions and therefore constitutes a valid
solution. By uniqueness this is the only solution.

In order to further understand this solution, it is useful to massage the contour.
Depending on φ there may or may not be a pole between β = −π and β = π. In
region I, both functions u(r, φ ± α) have poles which correspond to the incident
and reflected waves. In region II, only u(r, φ − α) has a pole corresponding to the
incident wave. In region III there are no poles because of the shadow. Once we
have accounted for the geometrical waves (i.e., the poles), we extract the diffracted
waves by saddle point analysis at β = ±π. We do this by deforming the contours
C so that they go through the saddles as shown in figure45.2.

Contour C1 becomes E2 + F while contour C2 becomes E1 − F where the
minus sign indicates that it is traversed in a negative sense. As a result, F has no
net contribution and the contour consists of just E1 and E2.

As a result of these machinations, the curves E are simply the curves D of
figure 45.2 but with a reversed sense. Since the integrand is no longer 2π periodic,
the contributions from these curves no longer cancel. We evaluate both stationary
phase integrals to obtain

u(r, ψ) ≈ −A
eiπ/4

√
8π

sec(ψ/2)
eikr

√
kr

(45.7)

so that the total diffracted field is

vdiff = −A
eiπ/4

√
8π

(
sec

(
φ − α

2

)
− sec

(
φ + α

2

)) eikr

√
kr
. (45.8)
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stationary!phase
approximation

Green’s
function!diffraction

diffraction!Green’s
function

Figure 45.3: The contour used to evaluate the
diffractive field after the contribution of possible
poles has been explicitly evaluated. The curve F
is traversed twice in opposite directions and has no
net contribution.
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Note that this expression breaks down when φ ± α = π. These angles correspond
to the borders among the three regions of figure 45.1 and must be handled more
carefully - we can not do a stationary phase integral in the vicinity of a pole.
However, the integral representation (45.3) and (45.6) is uniformly valid.

exercise 45.1

We now turn to the simple task of translating this result into the language of
semiclassical Green’s functions. Instead of an incident plane wave, we assume a
source at point x′ and then compute the resulting field at the receiver position x.
If x is in region I, there is both a direct term, and a reflected term, if x is in region
II there is only a direct term and if x is in region III there is neither. In any event
these contributions to the semiclassical Green’s function are known since the free
space Green’s function between two points x2 and x1 is

Gf(x2, x1, k) = − i
4

H(+)
0 (kd) ≈ − 1

√
8πkd

exp{i(kd + π/4)}, (45.9)

where d is the distance between the points. For a reflection, we need to multiply
by −1 and the distance is the length of the path via the reflection point. Most
interesting for us, there is also a diffractive contribution to the Green’s function.
In equation (45.8), we recognize that the coefficient A is simply the intensity at the
origin if there were no scatterer. This is therefore replaced by the Green’s function
to go from the source to the vertex which we label xV . Furthermore, we recognize
that exp(ikr)/

√
kr is, within a proportionality constant, the semiclassical Green’s

function to go from the vertex to the receiver.

Collecting these facts, we say

Gdiff(x, x′, k) = Gf(x, xV , k)d(θ, θ′)Gf(xV , x′, k), (45.10)

where, by comparison with equations (45.8) and (45.9), we have

d(θ, θ′) = sec

(
θ − θ′

2

)
− sec

(
θ + θ′

2

)
. (45.11)
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stationary phaseHere θ′ is the angle to the source as measured from the vertex and θ is the angle to
the receiver. They were denoted as α and φ previously. Note that there is a sym-
metry between the source and receiver as we expect for a time-reversal invariant
process. Also the diffraction coefficient d does not depend on which face of the
half line we use to measure the angles. As we will see, a very important property
of Gdiff is that it is a simple multiplicative combination of other semiclassical
Green’s functions.

exercise 45.2

We now recover our classical perspective by realizing that we can still think of
classical trajectories. In calculating the quantum Green’s function, we sum over
the contributions of various paths. These include the classical trajectories which
connect the points and also paths which connect the points via the vertex. These
have different weights as given by equations (45.9) and (45.10) but the concept of
summing over classical paths is preserved.

For completeness, we remark that there is an exact integral representation for
the Green’s function in the presence of a wedge of arbitrary opening angle [15].
It can be written as

G(x, x′, k) = g(r, r′, k, θ′ − θ) − g(r, r′, k, θ′ + θ) (45.12)

where (r, θ) and (r′, θ′) are the polar coordinates of the points x and x′ as measured
from the vertex and the angles are measured from either face of the wedge. The
function g is given by

g(r, r′, k, ψ) =
i

8πν

∫
C1+C2

dβ
H+0 (k

√
r2 + r′2 − 2rr′ cos β)

1 − exp
(
iβ+ψν

) (45.13)

where ν = γ/π and γ is the opening angle of the wedge. (ie γ = 2π in the case of
the half plane). The contour C1 +C2 is the same as shown in figure 45.2.

The poles of this integral give contributions which can be identified with the
geometric paths connecting x and x′. The saddle points at β = ±π give contribu-
tions which can be identified with the diffractive path connecting x and x′. The
saddle point analysis allows us to identify the diffraction constant as

d(θ, θ′) = −
4 sin π

ν

ν

sin θ
ν sin θ′

ν(
cos π

ν − cos θ+θ′

ν

) (
cos π

ν − cos θ−θ′
ν

) , (45.14)

which reduces to (45.11) when ν = 2. Note that the diffraction coefficient vanishes
identically if ν = 1/n where n is any integer. This corresponds to wedge angles
of γ = π/n (eg. n=1 corresponds to a full line and n=2 corresponds to a right
angle). This demonstration is limited by the fact that it came from a leading
order asymptotic expansion but the result is quite general. For such wedge angles,
we can use the method of images (we will require 2n − 1 images in addition to
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open system

Figure 45.4: The billiard considered here. The dy-
namics consists of free motion followed by specular
reflections off the faces. The top vertex induces diffrac-
tion while the bottom one is a right angle and induces
two specular geometric reflections. ������������
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the actual source point) to obtain the Green’s function and there is no diffractive
contribution to any order. Classically this corresponds to the fact that for such
angles, there is no discontinuity in the dynamics. Trajectories going into the vertex
can be continued out of them unambiguously. This meshes with the discussion in
the introduction where we argued that diffractive effects are intimately linked with
classical discontinuities.

The integral representation is also useful because it allows us to consider ge-
ometries such that the angles are near the optical boundaries or the wedge angle
is close to π/n. For these geometries the saddle point analysis leading to (45.14)
is invalid due to the existence of a nearby pole. In that event, we require a more
sophisticated asymptotic analysis of the full integral representation.

45.2 An application

Although we introduced diffraction as a correction to the purely classical effects;
it is instructive to consider a system which can be quantized solely in terms of
periodic diffractive orbits. Consider the geometry shown in figure45.4 The clas-
sical mechanics consists of free motion followed by specular reflections off faces.
The upper vertex is a source of diffraction while the lower one is a right angle and
induces no diffraction. This is an open system, there are no bound states - only
scattering resonances. However, we can still test the effectiveness of the theory
in predicting them. Formally, scattering resonances are the poles of the scattering
S matrix and by an identity of Balian and Bloch are also poles of the quantum
Green’s function. We demonstrate this fact in chapter 40 for 2-dimensional scat-
terers. The poles have complex wavenumber k, as for the 3-disk problem.

Let us first consider how diffractive orbits arise in evaluating the trace of G
which we call g(k). Specifying the trace means that we must consider all paths
which close on themselves in the configuration space while stationary phase ar-
guments for large wavenumber k extract those which are periodic - just as for
classical trajectories. In general, g(k) is given by the sum over all diffractive and
geometric orbits. The contribution of the simple diffractive orbit labeled γ shown
in figure 45.5 to g(k) is determined as follows.

We consider a point P just a little off the path and determine the semiclassical
Green’s function to return to P via the vertex using (45.9) and (45.10). To leading
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Figure 45.5: The dashed line shows a simple periodic
diffractive orbit γ. Between the vertex V and a point P
close to the orbit there are two geometric legs labeled
±. The origin of the coordinate system is chosen to be
at R.
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order in y the lengths of the two geometric paths connecting P and V are d± =
(L±x)+y2/(L±x)2/2 so that the phase factor ik(d++d−) equals 2ikL+iky2/(L2−x2).
The trace integral involves integrating over all points P and is

gγ(k) ≈ −2dγ
ei(2kL+π/2)

8πk

∫ L

0

dx
√

L2 − x2

∫ ∞

−∞
dye

(
iky2 L

L2−x2

)
. (45.15)

We introduced an overall negative sign to account for the reflection at the hard wall
and multiplied by 2 to account for the two traversal senses, VRPV and VPRV . In
the spirit of stationary phase integrals, we have neglected the y dependence ev-
erywhere except in the exponential. The diffraction constant dγ is the one corre-
sponding to the diffractive periodic orbit. To evaluate the y integral, we use the
identity

∫ ∞

−∞
dξeiaξ2

= eiπ/4

√
π

a
, (45.16)

and thus obtain a factor which precisely cancels the x dependence in the x integral.
This leads to the rather simple result

gγ ≈ −
ilγ
2k

⎧⎪⎪⎨⎪⎪⎩ dγ√
8πklγ

⎫⎪⎪⎬⎪⎪⎭ ei(klγ+π/4) (45.17)

where lγ = 2L is the length of the periodic diffractive orbit. A more sophisticated
analysis of the trace integral has been done [6] using the integral representation
(45.13). It is valid in the vicinity of an optical boundary and also for wedges with
opening angles close to π/n.

Consider a periodic diffractive orbit with nγ reflections off straight hard walls
and μγ diffractions each with a diffraction constant dγ, j. The total length of the
orbit Lγ =

∑
lγ, j is the sum of the various diffractive legs and lγ is the length of

the corresponding prime orbit. For such an orbit, (45.17) generalizes to

gγ(k) = −
ilγ
2k

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μγ∏
j=1

dγ, j√
8πklγ, j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ exp {i(kLγ + nγπ − 3μγπ/4)}. (45.18)
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exercise 45.3

Each diffraction introduces a factor of 1/
√

k and multi-diffractive orbits are thereby
suppressed.

If the orbit γ is prime then Lγ = lγ. If γ is the r’th repeat of a prime orbit β we
have Lγ = rlβ, nγ = rpβ and μγ = rσβ, where lβ, pβ and σβ all refer to the prime
orbit. We can then write

gγ = gβ,r = −
ilβ
2k

tr
β (45.19)

where

tβ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σβ∏
j=1

dβ, j√
8πklβ, j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ exp {i(klβ + pβπ − 3σβπ/4)}. (45.20)

It then makes sense to organize the sum over diffractive orbits as a sum over the
prime diffractive orbits and a sum over the repetitions

gdiff(k) =
∑
β

∞∑
r=1

gβ,r = −
i

2k

∑
β

lβ
tβ

1 − tβ
. (45.21)

We cast this as a logarithmic derivative (19.7) by noting that
dtβ
dk = ilβtβ −

σβtβ/2k and recognizing that the first term dominates in the semiclassical limit. It
follows that

gdiff(k) ≈ 1
2k

d
dk

⎧⎪⎪⎪⎨⎪⎪⎪⎩ln
∏
β

(1 − tβ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (45.22)

In the case that there are only diffractive periodic orbits - as in the geometry of
figure 45.4 - the poles of g(k) are the zeros of a dynamical zeta function

1/ζ(k) =
∏
β

(1 − tβ). (45.23)

For geometric orbits, this function would be evaluated with a cycle expansion as
discussed in chapter 20. However, here we can use the multiplicative nature of the
weights tβ to find a closed form representation of the function using a transition
graph, as in chapter 14. This multiplicative property of the weights follows from
the fact that the diffractive Green’s function (45.10) is multiplicative in segment
semiclassical Green’s functions, unlike the geometric case.
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Figure 45.6: The two-node transition graph with all
the diffractive processes connecting the nodes.
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There is a reflection symmetry in the problem which means that all resonances
can be classified as even or odd. Because of this, the dynamical zeta function fac-
torizes as 1/ζ = 1/ζ+ζ− (as explained in sects. 21.5 and 21.1.1) and we determine
1/ζ+ and 1/ζ− separately using the ideas of symmetry decomposition of chap-
ter 21.

In the transition graph shown in figure 45.6, we enumerate all processes. We
start by identifying the fundamental domain as just the right half of figure45.4.
There are two nodes which we call A and B. To get to another node from B, we
can diffract (always via the vertex) in one of three directions. We can diffract back
to B which we denote as process 1. We can diffract to B’s image point B′ and then
follow this by a reflection. This process we denote as 2̄ where the bar indicates
that it involves a reflection. Third, we can diffract to node A. Starting at A we can
also diffract to a node in three ways. We can diffract to B which we denote as 4.
We can diffract to B′ followed by a reflection which we denote as 4̄. Finally, we
can diffract back to A which we denote as process 5. Each of these processes has
its own weight which we can determine from the earlier discussion. First though,
we construct the dynamical zeta functions.

The dynamical zeta functions are determined by enumerating all closed loops
which do not intersect themselves in figure 45.6. We do it first for 1/ζ+ because
that is simpler. In that case, the processes with bars are treated on an equal footing
as the others. Appealing back to sect. 21.5 we find

1/ζ+ = 1 − t1 − t2̄ − t5 − t3t4 − t3t4̄ + t5t1 + t5t2̄ ,

= 1 − (t1 + t2̄ + t5) − 2t3t4 + t5(t1 + t2̄) (45.24)

where we have used the fact that t4 = t4̄ by symmetry. The last term has a positive
sign because it involves the product of shorter closed loops. To calculate 1/ζ−,
we note that the processes with bars have a relative negative sign due to the group
theoretic weight. Furthermore, process 5 is a boundary orbit (see sect.21.3.1) and
only affects the even resonances - the terms involving t5 are absent from 1/ζ−. The
result is

1/ζ− = 1 − t1 + t2̄ − t3t4 + t3t4̄ ,

= 1 − (t1 − t2̄). (45.25)

Note that these expressions have a finite number of terms and are not in the form
exercise 45.4

of a curvature expansion, as for the 3-disk problem.

It now just remains to fix the weights. We use equation (45.20) but note that
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Figure 45.7: The even resonances of the wedge scat-
terer of figure 45.4 plotted in the complex k−plane,
with L = 1. The exact resonances are represented
as circles and their semiclassical approximations as
crosses.
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each weight involves just one diffraction constant. It is then convenient to define
the quantities

u2
A =

exp{i(2kL + 2π)}
√

16πkL
u2

B =
exp{i(2kH + π)}

√
16πkH

. (45.26)

The lengths L and H = L/
√

2 are defined in figure 45.4; we set L = 1 throughout.
Bouncing inside the right angle at A corresponds to two specular reflections so that
p = 2. We therefore explicitly include the factor exp (i2π) in (45.26) although it is
trivially equal to one. Similarly, there is one specular reflection at point B giving
p = 1 and therefore a factor of exp (iπ). We have defined uA and uB because,
together with some diffraction constants, they can be used to construct all of the
weights. Altogether we define four diffraction coefficients: dAB is the constant
corresponding to diffracting from B to A and is found from (45.11) with θ′ = 3π/4
and θ = π and equals 2 sec (π/8) ≈ 2.165. With analogous notation, we have dAA

and dBB = dB′B which equal 2 and 1+
√

2 respectively. di j = dji due to the Green’s
function symmetry between source and receiver referred to earlier. Finally, there
is the diffractive phase factor s = exp (−i3π/4) each time there is a diffraction.
The weights are then as follows:

t1 = sdBBu2
B t2̄ = sdB′Bu2

B t3 = t4 = t4̄ = sdABuAuB

t5 = sdAAu2
A. (45.27)

Each weight involves two u’s and one d. The u’s represent the contribution to
the weight from the paths connecting the nodes to the vertex and the d gives the
diffraction constant connecting the two paths.

The equality of dBB and dB′B implies that t1 = t2̄. From (45.25) this means that
there are no odd resonances because 1 can never equal 0. For the even resonances
equation (45.24) is an implicit equation for k which has zeros shown in figure45.7.

For comparison we also show the result from an exact quantum calculation.
The agreement is very good right down to the ground state - as is so often the
case with semiclassical calculations. In addition we can use our dynamical zeta
function to find arbitrarily high resonances and the results actually improve in that
limit. In the same limit, the exact numerical solution becomes more difficult to
find so the dynamical zeta function approximation is particularly useful in that
case.

exercise 45.5

In general a system will consist of both geometric and diffractive orbits. In
that case, the full dynamical zeta function is the product of the geometric zeta
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function and the diffractive one. The diffractive weights are typically smaller by
order O(1/

√
k) but for small k they can be numerically competitive so that there is

a significant diffractive effect on the low-lying spectrum. It might be expected that
higher in the spectrum, the effect of diffraction is weaker due to the decreasing
weights. However, it should be pointed out that an analysis of the situation for
creeping diffraction [7] concluded that the diffraction is actually more important
higher in the spectrum due to the fact that an ever greater fraction of the orbits
need to be corrected for diffractive effects. The equivalent analysis has not been
done for edge diffraction but a similar conclusion can probably be expected.

To conclude this chapter, we return to the opening paragraph and discuss the
possibility of doing such an analysis for helium. The important point which al-
lowed us to successfully analyze the geometry of figure45.4 is that when a trajec-
tory is near the vertex, we can extract its diffraction constant without reference to
the other facets of the problem. We say, therefore, that this is a “local” analysis
for the purposes of which we have “turned off” the other aspects of the prob-
lem, namely sides AB and AB′. By analogy, for helium, we would look for some
simpler description of the problem which applies near the three body collision.
However, there is nothing to “turn off.” The local problem is just as difficult as
the global one since they are precisely the same problem, just related by scaling.
Therefore, it is not at all clear that such an analysis is possible for helium.

Résumé

In this chapter we have discovered new types of periodic orbits contributing to the
semiclassical traces and determinants. Unlike the periodic orbits we had seen so
far, these are not true classical orbits. They are generated by singularities of the
scattering potential. In these singular points the classical dynamics has no unique
definition, and the classical orbits hitting the singularities can be continued in
many different directions. While the classical mechanics does not know which
way to go, quantum mechanics solves the dilemma by allowing us to continue in
all possible directions. The likelihoods of different paths are given by the quan-
tum mechanical weights called diffraction constants. The total contribution to a
trace from such orbit is given by the product of transmission amplitudes between
singularities and diffraction constants of singularities. The weights of diffractive
periodic orbits are at least of order 1/

√
k weaker than the weights associated with

classically realizable orbits, and their contribution at large energies is therefore
negligible. Nevertheless, they can strongly influence the low lying resonances
or energy levels. In some systems, such as the N disk scattering the diffraction
effects do not only perturb semiclassical resonances, but can also create new low
energy resonances. Therefore it is always important to include the contributions of
diffractive periodic orbits when semiclassical methods are applied at low energies.
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diffraction!Sommerfeld
Sommerfeld!diffraction
diffraction!Keller
Keller diffraction

Commentary

Remark 45.1 Classical discontinuities. Various classes of discontinuities for billiard
and potential problems discussed in the literature:

• a grazing condition such that some trajectories hit a smooth surface while others
are unaffected, refs. [1, 2, 3, 7]

• a vertex such that trajectories to one side bounce differently from those to the other
side, refs. [2, 4, 5, 8, 9].

• a point scatterer [10, 11] or a magnetic flux line [12, 13] such that we do not know
how to continue classical mechanics through the discontinuities.

Remark 45.2 Geometrical theory of diffraction. In the above discussion we borrowed
heavily from the ideas of Keller who was interested in extending the geometrical ray
picture of optics to cases where there is a discontinuity. He maintained that we could
hang onto that ray-tracing picture by allowing rays to strike the vertex and then leave at
any angle with amplitude (45.8). Both he and Sommerfeld were thinking of optics and not
quantum mechanics and they did not phrase the results in terms of semiclassical Green’s
functions but the essential idea is the same.

Remark 45.3 Generalizations Consider the effect of replacing our half line by a wedge
of angle γ1 and the right angle by an arbitrary angle γ 2. If γ2 > γ1 and γ2 ≥ π/2 this is an
open problem whose solution is given by equations ( 45.24) and (45.25) (there will then
be odd resonances) but with modified weights reflecting the changed geometry [ 8]. (For
γ2 < π/2, more diffractive periodic orbits appear and the dynamical zeta functions are
more complicated but can be calculated with the same machinery.) When γ 2 = γ1, the
problem in fact has bound states [21, 22]. This last case has been of interest in studying
electron transport in mesoscopic devices and in microwave waveguides. However we can
not use our formalism as it stands because the diffractive periodic orbits for this geometry
lie right on the border between illuminated and shadowed regions so that equation ( 45.7)
is invalid. Even the more uniform derivation of [ 6] fails for that particular geometry, the
problem being that the diffractive orbit actually lives on the edge of a family of geometric
orbits and this makes the analysis still more difficult.

Remark 45.4 Diffractive Green’s functions. The result (45.17) is proportional to
the length of the orbit times the semiclassical Green’s function (45.9) to go from the
vertex back to itself along the classical path. The multi-diffractive formula ( 45.18) is
proportional to the total length of the orbit times the product of the semiclassical Green’s
functions to go from one vertex to the next along classical paths. This result generalizes
to any system — either a pinball or a potential — which contains point singularities such
that we can define a diffraction constant as above. The contribution to the trace of the
semiclassical Green’s function coming from a diffractive orbit which hits the singularities
is proportional to the total length (or period) of the orbit times the product of semiclassical
Green’s functions in going from one singularity to the next. This result first appeared in
reference [2] and a derivation can be found in reference [ 9]. A similar structure also exists
for creeping [2].
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stationary
phase!approximation

Remark 45.5 Diffractive orbits for hydrogenic atoms. An analysis in terms of diffrac-
tive orbits has been made in a different atomic physics system, the response of hydrogenic
atoms to strong magnetic fields [23]. In these systems, a single electron is highly excited
and takes long traversals far from the nucleus. Upon returning to a hydrogen nucleus,
it is re-ejected with the reversed momentum as discussed in chapter 43. However, if the
atom is not hydrogen but sodium or some other atom with one valence electron, the re-
turning electron feels the charge distribution of the core electrons and not just the charge
of the nucleus. This so-called quantum defect induces scattering in addition to the clas-
sical re-ejection present in the hydrogen atom. (In this case the local analysis consists of
neglecting the magnetic field when the trajectory is near the nucleus.) This is formally
similar to the vertex which causes both specular reflection and diffraction. There is then
additional structure in the Fourier transform of the quantum spectrum corresponding to
the induced diffractive orbits, and this has been observed experimentally [ 24].

boyscout

45.1. Stationary phase integral. Evaluate the two stationary
phase integrals corresponding to contours E 1 and E2 of
figure 45.3 and thereby verify (45.7).

(N. Whelan)

45.2. Scattering from a small disk Imagine that instead of
a wedge, we have a disk whose radius a is much smaller
than the typical wavelengths we are considering. In that
limit, solve the quantum scattering problem - find the
scattered wave which result from an incident plane wave.
You can do this by the method of partial waves - the anal-
ogous three dimensional problem is discussed in most
quantum textbooks. You should find that only the m = 0
partial wave contributes for small a. Following the dis-
cussion above, show that the diffraction constant is

d =
2π

log
(

2
ka

)
− γe + i π2

(45.28)

where γe = 0.577 · · · is Euler’s constant. Note that in
this limit d depends weakly on k but not on the scattering
angle.

(N. Whelan)

45.3. Several diffractive legs. Derive equation (45.18). The
calculation involves considering slight variations of the
diffractive orbit as in the simple case discussed above.
Here it is more complicated because there are more diffrac-
tive arcs - however you should convince yourself that a
slight variation of the diffractive orbit only affects one leg
at a time.
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three-disk@3-
disk!point
scatterer

scattering!point
point!scatterer

(N. Whelan)

45.4. Unsymmetrized dynamical zeta function. Assume
you know nothing about symmetry decomposition. Con-
struct the 3-node transition graph for figure 45.1 by con-
sidering A, B and B′ to be physically distinct. Write down
the corresponding dynamical zeta function and check ex-
plicitly that for B = B′ it factorizes into the product of the
even and odd dynamical zeta functions. Why is there no
term t2̄ in the full dynamical zeta function?

(N. Whelan)

45.5. Three point scatterers.

Consider the limiting case of the three disk game of pin-
ball of figure 1.1 where the disks are very much smaller
than their spacing R. Use the results of exercise 45.2 to
construct the desymmetrized dynamical zeta functions,
as in sect. 21.6. You should find 1/ζA1 = 1 − 2t where
t = dei(kR−3π/4)/

√
8πkR. Compare this formula with that

from chapter 11. 1 By assuming that the real part of k
is much greater than the imaginary part show that the
positions of the resonances are knR = αn − iβn where
αn = 2πn + 3π/4, βn = log

(√
2παn/d

)
and n is a non-

negative integer. (See also reference [11].)

(N. Whelan)
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Chapter 46

Uniform approximations

(D. Lippolis)

So far, in dealing with chaotic systems we have always tacitly assumed that
all periodic orbits are unstable and isolated. That is true in some open sys-
tems, such as scattering off 3 disks in a plane, but any physically interesting

bound Hamiltonian system tends to have mixed phase space. In such systems a
small parameter change can drive many periodic orbits (of a period shorter than
some cutoff) through bifurcations, with orbits arbitrarily close to one another as
they collide. Physical parameters, such as slow change of external electric or
magnetic fields in atomic and solid state experiments play role of such bifurca-
tion parameters, so study of such bifurcations cannot be avoided. As the classical
orbits collide, the corresponding saddle points coalesce, and the quadratic, Gaus-
sian stationary phase approximation (37.15) that leads to the Van Vleck propaga-
tor (38.30) and the Gutzwiller trace formula (39.3) fails. At the bifurcation point
the Jacobian in (39.11) has unit eigenvalues, so the contribution of such periodic
orbits to the Gutzwiller trace formula diverges. In this chapter we go beyond the
Gaussian saddle point approximation, replacing it by approximations uniform in
� and parameter/parameters a which describe/describes the distance to the nearest
bifurcation.

46.1 Bifurcations and catastrophes

The method of stationary phase can be applied to an integral of the form
section 37.2

I =
∫

A(x) exp (isΦ(x))dx (46.1)

by approximating the integrand

Φ(x) � Φ(x0) +
1
2
Φ′′(x0)δx2 A(x) � A(x0) (46.2)

994
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normal form
fold catastrophe
catastrophe!fold
cusp catastrophe
catastrophe!cusp

Figure 46.1: Stationary points of (a) the fold
catastrophe and (b) the normal form (46.3) for dif-
ferent values of the parameter a.
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1 in the neighborhood of the extremal point (stationary phase point) x0. When the
extremal points are not sufficiently far apart from one another, this approximation
fails. Usually the “action” Φ(x) depends on one or more parameters, with the ex-
tremal points getting arbitrarily close to one another and eventually coalescing as
the parameters vary. In the neighborhood of the bifurcation parameter values, the
function is not well described by the quadratic approximation (46.2). The number
of extremal points and their motion as a function of the parameters depends on
the local symmetries of the bifurcation. The most robust bifurcation are of codi-
mension one - variation of a single parameter suffices to drive the system through
a bifurcation.

Example 46.1 Tangent, pitchfork bifurcation. Consider the tangent bifurcation
plotted in figure 46.1 whose normal form

Φa(x) � 1
3

x3 − ax , (46.3)

is called fold catastrophe. If the symmetry of the neighborhood of the bifurcation point
is such that local map depends on even powers of x2, the simplest bifurcation is the
pitchfork bifurcation plotted in figure 46.2 whose normal form

Φa(x) �
1
4

x4 −
1
2

ax2 , (46.4)

is called cusp catastrophe. 2

What matters is that while the integral (46.1) can no longer be approximated
by a Gaussian integral, it can still can be expressed in terms of special functions.
3

Example 46.2 Fold, cusp catastrophe. If the local “action” Φa(x) starts with x3,
then in the neighborhood of the tangent bifurcation a slowly varying amplitude Aa(x)

1Predrag: give an estimate of “sufficiently” far
2Predrag: explain symmetry that forces cusp catstrph
3Predrag: found many typos, please recheck this part
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diffractionFigure 46.2: Stationary points of (a) the fold
catastrophe and (b) the normal form (46.4) for dif-
ferent values of the parameter a.
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can be approximated by a polynomial of first degree,

I =

∫
dx p(x)ei(x3/3−ax) = (p0 + ip1 d/da)Ai(a)

Aa(x) � p(x) = p0 + p1x , (46.5)

where

Ai(a) =
∫

dx ei(x3/3−ax) (46.6)

is the Airy function. In the case of a cusp catastrophe, the normal form approximation
to I requires Aa(x) � p(x) = p0 + p2x2,

I �
∫

dx p(x)ei(x4/4−ax2/2) =

(
p0 + 2ip2

d
da

)
I(a)

I(a) =

∫
dx ei(x4/4−ax2/2) , (46.7)

where the integral I(a) can be expressed in terms of Bessel functions, [9] 4

I(a) =
π|a| 1

2

2
e−i(a2−π)/8

(
J− 1

4
(a2/8) + sign(a)e−iπ/4J− 1

4
(a2/8)

)
. (46.8)

5

6 Of course, for simple examples such as a tangent or a pitchfork bifurcation
no fancy theory of normal forms and catastrophes is needed, and you might won-
der why are worrying about what happens at isolated points (measure zero!) in
the classical state space? Doesn’t � granularity of the quantum state space take
care of that? Well, no. What happens in wave mechanics at manifolds of lower
dimensionality is diffraction, the quintessentially wave-mechanical phenomenon
important when diffracting singularities are of size comparable to the wavelength
under study.

Our first example of diffraction, the turning point singularity in the 1-dimensional
WKB quantization of sect. 37.4 could be talked away with a bit of Fresnel/Maslov
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intermittency
Green’s

function!density of
states

density of
states!Green’s
function

closed orbit

voodoo, so we did not even invoke the word “diffraction.” In chapter44 we saw
⇓PRIVATEthat when the wavelength is comparable to the size of obstacles, diffraction sig-

nificantly modifies and extends the original Gutzwiller theory. Similarly, in the
scattering of wedges of chapter 45 diffraction became very important, because
without it there would be no chaotic dynamics whatsoever. ⇑PRIVATE

Why should diffraction effects play a physically significant role here, where
most of the state space is fraught with unstable periodic orbits, the potential is as-
sumed smooth, and the diffraction is localized to a few orbits? Physical reason is
that while individual strongly unstable orbits orbits contribute exponentially small
terms to periodic orbits trace sums, marginally stable (intermittent) orbits are on
the way to turning into elliptic islands, and their neighborhoods are disproportion-
ately small. That is why, when you look at the bottom of a swimming pool, the
main thing that you see is the web by caustics, even though such catastrophes are
of much lower dimensionality than the full space.

46.2 Periodic orbits near bifurcations

Since the Gutzwiller trace formula derivation of sect.39.1 no longer applies, let us
start from the beginning: we would like to evaluate the right-hand side of (36.20)
the quantum density of states in terms of the trace of the quantum Green’s func-
tion, that is

d(E) =
∑

n

δ(E − En) = − lim
ε→0

1
π

Im tr G(q, q′, E + iε)

= −1
π

Im
∫

d2qd2q′δ(q − q′) G(q, q′, E) (46.9)

And here comes the first idea. In a codimension-one bifurcation embedded in
a chaotic sea, almost all periodic orbit are unstable and isolated - at any given
bifurcation parameter value, a set of only two or three periodic orbits are wed into
the bifurcation. So we assume that the VanVleck semiclassical propagator (38.46)
is good for q, q′ separated by a small distance

G(q, q′, E) =
1

i�(2π�)(D−1)/2

1

|q̇q̇′|1/2
|det D⊥|1/2 e

i
�

S− iπ
2 m, (46.10)

We have already evaluated an integral like this in sect. 39.1, and determined that
the stationary phase condition enforces that the orbit is not only closed orbit re-
turning in the spatial coordinate, but that it is periodic in the full state space.

In order to evaluate this in the neighborhood of a bifurcation we have to be
bit more careful. While for isolated unstable orbit a Gaussian integral leads to the

4Predrag: no lit refs in the text, → remarks
5Predrag: formula wrong, fix Bessel indices
6Predrag: insert student Henriette Roux here
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splitting lemma
stationary phase

Gutzwiller trace formula, here we need to write the local action as the appropriate
catastrophe normal form, such as the fold (46.3) or cusp (46.4) catastrophe.

And now the second idea: in the neighborhood of a codimension-one bifurca-
tion, we can chose a natural Poincaré section such that the catastrophe dynamics
occurs along one [q, p] symplectic plane, and the rest is amenable to the usual
Gaussian saddle-point analysis. More formally: the splitting lemma of catastro-
phe theory states that, given a function f (x1, ..., xn), whose Hessian has rank n−m,
a coordinate system q1, ..., qn can be introduced in the neighborhood of a fixed
point, such that 7

f (q1, ..., qn) = g(q1, ..., qm) + h(qm+1, ..., qn)

where g has a extremal point degenerate at the origin and h is a non-degenerate
quadratic form. In general, the number of parameters that participate in the bi-
furcation is called codimension of the bifurcation. The examples given in the
previous section describe two different codimension- one bifurcations, since there
is only one parameter – a – to tune. The splitting lemma tells us that the action
(i.e., function f ) can be split into a catastrophe polynomial plus a nondegenerate
function that can hence be integrated with the saddle point approximation.

Example 46.3 2-dof system. Let us show what happens in the simple case of a
2-dimensional system. First of all we choose a local frame of reference in the phase
space with one coordinate along the orbit (called z) and the other one (y) perpendicular
to it. The action is initially defined as a function of y, y′, z, z′, however, the Poincaré map
(as well as the Jacobian matrix matrix) is close to the identity near a bifurcation, so that
it cannot be generated by a function of the initial and final coordinates (y = y ′!). For
this reason it is necessary to use a mixed coordinate-momentum representation of the
action, by applying a Legendre transform

S (z′, y′z, y, E) = S̃ (z′, y′, z, py, E) − ypy

at the same time we replace one of the delta functions in (46.10) by

δ(y − y′) =
1

2π�

∫
dpye

i
�

py(y−y′) .

That is because the function S̃ (py, y′) − y′py is stationary at every fixed point of the
Poincaré section defined by z = const. and E = const. The integral (46.10) is now
proportional to∫

dzdy′dpy‖det D‖1/2 exp
( i
�

Ŝ (z′, y′, z, py, E) −
i
�

y′py −
iπ
2

m
)

z′ = z + l (46.11)

where l is the length of the orbit. Finally, we switch to normal coordinates on the
Poincaré section so that Ŝ = Ŝ (p, q′, E) at z′ = z + l. The transformation produces a
factor of 1/ż in the integral (46.11), that now reads∫ l

0

dz
ż

∫
dq′dp

∥∥∥∥∥∥ ∂Ŝ
∂p∂q′

∥∥∥∥∥∥1/2

exp
( i
�

Ŝ (q′, p, E) −
i
�

q′p −
iπ
2

m
)
. (46.12)

7Predrag: define Hessian somewhere
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closed orbitThe first integral is just the period of the orbit. In the vicinity of the bifurcation, the action
S (q′, p, E) can be expanded as a normal form. For simple examples such as a tangent
or a pitchfork bifurcation no theory of normal forms is needed. It is enough to recall that
a fixed point of the Poincaré map is a stationary point of the function Ŝ (q′, p) − q′p in
order to guess that a tangent bifurcation will yield

Ŝ (q′, p, E) = S 0(E) + q′p −
1
2

p2 − aq′ − q′3

and a pitchfork bifurcation will give

Ŝ (q′, p, E) = S 0(E) + q′p − 1
2

p2 − aq′2 − q′4 .

S 0 and a can be expressed in terms of the actions and amplitudes of the orbits involved
in the bifurcation [5], 8 so that the integrals (46.12) are now easy. The one over p
is a Gaussian integral, while the one over q′ can be expressed in terms of Airy or
Bessel functions. More precisely, the determinant |det D|1/2 brings a polynomial of the
first order in q′, so that the whole integral can still be expressed in terms of the Airy
function plus its first derivative with respect to the parameter a. Note that there exists a
neighborhood Δa � � around the bifurcation, necessitating inclusion of ghost orbits in
the expansion, for the parameter values for which they participate in the bifurcation. 9

exercise 46.1

46.3 Closed orbits

10 Closed orbit theory is used to study interactions of atoms with external static
fields semiclassically. When an atom absorbs a photon, the electron goes into
an outgoing Coulomb wave, which propagates away from the nucleus, until the
wave fronts can be correlated with outgoing classical trajectories. Eventually the
wave fronts are scattered back by the (electro)magnetic field, and interfere with
the outgoing waves to produce the observed oscillations in the average-absorption
spectrum. It turns out that the main contributions to the oscillating spectrum are
given by the classical trajectories which start and end close to the nucleus, i.e. the
closed orbits. Spectroscopic measurements do not give the density of states, but
rather the oscillator strengths, defined as

fn = 2(En − Ei)|〈i|D|n〉|2 , (46.13)

where D is the component of the dipole operator describing the polarization of the
exciting electromagnetic field. The density of oscillator strength

f (E) =
∑

n

fnδ(E − En) (46.14)

8Predrag: no lit refs in the text, → remarks
9Predrag: explain ghost orbits

10Predrag: like having closed orbits here - another example of diffraction!
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Closed
orbit!bifurcation

(and hence every single strength) can conveniently be expressed in terms of the
quantum mechanical response function

g(E) = −1
π

∑
n

|〈i|D|n〉|2

E − En + iε
= −1

π
〈i|DG(E)D|i〉 (46.15)

by the relation

f (E) = 2(E − Ei) Im [g(E)] . (46.16)

It is possible to compute g(E) semiclassically, by using the Van Vleck approxima-
tion to the retarded Green’s function G(E). The result has the same form as the
Gutzwiller trace formula:

g(E) = g0(E) + gosc(E)

where g0 is a smooth contribution independent of the interaction with the external
fields and

gosc(E) =
∑
co

Aco(E)ei(S co(E)− π
2 μco) , (46.17)

is given as a sum over all the classical closed orbits. In the expression above, Sco

is the action of the closed orbit, μco its topological index and

Aco = 4π
Y∗(θ f , φ f )Y(θi, φi)√

|M|
(46.18)

is a function of the initial and final angles (the Y’s are linear combinations of
spherical harmonics that characterize the initial or the final state) and

M = (sin(θi) sin(θ f ))
−1det

∂(pθ f , pφ f )

∂(θi, φi)
(46.19)

is the ratio between the determinant of the Jacobian matrix and the symmetric
matrix of second derivatives of the action (that arises from the stationary phase
approximation).

46.3.1 Closed orbits near bifurcations

The main point is that M vanishes at a bifurcation, that is why we need uniform
approximations.

uniform - 5feb2005 boyscout version14.4, Mar 19 2013
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To that end, one starts with the results of the previous section for periodic
orbits, and obtaines similar expressions in the case of bifurcations of closed orbits,
by taking a reasonable ansatz for the uniform approximation of contribution to the
response function

Ψ(E) = I(a)eiS 0(E) (46.20)

where

I(a) =
∫

dx p(x)eiΦa(x) . (46.21)

Here p(x) and S 0(E) are unknown, while Φa(x) is a suitable normal form for the
bifurcation in question, which we again assume to only depend on one parameter.
The strategy is now to evaluate the unknowns from the limit of (46.20) far away
from the bifurcation, where (46.21) can be computed by means of the stationary
phase approximation to yield

Ψ(E) =
∑

xi

(2πi)1/2 p(xi)√
|HessΦa(xi)|

exp [i(S 0(E) + Φa(xi) − πνi/2)] , (46.22)

where νi is the number of negative eigenvalues of the Hessian (7.22) and the sum
is over all the extremal points xi of Φa(x). Comparing the latter expression with
the general form (46.17) of Ψ(E), we can infer that

S i(E) = S 0(E) + Φa(xi) (46.23)

and hence find the values of S0(E) and the extremal points of Φa(xi). As long as
we are dealing with real orbits, νi corresponds to the topological index, otherwise
it has to be determined so that p(xi) be continuous through the bifurcation [9].
11 However, that is not enough to determine p(x) uniquely. Considering p(x) is
needed only in the neighborhood of x = 0, it is wise to Taylor-expand it about
such point, so as to obtain a polynomial ansatz, with the coefficients to be deter-
mined from the values of the semiclassical amplitudes of (46.22) evaluated in the
extremal points. Of course all that can be possible only if the polynomial has de-
gree k − 1, where k is the number of orbits involved in the bifurcation. Everything
is best explained by a simple example , such as

Example 46.4 Tangent bifurcation/fold catastrophe.

Φa(x) =
1
3

x3 − ax

11Predrag: no lit refs in the text, → remarks
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Figure 46.3: The positions of extremal points, sta-
tionary values and second derivatives in the fold
catastrophe. Solid lines indicate extremal points,
dashed lines complex extremal points. Dotted
lines are coordinate axes. (T. Bartsch [9])
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which has extremal points at x = ±
√

a, real if a > 0, so that

Φa(±
√

a) = ∓
2
3

a2/3

are its stationary values. Figure 46.3 illustrates the positions of extremal points, station-
ary values and second derivatives in the fold catastrophe. It is evident that both Φa(xi)
and Φ′′a (xi) are real even for a < 0, when the extremal points xi’s are complex, that is
they correspond to ghost orbits having real actions and stability determinants.

Now we can evaluate S 0(E) and a as functions of S 1, S 2, by using (46.23):

S 1 = S 0(E) − 2
3

a3/2 , S 2 = S 0(E) +
2
3

a3/2

that leads to

S 0(E) =
1
2

(S 1 + S 2) , |a| =
(
3
4
|S 2 − S 1|

)2/3

.

We also need an expression for the amplitudes, for which it is necessary to determine
p(x). Equation (46.22) yields

A1 =

√
π

|a|1/4
p(
√

a)eiπ/4 , A2 =

√
π

|a|1/4
p(−

√
a)e−iπ/4 . (46.24)

If p(x) is a polynomial of the form

p(x) = (p0 + p1x)/2π

then the parameters p0 and p1 read

p0 = π|a|1/4e−iπ/4(A1 + iA2) , p1 = π|a|−1/4e−iπ/4(A1 − iA2)

so that now everything is known in the formula (46.21), which becomes∫
dx (p0 + p1x)eiΦa(x)

and can be evaluated in terms of the Airy function and its derivative with respect to a∫
dx eiΦa(x) = Ai(−a) ,

∫
dx x eiΦa(x) = −iAi′(−a) ,

once S 1, S 2, A1 and A2 have been computed, see figure 46.4. 12

12Predrag: create more exercises...
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normal form
uniform

approximation
symmetry breaking
closed orbit
orbit!closed

Figure 46.4: Magnitude of the contribution to the
response function of the bifurcating orbits plot-
ted versus the scaled energy [10]. The Gutzwiller
trace formula (46.22) (dashed curve) diverges at
the bifurcating point; the uniform approximation
(46.20) (solid curve) interpolates smoothly be-
tween the values of the Gutzwiller trace formula
on either side of the bifurcation.

Résumé

The method of (Gaussian) stationary phase approximation fails whenever two or more
extremal points of the approximated function are too close to one another. In such
cases higher order terms in expansion of classical action need to be kept, leading
to uniform approximations in terms of functions of Airy or Bessel type that enables a
smooth interpolation of trace formulas through bifurcation values. Coalescence of sad-
dles occurs at bifurcation values of parameters of the classical dynamics. For periodic
orbits close to bifurcations the Gutzwiller trace formula diverges, and the action needs
to be expanded according to catastrophe/normal form theory. The method applies to
bifurcations of closed orbits as well, since the contributions to the spectral density of
the colliding orbits ultimately depend on their amplitudes and actions only. 13

Commentary

Remark 46.1 Normal forms. The classification of all the possible bifurcation scenar-
ios and corresponding normal forms is the realm of catastrophe theory [1], with higher
co-dimension bifurcations requiring simultaneous fine tuning of more parameters and
thus being less generic. The theory of normal forms is used to simplify nonlinear sys-
tems trough a near-identity change of variables. In the present context, it can be used
to expand the action to a polynomial in the vicinity of a bifurcation [6].

Remark 46.2 Uniform approximations. Initially designed to include marginally stable
orbits in the Gutzwiller trace formula, uniform approximations have found many applica-
tions in atomic physics. Work on diffraction integrals containing catastrophes was done
in optics by Berry and Upstill [2]. Ozorio de Almeida and Hannay [3] and Schomerus
and Sieber [5, 4] have developed uniform approximations near bifurcations of periodic
orbits. Uniform approximations in closed orbit theory have been addressed by Gao
and Delos [13] and Shaw and Robicheaux [12] for an atom in an electric field, and by
Main and Wunner [11] and Bartsch [9] in for an atom in crossed electric and magnetic
fields. When the change of a continous parameter causes the breaking of a symme-
try of the system, a number of degenerate orbits may suddenly disappear. Uniform
approximations for such bifurcations can be found in Creagh [14] and Brack et al. [15].

Remark 46.3 Closed orbits. Closed orbit theory was formulated in 1988 by Du,
Delos [7] and Bogomolny [8], in order to explain the existence of oscillations in the
average-absorption spectrum of an atom in a magnetic field. 14

13Predrag: not sure this explains it
14Predrag: give references: hydrogen in crossed electric and magnetic fields, if useful
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uniform
approximation

Exercises boyscout

46.1. Uniform approximation to a symmetric cusp catastro-
phe. Consider the case of a pitchfork bifurcation de-
scribed by the normal form (46.4). Keep in mind that at
the bifurcation point the two orbits that bifurcate off the
single orbit have both the same action and amplitude. De-
rive the uniform approximation for this bifurcation, using
the general procedure given in sect. 46.3 and the compu-
tations of integral (46.1) in sect. 46.1 for a cusp catastro-
phe.

(D. Lippolis)
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Epilogue

Nowadays, whatever the truth of the matter may be (and
we will probably never know), the simplest solution is no
longer emotionally satisfying. Everything we know about
the world militates against it. The concepts of indetermi-
nacy and chaos have filtered down to us from the higher
sciences to confirm our nagging suspicions.

—L. Sante, “Review of ‘American Tabloid’ by James
Ellroy,” New York Review of Books (May 11, 1995)

A motion on a strange attractor can be approximated by shadowing long or-
bits by sequences of nearby shorter periodic orbits. This notion has here
been made precise by approximating orbits by prime cycles, and evalu-

ating associated curvatures. A curvature measures the deviation of a long cycle
from its approximation by shorter cycles; the smoothness of the dynamical system
implies exponential fall-off for (almost) all curvatures. We propose that the theo-
retical and experimental non–wandering sets be expressed in terms of the symbol
sequences of short cycles (a topological characterization of the spatial layout of
the non–wandering set) and their eigenvalues (metric structure) ; for example, ⇓PRIVATE
plotted as fig. ?! or listed as in II, table 1?!. The cycle expansions then offer
an efficient method for evaluating periodic orbit averages; accurate estimates can
already be obtained from a few fundamental cycles.

For reasons of clarity we have here motivated the cycle expansions by a
simple 1-dimensional repeller of fig. ?!; detailed investigations of a series
of low dimensional chaotic systems undertaken in the sequel paper II, as

well as the classical and quantum pinball studies of refs. [18, 4, 8], give us some
confidence in the general feasibility of the cycle analysis advocated here.15

⇑PRIVATE

Cycles as the skeleton of chaos

We wind down this all-too-long treatise by asking: why cycle?

15Predrag: When the multitudes refused their ears, St. Anthony of Padua went down to the
seashore and preached to the fish.
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16 We tend to think of a dynamical system as a smooth system whose evolu-
tion can be followed by integrating a set of differential equations. Traditionally
one used integrable motions as zeroth-order approximations to physical systems,
and accounted for weak nonlinearities perturbatively. However, when the evo-
lution is actually followed through to asymptotic times, one discovers that the
strongly nonlinear systems show an amazingly rich structure which is not at all
apparent in their formulation in terms of differential equations. In particular, the
periodic orbits are important because they form the skeleton onto which all trajec-
tories trapped for long times cling. This was already appreciated century ago by
H. Poincaré, who, describing in Les méthodes nouvelles de la méchanique céleste
his discovery of homoclinic tangles, mused that “the complexity of this figure will
be striking, and I shall not even try to draw it.” Today such drawings are cheap and
plentiful; but Poincaré went a step further and, noting that hidden in this apparent
chaos is a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths
and self-similar structure, suggested that the cycles should be the key to chaotic
dynamics.

The zeroth-order approximations to harshly chaotic dynamics are very differ-
ent from those for the nearly integrable systems: a good starting approximation
here is the stretching and kneading of a baker’s map, rather than the winding of a
harmonic oscillator.

For low dimensional deterministic dynamical systems description in terms of
cycles has many virtues:

1. cycle symbol sequences are topological invariants: they give the spatial
layout of a non–wandering set

2. cycle eigenvalues are metric invariants: they give the scale of each piece of
a non–wandering set

3. cycles are dense on the asymptotic non–wandering set

4. cycles are ordered hierarchically: short cycles give good approximations
to a non–wandering set, longer cycles only refinements. Errors due to ne-
glecting long cycles can be bounded, and typically fall off exponentially or
super-exponentially with the cutoff cycle length

5. cycles are structurally robust: for smooth flows eigenvalues of short cycles
vary slowly with smooth parameter changes

6. asymptotic averages (such as correlations, escape rates, quantum mechan-
ical eigenstates and other “thermodynamic” averages) can be efficiently
computed from short cycles by means of cycle expansions

Points 1, 2: That the cycle topology and eigenvalues are invariant properties
of dynamical systems follows from elementary considerations. If the same dy-
namics is given by a map f in one set of coordinates, and a map g in the next,

16Predrag: this paragraph is a repeat of parts of intro.tex, remove? rest into DasBuch summary?
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structural stabilitythen f and g (or any other good representation) are related by a reparametrization
and a coordinate transformation f = h−1 ◦ g ◦ h. As both f and g are arbitrary
representations of the dynamical system, the explicit form of the conjugacy h is
of no interest, only the properties invariant under any transformation h are of gen-
eral import. The most obvious invariant properties are topological; a fixed point
must be a fixed point in any representation, a trajectory which exactly returns to
the initial point (a cycle) must do so in any representation. Furthermore, a good
representation should not mutilate the data; h must be a smooth transformation
which maps nearby periodic points of f into nearby periodic points of g. This
smoothness guarantees that the cycles are not only topological invariants, but that
their linearized neighborhoods are also metrically invariant. In particular, the cy-
cle eigenvalues (eigenvalues of the Jacobian matrixs d fn(x)/dx of periodic orbits
f n(x) = x) are invariant.

Point 5: An important virtue of cycles is their structural robustness. Many
quantities customarily associated with dynamical systems depend on the notion
of “structural stability,” i.e., robustness of non–wandering set to small parameter
variations.

Still, the sufficiently short unstable cycles are structurally robust in the sense ⇓PRIVATE

exercise ??
⇑PRIVATE

that they are only slightly distorted by such parameter changes, and averages com-
puted using them as a skeleton are insensitive to small deformations of the non–
wandering set. In contrast, lack of structural stability wreaks havoc with long time
averages such as Lyapunov exponents(see sect. ??), for which there is no guaran- ⇓PRIVATE

⇑PRIVATE
tee that they converge to the correct asymptotic value in any finite time numerical
computation.

The main recent theoretical advance is point 4: we now know how to con-
trol the errors due to neglecting longer cycles. As we seen above, even though
the number of invariants is infinite (unlike, for example, the number of Casimir
invariants for a compact Lie group) the dynamics can be well approximated to
any finite accuracy by a small finite set of invariants. The origin of this conver-
gence is geometrical, as we shall see in appendix L.1.2, and for smooth flows the
convergence of cycle expansions can even be super-exponential.

The cycle expansions such as (20.7) outperform the pedestrian methods such
as extrapolations from the finite cover sums (22.2) for a number of reasons. The
cycle expansion is a better averaging procedure than the naive box counting al-
gorithms because the strange attractor is here pieced together in a topologically
invariant way from neighborhoods (“space average”) rather than explored by a
long ergodic trajectory (“time average”). The cycle expansion is co-ordinate and
reparametrization invariant - a finite nth level sum (22.2) is not. Cycles are of
finite period but infinite duration, so the cycle eigenvalues are already evaluated
in the n → ∞ limit, but for the sum (22.2) the limit has to be estimated by numer-
ical extrapolations. And, crucially, the higher terms in the cycle expansion (20.7)
are deviations of longer prime cycles from their approximations by shorter cycles.
Such combinations vanish exactly in piecewise linear approximations and fall off
exponentially for smooth dynamical flows. ⇓PRIVATE
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Perhaps it is worth emphasizing again that the Euler product formula (19.15)
is an expression for the exact transfer operator T . We extract its eigenvalues di-
rectly from (19.15) with no recourse to any explicit (and coordination dependent)
eigenfunctions. Our cycle expansions are dominated by short cycles, but that does
not mean that we are using finite covers to approximate the set: by resummation
that led to (19.15) we have already been lifted to the topologically exact k → ∞
non–wandering set. The approximation will consist in approximating the non–
wandering set under investigation by “closeby” Cantor sets with a finite number
of already asymptotically exact scales. The finite approximations T̃ (k) were intro-
duced only for reasons of pedagogy: our experience is that computations with the
asymptotically exact cycles expression (19.15) are both quicker and of better con-
vergence than computations that go through sequences of finite matrix estimates
such as the transition graph approximations.

However, the cycle expansions are not magic, and they will not converge any
better than the more traditional thermodynamic sums unless the following prereq-
uisites are met:

1. The essential prerequisite for implementing the above “shadowing” is
a good understanding of the symbolic dynamics of the dynamical system; the
present formulation requires that the symbolic dynamics be of a finite subshift
type (see sect. 12.4). A generic dynamical system is not of that type: our strategy
is to approach it by a sequence of finite subshift approximants, just as a generic
number can be bracketed by a sequence of rational approximants.

2. The weight used in averaging must be multiplicative along the flow, and the
flow should be smooth, so that nearby trajectories have nearby weights.

3. Cycle expansions converge only in the hyperbolic phase, i.e., only for aver-
ages dominated by the positive entropy of unstable cycles. Marginal fixed points
show up indirectly, as power-law corrections and non-analyticities of the ζ func-
tions. If a sequence of fundamental cycles tf is infinite and accumulating toward
marginal stability, the sequence must be summed up in order that the convergence
of the cycle expansion be exponential (see sect. ?!).

4. As developed here, the cycle expansions are good only for extracting the
leading eigenvalues of transfer operators. If more eigenvalues are needed, tech-
niques for analytically continuing beyond the leading singularities must be devel-
oped.

When and if the cycles suffice for the complete characterization (and recon-
struction) of a dynamical system is not known, but they do go further toward
detailed invariant characterization of low dimensional chaotic dynamical systems
than other current methods, and we hope that in the future the data will be pre-
sented in terms of cycles rather than “thermodynamic” averages.

We were guided here by the Axiom A intuition developed by Smale, Ruelle,
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circle mapand others: if the dynamical evolution can be cast in terms of an evolution operator
multiplicative along the flow, if the corresponding mapping (for ex., return map
for a Poincaré section of the flow) is analytic hyperbolic, and if the topology of
the repeller is given by a finite Markov partition, then the spectral determinant
(19.13) is entire.

The real life challenge are generic dynamical flows, which fit neither schema-
tization. Unfortunately we know of no smooth potential which is both Axiom A,
and has bound states. Most systems of interest are not of the “Axiom A” category;
they are neither purely hyperbolic nor do they have a simple symbolic dynamics
grammar. The crucial ingredient for nice analyticity properties of zeta functions
is existence of finite grammar (coupled with uniform hyperbolicity). From the
hyperbolic dynamics point of view, the Riemann zeta is perhaps the worst possi-
ble example; understanding the symbolic dynamics would amount to being able
to give a finite grammar definition of all primes. Hyperbolic dynamics suggests
that a generic “chaotic” dynamical system should be approached by a sequence
of finite grammar approximations[2], pretty much as a “generic” number is ap-
proached by a sequence of continued fractions.

The procedure described above is one possible way of generating subshifts
of finite type. One could have, for example, listed instead all non-vanishing ele-
ments of a [24×24] transition matrix; this yields a larger, non–minimal transition
graph. The transition graph approach is more compact, but it is still not entirely
natural in the context of the present problem: the graphs constructed by the algo-
rithm outlined here are not necessarily minimal, the graphs associated with time
reversed dynamics do not reflect this symmetry, and so on. Be it as it may, the
method requires only simple string shifts and matches, and is easily implemented
on a computer.

The above coarse approximations suffice for establishing the main result of
this section, that the coefficients in the cycle expansions of Selberg products fall
off faster than exponentially. The spectrum of L for the piecewise–linear approx-
imate maps is only indicative of the spectrum for the exact nonlinear map; the
details are subtle and the reader is referred to ref. [24, 18] for more careful con-
vergence estimates. In particular, our estimates depended on the assumption that
the symbolic dynamics is a subshift of finite type, that the cycle weight is mul-
tiplicative along the flow, and that the flow is smooth, so that nearby trajectories
have nearby weights. ⇑PRIVATE

In the above we have reviewed the general properties of the cycle expansions;
those have been applied to a series of examples of low-dimensional chaos: 1-
d strange attractors, the period-doubling repeller, the Hénon-type maps and the
mode locking intervals for circle maps. The cycle expansions have also been
applied to the irrational windings set of critical circle maps, to the Hamiltonian
period-doubling repeller, to a Hamiltonian three-disk game of pinball, to the three-
disk quantum scattering resonances and to the extraction of correlation exponents,
Feasibility of analysis of experimental non–wandering set in terms of cycles is
discussed in ref. [1].
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Homework assignment

“Lo! thy dread empire Chaos is restor’d, Light dies before
thy uncreating word; Thy hand, great Anarch, lets the cur-
tain fall, And universal darkness buries all.”

—Alexander Pope, The Dunciad

We conclude cautiously with a homework assignment posed May 22, 1990
(the original due date was May 22, 2000, but alas...):

1. Topology Develop optimal sequences (“continued fraction approximants”)
of finite subshift approximations to generic dynamical systems. Apply to
(a) the Hénon map, (b) the Lorenz flow and (c) the Hamiltonian standard
map.

2. Non-hyperbolicity Incorporate power–law (marginal stability orbits,“intermittency”)
corrections into cycle expansions. Apply to long-time tails in the Hamilto-
nian diffusion problem.

3. Phenomenology Carry through a convincing analysis of a genuine experi-
mentally extracted data set in terms of periodic orbits.

4. Invariants Prove that the scaling functions, or the cycles, or the spectrum
of a transfer operator are the maximal set of invariants of an (physically
interesting) dynamically generated non–wandering set.

5. Field theory Develop a periodic orbit theory of systems with many unstable
degrees of freedom. Apply to (a) coupled lattices, (b) cellular automata, (c)
neural networks.

6. Tunneling Add complex time orbits to quantum mechanical cycle expan-
sions (WKB theory for chaotic systems).

7. Unitarity Evaluate corrections to the Gutzwiller semiclassical periodic or-
bit sums. (a) Show that the zeros (energy eigenvalues) of the appropriate
Selberg products are real. (b) Find physically realistic systems for which
the “semiclassical” periodic orbit expansions yield the exact quantization.

8. Atomic spectra Compute the helium spectrum from periodic orbit expan-
sions (already accomplished by Wintgen and Tanner!).

9. Symmetries Include fermions, gauge fields into the periodic orbit theory.

10. Quantum field theory Develop quantum theory of systems with infinitely
many classically unstable degrees of freedom. Apply to (a) quark confine-
ment (b) early universe (c) the brain.
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boredom
Borges, J.L.

Conclusion

Good-bye. I am leaving because I am bored.
—George Saunders’ dying words

Nadie puede escribir un libro. Para Que un libro sea ver-
daderamente, Se requieren la aurora y el poniente Siglos,
armas y el mar que une y separa.

—Jorge Luis Borges El Hacedor, Ariosto y los arabes

The buttler did it.
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Appendix A

A brief history of chaos

Laws of attribution

1. Arnol’d’s Law: everything that is discovered is
named after someone else (including Arnol’d’s
law)

2. Berry’s Law: sometimes, the sequence of an-
tecedents seems endless. So, nothing is discovered
for the first time.

3. Whiteheads’s Law: Everything of importance has
been said before by someone who did not discover
it.

— Sir Michael V. Berry

Writing a history of anything is a reckless undertaking, especially a history of
something that has preoccupied at one time or other any serious thinker from
ancient Sumer to today’s Hong Kong. A mathematician, to take an example, might
see it this way: “History of dynamical systems.” Nevertheless, here comes yet
another very imperfect attempt.

A.1 Chaos is born

I’ll maybe discuss more about its history when I learn
more about it.

— Maciej Zworski

(R. Mainieri and P. Cvitanović)

Trying to predict the motion of the Moon has preoccupied astronomers since
antiquity. Accurate understanding of its motion was important for deter-
mining the longitude of ships while traversing open seas.
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confession!Kepler
three body@3-body

problem
Bernoulli

Kepler’s Rudolphine tables had been a great improvement over previous ta-
bles, and Kepler was justly proud of his achievements. He wrote in the introduc-
tion to the announcement of Kepler’s third law, Harmonice Mundi (Linz, 1619) in
a style that would not fly with the contemporary Physical Review Letters editors:

What I prophesied two-and-twenty years ago, as soon as I discovered
the five solids among the heavenly orbits–what I firmly believed long before
I had seen Ptolemy’s Harmonics–what I had promised my friends in the title
of this book, which I named before I was sure of my discovery–what sixteen
years ago, I urged as the thing to be sought–that for which I joined Tycho
Brahé, for which I settled in Prague, for which I have devoted the best part
of my life to astronomical contemplations, at length I have brought to light,
and recognized its truth beyond my most sanguine expectations. It is not
eighteen months since I got the first glimpse of light, three months since
the dawn, very few days since the unveiled sun, most admirable to gaze
upon, burst upon me. Nothing holds me; I will indulge my sacred fury; I
will triumph over mankind by the honest confession that I have stolen the
golden vases of the Egyptians to build up a tabernacle for my God far away
from the confines of Egypt. If you forgive me, I rejoice; if you are angry, I
can bear it; the die is cast, the book is written, to be read either now or in
posterity, I care not which; it may well wait a century for a reader, as God
has waited six thousand years for an observer.

Then came Newton. Classical mechanics has not stood still since Newton.
The formalism that we use today was developed by Euler and Lagrange. By the
end of the 1800’s the three problems that would lead to the notion of chaotic
dynamics were already known: the three-body problem, the ergodic hypothesis,
and nonlinear oscillators.

A.1.1 Three-body problem

Bernoulli used Newton’s work on mechanics to derive the elliptic orbits of Kepler
and set an example of how equations of motion could be solved by integrating.
But the motion of the Moon is not well approximated by an ellipse with the Earth
at a focus; at least the effects of the Sun have to be taken into account if one wants
to reproduce the data the classical Greeks already possessed. To do that one has
to consider the motion of three bodies: the Moon, the Earth, and the Sun. When
the planets are replaced by point particles of arbitrary masses, the problem to be
solved is known as the three-body problem. The three-body problem was also
a model to another concern in astronomy. In the Newtonian model of the solar
system it is possible for one of the planets to go from an elliptic orbit around the
Sun to an orbit that escaped its dominion or that plunged right into it. Knowing
if any of the planets would do so became the problem of the stability of the solar
system. A planet would not meet this terrible end if solar system consisted of
two celestial bodies, but whether such fate could befall in the three-body case
remained unclear.

After many failed attempts to solve the three-body problem, natural philoso-
phers started to suspect that it was impossible to integrate. The usual technique for
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homoclinic!pointintegrating problems was to find the conserved quantities, quantities that do not
change with time and allow one to relate the momenta and positions at different
times. The first sign on the impossibility of integrating the three-body problem
came from a result of Burns that showed that there were no conserved quantities
that were polynomial in the momenta and positions. Burns’ result did not pre-
clude the possibility of more complicated conserved quantities. This problem was
settled by Poincaré and Sundman in two very different ways [1, 2].

In an attempt to promote the journal Acta Mathematica, Mittag-Leffler got
the permission of the King Oscar II of Sweden and Norway to establish a mathe-
matical competition. Several questions were posed (although the king would have
preferred only one), and the prize of 2500 kroner would go to the best submission.
One of the questions was formulated by Weierstrass:

Given a system of arbitrary mass points that attract each other according
to Newton’s laws, under the assumption that no two points ever collide, try
to find a representation of the coordinates of each point as a series in a
variable that is some known function of time and for all of whose values the
series converges uniformly.

This problem, whose solution would considerably extend our under-
standing of the solar system, . . .

Poincaré’s submission won the prize. He showed that conserved quantities that
were analytic in the momenta and positions could not exist. To show that he
introduced methods that were very geometrical in spirit: the importance of state
space flow, the role of periodic orbits and their cross sections, the homoclinic
points.

The interesting thing about Poincaré’s work was that it did not solve the prob-
lem posed. He did not find a function that would give the coordinates as a function
of time for all times. He did not show that it was impossible either, but rather that
it could not be done with the Bernoulli technique of finding a conserved quantity
and trying to integrate. Integration would seem unlikely from Poincaré’s prize-
winning memoir, but it was accomplished by the Finnish-born Swedish mathe-
matician Sundman. Sundman showed that to integrate the three-body problem
one had to confront the two-body collisions. He did that by making them go away
through a trick known as regularization of the collision manifold. The trick is not
to expand the coordinates as a function of time t, but rather as a function of 3√t.
To solve the problem for all times he used a conformal map into a strip. This
allowed Sundman to obtain a series expansion for the coordinates valid for all
times, solving the problem that was proposed by Weirstrass in the King Oscar II’s
competition.

The Sundman’s series are not used today to compute the trajectories of any
three-body system. That is more simply accomplished by numerical methods or
through series that, although divergent, produce better numerical results. The con-
formal map and the collision regularization mean that the series are effectively in

the variable 1 − e−
3√t. Quite rapidly this gets exponentially close to one, the ra-

dius of convergence of the series. Many terms, more terms than any one has ever
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Boltzmann, L.wanted to compute, are needed to achieve numerical convergence. Though Sund-
man’s work deserves better credit than it gets, it did not live up to Weirstrass’s
expectations, and the series solution did not “considerably extend our understand-
ing of the solar system.’ The work that followed from Poincaré did.

A.1.2 Ergodic hypothesis

The second problem that played a key role in development of chaotic dynamics
was the ergodic hypothesis of Boltzmann. Maxwell and Boltzmann had combined
the mechanics of Newton with notions of probability in order to create statistical
mechanics, deriving thermodynamics from the equations of mechanics. To eval-
uate the heat capacity of even a simple system, Boltzmann had to make a great
simplifying assumption of ergodicity: that the dynamical system would visit every
part of the phase space allowed by conservation laws equally often. This hypoth-
esis was extended to other averages used in statistical mechanics and was called
the ergodic hypothesis. It was reformulated by Poincaré to say that a trajectory
comes as close as desired to any phase space point.

Proving the ergodic hypothesis turned out to be very difficult. By the end of
twentieth century it has only been shown true for a few systems and wrong for
quite a few others. Early on, as a mathematical necessity, the proof of the hypoth-
esis was broken down into two parts. First one would show that the mechanical
system was ergodic (it would go near any point) and then one would show that it
would go near each point equally often and regularly so that the computed aver-
ages made mathematical sense. Koopman took the first step in proving the ergodic
hypothesis when he realized that it was possible to reformulate it using the recently
developed methods of Hilbert spaces [1]. This was an important step that showed
that it was possible to take a finite-dimensional nonlinear problem and reformu-
late it as a infinite-dimensional linear problem. This does not make the problem
easier, but it does allow one to use a different set of mathematical tools on the
problem. Shortly after Koopman started lecturing on his method, von Neumann
proved a version of the ergodic hypothesis, giving it the status of a theorem [2].
He proved that if the mechanical system was ergodic, then the computed averages

chapter ??
would make sense. Soon afterwards Birkhoff published a much stronger version
of the theorem.

A.1.3 Nonlinear oscillators

The third problem that was very influential in the development of the theory of
chaotic dynamical systems was the work on the nonlinear oscillators. The prob-
lem is to construct mechanical models that would aid our understanding of phys-
ical systems. Lord Rayleigh came to the problem through his interest in under-
standing how musical instruments generate sound. In the first approximation one
can construct a model of a musical instrument as a linear oscillator. But real in-
struments do not produce a simple tone forever as the linear oscillator does, so
Lord Rayleigh modified this simple model by adding friction and more realistic
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Bernoulli!shiftmodels for the spring. By a clever use of negative friction he created two basic
models for the musical instruments. These models have more than a pure tone
and decay with time when not stroked. In his book The Theory of Sound Lord
Rayleigh introduced a series of methods that would prove quite general, such as
the notion of a limit cycle, a periodic motion a system goes to regardless of the
initial conditions.

A.2 Chaos grows up

(R. Mainieri)

The theorems of von Neumann and Birkhoff on the ergodic hypothesis were
published in 1912 and 1913. This line of enquiry developed in two directions.
One direction took an abstract approach and considered dynamical systems as
transformations of measurable spaces into themselves. Could we classify these
transformations in a meaningful way? This lead Kolmogorov to the introduction
of the concept of entropy for dynamical systems. With entropy as a dynamical
invariant it became possible to classify a set of abstract dynamical systems known
as the Bernoulli systems. The other line that developed from the ergodic hy- Ronnie: add Adler,

Ornestein, Weiss, etc . . .pothesis was in trying to find mechanical systems that are ergodic. An ergodic
system could not have stable orbits, as these would break ergodicity. So in 1898
Hadamard 1 published a paper with a playful title of ‘... billiards ...,’ where he
showed that the motion of balls on surfaces of constant negative curvature is ev-
erywhere unstable. This dynamical system was to prove very useful and it was
taken up by Birkhoff. Morse in 1923 showed that it was possible to enumerate
the orbits of a ball on a surface of constant negative curvature. He did this by
introducing a symbolic code to each orbit and showed that the number of possi-
ble codes grew exponentially with the length of the code. With contributions by
Artin, Hedlund, and H. Hopf it was eventually proven that the motion of a ball
on a surface of constant negative curvature was ergodic. The importance of this
result escaped most physicists, one exception being Krylov, who understood that
a physical billiard was a dynamical system on a surface of negative curvature, but
with the curvature concentrated along the lines of collision. Sinai, who was the
first to show that a physical billiard can be ergodic, knew Krylov’s work well.

The work of Lord Rayleigh also received vigorous development. It prompted
many experiments and some theoretical development by van der Pol, Duffing,
and Hayashi. They found other systems in which the nonlinear oscillator played
a role and classified the possible motions of these systems. This concreteness
of experiments, and the possibility of analysis was too much of temptation for
Mary Lucy Cartwright and J.E. Littlewood [5], who set out to prove that many
of the structures conjectured by the experimentalists and theoretical physicists
did indeed follow from the equations of motion. Birkhoff had found a ‘remark-
able curve’ in a two dimensional map; it appeared to be non-differentiable and it
would be nice to see if a smooth flow could generate such a curve. The work of

1Predrag: Hadamard reference?
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dynamical
system!smooth

smooth!dynamics
Cartwright, M.L.
Littlewood, J.E.
Lyapunov, A.M.
Smale, S.

Cartwright and Littlewood lead to the work of Levinson, which in turn provided
the basis for the horseshoe construction of S. Smale.

chapter 12

In Russia, Lyapunov paralleled the methods of Poincaré and initiated the
strong Russian dynamical systems school [6]. Andronov carried on with the study
of nonlinear oscillators and in 1937 introduced together with Pontryagin the no-
tion of coarse systems. They were formalizing the understanding garnered from
the study of nonlinear oscillators, the understanding that many of the details on
how these oscillators work do not affect the overall picture of the state space: there
will still be limit cycles if one changes the dissipation or spring force function by
a little bit. And changing the system a little bit has the great advantage of elim-
inating exceptional cases in the mathematical analysis. Coarse systems were the
concept that caught Smale’s attention and enticed him to study dynamical systems.

A.3 Chaos with us

(R. Mainieri)

In the fall of 1961 Steven Smale was invited to Kiev where he met Arnol’d,
Anosov, Sinai, and Novikov. He lectured there, and spent a lot of time with
Anosov. He suggested a series of conjectures, most of which Anosov proved
within a year. It was Anosov who showed that there are dynamical systems for
which all points (as opposed to a non–wandering set) admit the hyperbolic struc-
ture, and it was in honor of this result that Smale named these systems Axiom-A.
In Kiev Smale found a receptive audience that had been thinking about these prob-
lems. Smale’s result catalyzed their thoughts and initiated a chain of developments
that persisted into the 1970’s. 2

Smale collected his results and their development in the 1967 review article
on dynamical systems, entitled “Differentiable dynamical systems” [7]. There are

chapter 12
many great ideas in this paper: the global foliation of invariant sets of the map into
disjoint stable and unstable parts; the existence of a horseshoe and enumeration
and ordering of all its orbits; the use of zeta functions to study dynamical systems.
The emphasis of the paper is on the global properties of the dynamical system, on
how to understand the topology of the orbits. Smale’s account takes you from a
local differential equation (in the form of vector fields) to the global topological
description in terms of horseshoes.

The path traversed from ergodicity to entropy is a little more confusing. The
general character of entropy was understood by Weiner, who seemed to have spo-
ken to Shannon. In 1948 Shannon published his results on information theory,
where he discusses the entropy of the shift transformation. Kolmogorov went
far beyond and suggested a definition of the metric entropy of an area preserving
transformation in order to classify Bernoulli shifts. The suggestion was taken by

2Predrag: cite Smale web paper as source for historical remarks
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Bernoulli!shift
Markov!partition

his student Sinai and the results published in 1959. In 1960 Rohlin connected
these results to measure-theoretical notions of entropy. The next step was pub-
lished in 1965 by Adler and Palis, and also Adler, Konheim, McAndrew; these
papers showed that one could define the notion of topological entropy and use it
as an invariant to classify continuous maps. In 1967 Anosov and Sinai applied
the notion of entropy to the study of dynamical systems. It was in the context
of studying the entropy associated to a dynamical system that Sinai introduced
Markov partitions in 1968.

Markov partitions allow one to relate dynamical systems and statistical me-
chanics; this has been a very fruitful relationship. It adds measure notions to the
topological framework laid down in Smale’s paper. Markov partitions divide the
state space of the dynamical system into nice little boxes that map into each other.
Each box is labeled by a code and the dynamics on the state space maps the codes
around, inducing a symbolic dynamics. From the number of boxes needed to
cover all the space, Sinai was able to define the notion of entropy of a dynamical
system. In 1970 Bowen came up independently with the same ideas, although
there was presumably some flow of information back and forth before these pa-
pers got published. Bowen also introduced the important concept of shadowing of
chaotic orbits. We do not know whether at this point the relations with statistical
mechanics were clear to everyone. They became explicit in the work of Ruelle.
Ruelle understood that the topology of the orbits could be specified by a symbolic
code, and that one could associate an ‘energy’ to each orbit. The energies could
be formally combined in a ‘partition function’ to generate the invariant measure
of the system.

After Smale, Sinai, Bowen, and Ruelle had laid the foundations of the statisti-
cal mechanics approach to chaotic systems, research turned to studying particular
cases. The simplest case to consider is 1-dimensional maps. The topology of the
orbits for parabola-like maps was worked out in 1973 by Metropolis, Stein, and
Stein [8]. The more general 1-dimensional case was worked out in 1976 by Milnor
and Thurston in a widely circulated preprint, whose extended version eventually
got published in 1988 [9].

A lecture of Smale and the results of Metropolis, Stein, and Stein inspired
Feigenbaum to study simple maps. This lead him to the discovery of the universal-
ity in quadratic maps and the application of ideas from field-theory to dynamical
systems. Feigenbaum’s work was the culmination in the study of 1-dimensional
systems; a complete analysis of a nontrivial transition to chaos. Feigenbaum intro-
duced many new ideas into the field: the use of the renormalization group which
lead him to introduce functional equations in the study of dynamical systems, the
scaling function which completed the link between dynamical systems and statis-
tical mechanics, and the presentation functions which describe the dynamics of
scaling functions. 3

The work in more than one dimension progressed very slowly and is still far
from completed. The first result in trying to understand the topology of the or-
bits in two dimensions (the equivalent of Metropolis, Stein, and Stein, or Milnor

3Predrag: add Sullivan

appendHist - 12Mar2013 boyscout version14.4, Mar 19 2013



APPENDIX A. A BRIEF HISTORY OF CHAOS 1021

observableand Thurston’s work) was obtained by Thurston. Around 1975 Thurston was giv-
ing lectures “On the geometry and dynamics of diffeomorphisms of surfaces.”
Thurston’s techniques exposed in that lecture have not been applied in physics,
but much of the classification that Thurston developed can be obtained from the
notion of a ‘pruning front’ formulated independently by Cvitanović. 4

Once one develops an understanding of the topology of the orbits of a dynam-
ical system, one needs to be able to compute its properties. Ruelle had already
generalized the zeta function introduced by Artin and Mazur [10], so that it could
be used to compute the average value of observables. The difficulty with Ruelle’s
zeta function is that it does not converge very well. Starting out from Smale’s
observation that a chaotic dynamical system is dense with a set of periodic orbits,
Cvitanović used these orbits as a skeleton on which to evaluate the averages of
observables, and organized such calculations in terms of rapidly converging cy-
cle expansions. This convergence is attained by using the shorter orbits used as a
basis for shadowing the longer orbits.

This account is far from complete, but we hope that it will help get a sense of
perspective on the field. It is not a fad and it will not die anytime soon. 5

⇓PRIVATE

A brief history of chaos: 1889-1961 and a little bit beyond

[2013-01-27 Predrag to Raenell: This section is taken in its entirety from ref. [116].
Use relevant parts to improve the text in earlier sections in this chapter. In particu-
lar add the missing references to persons cited and to refsAppHist.tex, then delete
the text from here. Many of the references 2 to 28 at the end of this section are
already in ChaosBook; search for authors (in all files) and use/merge with exist-
ing citations. For example, citation here might have article title, but ChaosBook
version might be missing it. Be brave, rewrite fearlessly - subversion will show
me what you have rewritten, I can always polish later.]

Dynamical systems theory began with the work of Poincaré (18541912) on
the three-body problem of celestial mechanics [67], and specifically in a mas-
sive paper,3 which won a prize celebrating the 60th birthday of King Oscar II of
Sweden and Norway. In this and his earlier papers, Poincaré proposed new meth-
ods for studying nonlinear ordinary differential equations (ODEs). He described
the use of first return (Poincaré) maps for the study of periodic motions, defined
stable and unstable manifolds, discussed stability issues, developed perturbation
methods, and proved the (Poincaré) recurrence theorem. While revising his prize
paper,3 he realized that certain differential equations describing mechanical sys-
tems with two or more degrees of freedom were not integrable in the classical
sense, due to the presence of “doubly asymptotic” points, now called homo- and
heteroclinic orbits. Moreover, he saw that these orbits had profound implications
for the stability of motion in general, and realized that his previous claim that a

4Predrag: Predrag: add citation, add reference to Carvalho. some mathematician will kill me for
this?

5Predrag: reread old Intelligencer debate of Glick’s “Chaos”; Hirsch, etc.
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version of the restricted three-body problem of celestial mechanics had only sta-
ble behavior was false. In December 1889 and January 1890, he created the first
explicit example of deterministic chaos [1, 2].

G. D. Birkhoff (1884-1944) was one of relatively few mathematicians to con-
tinue on Poincaré’s path in the early 20th century.6,7 Birkhoff’s work on iterated
mappings of the annulus 8,9. Indeed, the van der Pol equation, a model of the
vacuum tube diode, played a central role in the development of dynamical sys-
tems theory. This began in the 1920s with a brief paper by van der Pol and van
den Mark,10 engineers at the Phillips Laboratories in Eindhoven, who were inter-
ested in subharmonic solutions and who noted in passing that their experimental
apparatus produced “an irregular noise” in certain frequency ranges: perhaps an
early observation of chaos? Cartwright and Littlewood alluded to this paper in
their proof of “discontinuous recurrent” orbits in the van der Pol equation [5], and
drew on Birkhoff’s proof that annulus maps with coexisting stable orbits of dis-
tinct periods also possessed complicated invariant sets. Their analysis was later
simplified by Levinson.12 In the same period, Soviet researchers defined struc-
turally stable systems13 (roughly speaking, those that preserve their qualitative
properties under small perturbations of the defining ODEs) and began to study
bifurcations in planar systems.14,15

When Smale became interested in dynamical systems in 19591960 he con-
jectured that a structurally stable ODE could possess only finite sets of periodic
orbits in any bounded region of its state space [114]. Levinson suggested that
CartwrightLittlewood paper might provide a counterexample. Smale’s geometric
interpretation of a Poincaré map for the forced van der Pol equation led to his
construction of the “horseshoe map,”17 and more generally contributed to the for-
mulation of a broad research program in dynamics [7]. Subsequently, Melnikov
19 and Arnold 20 provided rather general perturbative methods for proving the
existence of homoclinic tangles such as those recognized by Poincaré and Smale.

This work, which was almost all done by mathematicians, brings us to the
1960s. In that decade, a few engineers and physical scientists became interested
in chaos. Ueda’s 1961 discovery of chaos was an early example, predating by 2
years Lorenz’s better known paper on a strange attractor in a truncated model for
convection in a fluid layer [72]. Lorenz’s work remained unnoticed by mathemati-
cians until the 1970s, when J. A. Yorke was given a copy by a colleague in the
Department of Meteorology at the University of Maryland, which he passed on to
Smale.25 Soon thereafter, dynamical systems theory was percolating throughout
the sciences and motivations and examples were flowing back to mathematics. By
1985, a bibliography of dynamical systems listed over 4400 papers and books.26

More extensive treatments, along with comments on recent developments, can
be found in Refs. 5,27, but advances have been so rapid and widespread that
an adequate historical perspective on the past 50 years is still lacking. In spite
of some inflated claims and misuses of concepts and tools, which can augment
but not replace careful mathematical modeling, the past fifty years of chaos have
brought us much good sense, and a measure of order.
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A detailed account of Poincaré’s work on dynamics appears in ref. [1]. For
more on the discoveries of Ueda and Lorenz, and their sometimes difficult paths
to publication and acceptance, see Ref. 25. For a discussion of the sociological
and cultural contexts of nonlinear dynamics and chaos, see Ref. 28.
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10. B. van der Pol and B. van der Mark, “Frequency demultiplication,” Nature
120, 363364 (1927).

11. = [5]

12. N. Levinson, “A second-order differential equation with singular solu-
tions,” Ann. Math. 50, 127153 (1949). [ISI]

13. A. A. Andronov and L. Pontryagin, “Systèmes grossieres,” Dokl. Akad.
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A.4 Periodic orbit theory

Pure mathematics is a branch of applied mathematics.
— Joe Keller, after being asked to define applied

mathematics

(P. Cvitanović)

The history of periodic orbit theory is rich and curious; recent advances are equally
inspired by more than a century of developments in three separate subjects: 1.
classical chaotic dynamics, initiated by Poincaré and put on its modern footing
by Smale [7], Ruelle [11], and many others, 2. quantum theory initiated by Bohr,
with the modern ‘chaotic’ formulation by Gutzwiller [12, 13], and 3. analytic
number theory initiated by Riemann and formulated as a spectral problem by Sel-
berg [14, 15]. Following different lines of reasoning and driven by different mo-
tivations, the three separate roads all arrive at trace formulas, zeta functions and
spectral determinants.
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Gutzwiller, M.The fact that these fields are all related is far from obvious, and even today
the practitioners tend to cite papers only from their sub-speciality. In Gutzwiller’s
words [13], “The classical periodic orbits are a crucial stepping stone in the un-
derstanding of quantum mechanics, in particular when then classical system is
chaotic. This situation is very satisfying when one thinks of Poincaré who empha-
sized the importance of periodic orbits in classical mechanics, but could not have
had any idea of what they could mean for quantum mechanics. The set of energy
levels and the set of periodic orbits are complementary to each other since they are
essentially related through a Fourier transform. Such a relation had been found
earlier by the mathematicians in the study of the Laplacian operator on Rieman-
nian surfaces with constant negative curvature. This led to Selberg’s trace formula
in 1956 which has exactly the same form, but happens to be exact.” A posteriori,
one can say that zeta functions arise in both classical and quantum mechanics be-
cause the dynamical evolution can be described by the action of linear evolution
(or transfer) operators on infinite-dimensional vector spaces. The spectra of these
operators are given by the zeros of appropriate determinants. One way to evalu-

section 19.1
ate determinants is to expand them in terms of traces, log det (L) = tr (logL). In
this way the spectrum of an evolution operator becomes related to its traces, i.e.
periodic orbits. A deeper way of restating this is to observe that the trace formu-

exercise 4.1
las perform the same role in all of the above problems; they relate the spectrum
of lengths (local dynamics) to the spectrum of eigenvalues (global eigenstates),
and for nonlinear geometries they play a role analogous to the one that Fourier
transform plays for the circle.

Distant history is easily sanitized and mythologized. As we approach the
present, our vision is inevitably more myopic; for very different accounts cov-
ering the same recent history, see V. Baladi [16] (a mathematician’s perspective),
and M. V. Berry [17] (a quantum chaologist’s perspective). We are grateful for any
comments from the reader that would help make what follows fair and balanced.

M. Gutzwiller was the first to demonstrate that chaotic dynamics is built upon
unstable periodic orbits in his 1960’s work on the quantization of classically
chaotic quantum systems, where the ‘Gutzwiller trace formula’ gives the semi-

chapter 39
classical quantum spectrum as a sum over classical periodic orbits [18, 19, 20,
12]. Equally important was D. Ruelle’s 1970’s work on hyperbolic systems,
where ergodic averages associated with natural invariant measures are expressed

chapter 19
as weighted sums on the infinite set of unstable periodic orbits embedded in the
underlying chaotic set [21, 22]. This idea can be traced back to the following

remark 19.2
sources: 1. the foundational 1967 review [7], where S. Smale proposed as “a wild
idea in this direction” a (technically incorrect, but prescient) zeta function over
periodic orbits, 2. the 1965 Artin-Mazur zeta function for counting periodic or-

chapter 15
bits [10], and 3. the 1956 Selberg number-theoretic zeta functions for Riemann
surfaces of constant curvature [14]. That one could compute using these infinite
sets was not clear at all. Ruelle [11] never attempted explicit computations, and
Gutzwiller only attempted to implement summations over anisotropic Kepler pe-
riodic orbits by treating them as Ising model configurations [23] (In retrospect,
Gutzwiller was lucky; it turns out that the more periodic orbits one includes, the
worse convergence one gets [24]).
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entropy!barrierFor a long time the convergence of such sums bedeviled the practitioners, un-
til the mathematically rigorous spectral determinants for hyperbolic deterministic
flows, and the closely related semiclassicaly exact Gutzwiller Zeta functions were
recast in terms of highly convergent cycle expansions. Under these circumstances,
a relatively few short periodic orbits lead to highly accurate long time averages of
quantities measured in chaotic dynamics and of spectra for quantum systems. The
idea, in a nutshell, is that long orbits are shadowed by shorter orbits, and the nth
term in a cycle expansion is the difference between the shorter cycles estimate of
the period n-cycles’ contribution and the exact n-cycles sum. For unstable, hy-
perbolic flows, this difference falls off exponentially or super-exponentially [60].
Contrary to what some literature says, cycle expansions are no more ‘clever re-

chapter N
summations’ than the Plemelj-Smithies cumulant evaluation of a determinant is a
‘resummation’, and their theory is considerably more reassuring than what prac-
titioners of quantum chaos fear: there is no ‘abscissa of absolute convergence’,
there is no ‘entropy barrier’, and the exponential proliferation of cycles is not the
problem.

Cvitanović derived ‘cycle expansions’ in 1986-87, 6 in an effort to prove that
chapter 20

the mode-locking dimension for critical circle maps discovered by Jensen, Bak
and Bohr [25] is universal; the same kind of periodic orbits are involved in the
Hénon map, but now in renormalization ‘time’. The symbolic dynamics of the
Hénon attractor (the pruning front conjecture [26]) is coded by transition graphs,
topological entropy is given by roots of their determinants. This observation led to

chapter 15
the study of convergence of spectral determinants for both discrete-time (iterated
maps) and continuous-time deterministic flows (both ODEs and PDEs). Cycle

chapter 23
expansions thus arose not from temporal dynamics, but from studies of scalings in
period-doubling and cycle-map renormalizations [27, 28, 29]. This work was done
in collaboration with R. Artuso (PhD 1987-1989), G. Gunaratne, and E. Aurell
(PhD 1984-1989), and it was written under the watchful eye of parrot Gaspar in
Fundaçaõ de Faca, Porto Seguro, as two long Recycling of strange sets papers [30,
27]: I. Cycle expansions and II. Applications. The main lesson was that one should
never split theory and applications into papers numbered I and II; part II, which
covers many interesting results, has barely been glanced at by anyone.

The first published paper on these developments was Auerbach et al. [31]
Exploring chaotic motion through periodic orbits (submitted March 1987). Here
only a ‘level sum’ approximation (20.41),

section 22.5

1 =
∑

x j∈Fix f n

t j eβAn(xj) , t j =
e−ns(n)

Λ j
, (A.1)

to the trace formula is presented as an nth order estimate of the leading Perron-
Frobenius eigenvalue s(n), and applied to the Hénon attractor (Eq. (4) of the above
paper). (The exact weight of an unstable prime periodic orbit p (for level sum
(18.7)) had been conjectured by Kadanoff and Tang [32] in 1984.) Even as it
was written, the heuristics of this paper was rendered obsolete by the exact cycle

6Predrag: The earliest reference to ‘cycle expansion’ in my notes is from 29 October 1987
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expansions, and yet, mysteriously, this might be one of the most cited periodic
orbits papers. 7

The first attempt to make cycle expansions accessible to every person was
condensed into Phys. Rev. Letter, Invariant measurement of strange sets in terms
of cycles (submitted March 1988) [33]. However, the two long papers by Artuso
et al. [30, 27] are a better read. 8 9

Several applications of the new methodology are worth mentioning. One was
the accurate calculation of the leading dozen eigenvalues of the period-doubling
operator [27, 28, 34]. Another breakthrough was the cycle expansion of determin-
istic transport coefficients [35, 36, 37], such as diffusion constants without any

chapter 26
probabilistic assumptions. The classical Boltzmann equation for the evolution of
1-particle density is based on Stosszahlansatz, the assumption that velocities of
colliding particles are not correlated. In periodic orbit theory all correlations are
included in cycle averaging formulas, such as the cycle expansion for a particle
diffusing chaotically across a spatially-periodic array.

Physicists tend to obsess about matters weightier than iterating maps, so Cvi-
tanović and Eckhardt showed that cycle expansions reproduce quantum resonances
of Eckhardt’s 3-disk scatterer [38] to rather impressive accuracy [39] (submitted
February 1989). Gaspard and Rice published a lovely triptic of articles (submit-
ted September 1988) about the same 3-disk system (classical, semiclassical and
quantum scattering) [40, 41, 42]. In 1992 P. E. Rosenqvist [43, 44], in his PhD
thesis, combined the magic of spectral determinants with their symmetry factor-
izations [23, 45] to take cycle expansions to ridiculous accuracy; for example,
periodic orbits up to 10 bounces determine the classical escape rate for a 3-disk
pinball to be

γ = 0.4103384077693464893384613078192 . . . .

Try to extract this from a direct numerical simulation, or a log-log plot of level
sums (A.1)! Prior to cycle expansions, the best accuracy that Gaspard and Rice
achieved by applying Markov approximations to the spectral determinant [40] was
1 significant digit, γ � 0.45.

A 3-disk billiard is exceptionally nice, uniformly hyperbolic repeller. More
often than not, good symbolic dynamics for a given flow is either not available,
or its grammar is not finite, or the convergence of cycle expansions is affected
by non-hyperbolic regions of state space. In those cases truncations such as the

chapter 24
stability cutoff of Dahlqvist and Russberg [46, 47] and Dettmann and Morriss [48]
might be helpful. The idea is to truncate the cycle expansion by including only the

section 20.6
shadowing combinations of pseudo-cycles {p1, p2 · · · , pk} such that |Λp1 · · ·Λpk | ≤
Λmax, with the cutoff Λmax equal to or smaller than the most unstable Λp in the
data set.

7Predrag: read ChaosBook.org sect. 22.5
8Predrag: Notebook #41, 10 October 1986
9Predrag: My notes say it was from 17 July 1986 to 9 October 1987.
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hyperbolic!systemsIt is pedagogically easier to motivate sums over periodic orbits by starting with
discrete time dynamical systems, but most flows of physical interest are continu-
ous in time. The weighted averages of periodic orbits for continuous time flows
were introduced by Bowen, who treated them as Poincaré section suspensions
weighted by the ‘time ceiling’ function, and were incorporated into dynamical
zeta functions by Parry and Pollicott [49] and Ruelle [50]. For people steeped
in quantum mechanics it all looked very unfamiliar, so in 1991 Cvitanović and
Eckhardt reformulated spectral determinants for continuous time flows along the
lines of Gutzwiller’s derivation of the semi-classical trace formula [51]. As a con-

chapter 18
sequence, quantum mechanicians [17, 52, 53] tend to cite this paper as the first
paper on cycle expansions.

2D billiards are only toys, but quantization of helium is surely not just a game.
By implementing cycle expansions in 1991, the group of Dieter Wintgen obtained
a surprisingly accurate helium spectrum [54, 55] from a small set of its shortest
cycles. This happened 50 years after old quantum theory had failed to do so and
20 years after Gutzwiller first introduced his quantization of chaotic systems [12].

The Copenhagen group gave many conference and seminar talks about cycle
expansions. In December 1986, Cvitanović presented results on the periodic-orbit
description of the topology of Lozi and Hénon attractors and the periodic-orbit
computation of associated dynamical averages, at the meeting on “Chaos and

section 12.4
Related Nonlinear Phenomena: Where do we go from here?.” This meeting was
organized by Moshe Shapiro and Itamar Procaccia and held in the kibutz Kiryat
Anavim. A great meeting, and Celso Grebogi was in the audience. 10 After the
“Where do we go from here?” meeting, the Maryland group wrote a series of
papers on unstable periodic orbits, or ‘UPOs’. In the first paper [56], Unstable

remark 5.1
periodic orbits and the dimensions of multifractal chaotic attractor (submitted
September 1987), the focus was on fractal dimensions of chaotic attractors, as
was the fashion in the late 1980’s. They prove that the natural measure ρ0 of
a mixing hyperbolic attractor is given by the limit of a sum over the unstable
periodic points xj of long period n, embedded in a chaotic attractor. Each periodic
point is weighted by the inverse of the product of its periodic orbit’s expanding
Floquet multipliers Λ j, Eq. (14) in their paper:

ρ0(MS ) = lim
n→∞

∑
x j∈Fix f n

1
Λ j

, x j ∈ MS . (A.2)

This is an approximate level sum formula for natural measure, a special case of
(A.1), with leading Perron-Frobenius eigenvalue s = 0 (no escape), and β = 0
(observable =1). The first paper does cite Auerbach et al. [31], in which the
same approximate level sum seems to have been published for the first time. Ever
since then, various cyclist teams cite exclusively their own papers and some of

10Predrag: oh, God... So in scholarpedia credits (Hannay 1984) with the level sum version of
flow conservation sum rule (20.17) - he did not do it for discrete time maps, but for the awkward
continuous time case, and Grebogi, Ott and Yorke [56] with escape rate γ from the repeller - but
that was already in ref. [32].
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the mathematicians of the 1970’s. In mathematics that is the custom; after a long
discomfort of not understanding a physics paper, one relabels all symbols in all
formulas, proves that something that was expected to be true is true, mentions in
the first paper that “physicist Blah has conjectured that,” and then never ever refers
to poor Blah again. But the 2nd physics paper is rarely so much better than the
original idea that we should aspire to this standard.

So you have now written a paper that uses periodic orbits. What is one to cite?
Work by Sinai-Bowen-Ruelle is smarter and more profound than the vast majority
of ‘chaos’ publications from the 1980s on. If you are not actually computing any-
thing using periodic orbits and are reluctant to refer to recent contributions, you
can safely credit Ruelle [22, 11] for deriving the dynamical (or Ruelle) zeta func-
tion, and Gutzwiller for formulating semiclassical quantization as a Zeta function
over unstable periodic orbits [12, 13]. There are no cycle expansions in these pa-
pers or in Bowen’s work (see, for example, the description in Scholarpedia.org).
If you have computed something using sums weighted by periodic-orbit weights,
cite the first paper that introduced them, as well as a useful up-to-date reference,
which in this case is ChaosBook.org. Do not faint because this webbook is
available on (gasp!) the internet - it’s third millennium, and having a continuously
updated, hyperlinked and reliable reference has its virtues.

Depending on the context, one should also cite 1) Zoldi and Greenside [57] for
being the second to determine unstable periodic orbits (127 of them) for Kuramoto-
Sivashinsky, on a domain larger than what was studied in ref. [79], 2) López et
al. [58] for being the first to determine relative periodic orbits in a spatio-temporal
PDE (complex Landau-Ginzburg), and 3) Kazantsev [59] for being the first to de-
termine periodic orbits in a weather model, and for his variational method for find-
ing periodic orbits. We love them, but not because of their ‘escape-time weight-

remark 20.1
ing’.

While derivations of (A.1) by Kadanoff and Tang 1984 and Auerbach et al.
1987 were heuristic, Grebogi, Ott and Yorke 1987 prove (A.2) by taking the
n → ∞ limit. In actual computations it would be madness to attempt to take such
limit, as longer and longer periodic orbits are exponentially more and more un-
stable, exponentially growing in number, and non-computable; and the natural
measure ρ0 is everywhere singular, with support on a fractal set, with its n → ∞
limit even more impossible to compute. And why would one take this limit? The
whole point of cycle expansions is that it is smarter to compute averages without
constructing ρ0.

Taking a limit to obtain a proof is good mathematics, but in statistical mechan-
ics a partition function is not a limit of anything; it is the full sum of all states.
Likewise, its ergodic theory cousin, the spectral determinant is not a long-time
limit; it is the exact sum over all periodic orbits. Cycle expansions were intro-
duced in a non-rigorous manner, on purpose [33]: the exposition was meant not to
frighten a novice, innocent of Borel measurable α to Ω sets. This was set right in

chapter 23
the elegant PhD thesis of H. H Rugh’s in 1992, The correlation spectrum for hy-
perbolic analytic maps [60], which proves that the zeros of spectral determinants
are indeed the Ruelle-Pollicott resonances [61, 62, 63]. The proof is well within
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Hannay-Ozorio de
Almeida sum rule

mathematicians’ comfort zone, so they tend to cite Rugh’s paper as the paper on
‘Fredholm determinants’, and, as always, throw in “a sense of Grothendieck” for
good measure [16, 64], without citing earlier papers on cycle expansions.

If you intend to determine and use periodic orbits, here is the message: Heuris-
tic ‘level sums’ are approximations to the exact trace formulas (that are derived
here, in ChaosBook, and Gaspard monograph [65] with no more effort than the
heuristic approximations), not smart for computations; faster convergence is ob-
tained by utilizing the shadowing that is built into the exact cycle expansions of
dynamical zeta functions and spectral determinants. Cycle expansions are not
heuristic, in classical deterministic dynamics they are exact expansions in the un-
stable periodic orbits [33, 30, 27]; in quantum mechanics and stochastic mechan-
ics they are semi-classically exact. So why would one prefer a limit of a heuristic
sum such as (A.2) to the exact spectral determinant, convergent exact periodic

section 22.5
orbits sums, and exact periodic orbits formulas for dynamical averages of observ-
ables? It is not even wrong. Perhaps if one is very fond of baker’s maps [66],
which, being piecewise linear, have no cycle expansion curvature terms, one does
not appreciate the shadowing cancelations built into the spectral determinants and
their cycle expansions. That might be the reason why linear thinkers stop at the
level sum (A.2). ⇓PRIVATE

Recycling papers to cite

Carl 11feb2013: I have little to edit, since much of it stops just as I began working
on cycle expansions in the mid-90s. Noisy expansions seem like the main omis-
sion, and I guess the group theory is going to grow into some developments in
systems with discrete and continuous symmetries?

Some other early papers are

Topological and metric properties of Hénon-type attractors (with G.H. Gu-
naratne and I. Procaccia), Phys. Rev. A 38, 1503 (1988)

Further contributions was the 1992 PhD thesis of F. Christiansen [?],

11

1 in (A.1) is the statement of probability conservation. In semi-classical quan-
tization of chaos this statement that total probability is conserved even has a name:
it is called ‘Hannay-Ozorio de Almeida sum rule’.

remark 22.2

⇑PRIVATE

⇓PRIVATE
A.4.1 Prune Danish

The pruning front theory was developed in Hansen’s PhD thesis [?]. 12

11Predrag: V. Putkaradze [?]
12Predrag: This work was done at Chalmers, Gothenburg 1985-1986, and at Cornell in the spring

of 1985.

appendHist - 12Mar2013 boyscout version14.4, Mar 19 2013



APPENDIX A. A BRIEF HISTORY OF CHAOS 1031

Cvitanović then applied the same technique to study of the topology of the
Hénon attractor, and formulated ‘pruning front conjecture’ [26], see sect. A.4.1.

Amy Wilkinson 2010-01-05: I remember you told a story about going on
Danish tv with a pastry chef and actually doing the kneading.

Predrag 2009-12-01: I had the video, but it’s some Oy-ro-peon format (gave it
to two guys preparing Gleick “Chaos” in app format, have not seen it since, they
have a thing that can convert it to flash). Perhaps Danish Radio has in their TV
archive, perhaps I have handwritten letter about it from 1988. Will check.

Bagermester (master baker) Iversen has a cousin who works for Danish Radio,
and brings all children and pastry-baking programs his way. He gets paid in bottles
of red wine, as book keeping otherwise requires things such contribution to the
state vacation fund. Bagermester Iversen will die convinced that I was brought to
him as a foreign worker on one of these children programs. But no, I was enlisted
as his apprentice to star on Tor Nørretranders’ wildly successful Danish Radio
popular science television program “Hvælv”, 1988 episode “Det kosmiske kaos”.
13

The point is that pastry-making is the best way to motivate the notions of hy-
perbolicity and chaos. While working as a visiting professor at Cornell Jan-May
1985 I developed ‘pruning front conjecture’, a method of separating topologi-
cally admissible from inadmmissible orbits for dynamical systems such as the
Hénon and Lozi maps. Clearest illustration is offered by slicing edges of a 2-D
baker’s map, and thus I got into the pastry business. As a Dane, I naturally called
the method ’kneading Danish pastry.’ Physical Review editor was not amused -
he found ’prune danish’ a particularly vile American motel fodder, and simply
crossed out the two words whenever they appeared, rendering entire sentences
subjectless, and the article more puzzling than even the competing submissions
from the Far Orient. Danish television was more liberal.

So I arrived to bagermester Iversen’s kitchen decked out in white from tip to
toe, and started explaining what we were to do. We’ll take two thick rectangles
of dough - as a Danish nationalist and royalist to boot, I wanted one block to be
white, the other red. That was OK. Then I told him that to put them on top of each
other, compress them to the thickness of one, and fold this over, to the original
dough shape.

Bagermester Iversen looked at me annoyed. “This is NOT how we knead
wienerbrød (Danish pastry)!” He pushed me aside, spread the dough to 1/3 of
original thickness, folded 1/3 back, and the other 1/3 at the end over that, sliced
of the two ends, and folded again. Very quickly (compute number of kneadings
yourself) a single layer is an Ångström thick, and the dough is pink.

Thus the Smale horseshoe went out of the window. I went back to Smale’s
article, and what do you know - he kneaded exactly like bagermester Iverson.

13Predrag: Danish Radio is an old, unionized institution, and the whitehairs who recorded the
program added Dansih subtitles to my Danish, to accommodate the sensitivities of the more xeno-
phobe segment of the populace.

appendHist - 12Mar2013 boyscout version14.4, Mar 19 2013

http://www.cns.gatech.edu/~predrag/papers/preprints.html#PrunFront


APPENDIX A. A BRIEF HISTORY OF CHAOS 1032

heteroclinic!connection
natural measure
measure!natural
Hopf, Ebehardt

I’ve appeared on the morning commercial television explaining chaos by playing pinball
with no further ado, but Danish (state) Radio production people are old white-
haired trade-union men. As my name is not a Jensen, they used that inimitable
Danish charm that makes native Danes so beloved by the darker shades of human-
ity, and subtitled my performance (in Danish). As we say, what røvhuller. ⇑PRIVATE

A.5 Dynamicist’s vision of turbulence

The key theoretical concepts that form the basis of the turbulence chapter27 are ⇓PRIVATE

⇑PRIVATE
rooted in the work of Poincaré, Hopf, Smale, Ruelle, Gutzwiller and Spiegel. In
Poincaré’s 1889 analysis of the three-body problem [67], he introduced the geo-
metric approach to dynamical systems and methods that lie at the core of the the-
ory developed here: qualitative topology of state space flows, Poincaré sections,
key roles played by equilibria, periodic orbits, heteroclinic connections, and their
stable/unstable manifolds.

In a seminal 1948 paper [68], Ebehardt Hopf visualized the function space
of allowable Navier-Stokes velocity fields as an infinite-dimensional state space,
parameterized by viscosity, boundary conditions and external forces, with instan-
taneous state of a flow represented by a point in this state space. Laminar flows
correspond to equilibrium points, globally stable for sufficiently large viscosity.
As the viscosity decreases (as the Reynolds number increases), turbulent states
set in, represented by chaotic state space trajectories. Hopf’s observation that
viscosity causes a contraction of state space volumes under the action of dy-
namics led to his key conjecture: that long-term, typically observed solutions of
the Navier-Stokes equations lie on finite-dimensional manifolds embedded in the
infinite-dimensional state space of allowed states. Hopf’s manifold, known today
as the ‘inertial manifold,’ is well-studied in the mathematics of spatio-temporal
PDEs. Its finite dimensionality for non-vanishing ‘viscosity’ parameter has been
rigorously established in certain settings by Foias and collaborators [69]. Hopf
presciently noted that “the geometrical picture of the phase flow is, however, not
the most important problem of the theory of turbulence. Of greater importance is
the determination of the probability distributions associated with the phase flow”.
Hopf’s call for understanding probability distributions associated with the phase
flow has indeed proven to be a key challenge, one in which dynamical systems the-
ory has made the greatest progress in the last half century. In particular, the Sinai-
Ruelle-Bowen ergodic theory of ‘natural’ or SRB measures has played a critical
role in understanding dissipative systems with chaotic behavior [7, 70, 71, 11].
14

Hopf noted “[t]he great mathematical difficulties of these important problems
are well known and at present the way to a successful attack on them seems hope-
lessly barred. However, there is no doubt that many characteristic features of the
hydrodynamical phase flow occur in a much larger class of similar problems gov-
erned by non-linear space-time systems. In order to gain insight into the nature

14Predrag: acknowledge Titi
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Kraichnan, Robert H.
Spiegel, Edward A.
Hopf, Ebehardt

of hydrodynamical phase flows we are, at present, forced to find and to treat sim-
plified examples within that class.” Hopf’s call for geometric state space analysis
of simplified models first came to fulfillment with the influential Lorenz’s trunca-
tion [72] of the Rayleigh-Bénard convection state space. The Proper Orthogonal

example 2.2
Decomposition (POD) models of boundary-layer turbulence brought this type of
analysis closer to physical hydrodynamics [73, 74]. Further significant progress
has proved possible for systems such as the 1-spatial dimension Kuramoto-Siva-
shinsky flow [75, 76], which is a paradigmatic model of turbulent dynamics, as
well as one of the most extensively studied spatially extended dynamical systems.

Today, as we hope to have convinced the reader, with modern computation and
experimental insights, the way to a successful attack on the full Navier-Stokes
problem is no longer “hopelessly barred.” We address the challenge in a way

chapter 27
Hopf could not divine, employing methodology developed only within the past
two decades, explained in depth in this book.

Hopf, however, to the best of our knowledge, never suggested that turbulent
flow should be analyzed in terms of ‘recurrent flows’, i.e. time-periodic solutions
of the defining PDEs. The story so far goes like this: in 1960 Ed Spiegel was
Robert Kraichnan’s research associate. Kraichnan told him, “Flow follows a reg-
ular solution for a while, then another one, then switches to another one; that’s
turbulence.” It was not too clear, but Kraichnan’s vision of turbulence moved Ed.
In 1962 Spiegel and Derek Moore investigated a set of 3rd order convection equa-
tions which seemed to follow one periodic solution, then another, and continued
going from periodic solution to periodic solution. Ed told Derek, “This is turbu-
lence!” and Derek said “This is wonderful!” He gave a lecture at Caltech in 1964
and came back very angry. They pilloried him there. “Why is this turbulence?”
they kept asking and he could not answer, so he expunged the word ‘turbulence’
from their 1966 paper [77] on periodic solutions. In 1970 Spiegel met Kraichnan
and told him, “This vision of turbulence of yours has been very useful to me.”
Kraichnan said: “That wasn’t my vision, that was Hopf’s vision.” What Hopf ac-
tually said and where he said it remains deeply obscure to this very day. There are
papers that lump him together with Landau, as the ‘Landau-Hopf’s incorrect the-
ory of turbulence,’ a proposal to deploy incommensurate frequencies as building
blocks of turbulence. This was Landau’s guess and was the only one that could be
implemented at the time.

The first paper to advocate a periodic orbit description of turbulent flows is
thus the 1966 Spiegel and Moore paper [77, 78]. Thirty years later, in 1996
Christiansen et al. [79] proposed (in what is now the gold standard for exemplary
ChaosBook.org/projects) that the periodic orbit theory be applied to infinite-
dimensional flows, such as the Navier-Stokes, using the Kuramoto-Sivashinsky
model as a laboratory for exploring the dynamics close to the onset of spatiotem-
poral chaos. The main conceptual advance in this initial foray was the demonstra-
tion that the high-dimensional (16-64 mode Galërkin truncations) dynamics of this
dissipative flow can be reduced to an approximately 1-dimensional Poincaré return
map s → f (s), by choosing the unstable manifold of the shortest periodic orbit as
the intrinsic curvilinear coordinate from which to measure near recurrences. For
the first time for any nonlinear PDE, some 1,000 unstable periodic orbits were
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Hopf’s last hope
last hope, Hopf’s
Waleffe, F.

determined numerically. What was novel about this work? First, dynamics on a
strange attractor embedded in a high-dimensional space was essentially reduced
to 1-dimensional dynamics. Second, the solutions found provided both a quali-
tative description and highly accurate quantitative predictions for the given PDE
with the given boundary conditions and system parameter values.

How is it possible that the theory originally developed for low dimensional
dynamical systems can work in the ∞-dimensional PDE state spaces? For dissi-
pative flows the number of the unstable, expanding directions is often finite and
even low-dimensional; perturbations along the ∞ of contracting directions heal
themselves, and play only a minor role in cycle weights - hence the long-time dy-
namics is effectively finite dimensional. For a more precise statement, see Ginelli
et al. [80].

The 1996 project went as far as one could with methods and computation re-
sources available, until 2002, when new variational methods were introduced [81,
82, 83]. Considerably more unstable, higher-dimensional regimes have become
accessible [84]. Of course, nobody really cares about Kuramoto-Sivashinsky, it is
only a model; it was not until the full Navier-Stokes calculations of Eckhardt, Ker-
swell and collaborators [85, 86, 87] that the fluid dynamics community started to
appreciate that the dynamical (as opposed to statistical) analysis of wall-bounded
flows is now feasible [88].

A.6 Gruppenpest

How many Tylenols should I take with this?... (never took
group theory, still need to be convinced that there is any
use to this beyond mind-numbing formalizations.)

— Fabian Waleffe, forced to read chapter 9.

If you are not fan of chapter 9 “World in a mirror,” and its elaborations, you
are not alone. Or, at least, you were not alone in 1930s. That is when the arti-
cles by two young mathematical physicists, Eugene Wigner and Johann von Neu-
mann [89], and Wigner’s 1931 Gruppentheorie [90] started Die Gruppenpest that
plagues us to this very day.

According to John Baez [91], the American physicist John Slater, inventor of
the ‘Slater determinant,’ is famous for having dismissed groups as unnecessary to
physics. He wrote:

“It was at this point that Wigner, Hund, Heitler, and Weyl entered the picture
with their ‘Gruppenpest:’ the pest of the group theory [actually, the correct trans-
lation is ‘the group plague’] ... The authors of the ‘Gruppenpest’ wrote papers
which were incomprehensible to those like me who had not studied group the-
ory... The practical consequences appeared to be negligible, but everyone felt that
to be in the mainstream one had to learn about it. I had what I can only describe
as a feeling of outrage at the turn which the subject had taken ... it was obvious
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that a great many other physicists we are disgusted as I had been with the group-
theoretical approach to the problem. As I heard later, there were remarks made
such as ‘Slater has slain the ’Gruppenpest”. I believe that no other piece of work
I have done was so universally popular.”

A. John Coleman writes in Groups and Physics - Dogmatic Opinions of a
Senior Citizen [92]: “The mathematical elegance and profundity of Weyl’s book
[Theory of Groups and QM] was somewhat traumatic for the English-speaking
physics community. In the preface of the second edition in 1930, after a visit to
the USA, Weyl wrote, “It has been rumored that the ‘group pest’ is gradually being
cut out of quantum physics. This is certainly not true in so far as the rotation and
Lorentz groups are concerned; ....” In the autobiography of J. C. Slater, published
in 1975, the famous MIT physicist described the “feeling of outrage” he and other
physicists felt at the incursion of group theory into physics at the hands of Wigner,
Weyl et al. In 1935, when Condon and Shortley published their highly influential
treatise on the “Theory of Atomic Spectra”, Slater was widely heralded as having
“slain the Gruppenpest”. Pages 10 and 11 of Condon and Shortley’s treatise are
fascinating reading in this context. They devote three paragraphs to the role of
group theory in their book. First they say, “We manage to get along without
it.” This is followed by a lovely anecdote. In 1928 Dirac gave a seminar, at
the end of which Weyl protested that Dirac had said he would make no use of
group theory but that in fact most of his arguments were applications of group
theory. Dirac replied, “I said that I would obtain the results without previous
knowledge of group theory!” Mackey, in the article referred to previously, argues
that what Slater and Condon and Shortley did was to rename the generators of the
Lie algebra of SO(3) as “angular momenta” and create the feeling that what they
were doing was physics and not esoteric mathematics.”

From AIP Wigner interview: AIP: “In that circle of people you were working
with in Berlin, was there much interest in group theory at this time?” WIGNER:
“No. On the opposite. Schrödinger coined the expression, ‘Gruppenpest’ must
be abolished.” “It is interesting, and representative of the relations between math-
ematics and physics, that Wigner’s paper was originally submitted to a Springer
physics journal. It was rejected, and Wigner was seeking a physics journal that
might take it when von Neumann told him not to worry, he would get it into the
Annals of Mathematics. Wigner was happy to accept his offer [93].”

A.7 Death of the Old Quantum Theory

In 1913 Otto Stern and Max Theodor Felix von Laue went
up for a walk up the Uetliberg. On the top they sat down
and talked about physics. In particular they talked about
the new atom model of Bohr. There and then they made
the ‘Uetli Schwur:’ If that crazy model of Bohr turned out
to be right, then they would leave physics. It did and they
didn’t.

— A. Pais, Inward Bound: of Matter and Forces in
the Physical World
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An afternoon of May 1991 Dieter Wintgen is sitting in his office at the Niels Bohr
Institute beaming with the unparalleled glee of a boy who has just committed a
major mischief. The starting words of the manuscript he has just penned are15

The failure of the Copenhagen School to obtain a reasonable . . .

34 years old at the time, Dieter was a scruffy kind of guy, always in sandals and16

holed out jeans, the German flavor of a 90’s left winger and a mountain climber,
working around the clock with his students Gregor and Klaus to complete the
work that Bohr himself would have loved to see done back in 1916: a ‘planetary’
calculation of the helium spectrum.

Never mind that the ‘Copenhagen School’ refers not to the old quantum the-
ory, but to something else. The old quantum theory was no theory at all; it was a
set of rules bringing some order to a set of phenomena which defied logic of clas-
sical theory. The electrons were supposed to describe planetary orbits around the
nucleus; their wave aspects were yet to be discovered. The foundations seemed
obscure, but Bohr’s answer for the once-ionized helium to hydrogen ratio was
correct to five significant figures and hard to ignore. The old quantum theory
marched on, until by 1924 it reached an impasse: the helium spectrum and the
Zeeman effect were its death knell.

Since the late 1890’s it had been known that the helium spectrum consists of
the orthohelium and parahelium lines. In 1915 Bohr suggested that the two kinds
of helium lines might be associated with two distinct shapes of orbits (a suggestion
that turned out to be wrong). In 1916 he got Kramers to work on the problem, and
wrote to Rutherford: “I have used all my spare time in the last months to make
a serious attempt to solve the problem of ordinary helium spectrum . . . I think
really that at last I have a clue to the problem.” To other colleagues he wrote that
“the theory was worked out in the fall of 1916” and of having obtained a “partial
agreement with the measurements.” Nevertheless, the Bohr-Sommerfeld theory,
while by and large successful for hydrogen, was a disaster for neutral helium.
Heroic efforts of the young generation, including Kramers and Heisenberg, were
of no avail.

For a while Heisenberg thought that he had the ionization potential for helium,
which he had obtained by a simple perturbative scheme. He wrote enthusiastic
letters to Sommerfeld and was drawn into a collaboration with Max Born to com-
pute the spectrum of helium using Born’s systematic perturbative scheme. In first
approximation, they reproduced the earlier calculations. The next level of correc-
tions turned out to be larger than the computed effect. The concluding paragraph
of Max Born’s classic “Vorlesungen über Atommechanik” from 1925 sums it up
in a somber tone [94]:

(. . . ) the systematic application of the principles of the quantum theory
(. . . ) gives results in agreement with experiment only in those cases where

15Predrag: scan in Dieter’s picture
16Predrag: recheck the age
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the motion of a single electron is considered; it fails even in the treatment
of the motion of the two electrons in the helium atom.

This is not surprising, for the principles used are not really consistent.
(. . . ) A complete systematic transformation of the classical mechanics into
a discontinuous mechanics is the goal towards which the quantum theory
strives.

That year Heisenberg suffered a bout of hay fever, and the old quantum the-
ory was dead. In 1926 he gave the first quantitative explanation of the helium
spectrum. He used wave mechanics, electron spin and the Pauli exclusion prin-
ciple, none of which belonged to the old quantum theory, and planetary orbits of
electrons were cast away for nearly half a century.

Why did Pauli and Heisenberg fail with the helium atom? It was not the fault
of the old quantum mechanics, but rather it reflected their lack of understanding of
the subtleties of classical mechanics. Today we know what they missed in 1913-
24: the role of conjugate points (topological indices) along classical trajectories
was not accounted for, and they had no idea of the importance of periodic orbits
in nonintegrable systems.

Since then the calculation for helium using the methods of the old quantum
mechanics has been fixed. Leopold and Percival [95] added the topological indices
in 1980, and in 1991 Wintgen and collaborators [54, 55] understood the role of
periodic orbits. Dieter had good reasons to gloat; while the rest of us were prepar-
ing to sharpen our pencils and supercomputers in order to approach the dreaded
3-body problem, they just went ahead and did it. What it took–and much else–is
described in this book. 17

One is also free to ponder what quantum theory would look like today if all this
was worked out in 1917. In 1994 Predrag Cvitanović gave a talk in Seattle about
helium and cycle expansions to–inter alia–Hans Bethe, who loved it so much that
after the talk he pulled Predrag aside and they trotted over to Hans’ secret place:
the best lunch on campus (Business School). Predrag asked: “Would quantum
mechanics look different if in 1917 Bohr and Kramers et al. figured out how to
use the helium classical 3-body dynamics to quantize helium?”

Bethe was very annoyed. He responded with an exasperated look - in Bethe
Deutschinglish (if you have ever talked to him, you can do the voice over your-
self):

“It would not matter at all!”
⇓PRIVATE

A.8 Brief history of π/2

(after M.V. Berry [118]) 18

17Predrag: fix ref. [108] on Einstein.
18Predrag: find the correct reference to replace ref. [118, 117]
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Consider 2 tangent waves near a caustic

[figure: 2 rays, 1 collesced pair, no rays]

1. Thomas Young (May 1801) [96] discovers the principle of interference
of light and demonstrates it by his double-slit experiment. He added two
waves at a caustic x

A1ekS 1 + A2ekS 2 , k = 2π/λ ,

and realized that the phases are not quite right, but failed to formulate a
mathematical description. Young’s discovery conflicted with Newton’s the-
ory. He was ridiculed in England, but embraced in France by A. J. Fresnel
who established the wave theory of light in 1810s.

2. Airy 1838 [97] wrote

Ai(−x) ∼ 1

k1/6
Ai

(
(S 2 − S 1)k2/3

)
=

1
2π

∫ ∞

−∞
du ei u3

3 −iux (A.3)

computed numerically over range R, but did not understand the analytic
structure, and did not get the asymptotics.

[figure: Ai vs x, wiggle, then decay exponentially over length R]

Airys contributions were: to appreciate that the rainbow is a particular ex-
ample of a caustic, that is, a line where light rays are focused (the bright
lines on the bottom of swimming pools are also caustics); to see that caus-
tics are singularities, where ray optics predicts infinite brightness; to re-
alize that wave physics will soften the singularities; and to discover the
precise mathematical description of this softening, in the form of his rain-
bow integral (pictured above). Airys paper was doubly influential. First,
because refined techniques soon devised by George Gabriel Stokes to study
the rainbow integral established divergent infinite series as an important tool
in bridging gaps between physical theories (in this case ray and wave op-
tics) and uncovered a mathematical phenomenon whose ramifications are
still being explored. Second, because the rainbow integral, describing wave
interference decorating the simplest kind of caustic, was found to be the
first in a hierarchy of diffraction catastrophes. These more elaborate wave
singularities

3. Stokes 1847 [98] asymptotics of Ai

(x << −1) cos

(
2
3

(−x)3/2 ± π

4

)
← Ai(x) → e−

2
3 x3/2

(x ( 1)

Stokes preinvented stationary phase. He also preinvented WKB for differ-
ential equation for Ai,

cos

(
2
3

(−x)3/2 +
π

4

)
=

1
2

(
eiS 1+i π4 + eiS 2−i π4

)
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and was the first to obtain the phase difference π
2 , which he understood in

1859.

4. Gouy 1899 [99] experiment and the Bessel theory, π
2 phase shift in

wave passing through focus. E.g.–nowadays formulation–Gaussian beam:

[figure: 2 curved rays define a focus]

ψ ∼ e
ik
(
z2+

x2+y2

2L

)
(−i)

(iz + L)

5. Jefferies 1920 [100] oceanography, obtains the phase shift for caustics
in shallow water waves.

6. Sommerfeld 19?? knew that there was a phase change at a caustic, but
did not use that fact in a quantization condition.

7. J.B. Keller [101] 1958 was the first to introduce it into semiclas-
sical quantization, in his geometrical construction of the corrected Bohr-
Sommerfeld quantum conditions for nonseparable (but integrable, or nearly
integrable) systems.

8. Gutzwiller 1959 was first to define the topological phase for isolated
periodic orbits.

9. V.P. Maslov 1965 derived the index by the Lagrangian manifold tech-
nique in his [1965-1967??] book [?], apparently unaware at the time of
Keller’s work.

10. V.I. Arnol’d 1967 knew Keller’s papers, but when he showed that there
exists a connection between the Morse index and the topological index in
his 1967 article [?], the Lagrangian manifold formalism was more to his
taste, and he chose to name the index after Maslov. The name ‘Maslov
index’ stuck.

⇑PRIVATE
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Commentary

⇓PRIVATE

Remark A.1 Prehistory. Denisov and Ponomarev [102] argue that Ben F. Laposky
might have been the first to observe chaotic attractors as early as 1953.

⇑PRIVATE

Remark A.2 Notion of global foliations. For each paper cited in dynamical systems
literature, there are many results that went into its development. As an example, take the
notion of global foliations that we attribute to Smale. As far as we can trace the idea, it
goes back to René Thom; local foliations were already used by Hadamard. Smale attended
a seminar of Thom in 1958 or 1959. In that seminar Thom was explaining his notion of
transversality. One of Thom’s disciples introduced Smale to Brazilian mathematician
Peixoto. Peixoto (who had learned the results of the Andronov-Pontryagin school from
Lefschetz) was the closest Smale had ever come until then to the Andronov-Pontryagin
school. It was from Peixoto that Smale learned about structural stability, a notion that got
him enthusiastic about dynamical systems, as it blended well with his topological back-
ground. It was from discussions with Peixoto that Smale got the problems in dynamical
systems that lead him to his 1960 paper on Morse inequalities. The next year Smale pub-
lished his result on the hyperbolic structure of the non–wandering set. Smale was not the
first to consider a hyperbolic point, Poincaré had already done that; but Smale was the
first to introduce a global hyperbolic structure. By 1960 Smale was already lecturing on
the horseshoe as a structurally stable dynamical system with an infinity of periodic points
and promoting his global viewpoint. 19 (R. Mainieri)

Remark A.3 Levels of ergodicity. 20 In the mid 1970’s A. Katok and Ya.B. Pesin tried
to use geometry to establish positive Lyapunov exponents. A. Katok and J.-M. Strelcyn
carried out the program and developed a theory of general dynamical systems with sin-
gularities. They studied uniformly hyperbolic systems (as strong as Anosov’s), but with
sets of singularities. Under iterations a dense set of points hits the singularities. Even
more important are the points that never hit the singularity set. In order to establish some
control over how they approach the set, one looks at trajectories that approach the set by
some given εn, or faster.

Ya.G. Sinai, L. Bunimovich and N.I. Chernov studied the geometry of billiards in a
very detailed way. A. Katok and Ya.B. Pesin’s idea was much more robust: look at the
discontinuity set, take an ε neighborhood around it. Given that the Lebesgue measure is
εα and the stability grows not faster than (distance)n. A. Katok and J.-M. Strelcyn proved
that the Lyapunov exponent is non-zero.

In mid 1980’s Ya.B. Pesin studied the dissipative case. Now the problem has no
invariant Lebesgue measure. Assuming uniform hyperbolicity, with singularities, and
tying together Lebesgue measure and discontinuities, and given that the stability grows
not faster than (distance)n, Ya.B. Pesin proved that the Lyapunov exponent is non-zero,
and that SRB measure exists. He also proved that the Lorenz, Lozi and Byelikh attractors
satisfy these conditions.

19Predrag: note that NSF made him pay back his grant for having gone to Rio
20Niall: this remark is much more technical than the tone of the discussion in the rest of this

appendix. Move, keep just the historical stuff highlighted.
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In the systems that are uniformly hyperbolic, all trouble is in differentials. For the
Hénon attractor, already the differentials are nonhyperbolic. The points do not separate
uniformly, but the analogue of the singularity set can be obtained by excising the regions
that do not separate. Hence there are 3 levels of ergodic systems:

1. Anosov flow

2. Anosov flow + singularity set: For the Hamiltonian systems the general case is
studied by A. Katok and J.-M. Strelcyn, and the billiards case by Ya.G. Sinai and
L. Bunimovich. The dissipative case is studied by Ya.B. Pesin.

3. Hénon case: The first proof was given by M. Benedicks and L. Carleson [ 103, 104,
105]. A more readable proof is given in M. Benedicks and L.-S. Young [ 106].

(based on Ya.B. Pesin’s comments)

Remark A.4 Einstein did it? The first hint that chaos is afoot in quantum mechan-
ics was given in a note by A. Einstein [107]. The total discussion is the one sentence

⇓PRIVATE
long remark quoted at the beginning of sect. 37.5. Einstein being Einstein, this one sen-

⇑PRIVATEtence has been deemed sufficient to give him the credit for being the pioneer of quantum
chaos [13, 108]. We asked about the paper two people from that era, Sir Rudolf Peierls
and Abraham Pais; neither had any recollection of the 1917 article. However, Theo Geisel
has unearthed a reference that shows that in early 20s Born did have a study group meet-
ing in his house that studied Poincaré’s Méchanique Céleste [67]. 21 In 1954 Fritz Reiche,
who had previously followed Einstein as professor of physics in Breslau (now Wroclaw,
Poland), pointed out to J.B. Keller that Keller’s geometrical semiclassical quantization
was anticipated by the long forgotten paper by A. Einstein [ 107]. In this way an impor-
tant paper written by the physicist who at the time was the president of German Physical
Society, and the most famous scientist of his time, came to be referred to for the first time
by Keller [101], 41 years later. But before Ian Percival included the topological phase,
and Wintgen and students recycled the Helium atom, knowing Méchanique Céleste was
not enough to complete Bohr’s original program.

Remark A.5 Berry-Keating conjecture. A very appealing proposal in the context
of semiclassical quantization is due to M. Berry and J. Keating [109]. The idea is to im-
prove cycle expansions by imposing unitarity as a functional equation ansatz. The cycle
expansions that they use are the same as the original ones described above [ 30], but the
philosophy is quite different; the claim is that the optimal estimate for low eigenvalues of
classically chaotic quantum systems is obtained by taking the real part of the cycle expan-
sion of the semiclassical zeta function, cut off at the appropriate cycle length. M. Sieber,
G. Tanner and D. Wintgen, and P. Dahlqvist find that their numerical results support this
claim; F. Christiansen and P. Cvitanović do not find any evidence in their numerical re-
sults. The usual Riemann-Siegel formulas exploit the self-duality of the Riemann and
other zeta functions, but there is no evidence of such symmetry for generic Hamiltonian
flows. Also from the point of hyperbolic dynamics discussed above, proposal in its cur-
rent form belongs to the category of crude cycle expansions; the cycles are cut off by a
single external criterion, such as the maximal cycle time, with no regard for the topology

21Predrag: Chase that down the Geisel reference - there is a photocopy buried somewhere on
Predrag’s desk. Recheck Peierls spelling.
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and the curvature corrections. While the functional equation conjecture is not in its final
form yet, it is very intriguing and fruitful research inspiration. 22

The real life challenge are generic dynamical flows, which fit neither of extreme ide-
alized settings, Smale horseshoe on one end, and the Riemann zet function on the other.

Remark A.6 Sources. The tale of appendix A.7, aside from a few personal recollec-
tions, is in large part lifted from Abraham Pais’ accounts of the demise of the old quantum
theory [110, 111], as well as Jammer’s account [112]. The helium spectrum is taken up

⇓PRIVATE
in chapter 43. In August 1994 Dieter Wintgen died in a climbing accident in the Swiss

⇑PRIVATEAlps.
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Appendix B

Go straight

AHamiltonian system is said to be integrable if one can find a change of
coordinates to an action-angle coordinate frame where the phase-space
dynamics is described by motion on circles, one circle for each degree

of freedom. In the same spirit, a natural description of a hyperbolic, unstable
flow would be attained if one found a change of coordinates into a frame where
the stable/unstable manifolds are straight lines, and the flow is along hyperbolas.
Achieving this globally for anything but a handful of contrived examples is a pipe
dream. Nevertheless, as we shall now show, we can make some headway on
straightening out the flow locally. 1 2

There is much more to this story than what we touch upon here: other tricks
and methods to construct regularizations, what kind of singularities could be reg-
ularized, etc.. Even though such nonlinear coordinate transformations are very
important, especially in celestial mechanics, we shall not use them much in what
follows, so you can safely skip this chapter on the first reading. Except, perhaps,
you might like transformations that turn a Keplerian ellipse into a harmonic oscil-
lator (example B.2) and regularize the 2-body Coulomb collisions (sect. B.2) in
classical helium.

B.1 Rectification of flows

A profitable way to exploit invariance of dynamics under smooth conjugacies is
to use it to pick out the simplest possible representative of an equivalence class.
These are just words, as we have no clue how to pick such ‘canonical’ represen-
tations, but for smooth flows we can always do it locally and for sufficiently short
time, by appealing to the rectification theorem, a fundamental theorem of ordi-
nary differential equations. The theorem tells us that a solution exists (at least for

1Mason: change title to: “coordinate changes and invariants”
2Mason: I like the way Lichtenberg and Lieberman define it
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coordinate!change
conjugacy

a short time interval) and what it looks like. The rectification theorem holds in the
neighborhood of points of the vector field v(x) that are not singular, that is, ev-
erywhere except for the equilibrium points (2.9), and points at which v is infinite.
According to the theorem, in a small neighborhood of a non-singular point there
exists a change of coordinates y = h(x) such that ẋ = v(x) in the new, canonical
coordinates takes form 3

ẏ1 = ẏ2 = · · · = ẏd−1 = 0
ẏd = 1 , (B.1)

with unit velocity flow along yd, and no flow along any of the remaining directions.
This is an example of a one-parameter Lie group of transformations, with finite
time τ action 4

exercise 9.8
exercise B.1

y′i = yi , i = 1, 2, . . . , d − 1

y′d = yd + τ .

Example B.1 Harmonic oscillator, rectified: 5 As a simple example of global
rectification of a flow consider the harmonic oscillator

q̇ = p , ṗ = −q . (B.2)

The trajectories x(t) = (q(t), p(t)) circle around the origin, so a fair guess is that the
system would have a simpler representation in polar coordinates y = (r, θ):

h−1 :

{
q = h−1

1 (r, θ) = r cos θ
p = h−1

2 (r, θ) = r sin θ
. (B.3)

The Jacobian matrix, ∂hi/∂x j, of the transformation is

h′ =

⎛⎜⎜⎜⎜⎜⎜⎝ cos θ sin θ

− sin θ
r

cos θ
r

⎞⎟⎟⎟⎟⎟⎟⎠ (B.4)

resulting in (2.23) of rectified form
exercise 5.2(

ṙ
θ̇

)
=

⎛⎜⎜⎜⎜⎜⎜⎝ cos θ sin θ

− sin θ
r

cos θ
r

⎞⎟⎟⎟⎟⎟⎟⎠ (
q̇
ṗ

)
=

(
0
−1

)
. (B.5)

In the new coordinates the radial coordinate r is constant, and the angular coordinate
θ wraps around a cylinder with constant angular velocity. There is a subtle point in this
change of coordinates: the domain of the map h−1 is not the plane R2, but rather the
plane minus the origin. We mapped a plane into a cylinder, and coordinate transforma-
tions should not change the topology of the space in which the dynamics takes place;
the coordinate transformation is not defined on the equilibrium point x = (0, 0), or r = 0.

3Predrag: explain here or in a remark that this goes by the name “Hartman-Grobman theorem.”
Text of length comparable to Izhikevich [8] should suffice.

4Predrag: expand this into discussion of normal forms
5Predrag: Predrag will move this example to flows.tex
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three body@3-body
problem

Figure B.1: Coordinates for the helium three body
problem in the plane.
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Figure B.2: Collinear helium, with the two electrons
on opposite sides of the nucleus.
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B.2 Collinear helium

(G. Tanner)

So far much has been said about 1-dimensional maps, game of pinball and other
curious but rather idealized dynamical systems. If you have become impatient and
started wondering what good are the methods learned so far in solving real life
physical problems, good news are here. We will apply here concepts of nonlinear
dynamics to nothing less than the helium, a dreaded three-body Coulomb problem.

Can we really jump from three static disks directly to three charged particles
moving under the influence of their mutually attracting or repelling forces? It
turns out, we can, but we have to do it with care. The full problem is indeed
not accessible in all its detail, but we are able to analyze a somewhat simpler
subsystem–collinear helium. This system plays an important role in the classical
and quantum dynamics of the full three-body problem.

The classical helium system consists of two electrons of mass me and charge
−e moving about a positively charged nucleus of mass mhe and charge +2e.

The helium electron-nucleus mass ratio mhe/me = 1836 is so large that we
may work in the infinite nucleus mass approximation mhe = ∞, fixing the nucleus
at the origin. Finite nucleus mass effects can be taken into account without any
substantial difficulty. We are now left with two electrons moving in three spatial
dimensions around the origin. The total angular momentum of the combined elec-
tron system is still conserved. In the special case of angular momentum L = 0, the
electrons move in a fixed plane containing the nucleus. The three body problem
can then be written in terms of three independent coordinates only, the electron-
nucleus distances r1 and r2 and the inter-electron angle Θ, see figure B.1. ⇓PRIVATE

exercise 43.2

⇑PRIVATE
This looks like something we can lay our hands on; the problem has been

reduced to three degrees of freedom, six phase-space coordinates in all, and the
total energy is conserved. But let us go one step further; the electrons are attracted
by the nucleus but repelled by each other. They will tend to stay as far away from
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each other as possible, preferably on opposite sides of the nucleus. It is thus worth
having a closer look at the situation where the three particles are all on a line with
the nucleus being somewhere between the two electrons. If we, in addition, let the
electrons have momenta pointing towards the nucleus as in figureB.2, then there
is no force acting on the electrons perpendicular to the common interparticle axis.
That is, if we start the classical system on the dynamical subspace Θ = π, d

dtΘ = 0,
the three particles will remain in this collinear configuration for all times.

B.2.1 Scaling

In what follows we will restrict the dynamics to this collinear subspace. It is a
system of two degrees of freedom with the Hamiltonian

H =
1

2me

(
p2

1 + p2
2

)
− 2e2

r1
− 2e2

r2
+

e2

r1 + r2
= E , (B.6)

where E is the total energy. As the dynamics is restricted to the fixed energy shell,
the four phase-space coordinates are not independent; the energy shell dependence
can be made explicit by writing

(r1, r2, p1, p2) → (r1(E), r2(E), p1(E), p2(E)) .

We will first consider the dependence of the dynamics on the energy E. A
simple analysis of potential versus kinetic energy tells us that if the energy is
positive both electrons can escape to ri → ∞, i = 1, 2. More interestingly, a
single electron can still escape even if E is negative, carrying away an unlimited
amount of kinetic energy, as the total energy of the remaining inner electron has no
lower bound. Not only that, but one electron will escape eventually for almost all
starting conditions. The overall dynamics thus depends critically on whether E >

0 or E < 0. But how does the dynamics change otherwise with varying energy?
Fortunately, not at all. Helium dynamics remains invariant under a change of
energy up to a simple scaling transformation; a solution of the equations of motion
at a fixed energy E0 = −1 can be transformed into a solution at an arbitrary energy
E < 0 by scaling the coordinates as

ri(E) =
e2

(−E)
ri, pi(E) =

√
−meE pi, i = 1, 2 ,

together with a time transformation t(E) = e2m1/2
e (−E)−3/2 t. We include the

electron mass and charge in the scaling transformation in order to obtain a non–
dimensionalized Hamiltonian of the form

H =
p2

1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
r1 + r2

= −1 . (B.7)
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regularization
Kustaanheimo-Stiefel

transformation

The case of negative energies chosen here is the most interesting one for us. It
exhibits chaos, unstable periodic orbits and is responsible for the bound states and
resonances of the quantum problemtreated in sect.43.5. ⇓PRIVATE

⇑PRIVATE

B.2.2 Regularization of two–body collisions

Next, we have a closer look at the singularities in the Hamiltonian (B.7). When-
ever two bodies come close to each other, accelerations become large, numerical
routines require lots of small steps, and numerical precision suffers. No numerical
routine will get us through the singularity itself, and in collinear helium electrons
have no option but to collide with the nucleus. Hence a regularization of the dif-
ferential equations of motions is a necessary prerequisite to any numerical work
on such problems, both in celestial mechanics (where a spaceship executes close
approaches both at the start and its destination) and in quantum mechanics (where
much of semiclassical physics is dominated by returning classical orbits that probe
the quantum wave function at the nucleus).

There is a fundamental difference between two–body collisions r1 = 0 or r2 =

0, and the triple collision r1 = r2 = 0. Two–body collisions can be regularized,
with the singularities in equations of motion removed by a suitable coordinate
transformation together with a time transformation preserving the Hamiltonian
structure of the equations. Such regularization is not possible for the triple colli-
sion, and solutions of the differential equations can not be continued through the
singularity at the origin. As we shall see, the chaos in collinear helium originates
from this singularity of triple collisions.

A regularization of the two–body collisions is achieved by means of the Kust-
aanheimo–Stiefel (KS) transformation, which consists of a coordinate dependent
time transformation which stretches the time scale near the origin, and a canonical
transformation of the phase-space coordinates. In order to motivate the method,
we apply it first to the 1-dimensional Kepler problem ⇓PRIVATE

remark 43.1

⇑PRIVATE
H =

1
2

p2 − 2
x
= E . (B.8)

Example B.2 Keplerian ellipse, rectified: To warm up, consider the E = 0 case,
starting at x = 0 at t = 0. Even though the equations of motion are singular at the initial
point, we can immediately integrate

1
2

ẋ2 − 2
x
= 0

by means of separation of variables 6

√
xdx = 2 dt , x = (3t)

2
3 , (B.9)

6Gregor: Luz corrected Gregor’s x = (9/2)
1
3 t

2
3 . Chao corrected

√
2dt to 2dt. to
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and observe that the solution is not singular. The aim of regularization is to compensate
for the infinite acceleration at the origin by introducing a fictitious time, in terms of which
the passage through the origin is smooth.

A time transformation dt = f (q, p)dτ for a system described by a Hamiltonian
H(q, p) = E leaves the Hamiltonian structure of the equations of motion unaltered, if
the Hamiltonian itself is transformed into H(q, p) = f (q, p)(H(q, p) − E). For the 1–
dimensional Coulomb problem with (B.8) we choose the time transformation dt = xdτ
which lifts the |x| → 0 singularity in (B.8) and leads to a new Hamiltonian

H = 1
2

xp2 − 2 − Ex = 0. (B.10)

The solution (B.9) is now parameterized by the fictitous time dτ through a pair of equa-
tions 7

x = τ2 , t =
1
3
τ3 .

8 The equations of motion are, however, still singular as x → 0:

d2x
dτ2
= − 1

2x
dx
dτ
+ xE .

Appearance of the square root in (B.9) now suggests a canonical transformation of
form

x = Q2 , p =
P

2Q
(B.11)

which maps the Kepler problem into that of a harmonic oscillator with Hamiltonian

H(Q, P) =
1
8

P2 − EQ2 = 2, (B.12)

with all singularities completely removed.

We now apply this method to collinear helium. The basic idea is that one seeks
a higher-dimensional generalization of the ‘square root removal’ trick (B.11), by
introducing a new vector Q with property r = |Q|2 . In this simple 1-dimensional
example the KS transformation can be implemented by

r1 = Q2
1 , r2 = Q2

2 , p1 =
P1

2Q1
, p2 =

P2

2Q2
(B.13)

and reparameterization of time by dτ = dt/r1r2. The singular behavior in the ⇓PRIVATE

exercise 43.1

⇑PRIVATE

original momenta at r1 or r2 = 0 is again compensated by stretching the time
scale at these points. The Hamiltonian structure of the equations of motions with
respect to the new time τ is conserved, if we consider the Hamiltonian9

Hko =
1
8

(Q2
2P2

1 + Q2
1P2

2) − 2R2
12 + Q2

1Q2
2(−E + 1/R2

12) = 0 (B.14)

7Gregor: Luz corrected Gregor’s x = 1
2τ

2 , t = 1
6τ

3

8Predrag: make a problem, recheck this
9Gregor: Luz recoverd E in Gregor’s

(
1 + 1/R2

12

)
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rectification!maps

Figure B.3: (a) A typical trajectory in the [r1, r2]
plane; the trajectory enters here along the r1 axis
and escapes to infinity along the r2 axis; (b)
Poincaré map (r2=0) for collinear helium. Strong
chaos prevails for small r1 near the nucleus.
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with R12 = (Q2
1 +Q2

2)1/2, and we will take E = −1 in what follows. The equations
of motion now have the form

Ṗ1 = 2Q1

⎡⎢⎢⎢⎢⎣2 − P2
2

8
− Q2

2

⎛⎜⎜⎜⎜⎝1 + Q2
2

R4
12

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ; Q̇1 =
1
4

P1Q2
2 (B.15)

Ṗ2 = 2Q2

⎡⎢⎢⎢⎢⎣2 − P2
1

8
− Q2

1

⎛⎜⎜⎜⎜⎝1 + Q2
1

R4
12

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ; Q̇2 =
1
4

P2Q2
1.

Individual electron–nucleus collisions at r1 = Q2
1 = 0 or r2 = Q2

2 = 0 no longer
pose a problem to a numerical integration routine. The equations (B.15) are sin-
gular only at the triple collision R12 = 0, i.e., when both electrons hit the nucleus
at the same time.

The new coordinates and the Hamiltonian (B.14) are very useful when cal-
culating trajectories for collinear helium; they are, however, less intuitive as a
visualization of the three-body dynamics. We will therefore refer to the old coor-
dinates r1, r2 when discussing the dynamics and the periodic orbits.

To summarize, we have brought a 3-body problem into a form where the
2-body collisions have been transformed away, and the phase-space trajectories
computable numerically. To appreciate the full beauty of what has been attained,
you have to fast-forward to chapter 43; we are already ‘almost’ ready to quantize

⇓PRIVATE

⇑PRIVATE
helium by semiclassical methods.

fast track:

chapter 5, p. 110

B.3 Rectification of maps

10

10Predrag: write up as a continuation of (2.3)

appendFlows - 20mar2013 boyscout version14.4, Mar 19 2013



APPENDIX B. GO STRAIGHT 1057

normal!form
form,normal

In sect. B.1 we argued that nonlinear coordinate transformations can be profitably
employed to simplify the representation of a flow. 11 We shall now apply the same
idea to nonlinear maps, and determine a smooth nonlinear change of coordinates
that flattens out the vicinity of a fixed point and makes the map linear in an open
neighborhood. 12 In its simplest form the idea can be implemented only for an iso-
lated nondegenerate fixed point (otherwise one needs the normal form expansion
around the point), and only in a finite neighborhood of a point, as the conjugating
function in general has a finite radius of convergence. In sect.B.4 we will extend
the method to periodic orbits. 13

⇓PRIVATE

section 46.1

⇑PRIVATE
B.3.1 Rectification of a fixed point in one dimension

exercise B.3

Consider a 1-dimensional map xn+1 = f (xn) with a fixed point at x = 0, with
stability Λ = f ′(0). If |Λ| � 1, one can determine the power series for a smooth
conjugation h(x) centered at the fixed point, h(0) = 0, that flattens out the neigh-
borhood of the fixed point

f (x) = h−1(Λh(x)) (B.16)

14 and replaces the nonlinear map f (x) by a linear map yn+1 = Λyn.

To compute the conjugation h we use the functional equation h−1(Λx) =
f (h−1(x)) and the expansions

f (x) = Λx + x2 f2 + x3 f3 + . . .

h−1(x) = x + x2h2 + x3h3 + . . . . (B.17)

Equating the coefficients of xk on both sides of the functional equation yields
hk order by order as a function of f2, f3, . . .. If h(x) is a conjugation, so is any
scaling h(bx) of the function for a real number b. Hence the value of h′(0) is not
determined by the functional equation (B.16); it is convenient to set h′(0) = 1.

The algebra is not particularly illuminating and best left to computers. In any
case, for the time being we will not use much beyond the first, linear term in these
expansions.

Here we have assumed |Λ| � 1. If the fixed point has vanishing k−1 derivatives,
the conjugacy is to the kth normal form.

In multiple dimensions, Λ is replaced by the Jacobian matrix, and one has to
check that the eigenvalues M are non-resonant, that is, there is no integer linear
relation between the Floquet exponents (5.7).

remark B.3
11Predrag: use my overhead here
12Predrag: mention period doubling operator spectrum
13Predrag: remark that h−1 is smooth if f is?
14Predrag: h here inverse(!) of (2.16)
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B.4 Rectification of a periodic orbit

In sect. B.3.1 we have constructed the conjugation function for a fixed point. Here
we turn to the problem of constructing it for periodic orbits. Each point around the
cycle has a differently distorted neighborhood, with differing second and higher
order derivatives, so we need to compute a different conjugation function ha at
each periodic point xa. We expand the map f around each periodic point along
the cycle,

ya(φ) = fa(φ) − xa+1 = φ fa,1 + φ
2 fa,2 + . . . (B.18)

where xa is a point on the cycle, fa(φ) = f (xa + φ) is centered on the periodic
orbit, and the index k in fa,k refers to the kth order in the expansion (B.17).

For a periodic orbit the conjugation formula (B.16) generalizes to

fa(φ) = h−1
a+1( f ′a(0)ha(φ)) , a = 1, 2, · · · , n ,

point by point. The conjugationg functions ha are obtained in the same way as
before, by equating coefficients of the expansion (B.17), and assuming that the
cycle Floquet multiplier Λ =

∏n−1
a=0 f ′(xa) is not marginal, |Λ| � 1. The explicit

expressions for ha in terms of f are obtained by iterating around the whole cycle,
15

f n(xa + φ) = h−1
a (Λha(φ)) + xa . (B.19)

evaluated at each periodic point a. Again we have the freedom to set h′a(0) = 1 for
remark B.2

all a.

B.4.1 Repeats of cycles

We have traded our initial nonlinear map f for a (locally) linear map Λy and an
equally complicated conjugation function h. What is gained by rewriting the map
f in terms of the conjugacy function h? Once the neighborhood of a fixed point
is linearized, the iterates of f are trivialized; from the conjugation formula (B.17)
one can compute the derivatives of a function composed with itself r times:

f r(x) = h−1(Λrh(x)) .

One can already discern the form of the expansion for an arbitrary iterate; the an-
swer will depend on the conjugacy function h(x) computed for a single application

15Predrag: compute only once, then propagate around the cycle by iteration?
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equivalence!of
dynamical systems

dynamical
system!equivalent

of mapping f , and all the dependence on the iterate number will be carried by fac-
tors that are polynomial functions of Λr, a considerable simplification. The beauty
of the idea is difficult to gauge at this stage–an appreciation only sets in when one
starts computing perturbative corrections, whether in celestial mechanics (where
the method was born), or quantum or stochastic corrections to ‘semiclassical’ ap-
proximations.

in depth:

appendix E.4, p. 1093

Résumé

The dynamical system (M, f ) is invariant under the group of all smooth conjuga-
cies

(M, f ) → (M′, g) = (h(M), h ◦ f ◦ h−1) .

This invariance can be used to (i) find a simplified representation for the flow and
(ii) identify a set of invariants, numbers computed within a particular choice of
(M, f ), but invariant under all M→ h(M) smooth conjugacies.

The 2D-dimensional phase space of an integrable Hamiltonian system of D
degrees of freedom is fully foliated by D-tori. In the same spirit, for a uniformly
hyperbolic, chaotic dynamical system, one would like to transform to a coordinate
frame in which the stable and unstable manifolds form a set of transversally in-
tersecting hyper-planes, with the flow everywhere locally hyperbolic. That cannot
be achieved in general: Fully globally integrable and fully globally chaotic flows
are a very small subset of all possible flows, a ‘set of measure zero’ in the world
of all dynamical systems.

What we really care about is developing invariant notions for a given dynam-
ical system. The totality of smooth one-to-one nonlinear coordinate transforma-
tions h that map all trajectories of a given dynamical system (M, ft) onto all tra-
jectories of dynamical systems (M′, gt) gives us a huge equivalence class, much
larger than the equivalence classes familiar from the theory of linear transforma-
tions. In the theory of Lie groups, the full invariant specification of an object is
given by a finite set of Casimir invariants. What a good full set of invariants for a
group of general nonlinear smooth conjugacies might be is not known, but the set
of all periodic orbits and their Floquet multipliers turns out to be a good start. 16 Ronnie: add some-

thing about nearby sys-
tems and structural sta-
bility

16Predrag: use commented out text in the conjug.tex
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Ulam map
tent map
Schwartzian

derivative
Lyapunov!exponent
measure!continuous
harmonic oscillator
polar coordinates
SO(2)@SO(2)

Commentary

Remark B.1 Rectification of flows. See Section 2.2.5 of ref. [10] for a pedagogical
introduction to smooth coordinate reparameterizations. Explicit examples of transfor-
mations into canonical coordinates for a group of scalings and a group of rotations are
worked out.

Remark B.2 Rectification of maps. The methods outlined above are standard in
the analysis of fixed points and the construction of normal forms for bifurcations, see
for example ref. [26, 35, 2, 3, 4, 5, 6, 7, 11]. The geometry underlying such methods is
elegant, and we enjoyed reading, for example, Percival and Richards [ 8], chaps. 2 and 4
of Ozorio de Almeida’s monograph [9], and, as always, Arnol’d [1]. 17

Recursive formulas for the evaluation of derivatives needed to evaluate ( B.17) are
given, for example, in Appendix A of ref. [9]. Section 10.6 of ref. [11] describes in
detail the smooth conjugacy that relates the Ulam map (11.5) to the tent map (11.4). For
‘negative Schwartzian derivatives,’ families of conjugacies of Ulam-type maps, associated
Lyapunov exponents, continuous measures and further pointers to literature, see ref. [ 12].

Remark B.3 A resonance condition. In the hyperbolic case there is a resonance
condition that must be satisfied: none of the Floquet exponents may be related by ratios
of integers. That is, if Λp,1,Λp,2, . . . ,Λp,d are the Floquet multipliers of the Jacobian
matrix, then they are in resonance if there exist integers n 1, . . . , nd such that

(Λp,1)n1 (Λp,2)n2 · · · (Λp,d)nd = 1 .

If there is resonance, one may get corrections to the basic conjugation formulas in the
form of monomials in the variables of the map. (R. Mainieri)

boyscout

B.1. Harmonic oscillator in polar coordinates: Given a
harmonic oscillator (B.2) that follows ṗ = −q and q̇ = p,
use (B.4) to rewrite the system in polar coordinates (B.3)
and find equations for r and θ.

1. Show that the 1-dimensional state space of the rewrit-
ten system is the quotient space M/SO(2).

17Predrag: decide where to cite Arnold
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coordinate!transformations
transformation!coordinate
smooth!conjugacy
conjugacy!smooth
Ulam map
tent map

2. Construct a Poincaré section of the quotiented flow.

B.2. Coordinate transformations. Changing coordinates
is conceptually simple, but can become confusing when
carried out in detail. The difficulty arises from confusing
functional relationships, such as x(t) = h−1(y(t)) with nu-
merical relationships, such as w(y) = h′(x)v(x). Working
through an example will clear this up.

(a) The differential equation in M is ẋ = {2x1, x2} and
the change of coordinates fromM toM′ is h(x1, x2) =
{2x1 + x2, x1 − x2}. Solve for x(t). Find h−1.

(b) Show that in the transformed space M′, the differ-
ential equation is

d
dt

[
y1
y2

]
=

1
3

[
5y1 + 2y2
y1 + 4y2

]
.

Solve this system. Does it match the solution in the
M space?

B.3. Linearization for maps. Let f : C → C be a map from
the complex numbers into themselves, analytic at the ori-
gin with a fixed point. By manipulating power series, find
the first few terms of the map h that conjugates f to αz,
that is,

f (z) = h−1(αh(z)) .

There are conditions on the derivative of f at the origin to
assure that the conjugation is always possible. Formulate
these conditions by examining the series

(difficulty: medium) (R. Mainieri)

B.4. Ulam and tent maps. 18 Show that the smooth conju-
gacy (2.20)

g(y0) = h ◦ f ◦ h−1(y0)

y = h(x) = sin2(πx/2) ,

conjugates the tent map f (x) = 1 − 2|x − 1/2| into the
Ulam map g(y) = 4y(1− y) . (continued as exercise 13.1)
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Appendix C

Maps and billiards

We collect here for record some of the maps and billiards frequently en-
countered in the literature.

C.1 One-dimensional maps

Even though physically interesting chaotic dynamics requires continuous time
flows in state spaces of dimension 3 or higher, we shall nevertheless often find
it convenient to illustrate the general principles of chaotic dynamics by exam-
ples drawn from discrete time 1-dimensional iterated map dynamics. For dissipa-
tive driven flows close to transitions to chaotic dynamics, such as in the period-
doubling transition to chaos, chapter 28, this is not a bad approximation, but for
us the role of 1-dimensional maps will be mostly didactic. As we are using many
different maps throughout the monograph, we collect them all in this section in
order to lessen the confusion.

C.1.1 Piecewise-linear 1-dimensional maps

Examples of piecewise-linear 1-dimensional maps of the unit interval x ∈ [0, 1]
are

1. A repeller with only one expanding linear branch, and one fixed point x = 0,
figure C.1 (a):

f (x) = Λx , |Λ| > 1 . (C.1)

2. The Bernoulli map (11.7), figure C.1 (b):

f (x) =

{
f0(x) = 2x , x ∈ M0 = [0, 1/2)
f1(x) = 2x − 1 , x ∈ M1 = (1/2, 1] . (C.2)

1064
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Ulam map!skew
symbolic

dynamics!coding

3. The skew Bernoulli map, figure C.1 (c):

f (x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (x − 1
Λ0

) , x ∈ M1 = (1/Λ0, 1] (C.3)

4. A 2-branch repeller on two non-overlapping intervals with slopes Λ0 > 1
and Λ1 < −1, figure C.1 (d):

f (x) =

{
f0(x) = Λ0x , x ∈ M0 = [0,Λ0]
f1(x) = Λ1(1 − x) , x ∈ M1 = [Λ1, 1] . (C.4)

5. The full tent map (11.4), figure C.1 (e):

f (x) =

{
f0(x) = 2x , x ∈ M0 = [0, 1/2)
f1(x) = 2(1 − x) , x ∈ M1 = (1/2, 1] . (C.5)

6. The skew full tent map, figure C.1 (f):

f (x) =

{
f0(x) = Λ0x , x ∈ M0 = [0, 1/Λ0)
f1(x) = Λ0

Λ0−1 (1 − x) , x ∈ M1 = (1/Λ0, 1] . (C.6)

7. The Cantor map, figure C.1 (g):

f (x) =

{
f0(x) = 3x , x ∈ M0 = [0, 1/3]
f1(x) = 3x − 2 , x ∈ M1 = [2/3, 1] . (C.7)

8. The dike map (11.14), figure 11.15 and figure C.1 (h), is the tent map (C.5)
with the top sliced off, convenient for coding the symbolic dynamics, as
those x values that survive the pruning (see exercise ??) are the same as for
the full tent map (C.5) and available analytically. 1

We shall refer to any unimodal map for which the critical point xc is mapped
onto the unstable fixed point x0 = 0 as an “Ulam” map.

C.1.2 Nonlinear 1-dimensional maps

Some examples of nonlinear 1-dimensional maps of the unit interval x ∈ [0, 1]
are

1. A repeller quadratic map, figure C.2 (a):

f (x) = 6x(1 − x) . (C.8)

2. The Ulam map, figure C.2 (b):

f (x) = 4x(1 − x) . (C.9)

1Predrag: need to split figure C.1 into piecewise linear and smooth parts
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Ulam map!skew

Figure C.1: Examples of piecewise-linear 1-
dimensional maps of the unit interval x ∈ [0, 1].
(a) repeller with only one expanding linear branch
(b) Bernoulli map (c) skew Bernoulli tent map
figure C.1 (c) (d) 2-branch repeller on two non-
overlapping intervals (e) full tent map (f) skew full
tent map (g) Cantor map (h) dike map.

3. The quadratic map on the interval, figure C.2 (c):

f (x) = Ax(1 − x) , 0 < A < 4 . (C.10)

4. The skew Ulam map (X.74), figure C.2 (e):

x′ = λx(1 − x)(1 − bx) , 1/λ = xc(1 − xc)(1 − bxc) . (C.11)

In our numerical work we fix (arbitrarily) b = 0.6.

5. The nonlinear skew Bernoulli map, figure C.2 (d): 2

f0(x) =
h − p +

√
(h − p)2 + 4hx

2h
, x ∈ [0, p]

f1(x) =
h + p − 1 +

√
(h + p − 1)2 + 4h(x − p)

2h
, x ∈ [p, 1](C.12)

This is a nonlinear perturbation of (h = 0) Bernoulli type map (C.3).

2Predrag: Hans Henrik + Freddy’s map [1]; include a figure
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billiards!stability
stability!billiards

Figure C.2: Examples of nonlinear 1-dimensional
maps of the unit interval x ∈ [0, 1]. (a) repeller
quadratic map(b) Ulam map (c) quadratic map on
the interval (e) skew Ulam map (f) nonlinear skew
Bernoulli map.

C.2 Linear fractional maps

An alternative approach to the eigenvalue evaluation is based on observation that
the [2×2] volume preserving , det Mi = 1, matrix multiplication can be achieved
by iteration of linear fractional maps; 3

Mi =

(
ci ai
di bi

)
, → Ti(z) =

ai + biz
ci + diz

,

M jMi → TiT j(z) =
aic j + bia j + (aid j + bib j)z

cic j + dia j + (cid j + dib j)z
(C.13)

If we represent the translations and the reflections by

MR(xk) → Rk(z) = rk + z ,

MT (xk) → Tk(z) =
1

τk + 1/z
, (C.14)

the kth segment of the trajectory is represented by

TkRk(z) =
1

τk +
1

rk+z

. (C.15)

For the cycle p the iteration yields

z = T1R1T2R2 · · ·Tnp Rnp(z) =
ap + bpz

cp + dpz
. (C.16)

For dispersing billiards rm > 0, so all coefficients are positive. The expanding
eigenvalue satisfies |Λp| + 1/|Λp| = bp + cp, so cycle eigenvalue is a root of the
quadratic equation 4

|Λp| =
bp + cp +

√
(bp + cp)2 − 4

2
= bp − dpzp , (C.17)

alternatively given as the root zp of the linear fractional representation fixed point
condition (C.16). The sign of Λp is (−1)np .

3Predrag: this is clumsy; time comes out reversed - change fract lin rep to something more
convenient?

4Predrag: obsolete, do as for Madelung
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billiards!with gravityRemark C.1 Sinai-Bunimovich curvature. This is called the Sinai-Bunimovich [8,
10] continued fraction method of evaluating curvatures. It is equivalent to ( 8.11), multi-
plying [2×2] Jacobian matrices, the usual method by which the stabilities are evaluated.

C.3 Billiards with gravity: 2 balls on a line

The Hamiltonian for two balls placed vertically on a line is

H =
m1v2

1

2
+

m2v2
2

2
+ m1q1 + m2q2 . (C.18)

We take q1 ≤ q2, place the floor at qi = 0, and fix the mass scale by m1 + m2 = 1.
Following 5 Wojtkowski [30], we chose as the 4 coordinates the ball energies and
velocities. This choice is convenient, as the (h, v) pair6

h = h1 =
1
2

m1v2
1 + m1q1 , h2 =

1
2

m2v2
2 + m2q2 = −h

v = v1 − v2 (C.19)

is a symplectic pair of coordinates: the energy conservation eliminates h2 = −h,
v is transverse to the flow, and v1 + v2 points along the flow and can be ignored.
The equations of motion for the transverse coordinates x = (h, v) are

d
dt

h = 0 ,
d
dt

v = 0 . (C.20)

The second equation is a consequence of constant acceleration, d
dt vi = −1, so for

free fall the flight does not defocus the trajectories.

When the lower ball hits the floor, its velocity reverses direction, v+1 = −v−1 .
As at the moment of impact q1 = 0, v+1 can be expressed in terms of h:

h+ = h−

v+ = v− + 2

√
2h
m1

. (C.21)

The conservation of energy and momentum yields the velocities and energies after
a ball-ball collision:

h+ = −h− + m1m2(m1 − m2)v2 + 2m1E

v+ = −v− , q1 = q2 . (C.22)

5Predrag: Make into remark about ergodicity
6Predrag: one can now trace out nt the (h, v) plane the allowed region for fixed energy, and the

double-collision line which determines whether next bounce is against the floor, or against the upper
ball - just as in the wedge problem in ref. [29].
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billiards!wedgeThe Jacobian matrixs can be evaluated by a variation of the symplectic pair of
local coordinates (C.19):

δh = m1v1δv1 + m1δq1

δv = δv1 − δv2 . (C.23)

When the lower ball hits the floor, its velocity reverses direction:

δh+ = δh−

δv+ = δv− +

√
2

m1h
δh− . (C.24)

In intervals between the ball-ball collisions, the lower ball keeps bouncing with
the same Jacobian matrix at each bounce, with the stability matrix (4.18) for n
bounces given by

Mn(x) =

⎛⎜⎜⎜⎜⎜⎝ 1 0

n
√

2
m1h 1

⎞⎟⎟⎟⎟⎟⎠ . (C.25)

The ball-ball collision Jacobian matrix follows from (C.22): 7

δh+ = −δh− − αδv− , α = 2m1m2(m1 − m2)v−

δv+ = −δv−

M(x) =

(
−1 −α
0 −1

)
. (C.26)

The two-ball collision must always be followed by one or more bounces of the
lower ball against the bottom, hence the natural symbolic dynamics for this prob-
lem is n-ary, with the corresponding Jacobian matrix given by (C.26) and (C.25)

Mn(x) =

⎛⎜⎜⎜⎜⎜⎝ 1 0

n
√

2
m1h 1

⎞⎟⎟⎟⎟⎟⎠ (
−1 −α
0 −1

)
. (C.27)

This matrix multiplication can be recast in the continued fraction form, as in
(8.14).

C.4 Wedge billiard

7Predrag: Recheck the α sign here.
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The wedge billiard consists of a particle moving in a plane in a constant
gravitational field, bouncing elastically between a vertical wall and a plane in-
clined at angle θ to the vertical axis. θ is the only parameter of the system. The
dynamics can be reduced to a 2-dimensional map (X, Y) → T (X, Y), where X and
Y are functions of velocity components respectively parallel and perpendicular to
the inclined plane at the moment of collision:

X = �er · �v cos θ , Y = �eθ · �v sin θ . (C.28)

�er is the unit vector pointing along the inclined plane, from the tip of the wedge to
the position of the particle; �eθ points perpendicularly out of the plane. The map T
is given by: 8

if (Xk − 2Yk)2 cos2 θ + Y2
k sin2 θ ≤ 1

T0 :

{
Xk+1 = Xk − 2Yk
Yk+1 = Yk

else

T1 :

⎧⎪⎪⎨⎪⎪⎩ Xk+1 = Yk − Xk − Yk+1

Yk+1 =

√
2 + 2ξ(Yk − Xk)2 − Y2

k
.

(C.29)

Where ξ = 1−tan2 θ
(1+tan2 θ)2 . The map T0 corresponds to two consecutive bounces off

the inclined plane, while map T1 describes the particle bouncing from the inclined
plane to the vertical wall and then back again to the inclined plane. The mapping is
area preserving in coordinates (x, y) = (X cos θ, Y sin θ), with the Jacobian matrix

M0(xk) =

(
1 − c

s2
1
Yk

0 1

)
, c = cos θ , s = sin θ

M1(xk) =

(
1 − c

2s2
1

Yk+1

0 1

) ( −1 0
−4ξ s2

c (Yk − Xk) −1

) (
1 − c

2s2
1
Yk

0 1

)
.(C.30)

The wedge billiard, with Hamiltonian

H =
1
2

(P2
1 + P2

2) + Q2 (C.31)

and boundaries given by a vertical wall and a wall inclined at angle θ, is a canon-
ical transformation of the 2-ball system (C.18):

m1 = sin2 θ m2 = cos2 θ

Q1 = (q1 − q2) sin θ cos θ Q2 = q1 sin2 θ + q2 cos2 θ

P1 = (v1 − v2) sin θ cos θ P2 = v1 sin2 θ + v2 cos2 θ .

(C.32)

8Predrag: Maybe should remove ≤ from: (xt − 2yt)2 cos2 θ + y2
t sin2 θ ≤ 1 as one probably

needs a different symbol for the pruning front points - just as we have L,C,R for unimodal maps.
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There is no point of rotating the tangent coordinates as in (C.32), as the natural
expression for the wedge billiard map is in terms of the 2-ball velocities; (C.30) is
essentially the same Jacobian matrix as (C.27).

C.5 Transfer operators

We rederive here the dynamical zeta function (19.15) by the transfer op-
erator technique. This is done only to accomodate the reader versed in statistical
mechanics transfer operators; this appendix can be skipped in good conscience by
anybody else.

9 Consider Mandelbrot’s favorite example of a fractal, the Cantor set. The set
is generated by a single rule: replace a “mother” interval l by two “daughters” of
length l/3; repeat this replacement ad infinitum. Given the rule, one can immedi-
ately compute the Hausdorff dimension; at nth level the set can be covered with
2n intervals of size 3−n, hence D = log 2/ log 3. 10

A transfer operator is a generalization of such rule to non–wandering sets for
which the dynamics generates an infinity of scales, not just a single scale as in the
Cantor set case. For example, for a repeller like the one illustrated in figure11.12
the dynamics associates with each “mother” interval Mm, m = s2s3 · · · sn, two
“daughter” intervals Md, d = 0s2 · · · sn, 1s2 · · · sn, at the next level of resolution.
The transfer operator appropriate to the evaluation of (22.2) is defined by the set
of daughter/mother ratios

Tdm =Md/Mm (C.33)

For the Cantor set Tdm = 1/3 for all d; for a generic dynamical non–wandering
set Tdm takes on infinity of values. The sum (22.2) can now be expressed in terms
of products of transfer operators:

Γn =
∑

s1s2 ···sn

Ts1s2 ···sn ,s2···sn Ts2···sn,s3···sn · · · Tsn,. (C.34)

As it stands, this is a purely formal rewrite of (22.2); the “mother” to “daughters”
relations place the pieces of a non–wandering set onto a hierarchical tree, and
that can be done in various ways. To proceed, we require that the tree provide
a hierarchical nesting of the scaling ratios in the following sense: the value of
Ts1 s2···sn,s2···sn should depend strongly on the head of the symbol sequence s1s2 · · ·,
and weakly on the tail · · · sn−1sn. More precisely, we assume that the specification
of first k symbols determines Ts1 s2···sn,s2···sn , n > k, within accuracy Δk

Ts1s2···sn,s2···sn = T̃ (k)
s1s2···sk ,s2···sk+1

+ O(Δk), (C.35)

9Predrag: remove ths - repat of the main text?
10Predrag: where are the dimensions defined?
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and that |Δk | decrease monotonically towards zero with increasing k. Here T̃ (k)

is an approximate “mean” scaling for all Tdm with the same first k symbols. Re-
placing the infinite number of scaling ratios (C.33) by a finite matrix T̃ (k) amounts
to approximating the non–wandering set by a Cantor set with a finite number of
scales.

An example of such hierarchy is the 1-dimensional repeller of figure11.12, for
which Tdm ≈ 1/| f ′(x)|, where f ′(x) is a slope of the mapping evaluated at a point
x inside the dth neighborhood. With the labeling conventions of figure 11.12,
the points whose itineraries have the same head s1s2 . . . sn are spatially close, and
hence the associated derivatives and transfer matrix elements are close.

Now we can study the transfer operator T as a limit of T̃ (k) finite matrix ap-
proximations. For example, for the binary labeled repeller of figure11.12, k = 2
level approximation to T is given by 11

T̃ (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
T̃00.00 T̃00.01 0 0

0 0 T̃01.10 T̃01.11

T̃10.00 T̃10.01 0 0
0 0 T̃11.10 T̃11.11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
12 For binary symbolic dynamics T̃ is in general a sparse matrix, as the only non-
vanishing entries in the m = s2s3 . . . sk+1 column of T̃dm are in the rows 0s2 . . . sk

and 1s2 . . . sk.

In the kth order approximation the sums in (C.34) reduce to matrix multipli-
cation

Γn ≈ Γ
(k)
n =

∑
s1s2···sn

T̃ (k)
s1s2···sk,s2···sk+1 T̃ (k)

s2···sk+1,s3···sk+2 · · · Tsn,.

=
∑

s1s2···sk

∑
δ1···δk

(
T̃n−k

(k)

)
s1s2···sk,δ1···δk

Mδ1···δk, . (C.36)

Here �l is the vector of all intervals Mi at the kth level. It plays the same role as
the prefactors ai in (1.5); in the n ( k limit, the kth level approximation (C.36) is
dominated by the leading eigenvalue of T̃ (k)

Γ
(k)
n ∝ [λ(k)

max]n

and, as far as the n → ∞ limit is concerned, the pre-asymptotic intervals�l (k)

contribute only an irrelevant prefactor (unless �l (k) happens to be normal to the
leading eigen-direction of T̃ (k)). This method of evaluating sums is familiar from
statistical mechanics, whence the designation “transfer operator.”

11Predrag: explain the dynamics is a bit-shift.
12Predrag: list also 8 x 8 matrix?
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C.5.1 Perron-Frobenius-Ruelle theory

The transfer operators were introduced by Ruelle [13] as a generalization of the
transfer matrices of equilibrium statistical mechanics. For β = 0 the evolution
operator (17.25) is the kernel of the Perron-Frobenius operator (16.28). For the
generalized evolution operators it presumably suffices to refer to Ruelle, who in-
troduced [9] the Ruelle-Araki operator 13

(
Lt ◦ ρ

)
(x) =

∑
y= f−t(x)

eA(y)ρ(y) . (C.37)

and who always defines his dynamical zeta functions weighted by multiplicative
factors; later papers only rediscover that.

In the mathematical literature, the dominant eigenvalue of the L operator is
related to the averages of the dynamical system by using a theorem of Ruelle
(or one of its extensions). Inspired by the statistical mechanics of spin systems,
Ruelle extended the Perron-Frobenius theorem for matrices to operators in Banach
spaces of bounded functions. He uses the evolution operator introduced in (17.26)
with β = 0 and shows that it can be used to compute the averages of the function
h the operator acts on. To do that he assumes that the operator has an isolated
largest eigenvalue. With that assumption, he shows that the operator has an adjoint
operator acting on the space of measures and that the measure associated with the
largest eigenvalue is the invariant measure of the system. A theorem (the Perron-
Frobenius-Ruelle theorem) shows that averages of h with this measure can be
computed by projecting the function onto the eigenspace of this largest eigenvalue.

The method we use is slightly different. We do not use the action of the
operator to compute the averages, but rather rely on the eigenvalue having a few
derivatives around β = 0. The function we want to average is incorporated directly
into the definition of the evolution operator; different averages require different
operators. The approach is more in the spirit of statistical mechanics, in that we
compute a function s(β) that is assumed to have a few derivatives with respect to
β. That this function exists can be derived from an application of the extensions
of Ruelle-Bowen results. Ronnie: add references

to this all

13Predrag: recheck the ref. [9], use Ruelle’s original notation?
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Appendix D

Fractals and their dimensions

So, naturalists observe, a flea hath smaller fleas that on
him prey; and those have smaller still to bite ’em; and so
proceed ad infinitum.

—Jonathan Swift

Widely used and misused concept of fractals and “multifractals.”

Fractal dimension is an an invariant number that can be used (inter alia) to
characterize a fractal set. Easy to stick on a computer and (mis)compute, it has
become a standard characterization of fractality in a wide range of scientific fields.

D.1 Fractals

Fractal is a complicated geometrical object whose any part properly magnified
resembles the object itself.

Random fractal:

• shoreline of Britain

• coal sooth (DLA, or Diffusion Limited Aggregation)

• random walk

Deterministic fractal: generated by a repetition of a fixed rule

• 3-disk pinball : By looking at the repeller we can recognize an interesting
spatial structure. In the 3-disk case the starting points of trajectories not

1074
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Figure D.1: g(λ) and P(β) for the map of exercise O.4
at a = 3 and b = 3/2. See solution S for calculation
details.
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leaving the system after the first bounce form two strips. Then these strips
are subdivided into an infinite hierarchy of substrips as we follow trajecto-
ries which do not leave the system after more and more bounces. The finer
strips are similar to strips on a larger scale.

• 1/3rd Cantor set (1884)

• Koch curve (1904)

This success points to the most serious problem in classical chaos, namely the
problem of Mandelbrot. At time of writing this text, there is still no solution in
sight.

D.2 Topological dimension

Cover a set embedded in a d-dimensional space by arbitrarily many arbitrarily
small d-dimensional balls.

• set can be covered by a disjoint set of balls: DT = 0

• set can be covered by a pairwise intersecting set of balls (a “necklace”):
DT = 1

• set can be covered by each ball intersecting 2 other balls (a “knight’s shirt”):
DT = 2

D.3 Fractal dimensions

“Clouds are not spheres, mountains are not cones, coast-
lines are not circles and bark is not smooth, nor does light-
ning travel in straight line.”

—B.B. Mandelbrot

Trouble with topological dimension - metric not well defined.

Area of the Koch island well defined.

Length of the Koch curve depends on the observational meter-stick - infinite
for arbitrarily short stick.
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Figure D.2: Different averages over a strange set.

D.3.1 Hausdorff dimension

Integral over a fractal set?

Cantor set cover

D.3.2 Similarity dimension

We can characterize fractals via their local scaling properties. The first step is to
draw a uniform grid on the surface of section. We can look at various measures
in the square boxes of the grid. The most interesting measure is again the natural
measure located in the box. By decreasing the size of the grid ε the measure in
a given box will decrease. If the distribution of the measure is smooth then we
expect that the measure of the ith box is proportional with the dimension of the
section

μi ∼ εd.
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three-disk@3-
disk!fractal
dimension

Figure D.3: (a) The Poincaré section coordinates
for the 3-disk game of pinball. (b) Collision se-
quence (s1, p1) �→ (s2, p2) �→ (s3, p3) from the
boundary of a disk to the boundary of the next disk
presented in the Poincaré section coordinates.

(a)

s1

φ1

s2

a

φ1

(b)

p sin φ1

s1

p sin φ2

s2

p sin φ3

s3

(s1,p1)

(s2,p2)

(s3,p3)

Figure D.4: (a) A trajectory starting out from disk 1
can either hit another disk or escape. (b) Hitting two
disks in a sequence requires a much sharper aim. The
cones of initial conditions that hit more and more con-
secutive disks are nested within each other, as in fig-
ure 1.9.

If the measure is distributed on a hairy object like the repeller we can observe
unusual scaling behavior of type

μi ∼ εαi ,

where αi is the local “dimension” or Hölder exponent of the object. As α is not
necessarily an integer here we are dealing with objects with fractional dimensions.

exercise O.4
exercise O.5
exercise O.6

D.3.3 Information dimension

D.3.4 Cyclist dimension

Next, we mark in the Poincaré section those initial conditions which do not escape
in one bounce. There are two strips of survivors, as the trajectories originating
from one disk can hit either of the other two disks, or escape without further ado.

Résumé

In this chapter we have shown that a variety of fractal dimensions can be defined.
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Mandelbrot, B. B.
multifractals
mother!of fractals
grandmother!of

fractals

Figure D.5: The 3-disk game of pinball Poincaré
section, trajectories emanating from the disk 1
with x0 = (arclength, parallel momentum) =
(s0, p0) , disk radius : center separation ratio
a:R = 1:2.5. (a) Strips of initial points M12, M13

which reach disks 2, 3 in one bounce, respectively.
(b) Strips of initial points M121, M131 M132 and
M123 which reach disks 1, 2, 3 in two bounces, re-
spectively. The Poincaré sections for trajectories
originating on the other two disks are obtained by
the appropriate relabeling of the strips. (Y. Lan)
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Commentary

Remark D.1 Fractals. We found Addison’s introduction to fractal dimensions [ 1] an
enjoyable read. The word ‘fractal’ was coined by Mandelbrot [ 2].

Remark D.2 Multifractals. For reasons that remain mysterious to the authors - perhaps
so that Mandelbrot can refer to himself both as the mother of fractals and the grandmother
of multifractals - some physics literature refers to any fractal generated by more than
one scale as a “multi”-fractal. This usage seems to divide fractals into 2 classes; one
consisting essentially of the above Cantor set and the Serapinski gasket, and the second
consisting of anything else, including all cases of physical interest.
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Appendix E

Linear stability

Mopping up operations are the activities that engage most
scientists throughout their careers.

— Thomas Kuhn, The Structure of Scientific Revolu-
tions

The subject of linear algebra generates innumerable tomes of its own, and is
way beyond what we can exhaustively cover. Here we recapitulate a few
essential concepts that ChaosBook relies on. The punch line is Eq. (E.24):

Hamilton-Cayley equation
∏

(M − λi1) = 0 associates with each distinct root
λi of a matrix M a projection onto ith vector subspace

Pi =
∏
j�i

M − λ j1
λi − λ j

.

E.1 Linear algebra

In this section we collect a few basic definitions. The reader might prefer going
straight to sect. E.2.

Vector space. A set V of elements x, y, z, . . . is called a vector (or linear) space
over a field F if

(a) vector addition “+” is defined in V such that V is an abelian group under
addition, with identity element 0;

(b) the set is closed with respect to scalar multiplication and vector addition

a(x + y) = ax + ay , a, b ∈ F , x, y ∈ V

1080
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span
vector!basis
basis vector
rep!dual
dual!rep
space!dual
dual!space
Kronecker delta

(a + b)x = ax + bx

a(bx) = (ab)x

1 x = x , 0 x = 0 . (E.1)

Here the field F is either R, the field of reals numbers, or C, the field of complex
numbers. Given a subset V0 ⊂ V , the set of all linear combinations of elements of
V0, or the span of V0, is also a vector space.

A basis. {e(1), · · · , e(d)} is any linearly independent subset of V whose span is V.
The number of basis elements d is the dimension of the vector space V.

Dual space, dual basis. Under a general linear transformation g ∈ GL(n, F), the
row of basis vectors transforms by right multiplication as e( j) =

∑
k(g−1) j

k e(k),
and the column of xa’s transforms by left multiplication as x′ = gx. Under
left multiplication the column (row transposed) of basis vectors e(k) transforms
as e( j) = (g†) j

ke(k), where the dual rep g† = (g−1)T is the transpose of the inverse
of g. This observation motivates introduction of a dual representation space V̄ ,
the space on which GL(n, F) acts via the dual rep g†.

Definition. If V is a vector representation space, then the dual space V̄ is the set
of all linear forms on V over the field F.

If {e(1), · · · , e(d)} is a basis of V , then V̄ is spanned by the dual basis {e(1), · · · , e(d)},
the set of d linear forms e(k) such that

e( j) · e(k) = δk
j ,

where δk
j is the Kronecker symbol, δk

j = 1 if j = k, and zero otherwise. The

components of dual representation space vectors ȳ ∈ V̄ will here be distinguished
by upper indices

(y1, y2, . . . , yn) . (E.2)

They transform under GL(n, F) as

y′a = (g†)a
byb . (E.3)

For GL(n, F) no complex conjugation is implied by the † notation; that interpre-
tation applies only to unitary subgroups U(n) ⊂ GL(n,C). In the index notation,
g can be distinguished from g† by keeping track of the relative ordering of the
indices,

(g)b
a → ga

b , (g†)b
a → gb

a . (E.4)

appendStability - 23jan2012 boyscout version14.4, Mar 19 2013
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algebra
structure constant
matrix!rep
rep!matrix
algebra!associative
associative algebra
matrix!product
product!matrix
Lie!product
product!Lie
Lie!algebra
algebra!Lie

Algebra. A set of r elements tα of a vector space T forms an algebra if, in
addition to the vector addition and scalar multiplication,

(a) the set is closed with respect to multiplication T · T → T , so that for any
two elements tα, tβ ∈ T , the product tα · tβ also belongs to T :

tα · tβ =
r−1∑
γ=0

ταβ
γtγ , ταβ

γ ∈ C ; (E.5)

(b) the multiplication operation is distributive:

(tα + tβ) · tγ = tα · tγ + tβ · tγ
tα · (tβ + tγ) = tα · tβ + tα · tγ .

The set of numbers ταβγ are called the structure constants. They form a matrix
rep of the algebra,

(tα)β
γ ≡ ταβγ , (E.6)

whose dimension is the dimension r of the algebra itself.

Depending on what further assumptions one makes on the multiplication, one
obtains different types of algebras. For example, if the multiplication is associative

(tα · tβ) · tγ = tα · (tβ · tγ) ,

the algebra is associative. Typical examples of products are the matrix product

(tα · tβ)c
a = (tα)b

a(tβ)
c
b , tα ∈ V ⊗ V̄ , (E.7)

and the Lie product

(tα · tβ)c
a = (tα)b

a(tβ)
c
b − (tα)b

c(tβ)
a
b , tα ∈ V ⊗ V̄ (E.8)

which defines a Lie algebra.

E.2 Eigenvalues and eigenvectors

Eigenvalues of a [d×d] matrix M are the roots of its characteristic polynomial

det (M − λ1) =
∏

(λi − λ) = 0 . (E.9)

appendStability - 23jan2012 boyscout version14.4, Mar 19 2013
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Hamilton!-Cayley
theorem

orthogonality relation
completeness relation

Given a nonsingular matrix M, with all λi � 0, acting on d-dimensional vectors
x, we would like to determine eigenvectors e(i) of M on which M acts by scalar
multiplication by eigenvalue λi

M e(i) = λie(i) . (E.10)

If λi � λ j, e(i) and e( j) are linearly independent. There are at most d distinct
eigenvalues and eigenspaces, which we assume have been computed by some
method, and ordered by their real parts, Re λi ≥ Re λi+1.

If all eigenvalues are distinct e( j) are d linearly independent vectors which can
be used as a (non-orthogonal) basis for any d-dimensional vector x ∈ Rd

x = x1 e(1) + x2 e(2) + · · · + xd e(d) . (E.11)

From (E.10) it follows that

(M − λi1) e( j) = (λ j − λi) e( j) ,

matrix (M − λi1) annihilates e(i), the product of all such factors annihilates any
vector, and the matrix M satisfies its characteristic equation (E.9),

d∏
i=1

(M − λi1) = 0 . (E.12)

This humble fact has a name: the Hamilton-Cayley theorem. If we delete one term
from this product, we find that the remainder projects x onto the corresponding
eigenspace:

∏
j�i

(M − λ j1)x =
∏
j�i

(λi − λ j)xie(i) .

Dividing through by the (λi − λ j) factors yields the projection operators

Pi =
∏
j�i

M − λ j1
λi − λ j

, (E.13)

which are orthogonal and complete:

PiP j = δi jP j , (no sum on j) ,
r∑

i=1

Pi = 1 . (E.14)

appendStability - 23jan2012 boyscout version14.4, Mar 19 2013
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spectral!decomposition
Clebsch-

Gordan!coefficients
fundamental!matrix

It follows from the characteristic equation (E.12) that λi is the eigenvalue of M on
Pi subspace:

M Pi = λiPi (no sum on i) . (E.15)

Using M =M 1 and completeness relation (E.14) we can rewrite M as

M = λ1P1 + λ2P2 + · · · + λdPd . (E.16)

Any matrix function f (M) takes the scalar value f (λi) on the Pi subspace, f (M) Pi =

f (λi) Pi , and is thus easily evaluated through its spectral decomposition

f (M) =
∑

i

f (λi)Pi . (E.17)

This, of course, is the reason why anyone but a fool works with irreducible reps:
they reduce matrix (AKA “operator”) evaluations to manipulations with numbers.

By (E.10) every column of Pi is proportional to a right eigenvector e(i), and its
every row to a left eigenvector e(i). In general, neither set is orthogonal, but by the
idempotence condition (E.14), they are mutually orthogonal,

e(i) · e( j) = c δ j
i . (E.18)

The non-zero constant c is convention dependent and not worth fixing, unless you
feel nostalgic about Clebsch-Gordan coefficients. We shall set c = 1. Then it is
convenient to collect all left and right eigenvectors into a single matrix as follows.

Fundamental matrix. The set of solutions x(t) = Jt(x0)x0 for a system of ho-
mogeneous linear differential equations ẋ(t) = A(t)x(t) of order 1 and dimension
d forms a d-dimensional vector space. A basis {e(1)(t), . . . , e(d)(t)} for this vector
space is called a fundamental system. Every solution x(t) can be written as

x(t) =
d∑

i=1

ci e(i)(t) .

The [d×d] matrix F−1
i j = e( j)

i whose columns are the right eigenvectors of Jt 1

F(t)−1 = (e(1)(t), . . . , e(d)(t)) , F(t)T = (e(1)(t), . . . , e(d)(t)) (E.19)

is the inverse of a fundamental matrix. 2

1Predrag: columns or rows? recheck.
2Predrag: www.maths.abdn.ac.uk/∼igc/tch/ma2001/notes/node77.html has some handy exam-

ples
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Jacobian matrix. The Jacobian matrix Jt(x0) is the linear approximation to a
differentiable function ft(x0), describing the orientation of a tangent plane to the
function at a given point and the amount of local rotation and shearing caused
by the transformation. The inverse of the Jacobian matrix of a function is the
Jacobian matrix of the inverse function. If f is a map from d-dimensional space
to itself, the Jacobian matrix is a square matrix, whose determinant we refer to as
the ‘Jacobian.’

The Jacobian matrix can be written as transformation from basis at time t0 to
the basis at time t1,

Jt1−t0 (x0) = F(t1)F(t0)−1 . (E.20)

Then the matrix form of (E.18) is F(t)F(t)−1 = 1, i.e., for zero time the Jacobian
matrix is the identity. 3

exercise E.1

Example E.1 Fundamental matrix. If A is constant in time, the system (4.2) is
autonomous, and the solution is 4

x(t) = eA t x(0) ,

where exp(A t) is defined by the Taylor series for exp(x). As the system is linear, the sum
of any two solutions is also a solution. Therefore, given d independent initial conditions,
x1(0), x2(0), . . . xd(0) we can write the solution for an arbitrary initial condition based on
its projection on to this set,

x(t) = F(t) F(0)−1x(0) = eAt ,

where F(t) = (x1(t), x2(t), . . . , xd(t)) is a fundamental matrix of the system. (J. Halcrow)

exercise E.1

Example E.2 Complex eigenvalues. As M has only real entries, it will in general
have either real eigenvalues, or complex conjugate pairs of eigenvalues. That is not
surprising, but also the corresponding eigenvectors can be either real or complex. All
coordinates used in defining a dynamical flow are real numbers, so what is the meaning
of a complex eigenvector?

If λk, λk+1 eigenvalues that lie within a diagonal [2× 2] sub-block M ′ ⊂ M
form a complex conjugate pair, {λk, λk+1} = {μ + iω, μ − iω}, the corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e(k), e(k+1)} →
{Re e(k), Im e(k)}. In this 2-dimensional real representation, M′ → N, the block N is a
sum of the rescaling×identity and the generator of SO(2) rotations

N =
(
μ −ω
ω μ

)
= μ

(
1 0
0 1

)
+ ω

(
0 −1
1 0

)
.

Trajectories of ẋ = N x, given by x(t) = Jt x(0), where

Jt = etN = etμ
( cos ωt − sin ωt

sin ωt cos ωt

)
, (E.21)

3Predrag: be precise about what is the basis and what is the componets
4Predrag: link to equilibrium stability equations
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spiral in/out around (x, y) = (0, 0), see figure 4.4, with the rotation period T and the
radial expansion /contraction multiplier along the e ( j) eigen-direction per a turn of the
spiral:

T = 2π/ω , Λradial = eTμ . (E.22)

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x, y) = (0, 0) is of order ≈ T (and not, let us say, 1000 T, or 10−2T ). 5

Degenerate eigenvalues. While for a matrix with generic real elements all eigen-
values are distinct with probability 1, that is not true in presence of symmetries,
or spacial parameter values (bifurcation points). What can one say about situation
where dα eigenvalues are degenerate, λα = λi = λi+1 = · · · = λi+dα−1? Hamilton-
Cayley (E.12) now takes form

r∏
α=1

(M − λα1)dα = 0 ,
∑
α

dα = d . (E.23)

We distinguish two cases:

M can be brought to diagonal form. The characteristic equation (E.23) can be
replaced by the minimal polynomial,

r∏
α=1

(M − λα1) = 0 , (E.24)

where the product includes each distinct eigenvalue only once. Matrix M acts
multiplicatively

M e(α,k) = λie(α,k) , (E.25)

on a dα-dimensional subspace spanned by a linearly independent set of basis
eigenvectors {e(α,1), e(α,2), · · · , e(α,dα)}. This is the easy case whose discussion we
continue in appendix K.2.1. Luckily, if the degeneracy is due to a finite or compact
symmetry group, relevant M matrices can always be brought to such Hermitian,
diagonalizable form.

5Predrag: link to Rössler and Lorenz attractors.
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characteristic!equation
secular equation
Jordan normal form

M can only be brought to upper-triangular, Jordan form. This is the messy
case, so we only illustrate the key idea in exampleE.3.

Example E.3 Decomposition of 2-dimensional vector spaces: Enumeration of
every possible kind of linear algebra eigenvalue / eigenvector combination is beyond
what we can reasonably undertake here. However, enumerating solutions for the sim-
plest case, a general [2×2] non-singular matrix

M =
(

M11 M12
M21 M22

)
.

takes us a long way toward developing intuition about arbitrary finite-dimensional ma-
trices. The eigenvalues

λ1,2 =
1
2

tr M ± 1
2

√
(tr M)2 − 4 det M (E.26)

are the roots of the characteristic (secular) equation (E.9):

det (M − λ 1) = (λ1 − λ)(λ2 − λ)

= λ2 − tr M λ + det M = 0 .

Distinct eigenvalues case has already been described in full generality. The left/right
eigenvectors are the rows/columns of projection operators

P1 =
M − λ21
λ1 − λ2

, P2 =
M − λ11
λ2 − λ1

, λ1 � λ2 . (E.27)

Degenerate eigenvalues. If λ1 = λ2 = λ, we distinguish two cases: (a) M can be
brought to diagonal form. This is the easy case whose discussion in any dimension we
continue in appendix K.2.1. (b) M can be brought to Jordan form, with zeros every-
where except for the diagonal, and some 1’s directly above it; for a [2×2] matrix the
Jordan form is

M =
(
λ 1
0 λ

)
, e(1) =

( 1
0

)
, v(2) =

( 0
1

)
.

v(2) helps span the 2-dimensional space, (M − λ)2v(2) = 0, but is not an eigenvector, as
Mv(2) = λv(2) + e(1). For every such Jordan [dα×dα] block there is only one eigenvector
per block. Noting that

Mm =

(
λm mλm−1

0 λm

)
,

we see that instead of acting multiplicatively on R2, Jacobian matrix Jt = exp(tM)

etM
(
u
v

)
= etλ

(
u + tv

v

)
(E.28)

picks up a power-low correction. That spells trouble (logarithmic term ln t if we bring the
extra term into the exponent). Do we care? Yes, stability matrices at bifurcation points,⇓PRIVATEand for “integrable” cases such as the stadium stability (8.10) can be of this form. 6

⇑PRIVATE
6Predrag: add an example with eigenvectors coalescing
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spectral!decomposition

Example E.4 Projection operator decomposition in 2 dimensions: Let’s illus-
trate how the distinct eigenvalues case works with the [2×2] matrix 7

M =
(

4 1
3 2

)
.

Its eigenvalues {λ1, λ2} = {5, 1} are the roots of (E.26):

det (M − λ1) = λ2 − 6 λ + 5 = (5 − λ)(1 − λ) = 0 .

That M satisfies its secular equation (Hamilton-Cayley theorem) can be verified by
explicit calculation:

(
4 1
3 2

)2

− 6
(

4 1
3 2

)
+ 5

(
1 0
0 1

)
=

(
0 0
0 0

)
.

Associated with each root λi is the projection operator (E.27)

P1 =
1
4

(M − 1) =
1
4

(
3 1
3 1

)
(E.29)

P2 =
1
4

(M − 5 · 1) =
1
4

( 1 −1
−3 3

)
. (E.30)

Matrices Pi are orthonormal and complete, The dimension of the ith subspace is given
by di = tr Pi ; in case at hand both subspaces are 1-dimensional. From the charac-
teristic equation it follows that Pi satisfies the eigenvalue equation M Pi = λiPi . Two
consequences are immediate. First, we can easily evaluate any function of M by spec-
tral decomposition, for example

M7 − 3 · 1 = (57 − 3)P1 + (1 − 3)P2 =

(
58591 19531
58593 19529

)
.

Second, as Pi satisfies the eigenvalue equation, its every column is a right eigenvector,
and every row a left eigenvector. Picking first row/column we get the eigenvectors:

{e(1), e(2)} = {
(

1
1

)
,
(

1
−3

)
}

{e(1), e(2)} = {( 3 1 ) , ( 1 −1 )} ,

with overall scale arbitrary.The matrix is not hermitian , so {e( j)} do not form an orthog-
onal basis. The left-right eigenvector dot products e( j) · e(k), however, are orthogonal
as in (E.18), by inspection.

Example E.5 Computing matrix exponentials. If A is diagonal (the system is un-
coupled), then etA is given by

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1t

λ2t
. . .

λdt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eλ1t

eλ2t

. . .

eλdt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
7Predrag: credit Harter
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Jordan normal formIf A is diagonalizable, A = FDF−1, where D is the diagonal matrix of the eigen-
values of A and F is the matrix of corresponding eigenvectors, the result is simple:
An = (FDF−1)(FDF−1) . . . (FDF−1) = FDnF−1. Inserting this into the Taylor series for
ex gives eAt = FeDtF−1.

But A may not have d linearly independant eigenvectors, making F singular and
forcing us to take a different route. To illustrate this, consider [2×2] matrices. For any
linear system in R2, there is a similarity transformation

B = U−1AU ,

where the columns of U consist of the generalized eigenvectors of A such that B has
one of the following forms:

B =
(
λ 0
0 μ

)
, B =

(
λ 1
0 λ

)
, B =

(
μ −ω
ω μ

)
.

These three cases, called normal forms, correspond to A having (1) distinct real eigen-
values, (2) degenerate real eigenvalues, or (3) a complex pair of eigenvalues. It follows
that

eBt =

(
eλt 0
0 eμt

)
, eBt = eλt

( 1 t
0 1

)
, eBt = eat

( cos bt − sin bt
sin bt cos bt

)
,

and eAt = UeBtU−1. What we have done is classify all [2×2] matrices as belonging to one
of three classes of geometrical transformations. The first case is scaling, the second
is a shear, and the third is a combination of rotation and scaling. The generalization of
these normal forms to Rd is called the Jordan normal form. (J. Halcrow)

⇓PRIVATE

E.2.1 Yes, but how do you really do it?

8 Economical description of neighborhoods of equilibria and periodic orbits is
afforded by projection operators

Pi =
∏
j�i

M − λ( j)1
λ(i) − λ( j)

, (E.31)

where matrix M is typically either equilibrium stability matrix A, or periodic orbit
Jacobian matrix Ĵ restricted to a Poincaré section, as in (4.23). While usually
not phrased in language of projection operators, the requisite linear algebra is
standard, and relegated here to appendix E.

Once the distinct non-zero eigenvalues {λ(i)} are computed, projection opera-
tors are polynomials in M which need no further diagonalizations or orthogonal-
izations. For each distinct eigenvalue λ(i) of M, the colums/rows of Pi

(M − λ( j)1)P j = P j(M − λ( j)1) = 0 , (E.32)

8Predrag: merge this with the earlier text
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orthogonality relation
completeness relation
spectral!decomposition
complex eigenvalues
eigenvalue!complex

are the right/left eigenvectors e(k), e(k) of M which (provided M is not of Jordan
type) span the corresponding linearized subspace, and are a convenient starting
seed for tracing out the global unstable/stable manifolds.

Matrices Pi are orthogonal and complete:

PiP j = δi jP j , (no sum on j) ,
r∑

i=1

Pi = 1 . (E.33)

with the dimension of the ith subspace given by di = tr Pi . Completeness relation
substituted into M =M 1 yields

M = λ(1)P1 + λ
(2)P2 + · · · + λ(r)Pr . (E.34)

As any matrix function f (M) takes the scalar value f (λ(i)) on the Pi subspace,
f (M)Pi = f (λ(i))Pi , it is easily evaluated through its spectral decomposition

f (M) =
∑

i

f (λ(i))Pi . (E.35)

As M has only real entries, it will in general have either real eigenvalues
(over-damped oscillator, for example), or complex conjugate pairs of eigenvalues
(under-damped oscillator, for example). That is not surprising, but also the cor-
responding eigenvectors can be either real or complex. All coordinates used in
defining the flow are real numbers, so what is the meaning of a complex eigen-
vector?

If two eigenvalues form a complex conjugate pair, {λ(k), λ(k+1)} = {μ + iω, μ −
iω}, they are in a sense degenerate: while a real λ(k) characterizes a motion along
a line, a complex λ(k) characterizes a spiralling motion in a plane. We determine
this plane by replacing the corresponding complex eigenvectors by their real and
imaginary parts, {e(k), e(k+1)} → {Re e(k), Im e(k)}, or, in terms of projection opera-
tors:

Pk =
1
2

(R + iQ) , Pk+1 = P∗k ,

where R = Pk + Pk+1 is the subspace decomposed by the kth complex eigenvalue
pair, and Q = (Pk − Pk+1)/i, both matrices with real elements. Substitution

( Pk

Pk+1

)
=

1
2

( 1 i
1 −i

) ( R
Q

)
,

brings the λ(k)Pk + λ
(k+1)Pk+1 complex eigenvalue pair in the spectral decomposi-

tion (E.34) into the real form,

( Pk Pk+1 )
(
λ 0
0 λ∗

) ( Pk

Pk+1

)
= ( R Q )

(
μ −ω
ω μ

) ( R
Q

)
, (E.36)
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group!orbit, velocity
plane Couette

flow!stability

Table E.1: The first 27 least stable Floquet exponents λ = μ ± iω of equilibrium EQ5 for plane
Couette flow, Re = 400. The exponents are ordered by the decreasing real part. The two zero expo-
nents, to the numerical precision of our computation, arise from the two translational symmetries.
For details, see ref. [1].

j μ
( j)
EQ5 ω

( j)
EQ5 s1s2 s3

1,2 0.07212161 0.04074989 S S S
3 0.06209526 S AA
4 0.06162059 A S A

5,6 0.02073075 0.07355143 S S S
7 0.009925378 S AA

8,9 0.009654012 0.04551274 AA S
10,11 0.009600794 0.2302166 S AA
12,13 1.460798e-06 1.542103e-06 - - A
14,15 -0.0001343539 0.231129 AA S

16 -0.006178861 A S A
17,18 -0.007785718 0.1372092 AA S

19 -0.01064716 S AA
20,21 -0.01220116 0.2774336 S S S
22,23 -0.01539667 0.2775381 S AA
24,25 -0.03451081 0.08674062 A S A
26,27 -0.03719139 0.215319 S AA

where we have dropped the superscript (k) for notational brevity.

To summarize, spectrally decomposed matrix M (E.34) acts along lines on
subspaces corresponding to real eigenvalues, and as a [2×2] rotation in a plane on
subspaces corresponding to complex eigenvalue pairs. 9

⇑PRIVATE

E.3 Eigenspectra: what to make out of them?

Well Mack the Finger said to Louie the King
I got forty red white and blue shoe strings
And a thousand telephones that don’t ring
Do you know where I can get rid of these things?

— Bob Dylan, Highway 61 Revisited

Table E.1, taken from ref. [1], is an example of how to tabulate the leading
Floquet eigenvalues of the stability matrix of an equilibrium or relative equilib-
rium. The isotropy subgroup G( j)

EQ of the corresponding eigenfunction should be

indicated. If the isotropy is trivial, G( j)
EQ = {e}, it is omitted from the table. The

isotropy subgroup GEQ of the solution itself needs to be noted, and for relative
equilibrium (10.36) the velocity c along the group orbit. In addition, if the least
stable (i.e., the most unstable) eigenvalue is complex, it is helpful to state the
period of the spiral-out motion (or spiral-in, if stable), TEQ = 2π/ω(1)

EQ . 10 11

Table E.2, taken from ref. [3], is an example of how to tabulate the leading

9Predrag: This is not explained. Refer to rotations?
10Predrag: get rid of s1, s2, s3 - too primitive
11Predrag: Table E.1 sum of all real parts seems to not have reached the Kaplan-York treshold
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Figure E.1: Eigenvalues of the plane Couette flow
equilibrium EQ8, plotted according to their isotropy
groups: • + + +, the S -invariant subspace, � + − −,
� − + −, and � − − +, where ± symbols stand for
symmetric/antisymmetric under symmetry operation
s1, s2, and s3 respectively, defined in ref. [2]. For ta-
bles of numerical values of stability eigenvalues see
Channelflow.org.

−0.05 0 0.05 0.1
−0.4

−0.2

0

0.2

0.4

EQ
8

Table E.2: The first 13 least stable Floquet exponents λ = μ ± iω of periodic orbit p = P59.77 for
plane Couette flow, Re = 400, together with the symmetries of corresponding eigenvectors. The
eigenvalues are ordered by the decreasing real part. The one zero eigenvalue, to the numerical pre-
cision of our computation, arises from the spanwise translational SO(2) symmetry of this periodic
orbit. For details, see ref. [3].

j σ
( j)
p μ

( j)
p ω

( j)
p G( j)

p

1,2 0.07212161 0.04074989 D 1
3 1 0.06209526 ?
4 -1 0.06162059

5,6 0.02073075 0.07355143
7 -1 0.009925378

8,9 0.009654012 0.04551274
10,11 0.009600794 0.2302166

Floquet exponents of the monodromy matrix of an periodic orbit or relative pe-
riodic orbit. For a periodic orbit one states the period Tp, Λp =

∏
Λp,e, and the

isotropy group Gp of the orbit; for a relative periodic orbit (10.42) one states in
addition the shift parameters φ = (φ1, φ2, · · · φN). Λp, the product of expanding
Floquet multipliers (5.9) is useful, as 1/|Λp| is the geometric weight of cycle p
in a cycle expansion (remember that each complex eigenvalue contributes twice).
We often do care about σ( j)

p = Λp, j/|Λp, j| ∈ {+1,−1}, the sign of the jth Floquet

multiplier, or, if Λp, j is complex, its phase Tpω
( j)
p . 12

Surveying this multitude of equilibrium and Floquet exponents is aided by a
plot of the complex exponent plane (μ, ω). An example are the eigenvalues of
equilibrium EQ8 from ref. [2], plotted in figure E.1. To decide how many of
the these are “physical” in the PDE case (where number of exponents is always
infinite, in principle), it is useful to look at the ( j, μ( j)) plot. 13 However, intelli-
gent choice of the j-axis units can be tricky for high-dimensional problems. For
Kuramoto-Sivashinsky system the correct choice are the wave-numbers which,
due to the O(2) symmetry, come in pairs. For plane Couette flow the good choice
is not known as yet; one needs to group O(2) × O(2) wave-numbers, as well as
take care of the wall-normal node counting. 14

12Predrag: made up numbers in (E.2) - Dustin, please create the real table
13Predrag: add here a ( j, μ( j)) plot for a KS periodic orbit
14Predrag: add here the example from the Siminos blog

appendStability - 23jan2012 boyscout version14.4, Mar 19 2013

http://channelflow.org


APPENDIX E. LINEAR STABILITY 1093
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invariance!symplectic
stability!Hamiltonian
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Hamiltonian!flows,

stability
Poisson!bracket

E.4 Stability of Hamiltonian flows

(M.J. Feigenbaum and P. Cvitanović)

15

The symplectic structure of Hamilton’s equations buys us much more than the
incompressibility, or the phase space volume conservation alluded to in sect.7.1.
We assume you are at home with Hamiltonian formalism. If you would like to see ⇓PRIVATE
the Hamilton’s equations derived, Hamilton’s original line of reasoning is retraced
in sect. 38.1.1. The evolution equations for any p, q dependent quantity Q =

section 38.1.1

⇑PRIVATE
Q(q, p) are given by (16.31).

In terms of the Poisson brackets, the time-evolution equation for Q = Q(q, p)
is given by (16.33). We now recast the symplectic condition (7.9) in a form con-
venient for using the symplectic constraints on M. Writing x(t) = x′ = [p′, q′]
and the Jacobian matrix and its inverse

M =

⎛⎜⎜⎜⎜⎜⎝ ∂q′

∂q
∂q′

∂p
∂p′

∂q
∂p′

∂p

⎞⎟⎟⎟⎟⎟⎠ , M−1 =

⎛⎜⎜⎜⎜⎜⎝ ∂q
∂q′

∂q
∂p′

∂p
∂q′

∂p
∂p′

⎞⎟⎟⎟⎟⎟⎠ , (E.37)

we can spell out the symplectic invariance condition (7.9):

∂q′k
∂qi

∂p′k
∂qj

−
∂p′k
∂qi

∂q′k
∂qj

= 0

∂q′k
∂pi

∂p′k
∂pj

−
∂p′k
∂pi

∂q′k
∂pj

= 0

∂q′k
∂qi

∂p′k
∂pj

−
∂p′k
∂qi

∂q′k
∂pj

= δi j . (E.38)

From (7.30) we obtain

∂qi

∂q′j
=
∂p′j
∂pi

,
∂pi

∂p′j
=
∂q′j
∂qi

,
∂qi

∂p′j
= −

∂q′j
∂pi

,
∂pi

∂q′j
= −

∂p′j
∂qi

. (E.39)

Taken together, (E.39) and (E.38) imply that the flow conserves the {p, q} Poisson
brackets

{qi, qj} =
∂qi

∂p′k

∂qj

∂q′k
−
∂qj

∂p′k

∂qi

∂q′k
= 0

{pi, pj} = 0 , {pi, qj} = δi j , (E.40)

15Predrag: still need to CHECK Niall’s edits of 12jun2000
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canonical
transformation

symplectic!group
$Sp(2D)$

monodromy matrix

i.e., the transformations induced by a Hamiltonian flow are canonical, preserving
the form of the equations of motion. The first two relations are symmetric under
i, j interchange and yield D(D − 1)/2 constraints each; the last relation yields D2

constraints. Hence only (2D)2 − 2D(D − 1)/2 − D2 = d(2D + 1) elements of M
are linearly independent, as it behooves group elements of the symplectic group
S p(2D). ⇓PRIVATE

We have now succeeded in making the full set of constraints explicit - as we
shall see in appendix I, this will enable us to implement dynamics in such a way
that the symplectic invariance will be automatically preserved. ⇑PRIVATE

E.5 Monodromy matrix for Hamiltonian flows

(G. Tanner)

It is not the Jacobian matrix J of the flow (4.5), but the monodromy matrix M,
which enters the trace formula. This matrix gives the time dependence of a dis-
placement perpendicular to the flow on the energy manifold. Indeed, we discover
some trivial parts in the Jacobian matrix J. An initial displacement in the direc-
tion of the flow x = ω∇H(x) transfers according to δx(t) = xt(t)δt with δt time
independent. The projection of any displacement on δx on ∇H(x) is constant, i.e.,
∇H(x(t))δx(t) = δE. We get the equations of motion for the monodromy matrix
directly choosing a suitable local coordinate system on the orbit x(t) in form of
the (non singular) transformation U(x(t)):

J̃(x(t)) = U−1(x(t)) J(x(t)) U(x(0)) (E.41)

These lead to

˙̃J = L̃ J̃

with L̃ = U−1(LU − U̇) (E.42)

16 Note that the properties a) – c) are only fulfilled for J̃ and L̃ if U itself is
symplectic.

Choosing xE = ∇H(t)/|∇H(t)|2 and xt as local coordinates uncovers the two
trivial eigenvalues 1 of the transformed matrix in (E.41) at any time t. Setting
U = (xT

t , xT
E, xT

1 , . . . , xT
2d−2) gives

J̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 ∗ ∗ . . . ∗
0 1 0 . . . 0
0 ∗
...

... M
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ; L̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 ∗ ∗ . . . ∗
0 0 0 . . . 0
0 ∗
...

... l
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (E.43)

16Predrag: might need to reinstate properties a) – c)?
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flow
Hamiltonian!flow!stability

The matrix M is now the monodromy matrix and the equation of motion are given
by

Ṁ = l M. (E.44)

The vectors x1, . . . , x2d−2 must span the space perpendicular to the flow on the
energy manifold.

For a system with two degrees of freedom, the matrix U(t) can be written
down explicitly, i.e.,

U(t) = (xt, x1, xE , x2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ẋ −ẏ −u̇/q2 −v̇/q2

ẏ ẋ −v̇/q2 u̇/q2

u̇ v̇ ẋ/q2 −ẏ/q2

v̇ −u̇ ẏ/q2 ẋ/q2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (E.45)

with xT = (x, y; u, v) and q = |∇H| = |ẋ|. The matrix U is non singular and
symplectic at every phase space point x, except the equilibrium points ẋ = 0. The
matrix elements for l are given (E.47). One distinguishes 4 classes of eigenvalues
of M.

• stable or elliptic, if Λ = e±iπν and ν ∈]0, 1[.

• marginal, if Λ = ±1.

• hyperbolic, inverse hyperbolic, if Λ = e±λ, Λ = −e±λ.

• loxodromic, if Λ = e±μ±iω with μ and ω real. This is the most general case,
possible only in systems with 3 or more degree of freedoms.

For 2 degrees of freedom, i.e., M is a [2×2] matrix, the eigenvalues are determined
by 17

λ =
tr (M) ±

√
tr (M)2 − 4
2

, (E.46)

i.e., tr (M) = 2 separates stable and unstable behavior.

The l matrix elements for the local transformation (E.45) are

l̃11 =
1
q

[(h2
x − h2

y − h2
u + h2

v)(hxu − hyv) + 2(hxhy − huhv)(hxv + hyu)

−(hxhu + hyhv)(hxx + hyy − huu − hvv)]

l̃12 =
1

q2
[(h2

x + h2
v)(hyy + huu) + (h2

y + h2
u)(hxx + hvv)

17Predrag: quote equation from chapter 2; define the Green’s residue somewhere.
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projection operator−2(hxhu + hyhv)(hxu + hyv) − 2(hxhy − huhv)(hxy − huv)]

l̃21 = −(h2
x + h2

y)(huu + hvv) − (h2
u + h2

v)(hxx + hyy)

+2(hxhu − hyhv)(hxu − hyv) + 2(hxhv + hyhu)(hxv + hyu)

l̃22 = −l̃11, (E.47)

with hi, hi j is the derivative of the Hamiltonian H with respect to the phase space
coordinates and q = |∇H|2. ⇓PRIVATE

Commentary

Remark E.1 Projection operators. The construction of projection operators given
in appendix E.2.1 is taken from refs. [4, 5]. Who wrote this down first we do not know,
lineage certainly goes all the way back to Lagrange polynomials [ 6], but projection opera-
tors tend to get drowned in sea of algebraic details. Arfken and Weber [ 7] ascribe spectral
decomposition (E.35) to Sylvester. Halmos [8] is a good early reference - but we like
Harter’s exposition [9, 10, 11] best, for its multitude of specific examples and physical
illustrations.

⇑PRIVATE
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complex eigenvalues
eigenvalue!complex

Exercises boyscout

E.1. Real representation of complex eigenvalues. (Verification
of example E.2.) λk, λk+1 eigenvalues form a complex
conjugate pair, {λk, λk+1} = {μ + iω, μ − iω}. Show that

(a) corresponding projection operators are complex con-
jugates of each other,

P = Pk , P∗ = Pk+1 ,

where we denote Pk by P for notational brevity.

(b) P can be written as

P =
1
2

(R + iQ) ,

where R = Pk + Pk+1 and Q are matrices with real
elements.

(c)
( Pk

Pk+1

)
=

1
2

( 1 i
1 −i

) ( R
Q

)
.

(d) · · ·+λkPk +λ
∗
kPk+1+ · · · complex eigenvalue pair in

the spectral decomposition (E.16) is now replaced
by a real [2×2] matrix

· · · +
(
μ −ω
ω μ

) ( R
Q

)
+ · · ·

or whatever you find the clearest way to write this
real representation.

References

[E.1] J. Halcrow, Geometry of turbulence: An exploration of the state-space of
plane Couette flow, School of Physics, Georgia Inst. of Technology, (Atlanta,
2008);
ChaosBook.org/projects/theses.html.

[E.2] J.F. Gibson, J. Halcrow and P. Cvitanović, “Equilibrium and traveling-
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Appendix F

Finding cycles

(C. Chandre)

F.1 Newton-Raphson method

F.1.1 Contraction rate

Consider a d-dimensional map x′ = f (x) with an unstable fixed point x∗. The
Newton-Raphson algorithm is obtained by iterating the following map

x′ = g(x) = x − (J(x) − 1)−1 ( f (x) − x) .

The linearization of g near x∗ leads to

x∗ + ε
′ = x∗ + ε − (J(x∗) − 1)−1 ( f (x∗) + J(x∗)ε − x∗ − ε) + O

(
‖ε‖2

)
,

where ε = x − x∗. Therefore,

x′ − x∗ = O
(
(x − x∗)

2
)
.

After n steps and if the initial guess x0 is close to x∗, the error decreases
super-exponentially

gn(x0) − x∗ = O
(
(x0 − x∗)

2n)
.
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F.1.2 Computation of the inverse

The Newton-Raphson method for finding n-cycles of d-dimensional mappings
using the multi-shooting method reduces to the following equation

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −D f (xn)

−D f (x1) 1
· · · 1

−D f (xn−1) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
δ1
δ2
· · ·
δn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1
F2
· · ·
Fn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (F.1)

where D f (x) is the [d × d] Jacobian matrix of the map evaluated at the point x,
and δm = x′m − xm and Fm = xm − f (xm−1) are d-dimensional vectors. By some
starightforward algebra, the vectors δm are expressed as functions of the vectors
Fm:

δm = −
m∑

k=1

βk,m−1Fk − β1,m−1
(
1 − β1,n

)−1

⎛⎜⎜⎜⎜⎜⎜⎝ n∑
k=1

βk,nFk

⎞⎟⎟⎟⎟⎟⎟⎠ , (F.2)

for m = 1, . . . , n, where βk,m = D f (xm)D f (xm−1) · · ·D f (xk) for k < m and βk,m = 1
for k ≥ m. Therefore, finding n-cycles by a Newton-Raphson method with multi-
ple shooting requires the inversing of a [d×d] matrix 1−D f (xn)D f (xn−1) · · ·D f (x1).

F.2 Hybrid Newton-Raphson / relaxation method

Consider a d-dimensional map x′ = f (x) with an unstable fixed point x∗.
The transformed map is the following one:

x′ = g(x) = x + γC( f (x) − x),

where γ > 0 and C is a d × d invertible constant matrix. We note that x∗ is also a
fixed point of g. Consider the stability matrix at the fixed point x∗

Ag =
dg
dx

∣∣∣∣∣
x=x∗
= 1 + γC(A f − 1).

The matrix C is constructed such that the eigenvalues of Ag are of modulus less
than one. Assume that Af is diagonalizable: In the basis of diagonalization, the
matrix writes:

Ãg = 1 + γC̃(Ã f − 1),
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Newton
method!optimal
section

section!optimal
Figure F.1: Illustration of the optimal Poincaré sec-
tion. The original section y = 0 yields a large distance
x− f (x) for the Newton iteration. A much better choice
is y = 0.7.
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where Ã f is diagonal with elements μi. We restrict the set of matrices C̃ to diag-
onal matrices with C̃ii = εi where εi = ±1. Thus Ãg is diagonal with eigenvalues
γi = 1 + γεi(μi − 1). The choice of γ and εi is such that |γi| < 1. It is easy to see
that if Re(μi) < 1 one has to choose εi = 1, and if Re(μi) > 1, εi = −1. If λ is
chosen such that

0 < γ < min
i=1,...,d

2|Re(μi) − 1|
|μi − 1|2

,

all the eigenvalues of Ag have modulus less that one. The contraction rate at the
fixed point for the map g is then maxi |1 + γεi(μi − 1)|. If Re(μi) = 1, it is not
possible to stabilize x∗ by the set of matrices γC.
From the construction of C, we see that 2d choices of matrices are possible. For
example, for 2-dimensional systems, these matrices are

C ∈
{(

1
0

0
1

)
,

(
−1
0

0
1

)
,

(
1
0

0
−1

)
,

(
−1
0

0
−1

)}
.

For 2-dimensional dissipative maps, the eigenvalues satisfy Re(μ1)Re(μ2) ≤ det D f <
1. The case (Re(μ1) > 1,Re(μ2) > 1) which is stabilized by

(−1
0

0
−1

)
has to be dis-

carded. The minimal set is reduced to three matrices.

F.2.1 Newton method with optimal section

(F. Christiansen)

In some systems it might be hard to find a good starting guess for a fixed point.
This can happen, for example, if the topology and/or the symbolic dynamics of
the flow is not well understood. By changing the Poincaré section one might get
a better initial guess in the sense that x and f (x) are closer together. We illustrate
this in figure F.1. The figure shows a Poincaré section, y = 0, an initial guess x,
the corresponding f (x) and pieces of the trajectory near these two points.

If Newton iteration does not converge for the initial guess x we might have to
work very hard to find a better guess, particularly if this is in a high-dimensional
system (high-dimensional in this context might mean a Hamiltonian system with 3
or more degrees of freedom). Clearly, we could easily obtain a much better guess
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by simply shifting the Poincaré section to y = 0.7 where the distance x − f (x)
would be much smaller. Naturally, one cannot so easily determine by inspection
the best section for a higher dimensional system. Rather, the way to proceed is
as follows: We want to have a minimal distance between our initial guess x and
its image f (x). We therefore integrate the flow looking for a minimum in the
distance d(t) = | f t(x) − x|. d(t) is now a minimum with respect to variations in
f t(x), but not necessarily with respect to x. We therefore integrate x either forward
or backward in time. Doing this minimizes d with respect to x, but now it is no
longer minimal with respect to ft(x). We therefore repeat the steps, alternating
between correcting x and ft(x). In most cases this process converges quite rapidly.
The result is a trajectory for which the vector ( f (x) − x) connecting the two end
points is perpendicular to the flow at both points. We can now define a Poincaré
section as the hyper-plane that goes through x and is normal to the flow at x,
(x′ − x) · v(x) = 0.

The image f (x) lies in the section. This section is optimal in the sense that
a close return on the section is a local minimum of the distance between x and
f t(x). More important, the part of the stability matrix that describes linearization
perpendicular to the flow is exactly the stability of the flow in the section when
f (x) is close to x. With this method, the Poincaré section changes with each New-
ton iteration. Should we later want to put the fixed point on a specific Poincaré
section, it will only be a matter of moving along the trajectory.
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Appendix G

Symbolic dynamics techniques

The kneading theory for unimodal mappings is developed in sect.G.1. Pruning ⇓PRIVATE
theory for Bernoulli shifts (an exercise mostly of formal interest) is dis-
cussed in appendix G.2. The prime factorization for dynamical itineraries ⇑PRIVATE

of sect. G.3 illustrates the sense in which prime cycles are “prime” - the product
structure of zeta functions is a consequence of the unique factorization property
of symbol sequences.

G.1 Topological zeta functions for infinite subshifts

(P. Dahlqvist)

The transition graph methods outlined in chapter11 are well suited for
symbolic dynamics of finite subshift type. A sequence of well defined rules leads
to the answer, the topological zeta function, which turns out to be a polynomial.
For infinite subshifts one would have to go through an infinite sequence of graph
constructions and it is of course very difficult to make any asymptotic statements
about the outcome. Luckily, for some simple systems the goal can be reached by
much simpler means. This is the case for unimodal maps.

We will restrict our attention to the topological zeta function for unimodal
maps with one external parameter fΛ(x) = Λg(x). As usual, symbolic dynamics is
introduced by mapping a time series . . . xi−1xixi+1 . . . onto a sequence of symbols
. . . si−1si si+1 . . . where

si = 0 xi < xc

si = C xi = xc

si = 1 xi > xc (G.1)

1103
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I(C) ζ−1
top(z)/(1 − z)

1C
101C
1011101C
H∞(1)

∏∞
n=0(1 − z2n

)
10111C
1011111C
101∞ (1 − 2z2)/(1 + z)
10111111C
101111C
1011C
101101C
10C (1 − z − z2)
10010C
100101C

I(C) ζ−1
top(z)/(1 − z)

1001C
100111C
10011C
100110C
100C
100010C
10001C
100011C
1000C
100001C
10000C
100000C
10∞ (1 − 2z)/(1 − z)

Table G.1: All ordered kneading sequences up to length seven, as well as some longer kneading
sequences. Harmonic extension H∞(1) is defined below.

and xc is the critical point of the map (i.e., maximum of g). In addition to the usual
binary alphabet we have added a symbol C for the critical point. The kneading
sequence KΛ is the itinerary of the critical point (11.13). The crucial observation
is that no periodic orbit can have a topological coordinate (see sect.G.1.1) beyond
that of the kneading sequence. The kneading sequence thus inserts a border in
the list of periodic orbits (ordered according to maximal topological coordinate),
cycles up to this limit are allowed, all beyond are pruned. All unimodal maps
(obeying some further constraints) with the same kneading sequence thus have the
same set of periodic orbitsand the same topological zeta function. The topological
coordinate of the kneading sequence increases with increasing Λ.

The kneading sequence can be of one of three types

1. It maps to the critical point again, after n iterations. If so, we adopt the
convention to terminate the kneading sequence with a C, and refer to the
kneading sequence as finite.

2. Preperiodic, i.e., it is infinite but with a periodic tail.

3. Aperiodic.

As an archetype unimodal map we will choose the tent map

x �→ f (x) =

{
Λx x ∈ [0, 1/2]
Λ(1 − x) x ∈ (1/2, 1] , (G.2)

where the parameter Λ ∈ (1, 2]. The topological entropy is h = logΛ. This
follows from the fact any trajectory of the map is bounded, the escape rate is
strictly zero, and so the dynamical zeta function

1/ζ(z) =
∏

p

(
1 − znp

|Λp|

)
=

∏
p

(
1 −

( z
Λ

)np
)
= 1/ζtop(z/Λ)
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escape rate!vanishing
golden mean!pruning
pruning!golden mean

has its leading zero at z = 1.

The set of periodic points of the tent map is countable. A consequence of this
fact is that the set of parameter values for which the kneading sequence (11.13) is
periodic or preperiodic are countable and thus of measure zero and consequently
the kneading sequence is aperiodic for almost all Λ. For general unimodal maps
the corresponding statement is that the kneading sequence is aperiodic for almost
all topological entropies.

For a given periodic kneading sequence of period n, KΛ = PC =
s1s2 . . . sn−1C there is a simple expansion for the topological zeta function. Then
the expanded zeta function is a polynomial of degree n

1/ζtop(z) =
∏

p

(1 − zn
p) = (1 − z)

n−1∑
i=0

aiz
i , ai =

i∏
j=1

(−1)s j (G.3)

and a0 = 1.

Aperiodic and preperiodic kneading sequences are accounted for by simply
replacing n by ∞.

Example. Consider as an example the kneading sequence KΛ = 10C. From
(G.3) we get the topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2), see
table G.1. This can also be realized by redefining the alphabet. The only forbidden
subsequence is 100. All allowed periodic orbits, except 0, can can be built from
a alphabet with letters 10 and 1. We write this alphabet as {10, 1; 0}, yielding the
topological zeta function 1/ζtop(z) = (1 − z)(1 − z − z2). The leading zero is the
inverse golden mean z0 = (

√
5 − 1)/2.

Example. As another example we consider the preperiodic kneading se-
quence KΛ = 101∞. From (G.3) we get the topological zeta function 1/ζtop(z) =
(1 − z)(1 − 2z2)/(1 + z), see table G.1. This can again be realized by redefin-
ing the alphabet. There are now an infinite number of forbidden subsequences,
namely 1012n0 where n ≥ 0. These pruning rules are respected by the alphabet
{012n+1; 1, 0}, yielding the topological zeta function above. The pole in the zeta
function ζ−1

top(z) is a consequence of the infinite alphabet.

An important consequence of (G.3) is that the sequence {ai} has a periodic tail
if and only if the kneading sequence has one (however, their period may differ
by a factor of two). We know already that the kneading sequence is aperiodic for
almost all Λ.

The analytic structure of the function represented by the infinite series
∑

aizi

with unity as radius of convergence, depends on whether the tail of {ai} is periodic
or not. If the period of the tail is N we can write

1/ζtop(z) = p(z) + q(z)(1 + zN + z2N . . .) = p(z) +
q(z)

1 − zN
,
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for some polynomials p(z) and q(z). The result is a set of poles spread out along
the unit circle. This applies to the preperiodic case. An aperiodic sequence of
coefficients would formally correspond to infinite N and it is natural to assume
that the singularities will fill the unit circle. There is indeed a theorem ensuring
that this is the case [58], provided the ai’s can only take on a finite number of
values. The unit circle becomes a natural boundary, already apparent in a finite
polynomial approximations to the topological zeta function, as in figure15.2. A
function with a natural boundary lacks an analytic continuation outside it.

To conclude: The topological zeta function 1/ζtop for unimodal maps has the
unit circle as a natural boundary for almost all topological entropies and for the
tent map (G.2), for almost all Λ.

Let us now focus on the relation between the analytic structure of the topolo-
gical zeta function and the number of periodic orbits, or rather (15.8), the number
Nn of fixed points of fn(x). The trace formula is (see sect. 15.4)

Nn = tr T n =
1

2πi

∮
γr

dz z−n d
dz

log ζ−1
top

where γr is a (circular) contour encircling the origin z = 0 in clockwise direction.
Residue calculus turns this into a sum over zeros z0 and poles zp of ζ−1

top

Nn =
∑

z0:r<|z0 |<R

z−n
0 −

∑
zp:r<|zp |<R

z−n
0 +

1
2πi

∮
γR

dz z−n d
dz

log ζ−1
top

and a contribution from a large circle γR. For meromorphic topological zeta func-
tions one may let R → ∞ with vanishing contribution from γR, and Nn will be a
sum of exponentials.

The leading zero is associated with the topological entropy, as discussed in
chapter 15.

We have also seen that for preperiodic kneading there will be poles on the unit
circle.

To appreciate the role of natural boundaries we will consider a (very) special
example. Cascades of period doublings is a central concept for the description of
unimodal maps. This motivates a close study of the function

Ξ(z) =
∞∏

n=0

(1 − z2n
) . (G.4)

This function will appear again when we derive (G.3).

The expansion of Ξ(z) begins as Ξ(z) = 1− z− z2 + z3 − z4 + z5 . . .. The radius
of convergence is obviously unity. The simple rule governing the expansion will

chapter/dahlqvist.tex 30nov2001 boyscout version14.4, Mar 19 2013



APPENDIX G. SYMBOLIC DYNAMICS TECHNIQUES 1107

bifurcation!bizarre
antiharmonic

extension

effectively prohibit any periodicity among the coefficients making the unit circle
a natural boundary.

It is easy to see that Ξ(z) = 0 if z = exp(2πm/2n) for any integer m and n.
(Strictly speaking we mean that Ξ(z) → 0 when z → exp(2πm/2n) from inside).
Consequently, zeros are dense on the unit circle. One can also show that singular
points are dense on the unit circle, for instance |Ξ(z)| → ∞when z → exp(2πm/3n)
for any integer m and n.

As an example, the topological zeta function at the accumulation point of
the first Feigenbaum cascade is ζ−1

top(z) = (1 − z)Ξ(z). Then Nn = 2l+1 if n =
2l, otherwise Nn = 0. The growth rate in the number of cycles is anything but
exponential. It is clear that Nn cannot be a sum of exponentials, the contour γR
cannot be pushed away to infinity, R is restricted to R ≤ 1 and Nn is entirely
determined by

∫
γR

which picks up its contribution from the natural boundary.

We have so far studied the analytic structure for some special cases and we
know that the unit circle is a natural boundary for almost all Λ. But how does
it look out there in the complex plane for some typical parameter values? To
explore that we will imagine a journey from the origin z = 0 out towards the unit
circle. While traveling we let the parameter Λ change slowly. The trip will have a
distinct science fiction flavor. The first zero we encounter is the one connected to
the topological entropy. Obviously it moves smoothly and slowly. When we move
outward to the unit circle we encounter zeros in increasing densities. The closer
to the unit circle they are, the wilder and stranger they move. They move from
and back to the horizon, where they are created and destroyed through bizarre
bifurcations. For some special values of the parameter the unit circle suddenly gets
transparent and and we get (infinitely) short glimpses of another world beyond the
horizon.

We end this section by deriving eqs (G.5) and (G.6). The impenetrable prose
is hopefully explained by the accompanying tables.

We know one thing from chapter 11, namely for that finite kneading sequence
of length n the topological polynomial is of degree n. The graph contains a node
which is connected to itself only via the symbol 0. This implies that a factor
(1 − z) may be factored out and ζtop(z) = (1 − z)

∑n−1
i=0 aizi. The problem is to find

the coefficients ai.

The ordered list of (finite) kneading sequences tableG.1 and the ordered list of
periodic orbits (on maximal form) are intimately related. In tableG.2 we indicate
how they are nested during a period doubling cascade. Every finite kneading
sequence PC is bracketed by two periodic orbits, P1 and P0. We have P1 < PC <

P0 if P contains an odd number of 1’s, and P0 < PC < P1 otherwise. From
now on we will assume that P contains an odd number of 1’s. The other case
can be worked out in complete analogy. The first and second harmonic of PC
are displayed in table G.2. The periodic orbit P1 (and the corresponding infinite
kneading sequence) is sometimes referred to as the antiharmonic extension of PC
(denoted A∞(P)) and the accumulation point of the cascade is called the harmonic
extension of PC [8] (denoted H∞(P)).
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periodic orbits finite kneading sequences
P1 = A∞(P)

PC
P0

P0PC
P0P1

P0P1P0PC
↓ ↓
H∞(P) H∞(P)

Table G.2: Relation between periodic orbits and finite kneading sequences in a harmonic cascade.
The string P is assumed to contain an odd number of 1’s.

A central result is the fact that a period doubling cascade of PC is not in-
terfered by any other sequence. Another way to express this is that a kneading
sequence PC and its harmonic are adjacent in the list of kneading sequences to
any order.

I(C) ζ−1
top(z)/(1 − z)

P1 = 100C 1 − z − z2 − z3

H∞(P1) = 10001001100 . . . 1 − z − z2 − z3 − z4 + z5 + z6 + z7 − z8 . . .

P′ = 10001C 1 − z − z2 − z3 − z4 + z5

A∞(P2) = 1000110001 . . . 1 − z − z2 − z3 − z4 + z5 − z6 − z7 − z8 . . .
P2 = 1000C 1 − z − z2 − z3 − z4

Table G.3: Example of a step in the iterative construction of the list of kneading sequences PC.

Table G.3 illustrates another central result in the combinatorics of kneading
sequences. We suppose that P1C and P2C are neighbors in the list of order 5
(meaning that the shortest finite kneading sequence P′C between P1C and P2C is
longer than 5.) The important result is that P′ (of length n′ = 6) has to coincide
with the first n′ − 1 letters of both H∞(P1) and A∞(P2). This is exemplified in
the left column of table G.3. This fact makes it possible to generate the list of
kneading sequences in an iterative way.

The zeta function at the accumulation point H∞(P1) is

ζ−1
P1

(z)Ξ(zn1 ) , (G.5)

and just before A∞(P2)

ζ−1
P2

(z)/(1 − zn2 ) . (G.6)

A short calculation shows that this is exactly what one would obtain by apply-
ing (G.3) to the antiharmonic and harmonic extensions directly, provided that it
applies to ζ−1

P1
(z) and ζ−1

P2
(z). This is the key observation.

Recall now the product representation of the zeta function ζ−1 =
∏

p(1 −
znp ). We will now make use of the fact that the zeta function associated with
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periodic!pointP′C is a polynomial of order n′. There is no periodic orbit of length shorter than
n′ + 1 between H∞(P1) and A∞(P2). It thus follows that the coefficients of this
polynomial coincides with those of (G.5) and (G.6), see Table G.3. We can thus
conclude that our rule can be applied directly to P′C.

This can be used as an induction step in proving that the rule can be applied
to every finite and infinite kneading sequences.

Remark G.1 How to prove things. The explicit relation between the kneading se-
quence and the coefficients of the topological zeta function is not commonly seen in the
literature. The result can proven by combining some theorems of Milnor and Thurston
[14]. That approach is hardly instructive in the present context. Our derivation was in-
spired by Metropolis, Stein and Stein classical paper [8]. For further detail, consult [14].

G.1.1 Periodic orbits of unimodal maps

A periodic point (cycle point) xk belonging to a cycle of period n is a real solution
of

f n(xk) = f ( f (. . . f (xk) . . .)) = xk , k = 0, 1, 2, . . . , n − 1 . (G.7)

The nth iterate of a unimodal map 1 has at most 2n monotone segments, and there-
fore there will be 2n or fewer periodic points of length n. Similarly, the backward
and the forward Smale horseshoes intersect at most 2n times, and therefore there
will be 2n or fewer periodic points of length n. A periodic orbit of length n cor-
responds to an infinite repetition of a length n = np symbol string, customarily
indicated by a line over the string:

S p = (s1s2s3 . . . sn)∞ = s1s2s3 . . . sn .

As all itineraries are infinite, we shall adopt convention that a finite string itinerary
S p = s1s2s3 . . . sn stands for infinite repetition of a finite block, and routinely omit
the overline. x0, its cyclic permutation
sk sk+1 . . . sn s1 . . . sk−1 corresponds to the point xk−1 in the same cycle. A cycle p
is called prime if its itinerary S cannot be written as a repetition of a shorter block
S ′.

Each cycle p is a set of np rational-valued full tent map periodic points γ. It
follows from (11.9) that if the repeating string s1s2 . . . sn contains an odd number
“1”s, the string of well ordered symbols w1w2 . . .w2n has to be of the double
length before it repeats itself. The cycle-point γ is a geometrical sum which we
can rewrite as the fraction 2

γ(s1s2 . . . sn) =
22n

22n − 1

2n∑
t=1

wt/2
t (G.8)

1Predrag: or a Hénon map (3.18) - KTH: not proven? specially for |b| = 1...
2Predrag: (G.8) is the repeat of (11.12), eliminate.
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Using this we can calculate the γ̂(S ) for all short cycles. For orbits up to length 5
this is done in table 11.1.

Here we give explicit formulas for the topological coordinate of a periodic
point, given its itinerary. For the purpose of what follows it is convenient to com-
pactify the itineraries by replacing the binary alphabet si = {0, 1} by the infinite
alphabet

{a1, a2, a3, a4, · · · ; 0} = {1, 10, 100, 1000, . . . ; 0} . (G.9)

In this notation the itinerary S = aia jakal · · · and the corresponding topological
coordinate (11.9) are related by γ(S ) = .1i0 j1k0l · · ·. For example:

S = 111011101001000 . . . = a1a1a2a1a1a2a3a4 . . .
γ(S ) = .101101001110000 . . . = .1101120111021304 . . .

Cycle points whose itineraries start with w1 = w2 = . . . = wi = 0, wi+1 = 1 remain
on the left branch of the tent map for i iterations, and satisfy γ(0 . . . 0S ) = γ(S )/2i.

Periodic points correspond to rational values of γ, but we have to distinguish
even and odd cycles. The even (odd) cycles contain even (odd) number of ai in
the repeating block, with periodic points given by3

γ(aia j · · · aka�) =

⎧⎪⎪⎨⎪⎪⎩ 2n

2n−1 .1
i0 j · · · 1k even

1
2n+1

(
1 + 2n × .1i0 j · · · 1�) odd

, (G.10)

where n = i+ j+ · · ·+ k+ � is the cycle period. The maximal value periodic point
is given by the cyclic permutation of S with the largest ai as the first symbol,
followed by the smallest available aj as the next symbol, and so on. For example:

γ̂(1) = γ(a1) = .10101 . . . = .10 = 2/3
γ̂(10) = γ(a2) = .1202 . . . = .1100 = 4/5
γ̂(100) = γ(a3) = .1303 . . . = .111000 = 8/9
γ̂(101) = γ(a2a1) = .1201 . . . = .110 = 6/7

An example of a cycle where only the third symbol determines the maximal value
periodic point is

γ̂(1101110) = γ(a2a1a2a1a1) = .11011010010010 = 100/129 .

Maximal values of all cycles up to length 5 are given in table!? 4

⇓PRIVATE
3Predrag: Might want to compute the image of the maximal value, which is the lowest periodic

point and therefor has the smallest numerator...
4Predrag: maybe copy the table from Kai.
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unimodal
map!bifurcation
sequences

bifurcation!sequence!unimodal
map

saddle node
bifurcation

smooth!map
bifurcation!period

doubling
period

doubling!bifurcation
bifurcation!saddle

point
saddle node

bifurcation
superstable!point
topological!parameter

Figure G.1: Bifurcation points from table G.4
plotted as a function of the topological parameter
κ. Gray areas are inadmissible intervals of κ corre-
sponding to stable windows in a smooth unimodal
map. As a shorthand notation for pairs of orbits
we use the letter ε to denote either a 0 or a 1. (K.T.
Hansen)

1001ε

100ε

10 1000ε

1011

10ε

1011ε

0.8 0.85 0.9 0.95 1.0

G.1.2 Unimodal map bifurcation sequences

(K.T. Hansen and P. Cvitanović)

Periodic orbits in smooth unimodal maps are generically created either as a pair
with one stable and one unstable length n orbit in a saddle node bifurcation point,
or as a period 2n orbit in a bifurcation where a period n orbit becomes unstable.

Immediately after a saddle node bifurcation the two created orbits both have the
same itinerary s1s2 . . . sn with an even number of symbols 1 and with the topolog-
ical parameter value κ(s1s2 . . . sn) = γ̂(s1s2 . . . sn). Orbits with this itinerary exist
for all unimodal maps with κ ≥ γ̂(s1s2 . . . sn). As the parameter in the smooth
unimodal map increases the stable orbit passes a superstable point and changes
its symbolic dynamics. If we now assume that the symbol string s1s2 . . . sn is
the cyclic permutation giving the maximum γ value, then the itinerary of the sta-
ble orbit after the superstable point is s1s2 . . . sn−1(1 − sn), since the point clos-
est to the critical point passes through the critical point. The topological pa-
rameter value of the map is then κ(s1s2 . . . sn−1(1 − sn)). The inadmissible topo-
logical parameter interval (κ(s1 s2 . . . sn), κ(s1s2 . . . sn−1(1 − sn))) is then uniquely
related to the parameter interval in a between the saddle node bifurcation and
the superstable point, or more loosely speaking; to the a interval where the orbit
s1s2 . . . sn−1(1 − sn) is stable.

In the same way there will be an interval

(κ(s1s2 . . . sn−1(1 − sn)), κ(s1 s2 . . . sn−1(1 − sn)s1s2 . . . sn))

corresponding to the interval in a from where the orbit s1s2 . . . sn−1(1 − sn) is
superstable to the point where the orbit s1s2 . . . sn−1(1 − sn)s1s2 . . . sn is super-
stable. This interval includes the period doubling bifurcation where the 2n orbit
s1s2 . . . sn−1(1 − sn)s1s2 . . . sn is created.

From table G.4 we can find some of the largest intervals in κ corresponding
to the stability windows in a smooth unimodal map. The stable period 3 orbit
window on the parameter a-axis corresponds to the interval (6/7, 8/9) on the κ
line and so on, see figure G.1. 5

5Predrag: table G.4 is identical to table 11.1, perhaps delete?
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Bernoulli!shift
shift!Bernoulli

S γ̂(S ) S γ̂(S )
0 .0 = 0 10111 .11010 = 26/31
1 .10 = 2/3 10110 .1101100100 = 28/33

10 .1100 = 4/5 10010 .11100 = 28/31
101 .110 = 6/7 10011 .1110100010 = 10/11
100 .111000 = 8/9 10001 .11110 = 30/31

1011 .11010010 = 14/17 10000 .1111100000 = 32/33
1001 .1110 = 14/15
1000 .11110000 = 16/17

Table G.4: The maximal values of unimodal map cycles up to length 5. (K.T. Hansen)

G.2 Pruned Bernoulli shift

In this section we illustrate extraction of a symbolic dynamics on a piecewise
linear repeller for which the itinerary of a repeller point x is given by its binary
expansion. The main result is the Algorithm 1 which converts recursively a given
value of the “pruning point” xp into the symbolic dynamics of the map. We shall
apply this symbolic dynamics in the next section to construction of explicit exam-
ples of zeta functions.

The simplest example of a map with complete binary dynamics is the Bernoulli
shift

xn+1 = 2xn mod 1 . (G.11)

The map acts by shifting the binary point to the right, so the itinerary of x = x0
(if xn < 1/2, then sn = 0; if xn > 1/2, then sn=1) is simply its binary expansion
x = .s1s2s3 · · · . The periodic points s1s2 · · · sn correspond to rational x:

xs1s2···sn =

n∑
k=1

sk

2k

∞∑
m=0

1
2nm
=

2n

2n − 1
.s1s2 · · · sn =

∑n
k=1 sk2n−k

2n − 1
. (G.12)

This is just the binary version of the familiar fact that the decimal expansion of a
rational number is (eventually) periodic.

The clipped Bernoulli shift obtained by slicing off all x ≥ xp is a two-branch
linear map of form

f0(x) = 2x 0 ≤ x ≤ 1/2
f1(x) = 2x − 1 1/2 ≤ x < xp .

(G.13)

We shall refer to xp as the pruning point. All trajectories that land in the xp < x ≤
1 interval escape; only those x whose binary expansion contains no subsequence
smsm+1 sm+2 · · · sm+n such that .smsm+1 sm+2 · · · sm+n > xp survive the pruning.
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The surviving trajectories are unstable (with the Floquet multiplier Λc = 2nc ,
where nc is the length of the trajectory c), and form a repelling strange set. The
symbolic dynamics of the clipped Bernoulli shift is specified by the binary expan-
sion of xp, in the same sense that the symbolic dynamics of a unimodal map
is specified by the trajectory (the kneading invariant [14]) of its critical value
xp = f (xc).

We find this map pedagogically convenient, as the technique for extracting the
symbolic dynamics is essentially the same as for the unimodal maps of sect. ??,
but the conversion of the parameter xp into symbolic dynamics is somewhat sim-
pler (as the itineraries are ordered monotonically by the ordinary binary tree rather
than the alternating binary tree).

Our strategy for converting xp into symbolic dynamics is to check recursively
whether the xp falls into a window at successive levels of resolution. If it does, we
obtain the exact alphabet; if it does not, the last letter in the approximate alphabet
has to be refined, and the procedure repeated. We first phrase this recursive pro-
cedure as a general algorithm and then illustrate it by a few examples (the reader
might prefer to glance at those first).

Algorithm 1: Pruning the symbolic dynamics from above

Given the pruning point xp, the symbolic dynamics is determined recursively
as follows:

1. expand xp = .s1s2s3 · · · in binary si = {0, 1}.

2. compactify the binary symbol sequences by rewriting them in the alpha-
bet {a1, a2, a3, a4, · · ·} = {0, 10, 110, 1110, · · ·} where an stands for a block of n-1
binary 1’s followed by 0. At this level of resolution xp is bracketed by

.an < xp ≤ .an+1

and the approximate alphabet is {a1, a2, a3, a4, · · · , an}.

2. prohibition of an+1 implies that the rightmost surviving point is .an. If
the pruning point xp is in the window Δan = (.an, .an+1], the exact alphabet is
{a1, a2, a3, · · · , an}, and the algorithm stops.

3. If xp < .an, the pruning point falls somewhere within the lan = (.an, .an]
interval, and not all sequences starting with .an are allowed. Subdivide the .an

interval into finer subintervals by appending to .an all allowed basic blocks: {an} =
{ana1, ana2, ana3, · · · , anam}. Here m ≤ n is determined by the value of xp, .anam <

xp ≤ .anam+1. The refined approximate alphabet is given by
{a1, a2, a3, · · · , an−1, b1, b2, , · · · , bm} = {a1, a2, a3, · · · , an−1, ana1, ana2, · · · , anam}.

4. repeat step 2: if xp ∈ Δbm = (.bm, .bm+1], the above alphabet is exact,
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golden mean!pruning
pruning!golden mean

otherwise continue refining the lbm = (.bm, .bm] interval by replacing bm by new
letters {c1, c2, , · · · , ck}, as in step 3.

Clearly any xp whose binary expansion is finite yields a finite alphabet, and
so does any xp that falls into a Δcn window. Otherwise the algorithm generates a
monotone sequence of lcn = (.cn, .cn] covering intervals, xp ∈ lcn , together with
the associated approximate alphabets.

Example 1: the “golden mean” pruning xp = .11

The simplest example of pruning for the clipped Bernoulli shift is given by
the xp = .11 pruning point value. As the substring 11 is forbidden, 1 must
always be followed by 0, so the allowed sequences can be built from any number
of consecutive 0’s and 10 blocks, and the alphabet is simply {0, 10}. Note that
if xp is set to .11, the rightmost surviving point of the repeller is not .11, but
.10101010· · ·, ie. the periodic point .10. Hence any xp value in the window Δ10 =

(.10, .11] = (2/3, 3/4] leads to the same symbolic dynamics.

Example 2: The right ascending staircase Δ0, Δ10, Δ110, . . .,

By the same argument as the above, xp = .11 . . . 1 (n binary “1”s, followed by
a “0”) pruning leads to the n letter alphabet

{a1, a2, a3, · · · , an} = {0, 10, 110, 1110, . . . , 11 · · · 10},

and the symbolic dynamics unchanged over windows

Δ11···10 = (.11 · · · 10, .11 · · · 1] = (
2n−1 − 2
2n − 1

,
2n − 1

2n ] , (G.14)

whose width is shrinking as |Δ11···10| = 1
2n(2n−1) .

Example 3: a “typical” pruning front value: xp = .11101101110

1. At the first level of resolution xp is bracketed by

.111 < xp ≤ .1111

so 1 can appear only within blocks 10, 110 and 1110. Rewrite xp in the new
alphabet {a1, a2, a3, a4} = {0, 10, 110, 1110}, where an stands for a block of n − 1
binary 1’s followed by 0: xp = .a4a3a4a2

2. As in the above example, prohibition of a5 = 11110 implies that the right-
most surviving point is .a4 = .1110. Were xp ∈ Δa4 = (.a4, .a5], the alphabet
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{a1, a2, a3, a4} would be exact, and we would be finished. However, as xp < .a4,
the pruning point falls somewhere within .a4 < xp ≤ .a4, and not all sequences
starting with a4 are allowed.

3. Therefore we subdivide the .1110 interval into finer subintervals by ap-
pending to .a4 all allowed basic blocks: {a4} = {a4a1, a4a2, a4a3, a4a4}. As xp =

.a4a3a4a2 < .a4a4 , the .a4a4 interval is pruned. xp can be rewritten in the new
alphabet {a1, a2, a3, b1, b2, b3} = {a1, a2, a3, a4a1, a4a2, a4a3} as xp = .b3b2.

4. repeat step 2: is xp > .b3? It is not, so

5. repeat step 3: subdivide {b3} = {b3a1, b3a2, b3a3, b3b1, b3b2}. The b3b2

block is forbidden by the pruning point value, so we are done; the alphabet con-
sists of 9 letters

{a1, a2, a3, b1, b2, c1, c2, c3, c4} = {a1, a2, a3, b1, b2, b3a1, b3a2, b3a3, b3b1}

We could have kept the binary notation throughout, but a two-letter alphabet
makes for rather rather tedious reading; in the binary notation the fundamental
blocks are

{0, 10, 110, 11100, 111010, 11101100, 111011010, 1110110110, 111011011100}
.

This finishes the list of examples.

For the clipped Bernoulli map the fraction of the xp parameter values for
which the alphabet is finite can be estimated analytically. If c is a sequence corre-
sponding to one of the windows unfolded recursively in the above, the symbolic
dynamics is unchanged over the window

Δc = (.c, .c1] = (
.c

1 − 2−nc
, .c1] (G.15)

whose width shrinks with nc, the length of the binary string c, as

|Δc| = .c1 − .c = 1 − .cn+1

2nc − 1
=

.c+1
2nc − 1

, (G.16)

where c+ is the binary complement of c. This follows from summing the succes-
sive images of the pruned interval 1 − .c1 within the (.c, .c1) interval.

The widths of the fatest c = .1000 · · · 0 and the thinest c = .11 · · · 1 steps in
the devil staircase corresponding to strings of length n are, respectively,

2n−1 − 1
2n(2n − 1)

≥ Δc ≥
1

2n(2n − 1)
.
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Bernoulli!shiftThe lower bound follows from (G.14) and the upper bound from 1 − .c1 = 1 −
.10 . . . 01 = 1/2 − 1/2n.

We leave the evaluation of the total measure
∑
Δc taken up by finite alpha-

bets as an exercise for the student. What is the measure taken up by the infinite
alphabets? Is there a set of non-integer Hausdorff dimension, and what is its sig-
nificance?

G.2.1 Topological entropy

The symbolic dynamics considered in the preceeding section gives a class of
rather simple topological polynomials. If the symbolic dynamics can be written
as a complete (unrestricted, unpruned) alphabet in N symbols, then tf = 1 if f ∈
alphabet, t f = 0 otherwise. According to the results of the preceeding section, for
the clipped Bernoulli shift the symbolic dynamics is given by a finite (or infinite
alphabet) built up of blocks of increasing binary length:

{a1, a2, a3, · · · , an, b1, b2, , · · · , bm, c1, c2, · · ·}

For a finite unrestricted alphabet, the topological entropy is given by the smallest
root of the corresponding topological polynomial: 6

0 = 1 − zna1 − zna2 − zna3 − · · · − znan

−znb1 − znb2 − · · · − znbm

−znc1 − znc2 − · · · − znck . (G.17)

The simplest example of a not entirely trivial topological polynomial follows from
the 3-cycle pruning example 1. The fundamental cycles 0, 01 are of length 1 and
2, so the topological polynomial is simply

∏
p

(
1 − znp

)
= 1 − z − z2 , (G.18)

and the topological entropy is h = log 1+
√

5
2 .

The topological polynomial for the example 2. is given by

∏
p

(
1 − znp

)
= 1 − z − z2 − . . . − zn =

1 − 2z + zn+1

1 − z
. (G.19)

The topological entropy is h = log λ0, where λ0 is the leading eigenvalue 1 <

λ0 ≤ 2. The remaining roots of (G.19) lie (for large n) close to the unit circle in
the complex plane and are of no physical interest.

6Predrag: refer back to count.tex
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The alphabet above was generated by resolving the longest fundamental string
at a given level by a set of longer strings; so even if the grammar is not finite and
the cycle expansion is not a polynomial, the convergence of the cycle expansion
should be good, as the errors are bounded from below and above by truncating
the expansions with terms zn and zn+1, where n is the length of the longest binary
string in the alphabet. With increasing resolution n typically grows in leaps and
bounds. The entropy is given by the isolated real zero 1/2 ≤ z < 1; the remaining
zeros of the polynomial approximations to the entropy function for infinite gram-
mar bunch on the unit circle. The rate of convergence depends on the separation
of the leading, entropy eigenvalue from the non-leading eigenvalues; as long as
there is a gap, the convergence will be exponential, though situations without gap
also arise and are interesting (cf. period doubling 1/ζ in ref. [14]).

The above considerations, in spite of the restriction to mere cycle counting,
reveal a great deal about the spectra of more general transfer operators. For linear
systems with a single scale Λ, 1/ζ0(z) is given by (G.17), simply by rescaling
z → z/|Λ|. For nonlinear mappings, polynomial approximations to 1/ζk have a
rather similar structure; there is a physically significant λ(k)

0 , together with a family
of unphysical poles in the complex plane, placed roughly on a circle of radius |1/c|,
where c controls the asymptotic behavior of curvatures, cn ≈ cn. The extraneous
zeros delineate the boundary of the convergence of the cycle expansion of 1/ζk;
and for longer and longer truncated Selberg products 1/ζ0ζ1 · · · ζk this boundary
is pushed further and further out, allowing determination of a finite number of
leading eigenvalues of L. ⇑PRIVATE

G.3 Prime factorization for dynamical itineraries

The Möbius function is not only a number-theoretic function, but can be
used to manipulate ordered sets of noncommuting objects such as symbol strings.
Let P = {p1, p2, p3, · · ·} be an ordered set of prime strings, and

N = {n} =
{

pk1
1 pk2

2 pk3
3 · · · p

kj

j

}
,

j ∈ N, ki ∈ Z+, be the set of all strings n obtained by the ordered concatenation of
the “primes” pi. By construction, every string n has a unique prime factorization.
We say that a string has a divisor d if it contains d as a substring,7 and define the
string division n/d as n with the substring d deleted. Now we can do things like
this: defining tn := tk1

p1 tk2
p2 · · · t

k j
p j we can write the inverse dynamical zeta function

(20.2) as

∏
p

(1 − tp) =
∑

n

μ(n)tn ,

7Predrag: recheck: the unique prime factorization does not quite guarantee that this makes sense
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symbolic
dynamics—)factors string

p1 0
p2 1

p2
1 00

p1 p2 01
p2

2 11
p3 10

p3
1 000

p2
1 p2 001

p1 p2
2 011

p3
2 111

p1 p3 010
p2 p3 110
p4 100
p5 101

factors string
p4

1 0000
p3

1 p2 0001
p2

1 p2
2 0011

p1 p3
2 0111

p4
2 1111

p2
1 p3 0010

p1 p2 p3 0110
p2

2 p3 1110
p2

3 1010
p1 p4 0100
p2 p4 1100
p1 p5 0101
p2 p5 1101
p6 1000
p7 1001
p8 1011

factors string
p5

1 00000
p4

1 p2 00001
p3

1 p2
2 00011

p2
1 p3

2 00111
p1 p4

2 01111
p5

2 11111
p3

1 p3 00010
p2

1 p2 p3 00110
p1 p2

2 p3 01110
p3

2 p3 11110
p1 p2

3 01010
p2 p2

3 11010
p2

1 p4 00100
p1 p2 p4 01100
p2

2 p4 11100
p3 p4 10100

factors string
p2

1 p5 00101
p1 p2 p5 01101
p2

2 p5 11101
p3 p5 10101
p1 p6 01000
p2 p6 11000
p1 p7 01001
p2 p7 11001
p1 p8 01011
p2 p8 11011
p9 10000
p10 10001
p11 10010
p12 10011
p13 10110
p14 10111

Table G.5: Factorization of all periodic points strings up to length 5 into ordered con-
catenations pk1

1 pk2

2 · · · pkn
n of prime strings p1 = 0, p2 = 1, p3 = 10, p4 = 100, . . . ,

p14 = 10111.

and, if we care (we do in the case of the Riemann zeta function), the dynamical
zeta function as .

∏
p

1
1 − tp

=
∑

n

tn (G.20)

A striking aspect of this formula is its resemblance to the factorization of nat-
ural numbers into primes: the relation of the cycle expansion (G.20) to the product
over prime cycles is analogous to the Riemann zeta (exercise 19.10) represented
as a sum over natural numbers vs. its Euler product representation.

We now implement this factorization explicitly by decomposing recursively
binary strings into ordered concatenations of prime strings. There are 2 strings of
length 1, both prime: p1 = 0, p2 = 1. There are 4 strings of length 2: 00, 01,
11, 10. The first three are ordered concatenations of primes: 00 = p2

1, 01 = p1 p2,
11 = p2

2; by ordered concatenations we mean that p1 p2 is legal, but p2 p1 is not.
The remaining string is the only prime of length 2, p3 = 10. Proceeding by
discarding the strings which are concatenations of shorter primes pk1

1 pk2
2 · · · p

kj

j ,
with primes lexically ordered, we generate the standard list of primes, in agree-
ment with table 15.1: 0, 1, 10, 101, 100, 1000, 1001, 1011, 10000, 10001,
10010, 10011, 10110, 10111, 100000, 100001, 100010, 100011, 100110, 100111,
101100, 101110, 101111, . . .. This factorization is illustrated in tableG.5. 8

8Predrag: table G.5 seems also OK for 00 pruning.
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G.3.1 Prime factorization for spectral determinants

Following sect. G.3, the spectral determinant cycle expansions is obtained
by expanding F as a multinomial in prime cycle weights tp

F =
∏

p

∞∑
k=0

Cpk tk
p =

∞∑
k1k2k3 ···=0

τ
p

k1
1 p

k2
2 p

k3
3 ··· (G.21)

where the sum goes over all pseudo-cycles. In the above we have defined

τ
p

k1
1 p

k2
2 p

k3
3 ···
=

∞∏
i=1

Cpi
ki t

ki
pi
. (G.22)

exercise 19.10

A striking aspect of the spectral determinant cycle expansion is its resem-
blance to the factorization of natural numbers into primes: as we already noted in
sect. G.3, the relation of the cycle expansion (G.21) to the product formula (19.9)
is analogous to the Riemann zeta represented as a sum over natural numbers vs.
its Euler product representation.

This is somewhat unexpected, as the cycle weights (for example, the Floquet ⇓PRIVATE
multipliers (??)) factorize exactly with respect to r repetitions of a prime cycle,

⇑PRIVATEtpp...p = tr
p, but only approximately (shadowing) with respect to subdividing a

string into prime substrings, tp1 p2 ≈ tp1 tp2 .

The coefficients Cpk have a simple form only in 1-dimensional given by the
Euler formula (23.5). In higher dimensions Cpk can be evaluated by expanding
(19.9), F(z) =

∏
p Fp, where

Fp = 1 −
⎛⎜⎜⎜⎜⎜⎝ ∞∑

r=1

tr
p

rdp,r

⎞⎟⎟⎟⎟⎟⎠ + 1
2

⎛⎜⎜⎜⎜⎜⎝ ∞∑
r=1

tr
p

rdp,r

⎞⎟⎟⎟⎟⎟⎠2

− . . . .

Expanding and recollecting terms, and suppressing the p cycle label for the mo-
ment, we obtain

Fp =

∞∑
r=1

Cktk, Ck = (−)kck/Dk,

Dk =

k∏
r=1

dr =

d∏
a=1

k∏
r=1

(1 − ur
a) (G.23)

where evaluation of ck requires a certain amount of not too luminous algebra:

c0 = 1
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c1 = 1

c2 =
1
2

(
d2

d1
− d1

)
=

1
2

⎛⎜⎜⎜⎜⎜⎜⎝ d∏
a=1

(1 + ua) −
d∏

a=1

(1 − ua)

⎞⎟⎟⎟⎟⎟⎟⎠
c3 =

1
3!

⎛⎜⎜⎜⎜⎝d2d3

d2
1

+ 2d1d2 − 3d3

⎞⎟⎟⎟⎟⎠
=

1
6

⎛⎜⎜⎜⎜⎜⎜⎝ d∏
a=1

(1 + 2ua + 2u2
a + u3

a)

+2
d∏

a=1

(1 − ua − u2
a + u3

a) − 3
d∏

a=1

(1 − u3
a)

⎞⎟⎟⎟⎟⎟⎟⎠
etc.. For example, for a general 2-dimensional map we have

Fp = 1 − 1
D1

t +
u1 + u2

D2
t2 −

u1u2(1 + u1)(1 + u2) + u3
1 + u3

2

D3
t3 + . . . .(G.24)

We discuss the convergence of such cycle expansions in sect.L.4.

With τ
p

k1
1 p

k2
2 ···pkn

n
defined as above, the prime factorization of symbol strings is

unique in the sense that each symbol string can be written as a unique concatena-
tion of prime strings, up to a convention on ordering of primes. This factorization
is a nontrivial example of the utility of generalized Möbius inversion, sect.G.3.

How is the factorization of sect. G.3 used in practice? Suppose we have com-
puted (or perhaps even measured in an experiment) all prime cycles up to length
n, i.e., we have a list of tp’s and the corresponding Jacobian matrix eigenvalues
Λp,1,Λp,2, . . .Λp,d. A cycle expansion of the Selberg product is obtained by gener-
ating all strings in order of increasing length j allowed by the symbolic dynamics
and constructing the multinomial

F =
∑

n

τn (G.25)

where n = s1s2 · · · s j, si range over the alphabet, in the present case {0, 1}. Fac-

torizing every string n = s1s2 · · · s j = pk1
1 pk2

2 · · · p
kj

j as in table G.5, and substi-

tuting τ
p

k1
1 p

k2
2 ···

9 we obtain a multinomial approximation to F. 10 For example,

τ001001010101 = τ001 001 01 01 01 = τ0012τ013 , and τ013 , τ0012 are known functions of
the corresponding cycle eigenvalues. The zeros of F can now be easily determined
by standard numerical methods. The fact that as far as the symbolic dynamics is
concerned, the cycle expansion of a Selberg product is simply an average over all
symbolic strings makes Selberg products rather pretty.

9Predrag: this needs some details
10Predrag: explain that this is systematic weighting for a Poincare section, labeled by all finite

strings rather than prime cycles.
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To be more explicit, we illustrate the above by expressing binary strings as
concatenations of prime factors. We start by computing Nn, the number of terms
in the expansion (G.21) of the total cycle length n. Setting Cpk tk

p = znpk in (G.21),
we obtain

∞∑
n=0

Nnzn =
∏

p

∞∑
k=0

znpk =
1∏

p(1 − znp)
.

So the generating function for the number of terms in the Selberg product is the
topological zeta function. For the complete binary dynamics we have Nn = 2n

contributing terms of length n:

ζtop =
1∏

p(1 − znp)
=

1
1 − 2z

=

∞∑
n=0

2nzn

Hence the number of distinct terms in the expansion (G.21) is the same as the
number of binary strings, and conversely, the set of binary strings of length n
suffices to label all terms of the total cycle length n in the expansion (G.21). ⇓PRIVATE

G.4 Möbius inversion formula, ordered sets

11 12 Let P be an ordered set whose arbitrary interval is a finite set. Let
[P×P] = {(x, y) ∈ P×P|x ≤ y} be the set of intervals of P. A function satisfying the
following two conditions is determined uniquely and is called the Möbius function
over P:

(1) μ(x, x) = 1 for all x ∈ P

(2)
∑

z:x≤z≤y μ(x, z) = 0 for all x, y ∈ P with x < y and x � y.
exercise H.1

When K is a field, for mapping f : [P × P] → K, we can define another
mapping g : [P × P] → K by

g(x, y) =
∑

z∈[x,y]

f (x, z)

then we have the Möbius inversion formula

f (x, y) =
∑

z∈[x,y]

g(x, y)μ(z, y)

The number of prime cycles Möbius inversion formula (15.39) is a special
case.

11Predrag: rest looks wrong, fix this appendix!
12Predrag: give ref. to EDM2, section 66 C
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Commentary

Remark G.2 The Chen inversion formula A Bristol University graduate student
whose name was Jon Keating found one day in 198? an interesting article by dr. ?-?
Chen in Phys. Rev. Letters ??13, entitled “The generalized Möbius inversion formula.”
The article starts with the Theorem 268, page ?? of Hardy and Wright, 5th edition [ 32],
then derives the generalized inversion formula. By stroke of luck Keating owned the same
edition of Hardy and Wright; the generalized inversion formula turned out to be precisely
the Theorem 269, the page overleaf. By the evening Keating penned and faxed off a com-
ment to Phys. Rev. Letters. The editors response was that Phys. Rev. Letters “does
not publish comments that are mere factual corrections,” and got dr. Chen to publish an
erratum saying that “one can also obtain the result from Hardy and Wright.”

Two weeks later Nature editor ?. Maddox wrote an entire page editorial on the Chen
inversion formula: how marvelous it was that a physicist discovered all this new mathe-
matics. Six months later, Physical Review A published a Rapid Communication entitled
“On Chen’s inversion formula” by a group from New Zealand. Keating requested Phys-
ical Review to equip all its referees with a copy of Hardy and Wright, but the proposal
was turned down, and ever since there has been a stream of papers on the subject; as re-
cently as 1995 dr. Chen has published yet another Physical Review article entitled ‘The
generalized inversion formula.”

Remark G.3 Burling primes. Keating: this is the theory that establishes the prime
number theorem for ordered sets.

Remark G.4 What are Manning’s multiples? Viviane Baladi explains:
Red Book [32], Proposition 2.4 is Manning’s argument to count periodic points. The idea
is that you have to be careful with the boundary of the Markov partition and all of its
iterates, as the preimages of the boundary are everywhere dense. Manning’s paper [ 11]
is explained in a very un-Bourbaki way in Bowen [28], middle of page 14. This is pure
combinatorics and x�i0,...,�im−1

is simply a point in M.

Red Book, Proposition 7.1: If you agree that x�i0,...,�im−1
is simply a way to name a point x

in M, then you should not be surprised that T ∗
x f −m denotes the linear bundle map over

f m on the cotangent bundle T ∗M. (This map already appeared in Proposition 6.2 with its
�-forms brothers and sisters).

In other words, ifMi∩M j � ∅, you are double-counting the border points. Therefore
you first count all periodic points in {M0,M1, . . . ,Mm−1}, then subtract all double counts
in all pairs of border overlaps M i ∩ M j, then add all triple counts in M i ∩ M j ∩ Mk

3-tuples, and so on.

⇑PRIVATE

13Predrag: find reference
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Appendix H

Counting itineraries

H.1 Counting curvatures

One consequence of the finiteness of topological polynomials is that the con-
tributions to curvatures at every order are even in number, half with posi-
tive and half with negative sign. For instance, for complete binary labeling

(20.7),

c4 = −t0001 − t0011 − t0111 − t0t01t1
+ t0t001 + t0t011 + t001t1 + t011t1 . (H.1)

We see that 23 terms contribute to c4, and exactly half of them appear with a
negative sign - hence if all binary strings are admissible, this term vanishes in the
counting expression.

exercise H.2

Such counting rules arise from the identity

∏
p

(
1 + tp

)
=

∏
p

1 − tp
2

1 − tp
. (H.2)

Substituting tp = znp and using (15.18) we obtain for unrestricted symbol dynam-
ics with N letters

∞∏
p

(
1 + znp

)
=

1 − Nz2

1 − Nz
= 1 + Nz +

∞∑
k=2

zk
(
Nk − Nk−1

)

The zn coefficient in the above expansion is the number of terms contributing to
cn curvature, so we find that for a complete symbolic dynamics of N symbols and

1123
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three-disk@3-
disk!cycle!count

n > 1, the number of terms contributing to cn is (N − 1)Nk−1 (of which half carry
a minus sign).

exercise H.6

We find that for complete symbolic dynamics of N symbols and n > 1, the
number of terms contributing to cn is (N − 1)Nn−1. So, superficially, not much
is gained by going from periodic orbits trace sums which get Nn contributions of
n to the curvature expansions with Nn(1 − 1/N). However, the point is not the
number of the terms, but the cancelations between them.

boyscout

H.1. Lefschetz zeta function. 1 Elucidate the relation
betveen the topological zeta function and the Lefschetz
zeta function. This should help make sense of sect. G.4. ⇓PRIVATE

⇑PRIVATEH.2. Counting the 3-disk pinball counterterms. Verify
that the number of terms in the 3-disk pinball curvature
expansion (20.42) is given by

∏
p

(
1 + tp

)
=

1 − 3z4 − 2z6

1 − 3z2 − 2z3
= 1 + 3z2 + 2z3 +

z4(6 + 12z + 2z2)
1 − 3z2 − 2z3

= 1 + 3z2 + 2z3 + 6z4 + 12z5 + 20z6 + 48z7 + 84z8 + 184z9 + . . . .(H.3)

This means that, for example, c6 has a total of 20 terms, in
agreement with the explicit 3-disk cycle expansion (20.43).

H.3. Cycle expansion denominators∗∗. Prove that the de-
nominator of ck is indeed Dk, as asserted (G.23). ⇓PRIVATE

H.4. Möbius inversion∗∗. Do sect. G.3.1 right; prove prime
factorization of symbolic strings for arbitrary grammar,
not just complete binary, explain how this partitions the
Poincaré section into regions shadowed by particular se-
quences of pseudo-cycles.

H.5. Factorizations. do some factorizations by hand... ⇑PRIVATE

H.6. Counting subsets of cycles. The techniques devel-
oped above can be generalized to counting subsets of cy-
cles. Consider the simplest example of a dynamical sys-
tem with a complete binary tree, a repeller map (11.4)
with two straight branches, which we label 0 and 1. Ev-
ery cycle weight for such map factorizes, with a factor t 0

for each 0, and factor t1 for each 1 in its symbol string.

1Predrag: for Vachtang
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The transition matrix traces (15.7) collapse to tr(T k) =
(t0 + t1)k, and 1/ζ is simply 2∏

p

(
1 − tp

)
= 1 − t0 − t1 (H.4)

Substituting into the identity∏
p

(
1 + tp

)
=

∏
p

1 − tp
2

1 − tp

we obtain∏
p

(
1 + tp

)
=

1 − t2
0 − t2

1

1 − t0 − t1
= 1 + t0 + t1 +

2t0t1
1 − t0 − t1

= 1 + t0 + t1 +
∞∑

n=2

n−1∑
k=1

2

(
n − 2
k − 1

)
tk
0tn−k

1 .(H.5)

Hence for n ≥ 2 the number of terms in the expansion
?! with k 0’s and n − k 1’s in their symbol sequences is
2
(
n−2
k−1

)
. This is the degeneracy of distinct cycle eigenval-

ues in fig.?!; for systems with non-uniform hyperbolicity
this degeneracy is lifted (see fig. ?!). 3

In order to count the number of prime cycles in each
such subset we denote with Mn,k (n = 1, 2, . . . ; k =
{0, 1} for n = 1; k = 1, . . . , n − 1 for n ≥ 2) the num-
ber of prime n-cycles whose labels contain k zeros, use
binomial string counting and Möbius inversion and ob-
tain

M1,0 = M1,1 = 1

nMn,k =
∑
m
∣∣∣ n

k

μ(m)

(
n/m
k/m

)
, n ≥ 2 , k = 1, . . . , n − 1

where the sum is over all m which divide both n and k.

2Predrag: derive this!
3Predrag: copy from AAC
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observable
Koopman operator
operator!Koopman

Appendix I

Implementing evolution

I.1 Koopmania

The Koopman operator action on a state space function a(x) is to replace it by
its downstream value time t later, a(x) → a(x(t)), evaluated at the trajectory
point x(t):

[
K ta

]
(x) = a( f t(x)) =

∫
M

dy K t(x, y) a(y)

K t(x, y) = δ
(
y − f t(x)

)
. (I.1)

Given an initial density of representative points ρ(x), the average value of a(x)
evolves as

〈a〉(t) = 1
|ρM|

∫
M

dx a( f t(x)) ρ(x) =
1
|ρM|

∫
M

dx
[
K ta

]
(x) ρ(x)

=
1
|ρM|

∫
M

dx dy a(y) δ
(
y − f t(x)

)
ρ(x) .

The ‘propagator’ δ
(
y − f t(x)

)
can be interpreted as belonging to the Perron-Frobenius

operator (16.10), so the two operators are adjoint to each other, 1

∫
M

dx
[
K ta

]
(x) ρ(x) =

∫
M

dy a(y)
[
Ltρ

]
(y) . (I.2)

This suggests an alternative point of view, which is to push dynamical effects
into the density. In contrast to the Koopman operator which advances the trajec-
tory by time t, the Perron-Frobenius operator depends on the trajectory point time
t in the past ⇓PRIVATE

exercise I.1
1126
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semigroup
group!semi-
flow!generator of
generator!of flow⇑PRIVATE

The Perron-Frobenius operators are non-normal, not self-adjoint operators,
so their left and right eigenvectors differ. The right eigenvectors of a Perron-
Frobenius operator are the left eigenvectors of the Koopman, and vice versa.
While one might think of a Koopman operator as an ‘inverse’ of the Perron-
Frobenius operator, the notion of adjoint is the right one, especially in settings
where flow is not time-reversible, as is the case for dissipative PDEs (infinite di-
mensional flows contracting forward in time) and for stochastic flows.

⇓PRIVATE

section 27.1.2

⇑PRIVATE
The family of Koopman’s operators

{K t}
t∈R+ forms a semigroup parameter-

ized by time

(a) K0 = 1

(b) K tK t′ = K t+t′ t, t′ ≥ 0 (semigroup property) ,

with the generator of the semigroup, the generator of infinitesimal time transla-
tions defined by

A = lim
t→0+

1
t

(
K t − 1

)
.

2 (If the flow is finite-dimensional and invertible, A is a generator of a group).
The explicit form of A follows from expanding dynamical evolution up to first
order, as in (2.6):

A a(x) = lim
t→0+

1
t

(
a( f t(x)) − a(x)

)
= vi(x)∂ia(x) . (I.3)

Of course, that is nothing but the definition of the time derivative, so the equation
of motion for a(x) is

(
d
dt
−A

)
a(x) = 0 . (I.4)

appendix I.2

The finite time Koopman operator (I.1) can be formally expressed by exponenti-
ating the time-evolution generator A as

K t = etA . (I.5)
exercise I.2

The generator A looks very much like the generator of translations. Indeed,
for a constant velocity field dynamical evolution is nothing but a translation by
time× velocity:

exercise 16.10
1Predrag: this is unclear: “(analogous to the shift from the Heisenberg to the Schrödinger picture

in quantum mechanics)”, so I dropped it
2Predrag: looks like Hamiltonian, but it is not
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operator!semigroup!bounded
semigroup!operator
Laplace!transform
resolvent!operator
operator!resolvent

etv ∂
∂x a(x) = a(x + tv) . (I.6)

As we will not need to implement a computational formula for general etA in
what follows, we relegate making sense of such operators to appendix I.2. Here

appendix I.2
we limit ourselves to a brief remark about the notion of “spectrum” of a linear
operator.

The Koopman operator K acts multiplicatively in time, so it is reasonable to
suppose that there exist constants M > 0, β ≥ 0 such that ||Kt || ≤ Metβ for all
t ≥ 0. What does that mean? The operator norm is define in the same spirit in
which we defined the matrix norms in sect. N.2: We are assuming that no value
of K tρ(x) grows faster than exponentially for any choice of function ρ(x), so that
the fastest possible growth can be bounded by etβ, a reasonable expectation in the
light of the simplest example studied so far, the exact escape rate (17.39). If that
is so, multiplying Kt by e−tβ we construct a new operator e−tβK t = et(A−β) which
decays exponentially for large t, ||et(A−β)|| ≤ M. We say that e−tβK t is an element
of a bounded semigroup with generator A − β1. Given this bound, it follows by
the Laplace transform 3

∫ ∞

0
dt e−stK t =

1
s −A

, Re s > β , (I.7)

that the resolvent operator (s − A)−1 is bounded (“resolvent” = able to cause
section N.2

separation into constituents)

∣∣∣∣∣∣∣∣∣∣ 1
s −A

∣∣∣∣∣∣∣∣∣∣ ≤ ∫ ∞

0
dt e−st Metβ =

M
s − β .

If one is interested in the spectrum of K , as we will be, the resolvent operator is a
natural object to study. The main lesson of this brief aside is that for the continu-
ous time flows the Laplace transform is the tool that brings down the generator in
(16.29) into the resolvent form (17.33) and enables us to study its spectrum. 4

I.2 Implementing evolution

(R. Artuso and P. Cvitanović)

We now come back to the semigroup of operators Kt. We have introduced
the generator of the semigroup (16.27) as

A = d
dt
K t

∣∣∣∣∣
t=0

.

3Predrag: EAS: need to define the norm of this operator
4Predrag: above tex the same as in measure.tex, edit repeats out!
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matrix!exponentialIf we now take the derivative at arbitrary times we get

(
d
dt
K tψ

)
(x) = lim

η→0

ψ( f t+η(x)) − ψ( f t(x))
η

= vi( f t(x))
∂

∂x̃i
ψ(x̃)

∣∣∣∣∣
x̃= f t(x)

=
(
K tAψ

)
(x)

which can be formally integrated like an ordinary differential equation yielding
exercise I.2

K t = etA . (I.8)

This guarantees that the Laplace transform manipulations in sect.16.5 are correct.
Though the formal expression of the semigroup (I.8) is quite simple one has to
take care in implementing its action. If we express the exponential through the
power series

K t =

∞∑
k=0

tk

k!
Ak , (I.9)

we encounter the problem that the infinitesimal generator (16.27) contains non-
commuting pieces, i.e., there are i, j combinations for which the commutator does
not satisfy

[
∂

∂xi
, v j(x)

]
= 0 .

To derive a more useful representation, we follow the strategy used for finite-
dimensional matrix operators in sects. 4.3 and 4.4 and use the semigroup property
to write

K t =

t/δτ∏
m=1

Kδτ

as the starting point for a discretized approximation to the continuous time dy-
namics, with time step δτ. Omitting terms from the second order onwards in the
expansion of Kδτ yields an error of order O(δτ2). This might be acceptable if the
time step δτ is sufficiently small: even in this case one has to be careful, since5

⇓PRIVATE

(
AK tψ

)
(x) = vi( f t(x))

∂ψ

∂x̃i

∣∣∣∣∣
x̃= f t(x)

.

⇑PRIVATE
5Predrag: careful why?
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flow!generator of
generator!of flow
Lorenz flow

In practice we write the Euler product

K t =

t/δτ∏
m=1

(
1 + δτA(m)

)
+ O(δτ2) (I.10)

where

(A(m)ψ
)

(x) = vi( f mδτ(x))
∂ψ

∂x̃i

∣∣∣∣∣
x̃= f mδτ(x)

As far as the x dependence is concerned, eδτAi acts as

eδτAi

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

·
xi

xd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1

·
xi + δτvi(x)

xd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (I.11)

exercise 2.6

We see that the product form (I.10) of the operator is nothing else but a prescrip-
tion for finite time step integration of the equations of motion - in this case the
simplest Euler type integrator which advances the trajectory by δτ×velocity at
each time step. ⇓PRIVATE

Example I.1 Integrating Lorenz flow: The time-evolution equation (I.4) for a
trajectory x(t) = (x1(t), · · · , xd(t)) can be written as

ẋ = Ax ,

where A is the time evolution-generator (I.3). 6 For example, for the Lorenz flow (2.13)

A = σ(y − x) ∂x + (x(ρ − z) − y) ∂x + (xy − bz) ∂z .

The formal solution is

x j(t) = etA0 x j(0) , (I.12)

where A0 = A(x(0), y(0), z(0)) for the Lorenz flow. Since the trajectories are smooth
and bounded, Taylor series in time is convergent:

x j(t) =
∞∑

k=0

x(k)
j

tk

k!
, x(k)

j =
dk

dtk
x j(t) |t=0 .

From (I.12) we get

x(k)
j = A

k
0x j(0) k = 0, 1, 2, · · ·

As many coefficients x(k)
j as needed can be obtained by applying the part of Ak

0 linear
in the derivatives ∂x0 , ∂y0 , ∂z0 . (after Axenides and Floratos [3, 4, 5, 6, 7]).

⇑PRIVATE
6Predrag: note, this is Koopman, conflicts with (16.27) and (16.28)
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symplectic!integrator
fundamental!matrix

I.2.1 A symplectic integrator

The procedure we described above is only a starting point for more so-
phisticated approximations. As an example on how to get a sharper bound on the
error term consider the Hamiltonian flow A = B + C, B = pi

∂
∂qi

, C = −∂iV(q) ∂
∂pi

.
Clearly the potential and the kinetic parts do not commute. We make sense of the

exercise I.3
formal solution (I.10) by splitting it into infinitesimal steps and keeping terms up
to δτ2 in

Kδτ = K̂δτ +
1

24
(δτ)3[B + 2C, [B,C]] + · · · , (I.13)

where

K̂δτ = e
1
2 δτBeδτCe

1
2 δτB . (I.14)

The approximate infinitesimal Liouville operator K̂δτ is of the form that now gen-
erates evolution as a sequence of mappings induced by (16.30), a free flight by
1
2δτB, scattering by δτ∂V(q′), followed again by 1

2δτB free flight:

e
1
2 δτB

{
q
p

}
→

{
q′

p′

}
=

{
q − δτ

2 p
p

}
eδτC

{
q′

p′

}
→

{
q′′

p′′

}
=

{
q′

p′ + δτ∂V(q′)

}
e

1
2 δτB

{
q′′

p′′

}
→

{
q′′′

p′′′

}
=

{
q′ − δτ

2 p′′

p′′

}
(I.15)

Collecting the terms we obtain an integration rule for this type of symplectic flow
which is better than the straight Euler integration (I.11) as it is accurate up to order
δτ2:

qn+1 = qn − δτ pn −
(δτ)2

2
∂V (qn − δτpn/2)

pn+1 = pn + δτ∂V (qn − δτpn/2) (I.16)

The Jacobian matrix of one integration step is given by7

M =

(
1 −δτ/2
0 1

) (
1 0

δτ∂V(q′) 1

) (
1 −δτ/2
0 1

)
. (I.17)

Note that the billiard flow (8.11) is an example of such symplectic integrator. In
that case the free flight is interrupted by instantaneous wall reflections, and can be
integrated out. 8

7Predrag: insert explicit symplectic integrator routine
8Predrag: remember to move to here Koopmania from refsMeasure.tex

appendMeasure - 8may2012 boyscout version14.4, Mar 19 2013



Exercises boyscout 1132

Koopman operator
operator!Koopman
von

Neumann!ergodicity
Green’s

function!analogue
of

Commentary

Remark I.1 Koopman operators. The “Heisenberg picture” in dynamical systems
theory has been introduced by Koopman and Von Neumann [ 1, 2], see also ref. [12].
Inspired by the contemporary advances in quantum mechanics, Koopman [ 1] observed in
1931 that K t is unitary on L2(μ) Hilbert spaces. The Koopman operator is the classical
analogue of the quantum evolution operator exp

(
iĤt/�

)
– the kernel ofLt(y, x) introduced

in (16.16) (see also sect. 17.2) is the analogue of the Green’s function discussed here in
chapter 36. The relation between the spectrum of the Koopman operator and classical
ergodicity was formalized by von Neumann [2]. We shall not use Hilbert spaces here
and the operators that we shall study will not be unitary. 9 For a discussion of the relation
between the Perron-Frobenius operators and the Koopman operators for finite dimensional
deterministic invertible flows, infinite dimensional contracting flows, and stochastic flows,
see Lasota-Mackey [12] and Gaspard [8].

Remark I.2 Symplectic integration. The reviews [12] and [13] offer a good starting
point for exploring the symplectic integrators literature. For a higher order integrators of
type (I.14), check ref. [18].

boyscout

⇓PRIVATE

I.1. Perron-Frobenius operator is the adjoint of the Koop-
man operator. Check (??) - it might be wrong as it
stands. Pay attention to presence/absence of a Jacobian.

⇑PRIVATE
I.2. Exponential form of semigroup elements. Check

that the Koopman operator and the evolution generator
commute,K tA = AK t, by considering the action of both
operators on an arbitrary state space function a(x).

I.3. Non-commutativity. Check that the commutators in
(I.13) are not vanishing by showing that

[B,C] = −p

(
V ′′ ∂

∂p
− V ′ ∂

∂q

)
.

I.4. Symplectic leapfrog integrator. 10 Implement (I.16)
for 2-dimensional Hamiltonian flows; compare it with Runge-
Kutta integrator by integrating trajectories in some (chaotic)
Hamiltonian flow.

9Predrag: recheck the unitarity claims...
10Predrag: this might be an obsolete version
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Appendix J

Transport of vector fields

Man who says it cannot be done should not interrupt man
doing it.

—Sayings of Vattay Gábor

In this appendix we show that the multidimensional Lyapunov exponents and
relaxation exponents (dynamo rates) of vector fields can be expressed in terms
of leading eigenvalues of appropriate evolution operators.

J.1 Evolution operator for Lyapunov exponents

Lyapunov exponents were introduced and computed for 1-dimensional
maps in sect. 17.4. For higher-dimensional flows only the Jacobian matrices are
multiplicative, not individual eigenvalues, and the construction of the evolution
operator for evaluation of the Lyapunov spectra requires the extension of evolution
equations to the flow in the tangent space. We now develop the requisite theory.

Here we construct a multiplicative evolution operator (J.4) whose spectral det-
erminant (J.8) yields the leading Lyapunov exponent of a d-dimensional flow (and
is entire for Axiom A flows). 1 2

The key idea is to extend the dynamical system by the tangent space of the
flow, suggested by the standard numerical methods for evaluation of Lyapunov
exponents: start at x0 with an initial infinitesimal tangent space vector in the d-
dimensional tangent space η(0) ∈ TMx, and let the flow transport it along the
trajectory x(t) = f t(x0).

1Predrag: in this section need to harmonize things like “(d+1)-dimensional” and eliminate
“transverse” tangent space, ie include the v marginal eigendirection, with main text

2Predrag: define “Axiom A” somewhere

1135
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The dynamics in the tangent bundle (x, δx) ∈ TM 3 is governed by the system
of equations of variations (4.2):

ẋ = v(x) , η̇ = A(x) η .

Here A(x) is (4.3), the stability matrix (velocity gradients matrix) of the flow. We
write the solution as

x(t) = f t(x0) , η(t) = Jt(x0) η0 , (J.1)

with the tangent space vector η transported by the Jacobian matrix Jt(x0) = ∂x(t)/∂x0

(4.5).

As explained in sect. 4.1, the growth rate of this vector is multiplicative along
the trajectory and can be represented as η(t) = |η(t)|/|η(0)| u(t) where u(t) is a
“unit” vector in some norm ||.||. For asymptotic times and for almost every initial
(x0, η(0)), this factor converges to the leading eigenvalue of the linearized stability
matrix of the flow.

We implement this multiplicative evaluation of Floquet multipliers by adjoin-
ing the d-dimensional transverse tangent space η ∈ TMx; η(x) · v(x) = 0 to the
(d+1)-dimensional dynamical evolution space x ∈ M ⊂ Rd+1. 4 In order to deter-
mine the length of the vector η we introduce a homogeneous differentiable scalar
function g(η) = ||η||. It has the property g(Λη) = |Λ| g(η) for any Λ. An example
is the projection of a vector to its dth component

g

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
η1
η2
· · ·
ηd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = |ηd | .

Any vector η(0) ∈ TMx can now be represented by the product η = Λu, where
u is a “unit” vector in the sense that its norm is ||u|| = 1, and the factor

Λt(x0, u0) = g(η(t)) = g(Jt(x0)u0) (J.2)

is the multiplicative “stretching” factor.

Unlike the leading eigenvalue of the Jacobian the stretching factor is multi-
plicative along the trajectory:

Λt′+t(x0, u0) = Λt′(x(t), u(t))Λt(x0, u0).

exercise J.1
3Predrag: fix notation: (T)M?
4Predrag: this looks wrong: v(x) is not normal to other eigenvectors. Keep the marginal direc-

tion?
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The u evolution constrained to ETg,x, the space of unit transverse tangent vectors,
is given by rescaling of (J.1):

u′ = Rt(x, u) =
1

Λt(x, u)
Jt(x)u . (J.3)

Eqs. (J.1), (J.2) and (J.3) enable us to define a multiplicative evolution operator
on the extended space U × ETg,x

Lt(x′, u′; x, u) = δ
(
x′ − f t(x)

) δ(u′ − Rt(x, u)
)

|Λt(x, u)|β−1
, (J.4)

where β is a variable.

To evaluate the expectation value of log |Λt(x, u)| which is the Lyapunov ex-
ponent we again have to take the proper derivative of the leading eigenvalue of
(J.4). In order to derive the trace formula for the operator (J.4) we need to eval-
uate TrLt =

∫
dxduLt(u, x; u, x). The

∫
dx integral yields a weighted sum over

prime periodic orbits p and their repetitions r:

TrLt =
∑

p

Tp

∞∑
r=1

δ
(
t − rTp

)
| det (1 − Mr

p) |
Δp,r,

Δp,r =

∫
g

du
δ
(
u − RTpr(xp, u)

)
|ΛTpr(xp, u)|β−1

, (J.5)

where Mp is the prime cycle p transverse stability matrix. As we shall see below,
Δp,r is intrinsic to cycle p, and independent of any particular periodic point xp.

We note next that if the trajectory ft(x) is periodic with period T , the tangent
space contains d periodic solutions

e(i)(x(T + t)) = e(i)(x(t)) , i = 1, ..., d,

corresponding to the d unit eigenvectors {e(1), e(2), · · · , e(d)} of the transverse sta-
bility matrix, with “stretching” factors (J.2) given by its eigenvalues

Mp(x)e(i)(x) = Λp,i e(i)(x) , i = 1, ..., d. (no summation on i)

The
∫

du integral in (J.5) picks up contributions from these periodic solutions. In
order to compute the stability of the ith eigen-direction solution, it is convenient to
expand the variation around the eigenvector e(i) in the stability matrix eigenbasis

appendApplic - 20sep2009 boyscout version14.4, Mar 19 2013
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δu =
∑
δu� e(�) . The variation of the map (J.3) at a complete period t = T is then

given by

δRT (e(i)) =
Mδu

g(Me(i))
− Me(i)

g(Me(i))2

(
∂g(e(i))
∂u

Mδu

)
=

∑
k�i

Λp,k

Λp,i

(
e(k) − e(i) ∂g(e(i))

∂uk

)
δuk . (J.6)

The δui component does not contribute to this sum since g(e(i) + duie(i)) = 1 + dui

implies ∂g(e(i))/∂ui = 1. Indeed, infinitesimal variations δu must satisfy

g(u + δu) = g(u) = 1 =⇒
d∑
�=1

δu�
∂g(u)
∂u�

= 0 ,

so the allowed variations are of form

δu =
∑
k�i

(
e(k) − e(i) ∂g(e(i))

∂uk

)
ck , |ck | � 1 ,

and in the neighborhood of the e(i) eigenvector the
∫

du integral can be expressed
as

∫
g

du =
∫ ∏

k�i

dck .

Inserting these variations into the
∫

du integral we obtain

∫
g

du δ
(
e(i) + δu − RT (e(i)) − δRT (e(i)) + . . .

)
=

∫ ∏
k�i

dck δ((1 − Λk/Λi)ck + . . .)

=
∏
k�i

1
|1 − Λk/Λi|

,

and the
∫

du trace (J.5) becomes

Δp,r =

d∑
i=1

1

| Λr
p,i |β−1

∏
k�i

1
| 1 − Λr

p,k/Λ
r
p,i |

. (J.7)
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The corresponding spectral determinant is obtained by observing that the Laplace
transform of the trace (18.23) is a logarithmic derivative TrL(s) = − d

ds log F(s)
of the spectral determinant:

F(β, s) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p,r

esTpr

r | det (1 − Mr
p) |Δp,r(β)

⎞⎟⎟⎟⎟⎟⎟⎠ . (J.8)

This determinant is the central result of this section. Its zeros correspond to the
eigenvalues of the evolution operator (J.4), and can be evaluated by the cycle
expansion methods.

The leading zero of (J.8) is called “pressure” (or free energy)

P(β) = s0(β). (J.9)

The average Lyapunov exponent is then given by the first derivative of the pressure
at β = 1:

λ = P′(1). (J.10)

The simplest application of (J.8) is to 2-dimensional hyperbolic Hamiltonian
maps. The Floquet multipliers are related by Λ1 = 1/Λ2 = Λ, and the spectral
determinant is given by

F(β, z) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p,r

zrnp

r | Λr
p |

1

(1 − 1/Λr
p)2
Δp,r(β)

⎞⎟⎟⎟⎟⎟⎟⎠
Δp,r(β) =

| Λr
p |1−β

1 − 1/Λ2r
p
+
| Λr

p |β−3

1 − 1/Λ2r
p
. (J.11)

The dynamics (J.3) can be restricted to a u unit eigenvector neighborhood cor-
responding to the largest eigenvalue of the Jacobi matrix. On this neighborhood
the largest eigenvalue of the Jacobi matrix is the only fixed point, and the spectral
determinant obtained by keeping only the largest term the Δp,r sum in (J.7) is also
entire.

In case of maps it is practical to introduce the logarithm of the leading zero
and to call it “pressure”

P(β) = log z0(β).

The average of the Lyapunov exponent of the map is then given by the first deriva-
tive of the pressure at β = 1:

λ = P′(1).
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By factorizing the determinant (J.11) into products of zeta functions we can
conclude that the leading zero of the (J.4) can also be recovered from the leading
zeta function

1/ζ0(β, z) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p,r

zrnp

r|Λr
p|β

⎞⎟⎟⎟⎟⎟⎟⎠ . (J.12)

This zeta function plays a key role in thermodynamic applications, see chapterO.

J.2 Advection of vector fields by chaotic flows

Fluid motions can move embedded vector fields around. An example is the mag-
netic field of the Sun which is “frozen” in the fluid motion. A passively evolving
vector field V is governed by an equation of the form

∂tV + u · ∇V − V · ∇u = 0, (J.13)

where u(x, t) represents the velocity field of the fluid. The strength of the vector
field can grow or decay during its time evolution. The amplification of the vector
field in such a process is called the ”dynamo effect.” In a strongly chaotic fluid
motion we can characterize the asymptotic behavior of the field with an exponent

V(x, t) ∼ V(x)eνt, (J.14)

where ν is called the fast dynamo rate. The goal of this section is to show that
periodic orbit theory can be developed for such a highly non-trivial system as
well.

We can write the solution of (J.13) formally, as shown by Cauchy. Let x(t, a)
be the position of the fluid particle that was at the point a at t = 0. Then the field
evolves according to

V(x, t) = J(a, t)V(a, 0) , (J.15)

where J(a, t) = ∂(x)/∂(a) is the Jacobian matrix of the transformation that moves
the fluid into itself x = x(a, t).

We write x = f t(a), where f t is the flow that maps the initial positions of the
fluid particles into their positions at time t. Its inverse, a = f−t(x), maps particles
at time t and position x back to their initial positions. Then we can write (J.15)

Vi(x, t) =
∑

j

∫
d3a Lt

i j(x, a)Vj(a, 0) , (J.16)
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with

Lt
i j(x, a) = δ(a − f−t(x))

∂xi

∂aj
. (J.17)

For large times, the effect of Lt is dominated by its leading eigenvalue, eν0t with
Re(ν0) > Re(νi), i = 1, 2, 3, .... In this way the transfer operator furnishes the fast
dynamo rate, ν := ν0.

The trace of the transfer operator is the sum over all periodic orbit contribu-
tions, with each cycle weighted by its intrinsic stability

TrLt =
∑

p

Tp

∞∑
r=1

tr Mr
p∣∣∣∣det

(
1 − M−r

p

)∣∣∣∣δ(t − rTp). (J.18)

We can construct the corresponding spectral determinant as usual

F(s) = exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−∑
p

∞∑
r=1

1
r

tr Mr
p∣∣∣∣det

(
1 − M−r

p

)∣∣∣∣esrT p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (J.19)

Note that in this formuli we have omitted a term arising from the Jacobian trans-
formation along the orbit which would give 1 + tr Mr

p in the numerator rather
than just the trace of Mr

p. Since the extra term corresponds to advection along the
orbit, and this does not evolve the magnetic field, we have chosen to ignore it. It
is also interesting to note that the negative powers of the Jacobian occur in the
denominator, since we have f−t in (J.17).

In order to simplify F(s), we factor the denominator cycle stability determi-
nants into products of expanding and contracting eigenvalues. For a 3-dimensional
fluid flow with cycles possessing one expanding eigenvalue Λp (with |Λp| > 1),
and one contracting eigenvalue λp (with |λp| < 1) the determinant may be ex-
panded as follows:

∣∣∣∣det
(
1 − M−r

p

)∣∣∣∣−1
= |(1 − Λ−r

p )(1 − λ−r
p )|−1 = |λp|r

∞∑
j=0

∞∑
k=0

Λ
− jr
p λkr

p . (J.20)

With this decomposition we can rewrite the exponent in (J.19) as

∑
p

∞∑
r=1

1
r

(λr
p + Λ

r
p)esrT p∣∣∣∣det

(
1 − M−r

p

)∣∣∣∣ =
∑

p

∞∑
j,k=0

∞∑
r=1

1
r

(
|λp|Λ− j

p λ
k
pesTp

)r
(λr

p+Λ
r
p) , (J.21)

which has the form of the expansion of a logarithm:∑
p

∑
j,k

[
log

(
1 − esTp |λp|Λ1− j

p λk
p

)
+ log

(
1 − esTp |λp|Λ− j

p λ
1+k
p

)]
. (J.22)
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The spectral determinant is therefore of the form,

F(s) = Fe(s)Fc(s) , (J.23)

where

Fe(s) =
∏

p

∞∏
j,k=0

(
1 − t( jk)

p Λp

)
, (J.24)

Fc(s) =
∏

p

∞∏
j,k=0

(
1 − t( jk)

p λp

)
, (J.25)

with

t( jk)
p = esTp |λp|

λk
p

Λ
j
p

. (J.26)

The two factors present in F(s) correspond to the expanding and contracting ex-
ponents. (Had we not neglected a term in (J.19), there would be a third factor
corresponding to the translation.)

For 2-dimensional Hamiltonian volume preserving systems, λ = 1/Λ and
(J.24) reduces to

Fe(s) =
∏

p

∞∏
k=0

⎛⎜⎜⎜⎜⎝1 − tp

Λk−1
p

⎞⎟⎟⎟⎟⎠k+1

, tp =
esTp

| Λp |
. (J.27)

With σp = Λp/|Λp|, the Hamiltonian zeta function (the j = k = 0 part of the
product (J.25)) is given by

1/ζdyn(s) =
∏

p

(
1 − σpesTp

)
. (J.28)

This is a curious formula — the zeta function depends only on the return times,
not on the eigenvalues of the cycles. Furthermore, the identity,

Λ + 1/Λ
|(1 − Λ)(1 − 1/Λ)|

= σ +
2

|(1 − Λ)(1 − 1/Λ)|
,

when substituted into (J.23), leads to a relation between the vector and scalar
advection spectral determinants:

Fdyn(s) = F2
0(s)/ζdyn(s) . (J.29)
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axiom A systems
dynamical

system!axiom A

The spectral determinants in this equation are entire for hyperbolic (axiom A)
systems, since both of them correspond to multiplicative operators.

In the case of a flow governed by a map, we can adapt the formulas (J.27) and
(J.28) for the dynamo determinants by simply making the substitution

znp = esTp , (J.30)

where np is the integer order of the cycle. Then we find the spectral determinant
Fe(z) given by equation (J.27) but with

tp =
znp

|Λp|
(J.31)

for the weights, and

1/ζdyn(z) = Πp

(
1 − σpznp

)
(J.32)

for the zeta-function

For maps with finite Markov partition the inverse zeta function (J.32) reduces
to a polynomial for z since curvature terms in the cycle expansion vanish. For ex-
ample, for maps with complete binary partition, and with the fixed point stabilities
of opposite signs, the cycle expansion reduces to

1/ζdyn(s) = 1. (J.33)

For such maps the dynamo spectral determinant is simply the square of the scalar
advection spectral determinant, and therefore all its zeros are double. In other
words, for flows governed by such discrete maps, the fast dynamo rate equals the
scalar advection rate.

In contrast, for 3-dimensional flows, the dynamo effect is distinct from the
scalar advection. For example, for flows with finite symbolic dynamical gram-
mars, (J.29) implies that the dynamo zeta function is a ratio of two entire determi-
nants:

1/ζdyn(s) = Fdyn(s)/F2
0(s) . (J.34)

This relation implies that for flows the zeta function has double poles at the zeros
of the scalar advection spectral determinant, with zeros of the dynamo spectral
determinant no longer coinciding with the zeros of the scalar advection spectral
determinant; Usually the leading zero of the dynamo spectral determinant is larger

exercise J.2
than the scalar advection rate, and the rate of decay of the magnetic field is no
longer governed by the scalar advection. ⇓PRIVATE
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escape rateRésumé

⇑PRIVATE

Commentary

Remark J.1 Lyapunov exponents. Sect. J.1 is based on ref. [1]. 5

Remark J.2 Dynamo zeta. The dynamo zeta (J.32) has been introduced by Aurell
and Gilbert [3] and reviewed in ref. [4]. Our exposition follows ref. [22].

boyscout

J.1. Stretching factor. Prove the multiplicative property
of the stretching factor (J.2). Why should we extend the
phase space with the tangent space?

J.2. Dynamo rate. Suppose that the fluid dynamics is
highly dissipative and can be well approximated by the
piecewise linear map

f (x) =

{
1 + ax if x < 0,
1 − bx if x > 0, (J.35)

on an appropriate surface of section (a, b > 2). Suppose
also that the return time is constant Ta for x < 0 and Tb

for x > 0. Show that the dynamo zeta is

1/ζdyn(s) = 1 − esTa + esTb . (J.36)

Show also that the escape rate is the leading zero of

1/ζ0(s) = 1 − esTa/a − esTb/b. (J.37)

Calculate the dynamo and the escape rates analytically
if b = a2 and Tb = 2Ta. Do the calculation for the case
when you reverse the signs of the slopes of the map. What
is the difference?

5Predrag: credit also Lazutkin - find the reference
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Appendix K

Discrete symmetries of dynamics

Basic group-theoretic notions are recapitulated here: groups, irreducible rep-
resentations, invariants. Our notation follows birdtracks.eu.

The key result is the construction of projection operators from invariant ma-
trices. The basic idea is simple: a hermitian matrix can be diagonalized. If this
matrix is an invariant matrix, it decomposes the reps of the group into direct sums
of lower-dimensional reps. Most of computations to follow implement the spectral
decomposition

M = λ1P1 + λ2P2 + · · · + λrPr ,

which associates with each distinct root λi of invariant matrix M a projection
operator (K.17):

Pi =
∏
j�i

M − λ j1
λi − λ j

.

Sects. K.3 and K.4 develop Fourier analysis as an application of the general
theory of invariance groups and their representations.

K.1 Preliminaries and definitions

(A. Wirzba and P. Cvitanović)

We define group, representation, symmetry of a dynamical system, and invariance.

1146
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group
group!order of
group!finite
group!cyclic
group!dihedral
group!symmetric
finite group
cyclic!group
dihedral group
symmetric group
group!Lie
group!dihedral
group!symmetric
Lie!group
on@O(n) group
sun@S U(n) group

Group axioms. A group G is a set of elements g1, g2, g3, . . . for which compo-
sition or group multiplication g2 ◦ g1 (which we often abbreviate as g2g1) of any
two elements satisfies the following conditions:

1. If g1, g2 ∈ G, then g2 ◦ g1 ∈ G.

2. The group multiplication is associative: g3 ◦ (g2 ◦ g1) = (g3 ◦ g2) ◦ g1.

3. The group G contains identity element e such that g◦e = e◦g = g for every
element g ∈ G.

4. For every element g ∈ G, there exists a unique h == g−1 ∈ G such that
h ◦ g = g ◦ h = e.

A finite group is a group with a finite number of elements

G = {e, g2, . . . , g|G|} ,

where |G|, the number of elements, is the order of the group.

Example K.1 Finite groups: Some finite groups that frequently arise in applica-
tions:

• Cn (also denoted Zn): the cyclic group of order n.

• Dn: the dihedral group of order 2n, rotations and reflections in plane that preserve
a regular n-gon.

• S n: the symmetric group of all permutations of n symbols, order n!.

Example K.2 Lie groups: Some compact continuous groups that arise in
dynamical systems applications:

• S 1 (also denoted T 1): circle group of dimension 1.

• Tm = S 1 × S 1 · · · × S 1: m-torus, of dimension m.

• SO(2): rotations in the plane, dimension 1. Isomorphic to S 1.

• O(2) = SO(2) × D1: group of rotations and reflections in the plane, of dimension
1.

• U(1): group of phase rotations in the complex plane, of dimension 1. Isomorphic
to SO(2). 1

• SO(3): rotation group of dimension 3.

• SU(2): unitary group of dimension 3. Isomorphic to SO(3).

• GL(n): general linear group of invertible matrix transformations, dimension n2.

• SO(n): special orthogonal group of dimension n(n − 1)/2.

• O(n) = SO(n) × D1: orthogonal group of dimension n(n − 1)/2. 2

1Predrag: or is this O(2)?
2Predrag: replace by outer product
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cyclic!group
group!cyclic
dihedral group
group!dihedral
involution
repeated index

summation
index summation,

repeated
group!general linear
gln@$GL(n,“mathbbF)$

• S p(n): symplectic group of dimension n(n + 1)/2.

• SU(n): special unitary group of dimension n2 − 1.

Example K.3 Cyclic and dihedral groups: The cyclic group Cn ⊂ SO(2) of order n
is generated by one element. For example, this element can be rotation through 2π/n.
The dihedral group Dn ⊂ O(2), n > 2, can be generated by two elements one at least

of which must reverse orientation. For example, take σ corresponding to reflection in
the x-axis. σ2 = e; such operation σ is called an involution. C to rotation through 2π/n,
then Dn = 〈σ,C〉, and the defining relations are σ2 = Cn = e, (Cσ)2 = e.

Groups are defined and classified as abstract objects by their multiplication
tables (for finite groups) or Lie algebras (for Lie groups). What concerns us in
applications is their action as groups of transformations on a given space, usually
a vector space (see appendix E.1), but sometimes an affine space, or a more general
manifold M.

Repeated index summation. Throughout this text, the repeated pairs of up-
per/lower indices are always summed over

Ga
bxb ≡

n∑
b=1

Ga
bxb , (K.1)

unless explicitly stated otherwise.

General linear transformations. Let GL(n, F) be the group of general linear
transformations,

GL(n, F) =
{
g : F n → F n | det (g) � 0

}
. (K.2)

Under GL(n, F) a basis set of V is mapped into another basis set by multiplication
with a [n×n] matrix g with entries in field F (F is either R or C),

e′ a = eb(g−1)b
a .

As the vector x is what it is, regardless of a particular choice of basis, under this
transformation its coordinates must transform as

x′a = ga
bxb .

appendSymm - 22sep2010 boyscout version14.4, Mar 19 2013
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standard
representation
space

representation!space
rep!standard
rep!dual
dual!rep
space!dual
dual!space
Kronecker delta
defining!vector space
space!defining vector
vector!space!defining

Standard rep. We shall refer to the set of [n×n] matrices g as a standard rep
of GL(n, F), and the space of all n-tuples (x1, x2, . . . , xn)T , xi ∈ F on which these
matrices act as the standard representation space V .

Under a general linear transformation g ∈ GL(n, F), the row of basis vectors
transforms by right multiplication as e′ = e g−1, and the column of xa’s trans-
forms by left multiplication as x′ = gx. Under left multiplication the column
(row transposed) of basis vectors eT transforms as e′T = g†eT , where the dual
rep g† = (g−1)T is the transpose of the inverse of g. This observation motivates
introduction of a dual representation space V̄, the space on which GL(n, F) acts
via the dual rep g†.

Dual space. If V is a vector representation space, then the dual space V̄ is the
set of all linear forms on V over the field F. 3

If {e(1), · · · , e(d)} is a (right) basis of V , then V̄ is spanned by the dual basis
(left basis) {e(1), · · · , e(d)}, the set of n linear forms e( j) such that

e(i) · e( j) = δ
j
i ,

where δb
a is the Kronecker symbol, δb

a = 1 if a = b, and zero otherwise. The
components of dual representation space vectors will here be distinguished by
upper indices

(y1, y2, . . . , yn) . (K.3)

They transform under GL(n, F) as

y′a = (g†)b
ayb . (K.4)

For GL(n, F) no complex conjugation is implied by the † notation; that interpre-
tation applies only to unitary subgroups of GL(n,C). g can be distinguished from
g† by meticulously keeping track of the relative ordering of the indices,

gb
a → ga

b , (g†)b
a → gb

a . (K.5)

Defining space, dual space. In what follows V will always denote the defining
n-dimensional complex vector representation space, that is to say the initial, “el-
ementary multiplet” space within which we commence our deliberations. Along
with the defining vector representation space V comes the dual n-dimensional vec-
tor representation space V̄ . We shall denote the corresponding element of V̄ by

3Predrag: is this a repeat of appendix E.1?
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dual!vector space
space!dual
vector!space!dual
defining!rep
rep!defining
dual!rep
rep!dual
conjugate, hermitian
hermitian!conjugation
matrix!hermitian
hermitian!matrix
vector!invariant
invariant!vector
matrix!invariant
invariant!matrix

raising the index, as in (K.3), so the components of defining space vectors, resp.
dual vectors, are distinguished by lower, resp. upper indices:

x = (x1, x2, . . . , xn) , x ∈ V

x̄ = (x1, x2, . . . , xn) , x̄ ∈ V̄ . (K.6)

Defining rep. Let G be a group of transformations acting linearly on V , with the
action of a group element g ∈ G on a vector x ∈ V given by an [n×n] matrix g

x′a = ga
bxb a, b = 1, 2, . . . , n . (K.7)

We shall refer to ga
b as the defining rep of the group G. The action of g ∈ G on a

vector q̄ ∈ V̄ is given by the dual rep [n×n] matrix g†:

x′a = xb(g†)b
a = ga

bxb . (K.8)

In the applications considered here, the group G will almost always be assumed
to be a subgroup of the unitary group, in which case g−1 = g†, and † indicates
hermitian conjugation:

(g†)a
b = (gb

a)∗ = gb
a . (K.9)

Hermitian conjugation is effected by complex conjugation and index transpo-
sition: Complex conjugation interchanges upper and lower indices; transposition
reverses their order. A matrix is hermitian if its elements satisfy

(M†)a
b = Ma

b . (K.10)

For a hermitian matrix there is no need to keep track of the relative ordering of
indices, as Mb

a = (M†)b
a = Ma

b.

Invariant vectors. The vector q ∈ V is an invariant vector if for any transfor-
mation g ∈ G

q = gq . (K.11)

If a bilinear form M(x̄, y) = xaMa
byb is invariant for all g ∈ G, the matrix

Ma
b = ga

cgb
d Mc

d (K.12)

is an invariant matrix. Multiplying with gb
e and using the unitary condition (K.9),

we find that the invariant matrices commute with all transformations g ∈ G:

[g,M] = 0 . (K.13)
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invariant
group!representation
representation!matrix
character!representation
representation!character

Invariants. We shall refer to an invariant relation between p vectors in V and
q vectors in V̄, which can be written as a homogeneous polynomial in terms of
vector components, such as

H(x, y, z̄, r̄, s̄) = hab
cdexbyaserdzc , (K.14)

as an invariant in Vq ⊗ V̄ p (repeated indices, as always, summed over). In this
example, the coefficients hab

cde are components of invariant tensor h ∈ V3 ⊗ V̄2.

Matrix representation of a group. Let us now map the abstract group G homeo-
morphically on a group of matrices D(G) acting on the vector space V , i.e., in such
a way that the group properties, especially the group multiplication, are preserved:

1. Any g ∈ G is mapped to a matrix D(g) ∈ D(G).

2. The group product g2 ◦ g1 ∈ G is mapped onto the matrix product D(g2 ◦
g1) = D(g2)D(g1).

3. The associativity is preserved: D(g3 ◦ (g2 ◦ g1)) = D(g3)
(
D(g2)D(g1)

)
=(

D(g3)
(
D(g2)

)
D(g1).

4. The identity element e ∈ G is mapped onto the unit matrix D(e) = 11 and
the inverse element g−1 ∈ G is mapped onto the inverse matrix D(g−1) =
[D(g)]−1 ≡ D−1(g).

We call this matrix group D(G) a linear or matrix representation of the group G
in the representation space V . We emphasize here ‘linear’ in order to distinguish
the matrix representations from other representations that do not have to be linear,
in general. Throughout this appendix we only consider linear representations.

If the dimensionality of V is d, we say the representation is an d-dimensional
representation. We will often abbreviate the notation by writing matrices D(g) ∈
D(G) as g, i.e., x′ = gx corresponds to the matrix operation x′i =

∑d
j=1 D(g)i j x j.

Character of a representation. The character of χα(g) of a d-dimensional rep-
resentation D(g) of the group element g ∈ G is defined as trace

χα(g) = tr D(g) =
d∑

i=1

Dii(g) .

Note that χ(e) = d, since Di j(e) = δi j for 1 ≤ i, j ≤ d.
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representation!faithful
representation!equivalent
representation!regular

Faithful representations, factor group. If the mapping G on D(G) is an iso-
morphism, the representation is said to be faithful. In this case the order of the
group of matrices D(G) is equal to the order |G| of the group. In general, how-
ever, there will be several elements h ∈ G that will be mapped on the unit matrix
D(h) = 11. This property can be used to define a subgroup H ⊂ G of the group
G consisting of all elements h ∈ G that are mapped to the unit matrix of a given
representation. Then the representation is a faithful representation of the factor
group G/H.

Equivalent representations, equivalence classes. A representation of a group
is by no means unique. If the basis in the d-dimensional vector space V is changed,
the matrices D(g) have to be replaced by their transformations D′(g), with the new
matrices D′(g) and the old matrices D(g) are related by an equivalence transfor-
mation through a non-singular matrix C

D′(g) = C D(g) C−1 .

The group of matrices D′(g) form a representation D′(G) equivalent to the rep-
resentation D(G) of the group G. The equivalent representations have the same
structure, although the matrices look different. Because of the cylic nature of the
trace the character of equivalent representations is the same4

χ(g) =
n∑

i=1

D′
ii(g) = tr D′(g) = tr

(
CD(g)C−1

)
.

Regular representation of a finite group. The regular representation of a group
is a special representation that is defined as follows: Combine the elements of a
finite group into a vector {g1, g2, . . . , g|G|}. Multiplication by any element gν per-
mutes {g1, g2, . . . , g|G|} entries. We can represent the element gν by the permu-
tation it induces on the components of vector {g1, g2, . . . , g|G|}. Thus for i, j =
1, . . . , |G|, we define the regular representation 5

Di j(gν) =

{
δ jli if gνgi = gli with li = 1, . . . , |G| ,
0 otherwise .

In the regular representation the diagonal elements of all matrices are zero except
for the identity element gν = e with gνgi = gi. So in the regular representation the
character is given by

χ(g) =

{
|G| for g = e ,
0 for g � e .

⇓PRIVATE
4Predrag: Use Tony’s definitions
5Predrag: stupid definition, confusing notation, rewrite
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representation!irreducible
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matrix!diagonalizing
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Irreducible representations.

⇑PRIVATE

K.2 Invariants and reducibility

What follows is a bit dry, so we start with a motivational quote from Hermann
Weyl on the “so-called first main theorem of invariant theory”: 6

“All invariants are expressible in terms of a finite number among them. We
cannot claim its validity for every group G; rather, it will be our chief task to
investigate for each particular group whether a finite integrity basis exists or not;
the answer, to be sure, will turn out affirmative in the most important cases.”

It is easy to show that any rep of a finite group can be brought to unitary
form, and the same is true of all compact Lie groups. Hence, in what follows, we
specialize to unitary and hermitian matrices.

K.2.1 Projection operators

For M a hermitian matrix, there exists a diagonalizing unitary matrix C such that

CMC† =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 . . . 0
. . .

0 . . . λ1

0 0

0

λ2 0 . . . 0
0 λ2
...

. . .
...

0 . . . λ2

0

0 0
λ3 . . .
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (K.15)

Here λi � λ j are the r distinct roots of the minimal characteristic (or secular)
polynomial

r∏
i=1

(M − λi1) = 0 . (K.16)

6Predrag: find NB21 ref 16, p. 30
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projection operator
orthogonality relation
completeness relation

In the matrix C(M − λ21)C† the eigenvalues corresponding to λ2 are replaced
by zeroes:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 − λ2
λ1 − λ2

0
. . .

0
λ3 − λ2

λ3 − λ2
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and so on, so the product over all factors (M − λ21)(M − λ31) . . . , with exception
of the (M − λ11) factor, has nonzero entries only in the subspace associated with
λ1:

C
∏
j�1

(M − λ j1)C† =
∏
j�1

(λ1 − λ j)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

0

0

0
0

0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus we can associate with each distinct root λi a projection operator Pi,

Pi =
∏
j�i

M − λ j1
λi − λ j

, (K.17)

which acts as identity on the ith subspace, and zero elsewhere. For example, the
projection operator onto the λ1 subspace is

P1 = C†

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C . (K.18)

The diagonalization matrix C is deployed in the above only as a pedagogical de-
vice. The whole point of the projector operator formalism is that we never need
to carry such explicit diagonalization; all we need are whatever invariant matrices
M we find convenient, the algebraic relations they satisfy, and orthonormality and
completeness of Pi: The matrices Pi are orthogonal

PiP j = δi jP j , (no sum on j) , (K.19)
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and satisfy the completeness relation

r∑
i=1

Pi = 1 . (K.20)

As tr (CPiC†) = tr Pi, the dimension of the ith subspace is given by

di = tr Pi . (K.21)

It follows from the characteristic equation (K.16) and the form of the projection
operator (K.17) that λi is the eigenvalue of M on Pi subspace:

MPi = λiPi , (no sum on i) . (K.22)

Hence, any matrix polynomial f (M) takes the scalar value f (λi) on the Pi sub-
space

f (M)Pi = f (λi)Pi . (K.23)

This, of course, is the reason why one wants to work with irreducible reps: they
reduce matrices and “operators” to pure numbers.

K.2.2 Irreducible representations

Suppose there exist several linearly independent invariant [d×d] hermitian matrices
M1,M2, . . ., and that we have used M1 to decompose the d-dimensional vector
space V = V1 ⊕ V2 ⊕ · · ·. Can M2,M3, . . . be used to further decompose Vi?
Further decomposition is possible if, and only if, the invariant matrices commute:

[M1,M2] = 0 , (K.24)

or, equivalently, if projection operators Pj constructed from M2 commute with
projection operators Pi constructed from M1,

PiP j = P jPi . (K.25)

Usually the simplest choices of independent invariant matrices do not com-
mute. In that case, the projection operators Pi constructed from M1 can be used
to project commuting pieces of M2:

M(i)
2 = PiM2Pi , (no sum on i) .
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That M(i)
2 commutes with M1 follows from the orthogonality of Pi:

[M(i)
2 ,M1] =

∑
j

λ j[M
(i)
2 ,P j] = 0 . (K.26)

Now the characteristic equation for M(i)
2 (if nontrivial) can be used to decompose

Vi subspace.

An invariant matrix M induces a decomposition only if its diagonalized form
(K.15) has more than one distinct eigenvalue; otherwise it is proportional to the
unit matrix and commutes trivially with all group elements. A rep is said to be
irreducible if all invariant matrices that can be constructed are proportional to the
unit matrix.

According to (K.13), an invariant matrix M commutes with group transforma-
tions [G,M] = 0. Projection operators (K.17) constructed from M are polynomi-
als in M, so they also commute with all g ∈ G:

[G,Pi] = 0 (K.27)

Hence, a [d×d] matrix rep can be written as a direct sum of [di×di] matrix reps:

G = 1G1 =
∑
i, j

PiGP j =
∑

i

PiGPi =
∑

i

Gi . (K.28)

In the diagonalized rep (K.18), the matrix g has a block diagonal form:

CgC† =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
g1 0 0
0 g2 0

0 0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , g =
∑

i

CigiCi . (K.29)

The rep gi acts only on the di-dimensional subspace Vi consisting of vectors Piq,
q ∈ V . In this way an invariant [d×d] hermitian matrix M with r distinct eigenval-
ues induces a decomposition of a d-dimensional vector space V into a direct sum
of di-dimensional vector subspaces Vi:

V
M→ V1 ⊕ V2 ⊕ . . . ⊕ Vr . (K.30)
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lattice!derivative
derivative, lattice
stepping operator
operator!stepping
shift operator
operator!shift

K.3 Lattice derivatives

In order to set up continuum field-theoretic equations which describe the evolution
of spatial variations of fields, we need to define lattice derivatives.

Consider a smooth function φ(x) evaluated on an infinite d-dimensional lattice

φ� = φ(x) , x = a� = lattice point , � ∈ Zd , (K.31)

where a is the lattice spacing. Each set of values of φ(x) (a vector φ�) is a
possible lattice configuration. Assume the lattice is hyper-cubic, and let n̂μ ∈
{n̂1, n̂2, · · · , n̂d} be the unit lattice cell vectors pointing along the d positive direc-
tions. The lattice derivative is then

(∂μφ)� =
φ(x + an̂μ) − φ(x)

a
=
φ�+n̂μ − φ�

a
. (K.32)

Anything else with the correct a → 0 limit would do, but this is the simplest
choice. We can rewrite the lattice derivative as a linear operator, by introducing
the stepping operator in the direction μ

(
σμ

)
� j
= δ�+n̂μ, j . (K.33)

As σ will play a central role in what follows, it pays to understand what it does.

In computer dicretizations, the lattice will be a finite d-dimensional hyper-
cubic lattice

φ� = φ(x) , x = a� = lattice point , � ∈ (Z/N)d , (K.34)

where a is the lattice spacing and there are Nd points in all. For a hyper-cubic
lattice the translations in different directions commute, σμσν = σνσμ, so it is
sufficient to understand the action of (K.33) on a 1-dimensional lattice.

Let us write down σ for the 1-dimensional case in its full [N×N] matrix glory.
Writing the finite lattice stepping operator (K.33) as an ‘upper shift’ matrix,

σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

0 1
. . .

0 1
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (K.35)
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cyclic permutation
matrix

operator!just a matrix
lattice!Laplacian
Laplacian!lattice

is no good, as σ so defined is nilpotent, and after N steps nothing is left, σN = 0.
A sensible way to approximate an infinite lattice by a finite one is to replace it by a
lattice periodic in each n̂μ direction. On a periodic lattice every point is equally far
from the “boundary” N/2 steps away, the “surface” effects are equally negligible
for all points, and the stepping operator acts as a cyclic permutation matrix

σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

0 1
. . .

0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (K.36)

with ‘1’ in the lower left corner assuring periodicity. We will (perhaps) briefly ⇓PRIVATE
discuss other boundary conditions in sect.K.5.3.

⇑PRIVATE

Applied to the lattice configuration φ = (φ1, φ2, · · · , φN), the stepping operator
translates the configuration by one site, σφ = (φ2, φ3, · · · , φN , φ1). Its transpose
translates the configuration the other way, so the transpose is also the inverse,
σ−1 = σT . The partial lattice derivative (K.32) can now be written as a multipli-
cation by a matrix:

∂μφ� =
1
a

(
σμ − 1

)
� j
φ j .

In the 1-dimensional case the [N×N] matrix representation of the lattice deriva-
tive is:

∂ =
1
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
−1 1

−1 1
. . .

1
1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (K.37)

To belabor the obvious: On a finite lattice of N points a derivative is simply a
finite [N×N] matrix. Continuum field theory is a world in which the lattice is so
fine that it looks smooth to us. Whenever someone calls something an “operator,”
think “matrix.” For finite-dimensional spaces a linear operator is a matrix; things
get subtler for infinite-dimensional spaces.

K.3.1 Lattice Laplacian

appendSymm - 22sep2010 boyscout version14.4, Mar 19 2013



APPENDIX K. DISCRETE SYMMETRIES OF DYNAMICS 1159

integration!by parts,
lattice

lattice!integration by
parts

lattice!Laplacian
Laplacian!lattice
lattice!Laplacian,

inverse
Laplacian!inverse,

lattice

In the continuum, integration by parts moves ∂ around, φT · ∂2φ→ −∂φT · ∂φ; on
a lattice this amounts to a matrix transposition

[(
σμ − 1

)
φ
]T
·
[(
σμ − 1

)
φ
]
= φT ·

(
σ−1
μ − 1

) (
σμ − 1

)
· φ .

If you are wondering where the “integration by parts” minus sign is, it is there in
discrete case at well. It comes from the identity

∂T =
1
a

(
σ−1 − 1

)
= −σ−1 1

a
(σ − 1) = −σ−1∂ .

The symmetric (self-adjoint) combination Δ = −∂T∂ 7

Δ = − 1

a2

d∑
μ=1

(
σ−1
μ − 1

) (
σμ − 1

)
= − 2

a2

d∑
μ=1

(
1 − 1

2
(σ−1

μ + σμ)

)
(K.38)

is the lattice Laplacian. We shall show below that this Laplacian has the correct
continuum limit. In the 1-dimensional case the [N×N] matrix representation of
the lattice Laplacian is:

Δ =
1
a2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 1
1 −2 1

1 −2 1

1
. . .

1
1 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (K.39)

The lattice Laplacian measures the second variation of a field φ� across three
neighboring sites: it is spatially non-local. You can easily check that it does what
the second derivative is supposed to do by applying it to a parabola restricted to the
lattice, φ� = φ(a�), where φ(a�) is defined by the value of the continuum function
φ(x) = x2 at the lattice point x� = a�.

K.3.2 Inverting the Laplacian

Evaluation of perturbative corrections in (32.58) requires that we come to grips
with the “free” or “bare” propagator M. While the the Laplacian is a simple
difference operator (K.39), the propagator is a messier object. A way to compute
is to start expanding the propagator M as a power series in the Laplacian

M =
1

m2 − Δ
=

1
m2

∞∑
k=0

1

m2k
Δk . (K.40)

7Predrag: recheck the signs!
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As Δ is a finite matrix, the expansion is convergent for sufficiently large m2. To
get a feeling for what is involved in evaluating such series, evaluate Δ2 in the
1-dimensional case:

Δ2 =
1

a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

1 −4
. . . 1

1 6 −4
−4 1 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (K.41)

What Δ3, Δ4, · · · contributions look like is now clear; as we include higher and
higher powers of the Laplacian, the propagator matrix fills up; while the inverse
propagator is differential operator connecting only the nearest neighbors, the prop-
agator is integral, non-local operator, connecting every lattice site to any other lat-
tice site. In statistical mechanics, M is the (bare) 2-point correlation. In quantum
field theory, it is called a propagator, for reasons explained in sect. ??. ⇓PRIVATE

⇑PRIVATEThese matrices can be evaluated as is, on the lattice, and sometime it is eval-
uated this way, but in case at hand a wonderful simplification follows from the
observation that the lattice action is translationally invariant. We will show how
this works in sect. K.4.

K.4 Periodic lattices

Our task now is to transform M into a form suitable to explicit evaluation.

Consider the effect of a lattice translation φ→ σφ on the matrix polynomial

S [σφ] = −1
2
φT

(
σT M−1σ

)
φ .

As M−1 is constructed from σ and its inverse, M−1 and σ commute, and the
function S [σφ] is invariant under translations,

S [σφ] = S [φ] = −1
2
φT · M−1 · φ . (K.42)

If a function (in this case, the function S [φ]) defined on a vector space (in this case,
the configuration φ) commutes with a linear operator σ, then the eigenvalues of σ
can be used to decompose the φ vector space into invariant subspaces. For a hyper-
cubic lattice the translations in different directions commute, σμσν = σνσμ, so it
is sufficient to understand the spectrum of the 1-dimensional stepping operator
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projection operator(K.36). To develop a feeling for how this reduction to invariant subspaces works
in practice, let us continue humbly, by expanding the scope of our deliberations to
a lattice consisting of 2 points.

K.4.1 A 2-point lattice diagonalized

The action of the stepping operator σ (K.36) on a 2-point lattice φ = (φ1, φ2) is to
permute the two lattice sites

σ =
( 0 1

1 0

)
.

As exchange repeated twice brings us back to the original configuration, σ2 = 1,
the characteristic polynomial of σ is

(σ + 1)(σ − 1) = 0 ,

with eigenvalues λ0 = 1, λ1 = −1. Construct now the symmetrization, antisym-
metrization projection operators

P0 =
σ − λ11
λ0 − λ1

=
1
2

(1 + σ) =
1
2

( 1 1
1 1

)
(K.43)

P1 =
σ − 1
−1 − 1

=
1
2

(1 − σ) =
1
2

( 1 −1
−1 1

)
. (K.44)

Noting that P0 + P1 = 1, we can project the lattice configuration φ onto the two
eigenvectors of σ:

φ = 1φ = P0 · φ + P1 · φ ,(
φ1

φ2

)
=

(φ1 + φ2)
√

2

1
√

2

( 1
1

)
+

(φ1 − φ2)
√

2

1
√

2

( 1
−1

)
(K.45)

= φ̃0n̂0 + φ̃1n̂1 . (K.46)

As P0P1 = 0, the symmetric and the antisymmetric configurations transform sep-
arately under any linear transformation constructed from σ and its powers.

In this way the characteristic equation σ2 = 1 enables us to reduce the 2-
dimensional lattice configuration to two 1-dimensional ones, on which the value
of the stepping operator σ is a number, λ ∈ {1,−1}, and the eigenvectors are
n̂0 =

1√
2
(1, 1), n̂1 =

1√
2
(1,−1). We have inserted

√
2 factors for convenience,

in order that the eigenvectors be normalized unit vectors. As we shall now see,

appendSymm - 22sep2010 boyscout version14.4, Mar 19 2013



APPENDIX K. DISCRETE SYMMETRIES OF DYNAMICS 1162

lattice!Fourier
transform

discrete!Fourier
transform

Fourier transform,
discrete

projection operator
projection

operator!complete,
orthonormal

(φ̃0, φ̃1) is the 2-site periodic lattice discrete Fourier transform of the field (φ1, φ2).
8

K.5 Discrete Fourier transforms

Let us generalize this reduction to a 1-dimensional periodic lattice with N sites.

Each application of σ translates the lattice one step; in N steps the lattice is
back in the original configuration

σN = 1

.
.

.

.
..

.
k

N−1

N−2

0

45
3

2

1h

,

so the eigenvalues of σ are the N distinct N-th roots of unity

σN − 1 =
N−1∏
k=0

(σ − ωk1) = 0 , ω = ei 2π
N . (K.47)

As the eigenvalues are all distinct and N in number, the space is decomposed into
N 1-dimensional subspaces. The general theory (expounded in appendix K.2)
associates with the k-th eigenvalue of σ a projection operator that projects a con-
figuration φ onto k-th eigenvector of σ,

Pk =
∏
j�k

σ − λ j1
λk − λ j

. (K.48)

A factor (σ − λ j1) kills the j-th eigenvector ϕj component of an arbitrary vector
in expansion φ = · · · + φ̃ jϕ j + · · ·. The above product kills everything but the
eigen-direction ϕk, and the factor

∏
j�k(λk − λ j) ensures that Pk is normalized as

a projection operator. The set of the projection operators is complete,

∑
k

Pk = 1 , (K.49)

and orthonormal

PkP j = δk jPk (no sum on k) . (K.50)

8Predrag: experiment with other notations for n̂1
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Constructing explicit eigenvectors is usually not a the best way to fritter one’s
youth away, as choice of basis is largely arbitrary, and all of the content of the
theory is in projection operators. However, in case at hand the eigenvectors are
so simple that we can forget the general theory, and construct the solutions of the
eigenvalue condition

σϕk = ωkϕk (K.51)

by hand:

1
√

N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
0 1

0 1
. . .

0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ωk

ω2k

ω3k

...

ω(N−1)k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= ωk 1

√
N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ωk

ω2k

ω3k

...

ω(N−1)k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The 1/

√
N factor is chosen in order that ϕk be normalized complex unit vectors

ϕ†k · ϕk =
1
N

N−1∑
k=0

1 = 1 , (no sum on k)

ϕ†k =
1
√

N

(
1, ω−k, ω−2k, · · · , ω−(N−1)k

)
. (K.52)

The eigenvectors are orthonormal

ϕ†k · ϕ j = δk j , (K.53)

as the explicit evaluation of ϕ†k · ϕ j yields the Kronecker delta function for a peri-
odic lattice

δk j =
1
N

N−1∑
�=0

ei 2π
N (k− j)�

.
.

.

.
..

.

N−2

N−1

0

1

2

3
5 4

k

. (K.54)

The sum is over the N unit vectors pointing at a uniform distribution of points on
the complex unit circle; they cancel each other unless k = j (mod N), in which
case each term in the sum equals 1.

The projection operators can be expressed in terms of the eigenvectors (K.51),
(K.52) as

(Pk)��′ = (ϕk)�(ϕ
†
k)�′ =

1
N

ei 2π
N (�−�′)k , (no sum on k) . (K.55)
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The completeness (K.49) follows from (K.54), and the orthonormality (K.50)
from (K.53).

φ̃k, the projection of the φ configuration on the k-th subspace is given by

(Pk · φ)� = φ̃k (ϕk)� , (no sum on k)

φ̃k = ϕ†k · φ =
1
√

N

N−1∑
�=0

e−i 2π
N k�φ� (K.56)

We recognize φ̃k as the discrete Fourier transform of φ�. Hopefully rediscovering
it this way helps you a little toward understanding why Fourier transforms are full
of eix·p factors (they are eigenvalues of the generator of translations) and when
are they the natural set of basis functions (only if the theory is translationally
invariant).

K.5.1 Fourier transform of the propagator

Now insert the identity
∑

Pk = 1 wherever profitable:

M = 1M1 =
∑
kk′

PkMPk′ =
∑
kk′

ϕk(ϕ†k ·M · ϕk′)ϕ
†
k′ .

The matrix

M̃kk′ = (ϕ†k · M · ϕk′) (K.57)

is the Fourier space representation of M. According to (K.53) the matrix Uk� =

(ϕk)� = 1√
N

ei 2π
N k� is a unitary matrix, so the Fourier transform is a linear, unitary

transformation, UU† =
∑

Pk = 1, with Jacobian det U = 1. The form of the
invariant function (K.42) does not change under φ→ φ̃k transformation, and from
the formal point of view, it does not matter whether we compute in the Fourier
space or in the configuration space that we started out with. For example, the
trace of M is the trace in either representation

tr M =
∑
�

M�� =
∑
kk′

∑
�

(PkMPk′)��

=
∑
kk′

∑
�

(ϕk)�(ϕ
†
k · M · ϕk′)(ϕ

†
k′ )� =

∑
kk′

δkk′ M̃kk′ = tr M̃ .

From this it follows that tr Mn = tr M̃n, and from the tr ln = ln tr relation that
det M = det M̃. In fact, any scalar combination of φ’s, J’s and couplings, such as
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lattice!Laplacian,
diagonalized

Laplacian!diagonalized,
lattice

the partition function Z[J], has exactly the same form in the configuration and the
Fourier space.

OK, a dizzying quantity of indices. But what’s the payback?

K.5.2 Lattice Laplacian diagonalized

Now use the eigenvalue equation (K.51) to convert σ matrices into scalars. If M
commutes with σ, then (ϕ†k ·M ·ϕk′ ) = M̃kδkk′ , and the matrix M acts as a multipli-
cation by the scalar M̃k on the kth subspace. For example, for the 1-dimensional
version of the lattice Laplacian (K.38) the projection on the k-th subspace is

(ϕ†k · Δ · ϕk′) =
2

a2

(
1
2

(ω−k + ωk) − 1

)
(ϕ†k · ϕk′)

=
2

a2

(
cos

(
2π
N

k

)
− 1

)
δkk′ (K.58)

In the k-th subspace the bare propagator is simply a number, and, in contrast to
the mess generated by (K.40), there is nothing to inverting M−1:

(ϕ†k · M · ϕk′) = (G̃0)kδkk′ =
1
β

δkk′

m′2
0 − 2c

a2

∑d
μ=1

(
cos

(
2π
N kμ

)
− 1

) , (K.59)

where k = (k1, k2, · · · , kμ) is a d-dimensional vector in the Nd-dimensional dual
lattice.

Going back to the partition function (32.58) and sticking in the factors of 1
into the bilinear part of the interaction, we replace the spatial J� by its Fourier
transform J̃k, and the spatial propagator (M)��′ by the diagonalized Fourier trans-
formed (G̃0)k

JT · M · J =
∑
k,k′

(JT · ϕk)(ϕ†k · M · ϕk′)(ϕ
†
k′ · J) =

∑
k

J̃†k (G̃0)k J̃k . (K.60)

⇓PRIVATE

K.5.3 Boundary conditions

(B.J. Bjorken)

9

⇑PRIVATE

⇓PRIVATE

9Predrag: to be filled in
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group!integration
integration!group

K.6 Symmetries and evolution operators

The evolution operator L(x, y) satisfies the following identity

L(x, y) =

∣∣∣∣∣∣det

(
∂Tx
∂x

)∣∣∣∣∣∣L(Tx,Ty) = |det T| L(Tx,Ty).

Note the appearance of det T instead of det T−1 and therefore the contravariant
transformation property of L(x, y) in correspondence to maps f (x). If the co-
ordinate transformation T belongs to the linear non-singular representation of a
discrete (i.e., finite) symmetry group G, then |det T| = 1, since for any element g
of a finite group G, where exists a number m such that

gn ≡ g ◦ g ◦ . . . ◦ g︸����������︷︷����������︸
m times

= e.

Thus T corresponds to the mth root of 1 and the modulus of its determinant is
unity.

Invariant group = symmetry group.

Group integration. Note the following laws

1
|G|

∑
g∈G

= 1

and therefore10

1
|G|

∑
g∈G

D(gi) = D(gi0 ), i0 fixed .

However,

1
|G|

∑
g∈G

D(g) = 0,

10Predrag: ??
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character!orthonormalititywhere 0 is the zero matrix of same dimension as the representations D(g) ∈ D(G).
In particular,

1
|G|

∑
g∈G

χα(g) =
1
|G|

∑
g∈G

dα∑
i=1

D(g)ii = 0.

Furthermore, if we consider all inequivalent irreducible representations of a group
G, then the quantities D(α)

i j (g) for fixed α, i and j 11

Orthonormalitity of characters. But what can we say about

1
|G|

∑
g∈G

χα(hg)χα(g−1k−1) with h, k ∈ G fixed ?

Note the following relation

δabδcd =
1
n
δadδcb +

(
δabδcd −

1
n
δadδcb

)
.

Projection operators. The projection operator onto the α irreducible subspace
of dimension dα is given by

Pα =
dα
|G|

∑
g∈G

χα(g)g−1.

Note that Pα is a [d × d]-dimensional matrix as the representation g.

Orthonormality of the set {Pα}.

Completeness of the set {Pα}.

Irreducible subspaces of the evolution operator.

L =
∑
α

trLα

with

Lα(y, x) =
dα
|G|

∑
g∈G

χα(g)L(g−1y, x),

11Predrag: continue
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Figure K.1: Symmetries of four disks on a square. A
fundamental domain indicated by the shaded wedge.

3

4 1

2
C4

C4

3

C4

3

y

x

= C2

13

24

where the prefactor dα reflects the fact that a dα-dimensional representation occurs
dα times. ⇑PRIVATE

K.7 C4v factorization

If an N-disk arrangement has CN symmetry, and the disk visitation sequence is
given by disk labels {ε1ε2ε3 . . .}, only the relative increments ρi = εi+1 − εi mod N
matter. Symmetries under reflections across axes increase the group to CNv and
add relations between symbols: {εi} and {N − εi} differ only by a reflection. As
a consequence of this reflection increments become decrements until the next re-
flection and vice versa. Consider four equal disks placed on the vertices of a
square (figure K.1). The symmetry group consists of the identity e, the two re-
flections σx, σy across x, y axes, the two diagonal reflections σ13, σ24, and the
three rotations C4, C2 and C3

4 by angles π/2, π and 3π/2. We start by exploiting
the C4 subgroup symmetry in order to replace the absolute labels εi ∈ {1, 2, 3, 4}
by relative increments ρi ∈ {1, 2, 3}. By reflection across diagonals, an incre-
ment by 3 is equivalent to an increment by 1 and a reflection; this new sym-
bol will be called 1. Our convention will be to first perform the increment and
then to change the orientation due to the reflection. As an example, consider
the fundamental domain cycle 112. Taking the disk 1 → disk 2 segment as the
starting segment, this symbol string is mapped into the disk visitation sequence
1+12+13+21 . . . = 123, where the subscript indicates the increments (or decre-
ments) between neighboring symbols; the period of the cycle 112 is thus 3 in
both the fundamental domain and the full space. Similarly, the cycle 112 will be
mapped into 1+12−11−23−12+13+21 = 121323 (note that the fundamental domain
symbol 1 corresponds to a flip in orientation after the second and fifth symbols);
this time the period in the full space is twice that of the fundamental domain. In
particular, the fundamental domain fixed points correspond to the following 4-disk
cycles:

4-disk reduced
12 ↔ 1
1234 ↔ 1
13 ↔ 2
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Figure K.2: Reduced, fundamental domain sym-
bolic dynamics for four disks on a square.

0

3 2

14

3 2

14

1 2

3 2

14

Table K.1: C4v correspondence between the ternary fundamental domain prime cycles p̃
and the full 4-disk {1,2,3,4} labeled cycles p, together with the C 4v transformation that
maps the end point of the p̃ cycle into an irreducible segment of the p cycle. For ty-
pographical convenience, the symbol 1 of sect. K.7 has been replaced by 0, so that the
ternary alphabet is {0, 1, 2}. The degeneracy of the p cycle is m p = 8np̃/np. Orbit 2 is the
sole boundary orbit, invariant both under a rotation by π and a reflection across a diagonal.
The two pairs of cycles marked by (a) and (b) are related by time reversal, but cannot be
mapped into each other by C4v transformations.

p̃ p h p̃

0 1 2 σx
1 1 2 3 4 C4
2 1 3 C2, σ13
01 12 14 σ24
02 12 43 σy

12 12 41 34 23 C3
4

001 121 232 343 414 C 4
002 121 343 C2
011 121 434 σy
012 121 323 σ13
021 124 324 σ13
022 124 213 σx
112 123 e
122 124 231 342 413 C 4

p̃ p h p̃

0001 1212 1414 σ24
0002 1212 4343 σy
0011 1212 3434 C2

0012 1212 4141 3434 2323 C 3
4

0021 (a) 1213 4142 3431 2324 C 3
4

0022 1213 e
0102 (a) 1214 2321 3432 4143 C 4
0111 1214 3234 σ13
0112 (b) 1214 2123 σ x
0121 (b) 1213 2124 σ x
0122 1213 1413 σ24
0211 1243 2134 σ x
0212 1243 1423 σ24
0221 1242 1424 σ24
0222 1242 4313 σy
1112 1234 2341 3412 4123 C 4
1122 1231 3413 C2

1222 1242 4131 3424 2313 C 3
4

Conversions for all periodic orbits of reduced symbol period less than 5 are listed
in table K.1. ⇓PRIVATE

12
section 38.1.1

⇑PRIVATE
This symbolic dynamics is closely related to the group-theoretic structure

of the dynamics: the global 4-disk trajectory can be generated by mapping the
fundamental domain trajectories onto the full 4-disk space by the accumulated
product of the C4v group elements g1 = C, g2 = C2, g1 = σdiagC = σaxis,

where C is a rotation by π/2. In the 112 example worked out above, this yields
g112 = g2g1g1 = C2Cσaxis = σdiag, listed in the last column of table K.1. Our
convention is to multiply group elements in the reverse order with respect to the
symbol sequence. We need these group elements for our next step, the dynamical
zeta function factorizations.

12Predrag: 2009-01-18 redrew FigSrc/sune/xfig/ . dynamics.fig is now renamed c4vRelative.fig,
see figure K.2. Try to find fig2.eps?
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Figure K.3: Symmetries of four disks on a rectangle.
A fundamental domain indicated by the shaded wedge.

The C4v group has four 1-dimensional representations, either symmetric (A1)
or antisymmetric (A2) under both types of reflections, or symmetric under one and
antisymmetric under the other (B1, B2), and a degenerate pair of 2-dimensional
representations E. Substituting the C4v characters

C4v A1 A2 B1 B2 E
e 1 1 1 1 2

C2 1 1 1 1 -2
C4,C3

4 1 1 -1 -1 0
σaxes 1 -1 1 -1 0
σdiag 1 -1 -1 1 0

into (21.16) we obtain:

hp̃ A1 A2 B1 B2 E
e: (1 − tp̃)8 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)4

C2: (1 − t2p̃)4 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 + tp̃)4

C4,C3
4: (1 − t4p̃)2 = (1 − tp̃) (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 + t2p̃)2

σaxes: (1 − t2p̃)4 = (1 − tp̃) (1 + tp̃) (1 − tp̃) (1 + tp̃) (1 − t2p̃)2

σdiag: (1 − t2p̃)4 = (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 − tp̃) (1 − t2p̃)2

The possible irreducible segment group elements hp̃ are listed in the first col-
umn; σaxes denotes a reflection across either the x-axis or the y-axis, and σdiag

denotes a reflection across a diagonal (see figure K.1). In addition, degener-
ate pairs of boundary orbits can run along the symmetry lines in the full space,
with the fundamental domain group theory weights hp = (C2 + σx)/2 (axes) and
hp = (C2 + σ13)/2 (diagonals) respectively:

A1 A2 B1 B2 E

axes: (1 − t2p̃)2 = (1 − tp̃)(1 − 0tp̃)(1 − tp̃)(1 − 0tp̃)(1 + tp̃)2

diagonals: (1 − t2p̃)2 = (1 − tp̃)(1 − 0tp̃)(1 − 0tp̃)(1 − tp̃)(1 + tp̃)2(K.61)

(we have assumed that tp̃ does not change sign under reflections across symmetry
axes). For the 4-disk arrangement considered here only the diagonal orbits 13, 24
occur; they correspond to the 2 fixed point in the fundamental domain.
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The A1 subspace in C4v cycle expansion is given by

1/ζA1 = (1 − t0)(1 − t1)(1 − t2)(1 − t01)(1 − t02)(1 − t12)

(1 − t001)(1 − t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 − t112)

(1 − t122)(1 − t0001)(1 − t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 − t1 − t2 − (t01 − t0t1) − (t02 − t0t2) − (t12 − t1t2)

−(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) − (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (K.62)

(for typographical convenience, 1 is replaced by 0 in the remainder of this sec-
tion). For 1-dimensional representations, the characters can be read off the symbol
strings: χA2(hp̃) = (−1)n0 , χB1(hp̃) = (−1)n1 , χB2(hp̃) = (−1)n0+n1 , where n0 and
n1 are the number of times symbols 0, 1 appear in the p̃ symbol string. For B2 all
tp with an odd total number of 0’s and 1’s change sign:

1/ζB2 = (1 + t0)(1 + t1)(1 − t2)(1 − t01)(1 + t02)(1 + t12)

(1 + t001)(1 − t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 − t112)

(1 + t122)(1 − t0001)(1 + t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 + t1 − t2 − (t01 − t0t1) + (t02 − t0t2) + (t12 − t1t2)

+(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) − (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (K.63)

The form of the remaining cycle expansions depends crucially on the special role
played by the boundary orbits: by (K.61) the orbit t2 does not contribute to A2 and
B1,

1/ζA2 = (1 + t0)(1 − t1)(1 + t01)(1 + t02)(1 − t12)

(1 − t001)(1 − t002)(1 + t011)(1 + t012)(1 + t021)(1 + t022)(1 − t112)

(1 − t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 + t0 − t1 + (t01 − t0t1) + t02 − t12

−(t001 − t0t01) − (t002 − t0t02) + (t011 − t1t01)

+t022 − t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . .(K.64)

and

1/ζB1 = (1 − t0)(1 + t1)(1 + t01)(1 − t02)(1 + t12)

(1 + t001)(1 − t002)(1 − t011)(1 + t012)(1 + t021)(1 − t022)(1 − t112)

(1 + t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 − t0 + t1 + (t01 − t0t1) − t02 + t12

+(t001 − t0t01) − (t002 − t0t02) − (t011 − t1t01)

−t022 + t122 − (t112 − t1t12) + (t012 + t021 − t0t12 − t1t02) . . .(K.65)
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In the above we have assumed that t2 does not change sign under C4v reflections.
For the mixed-symmetry subspace E the curvature expansion is given by

1/ζE = 1 + t2 + (−t0
2 + t1

2) + (2t002 − t2t0
2 − 2t112 + t2t1

2)

+(2t0011 − 2t0022 + 2t2t002 − t01
2 − t02

2 + 2t1122 − 2t2t112

+t12
2 − t0

2t1
2) + (2t00002 − 2t00112 + 2t2t0011 − 2t00121 − 2t00211

+2t00222 − 2t2t0022 + 2t01012 + 2t01021 − 2t01102 − t2t01
2 + 2t02022

−t2t02
2 + 2t11112 − 2t11222 + 2t2t1122 − 2t12122 + t2t12

2 − t2t0
2t1

2

+2t002(−t0
2 + t1

2) − 2t112(−t0
2 + t1

2)) (K.66)

A quick test of the ζ = ζA1ζA2ζB1ζB2ζ
2
E factorization is afforded by the topo-

logical polynomial; substituting tp = znp into the expansion yields

1/ζA1 = 1 − 3z , 1/ζA2 = 1/ζB1 = 1 , 1/ζB2 = 1/ζE = 1 + z ,

in agreement with (15.49).
exercise 20.9

K.8 C2v factorization

An arrangement of four identical disks on the vertices of a rectangle has C2v sym-
metry (figure K.3b). C2v consists of {e, σx, σy,C2}, i.e., the reflections across the
symmetry axes and a rotation by π.

This system affords a rather easy visualization of the conversion of a 4-disk
dynamics into a fundamental domain symbolic dynamics. An orbit leaving the
fundamental domain through one of the axis may be folded back by a reflection
on that axis; with these symmetry operations g0 = σx and g1 = σy we asso-
ciate labels 1 and 0, respectively. Orbits going to the diagonally opposed disk
cross the boundaries of the fundamental domain twice; the product of these two
reflections is just C2 = σxσy, to which we assign the label 2. For example, a
ternary string 0 0 1 0 2 0 1 . . . is converted into 12143123. . ., and the associated
group-theory weight is given by . . . g1g0g2g0g1g0g0.

Short ternary cycles and the corresponding 4-disk cycles are listed in tableK.2.
Note that already at length three there is a pair of cycles (012 = 143 and 021 = 142)
related by time reversal, but not by any C2v symmetries.

The above is the complete description of the symbolic dynamics for 4 suf-
ficiently separated equal disks placed at corners of a rectangle. However, if the
fundamental domain requires further partitioning, the ternary description is in-
sufficient. For example, in the stadium billiard fundamental domain one has to
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stadium billiard
billiard!stadium

Table K.2: C2v correspondence between the ternary {0, 1, 2} fundamental domain prime
cycles p̃ and the full 4-disk {1,2,3,4} cycles p, together with the C 2v transformation that
maps the end point of the p̃ cycle into an irreducible segment of the p cycle. The de-
generacy of the p cycle is mp = 4np̃/np. Note that the 012 and 021 cycles are related
by time reversal, but cannot be mapped into each other by C 2v transformations. The full
space orbit listed here is generated from the symmetry reduced code by the rules given in
sect. K.8, starting from disk 1.

p̃ p g
0 1 4 σy
1 1 2 σx
2 1 3 C2
01 14 32 C2
02 14 23 σx
12 12 43 σy
001 141 232 σx
002 141 323 C2
011 143 412 σy
012 143 e
021 142 e
022 142 413 σy
112 121 343 C2
122 124 213 σx

p̃ p g
0001 1414 3232 C2
0002 1414 2323 σ x
0011 1412 e
0012 1412 4143 σy
0021 1413 4142 σy
0022 1413 e
0102 1432 4123 σy
0111 1434 3212 C2
0112 1434 2343 σ x
0121 1431 2342 σ x
0122 1431 3213 C2
0211 1421 2312 σ x
0212 1421 3243 C2
0221 1424 3242 C2
0222 1424 2313 σ x
1112 1212 4343 σy
1122 1213 e
1222 1242 4313 σy

distinguish between bounces off the straight and the curved sections of the bil-
liard wall; in that case five symbols suffice for constructing the covering symbolic
dynamics. 13

The group C2v has four 1-dimensional representations, distinguished by their
behavior under axis reflections. The A1 representation is symmetric with respect
to both reflections; the A2 representation is antisymmetric with respect to both.
The B1 and B2 representations are symmetric under one and antisymmetric under
the other reflection. The character table is

C2v A1 A2 B1 B2
e 1 1 1 1

C2 1 1 −1 −1
σx 1 −1 1 −1
σy 1 −1 −1 1

Substituted into the factorized determinant (21.15), the contributions of peri-
odic orbits split as follows

13Predrag: include paper with Kai?
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gp̃ A1 A2 B1 B2

e: (1 − tp̃)4 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)
C2: (1 − t2p̃)2 = (1 − tp̃) (1 − tp̃) (1 − tp̃) (1 − tp̃)
σx: (1 − t2p̃)2 = (1 − tp̃) (1 + tp̃) (1 − tp̃) (1 + tp̃)
σy: (1 − t2p̃)2 = (1 − tp̃) (1 + tp̃) (1 + tp̃) (1 − tp̃)

Cycle expansions follow by substituting cycles and their group theory factors from
table K.2. For A1 all characters are +1, and the corresponding cycle expansion is
given in (K.62). Similarly, the totally antisymmetric subspace factorization A2 is
given by (K.63), the B2 factorization of C4v. For B1 all tp with an odd total number
of 0’s and 2’s change sign:

1/ζB1 = (1 + t0)(1 − t1)(1 + t2)(1 + t01)(1 − t02)(1 + t12)

(1 − t001)(1 + t002)(1 + t011)(1 − t012)(1 − t021)(1 + t022)(1 + t112)

(1 − t122)(1 + t0001)(1 − t0002)(1 − t0011)(1 + t0012)(1 + t0021) . . .

= 1 + t0 − t1 + t2 + (t01 − t0t1) − (t02 − t0t2) + (t12 − t1t2)

−(t001 − t0t01) + (t002 − t0t02) + (t011 − t1t01)

+(t022 − t2t02) + (t112 − t1t12) − (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (K.67)

For B2 all tp with an odd total number of 1’s and 2’s change sign:

1/ζB2 = (1 − t0)(1 + t1)(1 + t2)(1 + t01)(1 + t02)(1 − t12)

(1 + t001)(1 + t002)(1 − t011)(1 − t012)(1 − t021)(1 − t022)(1 + t112)

(1 + t122)(1 + t0001)(1 + t0002)(1 − t0011)(1 − t0012)(1 − t0021) . . .

= 1 − t0 + t1 + t2 + (t01 − t0t1) + (t02 − t0t2) − (t12 − t1t2)

+(t001 − t0t01) + (t002 − t0t02) − (t011 − t1t01)

−(t022 − t2t02) + (t112 − t1t12) + (t122 − t2t12)

−(t012 + t021 + t0t1t2 − t0t12 − t1t02 − t2t01) . . . (K.68)

Note that all of the above cycle expansions group long orbits together with their
pseudo-orbit shadows, so that the shadowing arguments for convergence still ap-
ply.

The topological polynomial factorizes as

1
ζA1

= 1 − 3z ,
1
ζA2

=
1
ζB1

=
1
ζB2

= 1 + z,

consistent with the 4-disk factorization (15.49). 14

14Predrag: add here Freddy p. 26; PER sect. 6.4.
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Henon@H“’enon
map!symmetries

symmetry!H“’enon
map

map!H“’enon
orientation!preserving

map
map!orientation

preserving
area preserving!map
map!area preserving
Hamiltonian!flow
flow!Hamiltonian
orientation!reversing

map
map!orientation

reversing

K.9 Hénon map symmetries

We note here a few simple symmetries of the Hénon map (3.17). For b � 0 the
Hénon map is reversible: the backward iteration of (3.18) is given by

xn−1 = −
1
b

(1 − ax2
n − xn+1) . (K.69)

Hence the time reversal amounts to b → 1/b, a → a/b2 symmetry in the param-
eter plane, together with x → −x/b in the coordinate plane, and there is no need
to explore the (a, b) parameter plane outside the strip b ∈ {−1, 1}. For b = −1 the
map is orientation and area preserving (see (O.1) below), 15

⇓PRIVATE

⇑PRIVATE
xn−1 = 1 − ax2

n − xn+1 , (K.70)

the backward and the forward iteration are the same, and the non–wandering set
is symmetric across the xn+1 = xn diagonal. 16 This is one of the simplest models
of a Poincaré return map for a Hamiltonian flow. For the orientation reversing
b = 1 case we have

xn−1 = 1 − ax2
n + xn+1 , (K.71)

and the non–wandering set is symmetric across the xn+1 = −xn diagonal. ⇓PRIVATE

K.10 Symmetries of the symbol square

Depending on the type of dynamical system, the symbol square might have a
variety of symmetries. Under the time reversal

· · · s−2s−1s0.s1s2s3 · · · → · · · s3s2s1.s0s−1s−2 · · ·

the points in the symbol square for an orientation preserving map are symmetric
across the diagonal γ = δ, and for the orientation reversing case they are sym-
metric with respect to the γ = 1 − δ diagonal. Consequently the periodic orbits
appear either in dual pairs p = s1s2s3 . . . sn, p = snsn−1sn−2 . . . s1, or are self-dual
under time reversal, S p = S p. For the orientation preserving case a self-dual cycle
of odd period has at least one point on the symmetry diagonal. In particular, all
fixed points lie on the symmetry diagonal. Determination of such symmetry lines
can be of considerable practical utility, as it reduces some of the periodic orbit
searches to 1-dimensional searches. 17

⇑PRIVATE
15Predrag: define orientation, area preserving
16Predrag: define the orientation reversing case
17Predrag: create appendix chapter/appendCont.tex, include add JH Jan 18, 2008 Desymmetriza-

tion of large spaces, thinking is extra price version from halcrow/blog/TEX/symm.tex; create Prob-
lems/exerAppCont.tex, Problems/soluAppCont.tex, include halcrow/blog/TEX/zeghlache.tex; cre-
ate chapter/refsAppCont.tex.
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Harter, W. G.
class algebra
Harter, W. G.
stadium billiard
billiard!stadium
group!not a
normal!mode
mode, normal

Commentary

Remark K.1 Literature This material is covered in any introduction to linear alge-
bra [1, 2, 3] or group theory [16, 2]. The exposition given in sects. K.2.1 and K.2.2 is
taken from refs. [23, 24, 5]. Who wrote this down first we do not know, but we like Har-
ter’s exposition [25, 26, 11] best. Harter’s theory of class algebrasoffers a more elegant
and systematic way of constructing the maximal set of commuting invariant matrices M i

than the sketch offered in this section.

Remark K.2 Labeling conventions While there is a variety of labeling conventions [ 19,
25] for the reduced C4v dynamics, we prefer the one introduced here because of its close
relation to the group-theoretic structure of the dynamics: the global 4-disk trajectory can
be generated by mapping the fundamental domain trajectories onto the full 4-disk space
by the accumulated product of the C 4v group elements.

Remark K.3 C2v symmetry C2v is the symmetry of several systems studied in the
literature, such as the stadium billiard [10], and the 2-dimensional anisotropic Kepler
potential [3].

boyscout

K.1. Am I a group? Show that multiplication table

e a b c d f
e e a b c d f
a a e d b f c
b b d e f c a
c c b f e a d
d d f c a e b
f f c a d b e

describes a group. Or does it? (Hint: check whether this
table satisfies the group axioms of appendix K.1.)

From W.G. Harter [11]

K.2. Three coupled pendulums with a C2 symmetry.
Consider 3 pendulums in a row: the 2 outer ones of the
same mass m and length l, the one midway of same length
but different mass M, with the tip coupled to the tips of
the outer ones with springs of stiffness k. Assume dis-
placements are small, xi/l � 1.
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Lorenz flow!polar
coordinates

(a) Show that the acceleration matrix ẍ = −a x is⎡⎢⎢⎢⎢⎢⎢⎣ ẍ1
ẍ2
ẍ3

⎤⎥⎥⎥⎥⎥⎥⎦ = −
⎡⎢⎢⎢⎢⎢⎢⎣ a + b −a 0

−c 2c + b −c
0 −a a + b

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣ x1

x2
x3

⎤⎥⎥⎥⎥⎥⎥⎦ ,
where a = k/ml, c = k/Ml and b = g/l.

(b) Check that [a,R] = 0, i.e., that the dynamics is in-
variant under C2 = {e,R}, where R interchanges the outer
pendulums,

R =

⎡⎢⎢⎢⎢⎢⎢⎣ 0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
(c) Construct the corresponding projection operators P +
and P−, and show that the 3-pendulum system decom-
poses into a 1-dimensional subspace, with eigenvalue (ω (−))2 =

a + b, and a 2-dimensional subspace, with acceleration
matrix (trust your own algebra, if it strays from what is
stated here)

a(+) =

[
a + b −

√
2a

−
√

2c c + b

]
.

The exercise is simple enough that you can do it without
using the symmetry, so: construct P+,P− first, use them to
reduce a to irreps, then proceed with computing remain-
ing eigenvalues of a.

(d) Does anything interesting happen if M = m?

The point of the above exercise is that almost always the
symmetry reduction is only partial: a matrix representa-
tion of dimension d gets reduced to a set of subspaces
whose dimensions d(α) satisfy

∑
d(α) = d. Beyond that,

love many, trust few, and paddle your own canoe.

From W.G. Harter [11]

K.3. Lorenz system in polar coordinates: dynamics.
(continuation of exercise 9.8)

1. Show that (9.29) has two equilibria:

(r0, z0) = (0, 0) , θ0 undefined

(r1, θ1, z1) = (
√

2b(ρ − 1), π/4, ρ− 1) .(K.72)

2. Verify numerically that the eigenvalues and eigen-
vectors of the two equilibria are (we list here the
precise numbers to help you check your programs):

EQ1 = (0, 12, 27) equilibrium: (and its C1/2-rotation
EQ2) has one stable real eigenvalue
λ(1) = −13.854578,
and the unstable complex conjugate pair
λ(2,3) = μ(2) ± iω(2) = 0.093956± i10.194505.
The unstable eigenplane is defined by eigenvectors
Re e(2) = (−0.4955,−0.2010,−0.8450)
Im e(2) = (0.5325,−0.8464, 0)
with period T = 2π/ω(2) = 0.6163306,
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radial expansion multiplier
Λr = exp(2πμ(2)/ω(2)) = 1.059617,
and the contracting multiplier
Λc = exp(2πμ(1)/ω(2)) ≈ 1.95686× 10−4

along the stable eigenvector of EQ1,
e(3) = (0.8557,−0.3298,−0.3988).

EQ0 = (0, 0, 0) equilibrium: The stable eigen-
vector e(1) = (0, 0, 1) of EQ0, has contraction rate
λ(2) = −b = −2.666 . . ..
The other stable eigenvector is
e(2) = (−0.244001,−0.969775, 0), with contracting
eigenvalue
λ(2) = −22.8277. 18 The unstable eigenvector
e(3) = (−0.653049, 0.757316, 0) has eigenvalue
λ(3) = 11.8277.

3. Plot the Lorenz strange attractor both in the Lorenz
coordinates figure 2.5, and in the doubled-polar an-
gle coordinates (9.24) for the Lorenz parameter val-
ues σ = 10, b = 8/3, ρ = 28. Topologically, does
it resemble the Lorenz butterfly, the Rössler attrac-
tor, or neither? The Poincaré section of the Lorenz
flow fixed by the z-axis and the equilibrium in the
doubled polar angle representation, and the corre-
sponding Poincaré return map (sn, sn+1) are plotted
in figure 11.8.

4. Construct the Poincaré return map (sn, sn+1),

−40 −20 0 20

−40

−20

0

20

S
n

S
n+

1

 

 

where s is arc-length measured along the unstable
manifold of EQ0, lower Poincaré section of fig-
ure 11.8 (b). Elucidate its relation to the Poincaré
return map of figure 11.9. (plot by J. Halcrow)

5. Show that if a periodic orbit of the polar representa-
tion Lorenz is also periodic orbit of the Lorenz flow,
their Floquet multipliers are the same. How do the
Floquet multipliers of relative periodic orbits of the
representations relate to each other?

6. What does the volume contraction formula (4.40)
look like now? Interpret.

18Predrag: ChaosBook: e(2), e(3) are in the [x, y] plane because linear decomposition (9.21) is
correct for the linearized flow. Explain this in discrete.tex.
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Laplacian!non-local
Laplacian!diagonalization

K.4. Laplacian is a non-local operator.
While the Laplacian is a simple tri-diagonal difference
operator (K.39), its inverse (the “free” propagator of sta-
tistical mechanics and quantum field theory) is a messier
object. A way to compute is to start expanding propagator
as a power series in the Laplacian

1
m21 − Δ

=
1

m2

∞∑
n=0

1
m2n
Δn . (K.73)

As Δ is a finite matrix, the expansion is convergent for
sufficiently large m2. To get a feeling for what is involved
in evaluating such series, show that Δ2 is:

Δ2 =
1
a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −4 1 1 −4
−4 6 −4 1
1 −4 6 −4 1

1 −4
. . .

6 −4
−4 1 1 −4 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(K.74)

What Δ3, Δ4, · · · contributions look like is now clear; as
we include higher and higher powers of the Laplacian,
the propagator matrix fills up; while the inverse propa-
gator is differential operator connecting only the nearest
neighbors, the propagator is integral operator, connecting
every lattice site to any other lattice site.

This matrix can be evaluated as is, on the lattice, and
sometime it is evaluated this way, but in case at hand
a wonderful simplification follows from the observation
that the lattice action is translationally invariant, exer-
cise K.5.

K.5. Lattice Laplacian diagonalized. Insert the iden-
tity

∑
P(k) = 1 wherever you profitably can, and use the

eigenvalue equation (K.51) to convert shift σ matrices
into scalars. If M commutes with σ, then (ϕ†k · M · ϕk′ ) =
M̃(k)δkk′ , and the matrix M acts as a multiplication by
the scalar M̃(k) on the kth subspace. Show that for the
1-dimensional version of the lattice Laplacian (K.39) the
projection on the kth subspace is

(ϕ†k · Δ · ϕk′) =
2
a2

(
cos

(
2π
N

k

)
− 1

)
δkk′ . (K.75)

In the kth subspace the propagator is simply a number,
and, in contrast to the mess generated by (K.73), there is
nothing to evaluating:

ϕ†k ·
1

m21 − Δ
·ϕk′ =

δkk′

m2 − 2
(ma)2 (cos 2πk/N − 1)

, (K.76)

where k is a site in the N-dimensional dual lattice, and
a = L/N is the lattice spacing.

K.6. Fix Predrag’s lecture od Feb 5, 2008. Are the C 3

frequencies on pp. 4,5 correct? If not, write the correct
expression for the beat frequency.
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Appendix L

Convergence of spectral
determinants

L.1 Curvature expansions: geometric picture

If you has some experience with numerical estimates of fractal dimensions, you
will note that the numerical convergence of cycle expansions for systems such
as the 3-disk game of pinball, table 20.2, is very impressive; only three input

numbers (the two fixed points 0, 1 and the 2-cycle 10) already yield the escape
rate to 4 significant digits! We have omitted an infinity of unstable cycles; so why
does approximating the dynamics by a finite number of cycles work so well?

Looking at the cycle expansions simply as sums of unrelated contributions is
not specially encouraging: the cycle expansion (20.2) is not absolutely convergent
in the sense of Dirichlet series of appendix L.6, so what one makes of it depends
on the way the terms are arranged. 1

The simplest estimate of the error introduced by approximating smooth flow
by periodic orbits is to think of the approximation as a tessellation of a smooth
curve by piecewise linear tiles, figure 1.11.

L.1.1 Tessellation of a smooth flow by cycles

2 One of the early high accuracy computations of π was due to Euler. Euler
computed the circumference of the circle of unit radius by inscribing into it a
regular polygon with N sides; the error of such computation is proportional to
1 − cos(2π/N) ∝ N−2. In a periodic orbit tessellation of a smooth flow, we cover

1Predrag: explain - convergent where we need it
2Predrag: reference a book about the history of π
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fundamental!cycles
cycle!fundamental

the phase space by ehn tiles at the nth level of resolution, where h is the topolog-
ical entropy, the growth rate of the number of tiles. Hence we expect the error in
approximating a smooth flow by ehn linear segments to be exponentially small, of
order N−2 ∝ e−2hn. 3

L.1.2 Shadowing and convergence of curvature expansions

We have shown in chapter 15 that if the symbolic dynamics is defined by a finite
grammar, a finite number of cycles, let us say the first k terms in the cycle expan-
sion are necessary to correctly count the pieces of the Cantor set generated by the
dynamical system.

They are composed of products of non–intersecting loops on the transition
graph, see (15.15). We refer to this set of non–intersecting loops as the fundamen-
tal cycles of the strange set. It is only after these terms have been included that
the cycle expansion is expected to converge smoothly, i.e., only for n > k are the
curvatures cnin (9.2??), a measure of the variation of the quality of a linearized ⇓PRIVATE

⇑PRIVATE
covering of the dynamical Cantor set by the length n cycles, and expected to fall
off rapidly with n.

The rate of fall-off of the cycle expansion coefficients can be estimated by
observing that for subshifts of finite type the contributions from longer orbits in
curvature expansions such as (20.7) can always be grouped into shadowing com-
binations of pseudo-cycles. For example, a cycle with itinerary ab= s1s2 · · · sn

will appear in combination of form 4

1/ζ = 1 − · · · − (tab − tatb) − · · · ,

with ab shadowed by cycle a followed by cycle b, where a = s1s2 · · · sm, b =
sm+1 · · · sn−1sn, and sk labels the Markov partition Msk (11.2) that the trajectory
traverses at the kth return. If the two trajectories coincide in the first m symbols,
at the mth return to a Poincaré section they can land anywhere in the phase space
M

∣∣∣ f Ta(xa) − f Ta...(xa...)
∣∣∣ ≈ 1 ,

where we have assumed that the M is compact, and that the maximal possible
separation acrossM is O(1). Here xa is a point on the a cycle of period Ta, and xa...

is a nearby point whose trajectory tracks the cycle a for the first m Poincaré section
returns completed at the time Ta.... 5 An estimate of the maximal separation of the

3Predrag: draw figure here
4Predrag: draw here figure 8 minus two figures O
5Predrag: draw figure here
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integrated observable
observable!integrated

initial points of the two neighboring trajectories is achieved by Taylor expanding
around xa... = xa + δxa...

f Ta(xa) − f Ta...(xa...) ≈
∂ f Ta(xa)
∂x

· δxa... = Ma · δxa... ,

hence the hyperbolicity of the flow forces the initial points of neighboring trajec-
tories that track each other for at least m consecutive symbols to lie exponentially
close

|δxa...| ∝
1
|Λa|

.

Similarly, for any observable (17.1) integrated along the two nearby trajecto-
ries

ATa...(xa...) ≈ ATa(xa) +
∂ATa

∂x

∣∣∣∣∣∣
x=xa

· δxa... ,

so

∣∣∣ATa...(xa...) − ATa(xa)
∣∣∣ ∝ TaConst

|Λa|
,

As the time of return is itself an integral along the trajectory, return times of nearby
trajectories are exponentially close

|Ta... − Ta| ∝
TaConst
|Λa|

,

and so are the trajectory stabilities

∣∣∣ATa...(xa...) − ATa(xa)
∣∣∣ ∝ TaConst

|Λa|
,

Substituting tab one finds 6

tab − tatb
tab

= 1 − e−s(Ta+Tb−Tab)
∣∣∣∣∣ΛaΛb

Λab

∣∣∣∣∣ .
Since with increasing m segments of ab come closer to a, the differences in action
and the ratio of the eigenvalues converge exponentially with the eigenvalue of the
orbit a,

Ta + Tb − Tab ≈ Const × Λ− j
a , |ΛaΛb/Λab| ≈ exp(−Const/Λab)

6Predrag: reinstate the observable
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mediocre!convergence
convergence!mediocre

n tab − tatb Tab − (Ta + Tb) log
[
ΛaΛb
Λab

]
ab − a · b

2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 -7.96028600139×106 5.21713101432×103 -9.8×103 001-0·01
4 -1.03326529874×107 5.29858199419×104 -1.3×103 0001-0·001
5 -1.27481522016×109 5.35513574697×105 -1.6×104 00001-0·0001
6 -1.52544704823×1011 5.40999882625×106 -1.8×105 000001-0·00001
2 -5.23465150784×104 4.85802927371×102 -6.3×102 01-0·1
3 5.30414752996×106 -3.67093656690×103 7.7×103 011-01·1
4 -5.40934261680×108 3.14925761316×104 -9.2×104 0111-011·1
5 4.99129508833×1010 -2.67292822795×105 1.0×104 01111-0111·1
6 -4.39246000586×1012 2.27087116266×106 -1.0×105 011111-01111·1

Table L.1: Demonstration of shadowing in curvature combinations of cycle weights of
form tab − tatb, the 3-disk fundamental domain cycles at R : d = 6, table 33.3. The ratio
ΛaΛb/Λab is approaching unity exponentially fast.

Expanding the exponentials one thus finds that this term in the cycle expansion is
of the order of

ta jb − tata j−1b ≈ Const × ta jbΛ
− j
a . (L.1)

Even though the number of terms in a cycle expansion grows exponentially, the
shadowing cancellations improve the convergence by an exponential factor com-
pared to trace formulas, and extend the radius of convergence of the periodic orbit
sums. 7 Table L.1 shows some examples of such compensations between long
cycles and their pseudo-cycle shadows.

It is crucial that the curvature expansion is grouped (and truncated) by topo-
logically related cycles and pseudo-cycles; truncations that ignore topology, such
as inclusion of all cycles with Tp < Tmax, will contain orbits unmatched by shad-
owed orbits, and exhibit a mediocre convergence compared with the curvature
expansions.

Note that the existence of a pole at z = 1/c implies that the cycle expansions
have a finite radius of convergence, and that analytic continuations will be required
for extraction of the non-leading zeros of 1/ζ. Preferably, one should work with
cycle expansions of Selberg products, as discussed in sect.20.2.2.

L.1.3 No shadowing, poorer convergence

Conversely, if the dynamics is not of a finite subshift type, there is no finite topo-
logical polynomial, there are no “curvature” corrections, and the convergence of
the cycle expansions will be poor. 8

7Predrag: Table L.1 does not seem to demonstrate anything; for what value of s is first row
computed? Escape rate? why does it grow? L’s seem all wrong...

8Predrag: insert here material from our papers
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L.2 On importance of pruning

9

If the grammar is not finite and there is no finite topological polynomial, there
will be no “curvature” expansions, and the convergence will be poor. That is
the generic case, and one strategy for dealing with it is to find a good sequence of
approximate but finite grammars; for each approximate grammar cycle expansions
yield exponentially accurate eigenvalues, with successive approximate grammars
converging toward the desired infinite grammar system.

When the dynamical system’s symbolic dynamics does not have a finite gram-
mar, and we are not able to arrange its cycle expansion into curvature combina-
tions (20.7), the series is truncated as in sect. 20.6, by including all pseudo-cycles
such that |Λp1 · · ·Λpk | ≤ |ΛP|, where P is the most unstable prime cycle included
into truncation. The truncation error should then be of order O(ehTPTP/|ΛP|), with
h the topological entropy, and ehTP roughly the number of pseudo-cycles of stabil-
ity ≈ |ΛP|. In this case the cycle averaging formulas do not converge significantly
better than the approximations such as the trace formula (22.15).

Numerical results (see for example the plots of the accuracy of the cycle ex-
pansion truncations for the Hénon map in ref. [3]) indicate that the truncation
error of most averages tracks closely the fluctuations due to the irregular growth
in the number of cycles. It is not known whether one can exploit the sum rules
such as the mass flow conservation (20.17) to improve the accuracy of dynamical
averaging.

L.3 Ma-the-matical caveats

“Lo duca e io per quel cammino ascoso intrammo a ri-
tornar nel chiaro monde; e sanza cura aver d’alcun riposa
salimmo sù, el primo e io secondo, tanto ch’i’ vidi de le
cose belle che porta ‘l ciel, per un perutgio tondo.”

—Dante

The periodic orbit theory is learned in stages. At first glance, it seems
totally impenetrable. After basic exercises are gone through, it seems totally triv-
ial; all that seems to be at stake are elementary manipulations with traces, deter-
minants, derivatives. But if start thinking about you will get a more and more
uncomfortable feeling that from the mathematical point of view, this is a perilous
enterprise indeed. In chapter 23 we shall explain which parts of this enterprise are
really solid; here you give a fortaste of what objections a mathematician might
rise.

9Predrag: include numerics examples from Mallopo II, ref. [3].
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disk!phase
space
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10 Birkhoff’s 1931 ergodic theorem states that the time average (17.4) exists
almost everywhere, and, if the flow is ergodic, it implies that 〈a(x)〉 = 〈a〉 is a
constant for almost all x. The problem is that the above cycle averaging formulas
implicitly rely on ergodic hypothesis: they are strictly correct only if the dynam-
ical system is locally hyperbolic and globally mixing. If one takes a β derivative
of both sides

ρβ(y)ets(β) =

∫
M

dx δ(y − f t(x))eβ·A
t(x)ρβ(x) ,

and integrates over y

∫
M

dy
∂

∂β
ρβ(y)

∣∣∣∣∣
β=0

+ t
∂s
∂β

∣∣∣∣∣
β=0

∫
M

dy ρ0(y) =∫
M

dx At(x)ρ0(x) +
∫
M

dx
∂

∂β
ρβ(x)

∣∣∣∣∣
β=0

,

one obtains in the long time limit

∂s
∂β

∣∣∣∣∣
β=0
=

∫
M

dy ρ0(x) 〈a(x)〉 . (L.2)

This is the expectation value (17.12) only if the time average (17.4) equals the
space average (17.9), 〈a(x)〉 = 〈a〉, for all x except a subset x ∈ M of zero
measure; if the phase space is foliated into non-communicating subspaces M =

M1 +M2 of finite measure such that ft(M1) ∩ M2 = ∅ for all t, this fails. In
other words, we have tacitly assumed metric indecomposability or transitivity.
We have also glossed over the nature of the “phase space” M. For example, if the
dynamical system is open, such as the 3-disk game of pinball, M in the expecta-
tion value integral (17.24) is a Cantor set, the closure of the union of all periodic
orbits. Alternatively, M can be considered continuous, but then the measure ρ0
in (L.2) is highly singular. The beauty of the periodic orbit theory is that instead
of using an arbitrary coordinatization of M it partitions the phase space by the in-
trinsic topology of the dynamical flow and builds the correct measure from cycle
invariants, the Floquet multipliers of periodic orbits.

Were we to restrict the applications of the formalism only to systems which
have been rigorously proven to be ergodic, we might as well fold up the shop
right now. For example, even for something as simple as the Hénon mapping we
do not know whether the asymptotic time attractor is strange or periodic. Physics

exercise 6.4
applications require a more pragmatic attitude. In the cycle expansions approach
we construct the invariant set of the given dynamical system as a closure of the
union of periodic orbits, and investigate how robust are the averages computed
on this set. This turns out to depend very much on the observable being averaged
over; dynamical averages exhibit “phase transitions”(to be discussed in sect.34.1), ⇓PRIVATE

⇑PRIVATE
10Predrag: include reference [17] in a remark
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and the above cycle averaging formulas apply in the “hyperbolic phase” where the
average is dominated by exponentially many exponentially small contributions,
but fail in a phase dominated by few marginally stable orbits. Here the noise -
always present, no matter how weak - helps us by erasing an infinity of small
traps that the deterministic dynamics might fall into. 11

Still, in spite of all the caveats, periodic orbit theory is a beautiful theory,
and the cycle averaging formulas are the most elegant and powerful tool available
today for evaluation of dynamical averages for low dimensional chaotic determin-
istic systems.

L.4 Estimate of the nth cumulant

An immediate consequence of the exponential spacing of the eigenvalues is that
the convergence of the Selberg product expansion (G.21) as function of the topo-
logical cycle length, F(z) =

∑
n Cnzn, is faster than exponential. Consider a d–

dimensional map for which all Jacobian matrix eigenvalues in (??) are equal:
⇓PRIVATE

⇑PRIVATE
up = Λp,1 = Λp,2 = · · · = Λp,d. The Floquet multipliers are generally not
isotropic; however, to obtain qualitative bounds on the spectrum, we replace all
Floquet multipliers with the least expanding one. In this case the p cycle contri-
bution to the product (19.9) reduces to

Fp(z) =
∞∏

k1···kd=0

(
1 − tpuk1+k2+···+kd

p

)
=

∞∏
k=0

(
1 − tpuk

p

)mk
; mk =

(
d − 1 + k

d − 1

)
=

(k + d − 1)!
k!(d − 1)!

=

∞∏
k=0

mk∑
�=0

(
mk

�

) (
−uk

ptp

)�
(L.3)

In one dimension the expansion can be given in closed form (23.5), and the
coefficients Ck in (G.21) are given by

τpk = (−1)k u
k(k−1)

2
p∏k

j=1(1 − uj
p)

tk
p . (L.4)

Hence the coefficients in the F(z) =
∑

n Cnzn expansion of the spectral determinant
(20.14) fall off faster than exponentially, as |Cn| ≈ un(n−1)/2. In contrast, the cycle
expansions of dynamical zeta functions fall of “only” exponentially; in numerical
applications, the difference is dramatic.

11Predrag: maybe HHR caveats needed here: if the gap is small, longer cycles needed to measure
the crossover to exponential escape. Should we use Roberto’s numerical tests of escape rates, sticky
intervals, or mention them somewhere?
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cycle!perturbation
expansions

perturbation
expansions

In higher dimensions the expansions are not quite as compact. The leading
power of u and its coefficient are easily evaluated by use of binomial expansions
(L.3) of the (1 + tuk)mk factors. More precisely, the leading un terms in tk coeffi-
cients are of form

∞∏
k=0

(1 + tuk)mk = . . . + um1+2m2+...+ jmj t1+m1+m2+...+mj + . . .

= . . . +
(
u

md
d+1 t

)(d+m
m )
+ . . . ≈ . . . + u

d√
d!

(d−1)! n
d+1

d tn + . . .

12 Hence the coefficients in the F(z) expansion fall off faster than exponentially, as
un1+1/d

. The Selberg products are entire functions in any dimension, provided that
the symbolic dynamics is a finite subshift, and all cycle eigenvalues are sufficiently
bounded away from 1. 13

The case of particular interest in many applications are the 2-d Hamiltonian
mappings; their symplectic structure implies that up = Λp,1 = 1/Λp,2, and the
Selberg product (19.13) In this case the expansion corresponding to (23.5) is given
in exercise 23.4 and the coefficients fall off asymptotically as Cn ≈ un3/2

. ⇓PRIVATE

L.5 Perturbation expansions in terms of cycles

The eigenvalue condition of sect.20.4 is an implicit equation for the eigen-
value s = s(β) of the form F(β, s(β)) = 0. As this condition is satisfied on the
curve F = 0, all total derivatives of the eigenvalue condition vanish, which yields

0 =
d

dβ
F(β, s(β)) =

ds
dβ

∂F
∂s
+
∂F
∂β

, (L.5)

0 =
d2s

dβ2

∂F
∂s
+

(
ds
dβ

)2
∂2F

∂s2
+ 2

ds
dβ

∂2F
∂β∂s

+
∂2F

∂β2
, (L.6)

0 =
d3s

dβ3

∂F
∂s
+ 3

d2s

dβ2

ds
dβ

∂2F

∂s2
+

(
ds
dβ

)3
∂3F

∂s3
+ 3

d2 s

dβ2

∂2F
∂β∂s

+ 3

(
ds
dβ

)2
∂3F

∂β∂s2
+ 3

ds
dβ

∂3F

∂β2∂s
+
∂3F

∂β3
, (L.7)

and so on. If s(0) is known, and β � 0 parametrizes a weak perturbation to the
evolution operator L, the above formulas enable us to compute recursively, order
by order in βn, perturbative corrections to the eigenvalues of A in terms of partial
derivatives of the eigenvalue condition as the series

s(β) =
∞∑

n=0

sn

n!
βn , sn =

dns(β)
dβn

∣∣∣∣∣
β=0

(L.8)

12Predrag: ugly exponent, fix!
13Predrag: note that the Fredholm theory gives un ln n
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linear response theory
Dirichlet!series
Riemann zeta

function
Dirichlet series
abscissa!absolute

conv.

As we have seen in sect. 20.4.1, for each choice of the function F(β, s) in (20.2),
(20.14) and (22.15), 14 the partial derivatives of F(β, s(β)) are given by explicit
cycle expansions.

The simplest application of the above formulas is linear response theory of
eigenvalue shifts due to small perturbations. In the case of stochastic flows and
semiclassical quantum mechanics, the small parameter β is the noise width, and
�, respectively, and the formulas (L.7) yield the full perturbative corrections.

⇑PRIVATE

L.6 Dirichlet series

The most patient reader will thank me for compressing so
much nonsense and falsehood into a few lines.

—Gibbon

15 A Dirichlet series of f (s) is defined as

f (s) =
∞∑
j=1

aje
−λ j s (L.9)

where s, aj are complex numbers, and {λj} is a monotonically increasing series
of real numbers λ1 < λ2 < · · · < λ j < · · ·. 16 A classical example of a Dirichlet
series is the Riemann zeta function for which aj = 1, λ j = ln j. In the present
context, a formal series over individual pseudo-cycles such as (20.2) ordered by
increasing pseudo-cycle periods are often Dirichlet series. For example, for the
pseudo-cycle weight (20.3), the Dirichlet series is obtained by ordering pseudo-
cycles by increasing periods λπ = Tp1 + Tp2 + . . . + Tpk , with the coefficients

aπ =
eβ·(Ap1+Ap2+...+Apk )∣∣∣Λp1Λp2 . . .Λpk

∣∣∣ dπ ,

where dπ is a degeneracy factor in the case that dπ pseudo-cycles have the same
weight.

If the series
∑ |aj| diverges, the Dirichlet series is absolutely convergent for

Re s > σa and conditionally convergent for Re s > σc, where σa is the abscissa
of absolute convergence

σa = lim
N→∞

sup
1
λN

ln
N∑

j=1

|aj| , (L.10)

14Predrag: forward reference
15Predrag: motivate this section
16Predrag: do λ1 < λ2 < · · · < λ j < · · · have to be real, or just their real parts should be ordered?.
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abscissa!conditional
conv.

convergence!abscissa
of

entropy!barrier
Dirichlet series

and σc is the abscissa of conditional convergence

σc = lim
N→∞

sup
1
λN

ln

∣∣∣∣∣∣∣∣
N∑

j=1

aj

∣∣∣∣∣∣∣∣ . (L.11)

17 18 We encounter another example of a Dirichlet series in the semiclassical
quantization, chapter 38, where the inverse of Planck’s constant is a complex ⇓PRIVATE
variable s = i/�, λπ = S p1 + S p2 + . . . + S pk is the pseudo-cycle action, and

aπ = 1/
√∣∣∣Λp1Λp2 . . .Λpk

∣∣∣ (multiplied by possible degeneracy and topological
phase factors). As the action is in general not a linear function of energy (except
for billiards and for scaling potentials, where a variable s can be extracted from
S p), semiclassical cycle expansions are Dirichlet series in the variable s = i/� but
not in E, the complex energy variable. 19 20 21

⇑PRIVATE

Commentary

Remark L.1 Are cycle expansions Dirichlet series? Even though some literature [12]
refers to cycle expansions as ’Dirichlet series’, they are not Dirichlet series. Cycle expan-
sions collect contributions of individual cycles into groups that correspond to the coef-
ficients in cumulant expansions of spectral determinants, and the convergence of cycle
expansions is controlled by general properties of spectral determinants. Dirichlet series
order cycles by their periods or actions, and are only conditionally convergent in the
regions of interest. The abscissa of absolute convergence is in this context called the ‘en-
tropy barrier’; contrary to frequently voiced anxieties, this number does not necessarily
has much to do with the actual convergence of the theory.

17Predrag: define:
spectral radius
essential spectral radius
spectral gap

18Predrag: backlink chapter 38 to here.
19Predrag: move this comment to QMchaos volume?
20Predrag: add Period doubling Lyapunovs vs 1/n of paper II.
21Predrag: remark L.1: find F. Steiner references. Link to chapter 23. Refer to Aurell.
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⇓PRIVATE
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Appendix M

Statistical mechanics applications

M.1 Diffusion in sawtooth and cat maps

(R. Artuso)

In this section we will deal with the prototype example of chaotic Hamilto-
nian maps, hyperbolic toral automorphisms. Diffusive properties will arise in
considering such maps acting on the cylinder or over R2, while the dynam-

ics restricted to the fundamental domain involves maps on T2 (two–dimensional
torus). An Anosov map thus corresponds to the action of a matrix in S L2(N) with
unit determinant and absolute value of the trace bigger than 2.

1 Maps of this kind are as examples of genuine Hamiltonian chaotic evolu-
tion. They admit simple finite Markov partitions, which paves the way to a good
symbolic dynamics. Within the framework of Hamiltonian dynamical systems the

chapter 23
role of hyperbolic linear automorphisms is analogous to piecewise linear Markov
maps: their symbolic dynamics can be encoded in a grammatically simple way,
and their linearity leads to uniformity of cycle stabilities.

We will consider the “two-coordinates” representation for them

[
x′

y′

]
= M

[
x
y

]

with

M =

(
0 1
−1 K + 2

)
1Predrag: remember to rewrite following ../notes/appendStatMnotes.txt
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Figure M.1: The elementary cell for the torus
map [−1/2, 1/2] (checkered yellow) together with
its image, in green (K = 2): symbols refer to
the linear code. The dashed line through the ori-
gin gives the direction of the unstable manifold.
Though hardly understandable from the scale of
the picture the unstable manifold is not parallel to
the image sides.

+1

+2

0

−1

−2

which allows considering their extension on a cylinder phase space ([−1/2, 1/2)×
R) in a natural way. So it is natural to study diffusion properties along the y
direction.

Though Markov partitions encode the symbolic dynamics in the simplest pos-
sible way, they are not well suited to deal with diffusion, as the jumping factor
is not related in a simple way to the induced symbol sequence. To this end the
following linear code is quite natural: before describing it let us fix the notations:
χ will denote the trace of the map (χ = K + 2): the leading eigenvalue will be
denoted by λ = (χ +

√
D)/2, where D = χ2 − 4. In principle the code (and the

problem of diffusion) can be also considered for real values of K (thus loosing
continuity of the torus map when K in not an integer): we will remark in what
follows that results which are exact for K ∈ N are only approximate for generic
K.

The cardinality of the alphabet is determined by the parameter K: the letters
are integer numbers, whose absolute values does not exceed Int(1 + χ/2) (see
figure M.1 for the case K = 2). The code is linear, as, given a bi-infinite sequence
{xi}i∈N

bt
def
=

[
(K + 2)xt − xt−1 +

1
2

]
, (M.1)

[. . .] denoting the integer part, while the inversion formula (once a bi-infinite sym-
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bolic string {bi}i∈N is given), reads

xt =
1√
D

∑
s∈N

λ−|t−s|bs , (M.2)

As the x coordinate lives in the interval [−1/2, 1/2), (M.2) induces a condition of
allowed symbol sequences: {bi}i∈N will be an admissible orbit if

1
2
≤ 1√

D

∑
s∈N

λ−|t−s|bs <
1
2

. (M.3)

By (M.1)(M.2) it is easy to observe that periodic orbits and allowed periodic sym-
bol sequences are in one-to-one correspondence. From (M.3) we get the condition
that a {bi}i=1,...,T sequence corresponds to a T–periodic orbit of the map

|Anbt +An−1(bt+1 + bt−1)+ · · ·+A0(bt+n + bt−n)| < Bn

2
∀t = 1, . . . , T (M.4)

when T = 2n + 1, and

|Cnbt +Cn−1(bt+1 + bt−1) + · · · +C0(bt+n)| < Dn

2
∀t = 1, . . . , T (M.5)

when T = 2n where
exercise M.1
exercise M.2

Bk = λ
k(λ − 1) + λ−k(λ−1 − 1) Ak =

λk+1 + λ−k

λ + 1
Dk = (λk − λ−k)(λ − λ−1) Ck = λk + λ−k (M.6)

The pruning rules (M.5) admit a simple geometric interpretation: a lattice point
b ∈ NT identifies a T–periodic point of the map if b ∈ PT where

PT
def
= {x ∈ RT :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|a1x1 + · · · + aT xT | < eT

...
|a2x1 + · · · + a1xT | < eT

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (M.7)

and

a1 . . . aT = A0A1 . . . An−1AnAn−1 . . .A0 eT = Bn/2

a1 . . . aT = C1 . . .Cn−1CnCn−1 . . .C1C0 eT = Dn/2 (M.8)

for T = 2n+1 or T = 2n, respectively, ThusPT is a measure polytope [1], obtained
by deforming a T–cube. This is the key issue of this appendix: though the map

exercise M.3
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is endorsed with a most remarkable symbolic dynamics, the same is hardly fit
to deal with transport properties, as the rectangles that define the partition are
not directly connected to translations once the map is unfolded to the cylinder.
The partition connected to the linear code (see figure M.1) on the other side is
most natural when dealing with transport, though its not being directly related to
invariant manifolds leads to a multitude of pruning rules (which in the present
example bear a remarkable geometric interpretation, which is not to be expected
as a generic feature).

We will denote byNn,s the number of periodic points of period n with jumping
number s. By taking (??) into account we can easily see that for cat maps a way
to compute D is provided by

D = lim
n→∞

Dn Dn =
1

nNn

p(n)∑
k=1

k2Nn,k (M.9)

where Nn is the number of periodic points of period n, p(n) is the highest jumping
number of n–periodic orbits and we employed

∣∣∣∣det
(
1 − J(n)

x

)∣∣∣∣ = (λn − 1)(1 − λ−n) = Nn

which is valid for cat maps.

Sums can be converted into integrals by using Poisson summation formula:
we define

fT (n) =

{
(n1 + . . . + nT )2 n ∈ PT

⋂
N

T

0 otherwise

and

f̃T (ξ) =
∫
RT

dx ei(x,ξ) fT (x)

From Poisson summation formula we have that

DT =
1

TNT

∑
n∈NT

f̃T (2πn) (M.10)

The quasilinear estimate for DT amounts to considering the n = 0 contribution to
(M.10):

D(q.l.)
T =

∫
PT

dx (x1 + x2 + . . . + xT )2 (M.11)
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The evaluation of (M.11) requires introducing a coordinate transformation in sym-
bolic space in which PT is transformed in a T–cube. This is equivalent to finding
the inverse of the matrix A:

A
def
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1 a2 · · · aT−1 aT
aT a1 · · · aT−2 aT−1
...

...
. . .

...
...

a3 a4 · · · a1 a2
a2 a3 · · · aT a1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (M.12)

First of all let us observe that A is a circulant matrix, so that its determinant is the
product of T factors, each of the form f (εj) = a1 + ε ja2 + . . . + aT ε

T−1
j , where ε j

is a T th root of unity. By using (M.6) it is possible to see that

f (ε j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εn+1

j Bn

(λε j−1)(1−λ−1ε j)
T = 2n + 1

εn
j Dn

(λε j−1)(1−λ−1ε j)
T = 2n

so that

|det A| = (2eT )T

λT + λ−T − 2
(M.13)

exercise M.4

By using the results coming from the former exercise we can finally express A−1

via

C̃A−1 =
1

BT
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
χ −1 · · · 0 −1
−1 χ · · · 0 0
...

...
. . .

...
...

0 0 · · · χ −1
−1 0 · · · −1 χ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (M.14)

where

C̃ =

(
0 11n+1
11n 0

)
. (M.15)

if T = 2n + 1 and

K̃A−1 =
1

DT
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
χ −1 · · · 0 −1
−1 χ · · · 0 0
...

...
. . .

...
...

0 0 · · · χ −1
−1 0 · · · −1 χ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (M.16)

appendStatM - 28dec2004 boyscout version14.4, Mar 19 2013



APPENDIX M. STATISTICAL MECHANICS APPLICATIONS 1198

where

K̃ =

(
0 11n
11n 0

)
. (M.17)

if T = 2n. As a first check of quasilinear estimates let’s compute the volume of
PT :

Vol(PT ) =

∫
PT

dx1 dx2 . . . dxT =
1

|det A|

∫ eT

−eT

. . .

∫ eT

eT

dξ1 . . . dξT

= λT + λ−T − 2 (M.18)

In an analogous way we may compute the quasilinear estimate for NT,k exercise M.5

N (q.l.)
T,k =

∫
PT

dx1 . . . dxT δ(x1 + . . . xT − k)

=
λT + λ−T − 2

(2eT )T

∫ ∞

−∞
dα e−2πiαk

∫ eT

−eT

. . .

∫ eT

−eT

dξ1 . . . dξT e
2πiαχ
2eT

(ξ1+...+ξT )

=
2
πχ

(λT + λ−T − 2)
∫ ∞

0
dy cos

(
2qy
χ

) (
sin y

y

)T

(M.19)

where we have used x1 + . . .+ xT = (χ/(2eT ))(ξ1 + . . .+ ξT ) (cfr. (M.14),(M.16)).

We are now ready to evaluate the quasilinear estimate fo the diffusion coeffi-
cient

D(q.l.)
T =

1
πχT

∫ Tχ/2

−Tχ/2
dz z2

∫ ∞

0
dy cos

(
2zy
χ

) (
sin y

y

)T

(M.20)

(where the bounds on the jumping number again come easily from (M.14),(M.16)).
By dropping terms vanishing as T �→ ∞, and using [2]

∫ ∞

0
dx

(
sin x

x

)n sin(mx)
x

=
π

2
m ≥ n

we can evaluate

D(q.l.) =
χ2

24
(M.21)

which is the correct result [3] (and again for cat maps (M.21) is not the quasilinear
estimate but the exact value of the diffusione coefficient).

exercise M.6
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Commentary

Remark M.1 Who has talked about it? Maps of this kind have been extensively
analyzed as examples of genuine Hamiltonian chaotic evolution: in particular they admit
simple Markov partitions [4, 13], which lead to simple analytic expressions for topological
zeta functions [5]. The linear code was introduced by Percival and Vivaldi [ 6, 7]. Measure
polytopes are discussed in ref. [1]. The quasilinear estimate (M.11) was given in ref. [3].
(M.11) was evaluated in ref. [8, 9]. Circulant matrix are discussed in ref. [10]. The result
(M.21) agrees with ref. [3]; for the cat maps (M.21) is the exact value of the diffusion
coefficient. This result was obtained, by using periodic orbits also in ref. [ 11], where
Gaussian nature of the diffusion process is explicitly assumed.

Remark M.2 Phase space. The cylinder phase is [−1/2, 1/2)× R: the map is origi-
nally defined definition in [−1/2, 1/2)2, and is generalized over the cylinder by symmetry
requirements (26.10).

Exercises boyscout

M.1. Recursion relations. Verify that the following recur-
sion relations are satisfied

uk+2 = χuk+1 − uk

where uk = Ak, Bk,Ck,Dk.

M.2. Arnol’d cat map. Show that for χ = 3, Ak = F2k+1,
Bk = L2k+1, Ck = L2k and Dk = 5F2k, where Fn and Ln

are the Fibonacci and Lucas numbers..

M.3. Pruning rules for substrings of length 2. Take K = 8
and draw the region determined by (M.5).

M.4. Diagonalization of A. Show that A can be diagonalized
by considering the auxiliary matrix U

U
def
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 · · · 1 1
ε0 ε1 · · · εT−2 εT−1
...

...
. . .

...
...

εT−2
0 εT−2

1 · · · εT−2
T−2 εT−2

T−1
εT−1

0 εT−1
1 · · · εT−1

T−2 εT−1
T−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In fact U−1AU is a diagonal matrix (the diagonal elements
coinciding with f (ε j)).

M.5. Periodic points of cat maps. Verify that (M.18) is is
exactly the number of T–periodic points of the map when
K is an integer.
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M.6. Probability distribution. Higher order moments can
be computed easily for integer K (or generic K within the
quasilinear approximation), by generalizations of ( M.20):
show that the results prove that, given a period T , the
distribution of periodic orbits with respect to their jump-
ing number is asymptotically Gaussian, with parameter
D(q.l.).
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chain rule, matrix

Appendix N

Infinite dimensional operators

(A. Wirzba)

This appendix, taken from ref. [1], summarizes the definitions and properties
of trace-class and Hilbert-Schmidt matrices, the determinants over infinite
dimensional matrices and regularization schemes for matrices or operators

which are not of trace-class.

N.1 Matrix-valued functions

(P. Cvitanović)

As a preliminary we summarize some of the properties of functions of finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A′(x) =
dA(x)

dx
, A′i j(x) =

d
dx

Ai j(x) . (N.1)

Derivatives of products of matrices are evaluated by the chain rule

d
dx

(AB) =
dA
dx

B + A
dB
dx

. (N.2)

A matrix and its derivative matrix in general do not commute

d
dx

A2 =
dA
dx

A + A
dA
dx

. (N.3)
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The derivative of the inverse of a matrix, follows from d
dx (AA−1) = 0:

d
dx

A−1 = − 1
A

dA
dx

1
A
. (N.4)

A function of a single variable that can be expressed in terms of additions and
multiplications generalizes to a matrix-valued function by replacing the variable
by the matrix.

In particular, the exponential of a constant matrix can be defined either by its
series expansion, or as a limit of an infinite product:

eA =

∞∑
k=0

1
k!

Ak , A0 = 1 (N.5)

= lim
N→∞

(
1 +

1
N

A

)N

(N.6)

The first equation follows from the second one by the binomial theorem, so these
indeed are equivalent definitions. That the terms of order O(N−2) or smaller do
not matter follows from the bound

(
1 +

x − ε
N

)N
<

(
1 +

x + δxN

N

)N

<
(
1 +

x + ε
N

)N
,

where |δxN | < ε. If lim δxN → 0 as N → ∞, the extra terms do not contribute.

Consider now the determinant

det (eA) = lim
N→∞

(det (1 + A/N))N .

To the leading order in 1/N

det (1 + A/N) = 1 +
1
N

tr A + O(N−2) .

hence

det eA = lim
N→∞

(
1 +

1
N

tr A + O(N−2)

)N

= etr A (N.7)

Due to non-commutativity of matrices, generalization of a function of several
variables to a function is not as straightforward. Expression involving several
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Heisenberg!picture
Schr“”odinger!picture
Trotter product

formula
operator!norm
Cauchy criterion
norm

matrices depend on their commutation relations. For example, the commutator
expansion

etABe−tA = B + t[A,B] +
t2

2
[A, [A,B]] +

t3

3!
[A, [A, [A,B]]] + · · · (N.8)

sometimes used to establish the equivalence of the Heisenberg and Schrödinger
pictures of quantum mechanics follows by recursive evaluation of t derivatives

d
dt

(
etABe−tA

)
= etA[A,B]e−tA .

Manipulations of such ilk yield

e(A+B)/N = eA/NeB/N − 1

2N2
[A,B] + O(N−3) ,

and the Trotter product formula: if B, C and A = B + C are matrices, then

eA = lim
N→∞

(
eB/NeC/N

)N
(N.9)

N.2 Operator norms

(R. Mainieri and P. Cvitanović)

The limit used in the above definition involves matrices - operators in
vector spaces - rather than numbers, and its convergence can be checked using
tools familiar from calculus. We briefly review those tools here, as throughout the
text we will have to consider many different operators and how they converge. Ronnie: Mention con-

vergence as a physical
problem?The n → ∞ convergence of partial products

En =
∏

0≤m<n

(
1 +

t
m

A
)

can be verified using the Cauchy criterion, which states that the sequence {En}
converges if the differences ‖Ek −E j‖ → 0 as k, j → ∞. To make sense of this we
need to define a sensible norm ‖ · · · ‖. Norm of a matrix is based on the Euclidean
norm for a vector: the idea is to assign to a matrix M a norm that is the largest
possible change it can cause to the length of a unit vector n̂:

‖M‖ = sup
n̂
‖Mn̂‖ , ‖n̂‖ = 1 . (N.10)

appendWirzba - 9dec2002 boyscout version14.4, Mar 19 2013



APPENDIX N. INFINITE DIMENSIONAL OPERATORS 1205

trace-class operator
operator!trace-class

1 We say that ‖ · ‖ is the operator norm induced by the vector norm ‖ · ‖. Construct-
ing a norm for a finite-dimensional matrix is easy, but had M been an operator in
an infinite-dimensional space, we would also have to specify the space n̂ belongs
to. In the finite-dimensional case, the sum of the absolute values of the compo-
nents of a vector is also a norm; the induced operator norm for a matrix M with
components Mi j in that case can be defined by 2

‖M‖ = max
i

∑
j

|Mi j| . (N.11)

⇓PRIVATE

For infinite-dimensional vectors - functions f (x), x ∈ Rd - one might use instead

L1 norm:
∫

dx| f (x)| , or L2 norm:
∫

dx| f (x)|2 , etc.

⇑PRIVATE

The operator norm (N.11) and the vector norm (N.10) are only rarely distinguished
by different notation, a bit of notational laziness that we shall uphold.

Now that we have learned how to make sense out of norms of operators, we
can check that

exercise N.1

‖etA‖ ≤ et‖A‖ . (N.12)

exercise 2.9

As ‖A‖ is a number, the norm of etA is finite and therefore well defined. In partic-
ular, the exponential of a matrix is well defined for all values of t, and the linear
differential equation (4.10) has a solution for all times.

N.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [9]. Refs. [7, 10, 11, 14] should be
consulted for more details and proofs. The trace class and Hilbert-Schmidt prop-
erty will be defined here for linear, in general non-hermitian operators A ∈ L(H):
H → H (where H is a separable Hilbert space). The transcription to matrix
elements (used in the prior chapters) is simply ai j = 〈φi,Aφ j〉 where {φn} is an
orthonormal basis of H and 〈 , 〉 is the inner product in H (see sect.N.5 where
the theory of von Koch matrices of ref. [12] is discussed). So, the trace is the
generalization of the usual notion of the sum of the diagonal elements of a matrix;
but because infinite sums are involved, not all operators will have a trace:

Definition:

1Predrag: check what was her in older version? DG: ie. the frac
2Predrag: exercise: convexity
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Hilbert-Schmidt!
operators

operator!Hilbert-
Schmidt

bounded operators
operator!positive
positive operators

(a) An operator A is called trace class, A ∈ J1, if and only if, for every or-
thonormal basis, {φn}:∑

n

|〈φn,Aφn〉| < ∞ . (N.13)

The family of all trace class operators is denoted by J1.

(b) An operator A is called Hilbert-Schmidt, A ∈ J2, if and only if, for every
orthonormal basis, {φn}:∑

n

‖Aφn‖2 < ∞ .

The family of all Hilbert-Schmidt operators is denoted by J2.

Bounded operators are dual to trace class operators. They satisfy the following
condition: |〈ψ, Bφ〉| ≤ C‖ψ‖‖φ‖ with C < ∞ and ψ, φ ∈ H . If they have eigenval-
ues, these are bounded too. The family of bounded operators is denoted by B(H)
with the norm ‖B‖ = supφ�0

‖Bφ‖
‖φ‖ for φ ∈ H . Examples for bounded operators are

unitary operators and especially the unit matrix. In fact, every bounded operator
can be written as linear combination of four unitary operators.

A bounded operator C is compact, if it is the norm limit of finite rank opera-
tors.

An operator A is called positive, A ≥ 0, if 〈Aφ, φ〉 ≥ 0 ∀φ ∈ H . Note that
A†A ≥ 0. We define |A| =

√
A†A.

The most important properties of the trace and Hilbert-Schmidt classes are
summarized in (see refs. [7, 9]):

(a) J1 and J2 are ∗ideals., i.e., they are vector spaces closed under scalar mul-
tiplication, sums, adjoints, and multiplication with bounded operators.

(b) A ∈ J1 if and only if A = BC with B,C ∈ J2.

(c) J1 ⊂ J2 ⊂ Compact operators.

(d) For any operator A, we have A ∈ J2 if
∑

n ‖Aφn‖2 < ∞ for a single basis.
For any operator A ≥ 0 we have A ∈ J1 if

∑
n |〈φn,Aφn〉| < ∞ for a single

basis.

(e) If A ∈ J1, Tr(A) =
∑〈φn,Aφn〉 is independent of the basis used.

(f) Tr is linear and obeys Tr(A†) = Tr(A); Tr(AB) = Tr(BA) if either A ∈ J1

and B bounded, A bounded and B ∈ J1 or both A,B ∈ J2.

(g) J2 endowed with the inner product 〈A,B〉2 = Tr(A†B) is a Hilbert space.
If ‖A‖2 = [ Tr(A†A) ]

1
2 , then ‖A‖2 ≥ ‖A‖ and J2 is the ‖ ‖2-closure of the

finite rank operators.
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determinant!trace-
class
operator

trace-class
operator!determinant

(h) J1 endowed with the norm ‖A‖1 = Tr(
√

A†A) is a Banach space. ‖A‖1 ≥
‖A‖2 ≥ ‖A‖ and J1 is the ‖ ‖1-norm closure of the finite rank operators. The
dual space of J1 is B(H), the family of bounded operators with the duality
〈B,A〉 = Tr(BA).

(i) If A,B ∈ J2, then ‖AB‖1 ≤ ‖A‖2‖B‖2. If A ∈ J2 and B ∈ B(H), then
‖AB‖2 ≤ ‖A‖2‖B‖. If A ∈ J1 and B ∈ B(H), then ‖AB‖1 ≤ ‖A‖1‖B‖.

Note the most important property for proving that an operator is trace class is the
decomposition (b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt prop-
erty can easily be verified in one single orthonormal basis (see (d)). Property (e)
ensures then that the trace is the same in any basis. Properties (a) and (f) show
that trace class operators behave in complete analogy to finite rank operators. The
proof whether a matrix is trace-class (or Hilbert-Schmidt) or not simplifies enor-
mously for diagonal matrices, as then the second part of property (d) is directly
applicable: just the moduli of the eigenvalues (or – in case of Hilbert-Schmidt –
the squares of the eigenvalues) have to be summed up in order to answer that ques-
tion. A good strategy in checking the trace-class character of a general matrix A is
therefore the decomposition of that matrix into two matrices B and C where one,
say C, should be chosen to be diagonal and either just barely of Hilbert-Schmidt
character leaving enough freedom for its partner B or of trace-class character such
that one only has to show the boundedness for B.

N.4 Determinants of trace class operators

This section is mainly based on refs. [8, 10] which should be consulted for more
details and proofs. See also refs. [11, 14].

Pre-definitions (Alternating algebra and Fock spaces):
Given a Hilbert space H , ⊗nH is defined as the vector space of multi-linear func-
tionals on H with φ1 ⊗ · · · ⊗ φn ∈ ⊗nH in case φ1, . . . , φn ∈ H .

∧n(H) is defined
as the subspace of ⊗nH spanned by the wedge-product

φ1 ∧ · · · ∧ φn =
1
√

n!

∑
π∈Pn

ε(π)[φπ(1) ⊗ · · · ⊗ φπ(n)]

where Pn is the group of all permutations of n letters and ε(π) = ±1 depending
on whether π is an even or odd permutation, respectively. The inner product in∧n(H) is given by

(φ1 ∧ · · · ∧ φn, η1 ∧ · · · ∧ ηn) = det
{
(φi, η j)

}
where det{ai j} =

∑
π∈Pn

ε(π)a1π(1) · · · anπ(n).
∧n(A) is defined as functor (a functor

satisfies
∧n(AB) =

∧n(A)
∧n(B)) on

∧n(H) with∧n
(A) (φ1 ∧ · · · ∧ φn) = Aφ1 ∧ · · · ∧Aφn .
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When n = 0,
∧n(H) is defined to be C and

∧n(A) as 1: C → C.

Properties: If A trace class, i.e., A ∈ J1, then for any k,
∧k(A) is trace class, and

for any orthonormal basis {φn} the cumulant

Tr
(∧k

(A)
)
=

∑
i1<···<ik

(
(φi1 ∧ · · · ∧ φik ), (Aφi1 ∧ · · · ∧ Aφik )

)
< ∞

is independent of the basis (with the understanding that Tr
∧0(A) ≡ 1).

Definition: Let A ∈ J1, then det (1 + A) is defined as

det(1 + A) =
∞∑

k=0

Tr
(∧k

(A)
)

(N.14)

Properties:

Let A be a linear operator on a separable Hilbert space H and {φj}∞1 an or-
thonormal basis.

(a)
∑∞

k=0 Tr
(∧k(A)

)
converges for each A ∈ J1.

(b) |det(1 + A)| ≤
∏∞

j=1

(
1 + μ j(A)

)
where μ j(A) are the singular values of A,

i.e., the eigenvalues of |A| =
√

A†A.

(c) |det(1 + A)| ≤ exp(‖A‖1).

(d) For any A1, . . . ,An ∈ J1, 〈z1, . . . , zn〉 �→ det
(
1 +

∑n
i=1 ziAi

)
is an entire

analytic function.

(e) If A,B ∈ J1, then

det(1 + A)det(1 + B) = det (1 + A + B + AB)

= det ((1 + A)(1 + B))

= det ((1 + B)(1 + A)) . (N.15)

If A ∈ J1 and U unitary, then

det
(
U−1(1 + A)U

)
= det

(
1 + U−1AU

)
= det(1 + A) .

(f) If A ∈ J1, then (1 + A) is invertible if and only if det(1 + A) � 0.

(g) If λ � 0 is an n-times degenerate eigenvalue of A ∈ J1, then det(1+ zA) has
a zero of order n at z = −1/λ.

(h) For any ε, there is a Cε(A), depending on A ∈ J1, so that |det(1 + zA)| ≤
Cε(A) exp(ε|z|).
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(i) For any A ∈ J1,

det(1 + A) =
N(A)∏
j=1

(
1 + λ j(A)

)
(N.16)

where here and in the following {λj(A)}N(A)
j=1 are the eigenvalues of A counted

with algebraic multiplicity 3.

(j) Lidskii’s theorem: For any A ∈ J1,

Tr(A) =
N(A)∑
j=1

λ j(A) < ∞ .

(k) If A ∈ J1, then

Tr
(∧k

(A)
)
=

N
(∧k(A)

)∑
j=1

λ j

(∧k
(A)

)
=

∑
1≤ j1<···< jk≤N(A)

λ j1 (A) · · · λ jk (A) < ∞.

(l) If A ∈ J1, then

det(1 + zA) =
∞∑

k=0

zk
∑

1≤ j1<···< jk≤N(A)

λ j1 (A) · · · λ jk (A) < ∞. (N.17)

(m) If A ∈ J1, then for |z| small (i.e., |z|max|λj(A)| < 1) the series
∑∞

k=1 zkTr
(
(−A)k

)
/k

converges and

det(1 + zA) = exp

⎛⎜⎜⎜⎜⎜⎜⎝− ∞∑
k=1

zk

k
Tr

(
(−A)k

)⎞⎟⎟⎟⎟⎟⎟⎠
= exp (Tr ln(1 + zA)) . (N.18)

(n) The Plemelj-Smithies formula: Define αm(A) for A ∈ J1 by

det(1 + zA) =
∞∑

m=0

zmαm(A)
m!

. (N.19)

Then αm(A) is given by the m × m determinant:

αm(A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Tr(A) m − 1 0 · · · 0
Tr(A2) Tr(A) m − 2 · · · 0
Tr(A3) Tr(A2) Tr(A) · · · 0
...

...
...

...
...
1

Tr(Am) Tr(A(m−1)) Tr(A(m−2)) · · · Tr(A)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(N.20)

3Predrag: N(A) can of course be infinite
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Plemelj-Smithies
cumulants

cumulant!expansion!Plemelj-
Smithies

with the understanding that α0(A) ≡ 1 and α1(A) ≡ Tr(A). Thus the cumu-
lants cm(A) ≡ αm(A)/m! satisfy the following recursion relation

cm(A) =
1
m

m∑
k=1

(−1)k+1cm−k(A) Tr(Ak) for m ≥ 1

c0(A) ≡ 1 . (N.21)

Note that in the context of quantum mechanics formula (N.19) is the quantum
analog to the curvature expansion of the semiclassical zeta function with Tr(Am)
corresponding to the sum of all periodic orbits (prime and also repeated ones) of
total topological length m, i.e., let cm(s.c.) denote the m th curvature term, then the
curvature expansion of the semiclassical zeta function is given by the recursion
relation

cm(s.c.) =
1
m

m∑
k=1

(−1)k+m+1cm−k(s.c.)
∑
p;r>0

with [p]r=k

[p]
tp(k)r

1 −
(

1
Λp

)r for m ≥ 1

c0(s.c.) ≡ 1 . (N.22)

In fact, in the cumulant expansion (N.19) as well as in the curvature expansion
there are large cancelations involved. Let us order – without lost of generality –
the eigenvalues of the operator A ∈ J1 as follows:

|λ1| ≥ |λ2| ≥ · · · ≥ |λi−1| ≥ |λi| ≥ |λi+1| ≥ · · ·

(This is always possible because of
∑N(A)

i=1 |λi| < ∞.) Then, in the standard
(Plemelj-Smithies) cumulant evaluation of the determinant, eq. (N.19), we have
enormous cancelations of big numbers, e.g. at the kth cumulant order (k > 3),
all the intrinsically large ‘numbers’ λk

1, λk−1
1 λ2, . . ., λk−2

1 λ2λ3, . . . and many more
have to cancel out exactly until only

∑
1≤ j1<···< jk≤N(A) λ j1 · · ·λ jk is finally left over.

Algebraically, the fact that there are these large cancelations is of course of no
importance. However, if the determinant is calculated numerically, the big cance-
lations might spoil the result or even the convergence. Now, the curvature expan-
sion of the semiclassical zeta function, as it is known today, is the semiclassical
approximation to the curvature expansion (unfortunately) in the Plemelj-Smithies
form. As the exact quantum mechanical result is approximated semiclassically,
the errors introduced in the approximation might lead to big effects as they are
done with respect to large quantities which eventually cancel out and not – as it
would be of course better – with respect to the small surviving cumulants. Thus
it would be very desirable to have a semiclassical analog to the reduced cumulant
expansion (N.17) or even to (N.16) directly. It might not be possible to find a
direct semiclassical analog for the individual eigenvalues λj. Thus the direct con-
struction of the semiclassical equivalent to (N.16) is rather unlikely. However, in
order to have a semiclassical “cumulant” summation without large cancelations
– see (N.17) – it would be just sufficient to find the semiclassical analog of each
complete cumulant (N.17) and not of the single eigenvalues. Whether this will
eventually be possible is still an open question.
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N.5 Von Koch matrices

Implicitly, many of the above properties are based on the theory of von Koch
matrices [11, 12, 13]: An infinite matrix 1 − A = ‖δ jk − ajk‖∞1 , consisting of
complex numbers, is called a matrix with an absolutely convergent determinant,
if the series

∑ |aj1k1aj2k2 · · · ajn ,kn | converges, where the sum extends over all pairs
of systems of indices ( j1, j2, · · · , jn) and (k1, k2, · · · , kn) which differ from each
other only by a permutation, and j1 < j2 < · · · jn (n = 1, 2, · · ·). Then the limit

lim
n→∞

det‖δ jk − ajk‖n
1 = det(1 − A)

exists and is called the determinant of the matrix 1 − A. It can be represented in
the form

det(1 − A) = 1 −
∞∑
j=1

aj j +
1
2!

∞∑
j,k=1

∣∣∣∣∣ aj j a jk
ak j akk

∣∣∣∣∣ − 1
3!

∞∑
j,k,m=1

∣∣∣∣∣∣∣∣
aj j a jk a jm
ak j akk akm
am j amk amm

∣∣∣∣∣∣∣∣ + · · · ,
where the series on the r.h.s. will remain convergent even if the numbers ajk ( j, k =
1, 2, · · ·) are replaced by their moduli and if all the terms obtained by expanding
the determinants are taken with the plus sign. The matrix 1−A is called von Koch
matrix, if both conditions

∞∑
j=1

|aj j| < ∞ , (N.23)

∞∑
j,k=1

|ajk |2 < ∞ (N.24)

are fulfilled. Then the following holds (see ref. [11, 13]): (1) Every von Koch
matrix has an absolutely convergent determinant. If the elements of a von Koch
matrix are functions of some parameter μ (ajk = ajk(μ), j, k = 1, 2, · · ·) and both
series in the defining condition converge uniformly in the domain of the parameter
μ, then as n → ∞ the determinant det‖δjk − ajk(μ)‖n

1 tends to the determinant
det(1+A(μ)) uniformly with respect to μ, over the domain of μ. (2) If the matrices
1 −A and 1 −B are von Koch matrices, then their product 1 −C = (1−A)(1 −B)
is a von Koch matrix, and

det(1 − C) = det(1 − A) det(1 − B) .

Note that every trace-class matrix A ∈ J1 is also a von Koch matrix (and that
any matrix satisfying condition (N.24) is Hilbert-Schmidt and vice versa). The
inverse implication, however, is not true: von Koch matrices are not automati-
cally trace-class. The caveat is that the definition of von Koch matrices is basis-
dependent, whereas the trace-class property is basis-independent. As the traces
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operator!regularization
regularization!operator

involve infinite sums, the basis-independence is not at all trivial. An example for
an infinite matrix which is von Koch, but not trace-class is the following:

Ai j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2/ j for i − j = −1 and j even ,
2/i for i − j = +1 and i even ,
0 else ,

i.e.,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 0 0 1/2 0 0 · · ·
0 0 1/2 0 0 0 · · ·

0 0 0 0 0 1/3
. . .

0 0 0 0 1/3 0
. . .

...
...

...
...

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (N.25)

Obviously, condition (N.23) is fulfilled by definition. Second, the condition (N.24)
is satisfied as

∑∞
n=1 2/n2 < ∞. However, the sum over the moduli of the eigen-

values is just twice the harmonic series
∑∞

n=1 1/n which does not converge. The
matrix (N.25) violates the trace-class definition (N.13), as in its eigenbasis the sum
over the moduli of its diagonal elements is infinite. Thus the absolute convergence
is traded for a conditional convergence, since the sum over the eigenvalues them-
selves can be arranged to still be zero, if the eigenvalues with the same modulus
are summed first. Absolute convergence is of course essential, if sums have to be
rearranged or exchanged. Thus, the trace-class property is indispensable for any
controlled unitary transformation of an infinite determinant, as then there will be
necessarily a change of basis and in general also a re-ordering of the correspond-
ing traces. Therefore the claim that a Hilbert-Schmidt operator with a vanishing
trace is automatically trace-class is false. In general, such an operator has to be
regularized in addition (see next chapter).

N.6 Regularization

Many interesting operators are not of trace class (although they might be in some
Jp with p > 1 - an operator A is in Jp iff Tr|A|p < ∞ in any orthonormal basis).
In order to compute determinants of such operators, an extension of the cumulant
expansion is needed which in fact corresponds to a regularization procedure [8,
10]:
E.g. let A ∈ Jp with p ≤ n. Define

Rn(zA) = (1 + zA) exp

⎛⎜⎜⎜⎜⎜⎜⎝n−1∑
k=1

(−z)k

k
Ak

⎞⎟⎟⎟⎟⎟⎟⎠ − 1
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determinant!Fredholm
Fredholm!determinant

as the regulated version of the operator zA. Then the regulated operator Rn(zA) is
trace class, i.e., Rn(zA) ∈ J1. Define now detn(1 + zA) = det(1 + Rn(zA)). Then
the regulated determinant

detn(1 + zA) =
N(zA)∏

j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣(1 + zλ j(A)
)

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝n−1∑
k=1

(
−zλ j(A)

)k

k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ < ∞. (N.26)

exists and is finite. The corresponding Plemelj-Smithies formula now reads [10]:

detn(1 + zA) =
∞∑

m=0

zmα
(n)
m (A)
m!

. (N.27)

with α(n)
m (A) given by the m × m determinant:

α(n)
m (A) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ(n)
1 m − 1 0 · · · 0

σ(n)
2 σ(n)

1 m − 2 · · · 0
σ(n)

3 σ(n)
2 σ(n)

1 · · · 0
...

...
...

...
...
1

σ(n)
m σ(n)

m−1 σ(n)
m−2 · · · σ(n)

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(N.28)

where

σ(n)
k =

{
Tr(Ak) k ≥ n
0 k ≤ n − 1

As Simon [10] says simply, the beauty of (N.28) is that we get detn(1 + A) from
the standard Plemelj-Smithies formula (N.19) by simply setting Tr(A), Tr(A2),
. . ., Tr(An−1) to zero.

See also ref. [15] where {λ j} are the eigenvalues of an elliptic (pseudo)-differential
operator H of order m on a compact or bounded manifold of dimension d, 0 < λ0 ≤
λ1 ≤ · · · and λk ↑ +∞. and the Fredholm determinant

Δ(λ) =
∞∏

k=0

(
1 − λ

λk

)

is regulated in the case μ ≡ d/m > 1 as Weierstrass product

Δ(λ) =
∞∏

k=0

⎡⎢⎢⎢⎢⎢⎢⎣(1 − λ

λk

)
exp

⎛⎜⎜⎜⎜⎜⎜⎝ λλk
+
λ2

2λ2
k

+ · · · + λ[μ]

[μ]λ[μ]
k

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ (N.29)
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where [μ] denotes the integer part of μ. This is, see ref. [15], the unique entire
function of order μ having zeros at {λk} and subject to the normalization conditions

lnΔ(0) =
d

dλ
lnΔ(0) = · · · = d[μ]

dλ[μ]
lnΔ(0) = 0 .

Clearly (N.29) is the same as (N.26); one just has to identify z = −λ, A = 1/H
and n − 1 = [μ]. An example is the regularization of the spectral determinant

Δ(E) = det [(E − H)] (N.30)

which – as it stands – would only make sense for a finite dimensional basis (or
finite dimensional matrices). In ref. [16] the regulated spectral determinant for the
example of the hyperbola billiard in two dimensions (thus d = 2, m = 2 and hence
μ = 1) is given as

Δ(E) = det [(E − H)Ω(E,H)]

where

Ω(E,H) = −H−1eEH−1

such that the spectral determinant in the eigenbasis of H (with eigenvalues En � 0)
reads

Δ(E) =
∏

n

(
1 − E

En

)
eE/En < ∞ .

Note that H−1 is for this example of Hilbert-Schmidt character.

boyscout

N.1. Norm of exponential of an operator. Verify inequality
(N.12):

‖etA‖ ≤ et‖A‖ .
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Appendix O

Thermodynamic formalism

Being Hungarian is not sufficient. You also must be tal-
ented.

— Zsa Zsa Gabor

(G. Vattay)

In the preceding chapters we characterized chaotic systems via global quanti-
ties such as averages. It turned out that these are closely related to very fine
details of the dynamics like stabilities and time periods of individual periodic

orbits. In statistical mechanics a similar duality exists. Macroscopic systems are
characterized with thermodynamic quantities (pressure, temperature and chemical
potential) which are averages over fine details of the system called microstates.
One of the greatest achievements of the theory of dynamical systems was when
in the sixties and seventies Bowen, Ruelle and Sinai made the analogy between
these two subjects explicit. Later this “Thermodynamic Formalism” of dynam-
ical systems became widely used making it possible to calculate various fractal
dimensions. We sketch the main ideas of this theory and show how periodic orbit
theory helps to carry out calculations.

O.1 Rényi entropies

As we have already seen trajectories in a dynamical system can be characterized
by their symbolic sequences from a generating Markov partition. We can locate
the set of starting points Ms1 s2...sn of trajectories whose symbol sequence starts
with a given set of n symbols s1s2...sn. We can associate many different quantities
to these sets. There are geometric measures such as the volume V(s1s2...sn), the
area A(s1s2...sn) or the length l(s1s2...sn) of this set. Or in general we can have
some measure μ(Ms1 s2...sn) = μ(s1s2...sn) of this set. As we have seen in (22.10)
the most important is the natural measure, which is the probability that an ergodic
trajectory visits the set μ(s1s2...sn) = P(s1s2...sn). The natural measure is additive.
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Summed up for all possible symbol sequences of length n it gives the measure of
the whole state space:∑

s1s2...sn

μ(s1s2...sn) = 1 (O.1)

expresses probability conservation. Also, summing up for the last symbol we get
the measure of a one step shorter sequence∑

sn

μ(s1s2...sn) = μ(s1s2...sn−1).

As we increase the length (n) of the sequence the measure associated with it de-
creases typically with an exponential rate. It is then useful to introduce the expo-
nents

λ(s1s2...sn) = −1
n

log μ(s1s2...sn). (O.2)

To get full information on the distribution of the natural measure in the symbolic
space we can study the distribution of exponents. Let the number of symbol se-
quences of length n with exponents between λ and λ + dλ be given by Nn(λ)dλ.
For large n the number of such sequences increases exponentially. The rate of this
exponential growth can be characterized by g(λ) such that

Nn(λ) ∼ exp(ng(λ)) .

The knowledge of the distribution Nn(λ) or its essential part g(λ) fully character-
izes the microscopic structure of our dynamical system.

As a natural next step we would like to calculate this distribution. However it
is very time consuming to calculate the distribution directly by making statistics
for millions of symbolic sequences. Instead, we introduce auxiliary quantities
which are easier to calculate and to handle. These are called partition sums

Zn(β) =
∑

s1s2...sn

μβ(s1s2...sn), (O.3)

as they are obviously motivated by Gibbs type partition sums of statistical me-
chanics. The parameter β plays the role of inverse temperature 1/kBT and E(s1s2...sn) =
− log μ(s1s2...sn) is the energy associated with the microstate labeled by s1s2...sn

We are tempted also to introduce something analogous with the Free energy. In
dynamical systems this is called the Rényi entropy [5] defined by the growth rate
of the partition sum

Kβ = lim
n→∞

1
n

1
1 − β

log

⎛⎜⎜⎜⎜⎜⎜⎝ ∑
s1s2...sn

μβ(s1s2...sn)

⎞⎟⎟⎟⎟⎟⎟⎠ . (O.4)
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Kolmogorov entropy
entropy!Kolmogorov

In the special case β→ 1 we get Kolmogorov entropy

K1 = lim
n→∞

1
n

∑
s1s2...sn

−μ(s1s2...sn) log μ(s1s2...sn),

while for β = 0 we recover the topological entropy

htop = K0 = lim
n→∞

1
n

log N(n),

where N(n) is the number of existing length n sequences. To connect the partition
sums with the distribution of the exponents, we can write them as averages over
the exponents

Zn(β) =
∫

dλNn(λ) exp(−nλβ),

where we used the definition (O.2). For large n we can replace Nn(λ) with its
asymptotic form

Zn(β) ∼
∫

dλ exp(ng(λ)) exp(−nλβ).

For large n this integral is dominated by contributions from those λ∗ which maxi-
mize the exponent

g(λ) − λβ.

The exponent is maximal when the derivative of the exponent vanishes

g′(λ∗) = β. (O.5)

From this equation we can determine λ∗(β). Finally the partition sum is

Zn(β) ∼ exp(n[g(λ∗(β)) − λ∗(β)β]).

Using the definition (O.4) we can now connect the Rényi entropies and g(λ)

(β − 1)Kβ = λ
∗(β)β − g(λ∗(β)). (O.6)

Equations (O.5) and (O.6) define the Legendre transform of g(λ). This equation
is analogous with the thermodynamic equation connecting the entropy and the
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free energy. As we know from thermodynamics we can invert the Legendre trans-
form. In our case we can express g(λ) from the Rényi entropies via the Legendre
transformation

g(λ) = λβ∗(λ) − (β∗(λ) − 1)Kβ∗(λ), (O.7)

where now β∗(λ) can be determined from

d
dβ∗

[(β∗ − 1)Kβ∗] = λ. (O.8)

Obviously, if we can determine the Rényi entropies we can recover the distribution
of probabilities from (O.7) and (O.8).

The periodic orbit calculation of the Rényi entropies can be carried out by
approximating the natural measure corresponding to a symbol sequence by the
expression (22.10)

μ(s1, ..., sn) ≈ enγ

|Λs1s2...sn |
. (O.9)

The partition sum (O.3) now reads

Zn(β) ≈
∑

i

enβγ

|Λi|β
, (O.10)

where the summation goes for periodic orbits of length n. We can define the
characteristic function

Ω(z, β) = exp

⎛⎜⎜⎜⎜⎜⎝−∑
n

zn

n
Zn(β)

⎞⎟⎟⎟⎟⎟⎠ . (O.11)

According to (O.4) for large n the partition sum behaves as

Zn(β) ∼ e−n(β−1)Kβ . (O.12)

Substituting this into (O.11) we can see that the leading zero of the characteristic
function is

z0(β) = e(β−1)Kβ .
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escape rate
Kolmogorov entropy
entropy!Kolmogorov
hyperbolic!systems
boredom

On the other hand substituting the periodic orbit approximation (O.10) into (O.11)
and introducing prime and repeated periodic orbits as usual we get

Ω(z, β) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p,r

znpreβγnpr

r|Λr
p|β

⎞⎟⎟⎟⎟⎟⎟⎠ .
We can see that the characteristic function is the same as the zeta function we in-
troduced for Lyapunov exponents (J.12) except we have zeβγ instead of z. Then we
can conclude that the Rényi entropies can be expressed with the pressure function
directly as

P(β) = (β − 1)Kβ + βγ, (O.13)

since the leading zero of the zeta function is the pressure. The Rényi entropies Kβ,
hence the distribution of the exponents g(λ) as well, can be calculated via finding
the leading eigenvalue of the operator (J.4).

From (O.13) we can get all the important quantities of the thermodynamic
formalism. For β = 0 we get the topological entropy

P(0) = −K0 = −htop. (O.14)

For β = 1 we get the escape rate

P(1) = γ. (O.15)

Taking the derivative of (O.13) in β = 1 we get Pesin’s formula [2] connecting
Kolmogorov entropy and the Lyapunov exponent

P′(1) = λ = K1 + γ. (O.16)

exercise O.1

It is important to note that, as always, these formulas are strictly valid for nice
hyperbolic systems only. At the end of this Chapter we discuss the important
problems we are facing in non-hyperbolic cases.

On figure O.2 we show a typical pressure and g(λ) curve computed for the
two scale tent map of Exercise O.4. We have to mention, that all typical hyper-
bolic dynamical system produces a similar parabola like curve. Although this is
somewhat boring we can interpret it like a sign of a high level of universality:
The exponents λ have a sharp distribution around the most probable value. The
most probable value is λ = P′(0) and g(λ) = htop is the topological entropy. The
average value in closed systems is where g(λ) touches the diagonal: λ = g(λ) and
1 = g′(λ). ⇓PRIVATE

⇑PRIVATENext, we are looking at the distribution of trajectories in real space.
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three-disk@3-
disk!state
space

three-disk@3-
disk!fractal
dimension

fractal

Figure O.1
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Figure O.2: g(λ) and P(β) for the map of exercise O.4
at a = 3 and b = 3/2. See solution S for details.
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O.2 Fractal dimensions

Hentschel and Procaccia rediscovered a small part of my
theory. Generalized dimensions are not useful at all.

—Benoit B. Mandelbrot

By looking at the repeller we can recognize an interesting spatial structure.
In the 3-disk case the starting points of trajectories not leaving the system after
the first bounce form two strips. Then these strips are subdivided into an infinite
hierarchy of substrings as we follow trajectories which do not leave the system
after more and more bounces. The finer strips are similar to strips on a larger
scale. Objects with such self similar properties are called fractals.

We can characterize fractals via their local scaling properties. The first step is
to draw a uniform grid on the surface of section. We can look at various measures
in the square boxes of the grid. The most interesting measure is again the natural
measure located in the box. By decreasing the size of the grid ε the measure in
a given box will decrease. If the distribution of the measure is smooth then we
expect that the measure of the ith box is proportional with the dimension of the
section

μi ∼ εd.

If the measure is distributed on a hairy object like the repeller we can observe
unusual scaling behavior of type

μi ∼ εαi ,

where αi is the local “dimension” or Hölder exponent of the object. As α is not
necessarily an integer here we are dealing with objects with fractional dimensions.
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We can study the distribution of the measure on the surface of section by looking
at the distribution of these local exponents. We can define

αi =
log μi

log ε
,

the local Hölder exponent and then we can count how many of them are between
α and α + dα. This is Nε(α)dα. Again, in smooth objects this function scales
simply with the dimension of the system

Nε(α) ∼ ε−d ,

while for hairy objects we expect an α dependent scaling exponent

Nε(α) ∼ ε− f (α).

f (α) can be interpreted [7] as the dimension of the points on the surface of section
with scaling exponent α. We can calculate f (α) with the help of partition sums as
we did for g(λ) in the previous section. First, we define

Zε(q) =
∑

i

μ
q
i . (O.17)

Then we would like to determine the asymptotic behavior of the partition sum
characterized by the τ(q) exponent

Zε(q) ∼ ε−τ(q).

The partition sum can be written in terms of the distribution function of α-s

Zε(q) =
∫

dαNε(α)εqα.

Using the asymptotic form of the distribution we get

Zε(q) ∼
∫

dαεqα− f (α).

As ε goes to zero the integral is dominated by the term maximizing the exponent.
This α∗ can be determined from the equation

d
dα∗

(qα∗ − f (α∗)) = 0,
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fractal!dimension
dimension!fractal
dimension!box

counting
information

dimension
dimension!information

leading to

q = f ′(α∗).

Finally we can read off the scaling exponent of the partition sum

τ(q) = α∗q − f (α∗).

In a uniform fractal characterized by a single dimension both α and f (α) col-
lapse to α = f (α) = D. The scaling exponent then has the form τ(q) = (q − 1)D.
In case of non uniform fractals we can introduce generalized dimensions [9] Dq

via the definition

Dq = τ(q)/(q − 1).

Some of these dimensions have special names. For q = 0 the partition sum (O.17)
counts the number of non empty boxes N̄ε . Consequently

D0 = − lim
ε→0

log N̄ε

log ε
,

is called the box counting dimension. For q = 1 the dimension can be determined
as the limit of the formulas for q → 1 leading to

D1 = lim
ε→0

∑
i

μi log μi/ log ε.

This is the scaling exponent of the Shannon information entropy [11] of the dis-
tribution, hence its name is information dimension.

Using equisize grids is impractical in most of the applications. Instead, we
can rewrite (O.17) into the more convenient form

∑
i

μ
q
i

ετ(q)
∼ 1. (O.18)

If we cover the ith branch of the fractal with a grid of size li instead of ε we can
use the relation [5]

∑
i

μ
q
i

liτ(q)
∼ 1, (O.19)
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escape rate
information

dimension
dimension!information

the non-uniform grid generalization of O.18. Next we show how can we use the
periodic orbit formalism to calculate fractal dimensions. We have already seen
that the width of the strips of the repeller can be approximated with the stabilities
of the periodic orbits placed within them

li ∼
1
|Λi|

.

Then using this relation and the periodic orbit expression of the natural measure
we can write (O.19) into the form

∑
i

eqγn

|Λi|q−τ(q)
∼ 1, (O.20)

where the summation goes for periodic orbits of length n. The sum for stabilities
can be expressed with the pressure function again

∑
i

1

|Λi|q−τ(q)
∼ e−nP(q−τ(q)),

and (O.20) can be written as

eqγne−nP(q−τ(q)) ∼ 1,

for large n. Finally we get an implicit formula for the dimensions

P(q − (q − 1)Dq) = qγ. (O.21)

Solving this equation directly gives us the partial dimensions of the multifractal
repeller along the stable direction. We can see again that the pressure function
alone contains all the relevant information. Setting q = 0 in (O.21) we can prove
that the zero of the pressure function is the box-counting dimension of the repeller

P(D0) = 0.

Taking the derivative of (O.21) in q = 1 we get

P′(1)(1 − D1) = γ.

This way we can express the information dimension with the escape rate and the
Lyapunov exponent

D1 = 1 − γ/λ. (O.22)
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hyperbolic!systemsIf the system is bound (γ = 0) the information dimension and all other dimensions
are Dq = 1. Also since D10 is positive (O.22) proves that the Lyapunov exponent
must be larger than the escape rate λ > γ in general. 1 2

exercise O.4
exercise O.6

Résumé

In this chapter we have shown that thermodynamic quantities and various frac-
tal dimensions can be expressed in terms of the pressure function. The pressure
function is the leading eigenvalue of the operator which generates the Lyapunov
exponent. In the Lyapunov case β is just an auxiliary variable. In thermodynamics
it plays an essential role. The good news of the chapter is that the distribution of
locally fluctuating exponents should not be computed via making statistics. We
can use cyclist formulas for determining the pressure. Then the pressure can be
found using short cycles + curvatures. Here the head reaches the tail of the snake.
We just argued that the statistics of long trajectories coded in g(λ) and P(β) can be
calculated from short cycles. To use this intimate relation between long and short
trajectories effectively is still a research level problem.

Commentary

Remark O.1 Mild phase transition. In non-hyperbolic systems the formulas derived
in this chapter should be modified. As we mentioned in remark 22.1 in non-hyperbolic
systems the periodic orbit expression of the measure can be

μ0 = eγn/|Λ0|δ ,

where δ can differ from 1. Usually it is 1/2. For sufficiently negative β the corresponding
term 1/|Λ0|β can dominate (O.10) while in (O.3) eγn/|Λ0|δβ plays no dominant role. In
this case the pressure as a function of β can have a kink at the critical point β = β c where
βc log |Λ0| = (βc − 1)Kβc + βcγ. For β < βc the pressure and the Rényi entropies differ

P(β) � (β − 1)Kβ + βγ .

This phenomena is called phase transition. This is however not a very deep problem. We
can fix the relation between pressure and the entropies by replacing 1/|Λ 0| with 1/|Λ0|δ in
(O.10).

Remark O.2 Hard phase transition. The really deep trouble of thermodynamics is
caused by intermittency. In that case we have periodic orbits with |Λ 0| → 1 as n → ∞.

1Predrag: need to extract more refsThermo.tex from refsAppApplic?
2Predrag: Read up on Kullback-Leibler distance - can it be used to assign distance to pairs of

periodic orbits?
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Kolmogorov entropy
entropy!Kolmogorov
escape rate
intermittency
stadium billiard
billiard!stadium
Kolmogorov entropy
entropy!Kolmogorov

Then for β > 1 the contribution of these orbits dominate both ( O.10) and (O.3). Conse-
quently the partition sum scales as Zn(β) → 1 and both the pressure and the entropies are
zero. In this case quantities connected with β ≤ 1 make sense only. These are for example
the topological entropy, Kolmogorov entropy, Lyapunov exponent, escape rate, D 0 and
D1. This phase transition cannot be fixed. It is probably fair to say that quantities which
depend on this phase transition are only of mathematical interest and not very useful for
characterization of realistic dynamical systems.

boyscout

O.1. Thermodynamics in higher dimensions. Define
Lyapunov exponents as the time averages of the eigen-
exponents of the Jacobian matrix J

μ(k) = lim
t→∞

1
t

log |Λt
k(x0)|, (O.23)

as a generalization of (6.11).

Show that in d dimensions Pesin’s formula is

K1 =

d∑
k=1

μ(k) − γ, (O.24)

where the summation goes for the positive μ (k)-s only.
Hint: Use the d-dimensional generalization of (O.9)

μp = enγ/|
∏

k

Λp,k |,

where the product goes for the expanding eigenvalues of
the Jacobian matrix of p-cycle. (G. Vattay)

O.2. Stadium billiard Kolmogorov entropy. (con-
tinuation of exercise 8.4) Take a = 1.6 and d = 1
in the stadium billiard figure 8.1, and estimate the Lya-
punov exponent by averaging over a very long trajectory.
Biham and Kvale [14] estimate the discrete time Lya-
punov to λ ≈ 1.0 ± .1, the continuous time Lyapunov to
λ ≈ 0.43± .02, the topological entropy (for their symbolic
dynamics) h ≈ 1.15 ± .03.

O.3. Entropy of rugged-edge billiards. Take a semi-circle
of diameter ε and replace the sides of a unit square by
,1/ε- semi-circle arcs.
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(a) Is the billiard ergodic as ε→ 0?

(b) (hard) Show that the entropy of the billiard map is

K1 → −2
π

ln ε + const ,

as ε→ 0. (Hint: do not write return maps.)

(c) (harder) Show that when the semi-circles of the sta-
dium billiard are far apart, say L, the entropy for the
flow decays as

K1 →
2 ln L
πL

.

O.4. Two scale map. Compute all those quantities - dimen-
sions, escape rate, entropies, etc. - for the repeller of the
one dimensional map

f (x) =

{
1 + ax if x < 0,
1 − bx if x > 0. (O.25)

where a and b are larger than 2. Compute the fractal di-
mension, plot the pressure and compute the f (α) spec-
trum of singularities. Note that K1 may be obtained di- ⇓PRIVATErectly from (??).

⇑PRIVATE

⇓PRIVATEO.5. Four scale map. 3 Compute the Rényi entropies and
g(λ) for the four scale map

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
a1x if 0 < x < b/a1,
(1 − b)((x − b/a1)/(b − b/a1)) + b if b/a1 < x < b,
a2(x − b) if b < x < b + b/a2,
(1 − b)((x − b − b/a2)/(1 − b − b/a2)) + b if b + b/a2 < x < 1.

(O.26)

Hint: Calculate the pressure function and use (O.13).
⇑PRIVATE

O.6. Transfer matrix. Take the unimodal map f (x) =
sin(πx) of the interval I = [0, 1]. Calculate the four preim-
ages of the intervals I0 = [0, 1/2] and I1 = [1/2, 1]. Ex-
trapolate f (x) with piecewise linear functions on these in-
tervals. Find a1, a2 and b of the previous exercise. Cal-
culate the pressure function of this linear extrapolation.
Work out higher level approximations by linearly extrap-
olating the map on the 2n-th preimages of I.

3Predrag: I think this is wrong - not a Markov partition. Eliminate, or rewrite as a continuation
of exercise 22.2
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Appendix P

Statistical mechanics recycled

(R. Mainieri)

A spin system with long-range interactions can be converted into a chaotic
dynamical system that is differentiable and low-dimensional. The ther-
modynamic limit quantities of the spin system are then equivalent to long

time averages of the dynamical system. In this way the spin system averages can
be recast as the cycle expansions. If the resulting dynamical system is analytic, the
convergence to the thermodynamic limit is faster than with the standard transfer
matrix techniques. 1

P.1 The thermodynamic limit

There are two motivations to recycle statistical mechanics: one gets better control
over the thermodynamic limit and one gets detailed information on how one is
converging to it. From this information, most other quantities of physical interst
can be computed.

In statistical mechanics one computes the averages of observables. These are
functions that return a number for every state of the system; they are an abstraction
of the process of measuring the pressure or temperature of a gas. The average of
an observable is computed in the thermodynamic limit — the limit of system with
an arbitrarily large number of particles. The thermodynamic limit is an essential
step in the computation of averages, as it is only then that one observes the bulk
properties of matter.

Without the thermodynamic limit many of the thermodynamic properties of
matter could not be derived within the framework of statistical mechanics. There
would be no extensive quantities, no equivalence of ensembles, and no phase tran-
sitions. From experiments it is known that certain quantities are extensive, that is,

1Predrag: out of the main line of argument, moved to an appendix
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they are proportional to the size of the system. This is not true for an interact-
ing set of particles. If two systems interacting via pairwise potentials are brought
close together, work will be required to join them, and the final total energy will
not be the sum of the energies of each of the parts. To avoid the conflict between
the experiments and the theory of Hamiltonian systems, one needs systems with
an infinite number of particles. In the canonical ensemble the probability of a
state is given by the Boltzman factor which does not impose the conservation of
energy; in the microcanonical ensemble energy is conserved but the Boltzmann
factor is no longer exact. The equality between the ensembles only appears in the
limit of the number of particles going to infinity at constant density. The phase
transitions are interpreted as points of non-analyticity of the free energy in the
thermodynamic limit. For a finite system the partition function cannot have a zero
as a function of the inverse temperature β, as it is a finite sum of positive terms.

The thermodynamic limit is also of central importance in the study of field
theories. A field theory can be first defined on a lattice and then the lattice spac-
ing is taken to zero as the correlation length is kept fixed. This continuum limit
corresponds to the thermodynamic limit. In lattice spacing units the correlation
length is going to infinity, and the interacting field theory can be thought of as a
statistical mechanics model at a phase transition.

For general systems the convergence towards the thermodynamic limit is slow.
If the thermodynamic limit exists for an interaction, the convergence of the free
energy per unit volume f is as an inverse power in the linear dimension of the
system.

f (β) → 1
n

(P.1)

where n is proportional to V1/d, with V the volume of the d-dimensional system.
Much better results can be obtained if the system can be described by a transfer
matrix. A transfer matrix is concocted so that the trace of its nth power is exactly
the partition function of the system with one of the dimensions proportional to
n. When the system is described by a transfer matrix then the convergence is
exponential,

f (β) → e−αn (P.2)

and may only be faster than that if all long-range correlations of the system are
zero — that is, when there are no interactions. The coefficient α depends only on
the inverse correlation length of the system.

One of the difficulties in using the transfer matrix techniques is that they seem
at first limited to systems with finite range interactions. Phase transitions can
happen only when the interaction is long range. One can try to approximate the
long range interaction with a series of finite range interactions that have an ever
increasing range. The problem with this approach is that in a formally defined
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transfer matrix, not all the eigenvalues of the matrix correspond to eigenvalues of
the system (in the sense that the rate of decay of correlations is not the ratio of
eigenvalues).

Knowledge of the correlations used in conjunction with finite size scaling to
obtain accurate estimates of the parameters of systems with phase transitions. (Ac-
curate critical exponents are obtained by series expansions or transfer matrices,
and infrequently by renormalization group arguments or Monte Carlo.) In a phase
transition the coefficient α of the exponential convergence goes to zero and the
convergence to the thermodynamic limit is power-law.

The computation of the partition function is an example of a functional inte-
gral. For most interactions these integrals are ill-defined and require some form
of normalization. In the spin models case the functional integral is very simple,
as “space” has only two points and only “time” being infinite has to be dealt with.
The same problem occurs in the computation of the trace of transfer matrices of
systems with infinite range interactions. If one tries to compute the partition func-
tion Zn

2

Zn = tr T n

when T is an infinite matrix, the result may be infinite for any n. This is not to
say that Zn is infinite, but that the relation between the trace of an operator and the
partition function breaks down. We could try regularizing the expression, but as
we shall see below, that is not necessary, as there is a better physical solution to
this problem.

What will described here solves both of these problems in a limited context:
it regularizes the transfer operator in a physically meaningful way, and as a con-
sequence, it allows for the faster than exponential convergence to the thermody-
namic limit and complete determination of the spectrum. The steps to achieve this
are:

• Redefine the transfer operator so that there are no limits involved except for
the thermodynamic limit.

• Note that the divergences of this operator come from the fact that it acts on
a very large space. All that is needed is the smallest subspace containing
the eigenvector corresponding to the largest eigenvalue (the Gibbs state).

• Rewrite all observables as depending on a local effective field. The eigen-
vector is like that, and the operator restricted to this space is trace-class.

• Compute the spectrum of the transfer operator and observe the magic.

2Predrag: partition function, functional integral; nowhere defined in DasBuch
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Ising modelP.2 Ising models

The Ising model is a simple model to study the cooperative effects of many small
interacting magnetic dipoles. The dipoles are placed on a lattice and their interac-
tion is greatly simplified. There can also be a field that includes the effects of an
external magnetic field and the average effect of the dipoles among themselves.
We will define a general class of Ising models (also called spin systems) where the
dipoles can be in one of many possible states and the interactions extend beyond
the nearest neighboring sites of the lattice. But before we extend the Ising model,
we will examine the simplest model in that class.

P.2.1 Ising model

One of the simplest models in statistical mechanics is the Ising model. One imag-
ines that one has a 1-dimensional lattice with small magnets at each site that can
point either up or down.

.

Each little magnet interacts only with its neighbors. If they both point in the same
direction, then they contribute an energy −J to the total energy of the system; and
if they point in opposite directions, then they contribute +J. The signs are chsen
so that they prefer to be aligned. Let us suppose that we have n small magnets
arranged in a line: A line is drawn between two sites to indicate that there is an
interaction between the small magnets that are located on that site

. (P.3)

(This figure can be thought of as a graph, with sites being vertices and interacting
magnets indicated by edges.) To each of the sites we associate a variable, that we
call a spin, that can be in either of two states: up (↑) or down (↓). This represents
the two states of the small magnet on that site, and in general we will use the
notation Σ0 to represent the set of possible values of a spin at any site; all sites
assume the same set of values. A configuration consists of assigning a value to
the spin at each site; a typical configuration is

↓ ↑↑ ↑ ↓ ↑ ↑ ↓↓

. (P.4)

The set of all configurations for a lattice with n sites is called Ωn
0 and is formed

by the Cartesian product Ω0 × Ω0 · · · × Ω0, the product repeated n times. Each
configuration σ ∈ Ωn is a string of n spins

σ = {σ0, σ1, . . . σn} , (P.5)
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In the example configuration (P.4) there are two pairs of spins that have the
same orientation and six that have the opposite orientation. Therefore the total
energy H of the configuration is J × 6 − J × 2 = 4J. In general we can associate
an energy H to every configuration

H(σ) =
∑

i

Jδ(σi, σi+1) , (P.6)

where

δ(σ1, σ2) =

{
+1 if σ1 = σ2
−1 if σ1 � σ2

. (P.7)

One of the problems that was avoided when computing the energy was what to do
at the boundaries of the 1-dimensional chain. Note that as written, (P.6) requires
the interaction of spin n with spin n + 1. In the absence of phase transitions the
boundaries do not matter much to the thermodynamic limit and we will connect
the first site to the last, implementing periodic boundary conditions.

Thermodynamic quantities are computed from the partition function Z(n) as
the size n of the system becomes very large. For example, the free energy per site
f at inverse temperature β is given by

− β f (β) = lim
n→∞

1
n

ln Z(n) . (P.8)

The partition function Z(n) is computed by a sum that runs over all the possible
configurations on the 1-dimensional chain. Each configuration contributes with
its Gibbs factor exp(−βH(σ)) and the partition function Z(n) is

Z(n)(β) =
∑
σ∈Ωn

0

e−βH(σ) . (P.9)

The partition function can be computed using transfer matrices. This is a
method that generalizes to other models. At first, it is a little mysterious that
matrices show up in the study of a sum. To see where they come from, we can
try and build a configuration on the lattice site by site. The first thing to do is to
expand out the sum for the energy of the configuration

Z(n)(β) =
∑
σ∈Ωn

eβJδ(σ1 ,σ2)eβJδ(σ2 ,σ3) · · · eβJδ(σn ,σ1) . (P.10)

Let us use the configuration in (P.4). The first site is σ1 =↑. As the second site is
↑, we know that the first term in (P.10) is a term eβJ . The third spin is ↓, so the
second term in (P.10) is e−βJ . If the third spin had been ↑, then the term would
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observable
Ising model

have been eβJ but it would not depend on the value of the first spin σ1. This means
that the configuration can be built site by site and that to compute the Gibbs factor
for the configuration just requires knowing the last spin added. We can then think
of the configuration as being a weighted random walk where each step of the walk
contributes according to the last spin added. The random walk take place on the
transition graph

↓ ↑eβJ

e−βJ

e−βJ

eβJ

.

Choose one of the two sites as a starting point. Walk along any allowed edge
making your choices randomly and keep track of the accumulated weight as you
perform the n steps. To implement the periodic boundary conditions make sure
that you return to the starting node of the transition graph. If the walk is carried
out in all possible 2n ways then the sum of all the weights is the partition function.
To perform the sum we consider the matrix

T (β) =

[
eβJ e−βJ

e−βJ eβJ

]
. (P.11)

As in chapter 11 the sum of all closed walks is given by the trace of powers of the
matrix. These powers can easily be re-expressed in terms of the two eigenvalues
λ1 and λ2 of the transfer matrix:

Z(n)(β) = tr Tn(β) = λ1(β)n + λ2(β)n . (P.12)

P.2.2 Averages of observables

Averages of observables can be re-expressed in terms of the eigenvectors of the
transfer matrix. Alternatively, one can introduce a modified transfer matrix and
compute the averages through derivatives. Sounds familiar?

P.2.3 General spin models

The more general version of the Ising model — the spin models — will be defined
on a regular lattice, ZD. At each lattice site there will be a spin variable that can
assumes a finite number of states identified by the set Ω0.

The transfer operator T was introduced by Kramers and Wannier [12] to study
the Ising model on a strip and concocted so that the trace of its nth power is the
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intermittencypartition function Zn of system when one of its dimensions is n. The method
can be generalized to deal with any finite-range interaction. If the range of the
interaction is L, then T is a matrix of size 2L×2L. The longer the range, the larger
the matrix.

P.3 Fisher droplet model

In a series of articles [20], Fisher introduced the droplet model. It is a model for
a system containing two phases: gas and liquid. At high temperatures, the typical
state of the system consists of droplets of all sizes floating in the gas phase. As the
temperature is lowered, the droplets coalesce, forming larger droplets, until at the
transition temperature, all droplets form one large one. This is a first order phase
transition.

Although Fisher formulated the model in 3-dimensions, the analytic solution
of the model shows that it is equivalent to a 1-dimensional lattice gas model with
long range interactions. Here we will show how the model can be solved for an
arbitrary interaction, as the solution only depends on the asymptotic behavior of
the interaction.

The interest of the model for the study of cycle expansions is its relation to
intermittency. By having an interaction that behaves asymptotically as the scaling
function for intermittency, one expects that the analytic structure (poles and cuts)
will be same.

Fisher used the droplet model to study a first order phase transition [20].
Gallavotti [21] used it to show that the zeta functions cannot in general be ex-
tended to a meromorphic functions of the entire complex plane. The droplet model
has also been used in dynamical systems to explain features of mode locking, see
Artuso [22]. In computing the zeta function for the droplet model we will discover
that at low temperatures the cycle expansion has a limited radius of convergence,
but it is possible to factorize the expansion into the product of two functions, each
of them with a better understood radius of convergence.

P.3.1 Solution

The droplet model is a 1-dimensional lattice gas where each site can have two
states: empty or occupied. We will represent the empty state by 0 and the occupied
state by 1. The configurations of the model in this notation are then strings of
zeros and ones. Each configuration can be viewed as groups of contiguous ones
separated by one or more zeros. The contiguous ones represent the droplets in the
model. The droplets do not interact with each other, but the individual particles
within each droplet do.

To determine the thermodynamics of the system we must assign an energy
to every configuration. At very high temperatures we would expect a gaseous
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phase where there are many small droplets, and as we decrease the temperature
the droplets would be expected to coalesce into larger ones until at some point
there is a phase transition and the configuration is dominated by one large drop.
To construct a solvable model and yet one with a phase transition we need long
range interaction among all the particles of a droplet. One choice is to assign a
fixed energy θn for the interactions of the particles of a cluster of size n. In a
given droplet one has to consider all the possible clusters formed by contiguous
particles. Consider for example the configuration 0111010. It has two droplets,
one of size three and another of size one. The droplet of size one has only one
cluster of size one and therefore contributes to the energy of the configuration with
θ1. The cluster of size three has one cluster of size three, two clusters of size two,
and three clusters of size one; each cluster contributing a θn term to the energy.
The total energy of the configuration is then

H(0111010) = 4θ1 + 2θ2 + 1θ3 . (P.13)

If there where more zeros around the droplets in the above configuration the en-
ergy would still be the same. The interaction of one site with the others is assumed
to be finite, even in the ground state consisting of a single droplet, so there is a
restriction on the sum of the cluster energies given by

a =
∑
n>0

θn < ∞ . (P.14)

The configuration with all zeros does not contribute to the energy.

Once we specify the function θn we can computed the energy of any config-
uration, and from that determine the thermodynamics. Here we will evaluate the
cycle expansion for the model by first computing the generating function

G(z, β) =
∑
n>0

zn Zn(β)
n

(P.15)

and then considering its exponential, the cycle expansion. Each partition function
Zn must be evaluated with periodic boundary conditions. So if we were computing
Z3 we must consider all eight binary sequences of three bits, and when computing
the energy of a configuration, say 011, we should determine the energy per three
sites of the long chain

. . . 011011011011 . . .

In this case the energy would be θ2 + 2θ1. If instead of 011 we had considered
one of its rotated shifts, 110 or 101, the energy of the configuration would have
been the same. To compute the partition function we only need to consider one
of the configurations and multiply by the length of the configuration to obtain the
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contribution of all its rotated shifts. The factor 1/n in the generating function can-
cels this multiplicative factor. This reduction will not hold if the configuration
has a symmetry, as for example 0101 which has only two rotated shift configura-
tions. To compensate this we replace the 1/n factor by a symmetry factor 1/s(b)
for each configuration b. The evaluation of G is now reduced to summing over
all configurations that are not rotated shift equivalent, and we call these the basic
configurations and the set of all of them B. We now need to evaluate

G(z, β) =
∑
b∈B

z|b|

s(b)
e−βH(b) . (P.16)

The notation | · | represents the cardinality of the set.

Any basic configuration can be built by considering the set of droplets that
form it. The smallest building block has size two, as we must also put a zero next
to the one so that when two different blocks get put next to each other they do not
coalesce. The first few building blocks are

size droplets

2 01
3 001 011
4 0001 0011 0111

(P.17)

Each droplet of size n contributes with energy

Wn =
∑

1≤k≤n

(n − k + 1)θk . (P.18)

So if we consider the sum

∑
n≥1

1
n

(
z2e−βH(01) + z3(e−βH(001) + e−βH(011)) +

+ z4(e−βH(0001) + e−βH(0011) + e−βH(0111)) + · · ·
)n

(P.19)

then the power in n will generate all the configurations that are made from many
droplets, while the z will keep track of the size of the configuration. The factor
1/n is there to avoid the over-counting, as we only want the basic configurations
and not its rotated shifts. The 1/n factor also gives the correct symmetry factor in
the case the configuration has a symmetry. The sum can be simplified by noticing
that it is a logarithmic series

− ln
(
1 − (z2e−βW1 + z3(e−βW1 + e−βW2 ) + · · ·

)
, (P.20)

where the H(b) factors have been evaluated in terms of the droplet energies Wn.
A proof of the equality of (P.19) and (P.20) can be given, but we there was not
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enough space on the margin to write it down. The series that is subtracted from
one can be written as a product of two series and the logarithm written as

− ln
(
1 − (z1 + z2 + z3 + · · ·)(ze−βW1 + z2e−βW2 + · · ·)

)
(P.21)

The product of the two series can be directly interpreted as the generating function
for sequences of droplets. The first series adds one or more zeros to a configuration
and the second series add a droplet.

There is a whole class of configurations that is not included in the above sum:
the configurations formed from a single droplet and the vacuum configuration.
The vacuum is the easiest, as it has zero energy it only contributes a z. The sum
of all the null configurations of all sizes is

∑
n>0

zn

n
. (P.22)

The factor 1/n is here because the original G had them and the null configurations
have no rotated shifts. The single droplet configurations also do not have rotated
shifts so their sum is

∑
n>0

zne−βH(

n︷���︸︸���︷
11 . . . 11)

n
. (P.23)

Because there are no zeros in the above configuration clusters of all size exist and
the energy of the configuration is n

∑
θk which we denote by na.

From the three sums (P.21), (P.22), and (P.23) we can evaluate the generating
function G to be

G(z, β) = − ln(1 − z) − ln(1 − ze−βa) − ln(1 − z
1 − z

∑
n≥1

zne−βWn ) . (P.24)

The cycle expansion ζ−1(z, β) is given by the exponential of the generating
function e−G and we obtain

ζ−1(z, β) = (1 − ze−βa)(1 − z(1 +
∑
n≥1

zne−βWn )) (P.25)

To pursue this model further we need to have some assumptions about the
interaction strengths θn. We will assume that the interaction strength decreases
with the inverse square of the size of the cluster, that is, θn = −1/n2. With this we
can estimate that the energy of a droplet of size n is asymptotically

Wn ∼ −n + ln n + O(
1
n

) . (P.26)
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If the power chosen for the polynomially decaying interaction had been other than
inverse square we would still have the droplet term proportional to n, but there
would be no logarithmic term, and the O term would be of a different power.
The term proportional to n survives even if the interactions falls off exponentially,
and in this case the correction is exponentially small in the asymptotic formula.
To simplify the calculations we are going to assume that the droplet energies are
exactly

Wn = −n + ln n (P.27)

in a system of units where the dimensional constants are one. To evaluate the
cycle expansion (P.25) we need to evaluate the constant a, the sum of all the θn.
One can write a recursion for the θn

θn = Wn −
∑

1≤k<n

(n − k + 1)θk (P.28)

and with an initial choice for θ1 evaluate all the others. It can be verified that in-
dependent of the choice of θ1 the constant a is equal to the number that multiplies
the n term in (P.27). In the units used

a = −1 . (P.29)

For the choice of droplet energy (P.27) the sum in the cycle expansion can be
expressed in terms of a special function: the Lerch transcendental φL. It is defined
by

φL(z, s, c) =
∑
n≥0

zn

(n + c)s , (P.30)

excluding from the sum any term that has a zero denominator. The Lerch function
converges for |z| < 1. The series can be analytically continued to the complex
plane and it will have a branch point at z = 1 with a cut chosen along the pos-
itive real axis. In terms of Lerch transcendental function we can write the cycle
expansion (P.25) using (P.27) as

ζ−1(z, β) =
(
1 − zeβ

) (
1 − z(1 + φL(zeβ, β, 1))

)
(P.31)

This serves as an example of a zeta function that cannot be extended to a mero-
morphic function of the complex plane as one could conjecture.

The thermodynamics for the droplet model comes from the smallest root of
(P.31). The root can come from any of the two factors. For large value of β (low
temperatures) the smallest root is determined from the (1− zeβ) factor, which gave
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the contribution of a single large drop. For small β (large temperatures) the root is
determined by the zero of the other factor, and it corresponds to the contribution
from the gas phase of the droplet model. The transition occurs when the smallest
root of each of the factors become numerically equal. This determines the critical
temperature βc through the equation

1 − e−βc (1 + ζR(βc)) = 0 (P.32)

which can be solved numerically. One finds that βc = 1.40495. The phase tran-
sition occurs because the roots from two different factors get swapped in their
roles as the smallest root. This in general leads to a first order phase transition.
For large β the Lerch transcendental is being evaluated at the branch point, and
therefore the cycle expansion cannot be an analytic function at low temperatures.
For large temperatures the smallest root is within the radius of convergence of
the series for the Lerch transcendental, and the cycle expansion has a domain of
analyticity containing the smallest root.

As we approach the phase transition point as a function of β the smallest root
and the branch point get closer together until at exactly the phase transition they
collide. This is a sufficient condition for the existence of a first order phase transi-
tions. In the literature of zeta functions [19] there have been speculations on how
to characterize a phase transition within the formalism. The solution of the Fisher
droplet model suggests that for first order phase transitions the factorized cycle
expansion will have its smallest root within the radius of convergence of one of
the series except at the phase transition when the root collides with a singularity.
This does not seem to be the case for second order phase transitions.

The analyticity of the cycle expansion can be restored if we consider separate
cycle expansions for each of the phases of the system. If we separate the two terms
of ζ−1 in (P.31), each of them is an analytic function and contains the smallest root
within the radius of convergence of the series for the relevant β values.

P.4 Scaling functions

There is a relation between general spin models and dynamical system. If one
thinks of the boxes of the Markov partition of a hyperbolic system as the states
of a spin system, then computing averages in the dynamical system is carrying
out a sum over all possible states. One can even construct the natural measure of
the dynamical system from a translational invariant “interaction function” call the
scaling function.

There are many routes that lead to an explanation of what a scaling function
is and how to compute it. The shortest is by breaking away from the histori-
cal development and considering first the presentation function of a fractal. The
presentation function is a simple chaotic dynamical system (hyperbolic, unlike
the circle map) that generates the fractal and is closely related to the definition
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multifractals
circle map

Figure P.1: Construction of the steps of the scaling
function from a Cantor set. From one level to the
next in the construction of the Cantor set the covers
are shrunk, each parent segment into two children seg-
ments. The shrinkage of the last level of the construc-
tion is plotted and by removing the gaps one has an
approximation to the scaling function of the Cantor set.
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of fractals of Hutchinson [24] and the iterated dynamical systems introduced by
Barnsley and collaborators [13]. From the presentation function one can derive
the scaling function, but we will not do it in the most elegant fashion, rather we
will develop the formalism in a form that is directly applicable to the experimental
data.

In the upper part of figure P.1 we have the successive steps of the construction
similar to the middle third Cantor set. The construction is done in levels, each
level being formed by a collection of segments. From one level to the next, each
“parent” segment produces smaller “children” segments by removing the middle
section. As the construction proceeds, the segments better approximate the Cantor
set. In the figure not all the segments are the same size, some are larger and some
are smaller, as is the case with multifractals. In the middle third Cantor set, the
ratio between a segment and the one it was generated from is exactly 1/3, but in
the case shown in the figure the ratios differ from 1/3. If we went through the last
level of the construction and made a plot of the segment number and its ratio to
its parent segment we would have a scaling function, as indicated in the figure.
A function giving the ratios in the construction of a fractal is the basic idea for a
scaling function. Much of the formalism that we will introduce is to be able to
give precise names to every segments and to arrange the “lineage” of segments
so that the children segments have the correct parent. If we do not take these
precautions, the scaling function would be a “wild function,” varying rapidly and
not approximated easily by simple functions.

To describe the formalism we will use a variation on the quadratic map that
appears in the theory of period doubling. This is because the combinatorial ma-
nipulations are much simpler for this map than they are for the circle map. The
scaling function will be described for a one dimensional map F as shown in fig-
ure P.2. Drawn is the map

F(x) = 5x(1 − x) (P.33)

restricted to the unit interval. We will see that this map is also a presentation
function.

It has two branches separated by a gap: one over the left portion of the unit
interval and one over the right. If we choose a point x at random in the unit
interval and iterate it under the action of the map F, (P.33), it will hop between the
branches and eventually get mapped to minus infinity. An orbit point is guaranteed
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Figure P.2: A Cantor set presentation function. The
Cantor set is the set of all points that under iteration do
not leave the interval [0, 1]. This set can be found by
backwards iterating the gap between the two branches
of the map. The dotted lines can be used to find these
backward images. At each step of the construction one
is left with a set of segments that form a cover of the
Cantor set.

0 1
0

1

{Δ }

{Δ }

{Δ }

(1)

(0)

(2)

cover set

to go to minus infinity if it lands in the gap. The hopping of the point defines the
orbit of the initial point x: x �→ x1 �→ x2 �→ · · ·. For each orbit of the map F we
can associate a symbolic code. The code for this map is formed from 0s and 1s
and is found from the orbit by associating a 0 if xt < 1/2 and a 1 if xt > 1/2, with
t = 0, 1, 2, . . ..

Most initial points will end up in the gap region between the two branches.
We then say that the orbit point has escaped the unit interval. The points that do
not escape form a Cantor set C (or Cantor dust) and remain trapped in the unit
interval for all iterations. In the process of describing all the points that do not
escape, the map F can be used as a presentation of the Cantor set C, and has been
called a presentation function by Feigenbaum [17].

How does the map F “present” the Cantor set? The presentation is done in
steps. First, we determine the points that do not escape the unit interval in one
iteration of the map. These are the points that are not part of the gap. These points
determine two segments, which are an approximation to the Cantor set. In the
next step we determine the points that do not escape in two iterations. These are
the points that get mapped into the gap in one iteration, as in the next iteration
they will escape; these points form the two segments Δ(1)

0 and Δ(1)
1 at level 1 in

figure P.2. The processes can be continued for any number of iterations. If we
observe carefully what is being done, we discover that at each step the pre-images
of the gap (backward iterates) are being removed from the unit interval. As the
map has two branches, every point in the gap has two pre-images, and therefore
the whole gap has two pre-images in the form of two smaller gaps. To generate all
the gaps in the Cantor set one just has to iterate the gap backwards. Each iteration
of the gap defines a set of segments, with the nth iterate defining the segments
Δ

(n)
k at level n. For this map there will be 2n segments at level n, with the first few

drawn in figure P.2. As n → ∞ the segments that remain for at least n iterates
converge to the Cantor set C.

The segments at one level form a cover for the Cantor set and it is from a cover
that all the invariant information about the set is extracted (the cover generated
from the backward iterates of the gap form a Markov partition for the map as a
dynamical system). The segments {Δ(n)

k } at level n are a refinement of the cover
formed by segments at level n − 1. From successive covers we can compute the
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trajectory scaling function, the spectrum of scalings f (α), and the generalized
dimensions.

To define the scaling function we must give labels (names) to the segments.
The labels are chosen so that the definition of the scaling function allows for sim-
ple approximations. As each segment is generated from an inverse image of the
unit interval, we will consider the inverse of the presentation function F. Because
F does not have a unique inverse, we have to consider restrictions of F. Its restric-
tion to the first half of the segment, from 0 to 1/2, has a unique inverse, which we
will call F−1

0 , and its restriction to the second half, from 1/2 to 1, also has a unique
inverse, which we will call F−1

1 . For example, the segment labeled Δ(2)(0, 1) in fig-
ure P.2 is formed from the inverse image of the unit interval by mapping Δ(0), the
unit interval, with F−1

1 and then F−1
0 , so that the segment

Δ(2)(0, 1) = F−1
0

(
F−1

1

(
Δ(0)

))
. (P.34)

The mapping of the unit interval into a smaller interval is what determines its
label. The sequence of the labels of the inverse maps is the label of the segment:

Δ(n)(ε1, ε2, . . . , εn) = F−1
ε1
◦ F−1

ε2
◦ · · · F−1

εn

(
Δ(0)

)
.

The scaling function is formed from a set of ratios of segments length. We use
| · | around a segment Δ(n)(ε) to denote its size (length), and define

σ(n)(ε1, ε2, . . . , εn) =
|Δ(n)(ε1, ε2, . . . , εn)|
|Δ(n−1)(ε2, . . . , εn)|

.

We can then arrange the ratios σ(n)(ε1, ε2, . . . , εn) next to each other as piecewise
constant segments in increasing order of their binary label ε1, ε2, . . . , εn so that the
collection of steps scan the unit interval. As n → ∞ this collection of steps will
converge to the scaling function. In sect. ?? we will describe the limiting process ⇓PRIVATE
in more detail, and give a precise definition on how to arrange the ratios.

⇑PRIVATE

P.5 Geometrization

The L operator is a generalization of the transfer matrix. It gets more by consid-
ering less of the matrix: instead of considering the whole matrix it is possible to
consider just one of the rows of the matrix. The L operator also makes explicit
the vector space in which it acts: that of the observable functions. Observables are
functions that to each configuration of the system associate a number: the energy,
the average magnetization, the correlation between two sites. It is in the average
of observables that one is interested in. Like the transfer matrix, the L operator
considers only semi-infinite systems, that is, only the part of the interaction be-
tween spins to the right is taken into account. This may sound un-symmetric, but
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it is a simple way to count each interaction only once, even in cases where the
interaction includes three or more spin couplings. To define the L operator one
needs the interaction energy between one spin and all the rest to its right, which is
given by the function φ. The L operators defined as

Lg(σ) =
∑
σ0∈Ω0

g(σ0σ)e−βφ(σ0σ) .

To each possible value inΩ0 that the spin σ0 can assume, an average of the observ-
able g is computed weighed by the Boltzmann factor e−βφ. The formal relations
that stem from this definition are its relation to the free energy when applied to the
observable ι that returns one for any configuration:

−β f (β) = lim
n→∞

1
n

ln ‖Lnι‖

and the thermodynamic average of an observable

〈g〉 = lim
n→∞

‖Lng‖
‖Lnι‖

.

Both relations hold for almost all configurations. These relations are part of the-
orem of Ruelle that enlarges the domain of the Perron-Frobenius theorem and
sharpens its results. The theorem shows that just as the transfer matrix, the largest
eigenvalue of theL operator is related to the free-energy of the spin system. It also
hows that there is a formula for the eigenvector related to the largest eigenvalue.
This eigenvector |ρ〉 (or the corresponding one for the adjoint L∗ ofL) is the Gibbs
state of the system. From it all averages of interest in statistical mechanics can be
computed from the formula

〈g〉 = 〈ρ|g|ρ〉 .

The Gibbs state can be expressed in an explicit form in terms of the inter-
actions, but it is of little computational value as it involves the Gibbs state for a
related spin system. Even then it does have an enormous theoretical value. Later
we will see how the formula can be used to manipulate the space of observables
into a more convenient space.

The geometrization of a spin system converts the shift dynamics (necessary
to define the Ruelle operator) into a smooth dynamics. This is equivalent to the
mathematical problem in ergodic theory of finding a smooth embedding for a
given Bernoulli map.

The basic idea for the dynamics is to establish the a set of maps Fσk such that

Fσk (0) = 0
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Ising modeland

Fσ1 ◦ Fσ2 ◦ · · · ◦ Fσn(0) = φ(+, σ1, σ2, . . . , σn,−,−, . . .) .

This is a formal relation that expresses how the interaction is to be converted into
a dynamical systems. In most examples Fσk is a collection of maps from a subset
of RD to itself.

If the interaction is complicated, then the dimension of the set of maps may
be infinite. If the resulting dynamical system is infinite have we gained anything
from the transformation? The gain in this case is not in terms of added speed of
convergence to the thermodynamic limit, but in the fact that the Ruelle operator
is of trace-class and all eigenvalues are related to the spin system and not artifacts
of the computation.

The construction of the higher dimensional system is done by borrowing the
state space reconstruction technique from dynamical systems. State space recon-
struction can be done in several ways: by using delay coordinates, by using deriva-
tives of the position, or by considering the value of several independent observ-
ables of the system. All these may be used in the construction of the equivalent
dynamics. Just as in the study of dynamical systems, the exact method does not
matter for the determination of the thermodynamics ( f (α) spectra, generalized di-
mension), also in the construction of the equivalent dynamics the exact choice of
observable does not matter.

We will only consider configurations for the half line. This is because for
translational invariant interactions the thermodynamic limit on half line is the
same as in the whole line. One can prove this by considering the difference in
a thermodynamic average in the line and in the semiline and compare the two as
the size of the system goes to infinity.

When the interactions are long range in principle one has to specify the bound-
ary conditions to be able to compute the interaction energy of a configuration in a
finite box. If there are no phase transitions for the interaction, then which bound-
ary conditions are chosen is irrelevant in the thermodynamic limit. When com-
puting quantities with the transfer matrix, the long range interaction is truncated
at some finite range and the truncated interaction is then use to evaluate the trans-
fer matrix. With the Ruelle operator the interaction is never truncated, and the
boundary must be specified.

The interaction φ(σ) is any function that returns a number on a configuration.
In general it is formed from pairwise spin interactions

φ(σ) =
∑
n>0

δσ0,σn J(n)

with different choices of J(n) leading to different models. If J(n) = 1 only if n = 1
and ) otherwise, then one has the nearest neighbor Ising model. If J(n) = n−2, then
one has the inverse square model relevant in the study of the Kondo problem.
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Ising modelLet us say that each site of the lattice can assume two values +,− and the set
of all possible configurations of the semiline is the set Ω. Then an observable g
is a function from the set of configurations Ω to the reals. Each configuration is
indexed by the integers from 0 up, and it is useful to think of the configuration as
a string of spins. One can append a spin η0 to its beginning, η ∨ σ, in which case
η is at site 0, ω0 at site 1, and so on.

The Ruelle operator L is defined as

Lg(η) =
∑
ω0∈Ω0

g(ω0 ∨ η)e−βφ(ω0∨η) .

This is a positive and bounded operator over the space of bounded observables.
There is a generalization of the Perron-Frobenius theorem by Ruelle that estab-
lishes that the largest eigenvalue of L is isolated from the rest of the spectrum and
gives the thermodynamics of the spin system just as the largest eigenvalue of the
transfer matrix does. Ruelle also gave a formula for the eigenvector related to the
largest eigenvalue.

The difficulty with it is that the relation between the partition function and the
trace of its nth power, trLn = Zn no longer holds. The reason is that the trace of
the Ruelle operator is ill-defined, it is infinite.

We now introduce a special set of observables {x1(σ), . . . , x1(σ)}. The idea
is to choose the observables in such a way that from their values on a particular
configuration σ the configuration can be reconstructed. We also introduce the
interaction observables hσ0 .

To geometrize spin systems, the interactions are assumed to be translationally
invariant. The spins σk will only assume a finite number of values. For simplic-
ity, we will take the interaction φ among the spins to depend only on pairwise
interactions,

φ(σ) = φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑
n>0

δσ0,σn J1(n) , (P.35)

and limit σk to be in {+,−}. For the 1-dimensional Ising model, J0 is the external
magnetic field and J1(n) = 1 if n = 1 and 0 otherwise. For an exponentially decay-
ing interaction J1(n) = e−αn. Two- and 3-dimensional models can be considered
in this framework. For example, a strip of spins of L × ∞ with helical boundary
conditions is modeled by the potential J1(n) = δn,1 + δn,L.

3 The transfer operator T was introduced by Kramers and Wannier [12] to
study the Ising model on a strip and concocted so that the trace of its nth power is
the partition function Zn of system when one of its dimensions is n. The method
can be generalized to deal with any finite-range interaction. If the range of the

3Predrag: paragraph repeated from sect. P.2.3
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interaction is L, then T is a matrix of size 2L×2L. The longer the range, the larger
the matrix. When the range of the interaction is infinite one has to define the
T operator by its action on an observable g. Just as the observables in quantum
mechanics, g is a function that associates a number to every state (configuration
of spins). The energy density and the average magnetization are examples of
observables. From this equivalent definition one can recover the usual transfer
matrix by making all quantities finite range. For a semi-infinite configuration
σ = {σ0, σ1, . . .}:

T g(σ) = g(+ ∨ σ)e−βφ(+∨σ) + g(− ∨ σ)e−βφ(−∨σ) . (P.36)

By + ∨ σ we mean the configuration obtained by prepending + to the beginning
of σ resulting in the configuration {+, σ0, σ1, . . .}. When the range becomes in-
finite, trT n is infinite and there is no longer a connection between the trace and
the partition function for a system of size n (this is a case where matrices give
the wrong intuition). Ruelle [13] generalized the Perron-Frobenius theorem and
showed that even in the case of infinite range interactions the largest eigenvalue
of the T operator is related to the free-energy of the spin system and the corre-
sponding eigenvector is related to the Gibbs state. By applying T to the constant
observable u, which returns 1 for any configuration, the free energy per site f is
computed as

− β f (β) = lim
n→∞

1
n

ln ‖T nu‖ . (P.37)

To construct a smooth dynamical system that reproduces the properties of T ,
one uses the phase space reconstruction technique of Packard et al. [6] and Tak-
ens [7], and introduces a vector of state observables x(σ) = {x1(σ), . . . , xD(σ)}.
To avoid complicated notation we will limit the discussion to the example x(σ) =
{x+(σ), x−(σ)}, with x+(σ) = φ(+ ∨ σ) and x−(σ) = φ(− ∨ σ); the more general
case is similar and used in a later example. The observables are restricted to those
g for which, for all configurations σ, there exist an analytic function G such that
G(x1(σ), . . . , xD(σ)) = g(σ). This at first seems a severe restriction as it may ex-
clude the eigenvector corresponding to the Gibbs state. It can be checked that this
is not the case by using the formula given by Ruelle [14] for this eigenvector. A
simple example where this formalism can be carried out is for the interaction φ(σ)
with pairwise exponentially decaying potential J1(n) = an (with |a| < 1). In this
case φ(σ) =

∑
n>0 δσ0,σnan and the state observables are x+(σ) =

∑
n>0 δ+,σn an and

x−(σ) =
∑

n>0 δ−,σnan. In this case the observable x+ gives the energy of + spin at
the origin, and x− the energy of a − spin.

Using the observables x+ and x−, the transfer operator can be re-expressed as

TG (x(σ)) =
∑

η∈{+,−}
G (x+ (η ∨ σ) , x− (η ∨ σ)) e−βxη(σ) . (P.38)

In this equation the only reference to the configuration σ is when computing the
new observable values x+(η ∨ σ) and x−(η ∨ σ). The iteration of the function that

statmech - 1dec2001 boyscout version14.4, Mar 19 2013



APPENDIX P. STATISTICAL MECHANICS RECYCLED 1248

gives these values in terms of x+(σ) and x−(σ) is the dynamical system that will
reproduce the properties of the spin system. For the simple exponentially decaying
potential this is given by two maps, F+ and F−. The map F+ takes {x+(σ), x+(σ)}
into {x+(+∨σ), x−(+∨σ)} which is {a(1+ x+), ax−} and the map F− takes {x+, x−}
into {ax+, a(1 + x−)}. In a more general case we have maps Fη that take x(σ) to
x(η ∨ σ).

We can now define a new operator L

LG (x)
def
= TG(x(σ)) =

∑
η∈{+,−}

G
(
Fη(x)

)
e−βxη , (P.39)

where all dependencies on σ have disappeared — if we know the value of the state
observables x, the action of L on G can be computed.

A dynamical system is formed out of the maps Fη. They are chosen so
that one of the state variables is the interaction energy. One can consider the
two maps F+ and F− as the inverse branches of a hyperbolic map f , that is,
f −1(x) = {F+(x), F−(x)}. Studying the thermodynamics of the interaction φ is
equivalent to studying the long term behavior of the orbits of the map f , achiev-
ing the transformation of the spin system into a dynamical system.

Unlike the original transfer operator, the L operator — acting in the space
of observables that depend only on the state variables — is of trace-class (its
trace is finite). The finite trace gives us a chance to relate the trace of Ln to the
partition function of a system of size n. We can do better. As most properties of
interest (thermodynamics, fall-off of correlations) are determined directly from its
spectrum, we can study instead the zeros of the Fredholm determinant det (1−zL)
by the technique of cycle expansions developed for dynamical systems [2]. A
cycle expansion consists of finding a power series expansion for the determinant
by writing det (1 − zL) = exp(tr ln(1 − zL)). The logarithm is expanded into a
power series and one is left with terms of the form trLn to evaluate. For evaluating
the trace, the L operator is equivalent to

LG(x) =
∫

RD
dy δ(y − f (x))e−βyG(y) (P.40)

from which the trace can be computed:

trLn =
∑

x= f (◦n) (x)

e−βH(x)

|det
(
1 − ∂x f (◦n)(x)

) | (P.41)

with the sum running over all the fixed points of f(◦n) (all spin configurations of a
given length). Here f (◦n) is f composed with itself n times, and H(x) is the energy
of the configuration associated with the point x. In practice the map f is never
constructed and the energies are obtained directly from the spin configurations.
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To compute the value of trLn we must compute the value of ∂x f (◦n); this
involves a functional derivative. To any degree of accuracy a number x in the
range of possible interaction energies can be represented by a finite string of spins
ε, such as x = φ(+, ε0, ε1, . . . ,−, −, . . .). By choosing the sequence ε to have a
large sequence of spins −, the number x can be made as small as needed, so in
particular we can represent a small variation by φ(η). As x+(ε) = φ(+ ∨ ε), from
the definition of a derivative we have:

∂x f (x) = lim
m→∞

φ(ε ∨ η(m)) − φ(ε)

φ(η(m))
, (P.42)

where η(m) is a sequence of spin strings that make φ(η(m)) smaller and smaller. By
substituting the definition of φ in terms of its pairwise interaction J(n) = nsanγ

and taking the limit for the sequences η(m) = {+,−,−, . . . , ηm+1, ηm+2, . . .} one
computes that the limit is a if γ = 1, 1 if γ < 1, and 0 if γ > 1. It does not
depend on the positive value of s. When γ < 1 the resulting dynamical system is
not hyperbolic and the construction for the operator L fails, so one cannot apply
it to potentials such as (1/2)

√
n. One may solve this problem by investigating the

behavior of the formal dynamical system as γ→ 0.

The manipulations have up to now assumed that the map f is smooth. If
the dimension D of the embedding space is too small, f may not be smooth.
Determining under which conditions the embedding is smooth is a complicated
question [15]. But in the case of spin systems with pairwise interactions it is
possible to give a simple rule. If the interaction is of the form

φ(σ) =
∑
n≥1

δσ0,σn

∑
k

pk(n)anγ
k (P.43)

where pk are polynomials and |ak | < 1, then the state observables to use are
xs,k(σ) =

∑
δ+,σnnsan

k . For each k one uses x0,k, x1,k, . . . up to the largest power
in the polynomial pk. An example is the interaction with J1(n) = n2(3/10)n. It
leads to a 3-dimensional system with variables x0,0, x1,0, and x2,0. The action
of the map F+ for this interaction is illustrated figure P.3. Plotted are the pairs
{φ(+ ∨ σ), φ(+ ∨ + ∨ σ)}. This can be seen as the strange attractor of a chaotic
system for which the variables x0,0, x1,0, and x2,0 provide a good (analytic) em-
bedding.

The added smoothness and trace-class of the L operator translates into faster
convergence towards the thermodynamic limit. As the reconstructed dynamics is
analytic, the convergence towards the thermodynamic limit is faster than exponen-
tial [23, 16]. We will illustrate this with the polynomial-exponential interactions
(P.43) with γ = 1, as the convergence is certainly faster than exponential if γ > 1,
and the case of an has been studied in terms of another Fredholm determinant
by Gutzwiller [17]. The convergence is illustrated in figure P.4 for the interac-
tion n2(3/10)n. Plotted in the graph, to illustrate the transfer matrix convergence,
are the number of decimal digits that remain unchanged as the range of the in-
teraction is increased. Also in the graph are the number of decimal digits that
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Figure P.3: The spin adding map F+ for the poten-
tial J(n) =

∑
n2aαn. The action of the map takes

the value of the interaction energy between + and the
semi-infinite configuration {σ1, σ2, σ3, . . .} and returns
the interaction energy between + and the configuration
{+, σ1, σ2, σ3, . . .}.
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Figure P.4: Number of digits for the Fredholm method
(•) and the transfer function method (×). The size
refers to the largest cycle considered in the Fredholm
expansions, and the truncation length in the case of the
transfer matrix.
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remain unchanged as the largest power of trLn considered. The plot is effectively
a logarithmic plot and straight lines indicate exponentially fast convergence. The
curvature indicates that the convergence is faster than exponential. By fitting, one
can verify that the free energy is converging to its limiting value as exp(−n(4/3)).
Cvitanović [23] has estimated that the Fredholm determinant of a map on a D di-
mensional space should converge as exp(−n(1+1/D)), which is confirmed by these
numerical simulations. 4

Résumé

The geometrization of spin systems strengthens the connection between statistical
mechanics and dynamical systems. It also further establishes the value of the
Fredholm determinant of the L operator as a practical computational tool with
applications to chaotic dynamics, spin systems, and semiclassical mechanics. The
example above emphasizes the high accuracy that can be obtained: by computing
the shortest 14 periodic orbits of period 5 or less it is possible to obtain three digit
accuracy for the free energy. For the same accuracy with a transfer matrix one
has to consider a 256 × 256 matrix. This make the method of cycle expansions
practical for analytic calculations.

4Predrag: see what is worth saving in the end of this file, under “flotsam,” erase the rest
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smooth!interaction
observable

Commentary

Remark P.1 Presentation functions. The best place to read about Feigenbaum’s
work is in his review article published in Los Alamos Science (reproduced in various
reprint collections and conference proceedings, such as ref. [ 5]). Feigenbaum’s Journal
of Statistical Physics article [17] is the easiest place to learn about presentation functions.

Remark P.2 Interactions are smooth In most computational schemes for thermody-
namic quantities the translation invariance and the smoothness of the basic interaction are
never used. In Monte Carlo schemes, aside from the periodic boundary conditions, the in-
teraction can be arbitrary. In principle for each configuration it could be possible to have a
different energy. Schemes such as the Sweneson-Wang cluster flipping algorithm use the
fact that interaction is local and are able to obtain dramatic speed-ups in the equilibration
time for the dynamical Monte Carlo simulation. In the geometrization program for spin
systems, the interactions are assumed translation invariant and smooth. The smoothness
means that any interaction can be decomposed into a series of terms that depend only on
the spin arrangement and the distance between spins:

φ(σ0, σ1, σ2, . . .) = J0σ0 +
∑

δ(σ0, σn)J1(n) +
∑

δ(σ0, σn1 , σn2 )J2(n1, n2) + · · ·

where the Jk are symmetric functions of their arguments and the δ are arbitrary discrete
functions. This includes external constant fields (J0), but it excludes site dependent fields
such as a random external magnetic field.

Exercises boyscout

P.1. Not all Banach spaces are also Hilbert. If we are given
a norm ‖·‖ of a Banach space B, it may be possible to find
an inner product 〈· , · 〉 (so that B is also a Hilbert space H)
such that for all vectors f ∈ B, we have

‖ f ‖ = 〈 f , f 〉1/2 .

This is the norm induced by the scalar product. If we can-
not find the inner product how do we know that we just
are not being clever enough? By checking the parallelo-
gram law for the norm. A Banach space can be made into
a Hilbert space if and only if the norm satisfies the par-
allelogram law. The parallelogram law says that for any
two vectors f and g the equality

‖ f + g‖2 + ‖ f − g‖2 = 2‖ f ‖2 + 2‖g‖2 ,

must hold.
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Ising model
Ising model
observable

Consider the space of bounded observables with the norm
given by ‖a‖ = supσ∈ΩN |a(σ)|. Show that there is no
scalar product that will induce this norm. Ronnie: polarization

identityP.2. Automaton for a droplet. Find the transition graph
and the weights on the edges so that the energies of con-
figurations for the droplet model are correctly generated.
For any string starting in zero and ending in zero your di-
agram should yield a configuration the weight e H(σ), with
H computed along the lines of (P.13) and (P.18).

Hint: the transition graph is infinite.

P.3. Spectral determinant for an interactions. Compute the
spectral determinant for 1-dimensional Ising model with
the interaction

φ(σ) =
∑
k>0

akδ(σ0, σk) .

Take a as a number smaller than 1/2.

(a) What is the dynamical system this generates? That
is, find F+ and F− as used in (P.39).

(b) Show that

d
dx

F{+ or−} =

[
a 0
0 a

]
P.4. Ising model on a thin strip. Compute the transfer ma-

trix for the Ising model defined on the graph

Assume that whenever there is a bond connecting two
sites, there is a contribution Jδ(σi, σ j) to the energy.

P.5. Infinite symbolic dynamics. Let σ be a function that
returns zero or one for every infinite binary string: σ :
{0, 1}N → {0, 1}. Its value is represented by σ(ε1, ε2, . . .)
where the εi are either 0 or 1. We will now define an
operatorT that acts on observables on the space of binary
strings. A function a is an observable if it has bounded
variation, that is, if

‖a‖ = sup
{εi}

|a(ε1, ε2, . . .)| < ∞ .

For these functions

T a(ε1, ε2, . . .) = a(0, ε1, ε2, . . .)σ(0, ε1, ε2, . . .) + a(1, ε1, ε2, . . .)σ(1, ε1, ε2, . . .) .

The function σ is assumed such that any of T ’s “matrix
representations” in (a) have the Markov property (the ma-
trix, if read as an adjacency graph, corresponds to a graph
where one can go from any node to any other node).

(a) (easy) Consider a finite version T n of the operator
T :

Tna(ε1, ε2, . . . , εn) =

a(0, ε1, ε2, . . . , εn−1)σ(0, ε1, ε2, . . . , εn−1) +

a(1, ε1, ε2, . . . , εn−1)σ(1, ε1, ε2, . . . , εn−1) .

exerStatmech - 16aug99 boyscout version14.4, Mar 19 2013
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Show that Tn is a 2n×2n matrix. Show that its trace
is bounded by a number independent of n.

(b) (medium) With the operator norm induced by the
function norm, show that T is a bounded operator.

(c) (hard) Show that T is not trace-class. (Hint: check
if T is compact). 5

Classes of operators are nested; trace-class ≤ compact ≤
bounded. 6
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[P.23] P. Cvitanović, “Periodic orbits as the skeleton of classical and quantum
chaos,” Physica D 51, 138 (1991).

[P.24] Hutchinson 7

7Predrag: find Hutchinson reference

refsStatmech - 4aug2000 boyscout version14.4, Mar 19 2013



noise!Gaussian
Gaussian!noise

Appendix Q

Noise/quantum corrections

(G. Vattay)

The Gutzwiller trace formula is only a good approximation to the quantum
mechanics when � is small. Can we improve the trace formula by adding
quantum corrections to the semiclassical terms? A similar question can

be posed when the classical deterministic dynamics is disturbed by some way
Gaussian white noise with strength D. The deterministic dynamics then can be
considered as the weak noise limit D → 0. The effect of the noise can be taken
into account by adding noise corrections to the classical trace formula. A formal
analogy exists between the noise and the quantum problem. This analogy allows
us to treat the noise and quantum corrections together.

Q.1 Periodic orbits as integrable systems

⇓PRIVATE

We saw in chapter 32 that the noise problem can be reformulated in a “quantum”
way. From now on, we use the language of quantum mechanics, since it is more ⇑PRIVATE
convenient to visualize the results there. Where it is necessary we will discuss the
difference between noise and quantum cases.

First, we would like to introduce periodic orbits from an unusual point of
view, which can convince you, that chaotic and integrable systems are in fact
not as different from each other, than we might think. If we start orbits in the
neighborhood of a periodic orbit and look at the picture on the Poincaré section
we can see a regular picture. For stable periodic orbits the points form small
ellipses around the center and for unstable orbits they form hyperbolas (See Fig.
Q.1).

The motion close to a periodic orbits is regular in both cases. This is due to
the fact, that we can linearize the Hamiltonian close to an orbit, and linear systems

1255
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Figure Q.1: Poincaré section close to a stable and an unstable periodic orbit

are always integrable. The linearized Hamilton’s equations close to the periodic
orbit (qp(t) + q, pp(t) + p) look like

q̇ = +∂2
pqH(qp(t), pp(t))q + ∂2

ppH(qp(t), pp(t))p, (Q.1)

ṗ = −∂2
qqH(qp(t), pp(t))q − ∂2

qpH(qp(t), pp(t))p, (Q.2)

where the new coordinates q and p are relative to a periodic orbit. This linearized
equation can be regarded as a d dimensional oscillator with time periodic frequen-
cies. These equations are representing the equation of motion in a redundant way
since more than one combination of q, p and t determines the same point of the
phase space. This can be cured by an extra restriction on the variables, a con-
straint the variables should fulfill. This constraint can be derived from the time
independence or stationarity of the full Hamiltonian

∂tH(qp(t) + q, pp(t) + p) = 0. (Q.3)

Using the linearized form of this constraint we can eliminate one of the linearized
equations. It is very useful, although technically difficult, to do one more transfor-
mation and to introduce a coordinate, which is parallel with the Hamiltonian flow
(x‖) and others which are orthogonal. In the orthogonal directions we again get
linear equations. These equations with x‖ dependent rescaling can be transformed
into normal coordinates, so that we get tiny oscillators in the new coordinates
with constant frequencies. This result has first been derived by Poincaré for equi-
librium points and later it was extended for periodic orbits by V.I. Arnol’d and
co-workers. In the new coordinates, the Hamiltonian reads as

H0(x‖, p‖, xn, pn) =
1
2

p2
‖ + U(x‖) +

d−1∑
n=1

1
2

(p2
n ± ω2

nx2
n), (Q.4)

which is the general form of the Hamiltonian in the neighborhood of a periodic
orbit. The ± sign denotes, that for stable modes the oscillator potential is posi-
tive while for an unstable mode it is negative. For the unstable modes, ω is the
Lyapunov exponent of the orbit

ωn = lnΛp,n/Tp, (Q.5)

where Λp,n is the expanding eigenvalue of the Jacobi matrix. For the stable direc-
tions the eigenvalues of the Jacobi matrix are connected with ω as

Λp,n = e−iωnTp . (Q.6)
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The Hamiltonian close to the periodic orbit is integrable and can be quantized by
the Bohr-Sommerfeld rules. The result of the Bohr-Sommerfeld quantization for
the oscillators gives the energy spectra

En = �ωn

(
jn +

1
2

)
for stable modes, (Q.7)

En = −i�ωn

(
jn +

1
2

)
for unstable modes,

where jn = 0, 1, .... It is convenient to introduce the index sn = 1 for stable and
sn = −i for unstable directions. The parallel mode can be quantized implicitly
trough the classical action function of the mode:

1
2π

∮
p‖dx‖ =

1
2π

S ‖(Em) = �
(
m +

mpπ

2

)
, (Q.8)

where mp is the topological index of the motion in the parallel direction. This
latter condition can be rewritten by a very useful trick into the equivalent form

(1 − eiS ‖(Em)/�−impπ/2) = 0. (Q.9)

The eigen-energies of a semiclassically quantized periodic orbit are all the possi-
ble energies

E = Em +

d−1∑
n=1

En. (Q.10)

This relation allows us to change in (Q.9) Em with the full energy minus the os-
cillator energies Em = E − ∑

n En. All the possible eigenenergies of the periodic
orbit then are the zeroes of the expression

Δp(E) =
∏

j1,..., jd−1

(1 − eiS ‖(E−
∑

n �snωn( jn+1/2))/�−impπ/2). (Q.11)

If we Taylor expand the action around E to first order

S ‖(E + ε) ≈ S ‖(E) + T (E)ε, (Q.12)

where T (E) is the period of the orbit, and use the relations ofω and the eigenvalues
of the Jacobi matrix, we get the expression of the Selberg product

Δp(E) =
∏

j1,..., jd−1

⎛⎜⎜⎜⎜⎜⎜⎝1 − eiS p(E)/�−impπ/2∏
nΛ

(1/2+ jn)
p,n

⎞⎟⎟⎟⎟⎟⎟⎠ . (Q.13)
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If we use the right convention for the square root we get exactly the d dimensional
expression of the Selberg product formula we derived from the Gutzwiller trace
formula in ? . Just here we derived it in a different way! The function Δp(E) is
the semiclassical zeta function for one prime orbit.

Now, if we have many prime orbits and we would like to construct a function
which is zero, whenever the energy coincides with the BS quantized energy of one
of the periodic orbits, we have to take the product of these determinants:

Δ(E) =
∏

p

Δp(E). (Q.14)

The miracle of the semiclassical zeta function is, that if we take infinitely many
periodic orbits, the infinite product will have zeroes not at these energies, but close
to the eigen=energies of the whole system !

So we learned, that both stable and unstable orbits are integrable systems and
can be individually quantized semiclassically by the old Bohr-Sommerfeld rules.
So we almost completed the program of Sommerfeld to quantize general systems
with the method of Bohr. Let us have a remark here. In addition to the Bohr-
Sommerfeld rules, we used the unjustified approximation (Q.12). Sommerfeld
would never do this ! At that point we loose some important precision compared
to the BS rules and we get somewhat worse results than a semiclassical formula
is able to do. We will come back to this point later when we discuss the quantum
corrections. To complete the program of full scale Bohr-Sommerfeld quantiza-
tion of chaotic systems we have to go beyond the linear approximation around the
periodic orbit.

The Hamiltonian close to a periodic orbit in the parallel and normal coordi-
nates can be written as the ‘harmonic’ plus ‘anaharmonic’ perturbation

H(x‖, p‖, xn, pn) = H0(x‖, p‖, xn, pn) + HA(x‖, xn, pn), (Q.15)

where the anaharmonic part can be written as a sum of homogeneous polynomials
of xn and pn with x‖ dependent coefficients:

HA(x‖, xn, pn) =
∑
k=3

Hk(x‖, xn, pn) (Q.16)

Hk(x‖, xn, pn) =
∑

∑
ln+mn=k

Hk
ln ,mn

(x‖)xln
n pmn

n (Q.17)

This classical Hamiltonian is hopeless from Sommerfeld’s point of view, since
it is non integrable. However, Birkhoff in 19273 introduced the concept of nor-
mal form, which helps us out from this problem by giving successive integrable
approximation to a non-integrable problem. Let’s learn a bit more about it!

3It is really a pity, that in 1926 Schrödinger introduced the wave mechanics and blocked the
development of Sommerfeld’s concept.
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Q.2 The Birkhoff normal form

Birkhoff studied the canonical perturbation theory close to an equilibrium point of
a Hamiltonian. Equilibrium point is where the potential has a minimum ∇U = 0
and small perturbations lead to oscillatory motion. We can linearize the prob-
lem and by introducing normal coordinates xn and conjugate momentums pn the
quadratic part of the Hamiltonian will be a set of oscillators

H0(xn, pn) =
d∑

n=1

1
2

(p2
n + ω

2
nx2

n). (Q.18)

The full Hamiltonian can be rewritten with the new coordinates

H(xn, pn) = H0(xn, pn) + HA(xn, pn), (Q.19)

where HA is the anaharmonic part of the potential in the new coordinates. The
anaharmonic part can be written as a series of homogeneous polynomials

HA(xn, pn) =
∞∑
j=3

H j(xn, pn), (Q.20)

H j(xn, pn) =
∑

|l|+|m|= j

h j
lmxl pm, (Q.21)

where hj
lm are real constants and we used the multi-indices l := (l1, ..., ld) with

definitions

|l| =
∑

ln, xl := xl1
1 xl2

2 ...x
ld
d .

Birkhoff showed, that that by successive canonical transformations one can in-
troduce new momentums and coordinates such, that in the new coordinates the
anaharmonic part of the Hamiltonian up to any given n polynomial will depend
only on the variable combination

τn =
1
2

(p2
n + ω

2
nx2

n), (Q.22)

where xn and pn are the new coordinates and momentums, but ωn is the original
frequency. This is called the Birkhoff normal form of degree N:

H(xn, pn) =
N∑

j=2

H j(τ1, ..., τd), (Q.23)
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where H j are homogeneous degree j polynomials of τ-s. This is an integrable
Hamiltonian, the non-integrability is pushed into the remainder, which consists of
polynomials of degree higher than N. We run into trouble only when the oscillator
frequencies are commensurate e.g. it is possible to find a set of integers mn such
that the linear combination

d∑
n=1

ωnmn,

vanishes. This extra problem has been solved by Gustavson in 1966 and we
call the object Birkhoff-Gustavson normal form. The procedure of the succes-
sive canonical transformations can be computerized and can be carried out up to
high orders (∼ 20).

Of course, we pay a price for forcing the system to be integrable up to degree
N. For a non-integrable system the high order terms behave quite wildly and the
series is not convergent. Therefore we have to use this tool carefully. Now, we
learned how to approximate a non-integrable system with a sequence of integrable
systems and we can go back and carry out the BS quantization.

Q.3 Bohr-Sommerfeld quantization of periodic orbits

There is some difference between equilibrium points and periodic orbits. The
Hamiltonian (Q.4) is not a sum of oscillators. One can transform the parallel
part, describing circulation along the orbit, into an oscillator Hamiltonian, but this
would make the problem extremely difficult. Therefore, we carry out the canonical
transformations dictated by the Birkhoff procedure only in the orthogonal direc-
tions. The x‖ coordinate plays the role of a parameter. After the transformation up
to order N the Hamiltonian (Q.17) is

H(x‖, p‖, τ1, ...τd−1) = H0(x‖, p‖, τ1, ..., τd−1)+
N∑

j=2

U j(x‖, τ1, ..., τd−1), (Q.24)

where U j is a jth order homogeneous polynomial of τ-s with x‖ dependent co-
efficients. The orthogonal part can be BS quantized by quantizing the individual
oscillators, replacing τ-s as we did in (Q.8). This leads to a one dimensional
effective potential indexed by j1, ..., jd−1

H(x‖, p‖, j1, ..., jd−1) =
1
2

p2
‖ + U(x‖) +

d−1∑
n=1

�snωn( jn + 1/2) + (Q.25)

+

N∑
k=2

Uk(x‖, �s1ω1( j1 + 1/2), �s2ω2( j2 + 1/2), ..., �sd−1ωd−1( jd−1 + 1/2)),
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where jn can be any non-negative integer. The term with index k is proportional
with �k due to the homogeneity of the polynomials.

The parallel mode now can be BS quantized for any given set of j-s

S p(E, j1, ..., jd−1) =
∮

p‖dx‖ = (Q.26)

=

∮
dx‖

√√√
E −

d−1∑
n=1

�snωn( jn + 1/2) − U(x‖, j1, ..., jd−1) = 2π�(m + mp/2),

where U contains all the x‖ dependent terms of the Hamiltonian. The spectral
determinant becomes

Δp(E) =
∏

j1,..., jd−1

(1 − eiS p(E, j1 ,..., jd−1)/�−mpπ/2). (Q.27)

This expression completes the Sommerfeld method and tells us how to quan-
tize chaotic or general Hamiltonian systems. Unfortunately, quantum mechanics
postponed this nice formula until our book.

This formula has been derived with the help of the semiclassical Bohr-Sommerfeld
quantization rule and the classical normal form theory. Indeed, if we expand Sp

in the exponent in the powers of �

S p =

N∑
k=0

�
kS k,

we get more than just a constant and a linear term. This formula already gives
us corrections to the semiclassical zeta function in all powers of �. There is a
very attracting feature of this semiclassical expansion. � in Sp shows up only
in the combination �snωn( jn + 1/2). A term proportional with �k can only be a
homogeneous expression of the oscillator energies snωn( jn + 1/2). For example
in two dimensions there is only one possibility of the functional form of the order
k term

S k = ck(E) · ωk
n( j + 1/2)k,

where ck(E) is the only function to be determined.

The corrections derived sofar are doubly semiclassical, since they give semi-
classical corrections to the semiclassical approximation. What can quantum me-
chanics add to this ? As we have stressed in the previous section, the exact quan-
tum mechanics is not invariant under canonical transformations. In other context,
this phenomenon is called the operator ordering problem. Since the operators x̂
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stationary phaseand p̂ do not commute, we run into problems, when we would like to write down
operators for classical quantities like x2 p2. On the classical level the four possible
orderings xpxp, ppxx, pxpx and xxpp are equivalent, but they are different in
the quantum case. The expression for the energy (Q.26) is not exact. We have to
go back to the level of the Schrödinger equation if we would like to get the exact
expression.

Q.4 Quantum calculation of � corrections

The Gutzwiller trace formula has originally been derived from the saddle point
approximation of the Feynman path integral form of the propagator. The exact
trace is a path-sum for all closed paths of the system

TrG(x, x′, t) =
∫

dxG(x, x, t) =
∫
DxeiS (x,t)/�, (Q.28)

where
∫
Dx denotes the discretization and summation for all paths of time length

t in the limit of the infinite refinement and S (x, t) is the classical action calculated
along the path. The trace in the saddle point calculation is a sum for classical
periodic orbits and zero length orbits, since these are the extrema of the action
δS (x, t) = 0 for closed paths:

TrG(x, x′, t) = g0(t) +
∑
p∈PO

∫
DξpeiS (ξp+xp(t),t)/�, (Q.29)

where g0(t) is the zero length orbit contribution. We introduced the new coordi-
nate ξp with respect to the periodic orbit xp(t), x = ξp + xp(t). Now, each path
sum

∫
Dξp is computed in the vicinity of periodic orbits. Since the saddle points

are taken in the configuration space, only spatially distinct periodic orbits, the so
called prime periodic orbits, appear in the summation. Sofar nothing new has
been invented. If we continue the standard textbook calculation scheme, we have
to Taylor expand the action in ξp and keep the quadratic term in the exponent
while treating the higher order terms as corrections. Then we can compute the
path integrals with the help of Gaussian integrals. The key point here is that we
don’t compute the path sum directly. We use the correspondence between path
integrals and partial differential equations. This idea comes from Maslov [5] and
a good summary is in ref. [6]. We search for that Schrödinger equation, which
leads to the path sum

∫
DξpeiS (ξp+xp(t),t)/�, (Q.30)
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Hamilton!-Jacobi
equation

where the action around the periodic orbit is in a multi-dimensional Taylor ex-
panded form:

S (x, t) =
∞∑
n

sn(t)(x − xp(t))n/n!. (Q.31)

The symbol n = (n1, n2, ..., nd) denotes the multi index in d dimensions, n! =∏d
i=1 ni! the multi factorial and (x − xp(t))n =

∏d
i=1(xi − xp,i(t))ni , respectively.

The expansion coefficients of the action can be determined from the Hamilton-
Jacobi equation

∂tS +
1
2

(∇S )2 + U = 0 , (Q.32)

in which the potential is expanded in a multidimensional Taylor series around the
orbit

U(x) =
∑

n

un(t)(x − xp(t))n/n!. (Q.33)

The Schrödinger equation

i�∂tψ = Ĥψ = −�
2

2
Δψ + Uψ, (Q.34)

with this potential also can be expanded around the periodic orbit. Using the WKB
ansatz

ψ = ϕeiS/�, (Q.35)

we can construct a Schrödinger equation corresponding to a given order of the
Taylor expansion of the classical action. The Schrödinger equation induces the
Hamilton-Jacobi equation (Q.32) for the phase and the transport equation of Maslov
and Fjedoriuk [7] for the amplitude:

∂tϕ + ∇ϕ∇S +
1
2
ϕΔS − i�

2
Δϕ = 0. (Q.36)

This is the partial differential equation, solved in the neighborhood of a periodic
orbit with the expanded action (Q.31), which belongs to the local path-sum (Q.30).

If we know the Green’s function Gp(ξ, ξ′, t) corresponding to the local equa-
tion (Q.36), then the local path sum can be converted back into a trace:

∫
Dξpei/�

∑
n S n(xp(t),t)ξn

p/n! = TrGp(ξ, ξ′, t). (Q.37)
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The saddle point expansion of the trace in terms of local traces then becomes

TrG(x, x′, t) = TrGW(x, x′, t) +
∑

p

TrGp(ξ, ξ′, t), (Q.38)

where GW(x, x′, t) denotes formally the Green’s function expanded around zero
length (non moving) periodic orbits, known as the Weyl term [8]. Each Green’s
function can be Fourier-Laplace transformed independently and by definition we
get in the energy domain:

TrG(x, x′, E) = g0(E) +
∑

p

TrGp(ξ, ξ′, E). (Q.39)

Note that we do not need here to take further saddle points in time, since we
are dealing with exact time and energy domain Green’s functions. indexGreen’s
function!energy dependent

The spectral determinant is a function which has zeroes at the eigen-energies
En of the Hamilton operator Ĥ. Formally it is

Δ(E) = det (E − Ĥ) =
∏

n

(E − En).

The logarithmic derivative of the spectral determinant is the trace of the energy
domain Green’s function:

TrG(x, x′, E) =
∑

n

1
E − En

=
d

dE
logΔ(E). (Q.40)

We can define the spectral determinant Δp(E) also for the local operators and we
can write

TrGp(ξ, ξ′, E) =
d

dE
logΔp(E). (Q.41)

Using (Q.39) we can express the full spectral determinant as a product for the
sub-determinants

Δ(E) = eW(E)
∏

p

Δp(E),

where W(E) =
∫ E

g0(E′)dE′ is the term coming from the Weyl expansion.

The construction of the local spectral determinants can be done easily. We
have to consider the stationary eigenvalue problem of the local Schrödinger prob-
lem and keep in mind, that we are in a coordinate system moving together with
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the periodic orbit. If the classical energy of the periodic orbit coincides with an
eigen-energy E of the local Schrödinger equation around the periodic orbit, then
the corresponding stationary eigenfunction fulfills

ψp(ξ, t + Tp) =
∫

dξ′Gp(ξ, ξ′, t + Tp)ψp(ξ′, t) = e−iETp/�ψp(ξ, t), (Q.42)

where Tp is the period of the prime orbit p. If the classical energy of the periodic
orbit is not an eigen=energy of the local Schrödinger equation, the non-stationary
eigenfunctions fulfill

ψl
p(ξ, t+Tp) =

∫
dξ′Gp(ξ, ξ′, t+Tp)ψp(ξ′, t) = e−iETp/�λl

p(E)ψl
p(t), (Q.43)

where l = (l1, l2, ...) is a multi-index of the possible quantum numbers of the local
Schrödinger equation. If the eigenvalues λl

p(E) are known the local functional
determinant can be written as

Δp(E) =
∏

l

(1 − λl
p(E)), (Q.44)

since Δp(E) is zero at the eigen=energies of the local Schrödinger problem. We
can insert the ansatz (Q.35) and reformulate (Q.43) as

e
i
�

S (t+Tp)ϕl
p(t + Tp) = e−iETp/�λl

p(E)e
i
�

S (t)ϕl
p(t). (Q.45)

The phase change is given by the action integral for one period S (t + Tp)− S (t) =∫ Tp

0
L(t)dt. Using this and the identity for the action Sp(E) of the periodic orbit

S p(E) =
∮

pdq =
∫ Tp

0
L(t)dt + ETp, (Q.46)

we get

e
i
�

S p(E)ϕl
p(t + Tp) = λl

p(E)ϕl
p(t). (Q.47)

Introducing the eigen-equation for the amplitude

ϕl
p(t + Tp) = Rl,p(E)ϕl

p(t), (Q.48)

the local spectral determinant can be expressed as a product for the quantum num-
bers of the local problem:

Δp(E) =
∏

l

(1 − Rl,p(E)e
i
�

S p(E)). (Q.49)
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Since � is a small parameter we can develop a perturbation series for the am-
plitudes ϕl

p(t) =
∑∞

m=0

(
i�
2

)m
ϕl(m)

p (t) which can be inserted into the equation (Q.36)

and we get an iterative scheme starting with the semiclassical solution ϕl(0):

∂tϕ
l(0) + ∇ϕl(0)∇S +

1
2
ϕl(0)ΔS = 0, (Q.50)

∂tϕ
l(m+1) + ∇ϕl(m+1)∇S +

1
2
ϕl(m+1)ΔS = Δϕl(m).

The eigenvalue can also be expanded in powers of i�/2:

Rl,p(E) = exp

⎧⎪⎪⎨⎪⎪⎩ ∞∑
m=0

(
i�
2

)m

C(m)
l,p

⎫⎪⎪⎬⎪⎪⎭ (Q.51)

= exp(C(0)
l,p ) {1 +

i�
2

C(1)
l,p +

(
i�
2

)2 (
1
2

(C(1)
l,p )2 +C(2)

l,p

)
+ ... . (Q.52)

The eigenvalue equation (Q.48) in � expanded form reads as

ϕl(0)
p (t + Tp) = exp(C(0)

l,p )ϕl(0)
p (t),

ϕl(1)
p (t + Tp) = exp(C(0)

l,p )[ϕl(1)
p (t) +C(1)

l,pϕ
l(0)
p (t)],

ϕl(2)
p (t + Tp) = exp(C(0)

l,p )[ϕl(2)
p (t) +C(1)

l,pϕ
l(1)
p (t) + (C(2)

l,p +
1
2

(C(1)
l,p )2)ϕl(0)

p (t)],(Q.53)

and so on. These equations are the conditions selecting the eigenvectors and
eigenvalues and they hold for all t.

It is very convenient to expand the functions ϕl(m)
p (x, t) in Taylor series around

the periodic orbit and to solve the equations (Q.51) in this basis [10], since only
a couple of coefficients should be computed to derive the first corrections. This
technical part we are going to publish elsewhere [9]. One can derive in general
the zero order term C(0)

l = iπνp +
∑d−1

i=1

(
li + 1

2

)
up,i, where up,i = logΛp,i are

the logarithms of the eigenvalues of the monodromy matrix Mp and νp is the
topological index of the periodic orbit. The first correction is given by the integral

C(1)
l,p =

∫ Tp

0
dt
Δϕl(0)

p (t)

ϕl(0)
p (t)

.

When the theory is applied for billiard systems, the wave function should
fulfill the Dirichlet boundary condition on hard walls, e.g. it should vanish on the
wall. The wave function determined from (Q.36) behaves discontinuously when
the trajectory xp(t) hits the wall. For the simplicity we consider a two dimensional
billiard system here. The wave function on the wall before the bounce (t−0 ) is
given by

ψin(x, y(x), t) = ϕ(x, y(x), t−0)eiS (x,y(x),t−0 )/�, (Q.54)
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where y(x) = Y2x2/2! + Y3x3/3! + Y4x4/4! + ... is the parametrization of the wall
around the point of reflection (see Fig 1.). The wave function on the wall after the
bounce (t+0) is

ψout(x, y(x), t) = ϕ(x, y(x), t+0)eiS (x,y(x),t+0 )/�. (Q.55)

The sum of these wave functions should vanish on the hard wall. This implies that
the incoming and the outgoing amplitudes and the phases are related as

S (x, y(x), t−0) = S (x, y(x), t+0), (Q.56)

and

ϕ(x, y(x), t−0) = −ϕ(x, y(x), t+0). (Q.57)

The minus sign can be interpreted as the topological phase coming from the hard
wall.

Now we can reexpress the spectral determinant with the local eigenvalues:

Δ(E) = eW(E)
∏

p

∏
l

(1 − Rl,p(E)e
i
�

S p(E)). (Q.58)

This expression is the quantum generalization of the semiclassical Selberg-product
formula [11]. A similar decomposition has been found for quantum Baker maps
in ref. [12]. The functions

ζ−1
l (E) =

∏
p

(1 − Rl,p(E)e
i
�

S p(E)) (Q.59)

are the generalizations of the Ruelle type [24] zeta functions. The trace formula
can be recovered from (Q.40):

TrG(E) = g0(E)+
1
i�

∑
p,l

(Tp(E)−i�
d log Rl,p(E)

dE
)

Rl,p(E)e
i
�

S p(E)

1 − Rl,p(E)e
i
�

S p(E)
.(Q.60)

We can rewrite the denominator as a sum of a geometric series and we get

TrG(E) = g0(E)+
1
i�

∑
p,r,l

(Tp(E)− i�
d log Rl,p(E)

dE
)(Rl,p(E))re

i
�

rS p(E).(Q.61)

The new index r can be interpreted as the repetition number of the prime orbit
p. This expression is the generalization of the semiclassical trace formula for
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disk

the exact quantum mechanics. We would like to stress here, that the perturbation
calculus introduced above is just one way to compute the eigenvalues of the local
Schrödinger problems. Non-perturbative methods can be used to calculate the
local eigenvalues for stable, unstable and marginal orbits. Therefore, our trace
formula is not limited to integrable or hyperbolic systems, it can describe the
most general case of systems with mixed phase space.

The semiclassical trace formula can be recovered by dropping the sub-leading

term −i�d log Rl,p(E)/dE and using the semiclassical eigenvalue R(0)
l,p(E) = eCl(0)

p =

e−iνpπe−
∑

i(li+1/2)up,i . Summation for the indexes li yields the celebrated semiclas-
sical amplitude

∑
l

(R(0)
l,p(E))r =

e−irνpπ

| det (1 − Mr
p) |1/2

. (Q.62)

To have an impression about the improvement caused by the quantum correc-
tions we have developed a numerical code [13] which calculates the first correc-
tion C(1)

p,l for general two dimensional billiard systems . The first correction de-
pends only on some basic data of the periodic orbit such as the lengths of the free
flights between bounces, the angles of incidence and the first three Taylor expan-
sion coefficients Y2, Y3, Y4 of the wall in the point of incidence. To check that our
new local method gives the same result as the direct calculation of the Feynman in-
tegral, we computed the first � correction C(1)

p,0 for the periodic orbits of the 3-disk
scattering system [14] where the quantum corrections have been We have found
agreement up to the fifth decimal digit, while our method generates these numbers
with any desired precision. Unfortunately, the l � 0 coefficients cannot be com-
pared to ref. [15], since the l dependence was not realized there due to the lack of
general formulas (Q.58) and (Q.59). However, the l dependence can be checked
on the 2 disk scattering system [16]. On the standard example [14, 15, 16, 18],
when the distance of the centers (R) is 6 times the disk radius (a), we got

C(1)
l =

1
√

2E
(−0.625l3 − 0.3125l2 + 1.4375l + 0.625).

For l = 0 and 1 this has been confirmed by A. Wirzba [17], who was able to
compute C(1)

0 from his exact quantum calculation. Our method makes it possible
to utilize the symmetry reduction of Cvitanović and Eckhardt and to repeat the
fundamental domain cycle expansion calculation of ref. [18] with the first quan-
tum correction. We computed the correction to the leading 226 prime periodic
orbits with 10 or less bounces in the fundamental domain. Table I. shows the
numerical values of the exact quantum calculation [16], the semiclassical cycle
expansion [10] and our corrected calculation. One can see, that the error of the
corrected calculation vs. the error of the semiclassical calculation decreases with
the wave-number. Besides the improved results, a fast convergence up to six dec-
imal digits can be observed, which is just three decimal digits in the full domain
calculation [15].
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Figure Q.2: A typical bounce on a billiard wall. The wall can be characterized by the local expan-
sion y(x) = Y2x2/2! + Y3 x3/3! + Y4 x4/4! + ....

Table Q.1: Real part of the resonances (Re k) of the 3-disk scattering system at disk separation 6:1.
Semiclassical and first corrected cycle expansion versus exact quantum calculation and the error of
the semiclassical δSC divided by the error of the first correction δCorr . The magnitude of the error in
the imaginary part of the resonances remains unchanged.

Quantum Semiclassical First correction δS C/δCorr
0.697995 0.758313 0.585150 0.53
2.239601 2.274278 2.222930 2.08
3.762686 3.787876 3.756594 4.13
5.275666 5.296067 5.272627 6.71
6.776066 6.793636 6.774061 8.76

... ... ... ...
30.24130 30.24555 30.24125 92.3
31.72739 31.73148 31.72734 83.8
32.30110 32.30391 32.30095 20.0
33.21053 33.21446 33.21048 79.4
33.85222 33.85493 33.85211 25.2
34.69157 34.69534 34.69152 77.0
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Appendix R

Quasiclassics, for a general
potential

(continuation of chapter ??)

Equivalently, the time derivative of the configuration space Jacobian matrix
(??) 1

d
dt

jt
i j(x) =

d
dqj(0)

dqi(t)
dt

=
d

dqj(0)
∂

∂pi
H(q(t), p(t))

yields the evolution equation

d
dt

jt
i j =

(
Hpiql + Hpi pk Mkl

)
jt
l j (R.1)

2 (for a separable Hamiltonian (??) this is the same as (??)). Here we denote
the [2d × 2d] matrix of the second partial derivatives of the Hamiltonian by

Hmn =

(
Hqq Hqp
Hpq Hpp

)
, m, n = 1, 2, · · · , 2d . (R.2)

The evolution equation for the curvature matrix follows from the ∂
∂q derivative

of (38.9) (remembering that pi = ∂S/∂q is also a function of q computed along
the (q(t), p(t)) phase space trajectory)

Ṁ = −Hqq − HqpM − MHpq − MHppM . (R.3)

1Predrag: this section needs fixing - I am already assuming no M dependence for p...
2Predrag: recheck indices
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The � expansion for a Schrödinger equation with a Hamiltonian of general
form can be implemented as follows. With substitution (??) the commutator[
�

i ∂q, ψ(q, t)
]

is given by

�

i
∂qψ(q, t) = ψ(q, t)

{
∂qS +

�

iR
∂qR +

�

i
∂q

}
.

The Schrödinger equation yields

0 =

{
�

i
∂t + H

(
q,
�

i
∂q

)}
ψ(q, t)

= ψ(q, t)

{
∂tS +

�

iR
∂tR + H

(
q, ∂qS +

�

iR
∂qR +

�

i
∂q

)}
. (R.4)

As the famed commutator is[
q,
�

i
∂q

]
= i� δi j , (R.5)

the operator ordering in H(q, p) matters if the Hamiltonian has mixed q, p terms,
as is for example the case for the helium Hamiltonian (??). For simplicity we
assume normal ordering, i.e., in the Taylor expansion

H(q, p) = V(q) +
∑
k=1

1
k!
∂k

pH(q, 0)pk (R.6)

all factors of p = �i
∂
∂q are to the right of all the q dependent factors. Then Taylor

expansions and resummations (do exerciseR.1) yield up to order � (assuming that
|ψ| � 0)

0 = ∂tS + H
(
q, ∂qS

)
0 =

∂ρ

∂t
+ ∂qρ · ∂pH

(
q, ∂qS

)
+ ρ (∂pi∂pj H

(
q, ∂qS

)
)(∂qi∂qj S ) . (R.7)

The first equation is the Hamilton-Jacobi equation (38.5), to be solved by integrat-
ing Hamilton’s equations. The second (as well as the higher �-order equations)
are to be evaluated along the (q(t), p(t)) trajectory. Noting that the first two terms
in (R.7) are d

dt =
∂
∂t +

dq
dt

∂
∂q , we have

dρ
dt
= −ρ Mi j∂pi∂pj H (q(t), p(t)) ,

3 where Mi j satisfies (R.3). If H = p2/2m + V(q), this is continuity equation (??),
but in general it is not.

3Predrag: EAS: it is still continuity equation, with the velocity suitably redefindes as for ex. for
electromagnetic field; must satisfy the wave function normalization condition.
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Commentary

Remark R.1 Higher � corrections. Spiegel: solve (38.50) iteratively by writing

κ =

∞∑
n=0

κn�
2n (R.8)

and truncating to order �2N . Vattay: forget Madelung, go back to square one (Schrödinger).
Und so weiter. What then is needed is a good perturbative treatment.

Remark R.2 Operator ordering. Add operator ordering remark here.

boyscout

R.1. Quasiclassical � expansion of the Schrödinger equa-
tion. Derive the identity(

y +
d
dx

)n

= yn +

(
n
2

)
yn−2 dy

dx
+

(
n
3

)
yn−3 d2y

dx2
+ 3

(
n
4

)
yn−4

(
dy
dx

)2

+ · · ·

Assume that a function F(y) has the Taylor expansion

F(y) =
∞∑

n=0

1
n!

dn

dyn
F(y)

∣∣∣∣∣
y=0

yn .

Prove that

F

(
y +

d
dx

)
= F(y) +

1
2

dy
dx

d2F(y)
dx2

+
1
3!

d2y
dx2

d3F(y)
dx3

+
1
8

(
dy
dx

)2 d4F(y)
dx4

+ · · ·

Use the above expansion to evaluate the normal-ordered
Hamiltonian (R.6) with substitution p → p̂ + ∂q

H(q, p̂ + ∂q) = H(q, p̂) +
1
2

dp̂
dq

d2H(q, p̂)
dp2

+
1
3!

dp̂2

dq2

d3H(q, p̂)
dp3

+
1
8

(
dp̂
dq

)2 d4H(q, p̂)
dp4

+ · · ·

Evaluate (R.4), and derive (R.7) by keeping terms up to
order �2

H

(
q, ∂qS +

�

iR
∂qR +

�

i
∂q

)
=

H(q, ∂qS ) +
�

i

{
1
R
∂R
∂qi

∂

∂pi

H(q, ∂qS ) insert here

}
(R.9)

4

4Predrag: complete this
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Appendix S

What reviewers say

Professor Gatto Nero

This book, which I have received unsolicited from the Szczsyrk Oblast Agri-
cultural and Mazuth Office Press appears to be a collage of LaTeX clips
from random papers authored by the motley collection of co-authors whose

number one usually associates with an experimental high energy Phys. Rev. Let-
ter, rather than a book that aspires to be the Landau-Lifshitz of chaos.

Entire rain forests went down so this not inconsiderable tome can be printed
and bound. Why these ravings were not left on the Web where they more properly
belong is not explained anywhere in the text. Indeed, what is worrying about this
book is that in an opinion poll about whether the book should be printed on paper
or left on the Web, almost no graduate students expressed opinion, one way or the
other. Perhaps this means that there is no “market” out there, and publishing just
another book is a fair way to give up on more ambitious schemes.

As far as to the value of webbooks, let us turn to Eric Heller’s thoughts on the
matter: “What sort of snootery would keep people away from an authoritative text
on the web? The problem our colleagues have identified is authoritative. In other
words, the chapters are not ‘stamped’ as ‘published’. Why not do that as sections
are really finished? On can still revise later or even frequently. The software
paradigm is a good one. Written by many people, the webbook is updated, bugs
are fixed, there are beta versions, etc. As long as someone is willing to oversee
the project, I think the webbook is a great experiment. I use this book a lot, and
would like to see ‘live’ books flourish.”

I find the idea of a constantly updated webbook with hyperlinks and so on
magnificent but still too modern. Readers and authors prefer a physical book. I
have great difficulties lying in the bed reading on a 17” screen on the belly, and its
not fun to print 103 pages when they are updated next month.

One issue one should consider is whether the book could be split into two
volumes, one classical and one quantum. However, the quantum chaos part is
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just an application of the ideas learned from the classical periodic orbit theory.
It is not something that stands alone. One should limit the quantum part to zeta
functions/periodic orbits, without dealing with the statistical properties of spectra,
etc. . A single book 80% classical + 20% quantum seems appropriate, without
splitting, since one cannot fill an entire book with interesting quantum stuff.

Indeed, I wonder how seriously to take the notion that the book will be used
as a graduate student text. Certainly the authors may use it as such but I wonder
how many others would. As a guide to the level of the discussion, saying that it
is for advanced graduate students is fine. I just see it being more of a reference
text than an actual course text. And, as the things change rapidly and the whole
concept will be ultimately outdated within a few years.

There are lot’s of Lifshitzs listed here, but no L.D. Landau, and it shows.
Reading the book I am reminded of the 60’s, when I went to a supermarket with
my newly formed collective. He did not like cornflakes, she did not like cheese,
the third one hated broccoli, and so on - by the time we reached the checkout, we
had only toilet paper and the dish detergent in the carriage. So it seems to have
been with these “co-authors”: one does not like Henkel functions, the other one
does not understand the Green-Kubo formula, while the third one hates fractals.
By the time they agreed on the overlapping set of what they all understood, they
were left with 700 pages of formalism and no applications.

The number of this book’s contributors leaving academia is increasing day by
day. Authors desperately need all credit they can get, and in Sweden they fire
people who contribute to such books. Nevertheless, as the letter appended to the
end of this review attests, the true authorship of this book is in doubt. The authors
should paid the due respect to the unprovably mafioso Italian Christian democrat
Professore Dottore Gatto Nero, equipped him with a homepage, CV and a publi-
cation list, and foisted off all the ill repute of this book on him. While he would be
pictured with Pope on the homepage, the authors could labor anonymously under
this Spirito Santo, for the love of science, their reputations unbesmirched? The
ultimate revenge on all the anonymous referees that have done the authors wrong
over the years - the anonymous authors!

And so the whole book starts making sense. If it is an antiBourbaki, as one
has in the antimatter world, then why not do the real thing? A Landau-Lifshitz for
nonlinear Science, written as it should be done. The nonScience book to end all
nonScience books.

S.1 His Holiness the Pope Gregorius III

This Gatto Nero - whence does he appear again? No one wants him and it is not
even funny. But never mind: he started up with the webbook again, so let me spell
out the sancrosanct dogma again: to have a good webbook you need

I) at some time t = t0 a well written and complete and coherent manuscript
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Bohr,˜N.
Feynman,˜R.P.
Rugh,˜H.H.

including all references, exercises etc etc - in other words a book

II) you then have to implement web-specific features like hyper-links, video
clips and so on

III) Then update the text for t > t0 on a regular basis (why else would you want
to have a time-dependent, non-static web-book). You include new material,
take obsolete stuff out and you do all this in a way that does not disturb the
rest of the text, which means updating all the text in the book from time to
time.

In order to do this, you need a well disciplined team of authors and you need
to be willing to do much more work than for a book only. Both these conditions
are not fulfilled in the case of the coauthors of the book in question. They are
barely able to reach point I) on the list above, I doubt that there is anyone who
is willing to put the extra effort in to make this an exciting, colourfull, sparkling
web-site with all the blinking web-features (point II) and there might be no one
around in 5 years time to update the webbook at all. So if all they produce is
a static Web-book, why than not publishing it straight away instead of letting it
deteriorate at the web again. Sorry gentlemen, but that’s all what you are in for.

S.1.1 Biographical note

His Holiness the Pope Gregorius III (731-741) was called by the people “The
friend of the poor and miserable.” His Holiness passed away on the 27th of
November of the year 741 after being at the head of Christ’s Church for ten years,
nine months and twelve days, in difficult times and during complex international
changes. The church celebrates in his honor on the 28th of November. It is writ-
ten about him in the books of the Roman Popes: “He would add to wisdom the
knowledge of the holy books and he was an outspoken preacher and an eloquent
speaker.”

S.2 Niels Bohr

“The most important work since that Schrödinger killed the cat.”

S.3 Richard P. Feynman

“Great doorstop!”

S.4 Hans Henrik Rugh
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Viswanath
escape rate
Lautrup,˜B.

Old and confused.

S.5 Divakar Viswanath

I have read the first six chapters. The introduction chapter is fabulous. The com-
putation of the escape rate for the pin-ball game in the first chapter is absolutely
riveting. There can’t be a better way to begin. I find the book to be very stimulat-
ing.

S.6 Benny Lautrup

I am now reading your book as meticulously. I have lots of little comments, and
one big one, which I can tell you immediately. I think that your opening chapter
with its many literary references, jokes, and finesses, loses out in the end, because
the main message gets obscured. Don’t make section quotes unless they are really
pertinent (although I love the first one about standing behind giants, but why cite
Kierkegaard in Danish (or at all for that matter)?

S.7 Coauthors’ combined comments

But let us turn to the text itself, chapter by chapter. As the strong sides of this text
are exceedingly few, I will concentrate here on the severe shortcomings that jump
at even most casual reader.

First, some overall problems that plague the entire text:

• Figures are awfull. While that might be a technical nightmare, the book
needs need more illustrations and cleaner graphics throughout.

• Not enough applications.

• The chapters do not fit together, even the overall logic is not clear some-
times.

• Things are not well defined, too vague etc

• Important parts are missing

• There are too many different styles in this book

• resolve conflict with pdfmark package for mkpdfRaw which prevents gen-
erating hypertext version of coauthor’s copy
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• bibliography references format in the text now wrong; refers to [27] rather
than the correct chapter number format [11.27] for ref 27 in 11th chapter.

• US letter size mkpdfRaw - decrease pagesize so all margin pointers are
visible

• US letter size - public version: shift top margin down

• make a table of tables?

• insert someplace: Hausdorff-Baker expansion, ...

Contributors

decrease the interline spacing in the itemize lists

Preface

1 Overture

I have to say that the melancholy authors sound jaded and too impatient to
explain carefully. Is this the new cool? No cutting is needed, just a bit more care
in explaining. I reread chapt. 1 again and again until my strength gave out, and
do not adapt to it. The style is agreeable but I think what bothers me is that it is
trying to be introductory and goes into technical talk. That is fine but when I get
my mind set for technical talk I want to get the real thing and then it turns out
that the effort was wasted because it does not go all the way and simply leaves me
hanging saying we’ll do this later. This kind of teasing is not for me. Either do it
or don’t do it is what I say and I am for less technical stuff in the intro and then
getting down to it for real when it happens.

1.1 Why this book?

Mark Oxborrow 2012-12-12: With respect to the last point made in“why a
web boo”, authors like citing things that are set in stone. It’s about control and
security. An authors feels uneasy about citing an evolving book because one does
not quite know what it will look like when the reader of one’s paper chases down
the reference to said book four-and-a-half years’ time. The cited web-resource
may have become hacked and taken over by the Moonies in the interim. Ironically,
authors feel that citing traditional published-on-paper references Is way of future
proofing their work.

1 There is always a tension between the narrative flow of a lecture, and the
leaden weight of the over-edited text. So lots of in-jokes creep into this text. ‘Rel-
ativity’ in the title has nothing to do with Einstein, but much to do with Poincaré:
it refers to motions that appear fixed relative to a co-moving frame.

1Predrag: move this text to intro.tex
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Critics say:

...Seen in [Professor Gatto Nero’s] framework, field theory books are like ev-
ery other form in the universe: they are generated by changing intervals of ten-
sion between a dominant system and a competing system in a space-time contin-
uum that is dependent on the process of competition between these two stabilities
and not on any General Concept of Space and Time ... [Professor Gatto Nero’s]
method thus valorizes the microcosm which illuminates macrocosmic form by the
high tendency of microcosmic patterns to repeat themselves and so greatly limit
structural variation in the macrocosm ... But on another level, as itf the sagas,
the Song of Rolland, the Illiad, the Odyssey, the Nibelungenlied, the Aeneid and
Beowulf, the real dynamic focus of the book is the power of anger.

Patricia Harris Stablein

1.2 Chaos ahead

I cannot find any place where “chaos” is clearly defined in this book.

As far as I know, no smooth analytic flow with compact phase space is er-
godic (meaning only unstable periodic orbits, no marginal, elliptic or attracting
cycles), and my belief is that there might eventually emerge a general proof that
smoothness and compactness requires some islands of stability.

I know of 3 candidates on the market.

1) for many years it was believed that 2-dimensional (xy)2 potential is chaotic.
This was killed by P. Dahlqvist and G. Russberg, Existence of stable orbits in the
x2y2 potential, Phys. Rev. Lett. 65, 2837 (1990).

2) Gutzwiller still believes that for sufficiently large anisotropy anisotropic
Kepler problem is chaotic, and has done extensive numerics to check that. I (and,
for example, Devaney) believe that the islands are most likely so small that one
cannot find them without detailed topological intuition of where they woould pop
up (that’s what was needed to kill the conjecture 1).

3) A. Knauff has proven that certain 1-dimensional array of scatterers is er-
godic - however, this does not qualify as the potential is piecewise analytic, not
one analytic function.

Arguments that ergodic flows might nevertheless exist are based on studies of
the Henon map, idea being that a Poincare section of a stertch&fold flow might
be reducible to map of Henon type; there we believe that in positive measure in
the parameter space it is possible to recursively change the parameters in such a
way that the period of the shortest stable cycle can be bounded to be arbitrarily
long. For (a, b) values close to the (2, 0) 1-dimensional Ulam quadratic map this
has been proven by Bennedicks and Carlson. But this requires fiddling with pa-
rameters - when one is given a potential like (xy)2, there is not much to fiddle
with.
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It is very easy to construct nice chaotic flows if one is willing to accept re-
pellers; 3-disk repeller that the book uses as the teaching example is a nice model
of this type.

1.3 A game of pinball

1.4 Periodic orbit theory

1.5 Evolution operators

1.6 From chaos to statistical mechanics

1.7 Semiclassical quantization

“Dear Professore Nero,
I am from Australia, and I am planning to do my project on quantum chaos, but
am having trouble coming up with a suitable definition, let alone a specific area
to study. I have downloaded and read several chapters of your book, as well as
reading parts of Gutzwiller’s, but have had trouble in obtaining a useful overall
picture of the subject. Can anyone tell me what on earth is quantum chaos? ”

Dear Michael,

An answer: There are several definitions. The only sensible one is Berry’s
“quantum chaology,” quantum mechanics of systems that are classically chaotic -
in this book the connection is provided by Gutzwiller trace formula and its gen-
eralizations. One can try to define ‘quantum chaos’ by searching for positive
Lyapunovs and positive entropy in the space of time-dependent wave functions,
but that tends to lead to a muddle, as people can then prove that ‘quantum chaos’
does not exist, and become very excitable (late Joe Ford). Third approach is to
posit that spectral correlations are random (modulo symmetries such as the time
reversal) - started with Wigner - and describre systems with such quantum spectra
as “chaotic.” This conjecture has not - so far - in any way been connected to clas-
sical chaotic dynamics, so I find it not too useful. People studying conductance
fluctuations in mesoscopic systems find this useful, though.

All that is accomplished here is a rather fancy set of techniques for systematic
semiclassical quantization, just a version of WKB or EBK quantization for chaotic
systems. In no way replacement for Schrëdinger equation, but only a chapter 20
or so in a good graduate quantum mechanics textbook of the future.

1.8 Guide to literature

I was struck by the clarity of some of authors’ transparencies shown in con-
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ference talks, especially with respect to trace functions and evolution operators.
Although some of these diagrams have in part surfaced within the text, the text
tends to be more formal in tone. The authors should consider placing more ex-
planatory “figures” along the lines of their conference transparencies. One might
set some of these off as outlined boxes on their own page, to isolate their infor-
mality from the text. Placing such figures at reasonable places in the text would
be an educational asset - it is what people would likely get attending the author’s
courses in person, but its absence makes the material less penetrable to the isolated
reader.

Guide to exercises

Resumé

Exercises

2 Trajectories

NW: The analogy to celestial firmament seems a little forced to me. Also,
the analogy is tenuous. In order to predict the future positions of planets relative
to the background stars, it is necessary to know their current momenta as well as
positions. So the firmament is not really the phase space — the phase space is
something like the tangent bundle (or cotangent bundle for a Hamiltonian formal-
ism). This is apt to confuse since when you deal with dynamical systems, it is
usual that the velocities are phase space variables while this analogy implies that
they are not. (And this doesn’t even mention that the planets are evolving in 3
dimensions and the firmament is a two dimensional projection.)

2.1 Flows

PC: the notion of attractor is not defined anywhere! Fix.

2.2 Computing trajectories

Sect. 2.4 needs to be written.

2.3 Maps

(Gabor Vattay 11 Mar 1999): In order to motivate the qualitative dynamics
chapter I need specific differential equations. I also need them to motivate diff.
eqations —¿ maps change. Rossler is good, but nobody in my class understood
what is on the pictures with dogs. They are not scientists, they should be able to
figure it out from the book.
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2.4 Infinite-dimensional flows

Insert figure of a spatiotemporal solution

2.5 Billiards

Write a clear and implementable billiard dynamics algorithm (no arcsine func-
tions and such - at most a square root)

Resumé

Resumé still needs to be written.

Exercises

3 Local stability

PC: Very serious weaknesses in this chapter, stability stuff has not been prop-
erly written up.

Goals of this chapter (Gabor Vattay 11 Mar 1999):

Draw an attractor, show chaotic systems and to compute stability, show Poincare
map —- can preceed symbols. This is extremally helpful for students, who do not
take a class on pure chaos beforehand. (60 % of my students are such students.)
If we could start with such chapter, it would make possible to use our course as a
self-contained chaos course.

3.1 Flows transport neighborhoods

Define the Lyapunov exponent already here, by transferring a non-cycles part
of sect. ?? to this chapter.

3.2 Linear stability of maps

3.3 Linear systems

This section lacks all the essential material written up in any textbook on non-
linear dynamics. This must still be written up.

3.4 Understanding flows

Looks indigestible for a student in the present form.
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3.5 Stable/unstable manifolds

3.6 Stability of periodic orbits

This section lacks all the essential material written up in any textbook on non-
linear dynamics. This must still be written up.

The topic of finding the Poincaré monodromy matrix for a Hamiltonian flow
from the full Jacobian is discussed in appendix C. Whelan prefers Christiansen’s
exposition in chapter 8. There is also the issue of doing that for an arbitrary (non-
Hamiltonian flow) which Christiansen discusses.

3.7 Billiards

One of the worst sections of the whole book: The Bunimovich-Sinai curva-
tures are not well written up, billiard stabilities are inadequately discussed and
immensely important. Gaspard does a nice job in his book, worth having a glance
at.

Resumé

Resumé still needs to be written.

Bibliography is missing.

Exercises

4 Transporting densities

Maybe I missed some conceptual overall plan, but I do understand the philos-
ophy behind this chapter. Are conservation equations used in following chapters?
In deriving the exponential form for Ut one should mention the Stone theorem, as
the average reader is likely to know a little functional analysis: and the emphasis
should be on infinitesimal generators. If functional analysis is to be avoided why
mention is made to pointwise convergence of Utρ ? The remark on Koopman op-
erator probably would be worth more space: it is true that zeta functions require
restricting L2: but this is one of the crucial issue of all the story, and the physi-
cal import (...) is that correlation functions may decay how they like in a too big
space: moreover I wonder whether the introduction of Koopman operator might
be the right point to briefly mention how spectral properties of Ut are related to
ergodic properties.

4.1 Measures
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4.2 Density evolution

4.3 Invariant measures

4.4 Evolution operators

Resumé

Exercises

5 Averaging

5.1 Dynamical averaging

Redraw figures 5.1, 5.2.

5.2 Evolution operators

Resumé

Move the “pressure” remark to a more appropriate chapter.

Exercises

6 Trace formulas

(Gabor Vattay 11 Mar 1999): in my course I skip the trace formulas. I don’t
think the trace formulas are important. If you teach somebody who neither saw a
trace nor a determinant, can immediately learn the correct thing. We dont have to
fight with shadows of our research community.

6.1 Trace of an evolution operator

6.2 An asymptotic trace formula

Resumé
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Exercises

7 Qualitative dynamics

This material is really turbulent, the main problem is that this is research based
and not undergraduate classroom material. Everything needed is in this chapter, it
just looks like a salad. The chapter should be improved. Either one should be easy
going and say less and just to show few examples, or one should define concepts
more correctly like in the appendix B. So, I skipped pruning fronts and most of
the pruning, since I am not an expert in this. The problem with the pruning part is
that there is no way to figure out what is the most complicated pruning and if say
00 is excluded then it will be excluded in all circumstances, so what?

7.1 Temporal ordering: itineraries

7.2 3-disk symbolic dynamics

7.3 Spatial ordering of ‘stretch & fold’ flows

7.4 Unimodal map symbolic dynamics

7.5 Spatial ordering: symbol plane

7.6 Pruning

7.7 Topological dynamics

The general idea of template analysis is appealing, but it makes no appearance
in this book. I feel that some template analysis should be included, but would fear
even starting - because I see no quick and simple exposition, no way to present it
in 10-20 pages and still enable a student to use it. Has somebody written a brief
but not superficial text that lends itself to a few lectures and a problem set in the
style of this book?

Resumé

Edit references.

Exercises
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chapter 13 Fixed points, and how to get them

Christiansen plans to finish off a beautiful chapter during the month of August,
2000. But don’t hold your breath - he has to prepare opening session talks for the
European Geophysical Society’s yearly symposium, and such.

8.1 One-dimensional mappings

8.2 d-dimensional mappings

sect. 13.4 Flows

I am interested in applying this material to determine numerically the unstable
periodic orbits of some nonlinear ordinary differential equations. In particular, I
am working on (1) periodically driven Van der Pol equation, (2) a system of 3
coupled ODE’s describing the nonlinear coupling of three waves as studied by
Wersinger and Ott.

I found the methods desribed here very efficient for the case of maps and
wondering if you know of any similar algorithms or papers that I can use to find
the unstable periodic orbits of my differential equations. So far I were unable
to find them numerically. When I integrate my equations backward in time the
solutions tend to converge to a different unstable periodic orbit from that I am
looking for. For instance, instead of period two orbit it converges to a period one
orbit.

sect. F.2.1 Newton method with optimal surface of section

Niall Whelan (23 Apr 2002):

I looked at Carls’ notes.... they are not the absolutely easiest to read. I think
we have differing definitions of D. I thought it was the dimensionality of the con-
figuration space so 2D was the dimensionality of the phase space and 2D-2 was the
dimensionality of the Poincare’ section (for a Hamiltonian system, the Poincare’
section reduces the dimensionality by two.) I believe for Carl (and you?) D is the
number of crossings of the Poincare surface, which is obviously a different thing.

What I was talking about was the equivalent of going from Carl’s 3x3 matrix J
to his 2x2 matrix J̃, but where you can reduce the dimensionality by 2 as opposed
to 1 (by using the time flow and also using the Hamiltonian conservation.) I wasn’t
referring to multiple mappings which seems to be his point.

I could be more explicit in writing out what I mean if you care, but it now
seems that we were talking about different things. (As in other topics involving
symplecticity (an 80’s Police album? something I learned from Stephen.)
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stationary phase
stadium billiard
billiard!stadium

8.4 Sundry methods for cycle extraction

Discuss extraction of long time series.

The “extras” homepage contains a contribution from F.K. Diakonos, D. Pingel
and P. Schmelcher: Systematic Detection of Unstable Periodic Orbits in Discrete
Chaotic Dynamical Systems (4 July 2000). The method to detect orbits is of gen-
eral character and works very well, at least for the authors. They have combined
it with the existing Newton-Raphson approach and thus it becomes also more ef-
ficient and works perfectly. It can also be applied to higher dimensional systems
and goes to much higher periods than, for example, Newton-Raphson on its own.
Shouldn’t this be included here?

Thomas Schreiber (Aug 9, 2000) and Predrag Cvitanović bemoan absence
of a good review on extraction of cycles from DATA. Thomas is sceptical about
the Schiff/So approach; if you define a periodic orbit to be something that your
software prints, then you can do nice things. Otherwise...

There is some work by Schmelcher and Diakonos which is in the class of
Biham&Wenzel old paper on Hénon cycles. They claim it can be done from a
time series but seem to have not gone beyond numerical Ikeda data. The review
on NMR laser chaos by Brun, Badii etc (Rev.Mod.Phys.) is somewhat special
since the system is rather structured (almost 1D Poincare section).

As far as Thomas knows, there is no way around modeling the full system
first and then find UPO’s of the model. Kantz and Schreiber do that for locally
constant models in the routine in the TISEAN package, others have done it with
RBF, neural net and other models.

8.5 Periodic orbits as extremal orbits

The statement that cycles are minima of the length function is wrong. They
may be maxima and saddles as well, think about the stadium for two seconds. It
think they are always minima in dispersive billiards, though.

8.6 Stability of cycles for maps Roberto: I am trying to collect observa-
tions/references on various points (for instance i cannot find where it is explained
that stability is the same along all periodic points ..).

—-

Write up a clear argument that Floquet multipliers are invariant for maps and
flows in d-dimensions.

Resumé

Exercises
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9 Counting

9.1 Counting itineraries

9.2 Topological trace formula

9.3 Determinant of a graph

9.4 Topological zeta function

9.5 Counting cycles

9.6 Infinite partitions

Resumé

Exercises

10 Spectral determinants The idea is to introduce concepts thorugh a
series of toy examples. The logic should be something like this:

1. 1-dimensional linear fixed point

(a) unstable: k = 0 piecewise constant

(b) stable: k = 0: δ(x) singular

2. 1-dimensional piecewise linear map

3. 1-dimensional nonlinear fixed point

(a) unstable: k = 1, 2, . . . analytic ρ

(b) stable: k = 1, 2, . . .: δ(x)k singular

4. 1-dimensional piecewise analytic map

5. 2-dimensional linear hyperbolic fixed point
ρ = smooth×singular
future×past = smooth ρ

Niall D. Whelan (11 Oct 2002): - include a flowchart showing the connec-
tions among the propagator L, the trace formula, and the various zeta functions.
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Having something visual as an aid would help to keep track of the thread of the
development. I could sketch out something rough in

10.1 Spectral determinants for maps

10.2 Spectral determinant for flows

10.3 Dynamical zeta functions

10.4 The simplest of spectral determinants: A single fixed point

10.5 False zeros

10.6 All too many eigenvalues?

10.7 More examples of spectral determinants

10.8 Equilibrium points

Resumé

Exercises

11 Cycle expansions

11.1 Pseudocycles and shadowing

11.2 Cycle formulas for dynamical averages

11.3 Cycle expansions for finite alphabets

Someplace write up and describe Liouville spectrum for classical 3-disk sys-
tems.

The in the quantum part compare the classical and the quantum spectrum.
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11.4 Perturbation expansions in terms of cycles

11.5 Stability ordering of cycle expansions

11.6 Infinite alphabets

11.7 Equilibrium points

11.8 Dirichlet series

Resumé

Exercises

12 Getting used to cycles

This chapter, which in the preceding edition of the webbook purported to make
the formulaic incantations of the preceding eleven chapters understandable and
accessible to mere humans, has been edited with sledge hammer. Vattay got that
Copenhagen feel-good feeling bashing at it, probably just because he works at
night powered by Tuborg beer, not Carlsberg. Then he went to sleep, and the
chapter consists of shards that survived to see the “first serious DasBuch version
of the 21 century.”

Problems with Vattay’s rewrite: the topics introduced in the chapter have not
been indexed, no figures illustrating them have been prepared, cross-referencing
with the rest of the text (in the preceding version of the chapter) has been de-
stroyed, the references have not been updated, cross-checked and cleaned up.

12.1 Escape rates

I am still confused about something. If I take the standard map and jam a
cubic function into its inerds, – say at x = 0 – I will get an isolated (nonmixing)
region surrounding x = 0. If I fiddle the parameters of the cubic thingee, I can
vary the leakage from the isolated region to be just about whatever I want. To me,
for a tiny rate of leakage up to a large rate, the topology – and hence the symbol
sequences if I could partition the problem – ought to be essentially the same. And
of course I can set the eigenvalues at x = 0 to be whatever I choose, independent
of the rest of the cubic function. So I would think that periodic orbit theory would
say that the low-leakage and the high-leakage problems have similar measurables,
yet the mixing changes fairly dramatically with the rate of leakage. So what am I
missing?
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12.2 Trace formulas vs. level sums

12.3 Eigenstates

Carl Dettmann is disappointed that Vattay has removed Rondoni’s exposition
of orbital measures. Orbital measures are an important contribution to the subject,
in that they

(a) Provide an alternative way of looking at periodic orbit formulas

(b) Are simpler to understand, and so benefit the reader

(c) Are simpler to calculate, for example applications in statistical mechanics

(d) Appear in quite a lot of literature, which would otherwise be quite confusing
to the readership of the book.

Their application has so been almost all restricted to trace formulas, which
are very much less convergent than zeta functions or spectral determinants in the
best case (uniform hyperbolicity, finite topology), and so treatments of periodic
orbit theory using only trace formula based orbital measures are very incomplete,
however

(i) There is ample discussion of these other methods in the book, so the reader
will never get the impression that orbital measures are all there is.

(ii) For weaker chaotic properties (the extreme example would be the randomly
oriented Ehrenfest model, which is an infinite polygonal billiard with diffu-
sive properties intimately related to the periodic orbits, see arXiv:nlin.CD/0001062),
it is not clear how to extract the most information from the periodic orbits,
and trace formulas may do as well as other methods.

(iii) Zeta function and spectral determinant expressions for averages are linear
combinations of the observable computed on the periodic orbits, so they
also correspond to orbital measures, albeit more complicated than those
from trace formulas; thus the concept of “orbital measure” is not restricted
to trace formulas and their slow convergence.

Dettmann hopes orbital measures will live again in the pages of the book, for
they are very much alive elsewhere.

12.4 Flow conservation sum rules

12.5 Why not just run it on a computer?
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12.6 Ma-the-matical caveats

12.7 Cycles as the skeleton of chaos

Resumé

Exercises

13 Applications

Problems with Vattay’s rewrite: the topics introduced in the chapter have not
been indexed, no figures illustrating them have been prepared, cross-referencing
with the rest of the text (in the preceeding version of the chapter) has been de-
stroyed, the references file (now renamed to refsAppApplic.tex) has simply been
forgotten - not been updated, cross-checked and cleaned up.

The advanced parts of this chapter were moved into appendix on “Applica-
tions,” the definition of Lyapunov exponents and correlation functions into ge-
tused.tex chapter.

13.1 Lyapunov exponents Moved into getused.tex chapter.

13.2 Evolution operator for Lyapunov exponents This section, based on
(inter alia) a paper by Vattay et al has been moved into appendix on “Applica-
tions.”

13.3 Correlation functions Moved into getused.tex chapter.

This needs serious improvement.

Vattay removed the Green-Kubo formula, as at this point it preceeds the chap-
ter on the diffusion constants, and suggested that Artuso incorporates it some-
where in the diffusion constant chapter.

13.4 Advection of vector fields by chaotic flows This section, based on
(inter alia) a paper by Vattay et al has been moved into appendix on “Applica-
tions.”

Resumé The “Resumé” was a remark on role of noise in dynamics, a topic
discussed nowhere in this book, and certainly not in this chapter. Moved into a
remark in getused.tex chapter.
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Exercises

14 Thermodynamic formalism

Problems with Vattay’s rewrite: the topics introduced in the chapter have not
been indexed, no figures illustrating them have been prepared, cross-referencing
with the rest of the text (in the preceeding version of the chapter) has been de-
stroyed. Need to extract refsThermodyn.tex from refsAppApplic, the references
have not been updated, cross-checked and cleaned up.

Career update: Starting 8 of July Vattay runs his Communication Networks
Laboratory founded by Ericsson on the Eotvos University. The topics are interest-
ing: random graphs, stochastic maps and chaos on internet in general. But then
one has to deal with real word engineering as well.

14.1 Rényi entropies Vattay has elimanted the relation

K1 =
〈−nγ + λ〉

〈n〉
= λ0 − γ (S.1)

Restore, should also probably be generalized to continuous times.

14.2 Fractal dimensions

Resumé

Exercises

Vattay could not find a solution file to exerThermo. Somebody who wrote the
original exercises might have a soluton to the first 3 problems and can add it to
soluThermo.tex. Sure.

15 Intermittency

This chapter needs more figures.

15.1 Escape, averages and periodic orbits

15.2 Knowing your enemy

15.3 Defeating your enemy - Resummation of intermittency
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15.4 Marginal stability and anomalous diffusion

15.5 Probabilistic methods and approximate zeta functions

Resumé

A more exhaustive guide to literature would be welcome?

Exercises

16 Discrete symmetries

16.1 Preview

16.2 Discrete symmetries

16.3 Dynamics in the fundamental domain

16.4 Factorizations of dynamical zeta functions

16.5 C2 factorizations

16.6 D3 factorization: 3-disk game of pinball

16.7 Summary

Resumé

Exercises

17 Deterministic diffusion

Perhaps the Green-Kubo formula can be rescued and (re-)incorporated some-
where in this chapter.

17.1 Diffusion in periodic arrays
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17.2 Diffusion induced by chains of 1-dimensional maps

17.3 Lorentz gas

Resumé

Exercises

18 Semiclassical evolution

Most of the figures need redoing. Tanner has changed the notation in f hamilton wave.eps
from S to R, but also that picture needs some brushing up.

18.1 Quantum mechanics: a brief review

Tanner has removed the average density of states section, as his intention is to
include it in the semiclassical quantization chapter, where it fits better.

18.2 Semiclassical evolution

Tanner has moved Madelung fluid/ hydrodynamical interpretation into a re-
mark.

18.3 Semiclassical propagator

Tanner has the semiclassical propagator derived directly from short time be-
havior (read this section carefully); he choose to do it this way, because intro-
ducing the momentum picture is too ad hoc; if we want to start from momen-
tum space, then we need to introduce wave function representations (configura-
tion/momentum), Fourier transform and also stationary phase approximation here.

18.4 Semiclassical Green’s function

Tanner has taken out the Gaussian approximation; not needed here, only the
imaginary part is needed here.

The references are still missing.

Resumé

Exercises
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Many solutions, to be included in soluSemicl.tex, are still missing.

19 Semiclassical quantization

19.1 Trace formula

19.2 Semiclassical spectral determinant

19.3 One-dimensional systems

19.4 Two-dimensional systems

Resumé

Exercises

20 Semiclassical chaotic scattering

The goals of this chapter: The derivation of Gutzwiller trace formula (as well
as the classical trace formulas) given above was heuristic, and it is not clear when
it is applicable, and whether it is correct. For example, in its derivation we as-
sumed that the system is bound and the spectrum is discrete - nevertheless, our
main application is to spectrum of helium, much of it above the ionization thresh-
old. Wirzba’s treatment answers several of these questions; the derivation is rig-
orous for a class of scattering problems. It also introduces new physical ideas in
this set of applications, in particular the phase shifts. It derives cycle expansions
from the exact cumulant expansions for Fredholm determinants. Together with
the appendix, it connects this subject to the well developed theory of spectra of
linear operators on Hilbert spaces. Without Wirzba’s treatment we would have
not understood where Gutzwiller-Voros zeta fails, trusted our creeping formulas,
been able to go onto other problems, such as elastodynamic resonances.

In May 2000 Gregor and Andreas have agreed on how to reorder Andreas’
original version of this chapter. Gregor thinks that examples about the 1-disk and
2-disk and/or 3-disk system should be given

But the chapter took much more radical turn.

One immediately notices that the author has shortened the chapter tremen-
dously, basically by removing any reference to any Bessel and Hankel function
and to any of Wirzba’s published or unpublished papers.
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The reason is clear - the author got rather depressed writing the chapter, feel-
ing pressure to write once more the old thesis or even to improve on it (i.e., make
it more pedagogical). After really getting in a very depressive mode, the author
decided to NEVER EVER write about this stuff again. This is done in Wirzba’s
Physics Reports, it is the final word about the subject and it may rest there in
peace.

So the author concentrated this chapter on the only thing a student should
know about this subject, namely the Krein-Friedel-Lloyd stuff. Everything left
out does not really belong in a book meant for graduate students.

As the new scattering chapter became very short and, in fact, is only about the
Krein-Friedel stuff, one might make it to a new appendix. Indeed it is really writ-
ten as an appendix or after-thought to chapters 18 and 19. Then, one might drop
the exercise file which anyhow contains just one exercise. Furthermore, Wirzba’s
appendix about trace-class etc. is really not needed as far as this revised chapter
is concerend. It could be dropped as well, very it not referred to throughout the
book.

small typos etc., cannot be exclude since the author got feed up with the whole
stuff. Anyway, the chapter is short and general enough that any pfhysicist off the
street should find it easy to repair in a way that suits it suits her.

20.1 Quantum mechanical scattering matrix

20.2 N-scatterer spectral determinant

20.3 Krein-Friedel-Lloyd formula

20.4 Semiclassical reduction for one-disk scattering

20.5 From quantum cycle to semiclassical cycle

20.6 3-disk system

20.7 Heisenberg uncertainty

Resumé

Exercises
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escape rate21 Helium atom

Tanner’s version of Mar 17 1997 had some interesting and illuminating intro-
ductory historical remarks. They merit a reappearance in Appendix “Brief history
of chaos,” the “Old quantum theory section.”

Now, something about the importance of this chapter to the book as a whole.
As everybody should know, the chaotic collinear helium calculation is the prettiest
physical application of the Gutzwiller-Voros Zeta function recycled.

In fall 1999 semester Cvitanović taught a pure Quantum Chaos course
www.nbi.dk/ predrag/NUcourses/Fysik711B-99-sched.html
whose goal was to start with the Schrëdinger equation and end with the semiclas-
sical quantization of collinear helium: it took

6 weeks to derive the Gutzwiller trace formula
3 weeks of random matrix theory
2 weeks of classical dynamics; periodic orbits of flows, escape rate, classical trace
formula (by this time 1/2 kids can find periodic orbits of Rossler flow, their peri-
ods and stabilities)
2 weeks of mesoscopic physics (in the exercises I hope to get them to go through
a derivation of a zeta function from the trace formula, substitute their data into
the escape rate calculation, and see how far are they from escape rate = 0; start
finding periodic orbits, stabilities of collinear helium)
2 weeks of zeta functions, shadowing (in the exercises they should get some esti-
mate of helium spectrum, no matter how rough)
1 summary lecture

Cvitanović failed to reach the helium quantization, concluding that one should
give up on it altogether; it is impossible to use as a textbook example.

Suppose they have understood how to integrate flows, look at Poincare sec-
tions, integrate Jacobians along flows, use Newton method, find periodic orbits,
have some idea of symbolic dynamics, have classical and semiclassical cycle ex-
pansions, can they in 2 weeks of work get a few helium spectral lines out?

Should probably help them by telling them that the full analysis requires also
σp and αp, maybe say a few wise words of why are they what they are for the
given cycles, then give them a table with all this information for all orbits up to
length 5. They cannot cheat, as I expect to see their calculations.

I think that would be a humane approach - they would have learned something
about semiclassical methods and chaotic dynamics, and come to appreciate that
all this heavy machinery has good physical applications.

21.1 Collinear helium – the classical dynamics

The monodromy matrix in 3-dimensional is perhaps too hard, maybe have
only a few words that in collinear case we are missing transverse oscillations and
thus screwing up Maslov’s and local quantum numbers.
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21.2 Semiclassical quantization of collinear helium

Imagine yourself as a good graduate student, trying to reconstruct Tanner’s
PhD from this 3 and 1/2 page abstract. Even if you succeed, what do you compare
to? is there enough information about periodic orbits, are the tables using all
kinds of N,K,n, N,l, WKB that have no immediate connection to m and symmetric
antisymmetric zeta’s mentioned in the text?

Conclude with some wise words on intermittency.

Historical comments

Resumé

Exercises

22 Periodic orbit theory of diffraction

The goals of this chapter: can be brief: state that the full semiclassical trace is
the sum of real cycles, complex cycles, cycles with diffractive connection terms
in their weights, and � corrections. Extracted from Copenhagen School collective
works.

Whelan may also go through Andreas’ diffraction chapters since he has some
background on that topic.

22.1 Semiclassical creeping contributions

The goals of this chapter: The original Gutzwiller trace formula receives con-
tributions from classical periodic orbits, and is clearly wrong near bifurcations,
stability islands, diffractive scatterers. It misses tunneling and creeping. One of
contributions of the Copenhagen School to the subject was a systematic incorpora-
tion of these effects, making it clear that the correct semiclassical trace formula is
a sum over ALL saddles, real or complex, with diffractive contributions included
in spirit of Keller, with connection coefficients computed from normal-form ap-
proximations to diffractive regions.

This chapter should describe the Keller + Copenhagen formulas in the case of
creeping around 2-d billiard edges.

Next chapter describes the simplest (wedge) diffractive effects.

The tunneling chapter cannot be written yet - still a research topic.

What is missing in Das Buch is the answer to the next obvious question -
what about the h-bar correction. Here Gaspard, Vattay and collaborators have

reviews - 7nov2009 boyscout version14.4, Mar 19 2013



APPENDIX S. WHAT REVIEWERS SAY 1301

provided a rather pretty complete answer. There is some of that discussion in the
(preliminary) Noise chapter by Vattay.

In developping this theory, Wirzba’s treatment was crucial all along the way
- often the effects are exponentially small, and without Wirzba’s high accuracy
exact calculations one would not have trusted the approximations, or would have
no way to gauge the accuracy of higher � corrections.

23 Diffraction distraction

The goals of this chapter: The original Gutzwiller trace formula receives con-
tributions from classical periodic orbits, and is clearly missing diffractive effects,
as they are NOT classical. This chapter teaches the ideal student how to include
diffractive contributions in spirit of Keller, with connection coefficients computed
from normal-form approximations to diffractive regions.

Niall Whelan is distracted, as he is 1) in love, and 2) has left physics (mid-
July 2000) for a job at Scotiabank in Toronto as a “quant.” These two facts are not
completely uncorrelated. Anna and Niall have found a great place to live in a very
cool part of town.

23.1 Quantum eavesdropping

23.2 An application

Resumé

Exercises

24 Why does it work?

Andreas and Hans Henrik should perhaps co-ordinate some parts, if Andreas
writes some stuff on Fredholm dets in a Hilbert space set-up.

24.1 Curvature expansions: geometric picture

Hans Henrik appears not to have read this section. Needs work.

24.2 Analyticity of spectral determinants

24.3 Hyperbolic maps
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24.4 On importance of pruning Hans Henrik appears not to have read this
section. Needs work.

Resumé

Exercises

Hans Henrik has not prepared any exercises. Needs work.

25 Pruning dead itineraries

With a full time job and two small girls for Kai there is not much time for
such things as writing this chapter. Besides, Kai would rather be skiing. Kai is out
in the industrial and computer world, with daily life concerned more with RAM
chips, A/D converters, instantiation of C++ classes, etc., then chaos. There is a
Croatian proverb - “They can put salt on my tail” meaning they can put salt on
my tail, but first they have to catch me. And now that Kai is out of academia,
he is hard to catch. But if he were to get into an inspired mood, nobody would
contribute as much as Kai can when it comes to symbolic dynamics and pruning...

Predrag to Ralf Gekle, Stuttgart (8 Oct 2004):

I would like you to use his well-ordered symbol-plane.

Why? This is the ordering that clearly reveals the origin of the pruning front.
It depends on the signs of expanding eigenvalues of the 3 basic types of motion
encoded by the ternary symbolic dynamics: if the next symbol is order preserving,
ternary tree is unchanged - if it is order reversing, the corresponding subbranch of
the ternary tree is flipped. I expect these signs to be the same for 4-disk, hyperbola
billiard and for your potential - the difference is that for for sufficiently low E you
start getting (and losing again) islands of ellipticity along the pruning front. This
is how

Explain the pruning front as on p. 221 of Hansen’s thesis. The pruning arises
as in Fig 10.4. If there is some other pruning mechanism, other than Figs 7.4 to
7.4, that would be very interesting. It could happen, as your effective potential has
a bump coming up form the central ”dz” region.

25.1 Pruning front

25.2 Hénon map pruning front

25.3 3-disk pruning front
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Resumé

Exercises

26 Periodic orbit sum rules

27 Irrationally winding

27.1 Mode locking

27.2 Local theory: “Golden mean” renormalization

27.3 Global theory: thermodynamic averaging

27.4 Hausdorff dimension of irrational windings

27.5 Thermodynamics of Farey tree and the Farey model

Resumé

Exercises

28 Statistical mechanics

28.1 The thermodynamic limit

28.2 Ising models

28.3 Fisher droplet model

28.4 Scaling functions

28.5 Geometrization
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Resumé

Exercises

29 Limbo

29.1 Intermittency

29.2 Phase transitions

29.3 Period doubling renormalization

29.4 Scaling, presentation functions

Resumé

Summary and conclusions

A A brief history of chaos

Andrey Shilnikov, 17 Sep 2005:

It irks me to no end that the public (in large part because of Gleick) thinks the
damn subject is called chaos theory. I tell people I study nonlinear dynamics and
they have no clue what I mean. I then say it’s popularly called chaos theory and
they then think they know what I do. Of course, the term ”complex systems” is
even worse, but what can one do.

Obviously I don’t look at chaos being on position of an ”ergodist” or ”Chao-
tians.”

In skimming through the article, I see tons of familiar names and the annoy-
ing term ”chaologist” (used multiple times). Of course, it’s not as bad as Frank
Moon’s ”Chaotians.”

I sort of guess that you do not really want to focus on that part of the theory,
however you have added Pesin’ comments to the appendix, etc what for..?

Porter:

There was somebody who interviewed in the philosophy dept at Cornell when
I was in grad school who talked about the history of chaos. Maybe it was Aubin?
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In any event, the talk that was given was horribly wrong on several points—not
that I actually remember what those points are (except for his extremely annoy-
ing comment that nonlinear dynamics was dead and that all the special groups
associated with it would soon disappear).

I glanced through the current version of this appendix. I think you should
add something about the FPU problem (perhaps in a small note). In particular, its
use in the first application of the ”overlap criterion” (in the paper by Chirikov and
Izrailev) and Joe Ford’s work around the same time seems very relevant in chaos’s
history. I mention it in my review article in the 3/05 Chaos focus issue, but there
are at least one or two other articles from that issue written by Chirikov, Izrailev,
and one or two others that give more historical context on that particular aspect of
FPU. All the info you’d actually need is most likely in that FPU book you have,
but it might be interesting to see what’s in the new articles.

I think you should have some remark on mixed regular-chaotic dynamics in
your book. This would be an appropriate appendix, for instance, because I think
an intro grad student can go through the entire book and not realize that the mixed
case is the one they should expect if one pulls a ”random” low-dimensional system
out of a hat. One of the faults I’ve seen in courses I took and in monographs
I’ve read is that even when they do a good job of presenting certain problems,
they don’t give the right impression that such problems have very small or zero
measure in the set of all problems people might encounter if they’re doing physics
or applied math [or other subjects].

A section on dissipative systems would also be appropriate here. You could
also mention some of the physical ones, such as the experimental work on con-
vection.

I’ve occasionally used the term ”dynamicist” for myself after I’ve heard the
mathematicians in the room say I’m a physicist and the physicists say that I’m a
mathematician.

Beginning of my http://www.mathstat.gsu.edu/ matals/research/sync.pdf is on
topic.

Speaking of chaos (in Russia, in particular), I do not see why billiards and hy-
perbolic systems should be the only representative examples of the chaos theory,
in addition to a unimodal map. How about routes to chaos in dissipative systems?
Like the Lorenz equation ( I mean here Guckenheimer-Williams and Afraimovich-
Bykov-Shilnikov explanations), torus breakdown, saddle-focus (Shilnikov 1965),
etc an avalanche of excellent works done in Gorky. Besides - Zaslavsky, Chirikov
(Novossibirsk), Sharkovsky (Kiev). Those folks deserved some credit.

IMHO - without those an intro into chaos is misleading, like sync and syn-
chronization.

Leonid Shilnikov, 5 April 2000, Homoclinic orbits: since Poincaré till today.
http://www.wias-berlin.de/publications/preprints/571/wias preprints 571.pdf
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A.1 Chaos is born

A.2 Chaos grows up

A.3 Chaos with us

A.4 Death of the Old Quantum Theory

Tanner’s “Helium atom,” version of Mar 17 1997 had some interesting and
illuminatingi introductory historical remarks. They merit a reappearance in this
section.

A.5 Brief history of π/2

B Billiards

B.1 One-dimensional maps

B.2 Linear fractional maps

B.3 Billiards with gravity: 2 balls on a line

B.4 Wedge billiard

B.5 Transfer operators

C Linear stability of Hamiltonian flows

C.1 Symplectic invariance

C.2 Monodromy matrix for Hamiltonian flows

Whelan does not like this section. He thinks about the propagation of mon-
odromy matrices very differently and has a better way of expressing it which looks
less technical and appeals more to intuition and geometry. (Learned from Creagh.)
Hopefully he will write that up here.
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D Implementing evolution

D.1 Material invariants

D.2 Implementing evolution

Exercises

E Symbolic dynamics techniques

E.1 Symbolic dynamics, basic notions

E.2 Topological zeta functions for infinite subshifts

Marco.Goetz@mie.alcatel.be asks:

1. Is there an efficient algorithm for generating a symbolic prime cycle list,
even if more than two symbols are needed for cycle coding?

2. Can one download prime cycle lists anywhere ?

Predrag wrote a Mathematica program which parses all possible finite sym-
bol strings of increasing length, cyclically permutes them to the periodic point
with lowest lexical ordering, keeps one periodic point per cycle, and then check
whether the sequence is a repeat of a subsequence.

Thomas Schreiber has generated a large number of prime cycles for Lorentz
gas, where there are 11 symbols and complicated pruning. The largest prime cycle
set was probably Schreiber’s - millions of prime cycles. M. Sieber had generated
millions of cycles for his hyperbolic billiard PhD thesis. The longest prime cycles
were probably generated by Grassberger, he computed Henon topological entropy
to cycle length 32 or so.

Kai Hansen has generated prime cyles for many different problems.

Cycle counting of sect. 15.7.2 is useful for checking that all prime cycles have
been found.

There might exist a nice prime factorization theorem to prove which might
also be useful in generating prime cycles. In appendix G.3 it is written down
only for complete binary symbolic dynamics, but it might generalize to any finite
subshift.
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As far as authors know, there is no site from which one can download prime
cycle lists. It is probably easier to generate them from the scratch.

E.3 Pruned Bernoulli shift

E.4 Prime factorization for dynamical itineraries

E.5 Möbius inversion formula, ordered sets

E.6 Counting curvatures

Exercises

F Discrete symmetries

F.1 C4v factorization

F.2 C2v factorization

F.3 Symmetries of the symbol plane

G Statistical mechanics applications

G.1 Diffusion in sawtooth and cat maps

Exercises

H Infinite dimensional operators

H.1 Matrix-valued functions

H.2 Trace class and Hilbert-Schmidt class

H.3 Determinants of trace class operators
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H.4 Von Koch matrices

H.5 Regularization

I Diffraction distraction

J Quantum and noise trace formulas

J.1 Noise and quantum corrections to trace formulas

K Quasiclassics, for a general potential

L Solutions

This material could indeed be kept on the Web - if a student is sufficiently
motivated to start working on a problem, shw will be sufficiently motivated to
click on the book homepage.

My suggestion in some larger context is to refer to prof. David Donoho’s
work on wavelets (donoho@playfair.stanford.edu); Donoho’s quest for “repro-
ducible research” (regarding which he has a very enjoyable paper on line) is to
provide all interested parties the actual code to reproduce all figures in any of his
papers, reports, talks, etc.. He has chosen to do this in matlab with the base being
his freely available (over internet) Wavelab software. I would really like the zeta
function research group at large – Copenhagen group, Steiner’s group, Degli Es-
posti’s group, Baladi’s group, Gaspard’s group, Ruelle, Hejhal, the Orsay group,
Berry’s group, Keating, Voros, Eckhardt, etc. to strive to do the same; would it not
be great to have many examples like the xpinball software for other researchers,
students, etc. to learn from? I would like the eigenvalue data or prime orbit data
from Steiner’s work or Hejhal’s work. Why not baker’s and cat’s maps on line? It
is really a waste of effort to have to reproduce the code that others have developed
to understand in detail th meaning of some figure in a book or article, when the
goal is not coding but physics.

M Projects

This material should be kept on the book hompage, not in the paper version.

M.1 Deterministic diffusion, zig-zag map

M.2 Deterministic diffusion, sawtooth map
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M.3 Cardioid Billiard

M.4 Ray splitting billiard

M.5 Hopf’s last hope

M.6 Hydrogen in external magnetic field - disociation rate

M.7 Product of random matrices

Bibliography

Index

Currently the index is a big mess; both incomplete and in need of much edit-
ing.

For editing purposes, Predrag has generated full tabulation of words used.

One might want to create author index.

Das Buch: In memoriam

Caro Professore Cvitanović and friends,

It is with a slight sadness in my heart and some water in my eyes che io have
to write this letter. I have read with great care all electronic mail of recent time
and I feel that there is a great equivoco. Il Libro has been enriched with your
contributions and I am indebted to you and your families for your labors. BUT
that does not make you the author.

E’ una tradizione di scrivere un libro, specialy a scientific book, that the author
use articles of science that have been published for explaining the subject. I have,
with full citations and my greatest thanks, used your work, but it is me who has
organized, collected and re-explained all the work in one coherent whole. I hope
that you can see that it is not a simple lavoro.

So, per favore, stop claiming the authorship.

Inquietum est cor nostrum, donec requiescat in te.

Commendatore, Dottore e Professore Gatto Nero
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PS: Sorry for the English, my secretary is visiting her family in New Zeland.

Universita Cattolica del Sacro Cuore 8 Noviembre 1999
Dipartimento di Matematica Applicata
Cittá del Vaticano

Inventas vitam iuvat excoluisse per artes.

Comments by Professore R. Artuso

The inscription reads:

Inventas vitam juvat excoluisse per artes

loosely translated “And they who bettered life on earth by new found mastery.”
(Word for word: inventions enhance life which is beautified through art.) The
words are taken from Vergilius Aeneid, the 6th song, verse 663;

The text is not universally accepted, unlike the quote:
cfr http://vergil.classics.upenn.edu/home/

“Inquietum est cor nostrum usque ad requiescat in te” - “Restless is our heart
until it rests in you,” said the church father Augustinus.
http://ccat.sas.upenn.edu/jod/latinconf/1.html (magna virtus tua, et sapientiae tuae
non est numerus, just to stay with Augustinus)
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Appendix S

Solutions

Chapter 1. Overture

Solution 1.1 - 3-disk symbolic dynamics. The first symbol of an itinerary has
three possibilities. The next symbol has to differ from the previous one. Thus there
are 2k topologically different k-step trajectories starting from each disk, and the 3-disk
pinball has 3 · 2n−1 length n itineraries composed of disk labels {1, 2, 3}. Alternatively,
as explained in sect. 1.4, each orbit segment can be characterized by either of the
two symbols 0 and 1, differentiating topologically bouncing back from going to the
third disk.

Periodic itineraries of length 2: 12, 13, 21, 23, 31, 32; of length 3: 121, 123,
131, 132, 212, 213, 231, 232, 312, 313, 321, 323; of length 4: 1212, 1213, 1231,
1232, 1312, 1313, 1321, 1323, 2121, 2123, 2131, 2132, 2312, 2313, 2321, 2323,
3121,3123, 3131, 3132, 3212, 3213, 3231, 3232.

{12, 21}, {13, 31} and {23, 32} are cycle points in, respectively, prime cycles 12, 13
and 23. {123, 231, 312}are in the same prime cycle, as are {132, 321, 213}. {1212, 2121}
is a repeat of the 2-cycle 12, and {1313, 3131}, {2323, 3232}are repeats of the 2-cycles
as well. Cycle points {1213, 2131, 1312, 3121} form a prime cycle, as do {1323, 3231, 2313, 3132}
and {12123, 21231, 12312, 23121, 31212}. So the shortest prime cycles in the 3-disk
space (prime cycles in fundamental domain, respectively) are

• length 2: 12,13,32 (or 0).

• length 3: 123,321 (or 1).

• length 4: 1213,1232,1323 (or 01).

• length 5: 12123,12132,12313,12323,13132,13232 (or 00111).

Some of the cycles are listed in table 12.2 and drawn in figure ??. (Y. Lan and L.
Zhang)

Solution 1.1 - 3-disk symbolic dynamics. Starting from a disk we cannot end up at
the same disk in the next step, see figure S.1. We have 3 choices for the first disk and
2 choices for the next disk at each step, hence at most 3 · 2n−1 itineraries of length n

Thus, it remains to show that any symbol sequence with the only constraint of no
two identical consecutive symbols is realized. The most convenient way to do so is

1313
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s 1

s 2

s 3

φ

Figure S.1: Geometry of the 3-disk pinball.

to work with the phase space representation of the pinball machine. Parametrize the
state right after a reflection by the label of the disk, the arc length parameter corre-
sponding to the point of reflection, and the sinφ with φ being the angle of reflection
relative to the normal vector, see figure S.1. Thus the Poincaré section consists of
three cylinders, with the arc length parameter is cyclic on each disk, as shown in
figure S.2.

(a) 1s 2s 3s

φsin

(b) 1s 2s 3s

φsin
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Figure S.2: (a) The phase space of the 3-disk pinball. (b) The part of phase space which remains
on the table for one more iterate. (c) The images of the disks in one iteration.

Consider disk “1” as the starting point. Fixing the angle of reflection, by vary-
ing the position all the way around the disk we first escape, then hit disk “3” , then
escape, then hit disk “2” , and then escape again, when increasing the arc length pa-
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rameter in the manner indicated in figure S.1 (a). Thus–if the disks are sufficiently well
separated–there are two strips of initial conditions which do not escape. By symme-
try this yields figure S.1 (b) where the numbers indicate onto which disk these initial
trajectories are going to end up on. By time reversal Figure S.1 (c) shows the strips
labeled by disk where the pinball came from.

φsin

s
Figure S.3: The intersection of one iterate images and preimages.

Combining figure S.1 (b) and (c) we obtain three sections, which are the same
except for the labeling of the disks. One of such section is shown in figure S.3.

φsin φsin

s s

Map

Figure S.4: Monotonicity of the billiard map.

The billiard map enjoys a certain monotonicity, as depicted in figure S.4, which
easily verified by inspecting figure S.1. It says that any curve connecting the two
boundaries of one of the strips gets mapped to a curve within the image of that strip
running all the way across from top to bottom.

This, in particular, means that the intersections of the image of the previous disk
and the initial conditions to land onto the next disk, see figure S.3, will map onto (thin)
strips running across from top to bottom, as shown in figure S.5.

φsin φsin

s s

Map

Figure S.5: Images in the second iterate. This is, of course, schematically, because we dropped the
labels of the disks; in fact, the two intersection regions get mapped onto two different disks.

Finally, since the images of the intersection regions run all the way across in the
vertical direction, we can iterate the argument. Every time the number of strips dou-
bles, and we find regions of states which can go to either of the two neighboring disks
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sensitivity to initial
conditions

at every step. Hence any symbol sequence with no repeat of consecutive symbols
can be realized.

The itineraries of periodic points of period 2, 3, 4, 5 are

n all periodic orbits
2 12 13 21 23 31 32
3 123 132 213 231 312 321
4 1212 1213 1232 1312 1313 1323 2121 2123 2131

2313 2321 2323 3121 3131 3132 3212 3231 3232
5 12123 12132 12312 12313 12323 13123 13132 13212

13213 13232 21213 21231 21313 21321 21323 23121
23123 23131 23213 23231 31212 31231 31232 31312
31321 32121 32131 32132 32312 32321 .

The prime cycles (lexically lowest periodic point itinerary within a non-repeating cycle)
are indicated in bold, and the ones given in the exercise are sketched in figure S.6.

121 131 232 1231 1321

12131 21232

31323 121231

Figure S.6: Sketch of the indicated prime cycles.

(Alexander Grigo)

Solution 1.2 - Sensitivity to initial conditions. To estimate the pinball sensitivity we
consider a narrow beam of point particles bouncing between two disks, figure S.7 (a).
Or if you find this easier to visualize, think of a narrow ray of light. We assume that
the ray of light is focused along the axis between the two points. This is where the
least unstable periodic orbit lies, so its stability should give us an upper bound on the
number of bounces we can expect to achieve. To estimate the stability we assume
that the ray of light has a width w(t) and a “dispersion angle” θ(t) (we assume both are
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Figure S.7: The 2-disk pinball (a) geometry, (b)
defocusing of scattered rays.

(a)

R-2a aa

R (b)

ϕθ

small), figure S.7 (b). Between bounces the dispersion angle stays constant while the
width increases as

w(t) ≈ w(t′) + (t − t′)θ

At each bounce the width stays constant while the angle increases by

θn+1 = θn + 2φ ≈ θn + w(t)/a.

where θn denotes the angle after bounce n. Denoting the width of the ray at the nth
bounce by wn then we obtain the pair of coupled equations

wn+1 = wn +
(
R − 2a

)
θn

(S.1)

θn = θn−1 +
wn

a
(S.2)

where we ignore corrections of order w2
n and θ2

n. Solving for θn we find

θn = θ0 +
1
a

n∑
j=1

wn.

Assuming θ0 = 0 then

wn+1 = wn +
R − 2a

a

n∑
j=1

wn

Plugging in the values in the question we find the width at each bounce in Ångstrøms
grows as 1, 5, 29, 169, 985, etc. To find the asymptotic behavior for a large number
of bounces we try an solution of the form wn = axn. Substituting this into the equation
above and ignoring terms that do not grow exponentially we find solutions

wn ≈ awasym
n = a(3 ± 2

√
2)n
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Kolmogorov entropy
entropy!Kolmogorov
escape rate

The solution with the positive sign will clearly dominate. The constant a we cannot
determine by this local analysis although it is clearly proportional to w0. However, the
asymptotic solution is a good approximation even for quite a small number of bounces.
To find an estimate of a we see that wn/w

asym
n very rapidly converges to 0.146447, thus

wn ≈ 0.146447w0(3 + 2
√

2)n ≈ 0.1 × w0 × 5.83n

The outside edges of the ray of light will miss the disk when the width of the ray
exceeds 2 cm; this occurs after 11 bounces.

(Adam Prügel-Bennett)

Solution 1.2 - Sensitivity to initial conditions, another try. Adam’s estimate is not
very good - do you have a better one? The first problem with it is that the instability
is very underestimated. As we shall check in exercise 13.8, the exact formula for the
2-cycle stability is Λ = R − 1 + R

√
1 − 2/R. For R = 6, a = 1 this yields wn/w0 ≈

(5 + 2
√

6)n = 9.898979n, so if that were the whole story, the pinball would be not likely
to make it much beyond 8 bounces.

The second problem is that local instability overestimates the escape rate from an
enclosure; trajectories are reinjected by scatterers. In the 3-disk pinball the particle
leaving a disk can be reinjected by hitting either of other 2 disks, hence wn/w0 ≈
(9.9/2)n. This interplay between local instability and global reinjection will be cast into
the exact formula (S.1) involving “Lyapunov exponent” and “Kolmogorov entropy.” In

⇓PRIVATE

⇑PRIVATE
order to relate this estimate to our best continuous time escape rate estimate γ =

0.4103 . . . (see table 20.2), we will have to also compute the mean free flight time
(20.27). As a crude estimate, we take the shortest disk-to-disk distance, 〈T〉 = R−2 =
4. The continuous time escape rate result implies that wn/w0 ≈ e(R−2)γn = (5.16)n, in
the same ballpark as the above expansion-reinjection estimate. (P. Cvitanović)
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evolution!group
group!evolution
ODEs!almost
differential

equations!ordinary,
almost

gradient!system
dynamical

system!gradient

Chapter 2. Go with the flow

Solution 2.1 - Trajectories do not intersect. Suppose the trajectories Cx and Cy

intersect at some point z, then we have f t1 (x) = f t2 (y) = z for some t1 and t2, so
y = f −t2 (z), x = f −t1 (z). Then we have f t1−t2 (x) = f −t2 ( f t1 (x)) = f −t2 (z) = y, so y ∈ Cx.
Therefore Cx = Cy; if two trajectories intersect, they are the same trajectory. (L.
Zhang)

Solution 2.2 - Evolution as a group. Let’s check the basic defining properties of a
group. The members of the set are f t , t ∈ R and the “product law” is given by ’◦’.

• As f t+s = f t ◦ f s, the set is closed, i.e., the product of any two members gener-
ates another member of the set.

• It is associative, as ( f t ◦ f s) ◦ f r = f t+s+r = f t ◦ ( f s ◦ f r).

• I = f 0 is the identity, as f t ◦ f 0 = f t.

• f −t is the inverse of f t, as f −t ◦ f t = I.

So, { f t, ◦}t∈R forms a group. As f t ◦ f s = f t+s = f s ◦ f t, it is a commutative (abelian)
group.

Any abelian group can replace the continuous time. For example, R can be re-
placed by Z6. To mess things up try a non-commutative group. (Y.
Lan)

Solution 2.3 - Almost ODE’s. What is an ODE on R ? An ODE is an equality which
reveals explicitly the relation between function x(t) and its time derivatives ẋ, ẍ, · · ·, i.e.,
F(t, x, ẋ, ẍ, · · ·) = 0 for some given function F. Let’s check the equations given in the
exercise.
(a) ẋ = exp(ẋ) is an ODE.
(b) ẋ = x(x(t)) is not an ODE, as x(x(t)) is not a known function acting on x(t).
(c) ẋ = x(t + 1) is not an ODE, as x(t + 1) is not a value at current time. Actually, it is a
difference-differential equation. (Y. Lan)

Solution 2.4 - All equilibrium points are fixed points. Given a vector field v(x), the
state space dynamics is defined by

d
dt

x(t) = v(x(t)) . (S.3)

An equilibrium point a of v is defined by v(a) = 0, so x(t) = a is a constant solution of
(S.3). For the flow f t defined by (S.3), this solution satisfies f t(a) = a , t ∈ R . So, it is
a fixed point of the dynamics f t. (Y. Lan)

Solution 2.5 - Gradient systems.

1. The directional derivative

d
dn
φ = n · ∇φ

produces the increasing rate along the unit vector n. So, along the gradient
direction ∇φ/|∇φ|, φ has the largest increasing rate. The velocity of the particle
has the opposite direction to the gradient, so φ deceases most rapidly in the
velocity direction.
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Rossler@Rössler!flow
Rossler@Rössler!equilibria
equilibrium!Rössler

system

2. An extremum a of φ satisfies ∇φ(a) = 0. According to exercise 2.4, a is a fixed
point of the flow.

3. Two arguments lead to the same conclusion here.

First, near an equilibrium point, the equation is always linearizable. For gradient
system, after orthogonal transformation it is even possible to write the linearized
equation in diagonal form so that we need only to consider one eigen-direction.
The corresponding scalar equation is ẋ = λx. Note that we moved the origin to
the equilibrium point. The solution of this equation is x(t) = x(0) exp(λt), for λ �
0. if x(0) � 0, it will take infinite amount of time (positive or negative) for x(t) →
0. For λ = 0, the approach to zero is even slower as then only higher orders of
x take effect.

The second argument seems easier. We know that the solution curve through
an equilibrium point is the point itself. According to exercise 2.1, no other solu-
tion curve will intersect it, which means that if not starting from the equilibrium
point itself, other point can never reach it.

4. On a periodic orbit, the velocity is bounded away from zero. So φ is always
decreasing on a periodic orbit, but in view of the periodicity, we know that this
can not happen (at each point, there is only one value of φ.). So, there is no
periodic orbit in a gradient system.

(Y. Lan)

Solution 2.7 - Rössler system. You will probably want the matlab function ode45
to do this. There are several others which perform better in different situations (for
example ode23 for stiff ODEs), but ode45 seems to be the best for general use.

To use ode45 you must create a function, say ’rossler’, which will take in a time
and a vector of [x,y,z] and return [xdot, ydot, zdot]. Then the command would
be something like

ode45([tmin, tmax], [x0 y0 z0], @rossler)

(Jonathan Halcrow)

Solution 2.8 - Equilibria of the Rössler system.

1. Solve ẋ = ẏ = ż = 0, to get x = az, y = −z and x2 − cx + ab = 0. There are two
solutions of a quadratic equation, hence there are two equilibrium points:

x± = az± = −ay± = (c ±
√

c2 − 4ab)/2 .

2. The above expressions are exact. However, it pays to think of ε = a/c as a
small parameter in the problem. By substitution from exercise 2.8,

x± = cp±, y± = −p±/ε, z± = p±/ε. (S.4)

Expanding
√

D in ε yields p− = ε2 + o(ε3), and p+ = 1 − ε2 + o(ε3). Hence

x− = a2/c + o(ε3), x+ = c − a2/c + o(ε3),
y− = −a/c + o(ε2), z+ = c/a + a/c + o(ε2),
z− = a/c + o(ε2), z+ = c/a − a/c + o(ε2).

(S.5)
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helium!collinearFor a = b = 0.2, c = 5.7 in (2.18), ε ≈ 0.035, so

(x−, y−, z−) = ( 0.0070, −0.0351, 0.0351 ) ,
(x+, y+, z+) = ( 5.6929, −28.464, 28.464 ) . (S.6)

(R. Paškauskas)

Solution 2.10 - Classical collinear helium dynamics. An example of a solution are
A. Prügel-Bennett’s programs, available at ChaosBook.org/extras.
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Henon@Hénon

map!fixed points
fixed point!maps
map!fixed point

Chapter 3. Discrete time dynamics

Solution 3.1 - Poincaré sections of the Rössler flow. No solution available. 1

Solution 3.2 - A return Poincaré map for the Rössler flow. No solution available.

Solution 3.3 - Arbitrary Poincaré sections. No solution available.

Solution 3.4 - Classical collinear helium dynamics. No solution available.

Solution 3.5 - Hénon map fixed points. 2 The Hénon map iteration is given by

(
xn+1
yn+1

)
=

(
1 − ax2

n + byn
xn

)
.

At a fixed point,

(
x∗

y∗

)
=

(
1 − a(x∗)2 + by∗

x∗

)
,

which simplifies to x∗ = 1− a(x∗)2 + bx∗ . Thus there two fixed points, given by the two
roots (3.27) of the quadratic equation a(x∗)2 + (1 − b)x∗ − 1 = 0 .

Sarah Flynn, 8 Feb 2012

Solution 3.6 - Fixed points of maps.

a. Use the continuity of F to show that a 1-dimensional contraction F of the inter-
val [0, 1] has at least one fixed point. 3

Proof: Let I1 be the image of F on [0, 1]. The function F : [0, 1] �→ I1 ⊆ (0, 1) .
Therefore

F(0) > 0 and F(1) < 1.

Construct a new function f (x) = F(x) − x. Then

f (0) = F(0) − 0 > 0 and f (1) = F(1) − 1 < 0.

The new function f (x) is continuous on a closed interval, hence by the Inter-
mediate Value Theorem, may attain any value between f (0) and f (1). Since
f (1) < 0 < f (0), there exists an x∗ ∈ [0, 1] such that

f (x∗) = F(x∗) − x∗ = 0.

This guarantees the domain of F(x) contains at least one point x∗ such that
F(x∗) = x∗. Q.E.D.

b. In a uniform (hyperbolic) contraction the slope of F is always smaller than one,
|F′| < 1. Is the composition of uniform contractions a contraction?
Yes. For k ∈ {1, 2, . . . , n}, let f = gn ◦ gn−1 ◦ . . . ◦ g1, where the gk(x) are each
uniform contractions. Then gk : [0, 1] �→ Ik ⊂ [0, 1] and gk+1 maps Ik, the image
of [0, 1] under gk, to a subset Jk+1 of its own image Ik+1 ⊂ (0, 1). The images Ik

may or may not be nested, but the composition function f maps

[0, 1] �→ I1 �→ {J2 ⊆ I2} . . . �→ {Jn ⊆ In} ⊆ (0, 1) ,

and is therefore a contraction, mapping [0,1] into (0,1).

1Predrag: 2013-03-02 include lippolis/gable/ChaosBook/soluMaps.tex
2Predrag: 2013-03-02 include lippolis/gable/ChaosBook/soluMaps.tex
3Predrag: 2013-03-02 include lippolis/gable/ChaosBook/soluMaps.tex
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Rossler@Rössler!flow
transversality!border

of
border of

transversality

c. Is it uniform? → Yes, by the Chain Rule.∣∣∣∣∣d f
dx

∣∣∣∣∣ = ∣∣∣∣∣ dgn

dgn−1

∣∣∣∣∣ ∣∣∣∣∣dgn−1

dgn−2

∣∣∣∣∣ . . . ∣∣∣∣∣dg1

dx

∣∣∣∣∣ = ∣∣∣g′n∣∣∣ ∣∣∣g′n−1

∣∣∣ . . . ∣∣∣g′1∣∣∣ < 1.

Sarah Flynn, 8 Feb 2012

Solution 3.7 - Border of transversality for Rössler Poincaré sections. No
solution available. 4

4Predrag: 2013-03-02 include lippolis/gable/ChaosBook/soluMaps.tex
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Chapter 4. Local stability

Solution 4.1 - Trace-log of a matrix. 1) Consider M = exp A.

det M = det lim
n→∞

(
1 +

1
n

A

)n

= lim
n→∞

(1 +
1
n

tr A + . . .)n = exp(tr (ln M))

2) A rephrasing of the solution 1): evaluate d
dt det

(
et ln M

)
by definition of derivative

in terms of infinitesimals. (Kasper Juel Eriksen)

3) Here is an example of wrong/incomplete answer, hiding behind fancier notation:
This identity makes sense for a matrix M ∈ Cn×n, if |

∏n
i=1 λi| < ∞ and {|λi| > 0,∀i},

where {λi} is a set of eigenvalues of M. Under these conditions there exist a nonsin-
gular O : M = ODO−1, D = diag[{λi, i = 1, . . . , n}]. If f (M) is a matrix valued function
defined in terms of power series then f (M) = O f (D)O−1, and f (D) = diag[{ f (λi)}].
Using these properties and cyclic property of the trace we obtain

exp(tr (ln M)) = exp

⎛⎜⎜⎜⎜⎜⎝∑
i

lnλi

⎞⎟⎟⎟⎟⎟⎠ =∏
i

λi = det (M)

What’s wrong about it? If a matrix with degenerate eigenvalues, λ i = λ j is of Jordan
type, it cannot be diagonalized, so a bit more of discussion is needed to show that the
identity is satisfied by upper-triangular matrices.

4) First check that this is true for any Hermitian matrix M. Then write an arbitrary
complex matrix as sum M = A + zB, A, B Hermitian, Taylor expand in z and prove by
analytic continuation that the identity applies to arbitrary M. (David Mermin)

5) check appendix N.1

Solution 4.2 - Stability, diagonal case. The relation (4.31) can be verified by noting
that the defining product (4.12) can be rewritten as

etA =

(
UU−1 +

tUADU−1

m

) (
UU−1 +

tUADU−1

m

)
· · ·

= U
(
I +

tAD

m

)
U−1U

(
I +

tAD

m

)
U−1 · · · = UetAD U−1 . (S.7)

⇓PRIVATESolution 4.3 - Transport of local eigenframes. (a) Consider two points that are an
infinitesimal time apart along a trajectory: δx0 = f δτ(x0) − x0 ≈ v(x0)δτ. As f t+δτ(x0) =
f t ◦ f δτ(x0) = f δτ ◦ f t(x0), we have f δτ( f t(x0)) = f δτ(x(t)) ≈ x(t) + v(x(t))δτ and
f t( f δτ(x0)) = f t(x0 + v(x0)δτ) ≈ f t(x0) + Jt(x0)v(x0)δτ. Putting these two equations
together we get the desired (4.8).

(b) Predrag: I am not sure that this statement is correct, please prove or disprove.
Basically, check that (??) is true for any orbit, not only periodic orbits.

A tangent subspace TM(i) of the state space is said to be covariant if

TM(i)(x(t)) = Jt(x0)TM(i)(x0) (S.8)
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contracting!state
space, Rössler

This definition also applies to covariant vectors, if TM(i) is one-dimensional. Covari-
ant subspaces are co-moving with the tangent flow. (S.
Froehlich

⇑PRIVATESolution 4.4 - State space volume contraction.

(a) The Rössler flow volume contraction rate at the equilibria follows from ∂ ivi =

x + a − c = x − 5.5; ∂ · v|− = −5.493, ∂ · v|− = +0.1929.

(b,c) The result is obvious and uninteresting. The point of the exercise is that the
instantaneous velocity gradients matrix velocity gradients matrix gives no infor-
mation about recurrent dynamics, what you want to color code are the eigen-
values of the finite time JtatPoincaré section returns.

(d) The average contraction rate (4.28) along a typical trajectory on the Rössler
attractor is something like 〈∂ · v〉 = −5.3 (Li, after 105 iterations); −5.319 (Ding,
after ? iterations); −5.3302 (Daniel, after 104 iterations); −5.36545648709 (Nah,
unexplained procedure). Its plot as a function of time illustrates one problem of
time-averaging in chaotic flows - it varies widely across each recurrence to a
given Poincaré section. Even if it were worth your while to know its numerical
value, the contraction rate cannot be linked to a computable fractal dimension.
The relation goes through expanding eigenvalues, sect. 5.6. As the contraction
is of order of 10−15, there is no numerical algorithm that would give you any
fractal dimension other than DH = 1 for this attractor. 5

(e) (any argument tends to be good enough).

(f) The average contraction on the escape side of the outer equilibrium: not avail-
able.

Solution 4.5 - Topology of the Rössler flow.

1. The characteristic determinant of the stability matrix that yields the equilibrium
point stability (5.1) yields∣∣∣∣∣∣∣

−λ −1 −1
1 a − λ 0
z± 0 x± − c − λ

∣∣∣∣∣∣∣ = 0

λ3 + λ2(−a − x± + c) + λ(a(x± − c) + 1 + x±/a) + c − 2x± = 0 .

Equation (4.45) follows after noting that x± − c = c(p± −1) = −cp∓ and 2x± − c =
c(2p± − 1) = ±c

√
D, see (2.8).

2. Approximate solutions of (4.45) are obtained by expanding p± and
√

D and
substituting into this equation. Namely,

√
D = 1 − 2ε2 − 2ε4 − 4ε6 − . . .

p− = ε2 + ε4 + 2ε6 + . . .
p+ = 1 − ε2 − ε4 − 2ε6 + . . .

In case of the equilibrium “−”, close to the origin expansion of (4.45) results in

(λ2 + 1)(λ + c) = −ελ(1 − c2 − cλ) + ε2c(λ2 + 2) + o(ε2)

The term on the left-hand side suggests the expansion for eigenvalues as

λ1 = −c + εa1 + . . . , λ2 + iθ2 = εb1 + i + . . . .

5Predrag: check Viswanath paper
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after some algebra one finds the first order correction coefficients a1 = c/(c2+1)
and b1 = (c3 + i)/(2(c2 + 1)). Numerical values are λ1 ≈ −5.694, λ2 + iθ2 ≈
0.0970+ i1.0005.

In case of p+, the leading order term in (4.45) is 1/ε. Set x = λ/ε, then expan-
sion of (4.45) results in

x = c − εx − ε2(2c − x) − ε3(x3 − cx2) − ε4(2c − x(1 + c2) + cx2) + o(ε4)

Solve for real eigenvalue first. Set x = c + εa1 + ε
2a2 + ε

3a3 + ε
4a4 + . . .. The

subtle point here is that leading order correction term of the real eigenvalue is
εa1, but to determine leading order of the real part of complex eigenvalue, one
needs all terms a1 through a4.

Collecting powers of ε results in

ε : a1 + c = 0 a1 = −c
ε2 : c + a1 + a2 = 0 a2 = 0
ε3 : a1 − a2 − a3 = 0 a3 = −c
ε4 : c + c2a1 − a2 + a3 + a4 = 0 a4 = c3 .

hence

μ(1) = εx = a − a2/c + o(ε3) ≈ 0.192982 .

To calculate the complex eigenvalue, one can make use of identities det A =∏
λ = 2x+ − c, and tr A =

∑
λ = a + x+ − c. Namely,

λ2 =
1
2 (a − cp− − λ1) = − a5

2c2 + o(ε5) ≈ −0.49 × 10−6 ,

θ2 =
√

2x+−c
λ1

− λ2
2 =

√
a+c

a (1 + o(ε)) ≈ 5.431 .

(R. Paškauskas)
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stroboscopic map
map!stroboscopic
limit cycle!stability

Chapter 5. Cycle stability

⇓PRIVATESolution 5.1 - Driven damped harmonic oscillator limit cycle. Driven damped
harmonic oscillator stability is discussed in Chapter 4 of Tél and Gruiz [5].

⇑PRIVATESolution 5.2 - A limit cycle with analytic Floquet exponent. The 2-dimensional
flow is cooked up so that x(t) = (q(t), p(t)) is separable (check!) in polar coordinates
q = r cosφ , p = r sin φ :

ṙ = r(1 − r2) , φ̇ = 1 . (S.9)

In the (r, φ) coordinates the flow starting at any r > 0 is attracted to the r = 1 limit
cycle, with the angular coordinate φ wraping around with a constant angular velocity
ω = 1. The non–wandering set of this flow consists of the r = 0 equilibrium and the
r = 1 limit cycle.

Equilibrium stability: As the change of coordinates is defined everywhere except
at the equilibrium point (r = 0, any φ), the equilibrium stability matrix (5.1) has to be
computed in the original (q, p) coordinates,

A =

[
1 1
−1 1

]
. (S.10)

The eigenvalues are λ = μ± iω = 1± i , indicating that the origin is linearly unstable,
with nearby trajectories spiralling out with the constant angular velocity ω = 1. The
Poincaré section (p = 0, for example) return map is in this case also a stroboscopic
map, strobed at the period (Poincaré section return time) T = 2π/ω = 2π. The radial
Floquet multiplier per one Poincaré return is |Λ| = eμT = e2π .

Limit cycle stability: From (S.9) the stability matrix is diagonal in the (r, φ) coordi-
nates,

A =

[
1 − 3r2 0

0 0

]
. (S.11)

The vanishing of the angular λ(θ) = 0 eigenvalue is due to the rotational invariance of
the equations of motion along φ direction. The expanding λ (r) = 1 radial eigenvalue
of the equilibrium r = 0 confirms the above equilibrium stability calculation. The
contracting λ(r) = −2 eigenvalue at r = 1 decreases the radial deviations from r = 1
with the radial Floquet multiplier Λr = eμT = e−4π per one Poincaré return. This limit
cycle is very attracting.

Stability of a trajectory segment: Multiply (S.9) by r to obtain 1
2 ṙ2 = r2 − r4 , set

r2 = 1/u, separate variables du/(1−u) = 2 dt , and integrate: ln(1−u)−ln(1−u 0) = −2t .
Hence the r(r0, t) trajectory is

r(t)−2 = 1 + (r−2
0 − 1)e−2t . (S.12)

The [1×1] Jacobian matrix

J(r0, t) =
∂r(t)
∂r0

∣∣∣∣∣
r0=r(0)

. (S.13)
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satisfies (4.9)

d
dt

J(r, t) = A(r) J(r, t) = (1 − 3r(t)2) J(r, t) , J(r0, 0) = 1 .

This too can be solved by separating variables d(ln J(r, t)) = dt − 3r(t)2dt , substituting
(S.12) and integrating. The stability of any finite trajectory segment is:

J(r0, t) = (r2
0 + (1 − r2

0)e−2t)−3/2e−2t . (S.14)

On the r = 1 limit cycle this agrees with the limit cycle multiplier Λr(1, t) = e−2t, and
with the radial part of the equilibrium instability Λ r(r0, t) = et for r0 � 1. (P.
Cvitanović)

Solution 5.3 - The other example of a limit cycle with analytic Floquet exponent.
Email your solution to ChaosBook.org and G.B. Ermentrout.

Solution 5.4 - Yet another example of a limit cycle with analytic Floquet expo-
nent. Email your solution to ChaosBook.org and G.B. Ermentrout.
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Henon@Hénon
map!Lyapunov
exponent

Chapter 6. Lyapunov exponents

Solution 6.4 - How unstable is the Hénon attractor?

1. Evaluate numerically the Lyapunov exponent by iterating the Hénon map; For
a = 1.4, b = 0.3 the answer should be close to λ = 0.41922 . . .. If you have
a good estimate and a plot of the convergence of your estimate with t, please
send us your results for possible inclusion into this text.

2. Both Lyapunov exponents for a = 1.39945219, b = 0.3 are negative, roughly
λ1 = −0.2712, λ2 = −0.9328 (check that these values respect the constant
volume contraction condition (4.43) for the Hénon map). Why? Because after a
long transient exploration of the Hénon map’s non–wandering set, on average
after some 11,000 iterates, almost every initial point falls into a stable 13-cycle.
You can check its existence by starting at one of its periodic points (xp, yp) =
(−0.2061,−0.3181).

If you missed the stable 13-cycle (as all students in one of the courses did), you
should treat your computer experiments with great deal of scepticism.

As the product of eigenvalues is the constant −b, you need to evaluate only the ex-
panding eigenvalue. There are many ways to implement this calculation - here are a
few:

1. The most naive way - take the log of distance of two nearby trajectories, iterate
until you run out of accuracy. Tray this many times, estimate an average.

2. Slightly smarter: as above, but keep rescaling the length of the vector con-
necting neighboring points so it remains small, average over the sum of logs of
rescaling factors. You can run this forever.

3. Keep multiplying the [2×2] Jacobian stability matrix (4.42) until you run out of
accuracy. Compute the log of the leading eigenvalue (??) try this many times, ⇓PRIVATE

⇑PRIVATE
estimate an average.

4. Slightly smarter still: as above, but start with an arbitrary initial tangent space
vector, keep multiplying it with the Jacobian stability matrix, and rescaling the
length of the vector so it remains small. You can run this forever.

5. There is probably no need to use the QR decomposition method or any other
such numerical method for this 2-dimensional problem.

(Y. Lan and P. Cvitanović)

Solution 6.5 - Rössler attractor Lyapunov exponents. J. Sprott: {λ1, λ2, λ3} =
{0.0714, 0,−5.3943}

soluLyapunov - 18mar2013 boyscout version14.4, Mar 19 2013
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Chapter 7. Newtonian dynamics

(No solutions available.)
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pinball!simulator
billiards
Birkhoff coordinates

Chapter 8. Billiards

Solution 8.1 - A pinball simulator. Examples of pretty pinballs are A. Prügel-
Bennett’s xpinball.c and W. Benfold’s java programs, available at ChaosBook.org/extras
6

Solution 8.4 - Billiard exercises. Korsch and Jodl [16] have a whole book of numer-
ical exercises with billiards, including 3-disks.

Solution 8.6 - Birkhoff coordinates. Hint: compute the determinant of (8.11).

⇓PRIVATESolution 8.6 - Birkhoff coordinates. 7 Assume the radius of two circles is a = 1, the
distance between the centers of two circles is L, the magnitude of the ball’s momen-
tum is 1. Thus, p sinφ = sin φ. If we assume radius 1, the arclength is numerically
equal to the angle θ in the picture. Here we use the arclength s, which is equal to aiθ.

First, we have to find the map:(s1, sin(φ1)) �→ (s2, sin(φ2)). Look at ΔABD, by Sine
Theorem, we have sin(π−φi)

BD
=

sin(β)
AB

, where BD = L
′
, AB = a, sin(π − φ1) = sin(φ1)

⇒ sin(φ1)
L′ =

sin(β)
R

Look at ΔECD, still by Sine Theorem, we have sin(β)
EC
=

sin(φ2)
CD

, where EC = a, CD =

L
′ − L

⇒ sin(φ2)
L′ − L

=
sin(β)

a

β = φ1 −
s1

a

From the first equation, we have

L′ =
sin(φ1)
sin(β)

a =
sin(φ1)

sin(φ1 − s1)

Substitute this into the second equation, we have

sin(φ2)
sin(φ1)

sin(φ1−
s1
a )

a − L
=

sin(φ1 − s1
a )

a
(S.15)

⇒ sin(φ2) = sin(φ1) − L
a

sin(φ1 −
s1

a
) (S.16)

Also we have s2
a = π− φ2 − β = π − φ2 − (φ1 − s1

a ) . Now we have the map. Next step is
to show that it is phase-space volume preserving.

6Predrag: consider converting Robbins 2012-02-02 into solution here - asked him for his code
7Predrag: restore dasbuch/book/FigSrc/picture/exr2-1.tex
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Rewrite the map by substituting pi = sin(φi), φi = arcsin(pi):

p2 = p1 −
L
a

p1 cos(
s1

a
) +

L
a

√
1 − p2

1 sin(
s1

a
) (S.17)

s2

a
= π +

s1

a
− arcsin(p1) − arcsin(p2) (S.18)

dp2 = dp1 −
L
R

cos(
s1

a
)dp1 +

L
a

sin(
s1

a
)p1d

s1

a
−

Lp1 sin( s1
a )

a
√

1 − p2
1

dp1 + (S.19)

L
a

√
1 − p2

1 cos
s1

a
d

s1

a

= (1 − L
a

cos
s1

a
−

Lp1 sin( s1
a )

a
√

1 − p2
1

)dp1 + (
L
a

sin(
s1

a
)p1 +

L
a

√
1 − p2

1 cos
s1

a
)d

s1

a

d
s2

a
= d

s1

a
− 1√

1 − p2
1

dp1 −
1√

1 − p2
2

dp2

dp2 ∧ d
s2

a
= (1 − L

a
cos(

s1

a
) −

Lp1 sin( s1
a )

a
√

1 − p2
1

)dp1∧d
s1

a
+

1√
1 − p2

1

(
L
a

sin(
s1

a
)p1 +

L
a

√
1 − p2

1 cos(θ1))dp1 ∧ d
s1

a
(S.20)

= dp1 ∧ d
s1

a
⇒ dp2 ∧ ds2 = dp1 ∧ ds1 (S.21)

Now let’s look at map for s
a . We can rewrite it as:

s2

a
− s1

a
= π − arcsin(p1) − arcsin(p2)

On the left hand side, s2
a −

s1
a = θ2 − θ1 is independent of the choice of coordinate. Any

choice of start line of angle θ just varies up to a constant for both θ2 and θ1, so won’t
affect the validity of the demonstration.

If we take the radii unequal, a1 � a2 we obtain the formula for any smooth billiard,
with ai being the local radius of curvature at the ith bounce. now the absolute disk
angles and the arc-length parametrization are given by θ1 =

s1
a1

, θ2 =
s2
a2

. Follow the
same route above to obtain the map:

p2 =
a1

a2
p1 −

L
a2

p1 cos(
s1

a1
) +

L
a2

√
1 − p2

1 sin(
s1

a1
) (S.22)

s2 =
a2

a1
s1 + πa2 − a2 arcsin(p1) − a2 arcsin(p2) (S.23)
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By writing out the full derivative of dp2 and ds2 in terms of dp1 and ds1, we can obtain
the Jacobian matrix

(
dp2
ds2

)
=

⎛⎜⎜⎜⎜⎜⎝ dp2

dp1

dp2

ds1
ds2
dp1

ds2
ds1

⎞⎟⎟⎟⎟⎟⎠ (
dp1
ds1

)

where

dp2

dp1
=

a1

a2
− L

a2
cos(

s1

a1
) − Lp1

a2

√
1 − p2

1

sin(
s1

a1
) (S.24)

dp2

ds1
=

L
a1a2

(p1 sin(
s1

a1
) +

√
1 − p2

1 cos(
s1

a1
)) (S.25)

ds2

dp1
= − a2√

1 − p2
1

− a2√
1 − p2

2

(
a1

a2
− L

a2
cos(

s1

a1
) − Lp1

a2

√
1 − p2

1

sin(
s1

a1
)) (S.26)

ds2

ds1
=

a2

a1
−

a2√
1 − p2

2

L
a1a2

(p1 sin(
s1

a1
) +

√
1 − p2

1 cos(
s1

a1
)) (S.27)

This yields |J| = 1, Deities have been kind to me this time.

2011-09-26 ES to Chao Derive the relation of ν to the parameter L used in ref. [14].
What L did Christiansen et al. [?] study?

ChaosBook.orgT
2011-09-29 he equation used in ref. [14]:

μt = −
1
2

(μ2)x − μxx − μxxxx, x ∈ [0, L] (S.28)

The equation used in et al. [?]

μ′t′ = (μ′2)x′ − μ′x′x′ − νμ′x′x′x′x′ , x′ ∈ [0, 2π] (S.29)

Substitute the function and variables in the first equation with t = αt ′, x =
βx′, μ = γμ′, we obtain

1
α
μ′t′ = −

1
2
γ

β
(μ′2)x′ −

1
β2
μ′x′x′ −

1
β4
μ′x′x′x′x′ , x′ ∈ [0,

L
β

] (S.30)

Comparing with the second equation ,if we set

− 1
2
αγ

β
=
α

β2
= 1,

α

β4
= ν,

L
β
= 2π (S.31)

, we will reach the second equation. Solving these equations, we obtain the
relation

L =
2π
√
ν

(S.32)

In [?], ν = 0.029910 and 0.029924, which corresponds to L = 36.3305 and
36.3220

⇑PRIVATE
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invariant!polynomial
basis

syzygy
G-invariant@G-

invariant!polynomial
basis

three-disk@3-
disk!symbolic
dynamics

symbolic
dynamics!3-disk

Chapter 9. World in a mirror

Solution 9.1 - Polynomials invariant under discrete operations on R3. See
Gilmore and Letellier [15], Sect. 2.1.

Solution 9.2 - Gx ⊂ G. Keep in mind that the representation of g j ◦ gi is gj gi.

1. Closure: If gi, g j ∈ Gx, then (gj gi) x = gj(gi x) = gj x = x and thus g j ◦ gi ∈ Gx.

2. Associativity: Trivial.

3. Identity e: e x = x for any x and thus e ∈ Gx.

4. Inverse g−1: For every g ∈ Gx, there exists a unique element
h = g−1 ∈ G such that h ◦ g = g ◦ h = e. We need to show g−1 ∈ Gx. Multiply
g x = x from the left with g−1 to get g−1 g x = g−1 x or g−1 x = x and thus g−1 ∈ Gx.

(Evangelos Siminos)

Solution 9.3 - Transitivity of conjugation. No solution available.

Solution 9.4 - Isotropy subgroup of gx. For every h ∈ Ggx we have

h(g x) = g x

Multiplying from the left with g−1 and using associativity we get (g−1 h g) x = x and
thus g−1 ◦ h ◦ g ∈ Gx for every h ∈ Ggx. Therefore x and gx have conjugate isotropy
subgroups. (Evangelos Siminos)

Solution 9.5 - D3: symmetries of an equilateral triangle. No solution available.

Solution 9.6 - Reduction of 3-disk symbolic dynamics to binary. The answer is
given in sect. 21.6, see figure 9.3, figure 9.9, figure 12.12. 8 Some remarks concerning
part (c):

If an orbit does not have any spatial symmetry, its length in the fundamental do-
main is equal to that in the full space. One fundamental domain orbit corresponds
to six copies of the orbit in the full space related to each other by symmetries. If a
periodic orbit does have a spatial symmetry, then its fundamental domain image is a
fraction of that in the whole space, and the orbit (and its symmetry partners) in the
full space is tiled by copies of the relative periodic orbit, corresponding to an orbit in
the fundamental domain. The higher symmetry an orbit has, the shorter the relative
periodic orbit.

Another way to visualize a fundamental domain orbit: put a periodic orbit and all
its spatial symmetry relatives simultaneously in the full space. The segments that fall
into a fundamental domain constitute the orbit in the fundamental domain. (Y. Lan)

Solution 12.7 - 3-disk fundamental domain symbolic dynamics. Read sect. 1.4.

8Predrag: need to draw 011 cycle in both full and fundamental domain. move parts of Grigo
solution exercise 1.1 to here.
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Lorenz
flow!symmetry

Lorenz flow!polar
coordinates

Lorenz
flow!proto-Lorenz
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Figure S.8: (a) The Lorenz attractor. (b) The Rössler-like proto-Lorenz attractor, with points related
by rotation symmetry about the z-axis identified. (From ref. [8].)

Solution 9.7 - C2-equivariance of Lorenz system. It follows from (9.9) that

C1/2v(x) = C1/2

⎡⎢⎢⎢⎢⎢⎢⎣ σ(y − x)
ρx − y − xz

xy − bz

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣ −σ(y − x)
−ρx + y + xz

xy − bz

⎤⎥⎥⎥⎥⎥⎥⎦
v(C1/2x) =

⎡⎢⎢⎢⎢⎢⎢⎣ σ(−y + x)
−ρx + y − xz
(−x)(−y) − bz

⎤⎥⎥⎥⎥⎥⎥⎦ , (S.33)

thus gv(x) = v(gx), and Lorenz equations (2.13) are equivariant under the action of
the group C2 = {e,C1/2}. (L. Saldana)

Solution 9.8 - Lorenz system in polar coordinates: group theory. No solution
available.

Solution 9.9 - Proto-Lorenz system. This exercise is based on Miranda and
Stone [13]; their paper gives a detailed discussion.

1. The proto-Lorenz equation, (2.13), in terms of variables (u, v, z) = (x2−y2, 2xy, z) :⎡⎢⎢⎢⎢⎢⎢⎣ u̇
v̇
ż

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣ −(σ + 1)u + (σ − r)v + (1 − σ)N + vz
(r − σ)u − (σ + 1)v + (r + σ)N − uz − uN

v/2 − bz

⎤⎥⎥⎥⎥⎥⎥⎦
N =

√
u2 + v2 . (S.34)

4. The equilibria of proto-Lorenz: origin the same, (u, v, z) = (0, 0, 0). The R-
symmetric pair (2.14) is now a single equilibrium at

uEQ1 = (0, 2b(r − 1), r − 1) . (S.35)
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Chapter 10. Continuous symmetries

Solution 10.1 - Visualizations of the 5-dimensional complex Lorenz flow. A
numerical solution of the set of ODEs (10.2) is obtained by using the Mathematica
NDSolve function, for t from 0 to 100 and setting the initial (x1, x2, y1, y2, z) to some
arbitrary value. We set MaxSteps→ Infinity in order to resolve the fine structure
of the flow. The solution is then plotted by means of ParametricPlot3D, in any
three of the five {x1, x2, y1, y2, z} axes. Figure 10.1 illustrates the shape of the attractor
projected onto the {x1, x2, z} subspace, with (10.2) parameter values. Projections onto
{y1, y2, z} and other subspaces are visually similar, and seem not to offer additional
insights into dynamics of this system.

Here is a Mathematica program that generates a long-time plot of complex Lorenz
equations, such as figure 10.1, initiated from a point on the attractor (after this inte-
gration, the initial condition is the final point of the preceding integration):

v[t ]={-σ x1[t] + σ y1[t], -σ x2[t] + σ y2[t],
(r1 - z[t])x1[t] - r2x2[t] - y1[t] - ey2[t],

r2x1[t] + (r1 - z[t])x2[t] + ey1[t] - y2[t],

-b z[t] + x1[t]y1[t] + x2[t]y2[t]};
x[t ] = {x1[t], x2[t], y1[t], y2[t], z[t]};
d=Length[x[t]];

eqns=Table[D[x[t][[i]],t]==v[t][[i]],{i,1,d}];
xde={x1, x2, y1, y2, z};

r1= 28; r2=0; b=8/3; e=1/10; σ=10;
tf= 80;

ic={x1[0]==0.867, x2[0]==-0.455, y1[0]==-0.552, y2[0]==0.453,
z[0]==22.4};

sol=NDSolve[{eqns,ic}, xde, {t,0,tf}, MaxSteps → ∞]//Flatten;
traj[t ]=x[t]/.sol;

p1=ParametricPlot3D[{traj[t][[1]], traj[t][[2]], traj[t][[5]]},
{t,0,tf}, PlotPoints → 400, PlotRange → All]

ic=Table[x[0][[i]]==traj[tf][[i]], {i,1,d}];
(R. Wilczak)

Solution 10.2 - SO(2) rotations in a plane. Expand exp(θT) in a Taylor series,
noting that

T2 =

(
0 1
−1 0

)2

= −1 .

Hence exp(θT) = (1 − θ2/2 + ...)1 + (θ − θ3/3! + ...)T = cos θ 1 + sin θT. See also
example 4.4. 9 (P. Cvitanović)

Solution 10.4 - U(1) equivariance of complex Lorenz equations for finite angles.
Multiply the coordinates by a complex phase: x → eθx, y → eθy. Equivariance of
(10.1) follows by inspection. If all coefficients are real, there is also a discrete C1

symmetry under complex conjugation of the three equations. However, we consider

9Predrag: add Wadsworth 2012-02-21 solution - asked him for his LaTeX; already have Saldana
2012-02-21
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here the cases where one or both of the parameters r and a are complex, breaking
this discrete symmetry. (P. Cvitanović)

Solution 10.5 - SO(2) equivariance of complex Lorenz equations for finite an-
gles. For this problem, the operation is rotation and v(x) is given by (10.2). Rotation
can be defined using the matrix g(θ) defined in (10.24), where θ is the angle of rotation.
We need to verify that

v(x) = g−1v(gx) . (S.36)

First, the system is rotated as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos(θ) sin(θ) 0 0 0
− sin(θ) cos(θ) 0 0 0

0 0 cos(θ) sin(θ) 0
0 0 − sin(θ) cos(θ) 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(t)
x2(t)
y1(t)
y2(t)
z(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (S.37)

The time derivative of the resulting matrix is taken, and then it is multiplied on the left
by the inverse of the rotation matrix, giving

g−1v(gx) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σy1(t) − σx1(t)
σy2(t) − σx2(t)

−r2x2(t) − y1(t) − ey2(t) + x1(t)(r1 − z(t))
r2 x1(t) + ey1(t) − y2(t) + x2(t)(r1 − z(t))

x1(t)y1(t) + x2(t)y2(t) − bz(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (S.38)

which is the same as the original system of ODEs, so that the system is rotationally
equivariant for all finite angle rotations. (R. Wilczak)

Solution 10.6 - Stability matrix of complex Lorenz flow. The stability matrix
(10.32), defined in (4.3)), for complex Lorenz flow (10.2) can be computed by Mathematica
program

v[t] = {x1′[t], x2′[t], y1′[t], y2′[t], z′[t]} ;
x[t] = {x1[t], x2[t], y1[t], y2[t], z[t]};
A = D[v[t], {x[t], 1}]

(R. Wilczak and P. Cvitanović)

Solution 10.7 - Rotational equivariance of complex Lorenz equations for in-
finitesimal angles. Now that we have the stability matrix (10.32), we can check
the equivariance condition (10.30), 0 = −Tv(x) + ATx, where A is the stability matrix
(4.3), by explicit substitution. The matrix T is (10.23). Plugging these into (10.30), as
well as using (10.2) for v(x), the result is indeed 0, as expected. Then the system is
rotationally equivariant for infinitesimal angles. (R. Wilczak)

Solution 10.7 - SO(2) equivariance of complex Lorenz equations for infinitesimal
angles. The system is equivariant under infinitesimal angles if its Lie derivative is
zero, i.e.

− T · v(x) + A · T · x = 0 (S.39)

soluContinuous - 10mar2012 boyscout version14.4, Mar 19 2013
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where A is the stability matrix for the flow.

For the complex Lorenz equations

v (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−σx1 + σy1
−σx2 + σy2

(ρ1 − z) x1 − ρ2x2 − y1 − ey2
ρ2x1 + (ρ1 − z) x2 + ey1 − y2

−bz + x1y1 + x2y2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (S.40)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−σ 0 σ 0 0
0 −σ 0 σ 0

r1 − z −r2 −1 −e −x1
r2 r1 − z e −1 −x2
y1 y2 x1 x2 −b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (S.41)

and the SO(2) rotation has

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0
−1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (S.42)

Plugging these into (S.39) does give you the wanted result, so the complex Lorenz
equations are rotational equivariant under infinitesimal SO(2) rotations. (S. Froehlich

Solution 10.8 - A 2-mode SO(2)-equivariant flow. (The problem statement includes
the solution.)

Solution 10.9 - U(1) equivariance of complex Lorenz equations for finite angles.
Obvious by inspection; that’s how the equations (10.69) were constructed in the first
place.

Solution 10.10 - SO(2) equivariance of the 2-mode system for infinitesimal an-
gles. Check the equivariance condition (10.30), 0 = −Tv(x) + ATx, where A = ∂v/∂x
is the stability matrix, by explicit substitution into (10.30) and using (10.70) for v(x).
This yields a zero vector. D. Borrero

Solution 10.11 - Visualizations of the 5-dimensional 2-mode system. (solution
not available)

Figure S.9: {x1, x2, z} plot of 2-mode system, with initial point (x1, x2, y1, y2, z) = (1, 0, 0, 1, 1).

Solution 10.12 - Discover the equivariance of a given flow? If M is in the Lie
algebra, by the equivariance condition (10.30) the Lie derivative Mv(x) − AMx van-
ishes. You have v(x) and the stability matrix A, hence try finding whether a M can be
found such that the Lie derivative vanishes. You know that if the symmetry group is a
subgroup of SO(d), the Lie algebra elements M can be taken antisymmetric. (Have
not tried to solve this problem, so let us know if you succeed) (P. Cvitanović)

soluContinuous - 10mar2012 boyscout version14.4, Mar 19 2013
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invariant!polynomial
basis

Solution 10.13 - Equilibria of complex Lorenz equations. To find these points for
complex Lorenz equations, I used the Solve function in Mathematica, with

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ẋ1(t)
ẋ2(t)
ẏ1(t)
ẏ2(t)
ż(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σy1(t) − σx1(t)
σy2(t) − σx2(t)

−r2x2(t) − y1(t) − ey2(t) + x1(t)(r1 − z(t))
r2x1(t) + ey1(t) − y2(t) + x2(t)(r1 − z(t))

x1(t)y1(t) + x2(t)y2(t) − bz(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

as the equations defining the system, and then solved for (x1(t), x2(t), y1(t), y2(t), z(t)).
Mathematica returns the point (0, 0, 0, 0, 0) as the only solution, and thus (I hope,
have no proof) the only equilibrium point. (R. Wilczak)

Solution 10.13 - Equilibria of complex Lorenz equations. Either the equilibrium
point is in Fix(G) or it is not.

If it is in Fix(G), then it is on the z-axis so we have x1 = x2 = y1 = y2 = 0. These
values already give us ẋ1 = ẋ2 = ẏ1 = ẏ2 = 0, so we only need to check when ż = 0.
This happens when x1y1+x2y2−bz = −bz = 0, so z = 0, and the origin is an equilibrium
point.

If an equilibrium point is not in Fix(G) then by the S O(2) equivariance of the
equations, there exists a corresponding equilibrium point with x1 = 0. The equations
ẋ1 = 0 and ẋ2 = 0 then give us that y1 = x1 = 0 and x2 = y2 (assuming σ is nonzero).
Next, look at ẏ1 = −r2x2 − ey2 = 0. If x2 = 0 then we must also have y2 = 0 and we
are then on the z-axis and in Fix(G). So we can assume x2 is nonzero. We then have
−r2 x2 − ey2 = 0, x2 = y2 nonzero so we can divide through by −x2 and get r2 + e = 0.
So in order for there to be an equilibrium point other than the origin, we must have
e + r2 = 0. Looking at ẏ2 = 0 we get that y2/x2 = r1 − z, so z = r1 − 1. Finally,
ż = x2y2 − bz = 0, so x2y2 = b(r1 − 1), and x2

2 = b(r1 − 1). A solution to this will exist
only if r1 > 1.

Assuming σ nonzero (Note: if σ = 0 then x is constant and the system is now
linear), we therefore find that the origin is always an equilibrium point, and it will be
the only equilibrium point unless e+r2 = 0 and r1 > 1. In this case, the system has the
additional equilibrium points (0,±

√
b(r1 − 1), 0,±

√
b(r1 − 1), r1 − 1) and all the points

in their group orbits. (S. Froehlich

Solution 10.14 - More equilibria of complex Lorenz equations. See Siminos
thesis [6].

Solution 10.14 - More equilibria of complex Lorenz equations. The alternate
solution to the previous exercise showed that the origin was the only equilibrium point,
unless e+r2 = 0. In this case if r1 > 1 then the points (0,±

√
b(r1 − 1), 0,±

√
b(r1 − 1), r1−

1) and all the points in their group orbits are also equilibrium points. (S. Froehlich

Solution 10.15 - Complex Lorenz equations in a Hilbert basis. (No solution
available, other than what is in the text proper.)

Solution 10.17 - Complex Lorenz equations in polar coordinates. We use the
same method here as in exercise B.1. The Jacobian of this transformation can be
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written as

∂{r1, θ1, r2, θ2, z}
∂{x1, x2, y1, y2, z}

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos(θ1) sin(θ1) 0 0 0
− sin(θ1)

r1

cos(θ1)
r1

0 0 0
0 0 cos(θ2) sin(θ2) 0
0 0 − sin(θ2)

r2

cos(θ2)
r2

0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (S.43)

Multiplying the velocity matrix on the left by the Jacobian (S.43), we get

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ṙ1

θ̇1
ṙ2

θ̇2
ż

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ (r1 − r2 cos θ)
−σ r2

r1
sin θ

−r2 + r1 ((ρ1 − z) cos θ − ρ2 sin θ)
e + r1

r2
((ρ1 − z) sin θ + ρ2 cos θ)
−bz + r1r2 cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where θ = θ1 − θ2. Following ref. [6], we set ρ2 = 0 in what follows. We rewrite this as
four coupled equations (10.75), and two driven ones for the two angles,

(
θ̇1

θ̇2

)
=

(
−σ r2

r1
sin θ

e + (ρ1 − z) r1
r2

sin θ

)
. (S.44)

This confirms formulas stated in ref. [6]. All angles combine into θ = θ1 − θ2, as they
should: there is only one phase for SO(2) rotation to act on, the {x1, x2} and the {y1, y2}
planes rotate rigidly together, not separately. Gilmore and Letellier [29] is a good
reference for a discussion of such coordinate changes. (R. Wilczak and P.
Cvitanović)

Solution 10.18 - 2-mode system in polar coordinates. Follow exercise 10.17.

Solution 10.19 - Visualizations of the complex Lorenz flow in polar coordinates.
(solution not available) 10

Solution 10.20 - Computing the relative equilibrium TW1. A relative equilibrium
point occurs when the derivatives (10.75) are equal to zero (so that the difference
between the two angles θ1 and θ2 is constant, but the angles themselves are not
constant). We use the Solve function (or the Reduce function) in Mathematica to find
these points.

We define the system in Solve by setting all time derivatives in (10.75) to zero.
Mathematica returns eight solutions of the form

z(t) → ρ1 − 1 − e2

(σ + 1)2

r2(t) → ±
√

e2 + (σ + 1)2
√
−b

(
e2 − (ρ1 − 1)(σ + 1)2

)
(σ + 1)2

r1(t) → ±
√
−b

(
e2 − (ρ1 − 1)(σ + 1)2

)
|σ + 1|

θ(t) → ± cos−1

⎛⎜⎜⎜⎜⎜⎝± √
(σ + 1)2√

e2 + (σ + 1)2

⎞⎟⎟⎟⎟⎟⎠ (S.45)

10Predrag: copy sect 1.4.2 rebecca’s blog flow.tex

soluContinuous - 10mar2012 boyscout version14.4, Mar 19 2013



APPENDIX S. SOLUTIONS 1341

Figure S.10: {r1, r2, z} plot of the complex Lorenz
flow, with initial point close to TW1 (note the scales).

The solutions differ by combinations of negative and positive r1, r2, θ. A negative ri

solution corresponds to the same group orbit of solutions, related to the positive ri

solution by a rotation by π. The r1 ≥ 0 , r2 ≥ 0 condition in (10.74) reduces these
solutions to two, differing by the sign of cos−1 term. As will be further shown in ex-
ercise 10.22, the two ± cos−1(· · ·) solutions are equivalent. We can write the solution
compactly as in (10.78), in agreement with ref. [6]. For the (10.2) parameter values,
the relative equilibrium is at

xTW1 = (r1, r2, θ, z) = (8.48527, 8.48562, 0.00909066, 26.9999) . (S.46)

The angular velocity of relative equilibrium TW1 follows from (S.44). Both angles move
with the same velocity (10.79) and period TTW1 = 2π(σ + 1)/σe. TTW1 = 69.115 · · · for
the (10.2) parameter values. That implies that the simulation has to be run up to time
of order of at least 70 for the strange attractor in figure 10.1 to start filling in. (R.
Wilczak and P. Cvitanović)

Solution 10.21 - Relative equilibrium TW1 in polar coordinates. The same
method as in exercise (10.1) can be used here. First, a numerical solution is found
with NDSolve for t going 0 to 10 and initial point TW1. We again set MaxSteps →
Infinity in order to resolve the structure of the flow. Using ParametricPlot3D to
plot the flow in {r1, r2, z} axes, Figure S.10 illustrates the shape of the flow with (10.2)
parameter values. (R. Wilczak)

Solution 10.22 - Relative equilibrium TW1 in Cartesian coordinates. Using the
same method as in exercise 10.21 and in exercise 10.1, we can plot the relative equi-
librium in Cartesian coordinates. However, the Cartesian system is five-dimensional
and our polar system has only four dimensions. To resolve this, we set θ2 to an arbi-
trary value and set θ1 = θ+θ2. With this and (10.74), we can verify the numerical value
(10.80) of a point on the TW1 orbit in Cartesian coordinates. Using Mathematica to
plot the system with t going from 0 to 100, figure 10.5 shows the complex Lorenz flow
at TW1 projected onto the {x1, x2, z} subspace.

Note that the for a relative equilibrium the flow is along a circle, i.e., the group-
orbit of any point on it, but due to finite precision of the initial point and the integration,
the trajectory eventually spirals away in a ”horn” shape. This circle cuts through the
middle of the complex Lorenz equations strange attractor, as shown in figure 10.1. (R.
Wilczak)

Solution 10.23 - The relative equilibria of the 2-mode system: (solution not avail-
able)
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Solution 10.24 - Plotting the relative equilibria of the 2-mode system in polar
coordinates. (solution not available)

Solution 10.25 - Plotting the relative equilibria of the 2-mode system in Cartesian
coordinates. (solution not available)

Solution 10.26 - Eigenvalues and eigenvectors of TW1 stability matrix. Using the
Mathematica function Eigensytem and setting (r1, r2, θ, z)(0) to the values in (S.46) we
obtain

(λ1,2, λ3, λ4) = (0.0938179± 10.1945i,−11.0009,−13.8534)

as the eigenvalues of the system with the associated eigenvectors: 11 12

Re e1 = (0.266121,−0.0321133, 0.00034139, 0.719222)

Im e1 = (0.295017, 0.569063, 0.000551886, 0)

e3 = (−0.0883591,−0.0851485,−0.989135,−0.0809553)

e4 = (−0.855586,−0.329912,−0.00273531,−0.398902) (S.47)

(R. Wilczak and P. Cvitanović)

Solution 10.27 - The eigen-system of TW1 stability matrix in polar coordinates.
In order to plot the complex eigenvectors, we split them into their real and com-
plex parts as in exercise 10.29. Using the same method as in exercise 10.1, exer-
cise 10.22, and exercise 10.21, we can plot the flow in polar coordinates with an initial
point very near to TW1 along one of the eigenvectors. Figure S.11 shows just this.
(R. Wilczak)

Solution 10.28 - Eigenvalues and eigenvectors of EQ0 stability matrix. Using the
Mathematica function Eigensytem and setting (x1, x2, y1, y2, z) = (0, 0, 0, 0, 0) at t = 0
we obtain the eigenvalues, the associated eigenvectors: 13

(λ1,2, λ3,4, λ5) = (11.8277± 0.062985i,−22.8277± 0.037015i,−2.66667)

e1 = e∗2 = (0.00132196+ 0.458131i, 0.458131− 0.00132196i, i, 1, 0)

e3 = e∗4 = (0.002249− 0.77955i,−0.77955− 0.002249i, 2.84217+ i, 1, 0)

e5 = (0, 0, 0, 0, 1) . (S.48)

(R. Wilczak)

Solution 10.29 - The eigen-system of the stability matrix at EQ0. In order to plot
the complex eigenvectors, we split them into their real and complex parts and plot
each separately (so that one complex eigenvector becomes two, defining a plane). By
examining the eigensystem, we can get a sense of what happens to points near the
equilibrium EQ0. The numerical values of the real parts of the eigenvalues determine
how quickly the flow will converge onto or diverge away from the equilibrium. For a

11Predrag: Rebecca, please recheck my replacement of the complex eigenvectors by their Re, Im
parts.

12Predrag: omitted ‘spiral-out’ text, it is in the chapter already.
13Predrag: eigenvectors look mistyped, recompute
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Figure S.11: {r1, r2, z} plot of the eigenvector e3 with
initial point at 6

100 e3 (violet), integrated for time t from
0 to 100.

Figure S.12: {x1, x2, z} plot of the expanding eigen-
vector e1 (red) and the contracting eigenvector e4 (yel-
low) of the equilibrium E0 stability matrix of complex
Lorenz flow, with initial point at 0.01 e4.

positive real part the flow will diverge, and for a negative real part it will converge.
Complex eigenvalues also indicate that the motion will be spiraling.

For the complex Lorenz equations equilibrium EQ0, the values (S.48) of the imag-
inary parts are orders of magnitude smaller than the real parts, so that there will be
very little spiraling. The large values of the real parts tell us that the flow will di-
verge/converge from the equilibrium very quickly.

To illustrate this, we plot the eigenvectors (as real and imaginary parts) and the
flow at initial points close to EQ0. The two real vectors (corresponding to a single
complex eigenvector) define the plane in which the flow will spiral. We initiate the flow
very close to EQ0 at a point along one of these vectors. In figure S.12, we can see
that for the vectors with a very small imaginary part and a positive real part, the flow
does not spiral noticeably and that it diverges away from the equilibrium very quickly.

We arrive at figure S.12 using the same method as in the previous plotting exer-
cises (exercise 10.1, exercise 10.21, exercise 10.22). As the eigenvalues are nearly
real, the stable/unstable 2d manifolds barely spiral, and are not very illuminating. (R.
Wilczak)
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Figure S.13: (a) {x1, x2, z} plot of the complex
Lorenz flow as each point is rotated back to the
plane. The time step used to make this plot was
0.01 and the integration went from t = 0 to t = 50.
(b) With the points connected into a curve.

(a) (b)

Solution 10.30 - SO(2) or harmonic oscillator slice: We can now construct a
moving frame as follows. We write out explicitly the group transformations:

x = x cos θ − y sin θ

y = x sin θ + y cos θ .

Then set x = 0 and solve (S.49) for the group parameter to obtain the moving frame

θ = tan−1 x/y (S.49)

which brings any point back to the slice. Substituting (S.49) in the remaining equation,
we get the SO(2)-invariant expression y =

√
x2 + y2 . (E. Siminos)

Solution 10.31 - State space reduction by a slice, ODE formulation: We start by
setting the initial point and the time step that will be used during the integration. Using
Mathematica, we first remove the z component of the initial point so that we have
x(0) − x(0) · ẑ = {x1(0), x2(0), y1(0), y2(0), 0}. In order to rotate each of the points, we
must construct the group representation matrix (10.24), where θ is the angle between
the new point (minus the z component) and the positive x1 axis (x̂1 = {1, 0, 0, 0, 0}).
From exercise 10.4, we know that the complex Lorenz equations are invariant for this
kind of rotation, so that when we reduce the complex Lorenz flow it contains the same
information as the 5-dimensional system. We do not need to determine the angles
themselves, we need only their cosines and sines. The cosine is found by a dot
product as cos(θ) = x · x̂1/|x|.

Sines can be found by rotating each point by π/2 and then taking the dot product
as with cosine. Taking the first point, we first rotate it with g, and starting with this
rotated point, we integrate over the defined time step. We then take the last point from
the integration, find its g and rotate it, then use it at the beginning of the next integration
from t = timestep to t = 2· timestep. This process continues (using a For loop in
Mathematica) until the end of the integration (at an arbitrary time). The resulting
list of rotated points is then plotted. Using this method, we produced figure S.13.
Infinitesimal time version of the moving frames symmetry reduction is attained by
taking small time steps in figure 10.14 and dropping the higher order terms, as in
sect. 10.4.2:

dx(n) = dt v(x(n)) + dθ(n)
1 Tx(n) .

The infinitesimal angle is proportional to the time step,

θ(n)
1 ≈ sin θ(n)

1 = −dt
ê1 · v(x(n))

r(n)
1

≈ −dt v1(x(n))/x(n)
2 ,
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Figure S.14: Method of moving frames, continuous
time version, for the polar coordinates motivated x∗ =
(0, 1, 0, 0), x1 = 0, x2 > 0, slice. The strange attrac-
tor of figure 10.1 in the reduced state space, {x2, y2, z}
projection exhibits a discontinuity at x2 = 0.

where (r1, θ1) are polar coordinates, r1 = (x2
1 + x2

2)1/2, see (10.74). Our slice condition
is x1 = 0, x2 > 0, so the reduced state space equations are given by

ẋ = v − v1

x2
Tx . (S.50)

The motion stays in the (d−1)-slice, as ẋ1 = 0 due to the orthogonal action of T to the
direction x.

Moving frames symmetry reduced complex Lorenz equations are a 4-dimensional
first order ODE system

ẋ2 = −σ(x2 − y2)

ẏ1 = −y1 + r2 x2 − (e + σy1/x2) y2

ẏ2 = −y2 + (ρ1 − z)x2 + (e + σy1/x2) y1

ż = −bz + x2y2 . (S.51)

The resulting trajectory is illustrated in figure S.14. It agrees with trajectories reported
by Siminos (there the simulation is in the full state space, and the reduced state space
dynamics is obtained by a coordinate change). 14

- Checked that it agrees with finite step + rotation of figure 10.14
- x2 and y2 seem locked, oscillate the same way with amplitude up to 20
- y1 is very small, mostly below 0.1

14Siminos: (S.51) follows from complex Lorenz equations expressed in the invariant coordinates
obtained by the method of slices. We have done the same for ZM system long time ago when we
heuristically rederived Cartan’s method. It has been moved to a footnote in Jonathan’s blog (eq.
5.37). (ES: We’ve agreed to junk ZM system when we realized it has no relative equilibrium. One
also gets the same system by using invariant polynomials and taking the syzygy into account, see
discussion preceding (5.46) in Jonathan’s blog.)
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- (x2, y2, z) plot looks discontinuous in y2 whenever x2 small, across the z-axis (indi-
cated in red). (R.
Wilczak)

Solution 10.32 - Accumulated phase shift in slice reduced state space: (not
available)

Solution 10.33 - The moving frame flow stays in the reduced state space: The
motion stays in the (d−1)-dimensional slice, as the flow along the group action direction
vanishes,

ẋ · Tx̂′ = v · Tx̂′ − (v · Tx̂′)
(x · x̂′)4

(Tx) · Tx̂′ = 0 .

(P. Cvitanović)

Solution 10.34 - Relative equilibrium TW1 by the method of slices: (not avail-
able)

Solution 10.35 - State space reduction by a relative equilibrium TW1 cross-
section. We note that xTW1 · tTW1 = 0 by the antisymmetry of T, so (10.81) is a
linear condition x̂ · TxTW1 = x · g(θ)T TxTW1 = 0 that determines θ. Substituting (10.67)
and (10.23) yields a formula

tan θ =
x1 xTW1

2 − x1xTW1
2 + y1yTW1

2 − y1yTW1
2

x1 xTW1
1 + x2xTW1

2 + y1yTW1
1 + y2yTW1

2

(S.52)

for the rotation angle x̂ = g(θ)x (actually, there are two solutions, separated by π)
that rotates x into the cross-section. In contrast to fixing one of the polar angles
as in the method of moving frames of sect. 10.4.1, this cross-section introduces no
singularities, as x2

1 + x2
2 + y2

1 + y2
2 > 0. To compute sin θ, cos θ needed by g(θ) rewrite

(S.52) as

cos θ = (x1xTW1
1 + x2xTW1

2 + y1yTW1
1 + y2yTW1

2 )/N

sin θ = (x1xTW1
2 − x1xTW1

2 + y1yTW1
2 − y1yTW1

2 )/N , (S.53)

with N fixed by sin2 + cos2 = 1. (P. Cvitanović)

Solution 10.36 - Stability of a relative equilibrium in the reduced state space.
Let t′ be a vector normal to the plane of the slice. Then the dynamics within the slice
are given by the equations (??). This gives us

∂ui

∂y j
=

∂vi (y)
∂y j

−
∂θ̇ (y)
∂y j

(Ty)i − θ̇ (y)
∂ (Ty)i

∂y j

∂θ̇ (y)
∂y j

=

∂v
∂y j

· t′

Ty · t′
−

v · t′(
Ty · t′

)2

∂Ty
∂y j

∂ (Ty)i

∂y j

= Ti j (S.54)
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Now, using the fact that ∂vi
∂y j
= Ai j, where A is the stability matrix of the flow in full state

space, and the relative equilibrium condition (??), we get the equation 15

Âi j = Ai j − c · Ti j − (Ty)i (
∂v
∂yi
· t′

Ty · t′
− c

∂(Ty)
∂x j

· t′

Ty · t′
) (S.55)

(S. Froehlich

Solution 10.37 - Stability of a relative periodic orbit in the reduced state space.
(not available)

⇓PRIVATESolution 10.38 - Symmetry reduction by a relative equilibrium TW1 template:
(not available)

Solution 10.40 - Velocity field within slice can diverge: (a) The denominator
(x(t)·x∗)4 vanishes at t ≈ 1.217 · · ·. (b) Apparently forever. (c) The reduced state space
complex Lorenz flow flow runs into a singularities in the slice choice of figure ??. (d)
We have no idea... (P. Cvitanović)Aug 7 2009

Solution 10.39 - A polar coordinates slice: Create here Rebecca θ1 = 0 x̂′ solution,
extract it from exercise 10.31 and its solution, and from p. 16 of Rebecca blog. (R.
Wilczak)

Solution 10.41 - SO(2) rotation angle: (To be written: read and understand relevant
parts of Fels and Olver [34, 35, 11], Siminos [6])

Solution 10.42 - Determination of group invariants by the method of slices: (No
solution available)

Solution 10.43 - Linear slices are not flow invariant (a) The inner product is eq.
(71) in internal version of Siminos thesis, in case you need to double check your result.
The rest is left to you. (c) We have not tried to solve this part. You have to make use
of equivariance and perhaps of the group representation. Flow contraction of complex
Lorenz flow might come in handy, too. (E. Siminos)

Solution 10.44 - x = 0 singularity in complex Lorenz flow Sadly, I do not know how
to solve this. (E. Siminos)

Solution 10.28 - Eigenvalues and eigenvectors of EQ0 stability matrix. (No
solution available)

Solution 10.26 - Eigenvalues and eigenvectors of TW1 stability matrix. Using the
Mathematica function Eigensytem and setting (ρ1, ρ2, θ, z)(0) to the values in (S.46)
we obtain

(λ1,2, λ3, λ4) = (0.0938179± 10.1945i,−11.0009,−13.8534)

as the eigenvalues of the system with the associated eigenvectors: 16

Re e1 = (0.266121,−0.0321133, 0.00034139, 0.719222)

Im e1 = (0.295017, 0.569063, 0.000551886, 0)

e3 = (−0.0883591,−0.0851485,−0.989135,−0.0809553)

e4 = (−0.855586,−0.329912,−0.00273531,−0.398902) (S.56)

15Predrag: I do not see where the sum over group symmetry generators is in (S.55)?
16Predrag: Rebecca, please recheck my replacement of the complex eigenvectors by their Re, Im

parts.
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The spiral-out instability appears very slow, but with a short period T spiral = 0.6163,
about 112 turns for one period of the TW1. Actually, as the relative equilibrium velocity
(??) is slow, an initial deviation from xTW1 is multiplied by the factor Λradial = 535, and
the relative equilibrium is quite unstable. This is illustrated by figure 10.5 (b). It would
be sweet if we could eliminate the detuning drift time scale ≈ 70 and focus just on
the oscillatory time scale of ≈ 0.6. That is one of the motivations for reformulating
dynamics in a reduced state space. (P. Cvitanović)

Solution 10.29 - The eigen-system of the stability matrix at EQ0. (No solution
available)

Solution 10.22 - Relative equilibrium TW1 in Cartesian coordinates. 17 (S.
Froehlich

Solution 10.45 - State space reduction by a locally transverse slice: (not avail-
able)

⇑PRIVATE

17Predrag: Let me know if I have accidentally removed your solution here - it can be easily
recovered...

soluContinuous - 10mar2012 boyscout version14.4, Mar 19 2013
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golden mean!pruning
pruning!golden mean

Chapter 11. Qualitative dynamics, for pedestrians

Solution 11.1 - Binary symbolic dynamics. Read the text.

Solution 11.2 - Generating prime cycles. (No solution available.)

Solution 11.3 - A contracting baker’s map. (No solution available.)

Solution 11.4 - Unimodal map symbolic dynamics. Hint: write down an arbitrary
binary number such as γ = .1101001101000 . . . and generate the future itinerary S +

by checking whether f n(γ) is greater or less than 1/2. Then verify that (11.9) recovers
γ.

Solution 11.4 - Unimodal map symbolic dynamics. The easiest way to see this is
to derive the itinerary from the binary expansion using the tent map as the prototypical
example of a unimodal map. Let the binary expansion of x be x = .ω1ω2ω3ω4 . . . then
1 − x = .ω̄1ω̄2ω̄3ω̄4 . . . with ω̄ = 1 − ω. Thus the tent map can be written as

T .ω1ω2ω3 . . . =

{
.ω2ω3ω4 . . . if ω1 = 0
.ω̄2ω̄3ω̄4 . . . if ω1 = 1 =

{
.ω2ω3ω4 . . . if ω1 = 0
1 − .ω2ω3ω4 . . . if ω1 = 1

Since the symbol of x is simply ω1 we can generate the symbolic sequence from the
binary expansion of x via sn = (T n−1x)1 for all n ≥ 1.

Note that T (1 − x) = T x hence for all n ≥ 1

T nx = Tσn−1 x =

{
σn x if (σn−1 x)1 = 0
1 − σn x if (σn−1 x)1 = 1

=

{
σnx if ωn = 0
1 − σn x if ωn = 1

with σ being the left shift. Therefore, given the symbol sequence sn we have for n ≥ 1

sn+1 = (T nx)1 =

{
(σn x)1 if ωn = 0
(1 − σn x)1 if ωn = 1 =

{
ωn+1 if ωn = 0
1 − ωn+1 if ωn = 1

which shows

ωn+1 =

{
sn+1 if ωn = 0
1 − sn+1 if ωn = 1 with ω1 = s1

for all n ≥ 1. (Alexander Grigo)

Solution 11.5 - Unimodal map kneading value. (No solution available.)

⇓PRIVATESolution 11.9 - One-dimensional repellers. (No solution available.)

⇑PRIVATESolution 11.6 - “Golden mean” pruned map.
(a) Consider the 3-cycle drawn in the figure. Denote the lengths of the two horizontal

intervals by a and b. We have a/b = b/(a + b) , so the slope is given by the golden
mean, Λ = b/a = (1 +

√
5)/2, and the piecewise linear tent map is given by

f (x) =

{
Λx , x ∈ [0, 1/2]
Λ(1 − x) , x ∈ [1/2, 1]

soluKnead - 6oct2008 boyscout version14.4, Mar 19 2013
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Alternative derivation: 3-cycle periodic point at x = 1/2 is a fixed point of the 3rd
iterate, f 3(1/2) = Λ2(1 − Λ/2) = 1/2. Λ = 1, (1 −

√
5)/2 solutions are no good, so

Λ = (1 +
√

5)/2.

(b) The 3-cycle periodic points are {xC10, x10C, x0C1} = {1/2,Λ/2, 1/(2Λ)}. Once a point
enters the region covered by the interval M of length a + b, bracketed by the 3-cycle,
it will be trapped there forever. Outside M, all points on unit interval will be mapped to
(0, 1/2], except for 0. The points in the interval (0, 1/(2Λ) approach M monotonically.

(c) It will land in ( 1
2 ,
Λ
2 ).

(d) From (b), we know that except for x0 = 0, all periodic orbits should be in M. By
(c), we cannot have the substring 00 in a periodic orbit (except for the fixed point at 0).
Hence 00 is the only pruning block, and the symbolic dynamics is a finite subshift,
with alphabet {0, 1} and only one grammar rule: a consecutive repeat of symbol 0 is
inadmissible.

(e) There are two exceptions. 0 is an isolated periodic orbit with itinerary 0. It is
unstable and no point in its neighborhood returns to it, and it plays only an indirect
role in the asymptotic dynamics. However, the 3-cycle in the figure is important, as
it includes the critical point xc and thus defines the attractor basin boundary. If it is
labeled 010 (that is what it becomes if Λ is increased slightly) rather than C10 (here
‘C’ is the symbol for the critical point), it also violates the 00 pruning rule. (Y. Lan
and P. Cvitanović)

Solution 11.7 - Binary 3-step transition matrix. (No solution available.)

Solution 11.8 - Full tent map periodic points. (a) For short cycles it is easy to
solve the fixed point condition (11.11), with

f (γ) =

{
f0(γ) = 2γ if γ < 1/2
f1(γ) = 2(1 − γ) if γ > 1/2 . (S.57)

directly. The 2-cycle periodic points satisfy f1 ◦ f0(γ01) = 4(1 − γ01) = γ01 the 3-cycle
periodic points satisfy

f1 ◦ f0 ◦ f0(γ001) = 2(1 − 4γ001) = γ001

f1 ◦ f0 ◦ f0(γ011) = 2(1 − 2(1 − γ011)) = γ011 ,

etc., yielding periodic points {γ01, γ01} = {2/5, 4/5}, {γ001, γ010, γ100} = {2/9, 4/9, 8/9}
{γ011, γ110, γ101} = {2/7, 4/7, 6/7} . But this gets tedious quickly, while formula (11.12)
is just a formula:

(b) {γ00111, γ01110, γ11100, γ11001, γ10011} = {2/11, 4/11, 8/11, 6/11, 10/11} .

(c) {γ00001, γ00010, γ00100, γ01000, γ10000} = {2/33, 4/33, 8/33, 16/33, 32/33} .

(d) 18

⇓PRIVATESolution 11.11 - Heavy pruning. (No solution available.)

⇑PRIVATE
18Predrag: get Newman figures
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Bernoulli!shift
shift!Bernoulli

Chapter 12. Qualitative dynamics, for cyclists

Solution 12.3 - Slicing Danish without flipping. The action of an orientation pre-
serving baker map is given by

A L E X A L

E X

ALEX

mapping

,

with the right half sliced off and slid over the top of the left half. A formal way of writing
the map is

T : [0, 1]2 → [0, 1]2 with T (x, y) =

⎧⎪⎪⎨⎪⎪⎩
(
2 x, 1

2 y
)

if x < 1
2(

2 x − 1, 1
2 y + 1

2

)
if 1

2 < x
(mod 0) .

It is immediate from the figure that a coding is obtained by symbols

0 ↔
{
x < 1/2

}
and 1 ↔

{
x > 1/2

}
which correspond to the left and right half of the square, respectively. The correspond-
ing symbolic dynamics is indicated in figure S.15, which shows the itineraries for up

.000

.001

.010

.011

.100

.101

.110

.111

111.

011.

101.

110.

100.

000.

010.

001.

Figure S.15: Itineraries of three steps in forward (left figure) and backward (right figure) direction.
The digits on the left of the decimal dot are the past, and the decimal on the right are the future
starting with the current symbol.

to three steps in forward and backward direction. The slicing, orientation preserving
baker map is simply a 2-dimensional version of the Bernoulli shift map (23.6), with the
spatial ordering the same as the temporal ordering. 19 (Alexander Grigo)

Solution 14.1 - Time reversibility. A link between two nodes, say n1 and n2, is
present if and only if the map takes some points belonging to symbol n1 to points with
symbol n2. Thus for a fine enough partition there will be no symmetry between n1ton2

and n2 → n1. As a simple example consider the rotation by a fixed angle α of the

19Predrag: according to Carrol 2012-03-13, the future, past are interchanged, the dots are at the
wrong end in figure S.15
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plane around the origin (which is a Hamiltonian map). If α is very small and positive,
and if we partition the plane into three equal sectors about the origin, denoted by 1, 2,
3, then the corresponding transition graph has transition matrix 20

M =

⎛⎜⎜⎜⎜⎜⎜⎝ 1 1 0
0 1 1
1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
which has no symmetry in forward/backward direction, i.e. M � MT . Furthermore,
the eigenvalues of M are Λ = {2, 1

2 ±
√

3
2 i} hence are not all real.

To see that the transition matrices for Hamiltonian are not necessarily diagonal-
izable, consider the symplectic mappings of the plane (x, y) → (x, y − 1) or (x, y) →
(2 x, y/2). Choose two symbols, 1 ↔ {y < 0}, 2 ↔ {y > 0}, and 1 ↔ {|x| > 1/4},
2 ↔ {|x| < 1/4}, respectively Then in both cases the transition matrix reads

M =

(
1 1
0 1

)

which is not diagonalizable. (Alexander Grigo)

20Predrag: problem with pmatrix{ macro, need to fix
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Chapter 13. Fixed points, and how to get them

Solution 13.1 - Cycles of the Ulam map. Minimizing (see chapter 33)

F(x1, . . . , xn) =
1
n

n∑
i=1

[ f (xi) − xi+1]2

using steepest decent

∇F =

N∑
i=1

[ f (xi) − xi+1] [ f ′(xi) ei − ei+1]

=

N∑
i=1

[ f (xi) − xi+1] f ′(xi) ei −
N∑

i=1

[ f (xi−1) − xi] ei

=

N∑
i=1

[
f (xi) f ′(xi) − f (xi−1) + xi − xi+1 f ′(xi)

]
ei

x(n+1) = x(n) − Δτn
F(x(n))∇F(x(n))RRRR∇F(x(n))

RRRR2
with Δτn ∈ (0, 1] ,

we can find periodic points of f of period N. The values of the Λn are chosen to be
the least power of 1/2 (including the power zero) such that the new point x(n+1) has all
coordinates in the unit interval and has the same topological order with respect to the
partition {(0, 1/2), (1/2, 1)} as x(n).

p x1 Λ
0 0.0 2
1 1.0 -2

p x1 x2 Λ
01 0.3454915028 0.9045084972 -4

p x1 x2 x3 Λ
001 0.1169777784 0.4131759111 0.9698463104 -8
011 0.1882550991 0.611260467 0.9504844339 8

p x1 x2 x3 x4 Λ
0001 0.03376388529 0.1304955414 0.4538658202 0.9914865498 -16
0011 0.04322727119 0.1654346968 0.5522642317 0.9890738004 16
0111 0.2771308221 0.8013173182 0.6368314951 0.9251085679 -16

(Alexander Grigo)

Solution 13.2 - Cycles stabilities for the Ulam map, exact. Since eigenvalues of
the monodromy matrix corresponding to any periodic orbit are invariant under (rea-
sonably smooth) change of coordinates we can us the following two observations to
prove the claim. Let U(x) denote the Ulam map, and let T (x) denote the tent map.

Firstly, note that the change of variables

x′ = h(x) =
1
2

[1 + sin(π (2 x − 1))] =
1 − cos(π x)

2

satisfies

h(1 − |x|) = 1 − cos(π (1 − |x|))
2

=
1 + cos(π |x|)

2
= 1 − h(|x|) = 1 − h(x)

soluCycles - 6oct2008 boyscout version14.4, Mar 19 2013
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inverse!iteration,
Hamiltonian
repeller

iteration!inverse!Hamiltonian
repeller

periodic!orbit!Hamiltonian
repeller

Hamiltonian!repeller,
periodic orbits

and therefore

U ◦ h(x) = 4 h(x) [1 − h(x)] = [1 + cos(π x)] [1 − cos(π x)] = sin(π x) 2

h ◦ T (x) ≡ h(1 − 2 |x − 1/2|) = 1 − h(2 x − 1) = 1 − 1 − cos(π (2 x − 1))
2

=
1 − cos(2 π x)

2
= sin(π x)2 ,

which shows that h conjugates T and U.

Secondly, the tent map T (x) = 1−2 |x−1/2| has derivative ±2 everywhere (except,
of course, at x = 1/2). The derivative is 2 on the left of 1/2, i.e. on the symbol 0, and
it is −2 on its right, i.e. on the symbol 1. Therefore the periodic orbit with symbolic
representation s1 s2 . . . sN has the eigenvalue Λ = (−1)

∑N
i=1 si 2N ≡ (−1)#1 2N , as was

observed numerically. (Alexander Grigo)

Solution 13.4 - Stability of billiard cycles. The 2-cycle 0 stability (13.8) is the
solution to both problems (provided you evaluate correctly the hyperbola curvature on
the diagonal).

Solution 13.4 - Stability of billiard cycles. In both cases there is one periodic
orbit, the 2-cycle along the shortest line segment connecting the two scatterers. The
stability is given by the monodromy matrix

J =
[
−

( 1 0
2 1

) ( 1 L
0 1

) ]2
=

[
−

( 1 L
2 1 + 2 L

) ]2

with eigenvalues Λu = [−(1 + L +
√

2 L + L2)]2 and Λs = 1/Λu .

For the billiard with the straight line and the hyperbola, the monodromy matrix
reads

L =
√

2 and κhyperbola =
y′′(−1)√

1 + y′(−1)23
=

√
2

2

hence J =

(
1 0

2 κ 1

) (
1 2 L
0 1

)
=

(
1 0√
2 1

) (
1 2

√
2

0 1

)
=

(
1 2

√
2√

2 5

)

with eigenvalues Λu = 3 + 2
√

2 and Λs = 1/Λu .

(Alexander Grigo)

Solution 13.5 - Numerical cycle routines. A number of sample Fortran programs
for finding periodic orbits is available on ChaosBook.org/extras.

Solution 13.14 - Inverse iteration method for a Hamiltonian repeller. For
the complete repeller case (all binary sequences are realized), the cycles can be
evaluated variationally, as follows. According to (3.17), the coordinates of a periodic
orbit of length np satisfy the equation

xp,i+1 + xp,i−1 = 1 − ax2
p,i , i = 1, ..., np , (S.58)

soluCycles - 6oct2008 boyscout version14.4, Mar 19 2013
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with the periodic boundary condition xp,0 = xp,np .

In the complete repeller case, the Hénon map is a realization of the Smale horse-
shoe, and the symbolic dynamics has a very simple description in terms of the binary
alphabet ε ∈ {0, 1}, εp,i = (1+S p,i)/2, where S p,i are the signs of the corresponding pe-
riodic point coordinates, S p,i = xp,i/|xp,i|. We start with a preassigned sign sequence
S p,1, S p,2, . . . , S p,np , and a good initial guess for the coordinates x′p,i. Using the inverse
of the equation (13.36)

x′′p,i = S p,i

√
1 − x′p,i+1 − x′p,i−1

a
i = 1, ..., np

we converge iteratively, at exponential rate, to the desired periodic points x p,i. Given
the periodic points, the cycle stabilities and periods are easily computed using (4.42).
The itineraries and the stabilities of the short periodic orbits for the Hénon repeller
(S.58) for a = 6 are listed in table U.2; in actual calculations all prime cycles up to
topological length n = 20 have been computed. (G. Vattay)

Solution 13.16 - Ulam map periodic points. 21

• (a) {x00111, x01110, x11100, x11001, x10011} = {0.079373, 0.292292, 0.827430, 0.571157, 0.979746}

• (b) {x00001, x00010, x00100, x01000, x10000} = {0.009036, 0.035816, 0.138132, 0.476209, 0.997736}

• (c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
n

x n+
1

10000

10011

D. Borrero
⇓PRIVATE

21Predrag: combine with the solution to exercise 13.1.
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center of mass
periodic!orbit

condition
cycle!prime
prime cycle
prime cycle!count
Moebius inversion

Solution 13.19 - “Center of mass” puzzle∗∗. (most of the text extracted from the
ChaosBook.org boyscout, boyscout version14.4, Mar 19 2013 tex files)

These extracts from ChaosBook.org are meant to complement and perhaps add
to the Endler and Gallas [EG] explanation [2] of the “center of mass” puzzle for the
cycles listed in table U.2, first observed numerically by G. Vattay in ref. [1]. The main
new material here is the observation that the time reversal invariance induces the
factorizations of S n(σ) polynomials observed by EG. The symbolic dynamics notation
for prime cycles and periodic points makes the time reversal symmetry explicit, and is
therefore emphasized throughout.

Prime cycles and periodic points
A periodic point is a solution (x, n), x ∈ Rd, n ∈ Z of the periodic orbit condition

x = f n (x) (S.59)

for a given mapping f . Each periodic point x = xp,i ∈ p belongs to a prime cycle p of
period np, and its np distinct images f k(xp,i) = xp,i+k , i+k mod np are the successive
periodic points along the cycle.

A prime cycle p of period np is a single traversal of the orbit. A prime cycle has
a non-repeating symbol string: for example, p = 011 = 101 = 110 = . . . 011011 . . . is
prime, but 0101 = 010101 . . . = 01 is not.

22

Let Mn be the number of prime cycles of period n for a dynamical system whose
symbolic dynamics is built from 2 symbols. There are 2n possible distinct strings
(periodic point labels) of length n composed of 2 letters. These 2n periodic points
include all Md prime d-cycles whose period d equals or divides n.

A prime d-cycle contributes d periodic points to the sum of all possible periodic
points, one for each cyclic permutation. The total number of possible periodic symbol
sequences of length n is therefore related to the number of prime cycles by

2n =
∑
d|n

dMd .

The number of prime cycles can be computed recursively

Mn =
1
n

⎛⎜⎜⎜⎜⎜⎜⎝2n −
d<n∑
d|n

dMd

⎞⎟⎟⎟⎟⎟⎟⎠ ,
or by the Möbius inversion formula

Mn =
1
n

∑
d|n

μ
(n
d

)
2d . (S.60)

22Predrag: extracted from count.tex, chapter 15
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Moebius inversionnp Mn p symmetry S s, S b

1 2 0 x0 S b = σ
2 + 2σ − a

1 x1
2 1 01 S s = σ − 2
3 2 001 x010 S b = σ

2 − 2σ + 2 − a
011 x101

4 3 0001 S s = σ
2 − 4 a

0111
0011 x1001, x0110 S b = σ

5 6 00001 x00100 S b = σ
6 − 2σ5 − 78σ4 + 240σ3

00011 x10001 +840σ2 − 2496σ+ 1448
00101 x01010 (for a = 6)
00111 x01110
01011 x10101
01111 x11011

Table S.1: Prime cycles for the binary symbolic dynamics up to length 5. They are all
self-dual under time reversal, either with no point on the x = y symmetry line, or points
on it. “Symmetry” column contains - for self-dual cycles who have them - the periodic
points on the x = y diagonal. The number of prime cycles M n is computed from (S.60),
and S s, S b, polynomial factors (S.84), are taken from ref. [2].

where the Möbius function μ(1) = 1, μ(n) = 0 if n has a squared factor, and μ(p1 p2 . . . pk) =
(−1)k if all prime factors are different.

We list the number of prime cycles up to length 10 for the 2-letter complete sym-
bolic dynamics in tables S.1 and S.2 (see table 15.3).

23

24

25

Consider the n-periodic point condition 0 = f n(x) − x. This polynomial of order 2n

has zeros at all shorter, period d prime cycles if d is a divisor of n. Dividing those out,
we arrive at the polynomial [8]

Qn(x) =
∏
d|n

(
f d(x) − x

)μ(n/d)
, (S.61)

with nMn zeros corresponding to the n periodic points for each prime cycle p of period
np = n, Qn(x) =

∏
p Pp(x) , where the nth order polynomial

Pp(x) =
∏
i∈p

(x − xp,i) = 0 , np = n (S.62)

has zeros at all periodic points in prime cycle p. Except for some values of a, at which
bifurcations occur, these are simple zeros.

23Predrag: table S.1 derived from knead.tex, chapter 11
24Predrag: table S.2 derived from knead.tex, chapter 11
25Predrag: extracted from smale.tex, chapter 12
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np Mn p symmetry
6 9 000001

000101
000111
010111
011111
001111 x011110, x110011
000011 x001100, x100001
001011 001101

7 18 0000001 x0001000
0000011 x1000001
0000101 x0010100
0001001 x0100010
0000111 x0011100
0010011 x1001001
0010101 x0101010
0001111 x1100011
0011011 x0110110
0101011 x1010101
0011111 x0111110
0101111 x1101011
0110111 x1011101
0111111 x1110111
0001011 0001101
0010111 0011101

np Mn p symmetry
8 30 00000001

00000101
00000111
00010101
00100101
00011011
00100111
00011111
01010111
01011011
01011111
01111111
00000011 x00011000, x10000001
00001001 x00100100, x01000010
00001111 x00111100, x11000011
00101101 x01011010, x10100101
00111111 x11100111, x01111110
01101111 x11011011, x10111101
00001011 00001101
00010011 00011001
00010111 00011101
00110101 00101011
00101111 00111101
00110111 00111011

9 56
10 99

Table S.2: Prime cycles for the binary symbolic dynamics lengths 6 to 10. Starting with
cycle length 6, a cycle is either self-dual under time reversal, or has a time-reversed part-
ner. A self-dual cycle either has no point on the x = y symmetry line, or has points on it.
“Symmetry” column contains the other prime cycle belonging to a time-reversal pair, or -
for self-dual cycles who have them - the periodic points on the x = y diagonal.
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The coefficients in the expansion of (S.66) are symmetric polynomials in xi, all
reducible to powers of

σp =
∑
i∈p

xp,i (S.63)

and a. For example, the xn−2 coefficient

2
∑
i< j

xix j = σ
2 −

∑
i

x2
i = σ

2 + 2σ − npa

can be expressed in terms of σ2, σ and a

Pp(x) = xnp − σp xnp−1 + (σ2 + 2σ − npa)xnp−2 + · · · ± (σnp · · ·) . (S.64)

We refer to σ as the “center of mass” of cycle p (up to an overal prefactor of 1/np).

By cyclic invariance of periodic points in p, σp is invariant under x → f (x), so it is
an intrinsic property of the prime cycle p, hence it can take at most Mn distinct values
corresponding to the Mn prime cycles p of period np = n.

EG succeeded - after considerable algebra - in computing explicitly the Mn-th
order polynomials

S n(σ) = 0 , (S.65)

26 for np ≤ n. The Mn root σ = σp substituted into the nth order polynomial

Pn(x, σp, a) =
∏
i∈p

(x − xi) = 0 , (S.66)

yields the n periodic points x = xp,i belonging to the prime cycle p as the roots of
Pn(x, σp, a) = 0. As the reduction of symmetric polynomial coefficients does not rely
on the shape of a given prime cycle p, Pn has the same form for all np = n.

Smale horseshoe
Smale horseshoes and symbolic dynamics labeling of the dynamics - it’s really great,
once you get it, because the label tells you everything about the periodic point and
the cycle it belongs too. From table S.1 you can read off the shape and symmetry of
individual cycles, and the factorization of S - at least the highest power of σ in each
of the monic polynomials it factors into.

The Hénon map is kind of a fattened parabola. It takes a rectangular initial area
and returns it bent as a horseshoe, such that the initial area is intersected twice, see
Figure S.16. 27 28

26Predrag: fill in the explanation
27Predrag: Figure S.16 from exercise 12.4
28Predrag: in figure S.16 DRAW THE RIGHT ONE, with 1-fixed point at the top right corner.
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Henon@Hénon
map!stability

Henon@Hénon
map!fixed points

stable!manifold
unstable!manifold

Figure S.16: A complete Smale horseshoe it-
erated forwards and backwards, orientation pre-
serving case: function f maps the dashed border
square M into the vertical horseshoe, while the in-
verse map f −1 maps it into the horizontal horse-
shoe. a) One iteration, b) two iterations, c) three
iterations. The non–wandering set is contained
within the intersection of the forward and back-
ward iterates (crosshatched). (from
K.T. Hansen [23])

The map (??) is quadratic, 29 with two fixed points:

x0 = −1 −
√

1 + a , x1 = −1 +
√

1 + a , (S.67)

indicated in figure S.17 (a). 30 The 01 periodic points are

x10 = 1 +
√

a − 3 , x01 = 1 −
√

a − 3 . (S.68)

The Jacobian matrix for the nth iterate of the Hamiltonian Hénon map is

Mn(x0) =
1∏

m=n

(
−2xm −1

1 0

)
, xm = f m

1 (x0, y0) . (S.69)

31 The determinant of the Hénon one time-step Jacobian matrix (S.69) is constant,

det M = Λ1Λ2 = 1 (S.70)

so only one eigenvalue Λ1 = 1/Λ2 needs to be determined. Both fixed points are
hyperbolic for a > 3, with expanding eigenvalues

Λ0 = 1 + (1 + a)1/2 + (1 + a)1/4((1 + a)1/2 + 2)1/2

Λ1 = 1 − (1 + a)1/2 − (1 + a)1/4((1 + a)1/2 − 2)1/2 , (S.71)

32 As Λ0 > 0, x0 fixed point sits at the edge of the non–wandering set. For a = 6
this is a strongly unstable fixed point, with Λ0 = 7.15 . . .. If we track to the right W s

0 ,
the stable manifold of the x0 fixed point, and upwards Wu

1 , the unstable manifold of x0

fixed point, their intersection encloses the crosshatched regionM. . Any point outside
Wu

0 border of M. escapes to infinity forward in time, while any point outside W s
0 border

escapes to infinity backwards in time. In this way the unstable–stable manifolds define
topologically invariant and optimal M . initial region; all orbits that stay confined for all
times are confined to M. . An orbit with a subsequence of m consecutive 0 moves

29Predrag: from exercise 3.5
30Predrag: from example 4.11
31Predrag: main text - explain the order of multiplication
32Predrag: see sect. 12.1
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Figure S.17: The Hénon map for a = 6, b = −1.
(a) The fixed points 0, 1, and the segments of
the Ws

1 stable manifold, Wu
1 unstable manifold that

enclose the initial (crosshatched) region M.. (b)
The forward horseshoe f (M.). (c) The backward
horseshoe f−1(M.). Iteration yields a complete
Smale horseshoe, with every forward fold inter-
secting every backward fold.

(a)

s

0

u

1W

W

1

0

(b) (c)

approximately along a hyperbola which has to get as close as 1/Λm
0 to x0 in order to

stay for m iterations on the left side.

The other fixed point x1 unstable eigenvalue is not as large, Λ1 = −2.95 . . ., It is
negative, implying that the neighborhod of x1 turns by 180o in each iteration.

33 Taken together, these two observations almost produce the symbolic dynamics
rules for determining diagonal crossings, but not quite. Between

01 · · · → 10 · · · and 10 · · · → 01 · · ·

there is always a diagonal crossing. Two fixed points 0 and 1 are special. Beyond
that, every string of 0m crosses once, and most 1 · · · → · · · imply a diagonal crossing,
but precise rule is missing still.

A plot in the symbol plane (where unstability is roughly factor 2 by construction)
would not have the points closest to x0, x1 look so much like they lie on the symmetry
diagonal.

Using instead the conjugacy by reversor seems hard, as in that case one needs
to flip the global label of symbolic sequence between to crossing diagonal one way,
and then returning again. Maybe it is not such a big deal, as long strings that stay on
on side have to do with long 0m blocks of symbols. 34

Iterated one step forward, the region M. is stretched and folded into a Smale
horseshoe drawn in figure S.17 (b). The horseshoe “fattened parabola” shape is the
consequence of the quadratic form x2 in (??). Label the two forward intersections
f (M.)∩M. by Ms., with s ∈ {0, 1}, figure S.17 (b). The horseshoe consists of the two
strips M0.,M1. , and the bent segment that lies entirely outside the W u

1 line. As all
points in this segment escape to infinity under forward iteration, this region can safely
be cut out and thrown away.

Iterated one step backwards, the region M. is again stretched and folded into
a horseshoe, figure S.17 (c). As stability and instability are interchanged under time
reversal, this horseshoe is transverse to the forward one. Again the points in the
horseshoe bend wander off to infinity as n → −∞, and we are left with the two
(backward) strips M.0,M.1 . Iterating two steps forward we obtain the four strips
M11.,M01.,M00.,M10., and iterating backwards we obtain the four stripsM.00,M.01,M.11,M.10

transverse to the forward ones. Iterating three steps forward we get an 8 strips, and
so on ad infinitum.

33Predrag: move to symbolic dynamics section
34Predrag: create figure S.17 for b = −1. DRAW THE RIGHT ONE, with 1-fixed point at the

top right corner.
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non-wandering set
set, non-wandering
symbolic

dynamics!complete
horseshoe!complete
symbolic

dynamics!unimodal
structural stability
stability!structural

Symbolic dynamics
The two strips M.0,M.1 partition the state space into two regions labeled by the two-
letter alphabet A = {0, 1}. S + = .011 is the future itinerary for all x ∈ M.011. Likewise,
for the forward strips all x ∈ Ms−m···s−1 s0. have the past itinerary S - = s−m · · · s−1s0 .
Ω, the non–wandering set (2.3) of M., is the union of all points whose forward and
backward trajectories remain trapped for all time, is given by the intersections of all
images and preimages of M:

Ω =

{
x : x ∈ lim

m,n→∞
f m(M)

⋂
f −n(M)

}
. (S.72)

For a complete Smale horseshoe every forward fold f n(M) intersects transver-
sally every backward fold f −m(M), so a unique bi-infinite binary sequence can be
associated to every element of the non–wandering set. A point x ∈ Ω is labeled by
the intersection of its past and future itineraries S (x) = · · · s−2s−1 s0.s1s2 · · ·, where

sn = s if f n(x) ∈ M.s , s ∈ {0, 1} and n ∈ Z.

As a increases, the dynamics become increasingly chaotic, and beyond a critical
value, a = aH , the set of bounded orbits forms a Smale horseshoe (this set has
measure zero—almost all orbits escape to infinity). It was proved by Devaney and
Nitecki that there is indeed a hyperbolic horseshoe when a > 5 + 2

√
5 > aH [14, 8].

Our numerical studies indicate that [8, ?]

aH ≈ 5.699310786700 . (S.73)

35 Example: The trajectory x1, x2, x3, . . . of the initial point x0 is given by the iter-
ation xn+1 = f (xn) . Iterating f and checking the sign of xk associates a temporally
ordered topological itinerary s−m · · · s−1 s0 with a given trajectory,

sk =

{
1 if xk > 0
0 if xk < 0 . (S.74)

The system is said to be structurally stable if all intersections of forward and back-
ward iterates of M remain transverse for sufficiently small perturbations f → f + δ of
the flow.

For the Hamiltonian Hénon map the numerical work indicates that for

a > 5.699310786700 . (S.75)

the map has a complete Smale horseshoe. For example, for sufficiently small varia-
tions of a the Hénon map studied here numerically for a = 6 is structurally stable.

Example: How do we know that the cycles in figure S.19 are 0001011, 0001101? Easy,
for the a = 6 case the symbolic dynamics is obtained by (S.74), by simply noting the
sign of xn. If you actually plot first few iterates of the forward and backward horseshoe
in figure S.17, you will see that your periodic points sit in the strips labeled as above.

35Predrag: extracted from knead.tex, chapter 11
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Time reversal symmetry
36 Under the time reversal

· · · s−2 s−1 s0.s1 s2s3 · · · → · · · s3s2 s1.s0s−1 s−2 · · ·

the points in the symbol square for an orientation preserving map are symmetric
across the diagonal γ = δ. Consequently the periodic orbits appear either in dual pairs
p = s1 s2 s3 . . . sn, p = snsn−1 sn−2 . . . s1, or are self-dual under time reversal, S p = S p.
37 For the orientation preserving case a self-dual cycle of odd period has at least one
point (or odd number of points) on the symmetry diagonal. In particular, all fixed points
lie on the symmetry diagonal. A self-dual cycle of even period has no, or even number
of points on the symmetry diagonal.

38 Consider f , a map on the interval with reflection symmetry f (−x) = − f (x).
A simple example is the piecewise-linear sawtooth map of figure 9.4. Denote the
reflection operation by Cx = −x. The symmetry of the map implies that if {xn} is a
trajectory, than also {Cxn} is a trajectory because Cxn+1 = C f (xn) = f (Cxn) . The
dynamics can be restricted to a fundamental domain, in this case to one half of the
original state space; every time a trajectory leaves this domain, it can be mapped back
using C. 39 C satisfies C2 = e and can be used to decompose the state space into
mutually orthogonal symmetric and antisymmetric subspaces by means of projection
operators (21.1).

One distinguishes three kinds of cycles: asymmetric cycles a, symmetric cycles s
built by repeats of irreducible segments s̃, and boundary cycles b.

Asymmetric cycles: A periodic orbits is not symmetric if {xa} ∩ {Rxa} = ∅, where {xa}
is the set of periodic points belonging to the cycle a. Thus R generates a second orbit
with the same number of points and the same stability properties.

For this class of cycles for any n,

Pa(x, σ, a) =
p∏

(x − xa,i) (S.76)

has n distinct roots {xa,i}. The associated equation for is A(σ)2 = 0.

Example: Follow the successive periodic points in the prime cycle 0001011, fig-
ure S.19 (a); then flip across the diagonal, reverse the direction along the cycle, and
you are now on the prime cycle 0001101, the time reversed partner of 0001011.

Symmetric cycles, no boundary point: A cycle s is reflection symmetric if operating
with R on the set of periodic points reproduces the set. The period of a symmetric
cycle is always even (ns = 2m) and the mirror image of the xs periodic point is reached
by traversing the irreducible segment s̃ of length m, f m(xs) = Rxs.

PC(x, σ, a) = (x − x1)(x − x2)2 · · · (x − xm)2(x − xm+1) (S.77)

36Predrag: from appendix K - Discrete symmetries, appendix K.10
37Predrag: insert this into the book
38Predrag: from symm.tex, chapter 21 - Discrete symmetries, sect. 21.1.1
39Predrag: try to define L whose eigenvalues are σp, or xp,1
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has m + 1 distinct roots.

σp = x1 + 2x2 + · + 2xm + xm+1 (S.78)

Example: Symmetric (or self-dual orbit):
Draw 4-cycles 0001 and 0111. They map into themselves under flip and time reversal.
That means that if you know 2 periodic points, the other 2 are given by symmetry.

Even symmetric cycles, 2 boundary points:

Ps(x, σ, a) =
p∏

(x − xs,i)2 (S.79)

has ns̃ distinct roots.

σp = 2
ns̃∑
i

xp,i (S.80)

3 or more boundary points are not possible for prime cycles.

Cycle 0011 is an example of even-period boundary prime cycle . Two periodic
points x1001, x0110 are on the symmetry diagonal, and reflection symmetry of the re-
maining x0011, x1100 pair forces a square-shaped trajectory in the [x, y] plane, see
figure S.18: 40

[(
x1001 x1001

)
,
(
−x1001 x1001

)
,
(
−x1001 −x1001

)
,
(

x1001 −x1001

)]
Hence σ0011 = 0, and

P0011 = (x2 − x2
0011)2 . (S.81)

with x0011 =
√

a. Note that this 4-cycle is more robust than the 2-cycle given in (S.68)
- it exists for a > 0, and is not the period-doubling relative of the 2-cycle.

Odd symmetric cycles n = 2m + 1, 1 boundary point:

PB(x, σ, a) = (x − x1)2 · · · (x − xm)2(x − xm+1) (S.82)

has m + 1 distinct roots.

σp = 2x1 + 2x2 + · + 2xm + xm+1 (S.83)

Example: Boundary cycles:
Draw 3-cycles 001 and 011. They have a point on the diagonal, indicated in the table
S.1.

40Predrag: make into an exercise
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Figure S.18: The Hénon map for a = 6, b = −1.
(a) The boundary 3-cycles 001, 011. Any odd pe-
riod cycle has odd number of points on the bound-
ary. (b) The boundary 4-cycle 0011. (c) A sym-
metric 6-cycle 000111.
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The time reversal symmetry of the state space (this is true for all Hamiltonian time-
reversible flows whose Poincare section is symmetric under [q, p] → [p, q] diagonal
flip, not just polynomial mappings) implies - but we need to cleanly explain it for this
case (ChaosBook.org proves it for discrete space symmetry groups) that S n(σ) always
factorizes into form

S = A2BC. (S.84)

EG indeed observe that the polynomials S = S n(σ) factorize into product of poly-
nomials over the above three kinds of cycles.

To verify, compare S 1, S 2, · · · , S 8 of ref. [2] with the listing of 3 kinds of cycles in
table S.1; the number of cycles of each type determines the order of the corresponding
S n polynomial. The order of A is the number of time-reversed pairs in table S.1. The
order of B is the number of symmetric cycles in table S.1, and the order of C is the
number of boundary cycles in table S.1.

For each n, the Pn(x, σ, a) polynomial should be written explicitly for each of the 3
symmetry classes [a, s, b]. In particular, for Ps(x, σ, a) the factorization over 1/2 of the
state space

Ps(x, σ, a) =

⎛⎜⎜⎜⎜⎜⎝ s̃∏
(x − xs̃,i)

⎞⎟⎟⎟⎟⎟⎠2

(S.85)

is expected, as exemplified by the 6-cycle figure S.18 (c).

Remark S.1 “Center of mass” puzzle. The “center of mass” notions play important
role in a number of physical problems, such as: (1) the periodic-orbit formulation of
the deterministic drift and diffusion (chapter 26), (2) the kinematic dynamo problem [1,
35] (appendix J), and (3) Sullivan’s formulation [36, 37, 38, 39] of the Feigenbaum δ
eigenvalue problem in the period-doubling renormalization theory.

The “center of mass” puzzle for the cycles listed in table U.2 was first observed
numerically by G. Vattay in ref. [1], and was resolved by Endler and Gallas [2].

EG method of solution resembles the methods earlier employed for quadratic
polynomials (and thier Julia sets) by Brown [29] and Stephenson [31]. Brown gives
cycles up to length 6 for the logistic map, employing symmetric functions of periodic
points. Hitzl and Zele [33] study the of the Hénon map for cycle lengths up to period
6.

All explicit values of periodic points for the Hamiltonian Hénon mapping displayed
here are taken from ref. [2]. Method of ref. [2] applies to cycles of polynomial maps
only, in this case the quadratic map.
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center of mass

Figure S.19: The Hénon map for a = 6, b = −1,
asymmetric cycles: (a) The 7-cycle 0001011, and
(b) its partner 0001101 under flip across the diag-
onal and time-reversal. Note that under time re-
versal periodic points symbol sequences map into
their symmetry partners point by point.
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Remark S.2 Complete Smale horseshoe, Hamiltonian Hénon. Devaney and
Nitecki [14] proved that the Hamiltonian Hénon map has a complete Smale horse-
shoe for a > 5 + 2

√
5. The numerical studies of refs. [?, 19] indicates this holds for

a > 5.699310786700 .

Remark S.3 Symbolic dynamics. Perhaps you should read K.T. Hansen’s PhD
thesis ChaosBook.org/projects/KTHansen/thesis. It explains all this in more
detail and better than ChaosBook.org.
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[S.1] N.J. Balmforth, P. Cvitanović, G.R. Ierley, E.A. Spiegel and G. Vattay, “Advection
of vector fields by chaotic flows,” Stochastic Processes in Astrophysics, Annals
of New York Academy of Sciences 706, 148 (1993); preprint.

[S.2] A. Endler and J.A.C. Gallas, “Reductions and simplifications of orbital sums in a
Hamiltonian repeller,” Phys. Lett. A 352, 124-128 (2006).

[S.3] A. Endler and J.A.C. Gallas, “Conjugacy classes and chiral doublets in the
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phisms of the plane,” Publ. Mathématiques de l’IHÉS 71, 105 (1990).

[S.16] J.K. Moser, “On quadratic symplectic mappings,” Math. Zeitschrift 216, 417
(1994).

[S.17] H.P. Fang. “Dynamics for a two-dimensional antisymmetric map,” J. Phys. A 27,
5187 (1994).

[S.18] Y. Aizawa. “Symbolic dynamics approach to the two-D chaos in area-
preserving maps,” Prog. Theor. Phys. 71, 1419 (1984).

[S.19] D.G. Sterling, H.R. Dullin and J.D. Meiss, “Homoclinic Bifurcations for the
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[S.22] A. Gómez and J.D. Meiss, “Reversible Polynomial Automorphisms
of the Plane: the Involutory Case,” Phys. Lett. A 312, 49 (2003);
arXiv:nlin.CD/0209055.

[S.23] A. Gómez and J.D. Meiss, “ Reversors and symmetries for polynomial auto-
morphisms of the complex plane,” Nonlinearity 17, 975 (2004).

[S.24] M. Baake and J.A.G. Roberts “Symmetries and reversing symmetries of poly-
nomial automorphisms of the plane,” arXiv:math.DS/0501151.
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Chapter 14. Walkabout: Transition graphs

Solution 14.1 - Time reversibility.∗∗ The answer is “no.’ Work out a few simple
Hamiltonian maps as counterexamples.

Solution 14.2 - Alphabet {0,1}, prune 1000 , 00100 , 01100 . This is worked out
in the exercise itself.
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Chapter 15. Counting

Solution 15.1 - A transition matrix for 3-disk pinball. a) As the disk is convex, the
transition to itself is forbidden. Therefore, the transition graph is

3 1

2

,

with the corresponding transition matrix

T =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 1 1
1 0 1
1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
Note that T2 = T + 2. Suppose that Tn = anT + bn, then

T
n+1 = anT

2 + bnT = (an + bn)T + 2an .

So an+1 = an + bn , bn+1 = 2an with a1 = 1 , b1 = 0.

b) From a) we have an+1 = an + 2an−1. Suppose that an ∝ λn. Then λ2 = λ+ 2. Solving
this equation and using the initial condition for n = 1, we obtain the general formula

an =
1
3

(2n − (−1)n) ,

bn =
2
3

(2n−1 + (−1)n) .

c) T has eigenvalues {2,−1,−1}. So the topological entropy is ln 2, the same as in the
case of the binary symbolic dynamics. (Y. Lan)

Solution 15.3 - Sum of Ai j is like a trace. Suppose that Aφk = λkφk, where λk , φk are
eigenvalues and eigenvectors, respectively. Expressing the vector v = (1, 1, · · · , 1)t in
terms of the eigenvectors φk, i.e., v = Σkdkφk, we have

Γn = Σi j[An]i j = vtAnv = ΣkvtAndkφk = Σkdkλ
n
k(vtφk)

= Σkckλ
n
k ,

where ck = (vtφk)dk are constants.

a) As tr An = Σkλ
n
k , it is easy to see that both tr An and Γn are dominated by the largest

eigenvalue λ0. That is

ln |tr An|
ln |Γn|

=
n ln |λ0| + ln |Σk( λk

λ0
)n|

n ln |λ0| + ln |Σkdk( λk
λ0

)n|
→ 1 as n → ∞ .
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golden mean!pruning
pruning!golden mean

b) The nonleading eigenvalues do not need to be distinct, as the ratio in a) is controlled
by the largest eigenvalues only. (Y. Lan)

Solution 15.5 - Transition matrix and cycle counting. a) According to the definition
of Ti j, the transition matrix is

T =

(
a c
b 0

)
.

b) All walks of length three 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010 (four sym-
bols!) with weights aaa, aac, acb, cba, cbc, baa, bac, bcb . Let’s calculate T 3,

T
3 =

(
a3 + 2abc a2c + bc2

a2b + b2c abc

)
.

There are altogether 8 terms, corresponding exactly to the terms in all the walks.

c) Let’s look at the following equality

T
n
i j = Σk1,k2,···,kn−1Tik1Tk1k2 · · ·Tkn−1 j .

Every term in the sum is a possible path from i to j, though the weight could be zero.
The summation is over all possible intermediate points (n − 1 of them). So, Tn

i j gives
the total weight (probability or number) of all the walks from i to j in n steps.

d) We take a = b = c = 1 to just count the number of possible walks in n steps. This
is the crudest description of the dynamics. Taking a, b, c as transition probabilities
would give a more detailed description. The eigenvlues of T is (1 ±

√
5)/2, so we get

N(n) ∝ ( 1+
√

5
2 )n.

e) The topological entropy is then ln 1+
√

5
2 . (Y. Lan)

Solution 15.7 - “Golden mean” pruned map. It is easy to write the transition
matrix T

T =

(
0 1
1 1

)
.

The eigenvalues are (1 ±
√

5)/2. The number of periodic orbits of length n is the trace

T
n =

(1 +
√

5)n + (1 −
√

5)n

2n
.

(Y. Lan)

Solution 15.2 - 3-disk prime cycle counting. The formula for arbitrary length cycles
is derived in sect. 15.4.

soluCount - 8oct2003 boyscout version14.4, Mar 19 2013



References 1373

Solution 15.10 - Whence Möbius function? Written out f (n) line-by-line for a few
values of n, (15.45) yields

f (1) = g(1)

f (2) = g(2) + g(1)

f (3) = g(3) + g(1)

f (4) = g(4) + g(2) + g(1)

· · ·
f (6) = g(6) + g(3) + g(2) + g(1)

· · · (S.86)

Now invert recursively this infinite tower of equations to obtain

g(1) = f (1)

g(2) = f (2) − f (1)

g(3) = f (3) − f (1)

g(4) = f (4) − [ f (2) − f (1)] − f (1) = f (4) − f (2)

· · ·
g(6) = f (6) − [ f (3) − f (1)] − [ f (2) − f (1)] − f (1)

· · ·

We see that f (n) contributes with factor −1 if n prime, and not at all if n contains
a prime factor to a higher power. This is precisely the raison d’etre for the Möbius
function, with whose help the inverse of (15.45) can be written as the Möbius inversion
formula [32] (15.46).

Solution 15.17 - Alphabet {a, b, c}, prune ab . This pruning rule implies that
any string of “b”s must be preceded by a “c;” so one possible alphabet is {a, cbk; b},
k=0,1,2. . .. As the rule does not prune the fixed point b, it is explicitly included in the
list. The cycle expansion (15.15) becomes

1/ζ = (1 − ta)(1 − tb)(1 − tc) ×
(1 − tcb)(1 − tac)(1 − tcbb) . . .

= 1 − ta − tb − tc + tatb − (tcb − tctb)

−(tac − tatc) − (tcbb − tcbtb) . . .

The effect of pruning ab is to unbalance the 2-cycle curvature tab−tatb; the remainder
of the cycle expansion retains the curvature form.

Solution 15.19 - Alphabet {0,1}, prune 1000 , 00100 , 01100 .

step 1. 1000 prunes all cycles with a 000 subsequence with the exception of
the fixed point 0; hence we factor out (1 − t0) explicitly, and prune 000 from the rest.
Physically this means that x0 is an isolated fixed point - no cycle stays in its vicinity for
more than 2 iterations. In the notation of exercise 15.18, the alphabet is {1, 2, 3; 0},
and the remaining pruning rules have to be rewritten in terms of symbols 2=10, 3=100:
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step 2. alphabet {1, 2, 3; 0}, prune 33 , 213 , 313 . Physically, the 3-cycle
3 = 100 is pruned and no long cycles stay close enough to it for a single 100 repeat.
As in exercise 15.6, prohibition of 33 is implemented by dropping the symbol “3” and
extending the alphabet by the allowed blocks 13, 23:

step 3. alphabet {1, 2, 13, 23; 0}, prune 213 , 23 13 , 13 13 , where 13 = 13,
23 = 23 are now used as single letters. Pruning of the repetitions 13 13 (the 4-cycle
13 = 1100 is pruned) yields the

Result: alphabet {1, 2, 23, 113; 0}, unrestricted 4-ary dynamics. The other re-
maining possible blocks 213 , 2313 are forbidden by the rules of step 3. The topo-
logical zeta function is given by

1/ζ = (1 − t0)(1 − t1 − t2 − t23 − t113) (S.87)

for unrestricted 4-letter alphabet {1, 2, 23, 113}.
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Dirac delta
delta function!Dirac

Chapter 16. Transporting densities

Solution 16.1 - Integrating over Dirac delta functions. (a) Whenever h(x) crosses
0 with a nonzero velocity (det ∂xh(x) � 0), the delta function contributes to the integral.
Let x0 ∈ h−1(0). Consider a small neighborhood V0 of x0 so that h : V0 → V0 is a
one-to-one map, with the inverse function x = x(h). By changing variable from x to h,
we have

∫
V0

dx δ(h(x)) =
∫

h(V0)
dh |det∂hx| δ(h) =

∫
h(V0)

dh
1

|det ∂xh|
δ(h)

=
1

|det ∂xh|h=0
.

Here, the absolute value | · | is taken because delta function is always positive and we
keep the orientation of the volume when the change of variables is made. Therefore
all the contributions from each point in h−1(0) add up to the integral

∫
Rd

dx δ(h(x)) = Σx∈h−1(0)
1

|det ∂xh|
.

Note that if det ∂xh = 0, then the delta function integral is not well defined.

(b) The formal expression can be written as the limit

F :=
∫
R

dx δ(x2) = lim
σ→0

∫
R

dx
e−

x4

2σ

√
2πσ

,

by invoking the approximation given in the exercise. The change of variable y =
x2/

√
σ gives

F = lim
σ→0

σ−3/4
∫
R+

dy
e−

y2

2√
2πy
= ∞ ,

where R+ represents the positive part of the real axis. So, the formal expression does
not make sense. The zero derivative of x2 at x = 0 invalidates the expression in (a).
(Y. Lan)

Solution 16.2 - Derivatives of Dirac delta functions. We do this problem by direct
evaluation. Denote by Ωy a small neighborhood of y.

(a)

∫
R

dx δ′(y) =
∑

x∈y−1(0)

∫
Ωy

dy
∣∣∣∣∣dx
dy

∣∣∣∣∣ δ′(y)

=
∑

x∈y−1(0)

δ(y)
|y′|

∣∣∣∣∣ε
−ε
−

∫
Ωy

dy
δ(y)

y′2
(−y′′)

1
y′

=
∑

x∈y−1(0)

y′′

|y′|y′2
.
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(b)

∫
R

dx δ(2)(y) =
∑

x∈y−1(0)

∫
Ωy

dy
δ(2)(y)

y′

=
∑

x∈y−1(0)

δ′(y)
|y′|

∣∣∣∣∣ε
−ε
−

∫
Ωy

dy
δ′(y)

y′2
(−y′′)

1
y′

=
∑

x∈y−1(0)

y′′δ(y)

|y′|y′2

∣∣∣∣∣∣ε−ε −
∫
Ωy

dy δ(y)
d
dx

(
y′′

y′3
)

1
y′

= −
∑

x∈y−1(0)

∫
Ωy

dy δ(y)

(
y′′′

y′3
− 3

y′′2

y′4

)
1
y′

=
∑

x∈y−1(0)

(
3

y′′2

y′4
− y′′′

y′3

)
1
|y′|

.

(c)

∫
R

dx b(x)δ(2)(y) =
∑

x∈y−1(0)

∫
Ωy

dy b(x)
δ(2)(y)

y′

=
∑

x∈y−1(0)

b(x)δ′(y)
|y′|

∣∣∣∣∣ε
−ε
−

∫
Ωy

dy δ′(y)
d
dx

(
b
y′

)
1
y′

=
∑

x∈y−1(0)

−δ(y)
d
dx

(
b
y′

)
1
y′

∣∣∣∣∣ε
−ε
+

∫
Ωy

dy δ(y)
d
dx

(
d
dx

(
b
y′

)
1
y′

)
1
y′

=
∑

x∈y−1(0)

1
|y′|

d
dx

(
b′

y′2
− by′′

y′3
))

=
∑

x∈y−1(0)

1
|y′|

[
b′′

y′2
− b′y′′

y′3
− 2

b′y′′

y′3
+ b(3

y′′2

y′4
− y′′′

y′3
)

]

=
∑

x∈y−1(0)

1
|y′|

[
b′′

y′2
− 3

b′y′′

y′3
+ b(3

y′′2

y′4
− y′′′

y′3
)

]
.

(Yueheng Lan)

Solution 16.3 - Lt generates a semigroup. Every “sufficiently good” transformation
f t in state space M is associated with a Perron-Frobenius operator Lt which is when
acting on a function ρ(x) in M

Lt · ρ(x) =
∫
M

dy δ(x − f t(y))ρ(y) .

In some proper function space F onM, the one parameter family of operators {Lt}t∈R+
generate a semigroup. Let’s check this statement. For any t1, t2 > 0 and ρ ∈ F , the
product “◦” of two operators is defined as usual

(Lt1 ◦ Lt2 ) · ρ(y) = Lt1 · (Lt2 · ρ)(y) .
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So, we have

(Lt1 ◦ Lt2 )(y, x) =

∫
M

dzLt1 (y, z)Lt2(z, x)

=

∫
M

dz δ(y − f t1 (z))δ(z − f t2 (x))

= δ(y − f t1 ( f t2 (x)))

= δ(y − f t1+t2 (x))

= Lt1+t2 (y, x) ,

where the semigroup property f t1 ( f t2 (x)) = f t1+t2 (x) of f t has been used. This proves
the claim in the title. (Y. Lan)

Solution 16.5 - Invariant measure. Hint: We do (a),(b),(c),(d) for the first map and
(e) for the second.

(a) The partition point is in the middle of [0, 1]. If the density on the two pieces
are two constants ρA

0 and ρB
0 , respectively, the Perron-Frobenius operator still leads to

the piecewise constant density

ρA
1 =

1
2

(ρA
0 + ρ

B
0 ) , ρB

1 =
1
2

(ρA
0 + ρ

B
0 ) .

In general, if a finite Markov partition exists and the map is linear on each partition
cell, a finite-dimensional invariant subspace which is a piecewise constant function
can always be identified in the function space.

(b) From the discussion of (a), any constant function on [0, 1] is an invariant mea-
sure. If we consider the invariant probability measure, then the constant has to be
1.

(c) As the map is invariant in [0, 1] (there is no escaping), the leading eigenvalue
of L is always 1 due to the “mass” conservation.

(d) Take a typical point on [0, 1] and record its trajectory under the first map for
some time (105 steps). Plot the histogram...ONLY 0 is left finally!! This happens be-
cause of the finite accuracy of the computer arithmetics. A small trick is to change the
slope 2 to 1.99999999. You will find a constant measure on [0, 1] which is the natural
measure. Still, the finite precision of the computer will make every point eventually
periodic and strictly speaking the measure is defined only on subsets of lattice points.
But as the resolution improves, the computer-generated measure steadily approaches
the natural measure. For the first map, any small deviation from the constant profile
will be stretched and smeared out. So, the natural measure has to be constant.

(e) Simple calculation shows that α is the partition point. We may use A , B to
mark the left and right part of the partition, respectively. A maps to B and B maps to
the whole interval [0, 1]. As the magnitude of the slope Λ = (

√
5+ 1)/2 is greater than

1, we may expect the natural measure is still piecewise constant with eigenvalue 1.
The determining equation is

(
0 1/Λ

1/Λ 1/Λ

) (
ρA

ρB

)
=

(
ρA

ρB

)
,
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escape rate
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Ulam map!skew

which gives ρB/ρA = Λ.

For the second map, the construction of Exercise 15.7 is worth a look. (Y. Lan)

Solution 16.4 - The escape rate is the leading zero of the zeta function

0 = 1/ζ(γ) = 1 − eγ/2a − eγ/2a = 1 − eγ/a.

So, γ = log(a) if a > ac = 1 and γ = 0 otherwise. For a ≈ ac the escape rate behaves
like

γ(a) ≈ (a − ac).

Solution 16.7 - Eigenvalues of the skew full tent map Perron-Frobenius oper-
ator. If we have density ρn(x), the action of the Perron-Frobenius operator associated
with f (x) gives a new density

ρn+1(x) =
1
Λ0

ρn(x/Λ0) +
1
Λ1

ρn(1 − x/Λ1) ,

where Λ1 =
Λ0

Λ0−1 . The eigenvalue equation is given by

ρn+1(x) = λρn(x) . (S.88)

We may solve it by assuming that the eigenfunctions are N-th order polynomials P(N)
(check it). Indeed, detailed calculation gives the following results:

• P(0) gives λ = 1, corresponding to the expected leading eigenvalue.

• P(1) gives λ = 1
Λ2

0
− 1
Λ2

1
= 2
Λ0
− 1,

• P(2) gives λ = 1
Λ3

0
+ 1
Λ3

1
,

• P(3) gives λ = 1
Λ4

0
− 1
Λ4

1
,

• The guess is that P(N) gives λ = 1
ΛN+1

0
+ (−1)N 1

ΛN+1
1

.

The final solution is that the piecewise linear function ρA = −Λ0 , ρ
B = Λ1 gives the

eigenvalue 0. If only the continuous functions are considered, this kind of eigenfunc-
tion of course should not be included. (Y.
Lan)

Solution 16.7 - Eigenvalues of the skew full tent map Perron-Frobenius operator.
The first few eigenvalues are

es0 = 1 , es1 =
2
Λ0

− 1

es2 =
1
4
+

3
4

(
2
Λ0

− 1

)2

, es3 =
1
2

(
2
Λ0

− 1

)
+

1
2

(
2
Λ0

− 1

)3

. . .

For eigenvectors (invariant densities for skew tent maps), see for example L. Billings
and E.M. Bollt [14] .
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Solution 16.10 - A as a generator of translations. If v is a constant in space,
Taylor series expansion gives

a(x + tv) =
∞∑

k=0

1
k!

(tv
∂

∂x
)ka(x) = etv ∂

∂x a(x) .

(Y. Lan)
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Chapter 17. Averaging

Solution 17.1 - Expectation value of a vector observable. No solution available.

Solution 17.2 - Pinball escape rate from numerical simulation∗. No solution
available.
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Chapter 18. Trace formulas

(No solutions available.)
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escape rate
golden mean!pruning
pruning!golden mean

Figure S.20: Plot of log(Γ(n)) versus n for the lo-
gistic map xn+1 = 6xn(1−xn). Error bars show esti-
mated errors in the mean assuming a binomial dis-
tribution. 10 000 000 random initial starting points
were used. 0 5 10 15

n

0.0

5.0

10.0

15.0

20.0

lo
g(

Γ(
n)

)

Chapter 19. Spectral determinants

Solution 19.1 - Numerical estimate of the escape rate for a 1-dimensional re-
peller The logistic map is defined by xn+1 = Axn(1 − xn) . For A ≤ 4 any point in the
unit interval [0, 1] will remain in the interval forever. For A > 4 almost all points starting
in the unit interval will eventually escape towards −∞.

The rate of escape can be easily measured by numerical experiment. We de-
fine the fraction of initial conditions that leave the interval after n iterations to be Γn.
Figure S.20 shows a plot of log(Γn) versus n, computed by starting with 10 000 000
random initial points. Asymptotically the escape rate falls off exponentially as

Γ(n) = Ce−γn .

Figure S.20 suggests that this formula is very accurate even for relatively small n. We
estimate γ by measuring the slope of the curve in figure S.20. To avoid errors due to
rounding and transients only the points 5 ≤ n ≤ 10 were used. A linear regression fit
yields the escape rate for A = 6:

γ = 0.8315± 0.0001 ,

where the error is from statistical fluctuations (there may be systematic errors either
due to rounding or because we are not in the true asymptotic regime).

(Adam Prügel-Bennet)

Solution 19.3 - Dynamical zeta functions

1. Work through section sect. 19.3.2.

2. Generalize the transition matrix (14.10) to a transfer operator.

Solution 19.2 - Spectrum of the “golden mean” pruned map.

1. The idea is that with the redefinition 2 = 10, the alphabet {1,2} is unrestricted
binary, and due to the piecewise linearity of the map, the stability weights factor
in a way similar to (18.11).
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2. As in (19.9), the spectral determinant for the Perron-Frobenius operator takes
form (19.11)

det (1 − zL) =
∞∏

k=0

1
ζk
,

1
ζk
=

∏
p

⎛⎜⎜⎜⎜⎝1 − znp

|Λp|Λk
p

⎞⎟⎟⎟⎟⎠ .
The mapping is piecewise linear, so the form of the topological zeta function
worked out in (15.19) already suggests the form of the answer. The alphabet
{1,2} is unrestricted binary, so the dynamical zeta functions receive contribu-
tions only from the two fixed points, with all other cycle contributions cancelled
exactly. The 1/ζ0 is the spectral determinant for the transfer operator like the
one in (16.13) with the T00 = 0, and in general

1
ζk
=

⎛⎜⎜⎜⎜⎝1 − z

|Λ1|Λk
1

⎞⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎝1 − z2

|Λ2|Λk
2

⎞⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎝1 − z3

|Λ12|Λk
12

⎞⎟⎟⎟⎟⎠ · · ·
= 1 − (−1)k

(
z

Λk+1
+

z2

Λ2k+2

)
. (S.89)

The factor (−1)k arises because both stabilities Λ1 and Λ2 include a factor −Λ from
the right branch of the map.

Solution 19.6 - Dynamical zeta functions as ratios of spectral determinants. Try
inserting a factor equal to one in the zeta function and then expanding it. The problem
is solved in sect. 19.5.

Solution 19.9 - Dynamical zeta functions for Hamiltonian maps. Read exam-
ple 19.7.
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Figure S.21: Periodic orbits and stabilities for the
logistics equation xn+1 = 6xn(1 − xn).
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Chapter 20. Cycle expansions

Solution 20.2 - Prime cycles for a 1-dimensional repeller, analytic formulas. For
the logistic map the prime cycles, ordered in terms of their symbolic dynamics, are
listed in table 15.1

P = {0, 1, 01, 001, 011, 0001, 0011, 0111, . . .}

The position of the prime cycles can be found by iterating the inverse mapping. If we
wish to find the position of a prime orbit p = b1b2 · · · bnp , where bi ∈ {0, 1}, then starting
from some initial point, x = 1/2 say, we apply one of the inverse mappings

f −1
± (x) =

1
2
± 1

2

√
1 − x/4A

where we choose f −1
− if b1 = 0 or f −1

+ if b1 = 1. We then apply the inverse mapping
again depending on the next element in the prime orbit. Repeating this procedure
many times we converge onto the prime cycle. The stability Λp of a prime cycle p is
given by the product of slopes of f around the cycle. The first eight prime cycles are
shown in figure S.21.

The stabilities of the first five prime orbits can be calculated for arbitrary A. We
find that Λ0 = A, Λ1 = 2 − A, Λ01 = 4 + 2A − A2, and

Λ 001
011
= 8 + 2A − A2 ± A(2 − A)

√
A2 − 2A − 7. (S.90)

There is probably a closed form expression for the 4-cycles as well.

For crosschecking purposes: if A = 9/2, Λ0 = 9/2 Λ1 = −5/2 Λ01 = −7.25
Λ011 = 19.942461 . . ..

(Adam Prügel-Bennet)
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escape rateSolution 20.2 - Dynamical zeta function for a 1-dimensional repeller The escape
rate can be estimated from the leading zero in the dynamical zeta function 1/ζ(z),
defined by

1/ζ(z) =
∏

p

(
1 − znp/|Λp|

)
.

To compute the position of this pole we expand 1/ζ(z) as a power series (20.7) in z

1/ζ(z) = 1 −
∑
i=1

ĉiz
i

where

ĉ1 = |Λ0|−1 + |Λ1|−1 , ĉ2 = |Λ01|−1 − |Λ1Λ0|−1

ĉ3 = |Λ001|−1 − |Λ0Λ01|−1 + |Λ011|−1 − |Λ01Λ1|−1

etc.. Using the cycles up to length 6 we get

1/ζ(z) = 1 − 0.416667z − 0.00833333z2

+0.000079446z3 − 9.89291× 10−7z4 + . . .

The leading zero of this Taylor series is an estimate of exp(γ). Using n = 1, 2, 3 and
4 we obtain the increasingly accurate estimates for γ: 0.875469, 0.830597, 0.831519
and 0.831492 In a hope to improve the convergence we can use the Padé approx-
imates PN

M(z) =
∑N

i=1 pizi/(1 +
∑M

j=1 q jz j). Using the Padé approximates Pn−1
1 (z) for

n = 2, 3 and 4 we obtain the estimates 0.828585, 0.831499 and 0.831493.

The above results correspond to A = 6; in the A = 9/2 case the leading zero is
1/z = 1.43549 . . . and γ = 0.36150 . . .. (Adam Prügel-Bennet)

Solution 20.2 - Spectral determinant for a 1-dimensional repeller We are told the
correct expression for the escape rate is also given by the logarithm of the leading
zero of the spectral determinant (19.11), expanded as the Taylor series (20.14). The
coefficients ci should fall off super-exponentially so that truncating the Taylor series
is expected to give a far more accurate estimate of the escape rate than using the
dynamical zeta function. How do we compute the ci coefficients in (20.14)? One
straightforward method is to first compute the Taylor expansion of log(F(z))

log(F(z)) =
∑

p

∑
k=0

log

⎛⎜⎜⎜⎜⎝1 −
tp

Λk
p

⎞⎟⎟⎟⎟⎠ = −
∑

p

∑
k=0

∑
r=1

tr
p

Λkr
p

= −
∑

p

∑
r=1

tr
p

1 − Λ−r
p
= −

∑
p

∑
r=1

Bp(r)znpr

where Bp(r) = − 1/r|Λr
p|(1 + Λ−r

p ) . Writing log(F(z)) as a power series

log(F(z)) = −
∑
i=1

biz
i
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Figure S.22: Plot of the Taylor coefficients for the
spectral determinant, ci, and for the dynamical zeta
function, bi. 1.0 2.0 3.0 4.0

n

-20.0

-15.0

-10.0

-5.0

0.0

log|ci|
log|bi|

we obtain

b1 = B0(1) + B1(1)

b2 = B01(1) + B0(2) + B1(2)

b3 = B001(1) + B011(1) + B0(3) + B1(3)

b3 = B0001(1) + B0011(1) + B0111(1) + B01(2) + B0(4) + B1(4) (S.91)

etc.. To obtain the coefficients for the spectral determinant we solve

F(z) = 1 −
∑
i=1

Qiz
i = exp

⎛⎜⎜⎜⎜⎜⎝∑
i=1

biz
i

⎞⎟⎟⎟⎟⎟⎠
for the Qi’s. This gives

Q1 = b1 , Q2 = b2 + b2
1/2 , Q3 = b3 + b1b2 + b3

1/6

Q4 = b4 + b1b3 + b2
2/2 + b2b2

1/2 + b4
1/24

Using these formulas we find

F(z) = 1 − 0.4z − 0.0152381z2 − 0.0000759784z3 + 4.5311× 10−9z4 + · · ·

The logarithm of the leading zero of F(z) again gives the escape rate. Using the
n = 1, 2, 3, and 4 truncations we find the approximation to γ of 0.916291, 0.832345,
0.83149289 and 0.8314929875. As predicted, the convergence is much faster for the
spectral determinant than for the dynamical zeta function.

In figure S.22 we show a plot of the logarithm of the coefficients for the spectral
determinant and for the dynamical zeta function.

(Adam Prügel-Bennet)

The above results correspond to A = 6; in the A = 9/2 case all cycles up to length
10 yield γ = 0.36150966984250926 . . .. (Vadim Moroz)
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Figure S.23: Plot of the escape rate versus a for
the logistic map xn+1 = axn(1− xn) calculated from
the first five periodic orbits.

4 5 6 7 8 9 10

a

0
0.2
0.4
0.6
0.8

1
1.2
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γ

Solution 20.2 - Escape rate for a 1-dimensional repeller We can compute an
approximate functional dependence of the escape rate on the parameter a using the
stabilities of the first five prime orbits computed above, see (S.90). The spectral det-
erminant (for a > 4) is

F = 1 − 2z
a − 1

− 8z2

(a − 3)(a − 1)2(a + 1)

+

(
2(32 − 18a + 17a2 − 16a3 + 14a4 − 6a5 + a6)
(a − 3)(a − 1)3(1 + a)(a2 − 5a + 7)(a2 + a + 1)

(S.92)

− 2a(a − 2)
√

(a2 − 2a − 7)
(a2 − 5a + 7)(a2 − 2a − 7)(a2 + a + 1)

)
z3

41 The leading zero is plotted in figure S.23; it always remains real while the other
two roots which are large and negative for a > 5.13 . . . become imaginary below this
critical value. The accuracy of this truncation is clearly worst for a → 4, the value at
which the hyperbolicity is lost and the escape rate goes to zero.

(Adam Prügel-Bennet)

Solution 20.3 - Escape rate for the Ulam map. The answer is worked out in
Nonlinearity 3, 325; 3, 361 (1990). 42

Solution 20.11 - Escape rate for the Rössler system. No solution available as
yet.

41Predrag: evaluate this at a = 6 to see how good it is? I guess already know...
42Predrag: give exact page number
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three-disk@3-
disk!symmetry

desymmetrization!3-
disk

symmetry!3-disk

Chapter 21. Discrete symmetries factorize spectral deter-
minants.

Solution 21.2 - Sawtooth map desymmetrization. No solution available as yet.

Solution 21.4 - 3-disk desymmetrization.

b) The shortest cycle with no symmetries is 121213.

c) The shortest fundamental domain cycle cycle whose time reversal is not ob-
tained by a discrete symmetry is 010011. It corresponds to 121313212323 in
the full space.

Ben Web

Solution 21.5 - C2 factorizations: the Lorenz and Ising systems. No solution
available as yet.

Solution 21.6 - Ising model. No solution available as yet.

Solution 21.7 - One orbit contribution. No solution available as yet.

Solution 21.8 - Characters. No solution available as yet.
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Chapter 22. Why cycle?

Solution 22.1 - The escape is controlled by the size of the primary gap of the
repeller. All subgaps in the repeller will be proportional to the main gap. The size of
the main gap is l =

√
1 − 1/a. Near ac = 1 the escape rate is

γ(a) ∼ (a − ac)1/2.

We can generalize this and the previous result and conclude that

γ(a) ∼ (a − ac)
1/z,

where z is the order of the maximum of the single humped map.

Solution 22.2 - By direct evaluation we can calculate the zeta functions and the
Fredholm determinant of this map.

(a) s01 =
Λ0

Λ0 − 1
b − 1

b
, s10 = −

Λ1 − 1
Λ1

b
b − 1

, c = b +
b − 1
Λ1

.

(b) Show that the 2-cycle Floquet multiplier does not depend on b,

Λ01 = s01 s10 = −
Λ0Λ1

(Λ0 − 1)(Λ1 + 1)
.

(c) L =
(

L00 L01
L10 L11

)
,

where L00 = 1/Λ0, L01 = 1/s01, L11 = 1/Λ1, L10 = 1/s10 are inverses of the
slopes of the map.

(e) det (1 − zL) = 1−???

(h) Yes.

The Fredholm determinant is the product of zeta functions

F(z) =
∞∏

k=0

1/ζk(z).

The leading zeroes of the Fredholm determinant can come from the zeroes of the
leading zeta functions.

The zeroes of 1/ζ0(z) are

1/z1 =
T00+T11+

√
(T00−T11)2+4T01T10

2 ,

1/z2 =
T00+T11−

√
(T00−T11)2+4T01T10

2 .

The zeroes of 1/ζ1(z) are

1/z3 =
T 2

00+T 2
11+
√

(T 2
00−T 2

11)2+4T 2
01T 2

10

2 ,

1/z4 =
T 2

00+T 2
11−
√

(T 2
00−T 2

11)2+4T 2
01T 2

10

2 .

By substituting the slopes we can show that z1 = 1 is the leading eigenvalue. The next
to leading eigenvalue, which is the correlation decay in discrete time, can be 1/z3 or
1/z2.

Solution 22.3 -

(d) In the A = 9/2 case all cycles up to length 9 yield λ = 1.08569 . . .. (Vadim
Moroz)
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Chapter 23. Why does it work?

Solution 23.3 - Euler formula. Let

P =
∞∏

k=0

(1 + tuk) =
∞∑

n=0

Pntn

then

Pn =
1
n!

∂nP
∂tn

∣∣∣∣∣
t=0
=

1
n!

∑
in�in−1�···�i1

uin+in−1+···+i1

(S.93)

=
∑

in>in−1>···i1≥0

uin+in−1+···+i1

Clearly P0 = 1, and

P1 =
∑
i=0

ui

multiplying both sides by 1 − u

(1 − u)P1 = 1 + u + u2 + · · · − (u + u2 + · · ·) = 1

(since, for |u| < 1, limn→∞ un = 0). Thus P1 = 1/(1 − u). Similarly

P2 =
∑

i> j≥0

ui+ j

Graphically the allowed values of i and j are

�

�� � � �

� � �

� �

�

i

j

Performing the same trick as for P1

(1 − u)P2 =
∑

i> j≥0

ui+ j −
∑

i> j≥0

ui+( j+1)
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Euler!formulaThe only terms that survive are those for which j = i − 1 (that is the top diagonal in
the figure) thus

(1 − u)P2 = u−1
∞∑

i=1

u2i

and

(1 − u)(1 − u2)P2 = u−1
(
u2 + u4 + · · · − (u4 + u6 + · · ·)

)
= u

Thus

P2 =
u

(1 − u)(1 − u2)

In general

(1 − u)Pn =
∑

in>in−1>···i1≥0

uin+in−1+···+i1 −
∑

in>in−1>···i1≥0

uin+in−1+···+(i1+1)

(S.94)

= u−1
∑

in>in−1>···i2≥1

uin+in−1+···+2i2 (S.95)

since only the term i1 = i2 − 1 survives. Repeating this trick

(1 − u)(1 − u2)Pn = u−1−2
∑

in>in−1>···i3≥2

uin+in−1+···+3i3

and

n∏
i=1

(1 − ui) Pn = u−(1+2+···+n)un(n−1) = un(n−1)/2

Thus

Pn =
un(n−1)/2∏n
i=1(1 − ui)

.

(Adam Prügel-Bennet)

Solution 23.3 - Euler formula, 2nd method. The coefficients Qk in (23.4) are given
explicitly by the Euler formula

Qk =
1

1 − Λ−1

Λ−1

1 − Λ−2
· · ·

Λ−k+1

1 − Λ−k
. (S.96)
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Such a formula is easily proved by considering the finite order product

W j(z, γ) =
j∏

l=0

(1 + zγl) =
j+1∑
l=0

Γlz
l

Since we have that

(1 + zγ j+1)W j(z, γ) = (1 + z)W j(γz, γ) ,

we get the following identity for the coefficients

Γm + Γm−1γ
j+1 = Γmγ

m + Γm−1γ
m−1 m = 1, . . . .

Starting with Γ0 = 1, we recursively get

Γ1 =
1 − γ j+1

1 − γ
Γ2 =

(1 − γ j+1)(γ − γ j+1)
(1 − γ)(1 − γ2)

. . . .

the Euler formula (23.5) follows once we take the j → ∞ limit for |γ| < 1.

(Robert Artuso)

Solution 23.3 - Euler formula, 3rd method. First define

f (t, u) :=
∞∏

k=0

(1 + tuk) . (S.97)

Note that

f (t, u) = (1 + t) f (tu, u) , (S.98)

by factoring out the first term in the product. Now make the ansatz

f (t, u) =
∞∑

n=0

tngn(u) , (S.99)

plug it into (S.98), compare the coefficients of tn and get

gn(u) = ungn(u) + un−1gn−1(u) . (S.100)

Of course g0(u) = 1. Therefore by solving the recursion (S.100) and by noting that∑n−1
k=1 k = n(n−1)

2 one finally arrives at

gn(u) =
u

n(n−1)
2∏n

k=1(1 − uk)
. (S.101)
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Euler got this formula and he and Jacobi got many nice number theoretical results
from it, most prominent the pentagonal number theorem, which says that in the series
expansion of

∏∞
k=1(1 − qk) all terms cancel except those which have as an exponent

the circumference of a regular pentagon with integer base length. 43

(Juri Rolf)

Solution 23.4 - 2-dimensional product expansion. Now let us try to apply the
same trick as above to the two dimensional situation

h(t, u) :=
∞∏

k=0

(1 + tuk)k+1 . (S.102)

Write down the first terms and note that similar to (S.98)

h(t, u) = f (t, u)h(tu, u) , (S.103)

where f is the Euler product (S.97). Now make the ansatz

h(t, u) =
∞∑

n=0

tnan(u) (S.104)

and use the series expansion for f in (S.103) to get the recursion

an(u) =
1

1 − un

n−1∑
m=0

umam(u)gn−m(u) . (S.105)

With this one can at least compute the generalized Euler product effectively, but it
would be nice if one could use it for a proof of the general behaviour of the coefficients
an.

(Juri Rolf)

43Predrag: recheck the tricks from PC’s notebooks
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Kolmogorov entropy
entropy!Kolmogorov
escape rate

Chapter O. Thermodynamic formalism

44

Solution O.1 - In the higher dimensional case there is no change in the derivation
except Λp should be replaced with the product of expanding eigenvalues

∏
j |Λp, j|.

The logarithm of this product is
∑

j log |Λp, j|. The average of log |Λp, j| is the jth Lya-
punov exponent. 45 (G.
Vattay)

Solution O.4 - The zeta function for the two scale map is

1/ζ(z, β) = 1 − z

(
1
aβ
+

1
bβ

)
.

The pressure function is

P(β) = log z0(β) = − log

(
1
aβ
+

1
bβ

)
.

The escape rate is

γ = P(1) = − log

(
1
a
+

1
b

)
,

The topological entropy is

K0 = htop = −P(0) = log 2.

The Lyapunov exponent is

λ = P′(1) =
log a/a + log b/b

1/a + 1/b
.

The Kolmogorov entropy is

K1 = λ − γ = P′(1) − P(1) =
log a/a + log b/b

1/a + 1/b
+ log

(
1
a
+

1
b

)
.

The Rényi entropies are

Kβ = (P(β) − βγ)/(β − 1) = (log

(
1
aβ
+

1
bβ

)
+ β log

(
1
a
+

1
b

)
)/(1 − β).

The box counting dimension is the solution of the implicit equation P(D 0) = 0, which
is

1 =
1

aD
0

+
1

bD
0

.

The information dimension is
D1 = 1 − γ/λ.

The rest of the dimensions can be determined from equation P(q − (q − 1)Dq) = γq.
Taking exp of both sides we get

1

aq−(q−1)Dq
+

1

bq−(q−1)Dq
=

(
1
a
+

1
b

)q

.

44Gabor: I could not find a solution file to exerThermo. Somebody who wrote the original
exercises might have a solution to the first 3 problems and can add it to soluThermo.tex .

45Predrag: This is too sloppy. It might be true for K1 (but it needs an argument why). It is
certainly not true for any Rényi generalized quantity, as weights are not multiplicative along the
flow. Study Lazutkin and ref. [6].
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For a given q we can find Dq from this implicit equation.

Solution O.5 - The zeta function is

1/ζ(z, β) = det (1 − Tβ−1),

where we replaced k with β− 1 in solution S. The pressure can be calculated from the
leading zero which is (see solution S)

P(β) = log z0(β) = − log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝T β
00 + T β

11 +

√
(T β

00 − T β
11)2 + 4T β

01T β
10

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Solution O.6 - We can easily read off that b = 1/2, a1 = arcsin(1/2)/2π and a2 = a1

and do the steps as before.
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Chapter 24. Intermittency

(No solutions available.) ⇓PRIVATE
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Chapter 25. Continuous symmetries

Solution 25.1 - To be constructed: Rotate coordinates x’= gx:

L(x′, y′) = δ(gy − f (gx)). = |det g|−1 δ(y − f (x)). = L(x, y) = |det g| L(gx, gy). .

For a compact semisimple Lie group |det g| = 1, hence (25.25).

⇑PRIVATE
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Figure S.24: (a) (b) A partition of the unit in-
terval into three or five intervals, labeled by the
order along the unit interval A = {M1, M2 =

M4 ∪ ( 1
2 ) ∪ M5, M3}. The partition is Markov,

as the critical point is also a fixed point. (c) the
transition graph for this Markov partition.

(a) (b) 1 2 3

4 5
1

2

3

4

5

(c) (d)

Chapter 26. Deterministic diffusion

Solution 26.1 - Diffusion for odd integer Λ. Consider first the case Λ = 3, illus-
trated in figure S.24. If β = 0, the dynamics in the elementary cell is simple enough; a
partition can be constructed from three intervals, which we label {M1,M2,M3}, with
the alphabet ordered as the intervals are laid out along the unit interval. The transition
graph is figure S.24 (c), and the dynamical zeta function is

1/ζ |β=0 = 1 − (t1 + t2 + t3) = 1 − 3z/Λ ,

with eigenvalue z = 1 as required by the flow conservation.

However, description of global diffusion requires more care. As explained in the
definition of the map (26.9), we have to split the partition M2 = M4 ∪ ( 1

2 ) ∪M5, and
exclude the fixed point f ( 1

2 ) = 1
2 , as the map f̂ (x̂) is not defined at f̂ ( 1

2 ). (Are we
to jump to the right or to the left at that point?) As we have f (M4) = M1 ∪ M4,
and similarly for f (M5), the transition graph figure S.24 (d) is infinite, and so is the
dynamical zeta function:

1/ζ = 1 − t1 − t14 − t144 − t1444 · · · − t3 − t35 − t355 − t3555 · · · .

The infinite alphabet A = {1, 14, 144, 1444 · · ·3, 35, 355, 3555 · · ·} is a consequence
of the exclusion of the fixed point(s) x4, x5. As is customary in such situations (see
sect. 24.3.1, exercise 20.10, and chapter 24, inter alia), we deal with this by dividing ⇓PRIVATE

⇑PRIVATE
out the undesired fixed point from the dynamical zeta function. We can factorize and
resum the weights using the piecewise linearity of (26.9)

1/ζ = 1 −
t1

1 − t4
−

t3
1 − t5

.

The diffusion constant is now most conveniently evaluated by evaluating the partial
derivatives of 1/ζ as in (20.22)

〈T〉ζ = −z
∂

∂z
1
ζ
= 2

(
t1

1 − t4
+

t1t4
(1 − t4)2

)∣∣∣∣∣∣
z=1,β=0

=
3
4〈

x̂2
〉
ζ

∣∣∣∣
z=1,β=0

= 2

⎛⎜⎜⎜⎜⎝ n̂1(n̂1 + n̂4)Λ2

(1 − 1/Λ)2
+ 2

n̂2
4/Λ

3

(1 − 1/Λ)3

⎞⎟⎟⎟⎟⎠ = 1
2

(S.106)
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yielding D = 1/3, in agreement with in (26.21) for Λ = 3.

Solution 26.6 - Accelerated diffusion. Suggested steps

1. Show that the condition assuring that a trajectory indexed by (φ, α) hits the
(m, n) disk (all other disks being transparent) is written as∣∣∣∣∣dm,n

R
sin

(
φ − α − θm,n

)
+ sinα

∣∣∣∣∣ ≤ 1 (S.107)

where dm,n =
√

m2 + n2 and θm,n = arctan(n/m). You can then use a small R
expansion of (S.107).

2. Now call jn the portion of the state space leading to a first collision with disk
(n, 1) (take into account screening by disks (1, 0) or (n − 1, 1)). Denote by Jn =⋃∞

k=n+1 jk and show that Jn ∼ 1/n2, from which the result for the distribution
function follows.
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stationary phaseChapter 32. Noise

Solution 32.2 - d-dimensional Gaussian integrals. We require that the matrix in
the exponent is nondegenerate (i.e. has no zero eigenvalues.) The converse may
happen when doing stationary phase approximations which requires going beyond
the Gaussian saddle point approximation, typically to the Airy-function type stationary
points [9]. We also assume that M is positive-definite, otherwise the integral is infinite.

Make a change of variables y = Ax such that AT M−1A = Id. Then

I =
1

(2π)d/2

∫
Rd

exp[−1
2

∑
i

(y2
i − 2(JA)iyi)]|det A|dy

Complete each term under in the sum in the exponent to a full square

y2
i − 2(JA)iyi = (yi − (JA)i)2 − (JA)2

i

and shift the origin of integration to JA/2, so that

I =
1

(2π)d/2
exp(

1
2

JT AAT J)|det A|
∫

Rd
exp[−1

2

∑
i

y2
i ]dy

Note that AAT M−1AAT = AAT , therefore AAT = M and |det A| =
√

det M. The remain-
ing integral is equal to a Poisson integral raised to the d-th power, i.e. (2π) d/2.
Answer:

I =
√

det M exp[
1
2

JT MJ]

(R. Paškauskas)
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Chapter 27. Turbulence?

(No solutions available.)
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Figure S.25: Minimizing the path from the previ-
ous bounce to the next bounce.

A

B C

O

y

xθ

Chapter 33. Relaxation for cyclists

Solution 33.1 - Evaluation of cycles by minimization. To start with a guess path
where each bounce is given some arbitrary position on the correct disk and then iter-
atively improve on the guess. To accomplish this an improvement cycle is constructed
whereby each bouncing point in the orbit is taken in turn and placed in a new position
so that it minimizes the path. Since the positions of all the other bounces are kept con-
stant this involves choosing the new bounce position which minimizes the path from
the previous bounce to the next bounce. This problem is schematically represented
in figure S.25

Finding the point B involves a one dimensional minimization. We define the vec-
tors �A = �OA, �B = �OB and �C = �OC. We wish to minimize the length LABC by varying �B
subject to the constraint that |�B| = a. Clearly

LABC =
∣∣∣∣�A − �B

∣∣∣∣ + ∣∣∣∣ �C − �B
∣∣∣∣

=

√
�A2 + �B2 − 2�A · �B +

√
�C2 + �B2 − 2 �C · �B

writing

�B(θ) = a(cos θ, sin θ)

then the minima is given by

dLABC

dθ
= −

⎛⎜⎜⎜⎜⎜⎝ �A√
�A2 + �B2 − 2�A · �B

+
�C√

�C2 + �B2 − 2 �C · �B

⎞⎟⎟⎟⎟⎟⎠ · �B′(θ) = 0.

The minima can then be found using a bisection algorithm or using Newton-Raphson.
A simpler way is to observe that �B′(θ) is orthogonal to �B(θ) so that the vector

�D =
�A√

�A2 + �B2 − 2�A · �B
+

�C√
�C2 + �B2 − 2 �C · �B

will be proportional to �B. This then provides an iterative sequence for finding �B

• Starting from your current guess for �B calculate �D
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• Put �B = a�D/|�D|

• Repeat the first step until you converge.

At each iteration of the improvement cycle the total length of the orbit is measured.
The minimization is complete when the path length stops improving. Although this
algorithm is not as fast as the Newton-Raphson method, it nevertheless converges
very rapidly.

(Adam Prügel-Bennet)

⇓PRIVATE
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period!doublingChapter 28. Universality in transitions to chaos

Solution 28.1 - Period doubling in your pocket

(a) For λ < 3/4 x∗ is an attractive fixed point. Iterates f n(x) converge to x∗ expone-
tially, with error ∝ 1/| f ′(x∗)|n.

(b) For λ = 3/4 the stability is marginal, | f ′(x∗)| = 1, and convergence exhibits
“critical slowdown.”

(c) For λ for which the fixed point x∗ goes unstable, see example 28.3.

(d) λ1 = 1, λ2 = 1.31070274134, λ3 = 1.38154748443, are parameter values for
which respectively 2-cycle, 4-cycle, 8-cycle are superstable.

(e) For λ = 1.3979453597 the 16-cycle is superstable. Find these by Newton
method for f n(x) − x = 0, x = 0. The second condition ensures that the cy-
cle is superstable,

∏
f ′(0) f ′( f (0)) · · · f ′( f 2n−1(0)) = 0.

(f)

See also:
J. Sethna: www.physics.cornell.edu/sethna/teaching/StatPhys
J. Sethna: www.physics.cornell.edu/sethna/StatMech/ComputerExercises.html 46

J. Sethna: Computational Methods

(P. Cvitanović)

46Predrag: back this up on ChaosBook.org?
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Chapter 29. Complex universality

Solution 29.1 - Approximate period tripling renormalization See ref. [31].

⇑PRIVATE
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Chapter 30. Irrationally winding

(No solutions available.)
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Dirac delta
Lorentzian
delta function!Dirac

Chapter 36. Quantum mechanics, briefly

Solution 36.1 - Lorentzian representation of the Dirac delta function. General
hint: read up on principal parts, positive and negative frequency parts of the Dirac
delta function, perhaps the Cauchy theorem, in any good quantum mechanics text-
book.

To see that (36.19) satisfies properties of the delta function,

δ(E − En) = − lim
ε→0

1
π

Im
1

E − En + iε
,

start by expressing explicitly the imaginary part:

−Im
1

E − En + iε
= −Im

E − En − iε
(E − En + iε)(E − En − iε)

=
ε

(E − En)2 + ε2
.

This is a Lorentzian of width ε, with a peak at E = En. It has the correct normalization
for the delta function,

1
π

∫ ∞

−∞
dE

ε

(E − En)2 + ε2
=

1
π

ε

ε
arctan

E − En

ε

∣∣∣∣∣∞−∞
=

1
π

(π/2 − (−π/2)) = 1 ,

so

1
π

∫ ∞

−∞
dE

ε

(E − En)2 + ε2
= 1 , (S.108)

independently of the width ε.

Next we show that in the ε → ∞ limit the support of the Lorentzian is concentrated
at E = En. When E = En,

lim
ε→0

1
π

(
ε

(E − En)2 + ε2

)
= lim

ε→0

1
π

1
ε
= ∞ ,

and when E � En,

lim
ε→0

1
π

ε

(E − En)2 + ε2
= 0

Providing that a function convolved with δ(s),
∫

f (E)δ(E−En)dE has a continuous first
derivative at E = En and falls of sufficiently rapidly as E → ±∞, this is a representation
of the delta function.
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(R. Paskauskas, Bo Li)

Solution 36.2 - Green’s function. The Laplace transform of the (time-dependent)
quantum propagator

K(q, q′, t) =
∑

n

φn(q)e−iEnt/�φ∗n(q′)

is the (energy-dependent) Green’s function

G(q, q′, E + iε) =
1
i�

∫ ∞

0
dt e

i
�

Et− ε
�

t
∑

n

φn(q)e−iEnt/�φ∗n(q′)

=
1
i�

∑
n

φn(q)φ∗n(q′)
∫ ∞

0
dt e

i
�

(E−En+iε)t

= −
∑

n

φn(q)φ∗n(q′)
1

E − En + iε
e−

ε
�

tei(E−En )t/�
∣∣∣∣∣t=∞
t=0

.

When ε is positive, e−
ε
�
∞ = 0, so

G(q, q′, E + iε) =
∑

n

φn(q)φ∗n(q′)

E − En + iε
.

(Bo Li)
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Chapter 37. WKB quantization

Solution 37.1 - Fresnel integral. Start by re-expressing the integral over the infinite
half-line:

1
√

2π

∫ ∞

−∞
dx e−

x2

2ia =
2
√

2π

∫ ∞

0
dx e−

x2

2ia , a ∈ R , a � 0 .

When a > 0, the contour

yy

xx
π / 44

RR→∞

RR

C’

vanishes, as it contains no pole:

∮
C

dz e−z2/2ia =

∫ ∞

0
dx e−

x2

2ia +

∫
C′
+

∫ 0

∞
ei π4 e−

x2

2a dx = 0∫
C′
=

∫ π
4

0
eiR2ei2φ/2aReiφidφ = 0 . (S.109)

So

2
√

2π

∫ ∞

0
dx e−

x2

2ia =
2
√

2π

∫ ∞

0
dx ei π4 e−

x2

2a = ei π4
√

a =
√

ia

In the a < 0 case take the contour

yy
xxπ / 44

RR→∞

RR

C’

∮
C

dz e−z2/2ia =

∫ ∞

0
dx e−

x2

2ia +

∫
C′
+

∫ 0

∞
e−i π4 e

x2

2a dx

=

∫ ∞

0
dx e−

x2

2ia − e−i π4

∫ ∞

0
dx e

x2

2a = 0 .

Again

2
√

2π

∫ ∞

0
dx e−

x2

2ia = e−i π4
√
|a| ,

and, as one should have perhaps intuited by analyticity arguments, for either sign of a
we have the same Gaussian integral formula

1
√

2π

∫ ∞

−∞
dx e−

x2

2ia = |a|1/2ei π4
a
|a| =

√
ia .

The vanishing of the C′ contour segment (S.109) can be proven as follows: Substitute
z = Reiφ into the integral

IR =

∫ π
4

0
eiR2ei2φ/2aReiφidφ =

∫ π
4

0
eiR2(cos 2φ+i sin 2φ)/2aReiφidφ .

soluWKB - 25jan2004 boyscout version14.4, Mar 19 2013
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Then

|IR| ≤ R
∫ π

4

0
e−R2 sin 2φ/2adφ =

R
2

∫ π
2

0
e−R2 sin θ/2adθ .

In the range [0, π/2] we can replace 2
π
θ ≤ sin θ , obtain a bound

|IR| ≤
R
2

∫ π
2

0
e−R2θ/πadθ =

R
2

1 − e−R2/2a

R2/aπ
,

so

lim
R→∞

|IR| = 0 .

(Bo Li)
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Chapter 38. Semiclassical evolution

Solution 38.5 - Free particle R-function. Calculate R from its definition

R(q′, q, t) =
∫ t

0
L(q̇(t′), q(t′), t′)dt′

where the solution of Lagrange equations of motion is substituted for q(t).

a a D-dimensional free particle:
We have

L(q̇(t′), q(t′), t′) =
m
2

D∑
i=1

[q̇i(t′)]2,

q̇i(t) = const =
q′i − qi

t
. (S.110)

The answer:

R(q′, q, t) =
m
2

D∑
i=1

[q′i − qi]2

t
.

b Using symmetric gauge for vector potential and denoting the Larmor frequency
by ω = eB

mc , we have

L =
m
2

(
ẋ2 + ẏ2 + ż2 + ω(xẏ − yẋ)

)
The equations of motion are

ẍ − ωẏ = 0, ÿ + ωẋ = 0, z̈ = 0.

To calculate the expression for the principal function we do integration by parts
on ẋ2 + ẏ2, and the result is

R =
∫
Ldt =

m
2

(
xẋ|tt0 + yẏ|tt0 +

(z′ − z)2

t
+

∫ t

t0

[
x(−ẍ + ωẏ) + y(−ÿ − ωẋ)

]
dt

)
,

however terms inside the integral vanish by equations of motion. Denote w(t) =
x(t) + ιy(t), then the first two equations of motion are equivalent to equation in
complex w(t):

ẅ(t) + ιωẇ(t) = 0 ,

solution to which is

w′ ≡ w(t) = w +
ẇ(1 − e−ιωt)

ιω
.

We must reexpress velocities in R in terms of time and initial and final coordi-
nates. In terms of ẇ we have

ẇ0 =
ω

2
e
ιωt
2 (w − w0)
sin(ωt

2 )

ẇ =
ω

2
e
−ιωt

2 (w − w0)

sin(ωt
2 )

(S.111)
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stationary
phase!approximation

Note that

xẋ + yẏ = Re w∗ẇ

Re w∗ẇ|t0 =
ω

2 sin ωt
2

(
(|w|2 + |w0|2) cos

ωt
2
− 2Re w0w∗e

−ιω
2

)
=

ω

2

(
cot(

ωt
2

)[(x − x0)2 + (y − y0)2] + 2(x0y − y0x)
)

R =
m(z − z0)2

2t
+

mω
4

(
cot(

ωt
2

)[(x − x0)2 + (y − y0)2] + 2(x0y − y0x)
)

(S.112)

Solution 38.1 - Dirac delta function, Gaussian representation. To prove that
δσ converges to a dirac delta function, it is enough to show that it has the following
properties:

1.
∫ ∞
−∞ δσ(x)dx = 1

2. limσ→0

∫ a

−a
f (x)δσ(x)dx=f(0)

for arbitrary f (x) continuous and positive a.

First property is satisfied by the choice of normalisation constant. Second prop-
erty is verified by the change of variables y = x/

√
2σ2:

lim
σ→0

∫ a

−a
f (x)δσ(x)dx = lim

σ→0

1
√
π

∫ a√
2σ2

−a√
2σ2

f (
√

2σ2y)e−y2
dy = f (0)

(R. Paškauskas)

Solution 38.2 - Stationary phase approximation.

Main contribution to this integral come from critical points of Φ(x). Suppose that p
is such a nondegenerate critical point, p : DΦ(p) = 0, and D2Φ(p) has full rank. Then
there is a local coordinate system y in the neighbourhood of p such that Φ(p + y) =
Φ(p) −

∑λ
i=1 y2

i +
∑d

i=λ+1 y2
i , where λ is the number of negative eigenvalues of D2Φ(p).

Indeed, if we set x − p = Ay, then Φ(x) ≈ Φ(p) + 1
2 yAT D2Φ(p)Ay. There exist such

A that 1
2 AT D2Φ(p)A = diag[−1, . . . − 1︸������︷︷������︸

λ

,+1, . . .︸�︷︷�︸
d−λ

]. With this change of variables in mind,

we have

I = e
ιΦ(p)
�

∫
Rd

e
ι
�

(−
∑λ

i=1 y2
i +

∑d
i=λ+1 y2

i )|det A|dy = e
ιΦ(p)
� (π�)d/2e

ιπ
4 (−2λ+d)|det A|

Furthermore, (det A)2det D2Φ(p) = 2d exp ιπλ, therefore

|det A| = 2d/2 exp ιπλ
2√

det D2Φ(p)
.

Phase factors exp ιπλ/2 and exp−ιπλ/2 cancel out. Substitute exp ιπd/2 = ιd/2.

The result:

I =
(2ιπ�)d/2e

ιΦ(p)
�√

det D2Φ(p)
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stationary
phase!approximation

Critical nondegenerate points are isolated. Therefore if Φ has more than one
critical point, then equivalent local approximation can be made in the neighbourhoods
of each critical point and the complete approximation to the integral made by adding
contributions of all critical points.

Answer:

I =
∑

p:DΦ(p)=0

(2ιπ�)d/2e
ιΦ(p)
� A(p)√

det D2Φ(p)

Rytis Paškauskas

Solution 38.2 - Stationary phase approximation.

values of x of stationary phase, the points for which the gradient of the phase
vanishes

∂

∂x
Φ(x) = 0.

Intuitively, these are the important contributions as for �→ 0 the phase Φ(x)/� grows
large and the function eiΦ(x)/� oscillates rapidly as a function of x, with the negative
and positive parts canceling each other. More precisely, if the stationary points are
well separated local extrema of Φ(x), we can deform the integration contour and ap-
proximate Φ(x)/� up to the second order in x by

I ≈
∑

n

A(xn)eiΦ(xn)/�
∫

dd xe
i

2� (x−xn)T D2Φ(xn)(x−xn).

The second derivative matrix is a real symmetric matrix, so we can transform it to a
diagonal matrix by a similarity transformation

Diag(λ1, ..., λd) = OD2ΦO+ ,

where O is a matrix of an orthogonal transformation. In the rotated coordinate system
u = O(x − xn) and the integral takes form

I ≈
∑

n

A(xn)eiΦ(xn)/�
∫

ddue
∑d

k=1 iλku2
k/2� ,

where we used the fact that the Jacobi determinant of an orthogonal transformation
is det O = 1. Carrying out the Gauss integrals

∫
dueiλu2/2� =

(2πi�)1/2

√
λ

(S.113)

and using det D2Φ(xn) =
∏d

k=1 λk we obtain the stationary phase estimate of (38.54).
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A nice exposition of the subject is given in ref. [9].

Solution 38.11 - D-dimensional free particle propagator. A free particle reachs
q from q′ by only one trajectory. Taking this into account the semiclassical Van Vleck
propagator is

Ksc(q, q′, t) =
e

iR
�

(2πi�)d/2

∣∣∣∣∣∣∣det
∂2R
∂qi∂q′j

∣∣∣∣∣∣∣
1/2

The principal function of free motion in D-dimensions is

R(q, q′, t) =
m
2t

D∑
μ=1

(qμ − q′μ)
2

The derivative is

∂2R
∂qi∂q′j

= −δi, j
m
t

According to that determinant is

∣∣∣∣∣∣∣det
∂2R
∂qi∂q′j

∣∣∣∣∣∣∣
1/2

= eiπD/2
(m

t

)D/2
,

and the Van Vleck propagator is

Ksc(q, q′, t) = eiπD/4
( m
2π�t

)D/2 D∏
μ=1

exp
[ im
2�t

(
qμ − q′μ

)2
]

The next step is to calculate the exact quantum propagator:

K(q, q′, t) =
∑

n

φn(q)e−iEnt/�φ∗n(q′)

Taking that particle wave function in free space is

φp(q) =
1

(2π�)D/2
eipq/�

we derive that propagator K is

1
(2π�)D

∫
e−

it
2m� p2+ip(q−q′)dD p
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We can split multi-dimensional integral that stands here into a product of one dimen-
sional integrals. Then we should change variables for purpose of reduction to Poisson-
type integrals. We have omitted some straightforward algebra. The result is that the
semiclassical Van Vleck propagator and the exact quantum propagator are identical:

K(q, q′, t) = eiπD/4
( m
2π�t

)D/2 D∏
μ=1

exp
[ im
2�t

(
qμ − q′μ

)2
]
= Ksc(q, q′, t)

This result could have been anticipated because approximate formula (??.37) be-
comes exact for the free particle Lagrangian. (R.
Paškauskas)

⇓PRIVATESolution 38.17 - A usefull determinant identity. Divide out E in the last column of
38.55 and get the following matrix

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 . . . x1,n y1E−1

...
. . .

...
...

xn,1 . . . xn,n ynE−1

z1 . . . zn 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Now we subtract the last column multiplied with zn from the second last column (these
matrix operations does not change the determinant) to get

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 . . . x1,n−1 x1,n − zny1E−1 y1E−1

...
. . .

...
...

...
xn,1 . . . xn,n−1 xn,n − znynE−1 ynE−1

z1 . . . zn−1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This continues eliminating all the zi‘s in the bottom row getting the following matrix

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1,1 − z1y1E−1 . . . x1,n − zny1E−1 y1E−1

...
. . .

...
...

xn,1 − z1ynE−1 . . . xn,n − znynE−1 ynE−1

0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and we get (38.56) by expansion from the bottom row.

⇑PRIVATE
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Chapter 39. Semiclassical quantization

Solution 39.1 - Monodromy matrix from second variations of the action. If we
take two points in the configuration space q and q′ connected with a trajectory with
energy E and vary them in such a way that the variation of their initial and final points
are transverse to the velocity of the orbit in that point, we can write the variations of
the initial and final momenta as

δp⊥i =
∂2S (q, q′, E)
∂q⊥i∂q⊥k

δq⊥k +
∂2S (q, q′, E)
∂q⊥i∂q′⊥k

δq′⊥k (S.114)

and

δp′⊥i = −
∂2S (q, q′, E)
∂q′⊥i∂q⊥k

δq⊥k −
∂2S (q, q′, E)
∂q′⊥i∂q′⊥k

δq′⊥k . (S.115)

Next we express the variations of the final momenta and coordinates in terms of the
initial ones. In the obvious shorthand we can write (S.115) as

δq⊥ = −S −1
q′qS q′q′δq′⊥ − S −1

q′qδp′⊥,

From (S.114) it then follows that

δp⊥ = (S qq′ − S qqS −1
q′qS q′q′ )δq′⊥ − S qqS −1

q′qδp′⊥. (S.116)

These relations remain valid in the q′ → q limit, with q on the periodic orbit, and
can also be expressed in terms of the monodromy matrix of the periodic orbit. The
monodromy matrix for a surface of section transverse to the orbit within the constant
energy E = H(q, p) shell is

δq⊥ = Mqqδq′⊥ + Mqpδp′⊥,

δp⊥ = Mpqδq′⊥ + Mppδp′⊥. (S.117)

In terms of the second derivatives of the action the monodromy matrix is 47

Mqq = −S −1
q′qS q′q′ , Mqp = −S −1

q′q ,

Mpq = (S qq′ − S qqS −1
q′qS q′q′ ) , Mpp = −S qqS −1

q′q ,

and vice versa

S qq = Mpp M−1
qp , S qq′ = Mpq − Mpp M−1

qp Mqq,

S q′q = −M−1
qp , S q′q′ = −M−1

qp Mqq.

47Predrag: make into an exercise

soluTraceScl - 11jun2003 boyscout version14.4, Mar 19 2013
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stationary
phase!approximation

Now do exercise 39.2.

Solution 39.2 - Stationary phase approximation in higher dimensions. In this
case 1/� is assumed to be a very large number. parameter. The idea of this method
is that we only evaluate part of integral I where eiϕ is stationary i.e., ϕ ≈const. That
means we need extrema (saddle points) of manifold Φ. In this case

∂Φ

∂xsp,μ
= 0

Introduce a new d-dimensional variable s such, that

iΦ(x) = iΦ(xsp,μ) − s2

Integral I in terms of new variables is

I =
∑

n

eiΦ(xn)/�
∫

e−s2/�A(xn(s))
∣∣∣∣∣Dx
Ds

∣∣∣∣∣ dd s

Here n sums all stationary phase points which the path of integration (in complex
plane!) meets. next, we need to calculate the Jacobian J:

J = 1/
∣∣∣∣∣ ∂si

∂xk

∣∣∣∣∣ ,
where

∂si

∂xk
=

1
2isi

∂Φ

∂xk
.

This expression is undetermined at stationary phase points, because its right hand
side becomes division zero by zero. However, by the chain rule

∂si

∂xk
=

1

2i ∂si
∂xm

∂Φ2

∂xk∂xm

where x = xsp are evaluated at the stationary phase point. From this expression we
obtain that

⎡⎢⎢⎢⎢⎢⎣(∂s
∂x

)2⎤⎥⎥⎥⎥⎥⎦
i,k

=
1
2i

∂Φ2

∂xi∂xk

So the Jacobian is (employing a standard notation for a second derivative)

J =
(2i)d/2

√
det D2Φ

.

soluTraceScl - 11jun2003 boyscout version14.4, Mar 19 2013
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Since the exponential factor e−s2/� cuts integration sharply because of a very large
parameter 1/�, the function is evaluated only at the stationary point s = 0, and the
integral is approximately

I ≈
∑

n

eiΦ(xn)/�A(xn)
(2i)d/2√

det D2Φ(xn)

∫
e−s2/�dd s

Limits of integration may depend on particular situation. If limits are infinite, then

∫
e−s2/�dd s =

(∫ ∞

−∞
e−s2/�ds

)
= (π�)d/2

We substitute this into I and get the answer. (R. Paškauskas)

Solution 39.2 - Jacobi gymnastics. We express the Jacobi matrix elements in
det (1 − J) with the derivative matrices of S 48

det (1 − J) = det

(
I + S −1

q′qS q′q′ S −1
q′q

−S qq′ + S qqS −1
q′qS q′q′ I + S qqS −1

q′q

)
.

We can multiply the second column with S q′q′ from the and substract from the first
column, leaving the determinant unchanged

det (1 − J) = det

(
I S −1

q′q

−S qq′ − S q′q′ I + S qqS −1
q′q

)
.

Then, we multiply the second column with S q′q from the right and compensate this by
dividing the determinant with det S q′q

det (1 − J) = det

(
I I

−S qq′ − S q′q′ S q′q + S qq

)
/det S q′q.

Finally we subtract the first column from the second one

det (1 − J j)) = det

(
I 0

S qq′ + S q′q′ S qq′ + S q′q′ + S q′q + S qq

)
/det S q′q.

The last determinant can now be evaluated and yields the desired result (39.2)

det (1 − J j) = det (S qq′ + S q′q′ + S q′q + S qq)/det S q′q.

48Predrag: restore full det (1 − J) in the first equation

soluTraceScl - 11jun2003 boyscout version14.4, Mar 19 2013
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Chapter 40. Quantum scattering

Solution 40.2 - The one-disk scattering wave function.

ψ(�r ) =
1
2

∞∑
m=−∞

⎛⎜⎜⎜⎜⎝H(2)
m (kr) − H(2)

m (ka)

H(1)
m (ka)

H(1)
m (kr)

⎞⎟⎟⎟⎟⎠ eim(Φr−Φk) . (S.118)

(For r < a, ψ(�r) = 0 of course.)

(Andreas Wirzba)

⇓PRIVATESolution 40.5 - Ghosts do not exist. In ref. [1] the ghost cancellation rule (??) is
proved for the convolution of two A-matrices and generalized to hold also inside an
arbitrary (periodic) itinerary (with and without creeping sections).

Consider the itinerary (1, 2, 3, 4, 5, 6) with ghost sections at disk 2 and 5 resulting
from the sixth order trace. Its geometrical contribution cancels in the trace-log expan-
sion against the geometrical reduction of the itineraries (1, 2, 3, 4, 6), (1, 3, 4, 5, 6) from
the 5th-order trace with ghost sections at disk 2 or 5, respectively, and against the
geometrical reduction of the itinerary (1, 3, 4, 6) of the 4th-order trace with no ghost
contribution:

−1
6

(
6 A1,2A2,3A3,4A4,5A5,6A6,1

)
− 1

5

(
5 A1,2A2,3A3,4A4,6A6,1 + 5 A1,3A3,4A4,5A5,6A6,1

)
− 1

4

(
4 A1,3A3,4A4,6A6,1

)
= (−1 + 2 − 1) A1,3A3,4A4,6A6,1 = 0 .

The prefactors −1/4, −1/5, −1/6 result from the trace-log expansion, the factors 4, 5,
6 inside the brackets are due to the cyclic permutations, and the rule (??) was used. If
there are two or more ghost segments adjacent to each other, the ghost rule (??) has
to be generalized to

· · ·Ai,i+1Ai+1,i+2 · · ·Ai+k,i+k+1 · · ·Ai+n−1,i+n · · ·
= · · ·

(
−Ai,i+2

)
· · ·Ai+k,i+k+1 · · ·Ai+n−1,i+n · · ·

= · · ·Ai,i+3 · · ·Ai+k,i+k+1 · · ·Ai+n−1,i+n · · ·
= · · · (−1)n−1Ai,i+n · · · . (S.119)

Finally, let us discuss one case with a repeat, e.g. the itinerary (1, 2, 3, 4, 1, 2, 3, 4) with
repeated ghost sections at disk 2 in the semiclassical limit. The cancellations proceed
in the trace-log expansion as follows:

−1
8

(
4 A1,2A2,3A3,4A4,1A1,2A2,3A3,4A4,1

)
− 1

7

(
7 A1,2A2,3A3,4A4,1A1,3A3,4A4,1

)
−

1
6

(
3 A1,3A3,4A4,1A1,3A3,4A4,1

)
=

(
−

1
2
+ 1 −

1
2

) [
A1,3A3,4A4,1

]2
= 0

soluScatter - 4sep98 boyscout version14.4, Mar 19 2013
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Note that the cyclic permutation factors of the 8th and 6th order trace are halved
because of the repeat. The occurrence of the ghost segment in the second part of the
7th order itinerary is taken care of by the weight factor 7.

(Andreas Wirzba)

⇑PRIVATE

⇓PRIVATE

soluScatter - 4sep98 boyscout version14.4, Mar 19 2013
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Chapter 42. Quantum pinball

(No solutions available.) ⇑PRIVATE

soluScatter - 4sep98 boyscout version14.4, Mar 19 2013
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Chapter 43. Helium atom

(No solutions available.)

soluHelium - 12jun2003 boyscout version14.4, Mar 19 2013
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Chapter 45. Diffraction distraction

(No solutions available.) ⇓PRIVATE

soluWhelan - 12jun2003 boyscout version14.4, Mar 19 2013
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uniform
approximation

Chapter 46. Uniform approximations

49

Solution 46.1 - Symmetric cusp catastrophe. The cusp catastrophe is described
by the normal form (46.4)

Φa(x) =
1
4

x4 −
1
2

ax2 .

It has stationary points for t = 0 and t = ±
√

a. From (46.23) we have

S 2(E) = S 0(E) −
1
4

a2 , S 1(E) = S 0(E) ,

since Φa(0) = 0. It follows that

ΔS = S 1 − S 2 = a2/4 , a = ±2
√
ΔS .

In case S 2 > S 1, we need to replace the catastrophe (46.4) with its negative and
proceed at the same way. Let now A2 be the sum of the amplitudes of the pair
of orbits born in the bifurcation for a > 0, and A1 the amplitude of the single orbit
corresponding to the x = 0 stationary point of the normal form. Given the reflection
symmetry, we can write the p(x) in (46.21) as

p(x) = p0 + p2x2 .

Now, from the asymptotic expression (46.22) it follows in general that

Ai = p(xi)
(2πi)n/2√
|Φ′′

a(xi)|
e−iπνi/2 ,

from which in our case we get

p0 =

√
a

2π
A1eiπ/4 , p2 =

e−iπ/4

2
√
πa

(
A2 −

√
2iA1

)
. (S.120)

According to the ansatz (46.20), the uniform approximation takes the form (46.7):

Ψ(E) = p0

∫
dx ei( 1

4 x4− 1
2 ax2) + p2

∫
dx x2ei( 1

4 x4− 1
2 ax2) ,

of which the first integral is (46.8)

π

2

√
|a|e−ia2/8

[
eiπ/8J−1/4

(
a2

8

)
+ sign(a)e−iπ/8J−1/4

(
a2

8

)]
,

49Predrag: create more exercises...
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50 and the other is just

I2 = 2i
dI0

da
.

(D. Lippolis)

⇑PRIVATE

50Predrag: fix Bessel subscripts
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complex eigenvalues
eigenvalue!complex

Chapter E. Linear stability

Solution E.1 - Real representation of complex eigenvalues.

1
2

(
1 1
−i i

) (
λ 0
0 λ∗

) (
1 i
1 −i

)
=

(
μ −ω
ω μ

)
.

(P. Cvitanović)

soluAppStab - 1feb2008 boyscout version14.4, Mar 19 2013
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smooth!conjugacy
conjugacy!smooth

Chapter ??. Get straight

Solution B.1 - Harmonic oscillator in polar coordinates. Harmonic oscillator
equations in Cartesian coordinates are

ṗ = −q , q̇ = p . (S.121)

In polar form, we write

q = r cos θ , p = r sin θ . (S.122)

The inverse of the Jacobian ∂{q,p}
∂{r,θ} of this transformation is

∂{r, θ}
∂{q, p}

=

⎛⎜⎜⎜⎜⎜⎝ cos θ sin θ

− 1
r sin θ 1

r cos θ

⎞⎟⎟⎟⎟⎟⎠ , (S.123)

leading to

⎛⎜⎜⎜⎜⎜⎝ ṙ

θ̇

⎞⎟⎟⎟⎟⎟⎠ = ⎛⎜⎜⎜⎜⎜⎝ cos θ sin θ

− 1
r sin θ 1

r cos θ

⎞⎟⎟⎟⎟⎟⎠ · ⎛⎜⎜⎜⎜⎝ q̇

ṗ

⎞⎟⎟⎟⎟⎠ = ⎛⎜⎜⎜⎜⎝ 0

−1

⎞⎟⎟⎟⎟⎠ (S.124)

(R. Wilczak)

Solution B.2 - Coordinate transformations. (No solution available.) 51

Solution B.3 - Linearization for maps. (difficulty: medium) The first few terms of
the map h that conjugates f to αz

f (z) = h−1(αh(z)) .

are determined many places, for example in ref. [9].

There are conditions on the derivative of f at the origin to assure that the conjuga-
tion is always possible. These conditions are formulated in ref. [26], among others.

Solution B.4 - Ulam and tent maps. This conjugacy is derived in many introductory
chaos textbooks: see, for example, ref. [11] for a detailed discussion.

51Predrag: add Wadsworth 2012-01-31 solutions here and next two chapters - asked him for his
LaTeX
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Chapter G. Symbolic dynamics techniques

(No solutions available.)

soluAppSymb - 12jun2003 boyscout version14.4, Mar 19 2013
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Chapter H. Counting itineraries

Solution H.1 - Lefschetz zeta function. Starting with dynamical zeta function
ref. [13] develops the Atiyah-Bott-Lefschetz fixed point formula and relates is to Weyl
characters. Might be worth learning.

soluAppCount - 22jan2005 boyscout version14.4, Mar 19 2013
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Chapter I. Implementing evolution

(No solutions available.)
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group!not a
normal!mode
Lorenz flow

Chapter K. Discrete symmetries of dynamics

Solution K.1 - Am I a group?. I’m no group because (ab)c = a � a(bc) = c breaks
the associativity requirement.

W.G. Harter [11]

Solution K.2 - Three coupled pendulums with a C2 symmetry. Consider 3 pen-
dulums in a row: the 2 outer ones of the same mass m and length l, the one midway
of same length but different mass M, with the tip coupled to the tips of the outer ones
with springs of stiffness k. Assume displacements are small, xi/l � 1.

(a) Show that the acceleration matrix ẍ = −a x is ...: Just do it.

(b) Check that [a,R] = 0, i.e., that the dynamics is invariant under C2 = {e,R},
where R interchanges the outer pendulums: Just do it.

(c) Associated with roots {λ(+), λ(−)} = {1,−1} are the projection operators (E.27)

P+ =
1
2

⎛⎜⎜⎜⎜⎜⎜⎝ 1 0 1
0 20
1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , P− =
1
2

⎛⎜⎜⎜⎜⎜⎜⎝ 1 0 −1
0 0 0
−1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
The 3-pendulum system decomposes into a tr P− = 1 and tr P+ = 2 subspaces. On the
1-dimensional P−a yields eigenvalue (ω(−))2 = a + b. On the 2-dimensional subspace
the acceleration matrix is

a(+) =

[
a + b −

√
2a

−
√

2c c + b

]
.

The exercise is simple enough that you can do it without using the symmetry, so:
construct P(+),P(−) first, use them to reduce a to irreps, then proceed with computing
remaining eigenvalues of a.

(d) Does anything interesting happen if M = m? No, no new symmetry or eigen-
value degeneracy arises from the equal masses case, for any other choice of (non-
vanishing, positive) masses.

Solution K.3 - Lorenz system in polar coordinates: dynamics. No solution avail-
able.

Solution K.4 - Laplacian is a non-local operator. none available

Solution K.5 - Lattice Laplacian diagonalized. none available

Solution K.6 - Fix Predrag’s lecture od Feb 5, 2008. none available

soluAppSymm - 1feb2008 boyscout version14.4, Mar 19 2013
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escape rateChapter J. Applications

Solution J.1 - Using the multiplicative property of the Jacobi matrix we can write

Λt′+t(x0, u0) = ||Jt′+t(x0)u0|| = ||Jt′(x(t))Jt(x0)u0||.

We can introduce the time evolved unit vector

u(t) = Jt(x0)u0/||Jt(x0)u0||.

Then
||Jt′(x(t))Jt(x0)u0|| = ||Jt′(x(t))u(t)||||Jt(x0)u0||,

which is the desired result.

We have to adjoin the tangent space, since the stretching factor depends on u
and not just on x. The stretching factor is multiplicative along the entire trajectory
(x(t), u(t)). However, it is not multiplicative along the state space trajectory x(t) with a
fixed u.

Solution J.2 - If b = a2 and Tb = 2Ta we can introduce the variable y = esTa . The
dynamo rate equation then reads

0 = 1 − x + x2.

The solutions of this are x± = (1±i
√

3)/2. The dynamo rate is then a complex cojugate
pair ν = log x±/Ta.

The escape rate equation is

0 = 1 − x/a − x2/a2.

The solutions are x± = a(−1 ±
√

5)/2. The escape rate is γ = log(x+)/Ta.

In the reverse case the escape rate remains unchanged, while the dynamo rate
becomes ν = log((

√
5 + 1)/2)/Ta. In this case the advected field grows with an expo-

nential rate. In the previous case it shows oscillations in addition to the exponential
growth due to the imaginary part of the rate.

⇓PRIVATE
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Chapter M. Statistical mechanics applications

(No solutions available.) ⇑PRIVATE
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Chapter N. Infinite dimensional operators

Solution N.1 - Norm of exponential of an operator. No solution available.

soluAppWirzba - 2sep2008 boyscout version14.4, Mar 19 2013
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Chapter P. Statistical mechanics recycled

(No solutions available.)

soluStatmech - 12jun2003 boyscout version14.4, Mar 19 2013
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Appendix T

Projects

You are urged to work through the essential steps in a project that combines
the techniques learned in the course with some application of interest to
you for other reasons. It is OK to share computer programs and such, but

otherwise each project should be distinct, not a group project. The essential steps
are:

• Dynamics

1. construct a symbolic dynamics

2. count prime cycles

3. prune inadmissible itineraries, construct transition graphs if appropri-
ate

4. implement a numerical simulator for your problem

5. compute a set of the shortest periodic orbits

6. compute cycle stabilities

• Averaging, numerical

1. estimate by numerical simulation some observable quantity, like the
escape rate,

2. or check the flow conservation, compute something like the Lyapunov
exponent

• Averaging, periodic orbits

1. implement the appropriate cycle expansions

2. check flow conservation as function of cycle length truncation, if the
system is closed

3. implement desymmetrization, factorization of zeta functions, if dy-
namics possesses a discrete symmetry

1436
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4. compute a quantity like the escape rate as a leading zero of a spectral
determinant or a dynamical zeta function.

5. or evaluate a sequence of truncated cycle expansions for averages,
such as the Lyapunov exponent or/and diffusion coefficients

6. compute a physically intersting quantity, such as the conductance

7. compute some number of the classical and/or quantum eigenvalues, if
appropriate

projects - 24mar98 boyscout version14.4, Mar 19 2013
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circle mapT.1 Deterministic diffusion, zig-zag map

To illustrate the main idea of chapter 26, tracking of a globally diffusing orbit
by the associated confined orbit restricted to the fundamental cell, we consider
a class of simple 1-dimensional dynamical systems, chains of piecewise linear
maps, where all transport coefficients can be evaluated analytically. The transla-
tional symmetry (26.10) relates the unbounded dynamics on the real line to the
dynamics restricted to a “fundamental cell” - in the present example the unit in-
terval curled up into a circle. An example of such map is the sawtooth map

f̂ (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Λx x ∈ [0, 1/4 + 1/4Λ]
−Λx + (Λ + 1)/2 x ∈ [1/4 + 1/4Λ, 3/4 − 1/4Λ]
Λx + (1 − Λ) x ∈ [3/4 − 1/4Λ, 1]

. (T.1)

The corresponding circle map f (x) is obtained by modulo the integer part. The
elementary cell map f (x) is sketched in figure T.1. The map has the symmetry
property

f̂ (x̂) = − f̂ (−x̂) , (T.2)

so that the dynamics has no drift, and all odd derivatives of the generating function
(26.3) with respect to β evaluated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (T.3)

The diffusion constant formula for 1-dimensional maps is

D =
1
2

〈
n̂2

〉
ζ

〈n〉ζ
(T.4)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1
= −

∑′
(−1)k np1 + · · · + npk

|Λp1 · · ·Λpk |
, (T.5)

the mean cycle displacement squared by

〈
n̂2

〉
ζ
=

∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk )2

|Λp1 · · ·Λpk |
, (T.6)
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Figure T.1: (a)-(f) The sawtooth map (T.1) for the
6 values of parameter a for which the folding point
of the map aligns with the endpoint of one of the 7
intervals and yields a finite Markov partition (from
ref. [1]). The corresponding transition graphs are
given in figure T.2.

and the sum is over all distinct non-repeating combinations of prime cycles. Most
of results expected in this projects require no more than pencil and paper compu-
tations.

Implementing the symmetry factorization (26.36) is convenient, but not es-
sential for this project, so if you find sect. 21.1.1 too long a read, skip the sym-
metrization.

T.1.1 The full shift

Take the map (T.1) and extend it to the real line. As in example of figure 26.3,
denote by a the critical value of the map (the maximum height in the unit cell)

a = f̂ (
1
4
+

1
4Λ

) =
Λ + 1

4
. (T.7)
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Describe the symbolic dynamics that you obtain when a is an integer, and derive
the formula for the diffusion constant: 1

D =
(Λ2 − 1)(Λ − 3)

96Λ
for Λ = 4a − 1, a ∈ Z . (T.8)

If you are going strong, derive also the fromula for the half-integer a = (2k+1)/2,
Λ = 4a + 1 case and email it to DasBuch@nbi.dk. You will need to partition M2

into the left and right half, M2 =M8 ∪M9, as in the derivation of (26.21).
exercise 26.1

T.1.2 Subshifts of finite type

We now work out an example when the partition is Markov, although the slope is
not an integer number. The key step is that of having a partition where intervals
are mapped onto unions of intervals. Consider for example the case in which
Λ = 4a − 1, where 1 ≤ a ≤ 2. A first partition is constructed from seven intervals,
which we label {M1,M4,M5,M2,M6,M7,M3}, with the alphabet ordered as
the intervals are laid out along the unit interval. In general the critical value a will
not correspond to an interval border, but now we choose a such that the critical
point is mapped onto the right border of M1, as in figure T.1 (a). The critical value
of f () is f (Λ+1

4Λ ) = a − 1 = (Λ − 3)/4. Equating this with the right border of M1,
x = 1/Λ, we obtain a quadratic equation with the expanding solution Λ = 4. We
have that f (M4) = f (M5) =M1, so the transition matrix (14.1) is given by

φ′ = Tφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 0 0 1
1 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1

φ4

φ5

φ2

φ6

φ7

φ3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(T.9)

and the dynamics is unrestricted in the alphabet

{1, 41, 51, 2, 63, 73, 3, } .

One could diagonalize (T.9) on the computer, but, as we saw in chapter 14, the
transition graph figure T.2 (b) corresponding to figure T.1 (a) offers more insight
into the dynamics. The dynamical zeta function

1/ζ = 1 − (t1 + t2 + t3) − 2(t14 + t37)

1/ζ = 1 − 3
z
Λ
− 4 cosh β

z2

Λ2
. (T.10)

1Predrag: recheck that this equals D = a(a−1)(2a−1)
3(4a−1)
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Figure T.2: (a) The sawtooth map (T.1) partition
tree for figure T.1 (a); while intervals M1,M2,M3

map onto the whole unit interval, f (M1) =
f (M2) = f (M3) = M, intervals M4,M5 map
onto M1 only, f (M4) = f (M5) = M1, and sim-
ilarly for intervals M6,M7. An initial point start-
ing out in the interval M1, M2 or M3 can land
anywhere on the unit interval, so the subtrees orig-
inating from the corresponding nodes on the parti-
tion three are similar to the whole tree and can be
identified (as, for example, in figure 14.5), yield-
ing (b) the transition graph for the Markov parti-
tion of figure T.1 (a). (c) the transition graph in the
compact notation of (26.26).

(a)

1
2 6

31

54 7
3

1 3

(b) 1

4
5 6

3

7

1

2

3

(c)

6
7

4
5

2 31

1 3

follows from the loop expansion (15.15) of sect. 15.3.

The material flow conservation sect. 20.3.2 and the symmetry factorization
(26.36) yield

0 =
1

ζ(0, 1)
=

(
1 +

1
Λ

) (
1 − 4
Λ

)

which indeed is satisfied by the given value of Λ. Conversely, we can use the
desired Markov partition topology to write down the corresponding dynamical
zeta function, and use the 1/ζ(0, 1) = 0 condition to fix Λ. For more complicated
transition matrices the factorization (26.36) is very helpful in reducing the order
of the polynomial condition that fixes Λ.

The diffusion constant follows from (26.37) and (T.4)

〈n〉ζ = −
(
1 +

1
Λ

) (
− 4
Λ

)
,

〈
n̂2

〉
ζ
=

4

Λ2

D =
1
2

1
Λ + 1

=
1

10

Think up other non-integer values of the parameter for which the symbolic dy-
namics is given in terms of Markov partitions: in particular consider the cases
illustrated in figure T.1 and determine for what value of the parameter a each of
them is realized. Work out the transition graph, symmetrization factorization and
the diffusion constant, and check the material flow conservation for each case. De-
rive the diffusion constants listed in tableT.1. It is not clear why the final answers
tend to be so simple. Numerically, the case of figure T.1 (c) appears to yield the
maximal diffusion constant. Does it? Is there an argument that it should be so?

The seven cases considered here (see table T.1, figure T.1 and (T.8)) are the
7 simplest complete Markov partitions, the criterion being that the critical points
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golden mean!pruning
pruning!golden mean

figure T.1 Λ D

3 0
(a) 4 1

10
(b)

√
5 + 2 1

2
√

5

(c) 1
2 (
√

17 + 5) 2√
17

(c’) 5 2
5

(d) 1
2 (
√

33 + 5) 1
8 +

5
88

√
33

(e) 2
√

2 + 3 1
2
√

2

(f) 1
2 (
√

33 + 7) 1
4 +

1
4
√

33
7 2

7

Table T.1: The diffusion constant as function of the slope Λ for the a = 1, 2 values of ( T.8)
and the 6 Markov partitions of figure T.1

map onto partition boundary points. This is, for example, what happens for uni-
modal tent map; if the critical point is preperiodic to an unstable cycle, the gram-
mar is complete. The simplest example is the case in which the tent map critical
point is preperiodic to a unimodal map 3-cycle, in which case the grammar is of
golden mean type, with 00 substring prohibited (see figure 14.5). In case at
hand, the “critical” point is the junction of branches 4 and 5 (symmetry automat-
ically takes care of the other critical point, at the junction of branches 6 and 7),
and for the cases considered the critical point maps into the endpoint of each of
the seven branches.

One can fill out parameter a axis arbitrarily densely with such points - each of
the 7 primary intervals can be subdivided into 7 intervals obtained by 2-nd iterate
of the map, and for the critical point mapping into any of those in 2 steps the
grammar (and the corresponding cycle expansion) is finite, and so on.

T.1.3 Diffusion coefficient, numerically

(optional:)
Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈
x̂2

n

〉
. (T.11)

Study the convergence by comparing your numerical results to the exact answers
derived above. Is it better to use few initial x̂ and average for long times, or to
use many initial x̂ for shorter times? Or should one fit the distribution of x̂2 with
a Gaussian and get the D this way? Try to plot dependence of D on Λ; perhaps
blow up a small region to show that the dependance of D on the parameter Λ is
fractal. Compare with figure 26.5 and figures in refs. [1, 2, 9, 8, 10].
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T.1.4 D is a nonuniform function of the parameters

(optional:)
The dependence of D on the map parameter Λ is rather unexpected - even though
for larger Λ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow. An interpretation of this lack of
monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map (T.1) for
a random “generic” value of the parameter Λ, for example Λ = 6. The idea is to
bracket this value of Λ by the nearby ones, for which higher and higher iterates
of the critical value a = (Λ + 1)/4 fall onto the partition boundaries, compute the
exact diffusion constant for each such approximate Markov partition, and study
their convergence toward the value of D for Λ = 6. Judging how difficult such
problem is already for a tent map (see sect. 15.5 and appendix G.1), this is too
ambitious for a week-long exam.

References

[T.1] H.-C. Tseng, H.-J. Chen, P.-C. Li, W.-Y. Lai, C.-H. Chou and H.-W. Chen,
“Some exact results for the diffusion coefficients of maps with pruned cy-
cles,” Phys. Lett. A 195, 74 (1994).

[T.2] C.-C. Chen, “Diffusion Coefficient of Piecewise Linear Maps,” Phys. Rev.
E51, 2815 (1995).

[T.3] H.-C. Tseng and H.-J. Chen, “Analytic results for the diffusion coefficient
of a piecewise linear map,” Int. J. Mod. Phys.B 10, 1913 (1996).
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circle mapT.2 Deterministic diffusion, sawtooth map

To illustrate the main idea of chapter 26, tracking of a globally diffusing orbit
by the associated confined orbit restricted to the fundamental cell, we consider
in more detail the class of simple 1-dimensional dynamical systems, chains of
piecewise linear maps (26.9). The translational symmetry (26.10) relates the un-
bounded dynamics on the real line to the dynamics restricted to a “fundamental
cell” - in the present example the unit interval curled up into a circle. The corre-
sponding circle map f (x) is obtained by modulo the integer part. The elementary
cell map f (x) is sketched in figure 26.3. The map has the symmetry property

f̂ (x̂) = − f̂ (−x̂) , (T.12)

so that the dynamics has no drift, and all odd derivatives of the generating function
(26.3) with respect to β evaluated at β = 0 vanish.

The cycle weights are given by

tp = znp
eβn̂p

|Λp|
. (T.13)

The diffusion constant formula for 1-dimensional maps is

D =
1
2

〈
n̂2

〉
ζ

〈n〉ζ
(T.14)

where the “mean cycle time” is given by

〈n〉ζ = z
∂

∂z
1

ζ(0, z)

∣∣∣∣∣
z=1
= −

∑′
(−1)k np1 + · · · + npk

|Λp1 · · ·Λpk |
, (T.15)

the mean cycle displacement squared by

〈
n̂2

〉
ζ
=

∂2

∂β2

1
ζ(β, 1)

∣∣∣∣∣∣
β=0

= −
∑′

(−1)k (n̂p1 + · · · + n̂pk )2

|Λp1 · · ·Λpk |
, (T.16)

and the sum is over all distinct non-repeating combinations of prime cycles. Most
of results expected in this projects require no more than pencil and paper compu-
tations.

T.2.1 The full shift

Reproduce the formulas of sect. 26.2 for the diffusion constant D for Λ both even
and odd integer.
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figure 26.4 Λ D

4 1
4

(a) 2 +
√

6 1 − 3
4

√
6

(b) 2
√

2 + 2 15+2
√

2
16+4

√
2

(c) 5 1
(d) 3 +

√
5 5

2
Λ−1

3Λ−4
(e) 3 +

√
7 5Λ−4

3Λ−2
6 5

6

Table T.2: The diffusion constant as function of the slope Λ for the Λ = 4, 6 values of
(26.20) and the 5 Markov partitions like the one indicated in figure 26.4.

T.2.2 Subshifts of finite type

We now work out examples when the partition is Markov, although the slope is
not an integer number. The key step is that of having a partition where intervals
are mapped onto unions of intervals.

Start by reproducing the formula (26.28) of sect. 26.2.2 for the diffusion con-
stant D for the Markov partition, the case where the critical point is mapped onto
the right border of I1+ .

Think up other non-integer values of the parameter Λ for which the symbolic
dynamics is given in terms of Markov partitions: in particular consider the remain-
ing four cases for which the critical point is mapped onto a border of a partition in
one iteration. Work out the transition graph symmetrization factorization and the
diffusion constant, and check the material flow conservation for each case. Fill in
the diffusion constants missing in table T.2. It is not clear why the final answers
tend to be so simple. What value of Λ appears to yield the maximal diffusion
constant?

2

The 7 cases considered here (see table T.2 and figure 26.4) are the 7 simplest
complete Markov partitions in the 4 ≤ Λ ≤ 6 interval, the criterion being that the
critical points map onto partition boundary points. In case at hand, the “critical”
point is the highest point of the left branch of the map (symmetry automatically
takes care of the other critical point, the lowest point of the left branch), and for
the cases considered the critical point maps into the endpoint of each of the seven
branches. 3

One can fill out parameter a axis arbitrarily densely with such points - each of
the 6 primary intervals can be subdivided into 6 intervals obtained by 2-nd iter-
ate of the map, and for the critical point mapping into any of those in 2 steps the
grammar (and the corresponding cycle expansion) is finite, and so on. Some de- ⇓PRIVATE

2Predrag: fix the reference to figure T.1 in table T.2, increase vertical spacing
3Predrag: (e) in table T.2 was wrong: Λ = 5+

√
41

2 D = 5Λ+1
5Λ+8 , fixed 27mat98
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tails of how this is accomplished are given in appendixG.2 for a related problem,
the pruned Bernulli shift. ⇑PRIVATE

T.2.3 Diffusion coefficient, numerically

(optional:)
Attempt a numerical evaluation of

D =
1
2

lim
n→∞

1
n

〈
x̂2

n

〉
. (T.17)

Study the convergence by comparing your numerical results to the exact answers
derived above. Is it better to use few initial x̂ and average for long times, or to
use many initial x̂ for shorter times? Or should one fit the distribution of x̂2 with
a Gaussian and get the D this way? Try to plot dependence of D on Λ; perhaps
blow up a small region to show that the dependance of D on the parameter Λ is
fractal. Compare with figure 26.5 and figures in refs. [1, 2, 9, 8, 10].

T.2.4 D is a nonuniform function of the parameters

(optional:)
The dependence of D on the map parameter Λ is rather unexpected - even though
for larger Λ more points are mapped outside the unit cell in one iteration, the
diffusion constant does not necessarily grow. Figure 26.5 taken from ref. [9] il-
lustrates the fractal dependence of diffusion constant on the map parameter. An
interpretation of this lack of monotonicity would be interesting.

You can also try applying periodic orbit theory to the sawtooth map (26.9) for
a random “generic” value of the parameter Λ, for example Λ = 4.5. The idea is
to bracket this value of Λ by the nearby ones, for which higher and higher iter-
ates of the critical value a = Λ/2 fall onto the partition boundaries, compute the
exact diffusion constant for each such approximate Markov partition, and study
their convergence toward the value of D for Λ = 4.5. Judging how difficult such
problem is already for a tent map (see sect. 15.5 and appendix G.1), this is too
ambitious for a week-long exam.
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T.3 Cardioid Billiard

Arnd Bëcker (arnd.baecker@physik.uni-ulm.de) revised 31 Oct 96

www.physik.uni-ulm.de/theo/qc/baec/baecker.html

1. Poincaré section

2. billiard map

3. conjugate points (optional)

4. symbolic dynamics a) stable-unstable manifolds,
b) partition line, 2 symbols

5. binary interpretation

6. plot long orbit, show pruned area

7. approximate grammars, transition graphs

8. estimate topological entropy

9. periodic orbits (perhaps by Kai Hansen’s method,
ChaosBook.org/extras/orbits.ps.gz)

10. a) Lyapunov by numerical averaging
b) Lyapunov by cycling

11. Fredholm determinant zeros vs. published eigenvalues

References

[T.1] A. Bëcker and H.R. Dullin, “Symbolic dynamics and periodic orbits for
the cardioid billiard,” DESY report 95-198, arXiv:chao-dyn/9511004
(1995)

[T.2] H. Bruus and N.D. Whelan, “Edge diffraction, trace formulae and the car-
dioid billiard,” Nonlinearity 9, 1023 (1996); arXiv:chao-dyn/9509005.

[T.3] A. Bëcker, F. Steiner and P. Stifter, “Spectral statistics in the quantized
cardioid billiard,” Phys. Rev. E 52, 2463 (1995), DESY report 94-213,
arXiv:chao-dyn/9412007 (1994)
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T.4 Ray splitting billiard

Achim Kohler (ako@phyc1.physik.uni-freiburg.de) revised 31 Oct 96

Use as the Poincaré section the boundary between the two media:

1. Find Newtonian dynamics using ky = k′y; derive Snell’s law sin β =
√

1 − v0/E

2. construct the algorithm for determining periodic orbits by minimizing the
action; compute a set of short cycles for ?? value of the parameter ??

3. pruning: consider what happens to some simple trajectories as one varies
the parameter ?? from 1 (homogeneous disk) to ∞ (reflection only)

4. compute the Jacobian matrix for rays (not in the literature). It is a product
of 3 kinds of terms; free propagation, reflection, refraction

5. include quantum mechanics
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Ising model
Lorentz gas

T.5 Hydrogen in external magnetic field - dissociation rate

Kai T. Hansen revised 31 Oct 1996

T.6 Product of random matrices

Ronnie Mainieri revised 7 Nov 1996

1. Assume you have two positive matrices A and B and that you form products
of these matrices at random. How does the trace of the product grow as the
number of matices increases?

2. Think of the matrices as the Jacobian matrices of some dynamical system
and use that analogy to derive an expression for the asymptotic growth-
rate of the trace (this is the Lyapunov exponent for a product of random
matrices).

3. Write a Monte-Carlo simulator for these products.

4. Compare your results with the micro-canonical formulas of ref. [2].

5. Determine the Hamiltonian for an Ising model with random coupling among
the spins. Assume that the coupling can only assume a finite number of val-
ues.

6. Derive the transfer matrices for the model.

7. Suppose the free-energy is averaged over the possible couplings (quenched
disorder). Show that average free energy can be computed from the Lya-
punov exponent for the product of random matrices.

8. Compute the heat capacity for an Ising model on a strip of width L ∼ 10.

9. (Not in the literature) Derive an expression for the Lyapunov exponent when
the distribution of matrices is continuous.

T.7 Possible term projects

1. Lagrangian flow, passive advection

2. thermostat (stat. mech from deterministic chaos) (from L. Rondoni??)

3. 2-colliding disks gas

4. conductivity

5. triangular Lorentz gas
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6. 4-disk repeller

7. ?? (open for suggestions)

References

[T.1] F. J. Dyson. The dynamics of a disordered linear chain. Physical Review,
92(6):1331–1338, 1953.

[T.2] J. M. Deutsch and G. Paladin. Product of random matrices in a microcanon-
ical ensemble. Physical Review Letters, 62:695–699, 1989.

[T.3] R. Mainieri, “Zeta function for the Lyapunov exponent of a product of ran-
dom matrices,” Physical Review Letters 68:1965–1968, 1992.

[T.4] R. Mainieri, “Cycle expansion for the Lyapunov exponent of a product of
random matrices,” Chaos 2:91, 1992.
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Appendix U

Full, untruncated tables

Tables given in the text proper are often truncated, both in length and in num-
bers of significant digits. Full, untruncated tables are retained here for the
record.

Table U.1 is from exercise 13.11: all cycles up to 5 Poincaré sections returns
for the Rössler system (2.18). Table U.2 is from exercise 13.15.

From sect. 15.5: Constructing finite transition graphs of increasing length cor-
responding to A → 3.8 we find polynomials with better and better estimates for
the topological entropy. we get the following list of the length and the leading root

1453



Table U.1: The Rössler system (2.18): The itinerary p, a periodic point x p = (0, yp, zp) and
the expanding eigenvalue Λ p for all cycles up to the topological length 7.
( Joachim Mathiesen, Gabor Simon, Arindam Basu)

np p yp zp Λe

1 1 6.091768319056803 1.299731937639821 -2.4039535318268
2 01 3.915804049621049 3.692833386542665 -3.5120069815161
3 001 2.278281031720258 7.416480984019008 -2.3419235232340

011 2.932877559129124 5.670805943881501 5.3449081538885
4 0111 3.466758713211455 4.506217531477667 -16.6967406980700
5 01011 4.162798782914948 3.303903338609633 -23.1995830097831

01111 3.278914359770783 4.890452922955567 36.8863297988981
6 001011 2.122093931936202 7.886172854283211 -6.8576654190825

010111 4.059210605826523 3.462265228606606 61.6490940089068
011111 3.361494458061049 4.718206217035575 -92.0825560711089

7 0101011 3.842769382372052 3.815493592299824 77.7611048852412
0110111 3.025956697151134 5.451444475664179 -95.1838846735358
0101111 4.102255295518855 3.395643547170646 -142.2379888163439
0111111 3.327986189581191 4.787462810306583 218.0283602810993

Table U.2: All periodic orbits up to 6 bounces for the Hamiltonian Hénon mapping ( 13.36)
with a = 6. Listed are the cycle itinerary, its expanding eigenvalue Λ p, and its “center of
mass”. The “center of mass” is listed because it turns out the “center of mass” is often a
simple rational or a quadratic irrational.

p Λp
∑

xp,i

0 0.71516752438×101 -0.6076252185107
1 -0.29528463259×101 0.2742918851774
10 -0.98989794855×101 0.3333333333333
100 -0.13190727397×103 -0.2060113295833
110 0.55896964996×102 0.5393446629166
1000 -0.10443010730×104 -0.8164965809277
1100 0.57799826989×104 0.0000000000000
1110 -0.10368832509×103 0.8164965809277
10000 -0.76065343718×10 4 -1.4260322065792
11000 0.44455240007×104 -0.6066540777738
10100 0.77020248597×103 0.1513755016405
11100 -0.71068835616×10 3 0.2484632276044
11010 -0.58949885284×10 3 0.8706954728949
11110 0.39099424812×103 1.0954854155465
100000 -0.54574527060×10 5 -2.0341342556665
110000 0.32222060985×10 5 -1.2152504370215
101000 0.51376165109×10 4 -0.4506624359329
111000 -0.47846146631×10 4 -0.3660254037844
110100 -0.63939998436×10 4 0.3333333333333
101100 -0.63939998436×10 4 0.3333333333333
111100 0.39019387269×10 4 0.5485837703548
111010 0.10949094597×10 4 1.1514633582661
111110 -0.10433841694×10 4 1.3660254037844
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of the topological polynomial

3 0.618033988749895
8 0.626092036022089

20 0.626138437244524
22 0.626150182695135
24 0.626154789812107
25 0.626159623064632
27 0.626160754696731
29 0.626161198409497
33 0.626161304171948
48 0.626161304222203
50 0.626161304246055
58 0.626161304246642
61 0.626161304246780
63 0.626161304246834
66 0.626161304246848
69 0.626161304246851
71 0.6261613042468522050
72 0.6261613042468535497
74 0.6261613042468538645
75 0.6261613042468541946
77 0.6261613042468542719
81 0.6261613042468542903
83 0.6261613042468542950
85 0.6261613042468542968
86 0.6261613042468542987
88 0.6261613042468542992
90 0.6261613042468542993

For the closest stable period 90 orbit we obtain our best estimate of the topological
entropy of the repeller, figure 15.2:

h = − ln 0.62616130424685 . . . = 0.46814726655867 . . . . (U.1)
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[V.26] J. Rössler, M. Kiwi, B. Hess and M. Markus, Phys. Rev. A 39, 5954 (1989).
(THERE SHOULD BE MORE MARKUS REFERENCES?)

[V.27] R.M. Siegel, C. Tresser and G. Zettler, CHAOS 2, 473 (1992).

[V.28] T. Tél, J. Stat. Phys. 49, 157 (1982).

[V.29] S. Wiggins, Global Bifurcations and Chaos (Springer-Verlag, New York,
1988).

[V.30] A. Holle, J. Main, G. Wiebusch, H. Rottke and K.H. Welge, Phys. Rev.
Lett. 61, 971 (1988)

[V.31] D.S. Jones, The Theory of Electromagnetism (Pergamon, Oxford 1964),
chp. 8

[V.32] M.C. Gutzwiller, in R.L. Devaney and Z.H. Nitecki, Classical Mechanics
and Dynamical Systems (Marcel Dekker, New York 1981)

[V.33] M.C. Gutzwiller, J. Math. Phys. 18, 806 (1977)

[V.34] R. Devaney, J. Diff. Equ. 29, 253 (1978); Inventiones math. 45, 221 (1978);
Springer Lecture Notes in Math. 597, 271 (1977)

refs - 14jun2006 boyscout version14.4, Mar 19 2013



References 1458

[V.35] M.C. Gutzwiller, Physica D38, 160 (1989)

[V.36] R. Broucke, in Szebehely and B. Balasz, eds., Dynamical Astronomy (U.
of Texas Press, Austin, 1985) pp. 9–20.

[V.37] J. Kepler, Harmonice Mundi (Linz, 1619)

[V.38] H. Yoshida, Celestial Mech. 40, 51 (1987)

[V.39] E.B. Vul, Ya.G. Sinai and K.M. Khanin, Uspekhi Mat. Nauk 39, 3 (1984)
[Russian Math. Surveys 39, 1 (1984)].

[V.40] T. Barnes and G.I. Ghandour, Nucl. Phys. B146, 483 (1978).

[V.41] D. Sullivan, in P. Zweifel, G. Gallavotti and M. Anile, eds., Non-linear
Evolution and Chaotic Phenomena (Plenum, New York 1987).

[V.42] D. Sullivan, in Universality in Chaos, 2. edition, P. Cvitanović ed., (Adam
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Quotes, unused

Every nonlinear problem is different

— Yves Pomeau’s dictum

There is no beauty without some strangeness.

—William Blake

1

Truth is rarely pure, and never simple.

—Oscar Wilde

Abandon the search for Truth; settle for a good fantasy.

—Annalisa Bracco

Fermi was polite and friendly but was not impressed. He
said, “There are two ways to do calculations. The first
way, which I prefer, is to have a clear physical picture. The
second way is to have a rigorous mathematical formalism.
You have neither.” That was the end of the conversation
and of our theory.

— Freeman Dyson

Con pienso o sin pienso?
—Patricia Malamud, maid interview salary level

This view struck my diplomatic friend as impractical. He
recalled the story about Charles de Gaulle, who overheard
a frustrated reformer cry out, “Death to all fools!” Le
général shook his head wearily and observed, “That is a
vast program.”

—

Une idée, c’est déjà quelque chose.
—(a French colleague’s philosopher uncle)

1Predrag: crosscheck Blake quote
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Many questions are unanswerable. Many answers are
questionable.

—(Chinese fortune cookie)

A journey of a thousand miles must begin with a single
step.

—Lao-zi

You have been weighed, you have been measured, and you
have been found wanting.

—From “A Knight’s Tale,” the movie

English is just what we use to fill in between the equations.

—H. David Politzer

Nothing to be done.
—Samuel Beckett, Waiting for Godot

Not waiting for Godot is also waiting for Godot.
—Estragon

If you want love and admiration, get a dog.
—J.F. Kennedy (1961)

Fate laughs at probabilities.
—Edward Bulwer Lytton

“Nonlinear physics presents us with a perplexing variety
of complicated fractal objects and strange sets. Notable
examples include strange attractors for chaotic dynamical
systems, regions of high vorticity in fully developed tur-
bulence and fractal growth processes.”

—I. Procaccia, a Phys Rev. Lett.

Ak ja, livet er svært - men matematik er sværere.

—Storm P.

Det er vanskeligt at spå, især om fremtiden.

—Storm P.

Prediction is difficult, especially of the future.

—misattributed to N. Bohr

2 The theoreticians now work with an audacity unheard of in
earlier times, at present no physical law is considered as-
sured beyond doubt, each and every physical truth is open
to dispute. It often looks as if the time of chaos again is
drawing near in theoretical physics.

— M. Planck, Phys. Zeitschr. 11, 922 (1910)

2Predrag: acknowledge Planck quote from Pais: “Bohr,” p. 177.
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Many branches of both pure and applied mathematics
are in great need of computing instruments to break the
present stalemate created by the failure of the purely ana-
lytical approach to nonlinear problems.

—J. von Neumann, speech Montreal 1945

No one here gets out alive.

—Jim Morrison

How does it feel
To be on your own
With no direction home
Like a complete unknown?

— Bob Dylan, Like a Rolling Stone

Twenty years of schooling and they put you on the day
shift
Look out kid, they keep it all hid

—Bob Dylan, Subterranean Homesick Blues

Time is a great teacher, but unfortunately it kills all of its
pupils.

—Hector Berlioz

I don’t care what you say about me, ..., as long as you spell
my name right.

—George M. Cohan

To expect the unexpected shows a thoroughly modern in-
tellect.

—Oscar Wilde

The pure and simple truth is rarely pure and never simple.

—Oscar Wilde

Experience is the name everyone gives to their mistakes.
— Mr. Dumby in “Lady Windermere’s Fan,” by Os-

car Fingal O’Flahertie Wills Wilde

We live in hope and die in despair.
—Turgay Uzer

Why do you want to know?

—P.A.M. Dirac

3

3Predrag: from Joel Lebowitz via Sara A Solla, Granada, Spain, on 5/9/98; requires more of an
explanation
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And the reign of order gives way to the reign of chaos.
The physical universe, so glancingly built up in all its mul-
tiplicities in early episodes, begins to lose its plausibility.
Space and time, once so distinct, are shaken almost out of
recognition.

—R. Elleman, on the world of James Joyce, in New
York Review of Books (November 18, 1982)

Ibland blockerar man sig själv med ett projekt som blir så
stort att man till sist blir handlingsförlamad. Nu har jeg
släpt tanken att skriva färdigt bokan og det kändes som att
slippa bära en stensäck på ryggen.

—Per Olov Enquist, Dagens Nyheter (August 18,
1985)

Man kan drabbas av ambitiösa släktingar. Men den nor-
mala förstörelsen är när man sitter vid skrivmaskinen med
glasartad blick och stirrar på ingenting. Det ligger något
destruktivt i lusten att skapa.

—Per Olov Enquist, Dagens Nyheter (August 18,
1985)

U moru života
što vječno kipi
što vječno hlapi
sastaju se opet
rastaju se opet
možda iste kapi.
Možda bi se mogla desit ljubav
samo možda velim
ali ja neznam dali to želim ili ne želim.

—A Croatian poet (A.G. Matoš?)

If your experiment needs statistics, you ought t have done
a better experiment.

—Earnest Rutherford

I was misquoted.

—Mason Porter

I don’t mind being quoted. It’s something I can imagine
myself saying, so let’s assume that I did.

—Mason Porter

There you go. I have always been very quotable.

—Mason Porter

I am indeed infinitely quotable.

—Mason Porter

To appreciate these advantages, the system should be over-
looked as a whole.

— (from a paper posted on the arXiv)
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This chaos is killing me.
—David Bowie, “Hallo Spaceboy”

If you’re damned if you do and damned if you don’t, then
the Principle of Least Effort tells you that you shouldn’t.

—Mason Porter
The advantage of a bad memory is that one enjoys several
times the same good things for the first time.

—Friedrich Wilhelm Nietzsche

Unless handled with tranquility this equation can result in
considerable stress, ulcers and even death.

— Douglas Adams, The Hitchiker’s Guide to the
Galaxy

Always go to other people’s funerals; otherwise they
won’t go to yours.

—Yogi Berra

The future ain’t what it used to be.
—Yogi Berra

It ain’t over till it’s over.
— Yogi Berra

You can observe a lot just by watching.
—Yogi Berra

I never said most of the things I said.
—Yogi Berra

Experience is that marvelous thing that enables you to rec-
ognize a mistake when you make it again.

—F. P. Jones

In place of infinity, we usually put some really big number,
like 15.

—Anonymous Computer Science Professor

One must still have chaos within oneself to be able to give
birth to a dancing star.

—Friedrich Nietzsche

That which does not kill us makes us stronger.

—Friedrich Nietzsche

You need chaos in your soul to give birth to a dancing star.

—Friedrich Nietzsche

I love deadlines. I love the whooshing noise they make as
they go by.

—Douglas Adams
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Only wimps specialize in the general case. Real scientists
pursue examples.

—Sir Michael V. Berry, adapting a remark from
Beresford Parlett

When all is said and done, there’s nothing left to say or do.
—Darryl Dawkins (supposedly)

Chaos is the score upon which reality is written.
—Henry Miller, in Tropic of Cancer

There is only one thing that interests me vitally now, and
that is the recording of all that which is omitted in books.
Nobody, so far as I can see, is making use of those el-
ements in the air which give direction and motivation to
our lives.

—Henry Miller, in Tropic of Cancer

Boris has just given me a summary of his views. He is a
weather prophet. The weather will continue bad, he says.
There will be more calamities, more death, more despair.
Not the slightest indication of a change anywhere. The
cancer of time is eating us away. Our heroes have killed
themselves, or are killing themselves. The hero, then, is
not Time, but Timelessness. We must get in step, a lock
step, toward the prison of death. There is no escape. The
weather will not change.

—Henry Miller, in Tropic of Cancer

My endless inquiries made it impossible for me to achieve
anything. Moreover, I get to think about my own thoughts
of the situation in which I find myself. I even think that I
think of it, and divide myself into an infinite retrogressive
sequence of ’I’s who consider each other. I do not know
at which ’I’ to stop as the actual, and as soon as I stop,
there is indeed again an ’I’ which stops at it. I become
confused and feel giddy as if I were looking down into
a bottomless abyss, and my ponderings result finally in a
terrible headache.

—Poul Martin Mller, in Adventures of a Danish Stu-
dent

“It’s snowing still,” said Eeyore gloomily. “So it is.” “And
freezing.” “Is it?” “Yes,” said Eeyore. “However,” he said
, brightening up a little, “we haven’t had an earthquake
lately.”

— A. A. Milne “Winnie-the-Pooh”

Rabbit never minded saying things again, so he asked
where he should begin from; and when Pooh had said from
the moment when the fluff got in his ear, and Rabbit had
asked when that was, Pooh said he didn’t know because
he hadn’t heard properly.

— A. A. Milne “Winnie-the-Pooh”
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There are days when spelling Tuesday simply doesn’t
count

—A. A. Milne, “The House at Pooh Corner”

“I don’t see much sense in that,” said Rabbit. “No,” said
Pooh humbly, “there isn’t. But there was going to be when
I began it. It’s just that something happened to it along the
way.”

—A. A. Milne, “Winnie-the-Pooh”

Man må begrænse sig, det er en Hovedbetingelse for al
Nydelse.

—Søren Kierkegaard, Forførerens Dagbog

4

In economics, reflexivity runs counter to the notion of
equilibrium which an free market system is supposed to
tend towards. It is, indeed, the reason why open systems
do not reach equilibrium but are prone to instability and
self-increasing trends, cycles of boom and bust. Devel-
opment is not linear but feeds on itself. Instead of bal-
ancing towards the point of equilibrium self-reinforcing
trends create unstable far-from-equilibrium conditions.

— George Soros, “The Crisis of Global Capitalism”

5

Thirty-three percent of the public thought Jesus would not
drive a sport utility vehicle, while 29 percent thought he
would, 31 percent offered no opinion and 7 percent volun-
teered the reply that he would not drive, but walk.

— The Times referring to a poll by the Pew Research
Center and the Pew Forum.

We adore chaos because we like to restore order.

— M.C. Escher

There is lots of strangeness without beauty.
—Benny Lautrup

What we imagine is order is merely the prevailing form of
chaos.

— Kerry Thornley

It will take time to restore chaos [in Iraq].
— George W. Bush, American President

4Divikar: translate Kierkegaard
5Predrag: recheck Danek’s selection
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I know of scarcely anything so apt to impress the imagina-
tion as the wonderful form of cosmic order expressed by
the ‘Law of Frequency of Error’. The law would have been
personified by the Greeks and deified, if they had known of
it. It reigns with serenity and in complete self-effacement,
amidst the wildest confusion. The huger the mob, and the
greater the apparent anarchy, the more perfect is its sway.
It is the supreme law of Unreason. Whenever a large sam-
ple of chaotic elements are taken in hand and marshaled
in the order of their magnitude, an unsuspected and most
beautiful form of regularity proves to have been latent all
along.

— Sir Francis Galton

I’m a material girl in a material world.

—Madonna, Material Girl

Chaos is a name for any order that produces confusion in
our minds.

— George Santayana

The average Ph.D thesis is nothing but the transference of
bones from one graveyard to another.

— J.F. Dobie

Perhaps no hall of comparable size anywhere has served so
nobly as a spawning ground for young talent and, it must
be said, as a graveyard for the hopes of the mediocre.

— Donal Henahan

The first to reason by analogy was the devil.
— Islamic saying

Now this is not the end. It is not even the beginning of the
end. But it is, perhaps, the end of the beginning.

— Winston Churchill,

‘Follow me!’, the wise man said. But he walked behind.

— Leonard Cohen

To avoid getting mired in mathematical questions beyond
human capabilities, perhaps you should stay closer to
physics.

— D. Ruelle

Rarely is the question asked: Is our children learning?

— G.W. Bush

I think we agree, the past is over.

— G.W. Bush

the paths of error are various and infinite

— Gibbon
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Any job worth doing is worth doing right
— Freddie Ashley’s mother

Why is ‘abbreviation’ such a long word?
—

Nothing spoils fun like finding out it builds character.

— Calvin, Calvin & Hobbes.

Nature is not chaotic, nature follows rules.

— Hairless Wonder, Feb 15 2005

The sole cause of man’s unhappiness is that he does not
know how to stay quietly in his room.

— Blaise Pascal, Pensées (1670)

La silence éternel de ces especes infinis m’effraie.
— Blaise Pascal, Pensées (1670)

Vorsicht ist die Mutter der Porzelankiste

— Andreas Wirzba

We can. We will. We must.

— Franklin Delano Roosevelt

Life is nonlinear.

— David Weitz

Poetry is what is lost in translation.

—Robert Frost

I won’t answer your question, but the question you may
have wanted to ask.

— Leo P. Kadanoff

What does a mathematician say when he walks into a
kitchen and sees his mom on the kitchen table, standing
on her head? WOW!

— Denis Sullivan

Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

—W. Shakespeare, Hamlet

Instant gratification takes too long.

— Carrie Fisher
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Each time he thought things had reached a plateau of
weirdness, something even weirder had happened. The re-
sult, he realized, was that he was now accepting anything
that happened, no matter how weird, without resistance.
Chaos was the new order in his life.

— Sam in Coyote Blue, by Christopher Moore

All human knowledge begins with intuitions, then passes
to concepts, and ends with ideas.

— I. Kant

A retired Army two-star general [who requested
anonymity]: “If you raise a group of plumbers, you
shouldn’t be upset if they can’t do theoretical physics.”

— Fred Kaplan, “Challenging the Generals,” New
York Times Sunday Magazine (August 26, 2007)

Official Church teaching remains that the status of these
souls (who don’t seem to deserve hell, yet cannot follow
the divinely-revealed path to heaven) is in limbo - in other
words, their fate cannot be determined.

— en.wikipedia.org/wiki/Limbo

There are three stages in scientific discovery; first, people
deny that it is true; then they deny that it is important;
finally they credit the wrong person.

— Attributed to Alexander von Humboldt, by Bill
Bryson.

Karadžić AKA doktor Dabić nudio je i podmladjivanje,
prolepšavanje uz pomoć kvantne energokozmetike

— Blic Magazine, Belgrade (July 23, 2008)

As they say in Texas: ‘If all you ever do is all youve ever
done, then all youll ever get is all you ever got.’

— Thomas L. Friedman, New York Times (Septem-
ber 13, 2008)

Even a dead fish can go with the flow.
— Jim Hightower, Texas politician

Major combat operations in Iraq have ended.
— President G. W. Bush, May 1, 2003

· · · by the steepest decent method · · ·
—An unnamed conference speaker

That which is crooked cannot be made straight: and that
which is wanting cannot be numbered.

—Ecclestiastes 1.15
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For in much wisdom is much vexation, and he that in-
creaseth knowledge increaseth sorrow.

—Ecclestiastes 1.18

Sometimes the fastest way to get there is to go slow And
sometimes if you wanna hold on you got to let go

—Tina Dico, “Count To Ten”

He sed “it r finished” an he hung hiz hed, and he givded
up hiz spirit.

— lolcat Bible Translation Project

As always, the visible must be explained in terms of the
invisible.

— Yuri I. Manin

We are more deeply troubled when we wonder what the
author wants to say than when we do not quite see whether
what he or she is saying is correct.

— Yuri I. Manin

I do not mind if you think slowly, but I do object when you
publish more quickly than you think.

— Wolfgang Pauli

You know, what Mr. Einstein said is not so stupid...
— Wolfgang Pauli

The lesson I took away from it is that whenever anybody
asks you to do something off the wall, you should really
try to do it unless it involves being unethical or a two-plane
connection.

— Gail Collins, “To Be Old and in Woodstock,” New
York Times (August 14, 2009)

The theory of equivariant dynamical systems examines
generic properties within the restricted class of systems
possessing a particular symmetry. This theory describes
why symmetric equilibrium points typically have multi-
ple eigenvalues and complicated branching of equilibria
at bifurcations. [...] It further explains how the presence
of heteroclinic orbits becomes a persistent phenomenon
rather than one found only at bifurcations of generic sys-
tems.

— John Guckenheimer

6

The wisest philosophers have their doubts with regard to
every abstract theory concerning the motion of fluids.

— Giovanni Battista Venturi, “Experimental en-
quiries on the motion of fluids” (1799)

6Predrag: I disagree with Guckenheimer quote on “the presence of heteroclinic orbits.”
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—after Barry Blitt, New York Times, Sep. 13 2008

Hell is sitting on a hot stone reading your own scientific
publications.

— Erik Ursin

No one in this world has ever lost money by underestimat-
ing the intelligence of the great masses of the plain people.

— H.L. Mencken

Oh, you poor Yooropions, befuddled by the subtleties of
English articles.

— John F. Gibson, while proofreading this

Abstraction is the enemy of learning - it is the end, not
the beginning, of understanding. Mathematicians cannot
comprehend this, and I suppose it is conceivable that their
brains are wired differently.

— David Griffiths, in Physics World, Sep. 2009

Come, you are a tedious fool. To the purpose.
— W. Shakespeare, Measure for Measure

If I had had more time, I would have written less
— Blaise Pascal, a remark made to a correspondent

Men, it has been well said, think in herds; it will be seen
that they go mad in herds, while they only recover their
senses slowly, one by one.

— Charles Mackay

Everyone is entitled to his own opinion, but not his own
facts.

— Daniel Patrick Moynihan

It’s hard to be funny when you have to be clean.

— Mae West

Computers makes it easy to do a lot of things, but most of
the things that they make it easier to do don’t needs to be
done.

— Andy Rooney

No problem, mon - just a situation
— Jamaican saying

Credo quiam absurdum est

— Tertulianus
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As a theoretical physicist in search of fundamental laws,
he likes to compare his work to that of Kepler, Galileo and
Newton.

— Geoffrey West, in New York Times Sunday Mag-
azine (Dec 19, 2010)

Isaac Asimov’s Book of Facts: The state of Maine has
3,500 miles of coastline (here is another ‘fact’: “Maine is
the toothpick capital of the world”)

— Weekly World News Oct. 7, 1986.

Even though the government has a monopoly on violence,
violence cannot solve math problems.

— Jacob Appelbaum on Tor Hidden Services, in New
York Times Sunday Magazine (Dec 19, 2010)

[...) ogni categoria irazzionale è non razionale, ma non
ogni categoria non razionale è irrazionale.

— Kjartan’s sociology professor Federico
D’Agostino

Uncertainty is an uncomfortable position. But certainty is
an absurd one.

— Voltaire

Science originates from curiosity and bad eyesight.
— Bernard de Fontenelle, Entretiens sur la Pluralité

des Mondes Habités

If you can’t solve a problem, make it bigger.

—Donald Rumsfeld

You cannot walk straight when the road is crooked.
—Romani proverb

Think globally, act locally.

— Patrick Geddes

Sometimes I’ve believed as many as six impossible things
before breakfast.

— Lewis Carroll

We forget that Socrates was famed for wisdom not because
he was omniscient but because he realised at the age of 70
that he still knew nothing.

— Robert Lynd

Noise Killeth Thought.
— Friedrich Nietzsche : Thus Spake Zarathustra

Extraordinary how potent cheap music is.

— Noel Coward
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The way to be a bore is to say everything.

— Voltaire

If we want to taste the sweetness, you have to know what
is the taste of the bitterness.

— old Chinese slogan

At the end of the lecture, a little old lady at the back of the
room got up and said: “What you have told us is rubbish.
The world is really a flat plate supported on the back of a
giant tortoise.” The scientist gave a superior smile before
replying, “What is the tortoise standing on?” “You’re very
clever, young man, very clever,” said the old lady. “But
it’s turtles all the way down!”

— Stephen Hawking, A Brief History of Time

What is hateful to yourself, do not do to your fellow man.
That is the whole Torah; the rest is just commentary.

— Rabbi Hillel, Talmud Shabbat 31a

As usual when you discover something new, the response
comes in three waves. First, this is nonsense. Second, this
is trivial. Third, this is important, and we did it before you
did.

— Freeman Dyson

A new form of publishing does not triumph by convincing
its opponents and making them see the light, but rather
because its opponents eventually die, and a new generation
grows up that is familiar with it.

— Planck, misquoted

I have always been amazed at the neglect physicists be-
stow upon such precise mathematical statements as can be
derived. Apparently they hate mathematics and rigor.

— Clifford Truesdell

He tried to fight with the problem, but he quickly saw the
arguments he was employing were of the kind parroted by
physicists.

— Clifford Truesdell

As we all know, even today, the physicists have never
learned them, and with the help of computers probably
they never will.

— Clifford Truesdell

The paper by Irving & Kirkwood was full of delta func-
tions, infinite series, and other gobbledegook dear to hearts
of physicists and quite useless for the purpose at hand.

— Clifford Truesdell

—
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—

—

—

—

—

W.1 List of words used

List of word used in DasBuch, derived from .glimpse index, generated by

glimpseindex -S book/chapter/*tex book/Problems/*tex
The purpose of this list is to aid us in composing the index (and to catch a few
misspellings here and there).

• abelian abscissa accelerated acceleration accelerator action adiabatic ad-
jacency adjoint admissibility admissible advection alfalfa algebraic algo-
rithmic algorithm alternating analytical angular anaharmonic anisotropic
anomalous Anosov antiharmonic antisymmetry annulus aperiodic appel-
lation approximant approximate approximation araki Aristotle assignment
asymmetric asymptotic asymptotics atomic attracting attractor autocorrela-
tion automata automaton autonomous auxiliary average

• backscatter ballistic balmer banach barrier basin Bethe bilinear billiards bi-
nomial Birkhoff block boson boundary bounded bourbaki bracket braids
brain brains branch point breakdown Bunimovich

• calculator cantor capacity carlsberg casimir ceiling celestial cellular chain
chaology chaotic chaoticity characteristic characters chebyshev circle cir-
culant circular classification class closure clouds cluster coarse coefficient
coexisting collective colliding collinear collision combinatorial commensu-
rate commutative commutator compact compactification competition com-
plementary complete complexity complex compound computable compu-
tational concatenation concave conditional conductance cone configuration
confinement conformal confusion conjecture conjugacy conjugating con-
servation conservative constrained constraint contour contracting control
convergence convergent convexity convince cooperative copenhagen cor-
relation correspondence couette coulomb countable counterterm coupled
coupling covering creeping criterion critical cumulant curvature cutoff cy-
cle cyclic cycling

WordList 4aug2000boyscout version14.4, Mar 19 2013
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• dada daughter decay decoding decoherence decomposition decouple defo-
cusing degenerate dense density desymmetrization determinant determin-
ism deterministic devil diagmanetic diagonalization diagram dictionary dif-
feomorphism differentiable diffraction diffusion dimension diophantine dipole
dirac directed Dirichlet discontinuous discovery discrete discretization dis-
sociation disorder dispersing dissipation dissipative distance distinct distri-
bution divergence divisibility dogma dominant doubling droplet dual dual-
ity duffing Dylan dynamical dynamic dynamo

• eavesdropping Egypt Ehrenfest eigenbasis eigencondition eigendirection
eigenenergy eigenequation eigenfunction eigenschaften eigensolution eigenspace
eigenspectrum eigenstate eigenvalue eigenvector elastic elasticity electro-
magnetism electron ellipse elliptic embedding encoding endomorphism end-
point energy ensemble enthalpy entropy enumeration equilibrium equiparti-
tion equivalence ergodic ergodicity escape estimate Euclidean eurostar eval-
uation evolution exceptional excitable exercises exhaustive existence ex-
panding expansion expectation experimental experimentation experiments
exponential exponent extended extensive extraction extrapolation extremal
extremization

• factorial factorization factor farey Feigenbaum fermat fermi fermion fer-
romagnetic feynman fibonacci field fingerprint fingertip finite firmament
fisher flame flow fluctuation fluid focusing folding foliation forced formal-
ism forward fourier fractal fraction fractional Fredholm freedom frequency
fresnel friction frictionless frobenius front functional function functor fun-
damental

• gap gas gaussian gauss generalized generating generator generic geodesic
geometrical geometry geophysical ghost gibbs global gluing god goe golden
good gradient graining grammar grandfather grandmother graph gravity
grazing Green greatest Grothendieck group Gutzwiller gymnastics

• hamiltonian hamlet hankel hannay hard harmonic harmonize Hausdorff heav-
iside Heisenberg helium henkel henon hermitian hermiticity hexagonal hi-
erarchical Hilbert historical homework homoclinic homogeneity homoge-
neous horizontal horocycle horseshoe human huygens hydrodynamics hy-
drogen hyperbolic hyperbolicity hyperion hyperplane hypersurface hypoth-
esis

• ideal identity impact implicitly inadmissible incident incommunicable in-
complete incompressible incremental indecomposable independence inde-
terminacy indifferent induced inducing inequality inequivalent inertial in-
finite infinitesimal infinity information ingredient ingredients innumerably
instability instantaneous instanton integer integrability integral integration
integrator intelligence interacting interfacial interference intermittency in-
termittent interpretation intersection interval intrinsic invalidating invari-
ance invariant inverse inverted invertible ionization irrational irreducible
irregular irrelevant irreversibility isolated isomorphic isotopy isotropic it-
erated iteration itinerary

• jacobian Jacobi julia junction justification

WordList 4aug2000boyscout version14.4, Mar 19 2013
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• Keller Kepler keplerian kernel kierkegaard kinematic kinetic kink kneading
knot kolmogorov krein kronecker kubo kuramoto kurtosis kustaanheimo

• label ladder lagrange lagrangian laminar landau langevin language laplace
laplacian laser lattice lebesgue legendre leibniz length level lexical libra-
tion lifetime lifshitz light limbo limit linearization linear linked Liouville
Liouvillian literature localized local location locking logarithmic logistic
longitudinal loop Lorentz Lorentzian Lorenz love loxodromic Lozi lunar
Lyapunov

• macroscopic madelung magnetic magnetization magnification magnitude
Mandelbrot manifesto manifold mapping map marginal markov maslov ma-
terial mathematics matrix Maupertuis maximal maximizing Maxwell mean
measurable measurement measure mechanical mechanics mediant melan-
choly memory meromorphic mesoscopic method metric microcanonical mi-
croscopic microstate microwave minima minimal minimization Minkowski
miracle mirror Misiurewicz mixing mixmaster model modeling modes mod-
ulus Moebius molecular moment momentum monodromy monotone mono-
tonicity moon morphism morse multidimensional multilinear multimodal
multinomial multiplicative multiplicity multiplier multipoint

• naive natural nature necessary neural neuronal neuroscience neuroscientist
neutral Newton newtonian nightmare nitpicking nodal node noise noise-
less nonabelian noncanonical noncommuting nonequilibrium nonexponen-
tial nongeneric nonhyperbolic noninteger nonintegrable noninteracting non-
invertible nonleading nonlinear nonmixing nonmonotone nonnegative nonover-
lapping nonperturbative nonpositive nonscience nonselfadjoint nonsepara-
ble nonuniform nonuniqueness nonvanishing non-wandering normal nor-
malizable normalization notation nuclear nucleus number numerical

• observable operator optical optimal orbital orbit ordering orientation ori-
gin ornestein orthogonal orthohelium orthonormal oscillator overcounting
overlapping

• pairing parabola parabolic paradigm paradox parahelium parallel parame-
ter parametric parameterized parrot partial particle partition partner pascal
passive past pastry path pattern pauli pendulum perceive percourse peregri-
nation perfect period periodic permutation perpendicular perplexity persis-
tent perturbation perturbative phase phenomenological philosophical pho-
ton physical physics piecewise pinoballo pitchfork plague planar planck
plane planet planetary plemelj plot poincare pointlike point pointwise poi-
son poisson polar polarization pole polygonal polynomial polytope position
positivity postmodern potential powerlaw predragese preexponential pref-
actor prepending preperiodic prerequisite presentation preserving pressure
primary prime primitive primo principal principle probability process prod-
uct program prohibited projectile projection projector proliferation promises
proof propagation propagator proper prophet proportionality pruning pseudo-
cycle pseudo-orbit pseudos pseudospectral pseudosphere ptolemy pump

quadrant quadratic qualitative quantitative quantization quantum quark quar-
tic quasiclassical quasilinear quasiperiodic quintessential
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radial radical radii radius random randomization randomness rank rate ra-
tional reactants reagents real realign realistic reality realizable realization
realizing recoding recognition rectangle rectification recurrence recurrent
recursion recursive recycling reducible reduction redundant refinement re-
fining reflection refraction region regular regularization reinjection relabel-
ing relation relativistic relaxation relevant renormalization renyi reparametriza-
tion repeated repeller repelling repertoire repetition representation represen-
tative reproducible repulsive rescaling residue1 residue resolution resolvent
resonance response restor restricted resummation resurgence retracing re-
turn reversibility reversible reversing revolution Riemann rigorous robust
rotation route Ruelle runge

• saddle saddle point Sanskrit sawtooth scalar scale scaling scar scatterer
scattering scenario schedlbauer scruffy search secretification section secu-
lar segment semicircle semiclassical semiclassics semigroup semiline sen-
sitive separable separating sequence serapinski series shaded shading shad-
owing Shakespeare Shannon shear sheet shift sivashinsky shock shrinking
siegel signal sign similarity simple simplicial simplified simulation simulta-
neous Sinai single singlet singular singularity sink sisters Sivashinsky six-
fold skeleton skew Smale snell solar soliton solvable Sommerfeld sorrow
sorting source space spatial spatiotemporal spectral spectroscopy spectrum
specular speed sphere spherical Spiegel spike spin spiral splitting square
stability stadium stagnation staircase standard standing star state static sta-
tionarity stationary statistical statistics steady sticking sticky Stirling stir-
ring stochastic stochasticity stokes stosszahlansatz straddle straight strand
strange stranges stream strength stress stretch strict string strip strobe stro-
gatz stroke strong structural structure student subcritical subdeterminant
subdivide subexponential subgroup subinterval subleading submatrix sub-
sequence subset subshift subspace subspectrum substitution substring sub-
strip subsystem subtree sufficient summable sum supercritical superposition
superstable support surreal survival suspension symbol symbolic symmetric
symmetrization symmetry symplectic system

• takens tangency taylor technique tedious template temporal tensor tent ternary
tessellation thermodynamic thermodynamical thermostat threshold tiling
time tool topological topology toral tori torus trace tracks trajectory tran-
scendental transfer transform transformation transient transitional transition
transitive transitivity transport transpose transversality transversal transverse
trapped trapping traversal tree trellises triangle triangulation triple triplet
tropic truncation tunneling turbulence turnback turning

• ugly Ulam ultraviolet unbalance unbearable unbound uncertain uncontrol-
lable uncorrelated uncountable underestimate unfolding uniform unimodal
union unique unitary unit universal universality universe unperturbed un-
predictable unrestricted unstable unsung unsymmetrized

• vacuum validity value variable variance variational variety vattayismo vec-
tors velocity vertices vibrational vibrations violation viscosity visitation vi-
sualization volume voodoo vorticity
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• wandering wavefront wavefunction waveguides wavelength wavelets wavenum-
ber wave weak weapon webbook wedge weierstrass weighed weighing weighted
weight weil Weiner Weirstrass wentzel wenzel whiteheads wiener wild wind
Wintgen wondering word work world

• zero zeta zoology

Some picture files to check out:

/usr/doc/packages/wxgtk/latex/proplist/books.bmp color
/usr/doc/packages/wxgtk/latex/wx/book1.bmp (one open book)
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Cantor set
Smale, S.!horseshoe

Appendix X

Flotsam

This is an internal non-appendixwhich contains text that might be used “some-
where” in the book, or sent to the heap of history. 1

1. 2 3

2. A string of unmotivated definitions (no less than an unmotivated definition
of strings) has a way of making trite mysterious, so let’s switch gears again:
develop a feeling for why they are needed by first working out the simplest,
1-dimensional example with a single reflection symmetry.

3. A whole collection of such 1-dimensional maps useful in illustrating various
aspects of dynamics is listed in sect. C.1.

4. For a Smale horseshoe forward dynamics keeps doubling the number of un-
stable direction folds, while the backward dynamics does the same to the
stable direction folds. Hence topologically the action of the Smale horse-
shoes dynamics can be described as a direct product of two unimodal maps,
one for the past and one for the future.

what emerges is a complete binary Cantor set with the Smale horseshoe
foliation.

section 12

There is a one-to-one relationship between the periodic itineraries and the
unstable periodic orbits:

5. All points that do not escape to infinity neither forward nor backward in
time are contained in the intersections of the forward and backward folds
(figure 12.4 (a)). In particular, a cycle remains a cycle forever, so the set of
all periodic orbits is contained within these intersections.

1Predrag: lost Homework Assignements section - retype!
2Predrag: combine all refs *.tex files into one at the end of the day (and remember to turn of the

light)
3Predrag: can one get [7] from IHES?

1479
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structural stability6. 4 The growth rate of this vector is multiplicative along the trajectory

|η(t + t′)|
|η(0)|

=
|η(t + t′)|
|η(t)|

× |η(t)|
|η(0)|

. (X.1)

The evolution of the infinitesimal neighborhood can be represented by the
trajectory of a unit vector ui(t) = ui(x0, η(0), t) multiplied by the stretching
factor Λt(x0, η(0)) = |η(t)|/|η(0)|. 5 We implement this multiplicative evolu-
tion of by adjoining the (d + 1)-dimensional tangent space η ∈ TM to the
(d+1)-dimensional dynamical evolution space x ∈ M ⊂ Rd+1.

7. For asymptotic times and for almost every initial (x0, η(0)), the multiplica-
tive factor (X.1) converges to the leading expanding eigenvalue of the lin-
earized stability matrix for the flow. We shall exploit this in our discussion
of the Lyapunov exponents in sect. J.1.

8. We shall consider here only purely hyperbolic flows with the topology of a
Smale horseshoe. The important conceptual insight of Smale is the realiza-
tion that for such flows the associated dynamical zeta functions have nice
analytic structure. In a more formal setting, such flows are called “Axiom
A,” and Ruelle has proven that for expanding analytic maps the dynamical
zeta functions are meromorphic, and the spectrum is discrete.
6

9. Under one forward time step (11.20) the entire well-ordered past symbol
string flips wt → 1 − wt if the order reversing symbol 1 is moved from the
future itinerary S+ to the past itinerary S-.

exercise 12.5

10. The strategy outlined here is perhaps too laborious if only a rough esti-
mate of a dimension or a Lyapunov exponent is desired; a simple computer
generated average might suffice. However, the labor pays off if classical
correlation or quantum resonance spectra are called for. We also hope that
the high numerical precision attainable by cycle expansions might enable
us to attack higher-dimensional problems where crude averaging is compu-
tationally infeasible.
7

11. Present work is a physics application of the dynamical systems theory de-
veloped in refs. [27, 29, 28, 32]; we refer the reader to the above literature
for a survey of rigorous results. The emphasis will be on the practical appli-
cations of cycle expansions, at some expense to the mathematical rigor. We
are interested in the convergence of cycle expansions in generic settings,
i.e., situations in which neither the symbolic dynamics is strictly controlled
(there is no finite Markov partition), nor is the system uniformly hyperbolic
(the phase space is a mixture of stability islands and chaotic regions). Our
results will mostly not depend on assumptions about the existence of invari-
ant measures or structural stability of strange sets.

4Predrag: draw figure
5Predrag: crossrefer to sect. J.1
6Predrag: Might add some text from the Brasilia 1898 winter school.
7Predrag: Rosenqvist has also Tp = mean number of bounces. Is there a simple relation?

flotsam - 13jun2008 boyscout version14.4, Mar 19 2013
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stability!marginal
trajectory!unstable
trajectory!marginally

stable
trajectory!stable
escape rate

12. In general, depending on how their neighborhoods deform with time, tra-
jectories of a generic dynamical system are qualitatively of three distinct
types: they are either asymptotically unstable (positive Lyapunov expo-
nent), asymptotically marginal (vanishing Lyapunov) or asymptotically sta-
ble (negative Lyapunov).

The presence of complex numbers should intrigue you because in the def-
inition of the exponential of a matrix we only used real operations. Where
did the complex numbers come from? 8

Take two vectors x and y of the phase space Rd, combine them in a vector
w = x + iy in Cd, and then extend the action of A to these complex vectors
by Aw = Ax + iAy . The solution w(t) to the complex equation

ẇ = Aw (X.2)

x(t) = Re (w(t)) and y(t) = Im (w(t)) to the problem (4.10) over the reals.

13. Physically interesting repellers are not piecewise linear, but the above 2–
slope approximation gives a rough sketch of the eigenvalue spectrum. Re- Ronnie: What

2–slope?finements are obtained by replacing the 2nd iterate of the map by four lin-
ear segments, and so forth; that is precisely the meaning of the finite cycle
length truncations of cycle expansions. The eigenvalues are either real or
come in complex pairs - the main point is that for hyperbolic systems we
expect them to be exponentially spaced.

14. B. Eckhardt [?] credits T. Tél and P. Szepfalusy [?] and H. Fujisaka and
M. Inoue [?] for invention of the generalized evolution operators. Tél and
Szepfalusy have a brief comment that

〈
eα(x)

〉
, our eq. (17.10), could be used

to compute escape rates. H. Fujisaka and M. Inoue never refer to Ruelle,
but they do indeed write down the Ruelle-Araki operator explicitly.

15. This is even more striking in the case of kinematic dynamo that we shall
discuss in sect. ??. In this case the flow distorts an initial smooth vector
field (magnetic field flux lines) into a field whose direction some finite time
later varies rapidly across the exponentially shrinking folds. However the
eigenfunctions of the evolution operator at large times describe the mean
local density of the magnetic flux, with the cancelations of fluxes pointing
in opposite directions already taken into account.

16. Periodic point of a given itinerary is the fixed point of the corresponding
sequence of maps, for example

f0 ◦ f1 ◦ f1 ◦ f0 ◦ f1(x10110) = x10110 .

17. To derive this formula, separate the Schrödinger equation(
i�
∂

∂t
+
�

2

2m
∂2

∂q2
− V(q)

)
ψ(q, t) = 0

8Predrag: Jordan form, upper triangular respected, etc
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9 into equations for the density and phase by setting ψ =
√
ρeiS/�, ρ, S real,

and ρ > 0. For ρ � 0 the real part yields

q̇i =
pi

m
(X.3)

ṗi = − ∂

∂qi

(
V(q) − �

2

2m
1
√
ρ

∂2

∂q2

√
ρ

)
(X.4)

where pi =
∂S
∂qi

, while the imaginary part yields the mass conservation equa-
tion

∂ρ

∂t
+

∂

∂qi
(ρq̇i) = 0

Substituting (X.3) we rewrite the mass conservation equation as an equation
for evolution of κ = ln ρ,

κ̇ = − 1
m
∂2S

∂q2
.

The semiclassical approximation consists in setting � = 0 in (X.4)

q̇i =
pi

m
, ṗi = −

∂

∂qi
V(q) , κ̇ = − 1

m
∂2S

∂q2
. (X.5)

The first two equations yield the classical trajectory while the third one
evolves the local density of the wavefront along the trajectory. To solve it,
we need to initialize and evolve

Mi j =
∂2S
∂qi∂qj

10 This we shall accomplish in sect. ??. The interpretation is that the con-
tribution of wave packet is centered on the classical orbit, but one also has
to keep the track of the local curvature of the wavefront along the trajec-
tory — this is accomplished by keeping track of the cycle Jacobian matrix.
The result is that wave mechanics is described by purely classical evolution
(J.4), in the extended space (q, p,M) with the trace (J.5) (for 2-dimensional
Hamiltonian flows)

TrLt =
∑

p

Tp

∞∑
r=1

erhpδ(t − rTp)

| det (1 − Jr
p) |Δp,r,

Δp,r =

∫
g

du |ΛTpr(xp, u)|1/2δ(u − RTpr(xp, u)) , (X.6)

and the spectral determinant:

F(E) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−∑
p,r

1
r

|Λp|r/2ei(S p(E)/�+νpπ/2)r

(1 − 1/Λr
p)2(1 − 1/Λ2r

p )

⎞⎟⎟⎟⎟⎟⎟⎠ . (X.7)

9Predrag: Check throughout here. . .
10Predrag: recheck this!
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The final result is very similar in form to the classical spectral determinant
(1.17), and is a variant of the Gutzwiller trace formula, the seminal idea that
is the key to the theory of “Quantum Chaos” as we shall develop it here.

18. 11 What does this formula mean? 12 For a pinball S p =
∫

p.dq = �kLpk,
where Lp is the length of the p cycle (for constant velocity v = 1 the cycle
period Tp equals the cycle length Lp), and k is the wave number. The sim-
plest conceivable system with exponentially growing errors has only one pe-
riodic orbit (for example, there is only one unstable orbit bouncing between
two disks in a plane), and the dynamical zeta function (1.10) is simply

1/ζ(k) = 1 − eiLk+iπm/2

√
Λ

, (X.8)

where Λ is the expanding eigenvalue of the cycle, L is the cycle length,
m is the Maslov index (m = 4 for the 2 disk reflections) The resonances
1/ζ(kn) = 0 are given by

kn =
π

L
(m + 2n) − iλ/2, n ∈ Z ,

where λ = ln |Λ|/T is the cycle Lyapunov exponent. The real part of the
wavenumber k goes through a resonance for each integer number of nodes
n in a standing wave between the two disks, and the imaginary part indicates
that the resonance is unstable, with the decay rate proportional to the cycle
Lyapunov exponent.

19. If t is a continuous parameter, ft generates a flow; if t = n is discrete, fn

is nth iterate of the one-step mapping f . f may (but it does not have to) be
invertible. Often it is natural to associate with a given flow a discrete time
dynamical system by means of a Poincaré section, a hypersurface in M that
cuts across the flow. For example, instead of continuous pinball trajectory,
one can track the successive collisions of the ball with the billiard walls. In
this chapter we shall concentrate on such discrete time dynamics and the
qualitative information that can be extracted from it.

20. The system has expansion property iff each inverse ψi j : I j → Ii (defined
when ti j = 1) is unique and a contraction.

21. The characteristic polynomial for finite [N × N] matrix T is given by

det (1 − zT) =
N∑

n=0

(−z)n tr
(
∧nT

)
= 1 +

N∑
n=1

(−z)n

n!
Tn

= 1 − z tr T − z2

2

(
(tr T)2 − tr (T2)

)
− . . . (X.9)

11Rosenqvist: make his into an exercise later on.
12Predrag: write Bohr-Sommerfeld in the zeta fct form here
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where ∧nT is the n-th exterior power of matrix T and Tn is the sum of all
possible [n × n] subdeterminants of T

Tn = tr
(
∧nT

)
=

N∑
i1 ,···,in=1

∣∣∣∣∣∣∣∣
Ti1 ,i1 · · · Ti1 ,in
· · · · · · · · ·

Tin ,i1 · · · Tin ,in

∣∣∣∣∣∣∣∣
For example,

(
∧2T

)
i j,kl
=

1
2!

∣∣∣∣∣ Tik T jk
Til T jl

∣∣∣∣∣ = 1
2!

(
TikT jl − T jkTil

)
so tr (∧2T) =

∑
i j

1
2!

(
TiiT j j − T jiTi j

)
= 1

2!

(
(tr T)2 − tr (T2)

)
.

The determinant is a sum over all possible permutation cycles of the sym-
bols i1, · · · , in, 1 ≤ n ≤ N.

22. More generally, we shall refer to a symbolic dynamics as an “N-disk” sym-
bolic dynamics if the phase space can be partitioned in N distinct regions
such that an orbit starting in a partition can in one step reach all other parti-
tions except itself.

23. Consider a general 3-dimensional flow sketched in figure ??. To be inter-
esting, a flow should be recurrent; otherwise it is merely a transient that we
cannot observe for long. If the flow is recurrent, we can cut it by a Poincaré
section; if it is a map of a disk domain onto itself, it must have at least
one fixed point. Now consider the ways in which the flow can deform the
neighborhood of a fixed point. 13 There are essentially two possibilities: the
neighborhood can return wrapped around the fixed point (the fixed point is
stable or elliptic - see figure ??a), or squeezed, stretched and folded (the
fixed point is unstable or hyperbolic - see figure ??b). 14

24. Jp := JTp . (X.10)

25. These approaches explore the homoclinic tangle connected to the central
hyperbolic fixed point, but miss structures such as basins of attraction of
co-existing attractors. 15

26. Mathematicians tend to impose invariance by fiat, by declaring that the mea-
sure should be such that something or else is “Sup Min” or “Min Sup”. Such
pronouncements are not very helpful as they tend to be unimplementable
computationally, but we have to live with them at least through to the end
of this chapter.

13Predrag: find these figures!
14Predrag: we ignore the marginal or the parabolic borderline case for now...
15Kai H: The stable manifold of the fixed point misses the “other coexisting structure” but the

unstable manifold falls into it. We should maybe discuss more the relationship between the man-
ifolds of the hyperbolic fixed point and the manifolds of the non–wandering set. The union of all
crossings between unstable and stable manifolds of all hyperbolic points in the non–wandering set
is really the proper thing.
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27. Dahlqvist:
The invariant density I talk is

ρ(dx) = dx lim
t→∞

∑
p

∞∑
r=1

δ
(
t − rTp

)
|det (1 − Jr

p)|

∫
x′∈p

δ(x − x′)
dx′

v

where v is the speed at x.

28. Note that we have resummed the contribution of the cycle p to all times, so
truncating the summation up to given p is not a finite time n ≤ np approxi-
mation.

29. In what follows we shall often absorb z into the transfer operator: zL → L,
znptp → tp.

30. In the final evaluation z is set to z = 1, but the organization by powers
of zk is crucial to the convergence of cycle expansions. For example, for
1-dimensional Axiom A mappings Ck(s) ≈ C−k2

for any s - this super-
exponential convergence is precisely the reason why the variable z was in-
troduced in the first place. The zeros of FN(s, 1) are determined by standard
methods, such as the Newton-Raphson algorithm.

31. As shown in sect. ??, for Axiom A maps the coefficients in the semiclass-
ical spectral determinant F(z) =

∑
n Cnzn expansions fall off faster than

exponentially, as Cn ≈ Λ−n2
for 1-dimensional maps, as Cn ≈ Λ−n3/2

for
2-dimensional maps / 3-dimensional flows, and in d dimensions as Λ−n1+1/d

.

32. The Selberg zeta function [?] for geodesic flows on surfaces of constant
negative curvature is an exception: multiplicativity is guaranteed by the16

Bowen-Series map [28], which reduces the 2-dimensional flow to a direct
product of 1-dimensional maps, and makes it possible to construct the as-
sociated transfer operators in terms of one variable[45].

33. The notion of Axiom A systems is a mathematical abstraction of 2 and 3.

34. The shadowing cancelations require that a long cycle and the associated
pseudo-cycles (products of shorter cycles following the same symbol se-
quence) have nearly the same weight and a relative minus sign. The first
requirement is guaranteed by the hyperbolicity and the smoothness of the
flow. The second requirement implies that, contrary to the “semi-classical”
intuition, the cycle expansions are expected to converge for low eigen-
values. For sufficiently high wave numbers k the differences in actions
S p − S shadow = k(Lp − Lshadow) can be of order π or higher, in which case
tp − tshadow ≈ 2tp, rather than tp − tshadow ≈ tp/|Λp| expected at k = 0.

35. As we have seen above, the ζ function reduces to a finite polynomial for
piecewise linear mappings, but in general the curvature corrections cn in
(20.7) do not vanish. While the polynomial truncations of the cycle ex-
pansions usually already converge well enough, we can improve them by

16Predrag: probably wrong Bowen-Series reference.
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fitting c2, c3, . . . , cN with an exponential cn = A(zc)n, and summing the tail
estimate

1/ζ ≈ 1 −
∑

f

t f −
N∑
n

cn −
A(zc)N+1

1 − zc
. (X.11)

Such exponential tail estimates and 17 the corresponding poles are expected
from Ruelle’s relation (??) between dynamical zeta functions and spectral
determinants, and are indeed observed numerically; this particular estimate
works if the leading pole is real. Convergence of dynamical zeta functions
cycle expansions can be accelerated by a variety of numerical methods, but
both on theoretical grounds and in practice, the preferred alternative is to
use spectral determinants instead.

36. EAS says this is undoable- Poincaré failed to prove it:

37. Poincaré recurrence Prove the Poincaré recurrence theorem: Let U be
a measure preserving mapping of the phase space into itself and assume
that that the measure of the whole phase space is finite. Then, if A is a
measurable subset of the phase space, almost every point x of A returns
infinitely often to A under the mapping U.

Hint: Consider the set of points that do not return and its backward iterates.

38. Description of a non–wandering set in terms of cycles is the most control-
lable, but also the most laborious approach to exploration of non–wandering
sets.

39. M is related to the Jacobian matrix (??) by

Mi j = m
∂

∂qi(t)
q̇i(t) = mJ−1

k j J̇ik (X.12)

After some algebra, 18 Spiegel gets

Ṁi j = −M2
i j + m

∂

∂qj
q̇i (X.13)

40. For the density of energy levels of a 2-dimensional system the Gutzwiller
trace formula reads

d(E) =
∑

n

δ(E − En) = d(E) + dosc(E) (X.14)

where d(E) is the smoothed part of the level density given by the Thomas-
Fermi approximation:

d(E) =
∫

dpdq

(2π�)2
δ(E − H(q, p)) (X.15)

dosc(E) is the oscillatory part expressed as a sum over all classical periodic
orbits with the given energy.

17Predrag: could be a multiple pole, could be a complex pair, ...
18Predrag: recheck this!
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41. Perhaps more surprisingly, (19.15) also yields quantum resonances, with
the quantum amplitude associated with a given cycle

tp =
1√
Λp

e
i
�

S p(E)−iπmp/2 , (X.16)

essentially (in a somewhat vague sense) the square root of the classical
weight.

42. The semiclassical zeta function

det (Ĥ − E)sc(E) =
∏

p

∞∏
k=0

⎛⎜⎜⎜⎜⎜⎝1 − e−
i
�

S p(E)+iπmp/2

|Λp|1/2Λk
p

⎞⎟⎟⎟⎟⎟⎠ . (X.17)

43. former section: Quantum mechanics I

The second derivative matrix can be decomposed into combinations of dyads
and their eigenvalues in the usual way

∂2H
∂p∂p

=

d∑
i=1

λiDi, DiD j = δi jD j. (X.18)

The solution close to the singularity can be a linear combination of some of
these dyads corresponding to the R singular directions l:

M(t) =
1

t − tc

R∑
l=1

1
λl

Dl, (X.19)

where R is the number of singular directions. The dynamical systems that
we are really interested in - for example, smooth bound Hamiltonian po-
tentials - are presumably never really chaotic, and it is still unclear what
intuition is more rewarding: are quantum spectra of chaotic dynamics in
smooth bound Hamiltonian potentials more like zeros of Riemann zetas or
zeros of dynamical zeta functions?

44. 1/ζ0 has a double leading pole? The double pole is not as surprising as it
might seem at the first glance; indeed, for the semiclassical spectral deter-
minant (19.13) 1/ζ0 must have a double pole in order to cancel the leading
double zero of the (1/ζ1)2 factor.

45. The phase space for a system of N particles is a 2ND-dimensional vector
space, where D stands for the dimension of the configuration space coordi-
nates q = (q1, q2, . . . , qD) and the momenta p = (p1, p2, . . . , pD), one (p, q)
pair for each particle. The total number ND of the (coordinate, momen-
tum) pairs is called the number of degrees of freedom; if the total energy is
conserved, the phase space reduces to the 2ND− 1 constant energy surface.

46. Our convention is to denote the dimension of the space in which the flow
takes place by d + 1 in order that discrete time dynamics always takes place
in d dimensions, in this case by d-dimensional return maps for the Poincaré
sections that we shall describe in sect. ??.
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material derivative47. When we wish to stress the role of x0, we shall refer to the trajectory as
Some authors indeed denote the trajectories as x(t; x0) with x0 = x(0; x0).
to express that the evolution is such that x0 �→ f t(xInit).

48. In fact, in (??) the operator is a partial derivative with respect to time for x0.
The operator ∂/∂t is taken for fixed x0. 19

20 The discussion given here is a conventional one for general flows. When
the flow field vi is not autonomous, then the set of integral curves of vi at
a fixed t may differ from the set of trajectories. In that case, the derivative
of a function like I following the flow generally consists of two parts as in
(??). 21 One part is the derivative along the instantaneous trajectory (the
level curve at fixed t) and the other is the explicit time derivative.

We are here interested in autonomous flows with vi independent of time,
and that simplifies things for us. The operator vi∂i is the tangent vector to
the trajectory with components vi. When the flow is autonomous, as we
are assuming, its tangent vector field is constant in time and its integral
curves are coincident with the trajectories. Otherwise, the tangent vector
field varies in time and things look more complicated.

49. As it stands the identity (17.35) is correct even if f t is not an ergodic flow on
M. For example, M could decompose into a series of ergodic components
without invalidating the derivation. The decomposition would be reflected
in a factorization of the spectral determinant (to be defined in (19.9)).

50. Markov partitions are not canonical, and use of the symbolic dynamics does
not respect smoothness.

51. remark that transients lead to factorization of det (1 − zT ).

52. The total time derivative d
dt = ∂t + vi∂i is called a material derivative.

53. However, if we are interested in computing the topological entropy (15.5),
the determinant is clearly the way to go. If we were trying to find by trial
and error all short cycles and extrapolate h from a finite sequence N1, N2,
N3, N4, N5, · · ·, it would take a while before we would get any decent con-
vergence.

54. Equivalently, such graph can replaced by an alphabet. For example, starting
with node 0, all possible non-self-intersecting return paths are
{0, 1000, 1100(1100)k 0; 1100}, and any path can be composed of these “let-
ters.” As k = 0, 1, 2, 3, . . ., the alphabet is infinite, but complete: any ad-
missible string is a sequence of letters from the alphabet, with no further
pruning rules.

55. The physical implication of the dominance of the smallest of the cycle
eigenvalues is that the higher eigenvalues in the spectrum will be more sen-
sitive to presence of almost stable orbits. In contexts such as the Hénon

19Predrag: what is this good for?
20Predrag: will go away
21Predrag: EAS: Here a reference to a gook like Schutz’ Geometry for Physicsts might be suit-

able.
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periodic!point!unstable
unstable!periodic

point
periodic!point!dense

map “strange attractors” and quasi-ergodic Hamiltonian systems such as
the x2y2 potential, this means that while leading eigenvalues might con-
verge well (for example, in the computation of the Hausdorff dimension of
a non–wandering set), the distribution of high eigenvalues is in principle
unknowable, as it depends on the (structurally unstable) homoclinic tan-
gencies and presence of arbitrarily miniscule islands of stability. From this
point of view it is not at all clear that we should or can worry deeply about
the asymptotic eigenvalue distributions, as is the prevailing trend in studies
of quantum chaos. Indeed, from the vantage point of the Selberg product
expansions our main concern is the development of accurate cycle expan-
sions for the bottom of quantum spectra, and incorporation of corrections
to the semi-classical approximations to the spectrum.

56. Both in classical and quantum mechanics one has a choice of implementing
dynamical evolution on densities (“Schrödinger picture,” sect.16.5) or on
observables (“Heisenberg picture,” sect.17.2 and chapter 18): Both in clas-
sical and quantum mechanics one has a choice of representing evolution by
operators (“Schrödinger picture,” sect. 16.5) or by matrices (integral ker-
nels, Green’s functions – “Heisenberg picture,” sect. 17.2 and chapter 18).
In in what follows we shall find the second formulation more convenient,
but the alternative is worth keeping in mind when posing and solving in-
variant density problems.

57. We see that the phase space partitioning of figure1.9 is not a peculiarity of
pinballs, but a property of a large class of smooth flows.

58. The compression at the bend might lead to local stability, but as all points
in this segment escape to infinity under forward iteration, the potential non-
hyperbolic region is cut out and thrown away.

59. The unstable periodic orbits are isolated and uniformly sprinkled over the
survivors’ phase space, as the phase space is tessellated in strips of distinct
n-step itineraries, and within each such strip there is a periodic point of
period n.

60. the periodic points are dense on the asymptotic repeller

61. Turning this intuition into cold calculation will lead us, in clear physically
motivated steps, to almost everything one needs to know about deterministic
chaos: from Smale horseshoes, through Cantor sets, Lyapunov exponents,
symbolic dynamics, discrete symmetries, bifurcations, pruning, diffusion,
all the way to transfer operators,thermodynamic formalism, the classical
and quantum zeta functions, and spectral determinants.

62. While individual trajectories are exceedingly sensitive to noise, the asymp-
totic density eigenfunctions are robust.

63. The bold claim is that once you understand this, classical ergodicity, wave
mechanics and stochastic mechanics will be at your feet, special cases to be
worked out at your leisure. 22

22Predrag: the bad news is that field theories remain out of reach.
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64. The Hénon map is a concrete implementation of the Smale horseshoe of
sect. 12, a kind of a more realistic, nonlinear baker’s map.

65. If the ingoing coordinates are (qn, pn), the outgoing coordinates (qn+1, pn+1)
refer to the next collision disk. 23 x ∈ [0, L] × (−π/2, /π/2)

The natural measure is dsd sin θ.

66. While various periodic orbit formulas may be formally equivalent, in prac-
tice some are vastly preferable to others. Trace formulas, such as (1.15) and
the semiclassical Gutzwiller trace formula of chapter ?? are difficult to use
for anything other than the leading eigenvalue estimates. As we shall see
in chapter 23, not only is the spectral determinant exact, but it is also the
tool of preference for evaluation of classical and semiclassical averages in
low dimensional chaotic dynamical systems, as it has superior convergence
properties (this is illustrated, for example, by table20.2).

67. If |Λe| > 1 > |Λc| , the cycle is hyperbolic; if both eigenvalues are contract-
ing the cycle is stable; and if they are both expanding, the cycle is repelling.

68. The only parameter in the system is R/a, the ratio of the center-to-center
disk separation R and the disk radius a.

A pinball trajectory is fully determined by specifying (p, q), where q is
the position of the collision of the pinball measured as arclength along the
reflecting wall, p = sin θ is the momentum parallel to the wall, and θ is
the angle between the outgoing trajectory and the normal to the wall (see
figure 3.9 (a)).

69. A bar over a finite block of symbols denotes a periodic itinerary with an
infinitely repeating basic block; we shall omit the bar whenever it is clear
from the context that the trajectory is periodic.

70. The phase space of a generic nonlinear dynamical system is an infinitely
interwoven mixture of islands of stability and regions of chaos.

71. In Ruelle’s monograph transfer operator technique (or the “Perron-Frobenius
theory”) and Smale’s theory of hyperbolic flows are applied to zeta func-
tions and correlation functions. The hyperbolic case is treated, and the es-
sential spectrum discussed. The Grothendieck theory and Fredholm deter-
minants were introduced in Ruelle’s 1989 papers [?,7]. 24

72. The rapid convergence is illustrated by the number of significant digits of
γ computed from truncations of (1.11) to different maximal cycle lengths
listed in table X.1.

73. The set of the shortest cycles is drawn in figure 43.5, and a typical compar-
ison of the exact quantum and the cycle expansion eigenenergies is given in
table X.2. 25 26

23Predrag: move exercise 8.6
24Predrag: can one get [7] from IHES?
25Predrag: recheck -eigenenergies or wave numbers?
26Predrag: try floating table X.2
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N . F(s) 1/ζ(s)
1 0.39 0.407
2 0.4105 0.41028
3 0.410338 0.410336
4 0.4103384074 0.4103383
5 0.4103384077696
6 0.410338407769346482
7 0.4103384077693464892
8 0.410338407769346489338468
9 0.4103384077693464893384613074

10 0.4103384077693464893384613078192

Table X.1: 3-disk repeller escape rates for the disk-disk center separation R = 6, disk
radius a = 1, computed from the cycle expansions of the spectral determinant ( 1.17)
and the dynamical zeta function (1.11), as function of the maximal cycle length N. The
convergence of the dynamical zeta function is exponential; the convergence of the spectral
determinant is super-exponential, with the number of significant digits growing as N 3/2

with the truncation length.

n QM cycles

0 2.903721 2.92825
1 2.145974 2.13562
2 2.061272 2.05923
3 2.033587 2.03288
4 2.021177 2.02085
5 2.014563 2.01439
6 2.010626 2.01052
7 2.008094 2.00802
8 2.006370 2.00632
...

...
...

∞ 2.0 2.0

Table X.2: Exact quantum eigenenergies vs. the semiclassical eigenenergies obtained from
cycle expansions: the parahelium bound state (L, S = 0) series. See chapter ?? for details.
(Gregor Tanner)
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quantum!momentum
momentum quantum
Planck constant

74. the quantum momentum of a particle described by (38.1)

p ∼ ψ(q, t)∗(−i�
∂

∂q
)ψ(q, t) =

∂

∂q
R(q, t)A2(q, t) − i�A(q, t)

∂

∂q
A(q, t)

remains finite, leading to a well defined classical momentum. 27 Since in
general quantum operators are related to classical quantities C(q, p) by p →
−� ∂∂q replacement, quantum operators acting on WKB functions also have
well defined classical �→ 0 limits.

75. Not that far in future, the classical mechanics textbooks might have a chap-
ter on the Keplerian motions followed by a chapter on chaos; and the quan-
tum mechanics textbooks might have a chapter on the (Keplerian) Bohr
hydrogen atom followed by a chapter on the (classically chaotic) helium
atom. Here follows our attempt to formulate such “canonical” chapter.

76. Since the wavelength λ is proportional to the Planck constant �, this short
wavelength semiclassical approximation is often called a small � approxi-
mation.

77. Tp =
d
dE S p(E)is the classical period of cycle p.

78. Before we do that, a great deal of simplification can be achived by intro-
ducing parallel and transverse directions with respect to the direction of
the velocity. A small variation dq in q can be decomposed into a paral-
lel displacement dq‖ and transverse displacement vector dq⊥ such, that dq‖
is parallel with the momentum vector p = ∂qR(q, q′, t) = ∂qS (q, q′, E),
while dq⊥ is transverse to it. The small variation of R can be written as
dR = ∂qR(q, q′, t)dq‖ and we can define the parallel momenta as

∂R(q, q′, t)
∂q‖

= p‖ = |p|.

28 The variation does not depend on dq⊥ so we can write

∂

∂q⊥
R(q, q′, t) = p⊥ = 0 ,

and similarly for dq′‖, dq′⊥, p′‖ = −|p
′| and p′⊥ = 0.

The determinant in (38.38) can be written in terms of the new coordinates
as

det

(
−∂

2R(q, q′, t)
∂qk∂q′l

)
= (−1)ddet

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂2R(q,q′,t)
∂q⊥∂q′⊥

∂2R(q,q′,t)
∂q⊥∂q′‖

∂2R(q,q′,t)
∂q‖∂q′⊥

∂2R(q,q′,t)
∂q‖∂q′‖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (X.20)

There is an intimate relation between the paralell direction and the time vari-
able, which can be uncovered by taking the q′‖ derivative of the Hamilton-
Jacobi equation

∂

∂t
R(q, q′, t) = −H(q,

∂

∂q
R(q, q′, t)). (X.21)

27Predrag: Sune: mention Ehrenfest therem, or reference
28Predrag: ?
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We obtain

∂2R(q, q′, t)
∂q′‖∂t

= −|q̇|∂
2R(q, q′, t)
∂q‖∂q′‖

.

Taking the q′⊥ derivative of (X.21) yields

∂2R(q, q′, t)
∂q′⊥∂t

= −|q̇|∂
2R(q, q′, t)
∂q‖∂q′⊥

.

With such relations the second derivative matrix of Hamilton’s principal
function can be rewritten as

det

(
−∂

2R(q, q′, t)
∂qk∂q′l

)
= (−1)ddet

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∂2R(q,q′,t)
∂q⊥∂q′⊥

1
q̇′
∂2R(q,q′,t)
∂q⊥∂t

− 1
q̇
∂2R(q,q′,t)
∂t∂q′⊥

− 1
q̇q̇′

∂2R(q,q′,t)
∂t2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
We remove the velocities from the last column and row and get

det

(
−∂

2R(q, q′, t)
∂qk∂q′l

)
=

(−1)d

|q̇||q̇′| det

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∂2R(q,q′,t)
∂q⊥∂q′⊥

∂2R(q,q′,t)
∂q⊥∂t

∂2R(q,q′,t)
∂t∂q′⊥

∂2R(q,q′,t)
∂t2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (X.22)

Now we show that the second transverse derivative matrix of the Hamilton’s
principal function coincides with those of the action. The mixed derivative
can be calculated by taking the transverse derivatives of the transverse part
of the identity (38.40)

∂2R(q, q′, t)
∂q⊥i∂q′⊥ j

=
∂2S (q, q′, E)
∂q⊥i∂q′⊥ j

+
∂2S (q, q′, E)
∂q⊥i∂E

∂E
∂q′⊥ j

.

The last partial derivative can be reexpressed by taking partial derivatives
of (38.37) yielding

∂E
∂q′⊥ j

= −∂
2R(q, q′, t)
∂q′⊥ j∂t

.

Then taking partial derivatives of (38.40) yields

∂2S (q, q′, E)
∂q⊥i∂E

=
∂2R(q, q′, t)
∂q⊥i∂t

∂t
∂E

,

where

∂E
∂t
= −∂

2R(q, q′, t)

∂t2
.

Using these relations we finally obtain

∂2S (q, q′, E)
∂q⊥i∂q′⊥ j

=
∂2R(q, q′, t)
∂q⊥i∂q′⊥ j

− ∂2R(q, q′, t)
∂q⊥i∂t

∂2R(q, q′, t)
∂q′⊥ j∂t

/
∂2R(q, q′, t)

∂t2
.
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Using the identity of exercise 38.17, the determinant of the second trans-
verse derivative of the action becomes

exercise 38.17

det

⎛⎜⎜⎜⎜⎜⎝∂2S (q, q′, E)
∂q⊥i∂q′⊥ j

⎞⎟⎟⎟⎟⎟⎠ = 1
∂2

∂t2 R(q, q′, t)
det

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∂2R(q,q′,t)
∂q⊥∂q′⊥

∂2R(q,q′,t)
∂q⊥∂t

∂2R(q,q′,t)
∂t∂q′⊥

∂2R(q,q′,t)
∂t2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .(X.23)

79. say monodromy = one run around

80. The stable/unstable manifolds foliation of the phase space are the essential
tool for constructing the Markov partitions of chapters ?? and ??.

81. Then we shift gears and in sect. A.7 we spin a quantum mechanical tale. As
this is only in part a book about quantum mechanics, one could have equally
well praised great mathematicians, or pondered non-equilibrium statistical
mechanics: appendix A offers one such historical overview of the develop-
ment of chaotic dynamics.

mostly of scholarly and human interest only.

Words are cheap.

You might want to skip the overture and head straight to the starting line;
the book proper starts in sect. 1.3.

We start out humbly.

82. to set the stage for the formulation of a theory predicting dynamical aver-
ages of observables - and that collides with the temptation to present a fuller
summary of the theory of dynamical systems.

83. In chapter ?? we started out by counting individual itineraries, and then
learned how to put this local information together in order to extract a global
property of the system, the growth rate of the total number of trajectories.
We shall now traverse the same route again, but this time not just count tra-
jectories but learn how to actually compute them and measure their relative
importance by measuring sizes of their neighborhoods.

In chapter ?? we shall assemble together this local and global information
and fashion from it the dynamical zeta functions and spectral determinants
in chapter 18. They are the weighted generalizations of the topological zeta
function of chapter 15.

In chapters ?? and 15 we learned how to partition the phase space and count
the pieces.

84. In sect. 15.1 we have seen that the topological entropy, the asymptotic rate
of growth of the number of topologically distinct trajectories, is given by the
leading eigenvalue of the transition matrix. It is our goal now to generalize
this observation and relate general asymptotic averages over chaotic dynam-
ics to eigenvalues of evolution operators. As we shall now show, in the case
of piecewise-linear approximations to dynamics these operators reduce to
finite matrices, but for generic smooth flows, they are infinite-dimension-
al linear operators, and finding smart ways of computing their eigenvalues
requires some thought.
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85. Ronnie’s text moved from example 2.3:

The reason we can do that is that it is always possible to convert a flow that
depends on time into a flow that does not. The trick is to consider time t
one of the dynamic variables and introduce a new variable, say θ, to be the
new time. The two will be related by an equation that states that they flow
at the same rate. So if we have

ẋ = v(x, t) (X.24)

we set y to be the vector {x, t} and add the equation

dθ
dt
= 1 (X.25)

to the vector field v so that V(y) = {v(x, t), 1} resulting in the autonomous
system

ẏ = V(y) . (X.26)

86. From chapter 3:

We shall also find it convenient to define partial stabilities along cycle laps

f j(xa + φ) = xb + hb(Λ jh
−1
a (φ))

f k(xb + φ) = xa + ha(Λkh−1
b (φ))

where

Λ j =

b−1∏
c=a

f ′(xc), Λk =

a−1∏
c=b

f ′(xc)

and Λ jΛk = Λ.

At this point we note that while in the deterministic case the cycle weight is
given by the cycle stability, a quantity invariant under all smooth coordinate
transformations, the higher order corrections are not invariant. The noise is
defined with respect to a particular coordinate system, and it has no invariant
meaning.

87. The thermodynamic limit is of central importance for stat mech. It is only
in the thermodynamic limit that the properties of the bulk are observed, that
the possibility of studying phase transitions emerges and that the connection
with field theories is made. The approach to the thermodynamic limit is the
major stumbling block in the study of statistical mechanics systems and
field theories by Monte Carlo methods (the other being the slowing down
of convergence as a phase transition is approached). If Monte Carlo is to
say anything about physical systems it has to do give results in the limit of
large systems.

In the study of dynamical systems the long term behavior of the system
can be studied by considering the Liouville operator (or its discrete time
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dynamical
system!smooth

smooth!dynamics

analog). This operator, and eigenvector corresponding to the largest eigen-
value, permit the study of all the averages of the system. A convenient way
to study the properties of the system is to consider the zeta function related
to the Liouville operator. The spectrum is contained in the zeta function
related to the system. The difficulty is that when the zeta function is com-
puted as a power series, all but the largest eigenvalue are within its radius of
convergence. The origin of the poles of the zeta can be understood and sys-
tematically removed to obtain function with a larger radius of convergence.
If this procedure is carried out for all poles one obtains the Fredholm deter-
minant of the operator, an entire function.

The thermodynamic formalism can be applied to either spin systems or to
dynamical systems. In dynamical systems one is interested in the long term
behavior of the system: what is the average velocity as time goes to infin-
ity? In a spin system one is interested in the large size behavior: what is the
average magnetization as the size goes to infinity? To study the averages
in dynamical systems it is convenient to consider its zeta function. In one
function the behavior of all periodic orbits are collected and the singulari-
ties are located at the values of the average one is trying to compute. For
different observables, different zeta functions must be considered, but they
are all closely related. The difficulty in studying the zeta function is that its
power series expansion has a limited radius of convergence. Its poles can be
removed by considering how the periodic orbits conspire to create the pole,
and the procedure can be carried out so that all poles are removed — this is
the Fredholm determinant. The zeta function can also be constructed for a
spin system, but there is no analog of the Fredholm determinant. Given the
analogies between spin and dynamical systems it would be expected that a
Fredholm determinant would exist. The basic difficulty is that in dynamical
systems the smoothness of the flow can be used to compute the determinant,
whereas in spin system, its discreteness precludes any smoothness.

If we put further constraints on the interactions, then better results can be
obtained. The sharpest results for the convergence towards the thermody-
namic limit come from transfer matrix descriptions of the spin systems. If
the transfer matrix can be written for the system, then the convergence is
exponentially fast in one of the directions of the system.

Cycle expansions are an efficient method to compute the properties of er-
godic systems [1]. They have been successfully applied to chaotic dynam-
ical systems [1, 2], spin systems in statistical mechanics [8, 9], and to the
semiclassical quantization of chaotic systems [4, 10]. In a cycle expansion,
periodic orbits of a system are identified and each orbit is given a weight
(such as the stability of an orbit, or the energy of a configuration). The
weights are then combined into an expansion that uses shorter orbits to es-
timate the weight of longer orbits. The more orbits added to the expansion,
the more accurate the estimates. The great advantage of cycle expansions is
that analytic understanding of the system (of its symmetries [1], or its partly
integrable regions [11], for example) can be combined with numerical re-
sults.

Some cycle expansions converge faster than others. Rapid convergence has
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been achieved for dynamical systems [2] and, recently, for semiclassical
quantum mechanics [6]. It hinges on computing a Fredholm determinant in
a coordinate-free manner. We would like to show that this is also possible
for spin systems.

I will do this by geometrizing a spin system; transforming it into a low-
dimensional dynamical system and constructing its Fredholm determinant.
Using the known results for chaotic systems, this means that expansions for
thermodynamic quantities will converge faster (both qualitatively and quan-
titatively) than the exponentially fast convergence obtained using transfer
matrices. There are many advantages of carrying out this procedure for a
spin system: it allows the use of differentiable methods, before difficult due
to the discrete nature of spins; and it gives a general framework in which
to construct other rapidly converging cycle expansions, as there are few re-
strictions on the spin interaction.

The basic idea in the geometrization of spin systems is not to consider the
shift of spin configurations as the dynamics, but instead, to consider the dy-
namics of a few observables (such as the interaction energy or the magneti-
zation). To explain how this is done, we will review the transfer operator (a
generalization of the transfer matrix) which acts on observables (functions
of configurations). Then the L operator will be introduced, similar to the
transfer operator, but acting in a more restricted space, that of functions that
depend only on the effective field at a point. This difference turns out to
be crucial. To study the spectrum of the L operator one uses cycle expan-
sions. A difficulty in computing the trace of Ln is solved by considering
a functional derivative involving the interaction. As an example of the ad-
vantages of using the L operator, we show that the thermodynamic limit is
approached faster than any exponential.

There are many possibilities for developing the results presented. The cycle
expansion can be factorized [8], the approach of Feigenbaum to the renor-
malization group can be used [18], and phase transitions can be explored
as a limiting case where the coefficients ak goes to 1 [19]. The results
also show that there might be room for improvement of the convergence
of Monte Carlo simulations. Rather than carrying out the averages in the
spin systems, one can study averages of the dynamical system where con-
vergence is faster.

X.0.1 Repeller measures

29 We shall use the repeller measure (17.36)

μi :=
enγn

|Λi|
(X.27)

computed on the union of unstable orbits as the working definition of the
natural measure for open systems discussed in sect.17.3. μi is the measure

29Predrag: large overlap with sect. ??, sect. ??
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flow!incompressible
conservation!phase

space volume
Liouville!theorem

of the region Mi associated with the ith periodic point, μi =
∫
Mi

dμ(x), so

the measure normalization
∫

dμ(x) = 1 implies

(n)∑
i

μi = 1 . (X.28)

The measure normalization condition (16.3) is satisfied automatically by
the definition of the nth level estimate of the escape rate (22.15).

88. The book is organized as follows: in sect. ?? we review the evolution op-
erator formalism for smooth flows. In sect. 23 we explain the theorems
that guarantee that spectral determinants for Axiom A systems are entire.
In sect. ?? we define and motivate the determinants used in this paper. In
chapter 20 we introduce cycle expansions, and give convergence estimates
for various expansions. In section C.1 review symbolic dynamics for uni-
modal maps. In section 12 we sketch the construction of “pruned” Smale
horseshoes, In section 12.5 develop the danish pastry, a multisheated, in-
vertible 2-dimensional baker’s map and introduce the pruning front.

89. Example X.1 Collinear helium, regularized.
Though very simple in form, the Hamiltonian (7.8) is not the most conve-

nient for numerical investigations of the dynamics of the classical helium system.
In the (r1, r2) coordinates the potential is singular for ri → 0 nucleus-electron col-
lisions, with velocity diverging to ∞. These 2-body collisions can be regularized
by a rescaling of the time and the coordinates (r1, r2, p1, p2) → (Q1,Q2, P1, P2), in
a manner to be described in chapter 43. For the purpose at hand it is sufficient
to state the result: In the rescaled coordinates the equations of motion are

Ṗ1 = 2Q1

⎡⎢⎢⎢⎢⎣2 − P2
2

8
− Q2

2

⎛⎜⎜⎜⎜⎝1 + Q2
2

R4

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ; Q̇1 =
1
4

P1Q2
2

Ṗ2 = 2Q2

⎡⎢⎢⎢⎢⎣2 − P2
1

8
− Q2

1

⎛⎜⎜⎜⎜⎝1 + Q2
1

R4

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ ; Q̇2 =
1
4

P2Q2
1 . (X.29)

where R = (Q2
1 +Q2

2)1/2. These equations look harder to tackle than the harmonic
oscillators that you are familiar with from other learned treatises, and indeed they
are. But they are also a typical example of kinds of flows that one works with in
practice, and the skill required in finding a good re-coordinatization h(x). Ronnie: Create a prob-

lem that illustrates these
points.90. If the density itself is a material invariant, combining (??) and (32.3) we

conclude that ∂ivi = 0 and Mt(x0) = 1. An example of such incompressible
flow is the Hamiltonian flow of sect. 7.3. For incompressible flows the
continuity equation (32.3) becomes a statement of conservation of the phase
space volume (see sect. 7.3), or the Liouville theorem

∂tρ + vi∂iρ = 0 . (X.30)

91. The position of the ball is described by a pair of numbers (the spatial coor-
dinates on the plane), and the angle of its velocity vector. As far as Baron
Leibniz is concerned, this is a complete description.

92. Just as f t maps points in the phase space f : M→M and generates flows,
the operator Lt maps densities into densities and generates a semigroup on
the space of density functions, satisfying

(a) L0 = I
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coarse graining
irreversibility
transfer!operator
operator!transfer

(b) LtLt′ = Lt+t′ t, t′ ≥ 0 (semigroup property)

(c) Ltρ is t-continuous for every density ρ(x), i.e., limt→0+ Ltρ = ρ is
pointwise convergent. 30

93. We have already given an example of how to quantify this instability in
sect. 4.1 - for now, a qualitative statement that a flow is locally unstable if
nearby trajectories separate exponentially with time will suffice.

94. Symbolic dynamics is the coarsest example of coarse graining, the way ir-
reversibility enters chaotic dynamics. The exact trajectory is deterministic,
and given an initial point we know, in principle, both its past and its future
- its memory is infinite. In contrast, the partitioned phase space is described
by the quintessentially probabilistic tools, such as the finite memory transi-
tion graphs.

95. The stable (unstable) manifold of the central hyperbolic fixed point (x1, x2)
can be constructed numerically by starting with a small interval along the lo-
cal stable (unstable) eigen-direction, and iterating the interval n steps back-
wards (forwards).

96.

X.0.2 Transfer operators

We start by showing that for a piecewise-linear map with a finite Markov partition,
the evolution operator is a finite dimensional transfer operator, a straightforward
generalization of the topological transition matrices (14.1).

Consider as an example of expanding 1-dimensional map f (x), with | f′s (x)| >
1 and monotone on two non-overlapping intervals, a piecewise-linear 2–branch
repeller with slopes Λ0 > 1 and Λ1 < −1: 31

f (x) =

{
Λ0x if x ∈ M0 = [0, 1/Λ0]
Λ1(x − 1) if x ∈ M1 = [1 + 1/Λ1, 1] . (X.31)

As both f (M0) and f (M1) map onto the entire unit interval M, it follows from
(11.2) that the partition into {M0,M1} is a finite Markov partition with the unre-
stricted 2-letter alphabet sn ∈ {0, 1}, with the transition matrix

T =

(
1 1
1 1

)
.

The transition matrix T defined in (14.1) counts the allowed transitions, so Tdm =

0 or 1; however, it is just as easy to keep track of matrix elements Tdm that take

30Predrag: EAS: what is the pont of the condition (c)?
31Predrag: Niels S.: A figure would be helpful here...
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transfer!matrix
transfer!matrix
Markov!matrix
matrix!transfer
matrix!Markov

other ranges of values. Due to the piecewise linearity, the simplest of evolution
operators, the Perron-Frobenius operator (??) acts on a piecewise constant func-
tion ρ(x) = (ρ0, ρ1) as a [2×2] transfer!matrix with matrix elements

(
ρ0

ρ1

)
→ Lρ =

⎛⎜⎜⎜⎜⎝ 1
|Λ0 |

1
|Λ1 |

1
|Λ0 |

1
|Λ1 |

⎞⎟⎟⎟⎟⎠ (
ρ0

ρ1

)
. (X.32)

More generally, Tdm is the “penalty” paid for choosing a particular transition, and
T is a finite memory Markov or transfer matrix. Piecewise-linear approximations

exercise 15.1
to dynamical systems yield finite-dimensional transfer operators, provided that the
symbolic dynamics is a subshift of finite type, cf. sect. 15.4. This is discussed in
more detail in appendix C.5.

If we increase the number of steps remembered, the transition matrix grows
big quickly, as N-ary dynamics with n-step memory requires an [Nn ×Nn] matrix.
As the matrix is very sparse, we shall find it convenient to use the transition graph
representations for T developed in chapter 14.

X.0.3 Quadratic map as the b → 0 limit of the Hénon map

The non–wandering set of a Hénon map is contained in the intersection of the
forward and backward iterated horseshoes (figure ??). In the b → 0 limit the un-
stable manifold shrinks to a 1-dimensional arc, folds of the stable manifold stretch
off to infinity, and the Hénon map (?!) reduces to the 1-dimensionalq̃uadratic map
(11.3) depicted in figure ?? (a). 32 There are two fixed points 0, 1 in the (xt, xt+1)
plane, with coordinates (x0, x0), (x1, x1) given by

x0 =
−1 −

√
1 + 4a

2a
, x1 =

−1 +
√

1 + 4a
2a

.

The fixed point (x0, x0) is always unstable, while for small a the fixed point (x1, x1)
starts out stable, and goes unstable through a period doubling bifurcation.

For a 1-dimensional map, a point with vanishing derivative is called a critical
point; in the example at hand, it is the maximum point on the parabola, xc = 0.
In one iteration, the neighborhood of a critical point gets folded and squashed
into a sharp ‘turning point;’ in the 1-dimensional case there is no confusion as
to what is the primary turning point (the critical point), and what are its images.
In the general b � 0 case, the distinction is not so clear, as the folding is soft,
and a turning point can be easily confused for a “critical point.” What we wish to
do here is to make precise the 2-dimensional generalization of the 1-dimensional
critical point as a set of ‘primary turning points,’ i.e., the primary folding points
where the stable and unstable manifolds are parallel. In order to accomplish this,

32Kai H: The version of the logistic map you refer to is 1 − ax2 not Ax(1 − x) which imply that
a=2 not 4 a number of places. The conversion is a = (A2 − 2A)/4.
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we need to first describe the stable and the unstable manifolds of the quadratic
map (x1, x1) fixed point in some detail.

In the b → 0 limit of the Hénon map the stable manifold of the 1 fixpoint
stretches out into a set of horizontal lines passing through all of preimages of 1 on
the parabola. As the contraction rate is infinite, all points on the stable manifold
map onto the parabola in one iteration. The stable manifold is bounded in the
vertical direction by the fixed point (x0, x0) and its preimage, as the points that
start outside the interval x0 ≤ y ≤ f−1(x0) escape, and cannot be preimages of 1.
This is clearly seen in figure ?? a.

X.0.4 Scaling potentials

The energy is a quadratic function of momenta, H = p2/2m, so motion at different
energies E and E0 is related by the scaling pE → p0

√
E/E0 for momenta, tE →

t0
√

E0/E for times, and

S (E) = L
√

2mE = S (E0)
√

E/E0 (X.33)

for the actions, where L is the geometrical length of the orbit. 33 These obser-
vations will be useful below in the quantum version of the pinball where the
(38.15) will combine with � to the relevant quantum variable, the wave number
k =

√
2mE/�, (see sect. ??).

X.0.5 2-dimensional maps

f : R2 → R2

34 If eigenvalues |Λ1|, |Λ2| � 1, the fixed point is hyperbolic.

Evolution operators

(E.A. Spiegel and P. Cvitanović)

Let us first look at a useful formal restatement of (??). This is obtained from
the identity

ρ(x) =
∫
M
δ(y − x) ρ(y)dy (X.34)

33Predrag: comment somewhere:
The eigenvalues of the jacobian transverse to a periodic orbit (see below) are invariant under the
above energy rescaling.

34Predrag: fix this could also be repelling, attractive - it is really a saddle.
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where δ( ) is the Dirac delta function. Then we transform this integral to the
coordinate system based on the initial positions x0 using the Jacobian to obtain

ρ(x(t)) =
∫
M
δ
(
x0 − f −t(x)

)
Jt(x0)ρ(x0)dx0 , (X.35)

where we have used the formula x = ft(x0).

For the discussion of material invariants, in line with (??), we could write the
conservation of a material invariant I as∫

M
dxρ(x)I(x) =

∫
M

dx0ρ(x0)I(x0) . (X.36)

Then as for ρ, we deduce from this that I(x) = I(x0). In other words,

I(x0) =
∫
M

I(y)δ(y − x0) dy . (X.37)

where we recall that x = f t(x0). We see, that

I(x) = Lt ◦ I . (X.38)

Power spectra

35 The power spectrum consists of broad band noise D(ω) and discrete spectrum
Δ(ω)

〈
|t x̂(ω)|2

〉
∼ t2Δ(ω) + 2tD(ω) .

D(ω) is nothing else but the diffusion constant [7, 20] for quantity t x̂(ω), and
Δ(ω) is the drift term (factor 2 is the conventional normalization for diffusion in
one dimension).

An alternative formula for power spectrum is given by the Kinchine-Wiener
relation

〈
|t x̂(ω, x)|2

〉
x
= t

t−1∑
n=−t+1

(1 − |n|/t)C(n)eiωn (X.39)

where C(n) = 〈xtxt+n〉x is the space-averaged time correlation function. We have
also evaluated C(n) by means of cycle expansions, but the convergence appears to
be very slow.

35Predrag: reinsert here the definition of finite Fourier transform!
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X.0.6 Pruned symbolic dynamics

If the symbolic dynamics is described by a subshift of a finite type, cycle ex-
pansions converge well. An example is given by the tent map f (x) = 1 − a|x|,
a = (1 +

√
5)/2. This value of a corresponds to the 001, 011 3-cycles bifurcation

value, with the symbolic dynamics given by a simple pruning rule; the repeat 00
is forbidden.

Difficulties can arise if the system is not sufficiently mixing. For example, the
tent map xt+1 = 1 − a|xt | for a =

√
2 has two nonoverlaping bands. The system

is not mixing, and the power spectrum contains a delta-function peak at ω = 1/2.
In symbolic dynamics only sequences having “1” at all odd or at all even places
are allowed. Let us focus our attention on the zeta function 1/ζ at the frequency
ω = 1/2. The set of cycles with odd periods is empty (except for the fixed point
“1”, and it also disappears for a <

√
2) and

The straightforward differentiation of 1/ζ does not give correct result: the
drift term vanishes and the diffusion constant diverges. The reason is that the
mapping f 2 is not mixing and has two symmetric attractors, so the dynamical zeta
function is a product of the two zeta functions for these attractors. The probability
distribution function for At does not tend to a Gaussian hump as t → ∞, but instead
to two symmetric humps, drifting away from the origin in opposite directions (that
is why the drift term for 1/ζ vanishes). In order to describe the power spectrum for
ω = 1/2 correctly, we must restrict the averaging to one hump. This corresponds
to considering one of the symmetric attractors of the map f2.

From this zeta function correct values of discrete and continuous components
of the power spectrum at ω = 1/2 are obtained as the drift term and the diffusion
constant.

Power spectrum of the Bernoulli map

There exist maps - typically 1-dimensional piecewise-linear maps - for which the
natural measure is available in closed form. As for such maps the power spectra
are known analytically, we can use them as a benchmarks for tests of cycle expan-
sions. We start with two maps whose symbolic dynamics is described by the full
(0,1) binary shift, i.e., all sequences of “0” and “1” are realizable: the Bernoulli
shift, and the skew tent map. C. Beck has further results for the Ulam map, based
on the Chebyshev polynomials method of ref. [15].

〈
|t x̂(ω, x)|2

〉
x
= t

t−1∑
n=−t+1

(1 − |n|/t)C(n)eiωn (X.40)

where C(m) = 〈a(xt)a(xt+m)〉 is the space-averaged time autocorrelation function
(??).
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D(ω) =
1
2
∂2Q

∂β2

∣∣∣∣∣∣
β=0

=
1
2t

〈
|t x̂(ω)|2

〉
x
+ O

(
etQ1(0)

)
1
t

〈
|t x̂(ω)|2

〉
x
=

∫
dxδ(x − f t(x)) t|x̂(ω, x)|2

=
∑

p

|np x̂p(ω)|2
∞∑

r=1

δt,npr

|1 − Λr
p|

(X.41)

For systems with complete binary dynamics

1
t

〈
|t x̂(ω)|2

〉
x
=

1
t

∑
{ε1ε2...εt}

|t x̂(ω, x{ε1ε2...εt})|2

|1 − Λ{ε1ε2...εt}|

D(ω) =
1
2t

∑
{ε1ε2...εt}

|t x̂(ω, x{ε1ε2...εt})|2

|Λ{ε1ε2...εt}|
+ O

(
e−ct

)
. (X.42)

X.0.7 Bernoulli shift

For the Bernoulli shift f (x) = 2x mod (1), the natural measure is μ(x) = 1, hence

C(0) =
〈
(xt − 〈x〉)2

〉
=

∫ 1

0
dx(x − 1

2
)2 =

1
12

, (X.43)

and the correlation function is [16]

C(m) = 〈(xt − 〈x〉)(xt+m − 〈x〉)〉 =
1
12

2−m . (X.44)

The power spectrum follows from (X.40) 36

D(ω) =
1
4

1
5 − 4 cos 2πω

D(0) =
1
4
, D(π) =

1
36

, D(π/2) =
1

20
, . . . (X.45)

We shall compare this exact solution with the values obtained from cycle expan-
sion.

36Predrag: recheck this
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The periodic points are easily computed:

xε1ε2...εk = .ε1ε2 . . . εk =
2k−1ε1 + 2k−2ε2 + . . . + εk

2k − 1
x0 = 0, x1 = 1, x01 = 1/3, x10 = 2/3,

x001 = 1/7, x010 = 2/7, x100 = 4/7,

x011 = 3/7, x110 = 6/7, x101 = 5/7, . . . (X.46)

X.0.8 Trace formula

Frequency ω = 0 - diffusion:
For the Bernoulli map

D(0) = lim
t→∞

1
2t

1
2t

∑
{ε1ε2...εt}

|t x̂(0, x{ε1ε2...εt})|2 . (X.47)

The sum over periodic points belonging to cycle p:

t x̂(0, x{ε1ε2...εt}) =
t∑

m=1

xεmεm+1...εm+t−1 =

t∑
m=1

εm (X.48)

Setting x = 1 in derivatives of the identity

(1 + x)t =

t∑
k=0

(
t
m

)
xm

we obtain

t2t−1 =

t∑
k=1

(
t
m

)
m

t(t + 1)2t−2 =

t∑
k=1

(
t
m

)
m2 (X.49)

1

2t+1t

∑
{ε1ε2...εt}

|
t∑

m=1

εm|2 =
1

2t+1t

t∑
m=1

(
t
m

)
m2 =

1
8

(1 +
1
t

) (X.50)

∂2Q

∂β2

∣∣∣∣∣∣
β=0

=
1
4
. (X.51)
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Frequency ω = π:

t |x̂(π, x{ε1ε2...εt})| = |
t∑

m=1

(−1)m xεmεm+1...εm+t−1 | =
1
3
|

t∑
m=1

(−1)mεm| (X.52)

∑
{ε1ε2...εt}

|
t/2∑

m=1

ε2m −
t/2∑

m=1

ε2m−1|2 =

t/2∑
m,n=1

(
t/2
m

)(
t/2
n

)
(n − m)2

= 2
t/2∑

m=1

(
t/2
m

) t/2∑
n=1

(
t/2
n

)
n2 − 2

⎛⎜⎜⎜⎜⎜⎜⎝ t/2∑
n=1

(
t/2
n

)
n

⎞⎟⎟⎟⎟⎟⎟⎠
2

= t 2t−2 (X.53)

For t = 2, 4, 6, . . . this sum equals 2, 16, 6·16, . . ..

∂2Q

∂β2

∣∣∣∣∣∣
β=0

=
1

4 · 9
. (X.54)

X.0.9 1/ζ function evaluation

The curvature expansions truncate at the two fixed points, so the spectral deter-
minant of the Perron-Frobenius operator is simply

F =

(
1 − z

|Λ0|
− z
|Λ1|

) (
1 − z

|Λ0|2
− z

|Λ1|2

)
. . . =

∞∏
α=0

(
1 − 1

2α
z

)
. (X.55)

The leading eigenvalue is 1, as required by the probability conservation. The
second eigenvalue controls the exponential fall-off of the 2-point correlations,
λ1 = 1/2, in agreement with (X.44). The denominator in (26.8) is a frequency
independent normalization constant

∑′
(−1)k (np1 + · · · + npk )

|Λp1 · · ·Λpk |
= −1

2
− 1

2
− 1

4
(2 − 1 − 1) + . . . = −1 , (X.56)

and using (X.48) the cycle expansion (26.8) yields

2D(0) =
02

2
+

12

2
+

1
4

⎧⎪⎪⎨⎪⎪⎩
(
1
3
+

2
3

)2

− (0 + 1)2

⎫⎪⎪⎬⎪⎪⎭
+

1
8

⎧⎪⎪⎨⎪⎪⎩
(
1
7
+

2
7
+

4
7

)2

−
(
0 +

1
3
+

2
3

)2
⎫⎪⎪⎬⎪⎪⎭

+
1
8

⎧⎪⎪⎨⎪⎪⎩
(
3
7
+

6
7
+

5
7

)2

−
(
1 +

1
3
+

2
3

)2
⎫⎪⎪⎬⎪⎪⎭ + . . . = 1

2
(X.57)
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This is simply the ordinary 1-dimensional Brownian walk.

Frequency ω = π:
The curvature expansion [2] works well for D(0), but already the D(1/2) expan-
sion is not so simple - an infinite sequence has to be summed up: 37

2D(1/2) = +
1
4

(
1
3
− 2

3

)2

+
1

16

(
1
15

− 2
15
+

4
15

− 8
15

)2

+
1

16

(
3

15
− 6

15
+

12
15

− 9
15

)2

+
1

16

(
7

15
− 14

15
+

13
15

− 11
15

)2

+ . . .

=
1

2232
+

1
24

(
1
32
+

0
32
+

1
32

)
+

1

2632
22 + . . .

=
1

2232

⎛⎜⎜⎜⎜⎜⎜⎝ ∞∑
k=0

2−k

⎞⎟⎟⎟⎟⎟⎟⎠ = 1
18

(X.58)

np|x̂p(π)| = |
np∑

m=1

(−1)m xεmεm+1...εm+np−1 | =
1
3
|

np∑
m=1

(−1)mεm| (X.59)

X.0.10 Skew tent map

38 For the skew tent map

f (x) =

{
ax if 0 ≤ x ≤ a−1,

a
a−1 (1 − x) if a−1 ≤ x ≤ 1.

(X.60)

the correlation function was calculated by Grossmann and Thomae [4]:

C(m) = 〈(xt − 〈x〉)(xt+m − 〈x〉)〉 =
1
12

(
2 − a

a

)m

(X.61)

The power spectrum is

D(ω) =
1
6

a − 1
a(a − 2)(1 + cos 2πω) + 2

D(0) =
1

12(a − 1)
, D(1/2) =

a − 1
12

, . . .

D(ω) =
1

12
for a = 2 . (X.62)

37Predrag: the last line is a guess, not proven! We need to generalize transition graph to links
with phases, to compute all this analytically.

38Predrag: this calculation should be done more analytically?
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Consider first the zero frequency case, ω = 0. In this case the Ruelle zeta function

1/ζ = (1 − t0)(1 − t1)(1 − t01)(1 − t001)... = 1 − t0 − t1 − [t01 − t0t1]...

consists of the fundamental part and curvature corrections, and calculation of dif-
fusion constant is straightforward. Stability of a cycle with np,1 repeats of symbol
1 is Λp = anp/(1 − a)np,1 . The probability conservation follows trivially from
1/|Λ0| + 1/|Λ1| = 1/a + (a − 1)/a = 1 (all curvatures vanish for this peacewise-
linear map), and the denominator in (26.8) is simply −1. For β = 0 the spectral
determinant is given by

F =

(
1 − z

|Λ0|
− z
|Λ1|

) (
1 − z

|Λ0|2
+

z

|Λ1|2

)
. . . = (1 − z)

(
1 − z

2 − a
a

)
. . . .(X.63)

The leading eigenvalue is 1, by probability conservation; the second eigenvalue
controls the exponential falloff of the 2-point correlations, λ1 = a/(2 − a), in
agreement with (X.61).

The periodic points are easily computed:

x0 = 0, x1 =
a

2a − 1
, x10 =

a2

a2 + a − 1
, x01 =

a

a2 + a − 1
, . . . (X.64)

For a = 2 we have:

x0 = 0, x1 = 2/3, x01 = 2/5, x10 = 4/5, . . . (X.65)

(the general formula is given in sect. ??). Even though the power spectrum is
given explicitly by (X.62), the cycle expansion does not reproduce this expression
in any obvious form; (26.8) yields 39

2D(0) =
( a
2a − 1

)2 a − 1
a
+

(
a

a2 + a − 1
+

a2

a2 + a − 1

)2
a − 1

a2

−
( a
2a − 1

)2 a − 1

a2
+ . . . (X.66)

A01(1/2) = x01 − x10 =
a(a − 1)

a2 + a − 1
, . . .

2D(1/2) =
(a − 1)3(

a2 + a − 1
)2
+ 4-cycle contributions (X.67)

39Predrag: these calculations not rechecked.
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We conclude this section with a numerical evaluation of the power spectrum40 for
the skew tent map (X.60); the result is given in fig. 42.1, with fig. 42.2 illustrating
the convergence with maximal cycle length truncations. We have also checked that
for the Ruelle zeta functions convergence is exponential, and that for the spectral
determinant the convergence is faster than exponential. 41

X.0.11 Tent map cycles

Note that for a = 2 the spectrum is flat. This might provide additional checks on
our deliriously detailed cycle expansion.

For the symmetric tent map (a = 2 in (X.60)) it is convenient to compactify
the binary sequences as in sect. G.1.1.

Convergence of cycle expansions

42 I heard a statement (made by Ruelle) that Perron-Frobenius operator and the
Liouville operator differ only in the type of functions they act on. The L operator
acts on the space of square integrable functions, whereas the PF operator acts on
some other functions in phase space.

Answer: In my case, ALL operators act on spaces of (piecewise) real analytic
functions - eq (4.33) used to have a remark that yα basis would give continuous
spectrum in α - real analiticity restrics the basis to Taylor expansion yn. I think
this is discussed nicely and in much detail in

P. Gaspard, G. Nicolis, A. Provata and S. Tasaki “Spectral signature of the
pitchfork bifurcation: Liouville equation approach” Phys. Rev. E 51, 74 (1995).

Anton V. Andreev:
Can you tell me what these functions are and how they look like? Are they con-
centrated around periodic orbits etc?

Answer: No - they MUST not be singular - they must be smooth distributions,
otherwise spectrum could be anything.

PC 15 sept 1995 I’ll try to summarize what I understand the impact of
Wirzba’s N-disk exact spectra is on various competing determinats:

in the running are:

QM refers to exact quantum mechanics
GV refers to semiclassical zeta function

40Predrag: track down the figures!
41Predrag: this must be reworked so that for finite transition graph, long cycles are re-expressed

as the repeats of the fundamental cycles; work out in detail for 2-branch complete binary tent map?.
42Predrag: include this somewhere
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QC refers to quasiclassical/Madelungian
FD refers to classical Fredholm determinant
CV93 refers to P. Cvitanović and G. Vattay, Entire Fredholm determinants for
evaluation of semi-classical and thermodynamical spectra, Phys. Rev. Lett. 71,
4138 (1993)
CRR93 refers to P. Cvitanović, P.E. Rosenqvist, H.H. Rugh, and G. Vattay, A
Fredholm determinant for semi-classical quantization, CHAOS 3, 619 (1993).

Wirzba’s work puts the open billiards cycle expansions on firm footing, by
clarifying that the exact quantum mechanics for scattering systems requires cu-
mulant form to make sense of what one means by determinant; so it accomplishes
the same task for quantum mechanics/ semiclassics that HHRugh proof accom-
plished for nice classical hyperbolic systems.

The purported virtue of QC over GV is that it is entire, while GV has poles -
furthermore, for the first time GV was explicitly given in terms of 4 entire func-
tions, eq (12) of CV93, the derivation requires no saddle points (except throwing
away the quantum potential in the step one), and by making the flow classical,
we are on terra firma (and, if some day HHR announces that the proof applies to
flows as well, officially rigorous). Andreas wonders why should being entire be
so important - even exact QM in 2-dim has a cut, says he.

However, QC carries with it an annoying extra set of resonances, which we
noted for the FD and QC in CRR93, Fig. 4. They are harmless, except that fitting
them eats up orders in the cycle expansion which would be more profitably used
to fish for the real QM resonances, so for short truncations GV does better than
QC (even though later on in cycle truncatin length the finite radius of convergence
degrades the quality of GV). In other words, in practice QC is worse, rather than
better than the old fashioned GV. Yech!

We associated the extra set with the zeros of F−(3/2, E) in eq (12) of CV93.
Unfortunately, the cancellation was not exact (they differed in 4-th decimal (!),
see text p. 630 of CRR93, but the “cleaned” spectrum of Fig. 6 is rather like the
QM spectrum shifted 1/2 Laypunov down. We did not test the cancellation for the
QC case.

Wirzba QM has no such family of resonances, and neither do the short cycle
truncations of GV; in other words, numerics suggests that for the quasiclassical
case, the F+(1/2, E)/F−(3/2, E) cancellation is EXACT. This could be checked
by redoing the accurate individual resonance calculation of p. 630 of CRR93 -
Per can easily do that numerically. Andreas already says that “the fake resonances
of the Vattayvic zeta-function” are coming from the subleading dynamical zeta
functions, i.e.,

1/ζ1 =
∏

p

(1 − tp/λp)

which I believe to be the same statement. If this is true, then we should rethink
both the FD and the QC cases - can we cook up operators that are entire and still
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have no spurious stuff? If it works in QC, than it classically means that maybe
noise → 0 is not a trivial limit to the classical Perron-Frobenius or whatever....

———————————————-

X.0.12 Trace class operators

(A. Wirzba and P. Cvitanović)

For infinite dimensional operators the log det = tr log relation (19.3) is legal
if L is trace class. Operator (or infinite dimensional matrix) A is trace class iff

tr |A| < ∞ . (X.68)

If A, B, AB are trace class, then: 43

det (1 + A) = exp tr ln(1 + A)

det ((1 + A)(1 + B)) = det (1 + A) det (1 + B) .

44

—————————————–

from chapter 25:

Emphasis on the differential rather than the algebraic theory (Lie algebras).

In particular,

∫
g∈G

[dg]χm(g) =
∫

g∈G
[dg]

dm∑
i=1

D(g)ii = 0.

[PC: so what?]

—————————————–

Here we intend to cure you of the fear of ‘infinite-dimensional’ dynamical
systems. If you are already fearless, you might prefer to skip the chapter on the
first reading of the book.

—————————————–

43Predrag: AW: Thirring, Vol.3 [?]: German ed. p. 169 sect. 3.6.15
44Predrag: give counterexamples - what if not trace classs?
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To summarize: group G is a symmetry of a dynamical system (M, f ) provided
that

1) gx ∈ M ∀x ∈ M and ∀g ∈ G ,
2) [g, f ] = 0 ∀ f : M→M and ∀g ∈ G .

—————————————–

Typically, e.g. if the symmetry is a reflection, some eigenvalues of Mp change
sign. This means that instead of a weight 1/det (1 − Mp) as for a regular orbit,
boundary cycles also pick up contributions of form 1/det (1 − hMp), where h is
a symmetry operation that leaves the orbit pointwise invariant; see for example
sect. 9.12.

—————————————–

Example X.2 Group D1, reflections in a plane. 45 If a 2-dimensional map is
invariant under x → −x, y → y, the symmetry group G consists of the identity and R, the
reflection across y-axis. The map f must then commute with reflections, f (Rx) = R f (x),
with R given by the [2 × 2] matrix

C =
(
−1 0
0 +1

)
. (X.69)

R satisfies R2 = e and can be used to decompose the state space into mutually orthog-
onal symmetric and antisymmetric subspaces by means of projection operators (21.1)⇓PRIVATEConstruct now the symmetrization, antisymmetrization projection operators

⇑PRIVATE

P+ =
1
2

(1 + R) =
( 0 0

0 1

)
(X.70)

P− =
1
2

(1 − R) =
(

1 0
0 0

)
. (X.71)

Noting that P+ + P− = 1, we can project the state space point x onto the two eigen-
vectors of C:

x = e x = P0 · x + P1 · x ,(
x1

x2

)
= x

( 0
1

)
+ y

( 1
0

)
(X.72)

= x̂0e(+) + x̂1e(−) . (X.73)

As P+P− = 0, the symmetric and the antisymmetric configurations transform separately
under any linear transformation constructed from R and its powers.

In this way the characteristic equation R2 = e enables us to reduce the 2d lattice
configuration to two 1d ones, on which the value of the shift operator (shift matrix) R is
a number, λ ∈ {1,−1}, and the eigenvectors are e(+) = (1, 0), e(−) = (0, 1).

45Predrag: this example is wrong, fix - P+ = 0 as it stands
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Ulam map!skew
symbolic

dynamics!complete

Figure X.1: The skew Ulam map together with
the state space partition into intervals that follow
the indicated itinerary for n steps. Note that the
spatial ordering does not respect the binary order-
ing; for example M00 <M01 <M11 <M10.

draw skewUlam.eps from ref. [3]

Example X.3 Skew Ulam map: 46 We shall refer to any unimodal map for which the
critical point xc is mapped onto the unstable fixed point x0 = 0 as an ‘Ulam’ map. For
the ‘skew Ulam’ map,

f (x) = Λ0x(1 − x)(1 − bx) , 1/Λ0 = xc(1 − xc)(1 − bxc) , (X.74)

the x0 = 0 fixed point Floquet multiplier Λ0 is fixed by condition f (xc) = 1, and xc as a
function of b fixed by f ′(xc) = 0 condition. 47 The skew Ulam map is a handy starting
point for testing ideas about partitioning for several reasons:

• The symbolic dynamics is a complete binary symbolic dynamics, and the nth
preimage of the critical point generates a complete binary cover of the unit interval.48

• All cycles can be easily determined through a combination of inverse iterations,
sect. 13.2.1, and the Newton method, sect. 13.2.2. 49

• The quadratic contraction around the critical point xc makes this mapping nonhy-
perbolic.

In our numerical work we fix b = 0.6 (arbitrarily, it is the value used in ref. [3]),
so xc = 0.40456 . . ., and Λ0 = 5.4819 . . . in (X.74).

In our numerical work we fix (arbitrarily) b = 0.6. 50

—————————————–

There are applications – plumber’s turbulent pipes, . . . – where the few impor-
tant degrees of freedom can be isolated.

—————————————–

Assuming that the distribution of kicks is Gaussian (white noise), and the
kicks so frequent that they can be considered uncorrelated, one derives a fluctuation-
dissipation theorem that relates the temperature of the background gas to the
damping constant and the mass of the Brownian particle. Here we shall consider
more general stochastic differential equations in the weak noise limit.

—————————————–

Further examples of transition matrices, such as the 3-disk transition matrix
(14.8) and the 1-step memory sparse matrix (14.10), are peppered throughout the
text.

46Predrag: draw figure X.1!
47Predrag: create exercise
48Predrag: add links
49Predrag: move to the exercise solution: “We have computed all cycle eigenvalues up to length

14.
50Predrag: forward reference to (14.10)?
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—————————————–

Perhaps the most important thing to grasp about chaotic dynamics is that long
time trajectories of individual representative points are beyond control; instead,
the physically meaningful objects are densities, smooth distributions of initial rep-
resentative points. We have discussed this in sect.1.7 and will discuss it again in
chapter 26.

—————————————–

The symbol square is a useful tool in transforming topological pruning into
pruning rules for inadmissible sequences; those are implemented by constructing
transition matrices and/or transition graphs.

—————————————–

For the Rössler flow the contracting eigenvalues turn out to be insanely con-
tracting, a factor of e−32 per one par-course of the attractor, so their numerical
determination is quite difficult. Fortunately, they are irrelevant; for all practical
purposes a section of the strange attractor of the Rössler flow is 1-dimensional.

For Rössler flow an interval transverse to the attractor is stretched, folded and
fiercely pressed back into a nearly 1-dimensional interval, typically compressed
transversally by a factor of ≈ 1013 in one Poincaré section return.

—————————————–

Generic symbolic dynamics is not simple - as a matter of fact, already in one
dimension its grammar can be arbitrarily complicated. However, the grammar
is finite if the critical point is in the basin of attraction of an attractive periodic
point; for example, if the critical point is attracted to a stable 3–cycle, the repeller
consists of an isolated 0̄ fixed point and all orbits built from the two letters {1, 10}
(see exercise 11.6 and example 14.5).

—————————————–

Relative equilibria which exist in a rotating frame are called central configu-
rations.

A drawback of such polynomial projections is that the folding mechanism is
harder to view since the dynamics is squeezed near the z-axis.

—————————————–

—————————————–

Commentary

Remark X.1 The semiclassical zeta function The semiclassical zeta function corre-
sponds to setting Δp,r = |Λr

p|1/2(1 − 1/Λr
p), and the “quantum Fredholm determinant”[9]
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is obtained by setting Δp,r = |Λr
p|1/2 in (J.11).

Remark X.2 Nonlinearity. A more refined and basically correct estimate requires
taking the Taylor expansion around the flow to the next order and estimating the “nonlin-
earity” of the flow. 51

Remark X.3 Padé approximants. Tail resummations often significantly improve the
accuracy of the leading root in the cycle expansion; convergence can be further accelerated
by Padé approximants [1] or other acceleration techniques [16].

Remark X.4 Riemann zeta function. Curvature expansions are of no use for deter-
mining Riemann zeros. For the Riemann zeta function the fundamental cycles correspond
to prime numbers, so there is no shadowing and no curvature expansion.

Remark X.5 Convergence of cycle averaging formulas. It is demonstrated in
refs. [20, 2] that for generic pruned grammars the cycle averaging formulas do not con-
verge significantly better than the approximations such as the trace formula ( 22.15). Even
that is not the worst case scenario; generic dynamical systems are plagued by intermit-
tency and other nonhyperbolic effects, and methods that go beyond cycle expansions need
to be developed [?].

Remark X.6 False zeroes. A. Voros has argued in ref. [7] that zeta functions cannot
converge where one would like to use them. Things are not all that bad; while various
product and series expansions converge only conditionally, the cycle (or cumulant) ex-
pansion converges in the region of interest.

Remark X.7 Flow suspension 52 Formula (26.6) can also be obtained by using the
suspension formula in Appendix C.3 of ref. [32], with the discrete dynamical system
leading from collision to collision with the central disk, and the ceiling function being the
time between these hits.

Remark X.8 Caution! We conclude our discussion of convergence of cycle expan-
sions with a word of caution: as we do not know how quickly the asymptotics should set
in, our numerical results can easily be misleading. For example, for a larger disk-disk
spacing, pre-asymptotic oscillations are visible in fig. 2?!, and one might mistakenly con-
clude [11] from such data that the semiclassical spectral determinant has a pole. There
is no substitute for theorems that establish that appropriate determinants are entire; such
oscillations make numerical convergence uncertain already in the simplest 1-dimensional
repellers.

51Predrag: develop! use ACCII, Sullivan
52Predrag: probably drop this
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Remark X.9 Diffusion induced by one–dimensional maps. (EXTRA:) Statistical
mechanicians tend to believe that such complicated behavior is not to be expected in sys-
tems with very many degrees of freedom. Indeed, the addition to a large integer dimension
of a number smaller than 1 should be as unnoticeable as a microscopic perturbation of a
macroscopic quantity. For example, for the Lorentz gas no fractal-like behavior of the
conductivity has been detected [14]. Simple maps as paradigms of real systems should
be used with care. There are features of dynamical systems which are very general, and
for which simple maps provide an indispensable source of intuition. Other features might
be characteristic of the special model at hand: in the present case, the singular parametric
dependence of diffusion for a system with a few degrees of freedom may not be indicative
of a similar dependence for a system with very many degrees of freedom.

(P. Cvitanović and L. Rondoni)

Remark X.10 Does the space matter? The exact value of the determinant of the evo-
lution operator depends on the Banach space where we choose to define it. In the space of
bounded observables the trace may not be well defined (the sum of the eigenvalues might
diverge, for example), and some sort of regularization is needed. The standard method is
to use the zeta function regularization (no relation to our dynamical zeta functions), by
introducing a factor ν through the zeta function z

z(ν) =
∞∑
α=0

e−νsαt .

The determinant can then be defined by

ln det L = z′(0) .

Although this may define a determinant for the operator L, it may not define the right
determinant (and later on we will show an example where it does not, see refsect Sect-
Statmech). We prefer to use an alternative method. Rather than trying to regularize we Ronnie: This does not

yet existwill restrict the action of our operator to a sub-space of the Banach space. If we knew the
exact invariant probability measure for our dynamical system we could take this sub-space
to be the 1-dimensional space just containing our measure, but in general we are not so
fortunate. Instead, we consider a sub-space that is known to contain the measure and for
which the L is trace class. This way no physics is discarded. How this is accomplished is
the topic of refsect SectStatmech. (R. Mainieri)

Remark X.11 On the validity of cycle averaging formulas. The cycle averaging
formulas we have derived above can be viewed as an approximation to the full cycle ex-
pansion. Hence, one may be lead to believe that the results cycle averaging formulas
produce are not as exact, as those based on full cycle expansions. In reality, there are
two aspects to be considered. The first is purely mathematical, and says that rigorous
proofs of the validity of both cycle expansions and cycle averaging formulas have been
produced only for systems that satisfy the axiom-A conditions. In this respect, cycle av-
eraging formulas and cycle expansions are perfectly equivalent, as both reproduce the
correct S.R.B. distributions, in the limit of infinite cycle lengths. The second aspect is
more practical in nature, and rests on the observation that periodic orbit expansions of
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one sort or the other have been successfully applied in much more general situations than
axiom-A. In all these applications, convergence to correct results has been observed inde-
pendently of the method. However, a key question always was the speed of convergence,
and that varies both with the method, and with the problem at hand. In particular, cycle
averaging formulas performed comparably to cycle expansions, in the numerical studies
of the Lorentz gas (see chapter 9). On the contrary, full cycle expansions are much better
whenever the symbolic dynamics is not affected by pruning. Also, we should note that
given any ε which is not too large, in the case of a flow, and given the discrete nature of
the periods of periodic orbits, there will be many values of τ such that very few, or not
orbits at all belong to Pτ,ε . However, the problem eases at large periods, as the density of
periods in a given window (τ, τ + ε) grows without bounds with τ.

(L. Rondoni)

Remark X.12 Cycles and the variational principle. The search for a cycle with a
given symbol sequence may be carried out in the following way: fix the sequence ε 1 . . . εn,
then draw a broken line passing through q 1 . . .qn and joining qn with q1, where each q j

is a coordinate along the boundary of the disc where the jth collision takes place (which
is determined by the preassigned symbol sequence). Build the (Maupertuis) action func-
tional L(q1 . . . qn) which is just the length of the broken line, and find a minimum of action
functional. It may be proved [?] that there is just one minimum, and this gives you the
cycle with the desired symbol sequence if it exists, or a physically impossible orbit (disc
crossing) if there is no cycle corresponding to ε1 . . . εn. In practice it may be unfeasible to
use this algorithm for searching for long orbits: then a more detailed layout of the symbol
plane (along the lines of chapter ??) has to be taken into account. We also note that we
may employ the C6v symmetry of the elementary cell of the Lorentz gas on the hexagonal
lattice to reduce the necessary computational effort: as images of a cycle under rotation
and reflection do not have to be computed separately (see chapter 21).

Lamberto Rondoni

Remark X.13 On the singularity of orbital measures. In our derivation the orbital
measures are singular, as they are costructed as linear combinations of delta functions,
peaked on the periodic points. Alternatively, one can also view them as non-singular, with
mass uniformly spread over nonoverlapping tubes, each one containing a unique periodic
orbit. As long as the observables one studies are sufficiently smooth, the equivalence
holds, as smooth functions do not probe the phase space thoroughly enough to be sensitive
to singularities of measure.

What we obtained so far is a sequence of singular measures supported on unstable
periodic orbits, approaching the natural measure of a map in a “weak” sense. By that, we
mean that the sequence of averages (expectation values) of given quantities (observables),
calculated using the sequence of orbital measures, approaches the average calculated with
the natural measure.

(L. Rondoni)

Remark X.14 A notational convention. 53 Throughout this book the operator ∇ is
a shorthand for a gradient if it acts on a scalar function, (∇φ(x)) i = ∂iφ(x), and for a
divergence if it acts on a vector function, ∇v(x) = ∂ ivi(x).

53Predrag: M Berry: this is criminal
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adjacency matrixRemark X.15 Symplectic structure. For hyperbolic flows the symplectic structure
plays no dramatic role - the topology and periodic orbits techniques are the same as for
volume changing flows. Symplectic structure leads to the pairing off of the Floquet mul-
tipliers, so one needs to describe only the expanding directions, the contracting ones are
automatic.

Remark X.16 Adjacency matrix. If the graph is not directed, the corresponding
matrix is called the adjacency matrix. An adjacency matrix is symmetric and can be
diagonalized. The transition graphs, however, are always directed graphs.

Remark X.17 Power spectra. Refer to refs. [7, 20] for the diffusion constant for
quantity tx̂(ω),

Remark X.18 Natural measure for computing pressure? 54 We would like to
pretend that (?!), or something like it, is the stat. mech. partition function for this “gas.” I
do not see it, but here are some tentative, naive and almost surely wrong thoughts on the
matter:

If we assume ergodic hypothesis, the time average (??) can be rewritten as a a phase
space average force exerted on the walls of the billiard by the “gas”

〈F〉 =
∫
Ω

dσ̂ · p(σ)ρ(σ) , ρ(σ) = lim
t→∞

1
t

ti≤t∑
i

δ(xi − σ) . (X.75)

where dσ̂ is a unit normal to the surface element dσ, and the ρ(σ) measure is maybe right
in spirit, but probably wrong in detail. In any case, with some fantasy we can imagine that
the β parameter in the above is the volume of the billiard boundary, and that the pressure
is obtained by varying the volume, something like pdV = dE (force · length = work).

Remark X.19 Dana. The interpretation of diffusion as emerging from a balance of
standing and running periodic orbits was also advocated by Dana [ 46], in his analysis of
diffusion in sawtooth and cat maps: his claim is that D enters in the Gaussian distribution
of T–periodic orbits with respect to jumping number: while a “central–limit theorem” of
this kind is true for toral automorphisms (see sect. ??), cycle expansions for diffusion are
expected to work under much weaker hypotheses.

Remark X.20 Does it work? We have seen that this formalism works well for simple
1− d maps with finite Markov partitions (and more examples will be provided in the next
subsection55): it has been successfully employed also for numerical investigations on
standard–like maps [?] (when marginally stable orbits are not present). We will show that
when dealing with severe pruning, as in the case of the finite horizon Lorentz gas, finite
order estimates are much worse. This in not a technical accident, as topology influences
this kind of dynamical averages in a direct way: even for 1−d piecewise linear maps with
unidorm slope D shows a fractal structure as a function of the slope [ 8, 10].

54Predrag: reread antipodal epics...
55Roberto: if b 6 chinos is included...
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56 This formalism works well for simple 1-dimensional maps with finite Markov par-
titions [5], piecewise linear standard map [?], and even infinite partitions [ 50]. Anomalous
diffusion can be treated in a similar way [?]. Regrettably, for physically interesting prob-
lems such as the finite horizon Lorentz gas, the convergence of cycle expansions has -
so far - been mediocre due to the severe pruning of symbolic dynamics [ 20, 2]. Morris,
Rondoni et al. [2, ?, ?, ?, 14].

Remark X.21 Holomorphic dynamics. In holomorphic dynamics circle maps arise
from the winding of the complex phase factors as one moves around the Mandelbrot
cacti [30].

Denker et al. [?] have a relatively weak result, e−
√

t decay. aPCAdd Trieste preprint?

Remark X.22 Renormalization invariant set The invariant set of (30.12) is believed
to be a strange set in the appropriate functional space: this question is debated in ref. [ 21],
while refs. [?, ?] provide pictures of how this set should look like. Ergodic exploration of
the invariant set was advocated in ref. [10, 11], by means of sequences or renormalization
operators Rak , corresponding to digits of the continued fraction expansion of a “normal”
winding number W = [a1, a2, a3, . . .]. A numerical implementation of this proposal [?, ?]
by Monte Carlo generated strings a1, a2, a3, . . . yields estimates of “mean” scalings δ̄ =
15.5 ± .5 and ᾱ = 1.8 ± .1. δ̄n is the estimate of the mean width of an “average” mode-
locked interval ΔPn/Qn , where Pn/Qn is the nth continued fraction approximation to a
normal winding number W = [a1, a2, a3, . . .]. The number theoretical theorem on the Q n

asymptotics has been used [?] to connect the ergodic estimate of δ̄ to δ̂ estimated [3] by
averaging over all available mode-lockings up to given cycle length Q, but it is hard to tell
what to make out of such results.

In conclusion: though this approach is theoretically appealing, the numerical
convergence of ergodic averages is slow, if not outright hopeless, so we abandon
henceforth the ergodic “time” averages (here the “time” is the length of a con-
tinued fraction) (until a more winged number theory has been developed for this
class of problems) and turn instead to the “thermodynamic” averages (averages
over all “configurations,” here all mode lockings on a given level of a resolution
hierarchy).

Remark X.23 Ergodic number theory This approach to the global mode–locking
problem is inspired by results in ergodic number theory (see refs. [?, ?]): in particular for
the Gauss map (30.7) it is known that the ergodic measure is given by

exercise ??

μ(dx) =
1

ln 2
1

1 + x
dx

One of the most stimulating results in connection with mode–lockings concerns the scal-
ing properties of “typical” continued fraction approximants: for almost all W ∈ [0, 1],
W = [a1, . . . , ak, . . .], Pn/Qn = [a1, . . . an] we have that

lim
n→∞

1
n

ln Qn =
π2

12 · ln 2
56Predrag: merge these comments.
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circle map!subcriticalRemark X.24 Derivation The first “sum rule” for Farey denominators, Z n(1/2) =∑
Qi = 3n, was given by Williams and Browne [29]. The polynomials of table 30.2 were

first computed by Cvitanović and Kennedy, Appendix B of ref. [ 16]. This approach has
been superceeded by the ellegant method of Contucci and Knauf [?] that we have followed
above. The C2 factorization of sect. 21.5 has not been yet implemented; that presumably
explains the discrepancy between the transfer matrix T (τ) dimension [2τ+1×2τ+1], and
the order of the characteristic polynomial which is typically τ. Contucci and Knauf [?]
have extend the method to evaluating q(τ) also for all real positive τ.

exercise ??

Remark X.25 Spin chains. Knauf [7] has shown that (30.34) corresponds to ferro-
magnetic spin chains with effective interaction |i − j|2τ between spins at points i and j. In
the low temperature phase τ > −1 ?? shows that internal energy U = 0 and magnetization
M = 1. Dyson ?? showed that spin chains with |i − j|2τ do non ...

57

58

Remark X.26 Subcritical circle maps If the map is monotonically increasing (k < 1
in (30.1)), it is called subcritical. For subcritical maps much of the asymptotic behavior
is given by the trivial (shift map) scalings [?, ?].

Remark X.27 Experimental facts Golden mean universality has been checked exper-
imentally in a number of different physical systems, see refs. [19, 20].

Remark X.28 Harmonic scaling This leading behavior (discussed in refs. [2, ?, 13])
is derived by methods akin to those used in describing intermittency [ 24]: 1/Q cycles
accumulate toward the edge of 0/1 mode-locked interval, and as the successive mode-
locked intervals 1/Q, 1/(Q− 1) lie on a parabola, their differences are of order Q −3. This
should be compared to the subcritical circle maps in the number-theoretic limit ( 30.4),
where the interval between 1/Q and 1/(Q − 1) winding number value of the parameter Ω
shrinks as 1/Q2. For the critical circle maps the �1/Q interval is narrower than in the k=0
case, because it is squeezed by the nearby broad Δ0/1 mode-locked interval.

Remark X.29 Diophantine properties and dynamics The profound connection be-
tween “degree of irrationality” and dynamical properties may be appreciated if one refers
to formal stationary state perturbation theory in classical dynamics, where one has to face
the problem of small denominators: linear combinations, with integer coefficients, of the
unperturbed frequencies ν (0)

k of the system. Diophantine properties in classical number
theory (see for instance ref. [?]) establish lower bounds for such combinations: a typical
diophantine property for an irrational number ω (which is the relevant case for systems
with two degrees of freedom) is of the form

|ω − P/Q| ≥ C/Qα ∀P,Q ∈ N

57Predrag: copy p.3 text from Contucci
58Predrag: ?? CHECK THE NOTEBOOK!
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Very irrational numbers will satisfy such a bound with “big” C and “small” α. It turns out
that the smallest possible α is two, and the golden mean is the number yielding the best
possible estimate. The relevance of these arguments to dynamics is strikingly confirmed
by a detailed study of invariant (confining) circle destruction for the standard map [ 5]:
strong evidences are found that the last surviving KAM circle corresponds to golden mean
frequency. The situation is much more complicated when we increase dimensionality: it
is not even a priori clear what pair of mutually irrational numbers should play the role
of golden mean when three frequencies are considered [?, ?], moreover the transition to
chaos seems to loose universality properties [?, ?].

Remark X.30 Spin chains The above lexical binary labeling of the Farey denomi-
nators has been introduced by Knauf [7] in context of number-theoretical modeling of
ferromagnetic spin chains.

Remark X.31 Presentation function. The utility of the presentation function is
discussed at length in ref. [17].

Remark X.32 Mode–locking zeta functions By using the definition (30.5) we can
rewrite (30.18) in a suggestive way, by introducing a generalized zeta function

ζ̂(s) =
∞∑

n=1

∑
(m|n)=1

n−2μm/n·s

. If scalings were uniform (μm/n = μ, then

ζ̂(s) = ζ(2μs − 1)/ζ(2μs)

so we would have a simple connection with Riemann zeta function: however we know
that the spectrum of renormalization exponents is not trivial, so a direct connection cannot
be stablished, though still we know that the set of possible critical scalings is bounded,
see (30.17).

Remark X.33 Mayer zeta functions. In the “trivial” Gauss shift (30.38) renormaliza-
tion model, the Fredholm determinant and the dynamical zeta functions have been intro-
duced and studied by Mayer [16]. He relates the continued fraction transformation and
the Riemann zeta function, and constructs a Hilbert space on which the evolution operator
is self-adjoint, and its eigenvalues are exponentially spaced, just as for the dynamical zeta
functions [24] for the “Axiom A” hyperbolic systems.

Remark X.34 Farey series trivial thermodynamics The thermodynamics of the Farey
series in the number-theory limit (30.4) has been studied by Hall and others [?, ?]; their
analytic results are instructive and are reviewed in ref. [16].
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The main result is that q(τ) consists of two straight sections

q(τ) =

{
τ/2 τ ≤ −2

1 + τ τ ≥ −2
. (X.76)

and the Farey arc thermodynamics undergoes a first order phase transition at τ = −2. What
that means is that almost all covering intervals scale as Q−2 (the q = 1+τ phase); however,
for τ ≤ −2, the thermodynamics average is dominated by the handful of fat intervals
which scale as Q−1. The number-theoretic investigations [?, ?] also establish the rate of
convergence as Q → ∞; at the phase transition point it is very slow, logarithmic [ 16]. In
practice, the Euler noise is such numerical nuisance that we skip here the discussion of
the q(τ) convergence althogether.

Remark X.35 Finite order effects The size of the level-dependent correction in (30.36)
is ominous; the finite n estimates converge to the asymptotic value logarithmically.

Dn − D
Dn+1 − D

= 1 + O

(
1
n

)
. (X.77)

What this means is that the convergence is excruciatingly slow and cannot be overcome
by any amount of brute computation: again we will comment on this fact in the second
part of this chapter.

Remark X.36 Farey model spectrum. We hear that H.H. Rugh has a yet undetailed
proof that in the simplest analytic 1-d intermittent case (essentially Farey map) the spec-
trum is the union of the closed interval [0,1] + a countable set of discrete eigenvalues
(Baladi, May 1996).

There is a version of the Riemann hypothesis due to Frenel and Landau [28,
25] that is very suggestive in the present context. 59

Remark X.37 Quantum diffusion. The problem of deterministic diffusion plays an
outstanding role in dynamical systems theory for two main reasons: it deals with a typical
stochastic property which emerges from a genuine deterministic dynamics for classical
chaotic systems, and moreover it represents one of the key features of classical systems
which are dramatically altered upon quantization: a class of models is known where clas-
sical diffusion is suppressed in the quantum evolution, after a finite time [?].

59Predrag: find Friedland, U of Illinois, Chicago, who has studied Farey trees and Riemann
hypothesis
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