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lating: Path integrals are everything!

This book is a continuation of “everything.”

Things fall apart, and infinitely many pieces have to be put together.

In this book deterministic chaos, stochastic processes and quantum mechanics

are thought of together - in terms of evolution operators and their spectra.
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narrow; we keep the exposition focused on prerequisites to the applications to

WE sTART ouT With a recapitulation of the basic notions of dynamics. Our aim is

be developed in this text. We assume that the reader is familiar with dynamics

on the level of the introductory texts mentioned in remark 1.1, and concentrate here on
developing intuition about what a dynamical system can do. It will be a coarse brush
sketch—a full description of all possible behaviors of dynamical systems is beyond human
ken. While for a novice there is no shortcut through this lengthy detour, a sophisticated
traveler might bravely skip this well-trodden territory and embark upon the journey at
chapter 15.

The fate has handed you a flow. What are you to do about it?

1.

Define your dynamical system (M, f): the space of its possible states M, and the
law f! of their evolution in time.

Pin it down locally—is there anything about it that is stationary? Try to determine its
equilibria /fixed points (Chapter 2).

Slice it, represent as a map from a section to a section (Chapter3).

Explore the neighborhood by linearizing the flow—check the linear stability of its
equilibria / fixed points, their stability eigen-directions (Chapter4).

Go global: train by partitioning the state space of 1-dimensional maps. Label the
regions by symbolic dynamics (Chapter 11).

Now venture global distances across the system by continuing eigenvectors into
stable / unstable manifolds. Their intersections partition the state space in a dy-
namically invariant way (Chapter 12).

Guided by this topological partition, compute a set of periodic orbits up to a given
topological length (Chapter 13).

Along the way you might want to learn about dynamical invariants (chapter5), Lyapunov
exponents (chapter 6), classical mechanics (chapter 7), billiards (chapter 8), and discrete
(chapter 9) and continuous (chapter 10) symmetries of dynamics.

ackn.tex
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Chapter 1

Overture

If I have seen less far than other men it is because | have
stood behind giants.

—Edoardo Specchio

TEST: |

holes large enough to steam a Eurostar train through them. Here we learn

about harmonic oscillators and Keplerian ellipses - but where is the chap-
ter on chaotic oscillators, the tumbling Hyperion? We have just quantized hydro-
gen, where is the chapter on the classical 3-body problem and its implications for
guantization of helium? We have learned that an instanton is a solution of field-
theoretic equations of motion, but shouldn’t a strongly nonlinear field theory have
turbulent solutions? How are we to think about systems where things fall apart;
the center cannot hold; every trajectory is unstable? * 2

REREADING classic theoretical physics textbooks leaves a sense that there are

This chapter offers a quick survey of the main topics covered in the book.

Throughout the book 3
UPRIVATE

U indicates that the text up to {1 s still only a draft, not visible in the web

version
NPRIVATE

S‘\‘\ indicates that the section is on a pedestrian level - you are expected to
Q knowy/learn this material

d% indicates that the section is on a somewhat advanced, cyclist level
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CHAPTER 1. OVERTURE 4

,
J indicates that the section requires a hearty stomach and is probably best
skipped on first reading

W fast track points you where to skip to

’3 tells you where to go for more depth on a particular topic

[exercise 1.2] on margin links to an exercise that might clarify a point in the text

% indicates that a figure is still missing—you are urged to fetch it

We start out by making promises—we will right wrongs, no longer shall you suffer
the slings and arrows of outrageous Science of Perplexity. We relegate a historical
overview of the development of chaotic dynamics to appendixA, and head straight
to the starting line: A pinball game is used to motivate and illustrate most of the
concepts to be developed in ChaosBook. 4 °

This is a textbook, not a research monograph, and you should be able to follow
the thread of the argument without constant excursions to sources. Hence there are
no literature references in the text proper, all learned remarks and bibliographical
pointers are relegated to the “Commentary” section at the end of each chapter.

1.1 Why ChaosBook?

It seems sometimes that through a preoccupation with sci-
ence, we acquire a firmer hold over the vicissitudes of life
and meet them with greater calm, but in reality we have
done no more than to find a way to escape from our sor-
rows.

—Hermann Minkowski in a letter to David Hilbert

The problem has been with us since Newton’s first frustrating (and unsuccessful)
crack at the 3-body problem, lunar dynamics. Nature is rich in systems governed
by simple deterministic laws whose asymptotic dynamics are complex beyond
belief, systems which are locally unstable (almost) everywhere but globally recur-
rent. How do we describe their long term dynamics?

The answer turns out to be that we have to evaluate a determinant, take a
logarithm. It would hardly merit a learned treatise, were it not for the fact that this
determinant that we are to compute is fashioned out of infinitely many infinitely
small pieces. The feel is of statistical mechanics, and that is how the problem
was solved; in the 1960’s the pieces were counted, and in the 1970’s they were

4Predrag: soften out eyep.ps
SPredrag: Gatto Nero reference to Science of Perplexity
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CHAPTER 1. OVERTURE 5

weighted and assembled in a fashion that in beauty and in depth ranks along with brain, fé}‘t’
thermodynamics, partition functions and path integrals amongst the crown jewels Poincare, H.
of theoretical physics.

This book is not a book about periodic orbits. The red thread throughout the
text is the duality between the local, topological, short-time dynamically invariant
compact sets (equilibria, periodic orbits, partially hyperbolic invariant tori) and
the global long-time evolution of densities of trajectories. Chaotic dynamics is
generated by the interplay of locally unstable motions, and the interweaving of
their global stable and unstable manifolds. These features are robust and acces-
sible in systems as noisy as slices of rat brains. Poincaré, the first to understand
deterministic chaos, already said as much (modulo rat brains). Once this topology
is understood, a powerful theory yields the observable consequences of chaotic
dynamics, such as atomic spectra, transport coefficients, gas pressures.

That is what we will focus on in ChaosBook. The book is a self-contained
graduate textbook on classical and quantum chaos. Your professor does not know
this material, so you are on your own. We will teach you how to evaluate a deter-
minant, take a logarithm-stuff like that. Ideally, this should take 100 pages or so.
Well, we fail-so far we have not found a way to traverse this material in less than
a semester, or 200-300 page subset of this text. Nothing to be done.

1.2 Chaos ahead

Things fall apart; the centre cannot hold.
—W.B. Yeats: The Second Coming

The study of chaotic dynamics is no recent fashion. It did not start with the
widespread use of the personal computer. Chaotic systems have been studied for
over 200 years. During this time many have contributed, and the field followed no
single line of development; rather one sees many interwoven strands of progress.

In retrospect many triumphs of both classical and quantum physics were a
stroke of luck: a few integrable problems, such as the harmonic oscillator and
the Kepler problem, though ‘non-generic,” have gotten us very far. The success
has lulled us into a habit of expecting simple solutions to simple equations—an
expectation tempered by our recently acquired ability to numerically scan the state
space of non-integrable dynamical systems. The initial impression might be that
all of our analytic tools have failed us, and that the chaotic systems are amenable
only to numerical and statistical investigations. Nevertheless, a beautiful theory
of deterministic chaos, of predictive quality comparable to that of the traditional
perturbation expansions for nearly integrable systems, already exists.

In the traditional approach the integrable motions are used as zeroth-order ap-
proximations to physical systems, and weak nonlinearities are then accounted for

®Predrag: hyperlink to Waiting for Godot
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CHAPTER 1. OVERTURE 6

WIN IF e
MEAN ESCAPE <Laiona]

Figure 1.1: A physicist’s bare bones game of pinball.

perturbatively. For strongly nonlinear, non-integrable systems such expansions
fail completely; at asymptotic times the dynamics exhibits amazingly rich struc-
ture which is not at all apparent in the integrable approximations. However, hidden
in this apparent chaos is a rigid skeleton, a self-similar tree of cycles (periodic or-
bits) of increasing lengths. The insight of the modern dynamical systems theory
is that the zeroth-order approximations to the harshly chaotic dynamics should be
very different from those for the nearly integrable systems: a good starting ap-
proximation here is the stretching and folding of baker’s dough, rather than the
periodic motion of a harmonic oscillator.

So, what is chaos, and what is to be done about it? To get some feeling for how
and why unstable cycles come about, we start by playing a game of pinball. The
reminder of the chapter is a quick tour through the material covered in ChaosBook.
Do not worry if you do not understand every detail at the first reading—the intention
is to give you a feeling for the main themes of the book. Details will be filled out
later. If you want to get a particular point clarified right now, [section1.4] on the
margin points at the appropriate section.

1.3 The future as in a mirror

All you need to know about chaos is contained in the intro-
duction of [ChaosBook]. However, in order to understand
the introduction you will first have to read the rest of the
book.

—Gary Morriss

That deterministic dynamics leads to chaos is no surprise to anyone who has tried
pool, billiards or snooker-the game is about beating chaos—so we start our story
about what chaos is, and what to do about it, with a game of pinball. This might
seem a trifle, but the game of pinball is to chaotic dynamics what a pendulum is
to integrable systems: thinking clearly about what ‘chaos’ in a game of pinball
is will help us tackle more difficult problems, such as computing the diffusion
constant of a deterministic gas, the drag coefficient of a turbulent boundary layer,
or the helium spectrum.

We all have an intuitive feeling for what a ball does as it bounces among the
pinball machine’s disks, and only high-school level Euclidean geometry is needed

intro - 9apr2009 boyscout version14.4, Mar 19 2013
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CHAPTER 1. OVERTURE 7

23132321}

Figure 1.2: Sensitivity to initial conditions: two pin-
balls that start out very close to each other separate ex-
ponentially with time.

2313

to describe its trajectory. A physicist’s pinball game is the game of pinball strip-
ped to its bare essentials: three equidistantly placed reflecting disks in a plane,
figure 1.1. 7 A physicist’s pinball is free, frictionless, point-like, spin-less, per-
fectly elastic, and noiseless. Point-like pinballs are shot at the disks from random
starting positions and angles; they spend some time bouncing between the disks
and then escape.

At the beginning of the 18th century Baron Gottfried Wilhelm Leibniz was
confident that given the initial conditions one knew everything a deterministic
system would do far into the future. He wrote [2], anticipating by a century and
a half the oft-quoted Laplace’s “Given for one instant an intelligence which could
comprehend all the forces by which nature is animated...”:

That everything is brought forth through an established destiny is just
as certain as that three times three is nine. [...] If, for example, one sphere
meets another sphere in free space and if their sizes and their paths and
directions before collision are known, we can then foretell and calculate
how they will rebound and what course they will take after the impact. Very
simple laws are followed which also apply, no matter how many spheres
are taken or whether objects are taken other than spheres. From this one
sees then that everything proceeds mathematically—that is, infallibly—in the
whole wide world, so that if someone could have a sufficient insight into
the inner parts of things, and in addition had remembrance and intelligence
enough to consider all the circumstances and to take them into account, he
would be a prophet and would see the future in the present as in a mirror.

Leibniz chose to illustrate his faith in determinism precisely with the type of phys-
ical system that we shall use here as a paradigm of ‘chaos.” His claim is wrong ina
deep and subtle way: a state of a physical system can never be specified to infinite
precision, and by this we do not mean that eventually the Heisenberg uncertainty
principle kicks in. In the classical, deterministic dynamics there is no way to take
all the circumstances into account, and a single trajectory cannot be tracked, only
a ball of nearby initial points makes physical sense.

"Predrag: remove “WIN IF ...” in figure 1.1
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Figure 1.3: Unstable trajectories separate with time. X(t)iynamics!stochastic

x(0)
1.3.1 What s ‘chaos’?

I accept chaos. | am not sure that it accepts me.
—Bob Dylan, Bringing It All Back Home

A deterministic system is a system whose present state is in principle fully deter-
mined by its initial conditions.

In contrast, radioactive decay, Brownian motion and heat flow are examples
of stochastic systems, for which the initial conditions determine the future only
partially, due to noise, or other external circumstances beyond our control: the
present state reflects the past initial conditions plus the particular realization of
the noise encountered along the way.

A deterministic system with sufficiently complicated dynamics can fool us
into regarding it as a stochastic one; disentangling the deterministic from the
stochastic is the main challenge in many real-life settings, from stock markets
to palpitations of chicken hearts. So, what is ‘chaos’?

In a game of pinball, any two trajectories that start out very close to each other
separate exponentially with time, and in a finite (and in practice, a very small)
number of bounces their separation 6x(t) attains the magnitude of L, the charac-
teristic linear extent of the whole system, figure 1.2. This property of sensitivity
to initial conditions can be quantified as

6x(1)] ~ e*'|ox(0)]

where A, the mean rate of separation of trajectories of the system, is called the
Lyapunov exponent. For any finite accuracy 6x = |6x(0)| of the initial data, the
dynamics is predictable only up to a finite Lyapunov time®

1
Tiyap = 7 Inl6x/LI. (1.1)

despite the deterministic and, for Baron Leibniz, infallible simple laws that rule
the pinball motion. °

8Predrag: redefine as? “r, = 1/, is the Lyapunov time of cycle p, that is the mean time it takes
for the density of neighboring trajectories in an arbitrarily small ball centered around a point on the
trajectory to decrease by factor 1/e.” The Lyapunov time has nothing to do with the period of the
particular cycle.
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mixing
entropy!topological
Figure 1.4: Dynamics of a chaotic dynamical sys- .-+, topologicallentropy

tem is (a) everywhere locally unstable (positive

Lyapunov exponent) and (b) globally mixing (pos-
itive entropy). (A. Johansen)
(@)

(b) L

A positive Lyapunov exponent does not in itself lead to chaos. One could try
to play 1- or 2-disk pinball game, but it would not be much of a game; trajecto-
ries would only separate, never to meet again. What is also needed is mixing, the
coming together again and again of trajectories. While locally the nearby trajec-
tories separate, the interesting dynamics is confined to a globally finite region of
the state space and thus the separated trajectories are necessarily folded back and
can re-approach each other arbitrarily closely, infinitely many times. For the case
at hand there are 2" topologically distinct n bounce trajectories that originate from
a given disk. More generally, the number of distinct trajectories with n bounces
can be quantified as

N(n) ~ e

where h, the growth rate of the number of topologically distinct trajectories, is
called the “topological entropy” (h = In2 in the case at hand).

The appellation ‘chaos’ is a confusing misnomer, as in deterministic dynam-
ics there is no chaos in the everyday sense of the word; everything proceeds
mathematically—that is, as Baron Leibniz would have it, infallibly. When a physi-
cist says that a certain system exhibits ‘chaos,” he means that the system obeys
deterministic laws of evolution, but that the outcome is highly sensitive to small
uncertainties in the specification of the initial state. The word ‘chaos’ has in this
context taken on a narrow technical meaning. If a deterministic system is locally
unstable (positive Lyapunov exponent) and globally mixing (positive entropy)-
figure 1.4-it is said to be chaotic. 1°

While mathematically correct, the definition of chaos as ‘positive Lyapunov
+ positive entropy’ is useless in practice, as a measurement of these quantities is
intrinsically asymptotic and beyond reach for systems observed in nature. More
powerful is Poincaré’s vision of chaos as the interplay of local instability (unsta-
ble periodic orbits) and global mixing (intertwining of their stable and unstable
manifolds). In a chaotic system any open ball of initial conditions, no matter how
small, will in finite time overlap with any other finite region and in this sense
spread over the extent of the entire asymptotically accessible state space. Once
this is grasped, the focus of theory shifts from attempting to predict individual
trajectories (which is impossible) to a description of the geometry of the space
of possible outcomes, and evaluation of averages over this space. How this is
accomplished is what ChaosBook is about.

OPredrag: double the green line in figure 1.4. DB finds it unintelligible as drawn
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CHAPTER 1. OVERTURE 10

Even a baby nonlinear problem can bedevil the smoothest dynamicist, and hyperchaos
thus there is much squabbling about naming different kinds of complex dynamics P[[))EES
exhibited by nonlinear flows. In practice, “chaos” tends to refer to unstable 3d S

. Lo turbulence
flows (2d maps). If the dimension is higher, new names are made up. For example,
if most orbits of a system are unstable to perturbations in two real eigendirections,
the complex motion exhibited is termed “hyperchaos.” A waste of a good word
that could have been used to describe a phenomenon of a greater generality than
number 2.

Flows described by partial differential equations [PDES] are said to be infinite
dimensional because if one writes them down as a set of ordinary differential equa-
tions [ODEs], a set of infinitely many ODEs is needed to represent the dynamics
of one PDE. Even though their state space is thus ‘infinite-dimensional,” the long-
time dynamics of viscous flows, such as Navier-Stokes, and PDEs modeling them,
such as Kuramoto-Sivashinsky, exhibits, when dissipation is high and the system
spatial extent small, apparent ‘low-dimensional’ dynamical behaviors. For some
of these the asymptotic dynamics is known to be confined to a finite-dimensional
inertial manifold, though the rigorous upper bounds on this dimension are not of
much use in the practice.

For large spatial extent the complexity of the spatial motions also needs to be
taken into account. The systems whose spatial correlations decay sufficiently fast,
and the attractor dimension and number of positive Lyapunov exponents diverges
with system size are said to be extensively, ‘spatio-temporally chaotic’ or ‘weakly
turbulent.” Spatio-temporally chaotic systems are characterized by creation / an-
nihilation of ‘defects.” They are extensive; if you increase the spatial extent in
a given direction by a factor of two, you will need twice as many ‘degrees of
freedom’ to describe it to the same accuracy. Conversely, for small system sizes
the accurate description might require a large set of coupled ODEs, but dynamics
can still be ‘low-dimensional’ in the sense that it is characterized with one or a
few positive Lyapunov exponents. There is no wide range of scales involved, nor

decay of spatial correlations, and the system is in this sense only ‘chaotic.’
NPRIVATE

A definition of ‘turbulence’ is even harder to come by. Can you recognize
turbulence when you see it? The word comes from ‘tourbillon,” French for “‘vor-
tex,” and intuitively it refers to irregular behavior of spatially extended system
described by deterministic equations of motion—say, a bucket of sloshing water
described by the Navier-Stokes equations. But in practice the word ‘turbulence’
tends to refer to messy dynamics which we understand poorly. As soon as a
phenomenon is understood better, it is reclaimed and renamed: ‘a route to chaos’,
‘spatiotemporal chaos’, and so on.

UPRIVATE
chapter 27

IPRIVATE

For a subset of physicists and mathematicians who study idealized “fully de- UPRIVATE
veloped,” “homogenous’ turbulence the generally accepted usage is that the “tur-
bulent’ fluid is characterized by a range of scales and an energy cascade describ-
able by statistic assumptions. What experimentalists, engineers, geophysicists,
astrophysicists actually observe looks nothing like a “fully developed turbulence.’
In the physically driven wall-bounded shear flows, the turbulence is dominated by
unstable coherent structures, that is, localized recurrent vortices, rolls, streaks and
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like. The statistical assumptions fail, and a dynamical systems description from
first principles is called for.

Here comes our quandary. If we ban the words ‘turbulence’ and ‘spatiotem-
poral chaos’ from our study of small extent systems, the relevance of what we
do to larger systems is obscured. The exact unstable coherent structures we deter-
mine pertain not only to the spatially small ‘chaotic’ systems, but also the spatially
large ‘spatiotemporally chaotic’ and the spatially very large ‘turbulent’ systems.
The key aspect we study here - continuous spatial symmetry of the system - is
pertinent to all these systems, independent of their size. So, for the lack of more
precise nomenclature, we take the liberty of using the terms ‘chaos,” ‘spatiotem-
poral chaos,” and ‘turbulence’ interchangeably.

We return to these painful questions in chapter27.

In ChaosBook we shall develop a theory of chaotic dynamics for low dimens-
ional attractors visualized as a succession of nearly periodic but unstable motions.
In the same spirit, we shall think of turbulence in spatially extended systems in
terms of recurrent spatiotemporal patterns. Pictorially, dynamics drives a given
spatially extended system (clouds, say) through a repertoire of unstable patterns;
as we watch a turbulent system evolve, every so often we catch a glimpse of a
familiar pattern:

@@J" D

= other swirls =

For any finite spatial resolution, a deterministic flow follows approximately for a
finite time an unstable pattern belonging to a finite alphabet of admissible patterns,
and the long term dynamics can be thought of as a walk through the space of such
patterns. In ChaosBook we recast this image into mathematics.

1.3.2 When does ‘chaos’ matter?

In dismissing Pollock’s fractals because of their limited
magnification range, Jones-Smith and Mathur would also
dismiss half the published investigations of physical frac-
tals.

— Richard P. Taylor [4, 5]

When should we be mindful of chaos? ' The solar system is “‘chaotic’, yet we
have no trouble keeping track of the annual motions of planets. The rule of thumb

1predrag: replace by the color original
12Predrag: expand using my lectures
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is this; if the Lyapunov time (1.1)-the time by which a state space region initially
comparable in size to the observational accuracy extends across the entire acces-
sible state space-is significantly shorter than the observational time, you need to
master the theory that will be developed here. 13 That is why the main successes
of the theory are in statistical mechanics, quantum mechanics, and questions of
long term stability in celestial mechanics.

In science popularizations too much has been made of the impact of ‘chaos
theory,” so a number of caveats are already needed at this point.

At present the theory that will be developed here is in practice applicable only
to systems of a low intrinsic dimension — the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent (a descrip-
tion of its long time dynamics requires a space of high intrinsic dimension) we are
out of luck. Hence insights that the theory offers in elucidating problems of fully
developed turbulence, quantum field theory of strong interactions and early cos-
mology have been modest at best. Even that is a caveat with qualifications. There
are applications—such as spatially extended (non-equilibrium) systems, plumber’s
turbulent pipes, etc.,—where the few important degrees of freedom can be isolated
and studied profitably by methods to be described here.

Thus far the theory has had limited practical success when applied to the very
noisy systems so important in the life sciences and in economics. Even though
we are often interested in phenomena taking place on time scales much longer
than the intrinsic time scale (neuronal inter-burst intervals, cardiac pulses, etc.),
disentangling ‘chaotic’ motions from the environmental noise has been very hard.

In 1980°s something happened that might be without parallel; this is an area
of science where the advent of cheap computation had actually subtracted from
our collective understanding. The computer pictures and numerical plots of frac-
tal science of the 1980’s have overshadowed the deep insights of the 1970’s, and
these pictures have since migrated into textbooks. By a regrettable oversight,
ChaosBook has none, so ‘Untitled 5° of figure 1.5 will have to do as the illustra-
tion of the power of fractal analysis. Fractal science posits that certain quantities
(Lyapunov exponents, generalized dimensions, ...) can be estimated on a com-
puter. While some of the numbers so obtained are indeed mathematically sensible
characterizations of fractals, they are in no sense observable and measurable on
the length-scales and time-scales dominated by chaotic dynamics.

Even though the experimental evidence for the fractal geometry of nature is
circumstantial [7], in studies of probabilistically assembled fractal aggregates we
know of nothing better than contemplating such quantities. In deterministic sys-
tems we can do much better.

1.4 A game of pinball

13predrag: cite Gaspard numbers
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Figure 1.5: Katherine Jones-Smith, ‘Untitled 5,” the
drawing used by K. Jones-Smith and R.P. Taylor to test
the fractal analysis of Pollock’s drip paintings [6].

Formulas hamper the understanding.
—S. Smale

We are now going to get down to the brass tacks. Time to fasten your seat belts
and turn off all electronic devices. But first, a disclaimer: If you understand the
rest of this chapter on the first reading, you either do not need this book, or you are
delusional. If you do not understand it, it is not because the people who figured
all this out first are smarter than you: the most you can hope for at this stage is to
get a flavor of what lies ahead. If a statement in this chapter mystifies/intrigues,
fast forward to a section indicated by [section ...] on the margin, read only the
parts that you feel you need. Of course, we think that you need to learn ALL of it,
or otherwise we would not have included it in ChaosBook in the first place.

Confronted with a potentially chaotic dynamical system, our analysis pro-
ceeds in three stages; I. diagnose, Il. count, IlIl. measure. First, we determine
the intrinsic dimension of the system—-the minimum number of coordinates nec-
essary to capture its essential dynamics. If the system is very turbulent we are,
at present, out of luck. We know only how to deal with the transitional regime
between regular motions and chaotic dynamics in a few dimensions. That is still
something; even an infinite-dimensional system such as a burning flame front can
turn out to have a very few chaotic degrees of freedom. In this regime the chaotic
dynamics is restricted to a space of low dimension, the number of relevant param-
eters is small, and we can proceed to step Il; we count and classify all possible
topologically distinct trajectories of the system into a hierarchy whose successive
layers require increased precision and patience on the part of the observer. This
we shall do in sect. 1.4.2. If successful, we can proceed with step Ill: investigate
the weights of the different pieces of the system.

We commence our analysis of the pinball game with steps I, Il: diagnose,
count. We shall return to step Ill-measure—in sect. 1.5. The three sections that
follow are highly technical, they go into the guts of what the book is about. If
today is not your thinking day, skip them, jump straight to sect.1.7.
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itinerary

jectories; a bounce in which the trajectory returns to
the preceding disk is labeled 0, and a bounce which
results in continuation to the third disk is labeled 1.

Figure 1.6: Binary labeling of the 3-disk pinball tra- ‘
0

isk!symbolic
dynamics
skeleton of chaos
chaos!skeleton of

121212313

Figure 1.7: The 3-disk pinball cycles 1232 and
121212313.

1.4.1 Symbolic dynamics

With the game of pinball we are in luck-it is a low dimensional system, free
motion in a plane. The motion of a point particle is such that after a collision
with one disk it either continues to another disk or it escapes. If we label the
three disks by 1, 2 and 3, we can associate every trajectory with an itinerary, a
sequence of labels indicating the order in which the disks are visited; for example,
the two trajectories in figure 1.2 have itineraries _2313_, _23132321_ respectively.
Such labeling goes by the name symbolic dynamics. As the particle cannot collide
two times in succession with the same disk, any two consecutive symbols must
differ. This is an example of pruning, a rule that forbids certain subsequences
of symbols. Deriving pruning rules is in general a difficult problem, but with the
game of pinball we are lucky—for well-separated disks there are no further pruning
rules.

exercise 1.1
section 2.1

chapter 12

The choice of symbols is in no sense unique. For example, as at each bounce
we can either proceed to the next disk or return to the previous disk, the above
3-letter alphabet can be replaced by a binary {0, 1} alphabet, figure1.6. A clever
choice of an alphabet will incorporate important features of the dynamics, such as

i mmetries.
ts symmetries section 11.6

Suppose you wanted to play a good game of pinball, that is, get the pinball
to bounce as many times as you possibly can—what would be a winning strategy?
The simplest thing would be to try to aim the pinball so it bounces many times
between a pair of disks—if you managed to shoot it so it starts out in the periodic
orbit bouncing along the line connecting two disk centers, it would stay there for-
ever. Your game would be just as good if you managed to get it to keep bouncing
between the three disks forever, or place it on any periodic orbit. The only rub
is that any such orbit is unstable, so you have to aim very accurately in order to
stay close to it for a while. So it is pretty clear that if one is interested in playing
well, unstable periodic orbits are important—they form the skeleton onto which all
trajectories trapped for long times cling.
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Figure 1.8: (a) A trajectory starting out from disk
1 can either hit another disk or escape. (b) Hitting
two disks in a sequence requires a much sharper aim,
with initial conditions that hit further consecutive disks
nested within each other, as in Fig. 1.9.

b}
1.4.2 Partitioning with periodic orbits

A trajectory is periodic if it returns to its starting position and momentum. We
shall sometimes refer to the set of periodic points that belong to a given periodic
orbit as a cycle.

Short periodic orbits are easily drawn and enumerated—an example is drawn in
figure 1.7-but it is rather hard to perceive the systematics of orbits from their con-
figuration space shapes. In mechanics a trajectory is fully and uniquely specified
by its position and momentum at a given instant, and no two distinct state space
trajectories can intersect. Their projections onto arbitrary subspaces, however,
can and do intersect, in rather unilluminating ways. In the pinball example the
problem is that we are looking at the projections of a 4-dimensional state space
trajectories onto a 2-dimensional subspace, the configuration space. A clearer
picture of the dynamics is obtained by constructing a set of state space Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its position
and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces—the ball just travels at constant velocity along a straight line—
so we can reduce the 4-dimensional flow to a 2-dimensional map P that takes the
coordinates of the pinball from one disk edge to another disk edge. The trajectory
just after the moment of impact is defined by s, the arc-length position of the
nth bounce along the billiard wall, and p, = psin ¢, the momentum component
parallel to the billiard wall at the point of impact, see figure1.9. Such section of a
flow is called a Poincaré section. In terms of Poincaré sections, the dynamics is
reduced to the set of six maps Ps.s; : (Sn, Pn) — (Sn+1, Pns+1), With s € {1, 2,3},
from the boundary of the disk j to the boundary of the next disk k.

Next, we mark in the Poincaré section those initial conditions which do not
escape in one bounce. There are two strips of survivors, as the trajectories orig-
inating from one disk can hit either of the other two disks, or escape without
further ado. We label the two strips Mz, Miz. Embedded within them there
are four strips Mi1, Moz, Mz, Mizp of initial conditions that survive for two
bounces, and so forth, see figures 1.8 and 1.9. Provided that the disks are suffi-
ciently separated, after n bounces the survivors are divided into 2' distinct strips:
the Mjth strip consists of all points with itinerary i = §5,83...5,, S = {1,2,3}.
The unstable cycles as a skeleton of chaos are almost visible here: each such patch
contains a periodic point$:S,S3 . .. Sy with the basic block infinitely repeated. Pe-
riodic points are skeletal in the sense that as we look further and further, the strips
shrink but the periodic points stay put forever.

14predrag: Include fig. 15 from LNN.
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Figure 1.9: The 3-disk game of pinball Poincaré 1
section, trajectories emanating from the disk 1
with Xo = (So, Po) - (a) Strips of initial points My,
M3 which reach disks 2, 3 in one bounce, respec-
tively. (b) Strips of initial points M1, My Mz
and M,3 which reach disks 1, 2, 3 in two bounces,
respectively. The Poincaré sections for trajectories
originating on the other two disks are obtained by
the appropriate relabeling of the strips. Disk ra-
dius : center separation ratio a:R = 1:2.5. (Y.

Lan)
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We see now why it pays to utilize a symbolic dynamics; it provides a naviga-
tion chart through chaotic state space. There exists a unique trajectory for every
admissible infinite length itinerary, and a unique itinerary labels every trapped
trajectory. For example, the only trajectory labeled by 12 is the 2-cycle bouncing
along the line connecting the centers of disks 1 and 2; any other trajectory starting
outas 12... either eventually escapes or hits the 3rd disk.

1.4.3 Escape rate

What is a good physical quantity to compute for the game of pinball? Such a sys-
tem, for which almost any trajectory eventually leaves a finite region (the pinball
table) never to return, is said to be open, or a repeller. The repeller escape rate
is an eminently measurable quantity. An example of such a measurement would
be an unstable molecular or nuclear state which can be well approximated by a
classical potential with the possibility of escape in certain directions. In an ex-
periment many projectiles are injected into a macroscopic ‘black box’ enclosing
a microscopic non-confining short-range potential, and their mean escape rate is
measured, as in figure 1.1. The numerical experiment might consist of injecting
the pinball between the disks in some random direction and asking how many
times the pinball bounces on the average before it escapes the region between the
disks.

For a theorist, a good game of pinball consists in predicting accurately the
asymptotic lifetime (or the escape rate) of the pinball. We now show how periodic
orbit theory accomplishes this for us. Each step will be so simple that you can
follow even at the cursory pace of this overview, and still the result is surprisingly
elegant.

Consider figure 1.9 again. In each bounce the initial conditions get thinned
out, yielding twice as many thin strips as at the previous bounce. The total area
that remains at a given time is the sum of the areas of the strips, so that the fraction
of survivors after n bounces, or the survival probability is given by

~ Mol IMy] ~ (Mool  [IMaol  IMo1l  IMail
= —— 4= I, = + + + ,
M IM| ? IM| M| M| IM|
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R 1 O escape rate

rhn = — Mil, 1.2) Poincar“’e, H.
T Z M (1.2)

where i is a label of the ith strip, |M]| is the initial area, and |Mj is the area of

the ith strip of survivors. i = 01,10,11,... is a label, not a binary number. Since

at each bounce one routinely loses about the same fraction of trajectories, one

expects the sum (1.2) to fall off exponentially with n and tend to the limit chapter 22

fn+1/fn = e_yn b e_y. (13)

The quantity vy is called the escape rate from the repeller.

1.5 Chaos for cyclists

15 Etant données des équations ... et une solution particuliére

quelconque de ces équations, on peut toujours trouver une
solution périodique (dont la période peut, il est vrai, étre
trés longue), telle que la différence entre les deux solu-
tions soit aussi petite qu’on le veut, pendant un temps aussi
long qu’on le veut. D’ailleurs, ce qui nous rend ces solu-
tions périodiques si précieuses, c’est qu’elles sont, pour
ansi dire, la seule bréche par ou nous puissions esseyer de
pénétrer dans une place jusqu’ici réputée inabordable.

—H. Poincaré, Les méthodes nouvelles de la
méchanique céleste

We shall now show that the escape rate -y can be extracted from a highly conver-
gent exact expansion by reformulating the sum (1.2) in terms of unstable periodic
orbits.

If, when asked what the 3-disk escape rate is for a disk of radius 1, center-
center separation 6, velocity 1, you answer that the continuous time escape rate
is roughly y = 0.4103384077693464893384613078192... ., you do not need this
book. If you have no clue, hang on.

1.5.1 How big is my neighborhood?

Of course, we can prove all these results directly from
Eg. (17.26) by pedestrian mathematical manipulations,
but that only makes it harder to appreciate their physical
significance.

— Rick Salmon, “Lectures on Geophysical Fluid Dy-
namics”, Oxford Univ. Press (1998)

15predrag: move this to a later section?
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— 1t ipdic!point
X(t) p-0x() = J 8%92I!p0int$“xlnit$

initiallstate $“xInit$
Jacobian!matrix

unstable!manifold
Figure 1.10: The Jacobian matrix J' maps an infinites- stable!manifold

imal displacement 6x at X, into a displacement J(xo)6x x(0) marginal!stability
finite time t later.
SX(O) return map
map!return

Not only do the periodic points keep track of topological ordering of the strips,
but, as we shall now show, they also determine their size. As a trajectory evolves,
it carries along and distorts its infinitesimal neighborhood. Let

X(t) = f'(xo)

denote the trajectory of an initial point x = x(0). Expanding f!(xo + 6%g) to
linear order, the evolution of the distance to a neighboring trajectory x(t) + 6x;(t)
is given by the Jacobian matrix J:

d ox;(t
on) = 3, ion 30 = T (1.4

A trajectory of a pinball moving on a flat surface is specified by two position co-
ordinates and the direction of motion, so in this case d = 3. Evaluation of a cycle
Jacobian matrix is a long exercise - here we just state the result. The Jacobian
matrix describes the deformation of an infinitesimal neighborhood of x(t) along
the flow; its eigenvectors and eigenvalues give the directions and the correspond-
ing rates of expansion or contraction, figure 1.10. The trajectories that start out in
an infinitesimal neighborhood separate along the unstable directions (those whose
eigenvalues are greater than unity in magnitude), approach each other along the
stable directions (those whose eigenvalues are less than unity in magnitude), and
maintain their distance along the marginal directions (those whose eigenvalues
equal unity in magnitude).

section 8.2

In our game of pinball the beam of neighboring trajectories is defocused along
the unstable eigen-direction of the Jacobian matrix J.

As the heights of the strips in figure 1.9 are effectively constant, we can con-
centrate on their thickness. If the height is ~ L, then the area of the ith strip is
M; ~ LlI; for a strip of width I;.

Each strip i in figure 1.9 contains a periodic point x. The finer the intervals,
the smaller the variation in flow across them, so the contribution from the strip

of width [; is well-approximated by the contraction around the periodic point %
within the interval,

li = ai/IAil, (1.5)
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where A; is the unstable eigenvalue of the Jacobian matrix J(x;) evaluated at mixing
the ith periodic point for t = Tp, the full period (due to the low dimensionality, hyg’sesrl?r?]g%'g]
the Jacobian can have at most one unstable eigenvalue). Only the magnitude of

this eigenvalue matters, we can disregard its sign. The prefactors g reflect the

overall size of the system and the particular distribution of starting values of x. As

the asymptotic trajectories are strongly mixed by bouncing chaotically around the

repeller, we expect their distribution to be insensitive to smooth variations in the

distribution of initial points. cection 16.4

To proceed with the derivation we need the hyperbolicity assumption: for
large n the prefactors g ~ O(1) are overwhelmed by the exponential growth of
Aj, so we neglect them. If the hyperbolicity assumption is justified, we can replace ection 1841
IMil| =~ Llj in (1.2) by 1/]Aj| and consider the sum o

(n)

T = ) L/IAIl,

where the sum goes over all periodic points of period n. We now define a gener-
ating function for sums over all periodic orbits of all lengths:

I'@z) = i Inz". (1.6)
n=1

Recall that for large n the nth level sum (1.2) tends to the limit I, — ™", so the
escape rate vy is determined by the smallest z = € for which (1.6) diverges:

(59 —

M)~ () =1 e’

— 707
~ z€e

(1.7)

This is the property of I'(z) that motivated its definition. Next, we devise a formula
for (1.6) expressing the escape rate in terms of periodic orbits:

(n)

(o)
r@ = Y, 2" ) Al
n=1 i
z z 72 72 72 72
= — +— 4 + + +
Aol A1l [Aool  [Ao1l  IAz0l  |Axl
2 2 2 2

(1.8)

+ + + + ...
|Aoool  1Aoorl Aol  |Azool

For sufficiently small z this sum is convergent. The escape rate y is now given by
the leading pole of (1.7), rather than by a numerical extrapolation of a sequence of
vn extracted from (1.3). As any finite truncation n < nyrync of (1.8) is a polyno-
mial in z, convergent for any z, finding this pole requires that we know something
about I', for any n, and that might be a tall order.

section 18.3
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We could now proceed to estimate the location of the leading singularity of th%ﬁiﬂisﬁgg'
I'(z) from finite truncations of (1.8) by methods such as Padé approximants. How- Cyc|£
ever, as we shall now show, it pays to first perform a simple resummation that zeta

converts this divergence into a zero of a related function. function!dynamical
dynamicallzeta
function

1.5.2 Dynamical zeta function

If a trajectory retraces a prime cycle r times, its expanding eigenvalue is A'{, A
prime cycle p is a single traversal of the orbit; its label is a non-repeating symbol
string of n, symbols. There is only one prime cycle for each cyclic permutation
class. For example, p = 0011 = 1001 = 1100 = 0110 is prime, but 0101 = 01 is not.

By the chain rule for derivatives the stability of a cycle is the same everywhere
along the orbit, so each prime cycle of length n, contributes ny terms to the sum
(1.8). Hence (1.8) can be rewritten as

exercise 15.2
section 4.5

EEDYON v EDIE NN v 9

where the index p runs through all distinct prime cycles. Note that we have re-
summed the contribution of the cycle p to all times, so truncating the summation
up to given p is not a finite time n < n, approximation, but an asymptotic, infinite
time estimate based by approximating stabilities of all cycles by a finite number of
the shortest cycles and their repeats. The n,z" factors in (1.9) suggest rewriting
the sum as a derivative *’

d
r@=-z zp: In(1 - t,)

Hence I'(z) is a logarithmic derivative of the infinite product

Z"

Vi@ =[a-t), t= TR (1.10)
p

This function is called the dynamical zeta function, in analogy to the Riemann
zeta function, which motivates the ‘zeta’ in its definition as 1/£(z). This is the
prototype formula of periodic orbit theory. The zero of 1/(z) is a pole of I'(2),
and the problem of estimating the asymptotic escape rates from finite n sums
such as (1.2) is now reduced to a study of the zeros of the dynamical zeta function
(1.10). The escape rate is related by (1.7) to a divergence of I'(z), and I'(z) diverges

section 22.1
whenever 1//(z) has a zero.

section 19.4

7John G: suggest adding I'(z) = z Iog L 5 to specify meaning of logarithmic derivative and to
make relation of I'(z) to 1/£(2) epr|C|t so that upcomlng pole « zero discussion is easier to follow.
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Easy, you say: “Zeros of (1.10) can be read oft the formula, a zero cyclelexpansion
shadowing

1
Zp = |Apl /np

for each term in the product. What’s the problem?” Dead wrong!

1.5.3 Cycle expansions

How are formulas such as (1.10) used? We start by computing the lengths and
eigenvalues of the shortest cycles. This usually requires some numerical work,
such as the Newton method searches for periodic solutions; we shall assume that
the numerics are under control, and that all short cycles up to given length have
been found. In our pinball example this can be done by elementary geometrical
optics. It is very important not to miss any short cycles, as the calculation is as
accurate as the shortest cycle dropped—including cycles longer than the shortest
omitted does not improve the accuracy (unless exponentially many more cycles
are included). The result of such numerics is a table of the shortest cycles, their
periods and their stabilities.

chapter 13

section 33.3

Now expand the infinite product (1.10), grouping together the terms of the
same total symbol string length

(1 —to)(1 —t2)(1 — to)(1 — taoo) - - -

= 1-to—t —[tio — tato] — [(tao0 — taoto) + (t101 — t1ot1)]

—[(tz000 — tot100) + (tra10 — tat110)

+(tr001 — ttoor — trorto + trotots)] — ... (1.11)

1/¢

The virtue of the expansion is that the sum of all terms of the same total length
n (grouped in brackets above) is a number that is exponentially smaller than a
typical term in the sum, for geometrical reasons we explain in the next section.

chapter 20

section 20.1

The calculation is now straightforward. We substitute a finite set of the eigen-
values and lengths of the shortest prime cycles into the cycle expansion (.11),
and obtain a polynomial approximation to 1//. We then vary z in (L.10) and de-

termine the escape rate y by finding the smallest z = ¢ for which (1.11) vanishes.
19

1.5.4 Shadowing

When you actually start computing this escape rate, you will find out that the
convergence is very impressive: only three input numbers (the two fixed points 0,
1 and the 2-cycle 10) already yield the pinball escape rate to 3-4 significant digits!
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Figure 1.11: Approximation to a smooth dynamics
(left frame) by the skeleton of periodic points, together
with their linearized neighborhoods, (right frame). In-
dicated are segments of two 1-cycles and a 2-cycle
that alternates between the neighborhoods of the two
1-cycles, shadowing first one of the two 1-cycles, and
then the other.

Figure 1.12: A longer cycle p” shadowed by a pair of
shorter cycles p and p'.

We have omitted an infinity of unstable cycles; so why does approximating the
dynamics by a finite number of the shortest cycle eigenvalues work so well?

The convergence of cycle expansions of dynamical zeta functions is a conse-
guence of the smoothness and analyticity of the underlying flow. Intuitively, one
can understand the convergence in terms of the geometrical picture sketched in
figure 1.11; the key observation is that the long orbits are shadowed by sequences
of shorter orbits.

Atypical termin (1.11) is a difference of a long cycle {ab} minus its shadowing
approximation by shorter cycles {a} and {b} (see figure1.12),

Aap
tap — tatp = tab(l - tatb/tab) =t (1 - ‘A j\ D > (1-12)
al\b

where a and b are symbol sequences of the two shorter cycles. If all orbits are
weighted equally (t, = z"), such combinations cancel exactly; if orbits of similar
symbolic dynamics have similar weights, the weights in such combinations almost
cancel.

This can be understood in the context of the pinball game as follows. Consider
orbits 0, 1 and 01. The first corresponds to bouncing between any two disks while
the second corresponds to bouncing successively around all three, tracing out an
equilateral triangle. The cycle 01 starts at one disk, say disk 2. It then bounces
from disk 3 back to disk 2 then bounces from disk 1 back to disk 2 and so on, so its
itinerary is 2321. In terms of the bounce types shown in figure1.6, the trajectory is
alternating between 0 and 1. The incoming and outgoing angles when it executes

8predrag: point to the section
¥predrag: back to physics here: explain escape = Lyap-entropy
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these bounces are very close to the corresponding angles for 0 and 1 cycles. Also
the distances traversed between bounces are similar so that the 2-cycle expanding
eigenvalue Ap; is close in magnitude to the product of the 1-cycle eigenvalues
AoA1.

To understand this on a more general level, try to visualize the partition of
a chaotic dynamical system’s state space in terms of cycle neighborhoods as a
tessellation (a tiling) of the dynamical system, with smooth flow approximated by
its periodic orbit skeleton, each ‘tile’ centered on a periodic point, and the scale
of the ‘tile’ determined by the linearization of the flow around the periodic point,
as illustrated by figure 1.11.

The orbits that follow the same symbolic dynamics, such as {ab} and a ‘pseudo
orbit” {a}{b}, lie close to each other in state space; long shadowing pairs have to
start out exponentially close to beat the exponential growth in separation with
time. If the weights associated with the orbits are multiplicative along the flow
(for example, by the chain rule for products of derivatives) and the flow is smooth,
the term in parenthesis in (1.12) falls oft exponentially with the cycle length, and
therefore the curvature expansions are expected to be highly convergent.

1.6 Change in time

MEN are deplorably ignorant with respect to natural
things and modern philosophers as though dreaming in the
darkness must be aroused and taught the uses of things the
dealing with things they must be made to quit the sort of
learning that comes only from books and that rests only
on vain arguments from probability and upon conjectures.

— William Gilbert, De Magnete, 1600

The above derivation of the dynamical zeta function formula for the escape rate
has one shortcoming; it estimates the fraction of survivors as a function of the
number of pinball bounces, but the physically interesting quantity is the escape
rate measured in units of continuous time. For continuous time flows, the escape
rate (1.2) is generalized as follows. Define a finite state space region M such
that a trajectory that exits M never reenters. For example, any pinball that falls
of the edge of a pinball table in figure 1.1 is gone forever. Start with a uniform
distribution of initial points. The fraction of initial x whose trajectories remain
within M at time t is expected to decay exponentially

Jy dxdys(y - £1(x)) R
fde

The integral over x starts a trajectory at every x € M. The integral over y tests
whether this trajectory is still in M at time t. The kernel of this integral

It = e,

L'y, %) = 8y - f'(x) (1.13)
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is the Dirac delta function, as for a deterministic flow the initial point x maps
into a unique point y at time t. For discrete time, f'(x) is the nth iterate of the
map f. For continuous flows, f'(x) is the trajectory of the initial point x, and it
is appropriate to express the finite time kernel £ in terms of A, the generator of
infinitesimal time translations

L=,

very much in the way the quantum evolution is generated by the Hamiltonian H,
the generator of infinitesimal time quantum transformations.

As the kernel £ is the key to everything that follows, we shall give it a name,
and refer to it and its generalizations as the evolution operator for a d-dimensional
map or a d-dimensional flow.

The number of periodic points increases exponentially with the cycle length
(in the case at hand, as 2"). As we have already seen, this exponential proliferation
of cycles is not as dangerous as it might seem; as a matter of fact, all our compu-
tations will be carried out in the n — oo limit. Though a quick look at long-time
density of trajectories might reveal it to be complex beyond belief, this distribution
is still generated by a simple deterministic law, and with some luck and insight,
our labeling of possible motions will reflect this simplicity. If the rule that gets us
from one level of the classification hierarchy to the next does not depend strongly
on the level, the resulting hierarchy is approximately self-similar. We now turn
such approximate self-similarity to our advantage, by turning it into an operation,
the action of the evolution operator, whose iteration encodes the self-similarity.

1.6.1 Trace formula

In physics, when we do not understand something, we give
it a name.

—Matthias Neubert

20 Recasting dynamics in terms of evolution operators changes everything. So
far our formulation has been heuristic, but in the evolution operator formalism
the escape rate and any other dynamical average are given by exact formulas,
extracted from the spectra of evolution operators. The key tools are trace formulas
and spectral determinants.

The trace of an operator is given by the sum of its eigenvalues. The explicit
expression (1.13) for L'(x,y) enables us to evaluate the trace. Identify y with x
and integrate x over the whole state space. The result is an expression for tr £ as
a sum over neighborhoods of prime cycles p and their repetitions

o Ot —rTp)
tr £ = ZT Z’det - '\:r) , (1.14)

2predrag: remove top 2 lines of figure 1.13
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Figure 1.13: The trace of an evolution operator is con- Ty ¢ par =]
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Figure 1.14: Replaces first part of figure 1.13. Tubes
still to be drawn

where T, is the period of prime cycle p, and the monodromy matrix M, is the
flow-transverse part of Jacobian matrix J (1.4). This formula has a simple geo-
metrical interpretation sketched in figure 1.13. After the rth return to a Poincaré
section, the initial tube M, has been stretched out along the expanding eigen-
directions, with the overlap with the initial volume given by 1/‘det(l - M[,) -
1/IApl, the same weight we obtained heuristically in sect. 1.5.1.

The “spiky’ sum (1.14) is disquieting in the way reminiscent of the Poisson
resummation formulas of Fourier analysis; the left-hand side is the smooth eigen-
value sum tre” = ¥ eSt while the right-hand side equals zero everywhere ex-
cept for the sett = rT,. 2! A Laplace transform smooths the sum over Dirac
delta functions in cycle periods and yields the trace formula for the eigenspec-

trum sg, S1, - - - Of the classical evolution operator: _
chapter 18

dte Sttr £ =
0, S—A

Y - 2T ifrm - (1.19)

|
—
=
Il

a=0 @

The beauty of trace formulas lies in the fact that everything on the right-hand-
side—prime cycles p, their periods T, and the eigenvalues of My—is an invariant
property of the flow, independent of any coordinate choice.

2INiall: Inconsistent notation of eigenvalues compared to the previous figure.
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1.6.2 Spectral determinant spectral!determinant
determinant!spectral

statistical mechanics
The eigenvalues of a linear operator are given by the zeros of the appropriate mechanics!statistical
determinant. One way to evaluate determinants is to expand them in terms of densitylevolution

traces, using the identities timelarrow of
prevssiliility

d d 1
I Indet (s — A) _trEIn(s—ﬂ) _trm, (1.16)

and integrating over s. In this way the spectral determinant of an evolution oper-

ator becomes related to the traces that we have just computed: )
chapter 19

sTpr
i (1.17)

det (s — A) = exp Zi L

F|o|et 1- Mp)

The 1/r factor is due to the s integration, leading to the replacement T, — T,/rT,

in the periodic orbit expansion (1.15). ection 195

o . . A . PRIVATE
The motivation for recasting the eigenvalue problem in this form is sketched U

in figure 1.15; exponentiation improves analyticity and trades in a divergence of
the trace sum for a zero of the spectral determinant. We have now retraced the
heuristic derivation of the divergent sum (L.7) and the dynamical zeta function
(1.10), but this time with no approximations: formula (L.17) is exact. The com-
putation of the zeros of det (s — A) proceeds very much like the computations of
sect. 1.5.3. %2

IPRIVATE

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

23 The replacement of individual trajectories by evolution operators which prop-
agate densities feels like a bit of mathematical voodoo. Nevertheless, something
very radical and deeply foundational has taken place. Understanding the distinc-
tion between evolution of individual trajectories and the evolution of the densities
of trajectories is key to understanding statistical mechanics—this is the conceptual
basis of the second law of thermodynamics, and the origin of irreversibility of the
arrow of time for deterministic systems with time-reversible equations of motion:
reversibility is attainable for distributions whose measure in the space of density
functions goes exponentially to zero with time.

22predrag: figure 1.15 misses complex phase beyond the first zero
Zpredrag: find a Boltzmann suicide quote
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e ¢ mann, L.
dethiag) : ~ mannlequation
Figure 1.15: Spectral determinant is preferable to the ! )mann!stosszahlansatz
trace as it vanishes smoot_hly at the leading eigenvalue, - : 7 sahlansatz
while the trace formula diverges. y e ’
-\‘j zZ
LAY

Consider a chaotic flow, such as the stirring of red and white paint by some
deterministic machine. If we were able to track individual trajectories, the fluid
would forever remain a striated combination of pure white and pure red; there
would be no pink. What is more, if we reversed the stirring, we would return to
the perfect white/red separation. However, that cannot be—in a very few turns of
the stirring stick the thickness of the layers goes from centimeters to Angstroms,
and the result is irreversibly pink.

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics, and
already at the level of a few degrees of freedom the evolution of densities is irre-
versible. Furthermore, the theory that we shall develop here generalizes notions of
‘measure’ and ‘averaging’ to systems far from equilibrium, and transports us into
regions hitherto inaccessible with the tools of equilibrium statistical mechanics.

24 By going to a description in terms of the asymptotic time evolution oper-
ators we give up tracking individual trajectories for long times, but trade in the
uncontrollable trajectories for a powerful description of the asymptotic trajectory
densities. This will enable us, for example, to give exact formulas for transport
coefficients such as the diffusion constants without any probabilistic assumptions.
The classical Boltzmann equation for evolution of 1-particle density is based on
stosszahlansatz, neglect of particle correlations prior to, or after a 2-particle col-
lision. It is a very good approximate description of dilute gas dynamics, but
a difficult starting point for inclusion of systematic corrections. In the theory
developed here, no correlations are neglected - they are all included in the cy-
cle averaging formulas such as the cycle expansion for the diffusion constant
2dD = limr L« (X(T)?)/T of a particle diffusing chaotically across a spatially-
periodic array,

K+1 (npl -t ﬁpk)z
2d <T>( Z ( ) |Ap1 Apkl , (1.18)

where fi is a translation along one period of a spatially periodic ‘runaway’ tra-
jectory p. Such formulas are exact; the issue in their applications is what are
the most effective schemes of estimating the infinite cycle sums required for their
evaluation. Unlike most statistical mechanics, here there are no phenomenological
macroscopic parameters; quantities such as transport coefficients are calculable to
any desired accuracy from the microscopic dynamics.

%4predrag: remove f.1.07_2
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e hyperbolic!non-
’ Lyapunov!time
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Figure 1.16: (a) Washboard mean velocity, (b)
cold atom lattice diffusion, and (c) AFM tip drag
force. (Y. Lan)

(c) velocity

The concepts of equilibrium statistical mechanics do help us, however, to un-
derstand the ways in which the simple-minded periodic orbit theory falters. A
non-hyperbolicity of the dynamics manifests itself in power-law correlations and

. ... , chapter 24
even ‘phase transitions.” 2°

UPRIVATE
section 34.1
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1.8 Chaos: what is it good for?

Happy families are all alike; every unhappy family is un-
happy in its own way.

— Anna Karenina, by Leo Tolstoy

With initial data accuracy 6x = |6x(0)| and system size L, a trajectory is predictable
only up to the finite Lyapunov time (1.1), Tiyap = A71In|L/6x|. Beyond that,
chaos rules. And so the most successful applications of ‘chaos theory’ have so far
been to problems where observation time is much longer than a typical ‘turnover’
time, such as statistical mechanics, quantum mechanics, and questions of long
term stability in celestial mechanics, where the notion of tracking accurately a
given state of the system is nonsensical.

So what is chaos good for? Transport! Though superficially indistinguishable
from the probabilistic random walk diffusion, in low dimensional settings the de-
terministic diffusion is quite recognizable, through the fractal dependence of the

Ppredrag: add neurosciences section

intro - 9apr2009 boyscout version14.4, Mar 19 2013



CHAPTER 1. OVERTURE 29

diffusion constant on the system parameters, and perhaps through non-Gaussion
relaxation to equilibrium (non-vanishing Burnett coefficients).

Several tabletop experiments that could measure transport on macroscopic
scales are sketched in figure 1.16 (each a tabletop, but an expensive tabletop). Fig-
ure 1.16 (a) depicts a ‘slanted washboard;’ a particle in a gravity field bouncing
down the washboard, losing some energy at each bounce, or a charged particle in
a constant electric field trickling across a periodic condensed-matter device. The
interplay between chaotic dynamics and energy loss results in a terminal mean ve-
locity/conductance, a function of the washboard slant or external electric field that
the periodic theory can predict accurately. Figure1.16 (b) depicts a ‘cold atom lat-
tice’ of very accurate spatial periodicity, with a dilute cloud of atoms placed onto
a standing wave established by strong laser fields. Interaction of gravity with gen-
tle time-periodic jiggling of the EM fields induces a diffusion of the atomic cloud,
with a diffusion constant predicted by the periodic orbit theory. Figure 1.16 (c)
depicts a tip of an atomic force microscope (AFM) bouncing against a periodic
atomic surface moving at a constant velocity. The frictional drag experienced
is the interplay of the chaotic bouncing of the tip and the energy loss at each
tip/surface collision, accurately predicted by the periodic orbit theory. None of
these experiments have actually been carried out, (save for some numerical exper-
imentation), but are within reach of what can be measured today.

Given microscopic dynamics, periodic orbit theory predicts observable macro-
scopic transport quantities such as the washboard mean velocity, cold atom lattice
diffusion constant, and AFM tip drag force. But the experimental proposal is sex-
ier than that, and goes into the heart of dynamical systems theory.

Smale 1960s theory of the hyperbolic structure of the non-wandering set
(AKA *horseshoe’) was motivated by his ‘structural stability’ conjecture, which -
in non-technical terms - asserts that all trajectories of a chaotic dynamical system
deform smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in figure 1.16 (a) is
easy to see for a cyclist. Take a trajectory which barely grazes the tip of one of the
groves. An arbitrarily small change in the washboard slope can result in loss of
this collision, change a forward scattering into a backward scattering, and lead to
a discontinuous contribution to the mean velocity. You might hold out hope that
such events are rare and average out, but not so - a loss of a short cycle leads to a
significant change in the cycle-expansion formula for a transport coefficient, such
as (1.18).

When we write an equation, it is typically parameterized by a set of parameters
by as coupling strengths, and we think of dynamical systems obtained by a smooth
variation of a parameter as a ‘“family.” We would expect measurable predictions to
also vary smoothly, i.e., be “structurally stable.’

But dynamical systems families are “families’ only in a name. That the struc-

tural stability conjecture turned out to be badly wrong is, however, not a blow for
chaotic dynamics. Quite to the contrary, it is actually a virtue, perhaps the most
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dramatic experimentally measurable prediction of chaotic dynamics.

As long as microscopic periodicity is exact, the prediction is counterintuitive
for a physicist - transport coefficients are not smooth functions of system parame-
ters, rather they are non-monotonic, nowhere differentiable functions. Conversely,
if the macroscopic measurement yields a smooth dependence of the transport on
system parameters, the periodicity of the microscopic lattice is degraded by impu-
rities, and probabilistic assumptions of traditional statistical mechanics apply. So
the proposal is to —by measuring macroscopic transport— conductance, diffusion,
drag —observe determinism on nanoscales, and —for example— determine whether
an atomic surface is clean.

The signatures of deterministic chaos are even more baffling to an engineer:
a small increase of pressure across a pipe exhibiting turbulent flow does not nec-
essarily lead to an increase in the mean flow; mean flow dependence on pressure
drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statistical mechanics? No - deter-
ministic chaos predictions are valid in settings where a few degrees of freedom are
important, and chaotic motion time and space scales are commensurate with the
external driving and spatial scales. Further degrees of freedom act as noise that
smooths out the above fractal effects and restores a smooth functional dependence
of transport coefficients on external parameters.

1.9 What is not in ChaosBook

There is only one thing which interests me vitally now,
and that is the recording of all that which is omitted in
books. Nobody, as far as | can see, is making use of those
elements in the air which give direction and motivation to
our lives.

— Henry Miller, Tropic of Cancer

This book offers everyman a breach into a domain hitherto reputed unreachable,
a domain traditionally traversed only by mathematical physicists and mathemati-
cians. What distinguishes it from mathematics is the insistence on computability
and numerical convergence of methods offered. A rigorous proof, the end of the
story as far as a mathematician is concerned, might state that in a given setting,
for times in excess of 10%2 years, turbulent dynamics settles onto an attractor of
dimension less than 600. Such a theorem is of a little use to an honest, hard-
working plumber, especially if her hands-on experience is that within the span of
a few typical ‘turnaround’ times the dynamics seems to settle on a (transient?)
attractor of dimension less than 3. If rigor, magic, fractals or brains is your thing,
read remark 1.4 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.

Many a chapter alone could easily grow to a book size if unchecked: the
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nuts and bolt of the theory include ODEs, PDEs, stochastic ODEs, path integrals, curvaturelexpansion
group theory, coding theory, graph theory, ergodic theory, linear operator theory, dyg”;g;ﬁﬁ'gm ooth
quantum mechanics, etc.. We include material into the text proper on ‘need-to- smooth!d-ynamics
know’ basis, relegate technical details to appendices, and give pointers to further

reading in the remarks at the end of each chapter. 26 2/

Résumeé

This text is an exposition of the best of all possible theories of deterministic chaos,
and the strategy is: 1) count, 2) weigh, 3) add up.

In a chaotic system any open ball of initial conditions, no matter how small,
will spread over the entire accessible state space. Hence the theory focuses on
describing the geometry of the space of possible outcomes, and evaluating av-
erages over this space, rather than attempting the impossible: precise prediction
of individual trajectories. The dynamics of densities of trajectories is described
in terms of evolution operators. In the evolution operator formalism the dynami-
cal averages are given by exact formulas, extracted from the spectra of evolution
operators. The key tools are trace formulas and spectral determinants.

The theory of evaluation of the spectra of evolution operators presented here is
based on the observation that the motion in dynamical systems of few degrees of
freedom is often organized around a few fundamental cycles. These short cycles
capture the skeletal topology of the motion on a strange attractor/repeller in the
sense that any long orbit can approximately be pieced together from the nearby pe-
riodic orbits of finite length. This notion is made precise by approximating orbits
by prime cycles, and evaluating the associated curvatures. A curvature measures
the deviation of a longer cycle from its approximation by shorter cycles; smooth-
ness and the local instability of the flow implies exponential (or faster) fall-oft for
(almost) all curvatures. Cycle expansions offer an efficient method for evaluating
classical and quantum observables.

The critical step in the derivation of the dynamical zeta function was the hy-
perbolicity assumption, i.e., the assumption of exponential shrinkage of all strips
of the pinball repeller. By dropping the g prefactors in (1.5), we have given up on
any possibility of recovering the precise distribution of starting x (which should
anyhow be impossible due to the exponential growth of errors), but in exchange
we gain an effective description of the asymptotic behavior of the system. The
pleasant surprise of cycle expansions (1.10) is that the infinite time behavior of an
unstable system is as easy to determine as the short time behavior.

To keep the exposition simple we have here illustrated the utility of cycles
and their curvatures by a pinball game, but topics covered in ChaosBook — un-
stable flows, Poincaré sections, Smale horseshoes, symbolic dynamics, pruning,

%predrag: point to quote on 17?

2"predrag: add to OUPbook.tex and book.tex Resume links to ChaosBook appendices, extras,
overheads
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discrete symmetries, periodic orbits, averaging over chaotic sets, evolution oper- averaging

ators, dynamical zeta functions, spectral determinants, cycle expansions, quantum ‘veight!multiplicative
trace formulas, zeta functions, and so on to the semiclassical quantization of he-

lium — should give the reader some confidence in the broad sway of the theory.

The formalism should work for any average over any chaotic set which satisfies

two conditions:

1. the weight associated with the observable under consideration is multiplica-
tive along the trajectory,

2. the set is organized in such a way that the nearby points in the symbolic
dynamics have nearby weights.

The theory is applicable to evaluation of a broad class of quantities characterizing
chaotic systems, such as the escape rates, Lyapunov exponents, transport coeffi-
cients and quantum eigenvalues. A big surprise is that the semi-classical quantum
mechanics of systems classically chaotic is very much like the classical mechanics
of chaotic systems; both are described by zeta functions and cycle expansions of
the same form, with the same dependence on the topology of the classical flow.?®

2predrag: add Santa Barbara talk section here - generic lack of structural stability is is a mea-
surable signature of chaos
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But the power of instruction is seldom of much efficacy,
except in those happy dispositions where it is almost su-
perfluous.

—Gibbon

Commentary

Remark 1.1 Nonlinear dynamics texts.  This text aims to bridge the gap between the
physics and mathematics dynamical systems literature. The intended audience is Hen-
riette Roux, the perfect physics graduate student with a theoretical bent who does not
believe anything he is told. As a complementary presentation we recommend Gaspard’s
monograph [8] which covers much of the same ground in a highly readable and scholarly
manner.

As far as the prerequisites are concerned—ChaosBook is not an introduction to non-
linear dynamics. Nonlinear science requires a one semester basic course (advanced un-
dergraduate or first year graduate). A good start is the textbook by Strogatz [ 9], an in-
troduction to the applied mathematician’s visualization of flows, fixed points, manifolds,
bifurcations. It is the most accessible introduction to nonlinear dynamics—a book on dif-
ferential equations in nonlinear disguise, and its broadly chosen examples and many ex-
ercises make it a favorite with students. It is not strong on chaos. There the textbook
of Alligood, Sauer and Yorke [10] is preferable: an elegant introduction to maps, chaos,
period doubling, symbolic dynamics, fractals, dimensions—a good companion to Chaos-
Book. Introduction more comfortable to physicists is the textbook by Ott [ 11], with the
baker’s map used to illustrate many key techniques in analysis of chaotic systems. Ott is
perhaps harder than the above two as first books on nonlinear dynamics. Sprott [ 12] and
Jackson [13] textbooks are very useful compendia of the *70s and onward ‘chaos’ liter-

ature which we, in the spirit of promises made in sect. 1.1, tend to pass over in silence.
29

An introductory course should give students skills in qualitative and numerical anal-
ysis of dynamical systems for short times (trajectories, fixed points, bifurcations) and
familiarize them with Cantor sets and symbolic dynamics for chaotic systems. For the
dynamical systems material covered here in chapters 2 to 4, as well as for the in-depth
study of bifurcation theory we warmly recommend Kuznetsov [ 14]. A good introduction
to numerical experimentation with physically realistic systems is Tufillaro, Abbott, and
Reilly [15]. Korsch and Jodl [16] and Nusse and Yorke [17] also emphasize hands-on
approach to dynamics. With this, and a graduate level-exposure to statistical mechan-
ics, partial differential equations and quantum mechanics, the stage is set for any of the
one-semester advanced courses based on ChaosBook.

Remark 1.2 ChaosBook based courses. The courses taught so far (for a listing,
consult ChaosBook.org/courses) start out with the introductory chapters on qualita-
tive dynamics, symbolic dynamics and flows, and then continue in different directions:

Deterministic chaos. Chaotic averaging, evolution operators, trace formulas, zeta func-
tions, cycle expansions, Lyapunov exponents, billiards, transport coefficients, thermody-
namic formalism, period doubling, renormalization operators. A graduate level introduc-
tion to statistical mechanics from the dynamical point view is given by Dorfman [ 18]; the

2Mason: Guckenheimer-Holmes? Lichtenberg-Lieberman? PC: | have not found them useful
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Gaspard monograph [8] covers the same ground in more depth. Driebe monograph [ 19]
offers a nice introduction to the problem of irreversibility in dynamics. The role of ‘chaos’
in statistical mechanics is critically dissected by Bricmont in his highly readable essay
“Science of Chaos or Chaos in Science?”” [20]. ¥

Spatiotemporal dynamical systems. Partial differential equations for dissipative sys-
tems, weak amplitude expansions, normal forms, symmetries and bifurcations, pseu-
dospectral methods, spatiotemporal chaos, turbulence. Holmes, Lumley and Berkooz [ 6]
offer a delightful discussion of why the Kuramoto-Sivashinsky equation deserves study as
a staging ground for a dynamical approach to study of turbulence in full-fledged Navier-
Stokes boundary shear flows (consult chapter 27).

Quantum chaos. Semiclassical propagators, density of states, trace formulas, semiclassi-
cal spectral determinants, billiards, semiclassical helium, diffraction, creeping, tunneling,
higher-order 7 corrections. For further reading on this hot topic, hop to the quantum chaos
introduction, chapter 35.

Remark 1.3 Periodic orbit theory.  This book puts more emphasis on periodic orbit
theory than any other current nonlinear dynamics textbook. The role of unstable periodic
orbits was already fully appreciated by Poincaré [22, 23], who noted that hidden in the
apparent chaos is a rigid skeleton, a tree of cycles (periodic orbits) of increasing lengths
and self-similar structure, and suggested that the cycles should be the key to chaotic dy-
namics. Periodic orbits have been at core of much of the mathematical work on the theory
of the classical and quantum dynamical systems ever since. We refer the reader to the
reprint selection [24] for an overview of some of that literature.

Remark 1.4 If you seek rigor? If you find ChaosBook not rigorous enough,
you should turn to the mathematics literature. We give a short shrift to the theory of
bifurcations, and the KAM (Kolmogorov-Arnol’d-Moser) tori make only a tangential ap-
pearance. We recommend Robinson’s advanced graduate level exposition of dynamical
systems theory [25] from Smale perspective. The most extensive reference is the treatise
by Katok and Hasselblatt [26], an impressive compendium of modern dynamical systems
theory. The fundamental papers in this field, all still valuable reading, are Smale [27],
Bowen [28] and Sinai [29]. Sinai’s paper is prescient and offers a vision and a program
that ties together dynamical systems and statistical mechanics. It is written for readers
versed in statistical mechanics. For a dynamical systems exposition, consult Anosov and
Sinai [30]. Markov partitions were introduced by Sinai in ref. [31]. The classical text
(though certainly not an easy read) on the subject of dynamical zeta functions is Ruelle’s
Statistical Mechanics, Thermodynamic Formalism [32]. In Ruelle’s monograph transfer
operator technique (or the ‘Perron-Frobenius theory’) and Smale’s theory of hyperbolic
flows are applied to zeta functions and correlation functions. The status of the theory from
Ruelle’s point of view is compactly summarized in his 1995 Pisa lectures [ 33]. Further
excellent mathematical references on thermodynamic formalism are Parry and Pollicott’s
monograph [34] with emphasis on the symbolic dynamics aspects of the formalism, and
Baladi’s clear and compact reviews of the theory of dynamical zeta functions [ 35, 36].

%0Niall: There is a neat little book by Ruelle on the same topic. Unfortunately | gave it away so
can’t give the reference. PC: | have it, but have only skimmed through
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Remark 1.5 If you seek magic? ChaosBook resolutely skirts number-theoretical
magic such as spaces of constant negative curvature, Poincaré tilings, modular domains,
Selberg Zeta functions, Riemann hypothesis, ... Why? While this beautiful mathematics
has been very inspirational, especially in studies of quantum chaos, almost no powerful
method in its repertoire survives a transplant to a physical system that you are likely to
care about.

Remark 1.6 Grasshoppers vs. butterflies. The ’sensitivity to initial conditions’
was discussed by Maxwell, then 30 years later by Poincaré. In weather prediction, the
Lorenz’ ‘Butterfly Effect’ started its journey in 1898, as a ‘Grasshopper Effect’ in a book
review by W. S. Franklin [16]. In 1963 Lorenz ascribed a ‘seagull effect’ to an unnamed
meteorologist, and in 1972 he repackaged it as the ‘Butterfly Effect’. 3!

Remark 1.7 Sorry, no schmactals! ChaosBook skirts mathematics and empirical
practice of fractal analysis, such as Hausdorff and fractal dimensions. Addison’s intro-
duction to fractal dimensions [37] offers a well-motivated entry into this field. While in
studies of probabilistically assembled fractals such as diffusion limited aggregates (DLA)
better measures of ‘complexity’ are lacking, for deterministic systems there are much
better, physically motivated and experimentally measurable quantities (escape rates, dif-
fusion coefficients, spectrum of helium, ...) that we focus on here.

Remark 1.8 Rat brains? If you were wondering while reading this introduction
‘what’s up with rat brains?’, the answer is yes indeed, there is a line of research in neu-
ronal dynamics that focuses on possible unstable periodic states, described for example in
refs. [38, 39, 40, 41].

31predrag: find Maxwell ref

intro - 9apr2009 boyscout version14.4, Mar 19 2013

sensitivity to initial
conditions

butterfly effect

diffusion!limited
aggregates

DLA

fractal

brain, rat



CHAPTER 1. OVERTURE 36

A guide to exercises

God can afford to make mistakes. So can Dada!
—Dadaist Manifesto

The essence of this subject is incommunicable in print; the only way to develop
intuition about chaotic dynamics is by computing, and the reader is urged to try to
work through the essential exercises. As not to fragment the text, the exercises are
indicated by text margin boxes such as the one on this margin, and collected at the
end of each chapter. By the end of a (two-semester) course you should have com-
pleted at least three small projects: (a) compute everything for a 1-dimensional
repeller, (b) compute escape rate for a 3-disk game of pinball, (c) compute a part
of the quantum 3-disk game of pinball, or the helium spectrum, or if you are
interested in statistical rather than the quantum mechanics, compute a transport
coefficient. The essential steps are:

exercise 20.2

e Dynamics

1. count prime cycles, exercise 1.1, exercise 9.6, exercise 11.1
pinball simulator, exercise 8.1, exercise 13.5

pinball stability, exercise 13.8, exercise 13.5

pinball periodic orbits, exercise 13.6, exercise 13.7

helium integrator, exercise 2.10, exercise 13.12

6. helium periodic orbits, exercise 13.13

SAE S S N

e Averaging, numerical

1. pinball escape rate, exercise 17.2

2. Lyapunov exponent, exercise O.2, or pressure, exercise ?? or exer-
cise ??

UJPRIVATE

NIPRIVATE
e Averaging, periodic orbits

=

cycle expansions, exercise 20.1, exercise 20.2

pinball escape rate, exercise 20.4, exercise 20.5

cycle expansions for averages, exercise 20.1, exercise 22.3
cycle expansions for diffusion, exercise 26.1 32

pruning, transition graphs, exercise 15.6 33
desymmetrization exercise 21.1

intermittency, phase transitions, exercise 24.6
semiclassical quantization exercise 40.3

ortho-, para-helium, lowest eigen-energies exercise43.7

UJPRIVATE

© © N A wN

MIPRIVATE

The exercises that you should do have underlined titles. The rest (smaller type)
are optional. Difficult problems are marked by any number of *** stars. If you
solve one of those, it is probably worth a publication. ** Solutions to some of

UJPRIVATE

32predrag: make appendix T.2 into exercise
33Predrag: add more
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the problems are given in appendix S. A clean solution, a pretty figure, or a nice three-disk@3-

exercise that you contribute to ChaosBook will be gratefully acknowledged. Often ﬂﬁ,'ﬁa: mESiECSbO“C

going through a solution is more instructive than reading the chapter that problem symbolic

is supposed to illustrate. % dynamics!3-disk
sensitivity to initial
conditions

Exercises boyscout

1.1. 3-disk symbolic dynamics. As periodic trajectories will
turn out to be our main tool to breach deep into the realm
of chaos, it pays to start familiarizing oneself with them
now by sketching and counting the few shortest prime cy-
cles (we return to this in sect. 15.4). Show that the 3-disk
pinball has 3 - 2" itineraries of length n. List periodic
orbits of lengths 2, 3, 4, 5, ---. Verify that the shortest
3-disk prime cycles are 12, 13, 23, 123, 132, 1213, 1232,
1323, 12123, ---. Try to sketch them.  (continued in
exercise 12.7)

1.2. Sensitivity to initial conditions. Assume that two pin-

ball trajectories start out parallel, but separated by 1 Angstrém,
and the disks are of radius a = 1 cm and center-to-center
separation R = 6 cm. Try to estimate in how many bounces
the separation will grow to the size of system (assum-

ing that the trajectories have been picked so they remain
trapped for at least that long). Estimate the Who’s Pin-
ball Wizard’s typical score (humber of bounces) in a game
without cheating, by hook or crook (by the end of chap-

ter 20 you should be in position to make very accurate
estimates).
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Chapter 2

Go with the flow

Dynamical systems theory includes an extensive body of
knowledge about qualitative properties of generic smooth
families of vector fields and discrete maps. The theory
characterizes structurally stable invariant sets [...] The
logic of dynamical systems theory is subtle. The theory
abandons the goal of describing the qualitative dynamics
of all systems as hopeless and instead restricts its atten-
tion to phenomena that are found in selected systems. The
subtlety comes in specifying the systems of interest and
which dynamical phenomena are to be analyzed.

— John Guckenheimer

(R. Mainieri, P. Cvitanovit and E.A. Spiegel)

E DEFINE a dynamical system (M, f), classify its solutions as equilibria,
periodic, and aperiodic, refine the ‘aperiodic’ into wandering and non-
wandering sets, decompose the non-wandering into chain-recurrent sets,

and illustrate various cases with concrete examples, the Rossler and Lorenz sys-
tems. 12

fast track:
@ chapter 16, p. 389

2.1 Dynamical systems

[
, 2
% In a dynamical system we observe the world as it evolves with time. We express
our observations as numbers and record how they change; given sufficiently de-
tailed information and understanding of the underlying natural laws, we see the

Predrag: this chapter essentially finished
2Benny: improve language toward end of chapter—too “kort for hovedet”
3Predrag: to Benny: “mirror” alludes to the Leibnitz quote
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%t@ space

Figure 2.1: A trajectory traced out by the evolution ase space _

rule f'. Starting from the state space point x, after a representative point

time t, the point is at f'(x). X deterministic
dynamics

dynamics!deterministic

future in the present as in a mirror. The motion of the planets against the celestial
firmament provides an example. Against the daily motion of the stars from East
to West, the planets distinguish themselves by moving among the fixed stars. An-
cients discovered that by knowing a sequence of planet’s positions—latitudes and
longitudes—its future position could be predicted.

section 1.3

For the solar system, tracking the latitude and longitude in the celestial sphere
suffices to completely specify the planet’s apparent motion. All possible values for
positions and velocities of the planets form the phase space of the system. More
generally, a state of a physical system, at a given instant in time, can be represented
by a single point in an abstract space called state space M (mnemonic: curly ‘M’
for a “‘manifold’). As the system changes, so does the representative point in state
space. We refer to the evolution of such points as dynamics, and the function f
which specifies where the representative point is at time t as the evolution rule. ek 2.1

If there is a definite rule f that tells us how this representative point moves in
M, the system is said to be deterministic. For a deterministic dynamical system,
the evolution rule takes one point of the state space and maps it into exactly one
point. However, this is not always possible. For example, knowing the tempera-
ture today is not enough to predict the temperature tomorrow; knowing the value
of a stock today will not determine its value tomorrow. The state space can be en-
larged, in the hope that in a sufficiently large state space it is possible to determine
an evolution rule, so we imagine that knowing the state of the atmosphere, mea-
sured over many points over the entire planet should be sufficient to determine the
temperature tomorrow. Even that is not quite true, and we are less hopeful when
it comes to stocks.

For a deterministic system almost every point has a unique future, so trajecto-
ries cannot intersect. We say ‘almost’ because there might exist a set of measure
zero (tips of wedges, cusps, etc.) for which a trajectory is not defined. We may
think such sets a nuisance, but it is quite the contrary—they will enable us to parti-
tion state space, so that the dynamics can be better understood.

chapter 12

Locally, the state space M looks like RY, meaning that a dynamical evolu-
tion is an initial value problem, with d numbers sufficient to determine what will
happen time t later. The local Euclidean structure at any given state space point
x € Mis described by a ‘chart’. Globally, the state space may be a more compli-
cated manifold such as a torus, a cylinder, or some other smooth geometric object.
By manifold we mean a smooth differentiable d-dimensional space which looks
like RY only locally. For example, the state space of an autonomous Hamiltonian
system the flow is confined to a constant energy hyper-surface. When we need to
stress that the dimension d of M is greater than one, we may refer to the point
x € Mas xjwherei=1,2,3,...,d. If the dynamics is described by a set of PDEs

flows - 11mar2013 boyscout version14.4, Mar 19 2013
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Figure 2.2: The evolution rule f'can be used to map a
region M; of the state space into the region f'(M;).

(partial differential equations), the state space is the infinite dimensional function
space. The evolution rule f' : M — M tells us where a point x is in M after a
time interval t.

The pair (M, f) constitute a dynamical system.

The dynamical systems we will be studying are smooth. This is expressed
mathematically by saying that the evolution rule f' can be differentiated as many
times as needed. Its action on a point x is sometimes indicated by f(x,t) to re-
mind us that f is really a function of two variables: the time and a point in state
space. Note that time is relative rather than absolute, so only the time interval is
necessary. This follows from the fact that a point in state space completely de-
termines all future evolution, and it is not necessary to know anything else. The
time parameter can be a real variable (t € R), in which case the evolution is called
a flow, or an integer (t € Z), in which case the evolution advances in discrete
steps in time, given by iteration of a map. The evolution parameter need not be
the physical time; for example, a time-stationary solution of a partial differential
equation is parameterized by spatial variables. In such situations one talks of a
‘spatial profile’ rather than a ‘flow’.

Nature provides us with innumerable dynamical systems. They manifest them-
selves through their trajectories: given a state X at initial time tg, the flow map

f': Xo — X(Xo,1)

yields the state x(t) time t later. This evolution rule traces out a sequence of
points x(t) = f(xo), the trajectory through the point x = x(0). We shall usually
omit the xq label from x(Xp,t). By extension, we can also talk of the evolution
of a region M; of the state space. The language of continuum mechanics is quite
helpful in visualizing such deformations, not only in 3-dimensional space, but also
in state spaces of arbitrary dimension. Consider a motion f from the undeformed
(reference or initial) region (a ‘body”) M to the deformed (current or final) region
M;s = f{(M;). We may write the motion as a map

o M- My, (2.1)

flows - 11mar2013 boyscout version14.4, Mar 19 2013
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Figure 2.3: A periodic point returns to the initial point
after a finite time, x = fTp(x). Periodic orbit p is the
set of periodic points p = M, = {X1, X2, - - -} swept out
by the trajectory of any one of them in the finite time
Tp.

such that every Xq in M; is mapped to an x = f'(xo) in My, as in figure 2.2, where
by x we denote the state in the deformed region, and X represents the state in the
initial, undeformed region.

The subset of points My, c M that belong to the infinite-time trajectory
of a given point Xy is called the orbit of xy; we shall talk about forward orbits,
backward orbits, periodic orbits, etc.. For a flow, an orbit is a smooth continuous
curve; for a map, it is a sequence of points. “Trajectory’ refers to a set of points or
a curve segment traced out by x(t) up to time instant t. ‘Orbit’ refers to the totality
of states that can be reached from X, with state space M foliated into a union of
such orbits (each My, labeled by a single point belonging to the set, % = x(0)
for example). Under time evolution a trajectory segment is mapped into another
trajectory segment, but points within an orbit are only shifted; the orbit considered
as a set is unchanged. Hence an orbit is a dynamically invariant notion.

The central idea of ChaosBook is to replace the complicated, ergodic, asymp-
totic t — oo dynamics by a systematic hierarchy of compact time-invariant sets or
compact orbits (equilibria, periodic orbits, invariant tori, - - -).

2.1.1 Aclassification of possible motions?

What kinds of orbits are there? This is a grand question, and there are many
answers, the chapters to follow offering some. Here is the first attempt to classify
all possible orbits:

stationary:  f{(x) = x for all t
periodic:  fi(x) = f*Te(x) for a given minimum period T,
aperiodic:  fY{(x) # f'(x) forallt #t .

A periodic orbit (or a cycle) p is the set of points M, c M swept out by a
trajectory that returns to the initial point in a finite time. We refer to a point on a
periodic orbit as a periodic point, see figure2.3. Periodic orbits form a very small
subset of the state space, in the same sense that rational numbers are a set of zero
measure on the unit interval.

“Predrag: define ergodic trajecotry / orbit. Christov says: “Ergodicity means material points
“spread out” enough so that the long-time “average color” (for our mixing example) computed at a
given location in space should equal the average color over the entire domain at some given time.
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Periodic orbits and equilibrium points are the simplest examples of ‘non-
wandering’ invariant sets preserved by dynamics. Dynamics can also preserve
higher-dimensional smooth compact invariant manifolds; most commonly en-
countered are the M-dimensional tori of Hamiltonian dynamics, with notion of
periodic motion generalized to quasiperiodic (the superposition of M incommen-
surate frequencies) motion on a smooth torus, and families of solutions related
by a continuous symmetry. Further examples are afforded by stable / unstable
manifolds (a semi-infinite curve originating at an equilibrium along each stabil-
ity eigenvector), and, the most mysterious of all invariant orbits, the infinite time
ergodic orbits. °

The ancients tried to make sense of all dynamics in terms of periodic motions,
epicycles, integrable systems. The embarrassing truth is that for a generic dynam-
ical systems almost all motions are aperiodic. So we refine the classification by
dividing aperiodic motions into two subtypes: those that wander off, and those
that keep coming back.

A point x € M is called a wandering point, if there exists an open neighbor-
hood My of x to which the trajectory never returns

fi(x) ¢ Mg forall (2.2)

t>tmin.

In physics literature, the dynamics of such state is often referred to as transient.

Wandering points do not take part in the long-time dynamics, so your first task
is to prune them from M as well as you can. What remains envelops the set of the
long-time trajectories, or the non-wandering set.

For times much longer than a typical ‘turnover’ time, it makes sense to relax
the notion of exact periodicity, and replace it by the notion of recurrence. A point
is recurrent or non-wandering if for any open neighborhood M of x and any time
tmin there exists a later time t, such that

f{(x) € Mo. (2.3)

In other words, the trajectory of a non-wandering point reenters the neighborhood
My infinitely often. We shall denote by Q the non-wandering set of f, i.e., the
union of all the non-wandering points of M. The set Q, the non—wandering set of
f, is the key to understanding the long-time behavior of a dynamical system; all
calculations undertaken here will be carried out on non-wandering sets.  ©

So much about individual trajectories. What about clouds of initial points? If
there exists a connected state space volume that maps into itself under forward
evolution (and you can prove that by the method of Lyapunov functionals, or
several other methods available in the literature), the flow is globally contracting

SPredrag: draw a quasi periodic motion on a torus
®Predrag: consider using ‘recurrent set” or ‘chain-recurrent set’
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onto a subset of M which we shall refer to as the attractor. The attractor may
be unique, or there can coexist any number of distinct attracting sets, each with
its own basin of attraction, the set of all points that fall into the attractor under
forward evolution. The attractor can be a fixed point (a sink), a periodic orbit
(a limit cycle), aperiodic, or any combination of the above. The most interesting
case is that of an aperiodic recurrent attractor, to which we shall refer loosely as a
strange attractor. We say ‘loosely’, as will soon become apparent that diagnosing
and proving existence of a genuine, card-carrying strange attractor is a highly
nontrivial undertaking; it requires explaining notions like “transitive” and “chain-
recurrent” that we will be ready to discuss only in sect.14.1. '

Conversely, if we can enclose the non—-wandering set Q by a connected state
space volume My and then show that almost all points within M, but not in Q,
eventually exit My, we refer to the non—-wandering set Q as a repeller. An example
of arepeller is not hard to come by-the pinball game of sect.1.3 is a simple chaotic
repeller. Q, the non—wandering set of f, is the union of all of the above, separately
invariant sets: attracting/repelling fixed points, strange attractors, repellers, etc..

It would seem, having said that the periodic points are so exceptional that
almost all non-wandering points are aperiodic, that we have given up the ancients’
fixation on periodic motions. Nothing could be further from truth. As longer and
longer cycles approximate more and more accurately finite segments of aperiodic
trajectories, we shall establish control over non—-wandering sets by defining them
as the closure of the union of all periodic points.

Before we can work out an example of a non—-wandering set and get a better
grip on what chaotic motion might look like, we need to ponder flows in a little
more depth.

2.2 Flows

Knowing the equations and knowing the solution are two
different things. Far, far away.

— T.D. Lee

A flow is a continuous-time dynamical system. The evolution rule f is a family
of mappings of M — M parameterized by t € R. Because t represents a time
interval, any family of mappings that forms an evolution rule must satisfy: &

(@) f°%x) =x (in O time there is no motion)
(b) fYFY(x)) = f*'(x) (the evolution law is the same at all times)

(c) the mapping (x,t) — ft(x) from M x R into M is continuous.

"Mason: do you distinguish strange chaotic attractor strange non-chaotic attractor, in spirit of
Merry Landia? PC: no.
8Predrag: this excludes billiards?
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We shall often find it convenient to represent functional composition by ‘o :
s = flo £5 = fY(£9). (2.4)

The family of mappings f'(x) thus forms a continuous (forward semi-) group.
Why *semi-"group? It may fail to form a group if the dynamics is not reversible,
and the rule f'(x) cannot be used to rerun the dynamics backwards in time, with
negative t; with no reversibility, we cannot define the inverse {(f!(x)) = fO(x) =
X, in which case the family of mappings f!(x) does not form a group. In ex-
ceedingly many situations of interest—for times beyond the Lyapunov time, for
asymptotic attractors, for dissipative partial differential equations, for systems
with noise, for non-invertible maps—the dynamics cannot be run backwards in
time, hence, the circumspect emphasis on semigroups. On the other hand, there
are many settings of physical interest, where dynamics is reversible (such as finite-
dimensional Hamiltonian flows), and where the family of evolution maps f does
form a group.

For infinitesimal times, flows can be defined by differential equations. We
write a trajectory, a smooth curve embedded in the state space as

X(t+7) = f%7(xg) = f(f(x0,1),7) (2.5)
and express the tangent to the curve at point x(t) as

g_x = 0 f(F(X0, ), T)log = X(1). (2.6)
Tlr=0

the time derivative of the evolution rule, a vector evaluated at the point x(t). By
considering all possible trajectories, we obtain the vector x(t) at any point x € M.
This vector field is a (generalized) velocity field:

X(t) = V(X) . 2.7)

Newton’s laws, Lagrange’s method, or Hamilton’s method are all familiar pro-
cedures for obtaining a set of differential equations for the vector field v(x) that
describes the evolution of a mechanical system. Equations of mechanics may ap-
pear different in form from (2.7), as they are often involve higher time derivatives,
but an equation that is second or higher order in time can always be rewritten as a
set of first order equations.

We are concerned here with a much larger world of general flows, mechanical
or not, all defined by a time-independent vector field 2.7). At each point of the
state space a vector indicates the local direction in which the trajectory evolves.
The length of the vector |v(x)| is proportional to the speed at the point x, and the
direction and length of v(x) changes from point to point. When the state space is a
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complicated manifold embedded in RY, one can no longer think of the vector field Wave. standing

as being embedded in the state space. Instead, we have to imagine that each point

x of state space has a different tangent plane T M attached to it. The vector field

lives in the union of all these tangent planes, a space called the tangent bundle

TM= U T M.
XeM

T My is called a fibre at x, hence the whole thing is called the fibre bundle. Locally
a fibre bundle looks like the product of two R spaces. Relax: we’ll do our best
not to use such words again.

Example 2.1 A 2-dimensional vector field v(x): A simple example of a flow is
afforded by the unforced Duffing system

X(t)
y(t)

y(t)
—0.15y(t) + x(t) — x(t)® (2.8)

plotted in figure 2.4. The velocity vectors are drawn superimposed over the configura-
tion coordinates (x(t), y(t)) of state space M, but they belong to a different space, the
tangent bundle TM.

The instantaneous velocity vector v is tangent to the trajectory, except at the
equilibrium points, where it vanishes.

If  v(xq) =0, (2.9)

Xq is also referred to as a stationary, fixed, critical, invariant, rest, stagnation
point, zero of the vector field v, standing wave, stationary solution, or steady
state. Our usage will be *equilibrium’ for a flow, ‘fixed point’ for a map. The
trajectory remains forever stuck at x;. Otherwise the trajectory passing through
Xo at time t = 0 can be obtained by integrating the equations €.7):

X(t) = f{(xo) = Xo + fot drv(x(7)), X(0) = Xo . (2.10)
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Figure 2.5: Lorenz “butterfly” strange attractor. (J.
Halcrow) %% 10 0 10 20

We shall consider here only autonomous flows, i.e., flows for which the velocity
field v; is stationary, not explicitly dependent on time. A non-autonomous system

? =w(y, 1), (2.11)
-

can always be converted into a system where time does not appear explicitly. _

f ’ . . . exercise 2.4
To do so, extend (‘suspend’) state space to be (d + 1)-dimensional by defining .. cise 25
x = {y, t}, with a stationary vector field

v(x) = [ W({’ 7 ] : (2.12)

The new flow x = v(x) is autonomous, and the trajectory y(r) can be read off x(t)
by ignoring the last component of x.

Example 2.2 Lorenz strange attractor: Edward Lorenz arrived at the equation

oy —x)
:{px—ygxz } (2.13)
xy — bz

X
X:v(x):{y

z

by a drastic simplification of the Rayleigh-Benard flow. Lorenz fixed o = 10, b = 8/3,
and varied the “Rayleigh number” p. For 0 < p < 1 the equilibrium EQ = (0, 0, 0) at the
origin is attractive. At p = 1 it undergoes a pitchfork bifurcation into a pair of equilibria

at
remark 2.3

Xeq,, = (£ vblo—1), £ yb(o - 1),p - 1), (2.14)

We shall not explore the Lorenz flow dependence on the p parameter in what follows,
but here is a brief synopsis: the EQq 1-dimensional unstable manifold closes into a
homoclinic orbit at p = 13.56.... Beyond that, an infinity of associated periodic orbits
are generated, untilp = 24.74 .. ., where EQ1 2 undergo a Hopf bifurcation.

All computations that follow will be performed for the Lorenz parameter choice
o =10,b = 8/3,p = 28. For these parameter values the long-time dynamics is confined
to the strange attractor depicted in figure 2.5, and the positions of its equilibria are
marked in figure 9.5. (continued in example 3.4)°
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Rossler@Rdssler!flow

Figure 2.6: A trajectory of the Rossler flow at time
t =250. (G. Simon)

Example 2.3 Rd&ssler strange attractor: The Duffing flow of figure 2.4 is bit of
a bore—every trajectory ends up in one of the two attractive equilibrium points. Let's
construct a flow that does not die out, but exhibits a recurrent dynamics. Start with a
harmonic oscillator

X=-y, y = X. (2.15)

The solutions are re't, re™, and the whole x-y plane rotates with constant angular
velocity 6 = 1, period T = 2n. Now make the system unstable by adding

X=-y, y =X+ ay, a>0, (2.16)

or, in radial coordinates, i = arsin® @, § = 1+ (a/2) sin26. The plane is still rotating with
the same average angular velocity, but trajectories are now spiraling out. Any flow in
the plane either escapes, falls into an attracting equilibrium point, or converges to a limit
cycle. Richer dynamics requires at least one more dimension. In order to prevent the
trajectory from escaping to oo, Kick it into 3rd dimension when x reaches some value ¢
by adding

Z=b+z(x-c), c>0. (2.17)

As X crosses ¢, z shoots upwards exponentially, z ~ e*=9. |n order to bring it back,
start decreasing x by modifying its equation to

X=-y—z.

Large z drives the trajectory toward x = 0; there the exponential contraction by e
kicks in, and the trajectory drops back toward the X-y plane. This frequently studied
example of an autonomous flow is called the Réssler flow

X = -y-2
y = X+ay
= b+z(x-c), a=b=02, c=57 (2.18)

(for definitiveness, we fix the parameters a, b, ¢ in what follows). The system is as
. . . . o exefuse 2.8
simple as they get—it would be linear, were it not for the sole bilinear term zx. Even for

so ‘simple’ a system the nature of long-time solutions is far from obvious.

®Predrag: figure 2.5 .eps still too big
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There are two repelling equilibrium points (2.9): 1°

Xy = (% + % V1 - 4ab/c?)(c, —c/a, c/a)

X- =~ (ab/c,-b/c,b/c), Xy =~ (c,—C/a,c/a)
(x-,y-,z-) = (0.0070, —0.0351, 0.0351)
(X, ¥+.24) = (5.6929, —28.464, 28.464 )

equilibrium!Réssler
flow

contracting!flow
flow!contracting
attractor!strange
strange attractor

(2.19)

One is close to the origin by construction. The other, some distance away, exists be-

cause the equilibrium condition has a 2nd-order nonlinearity.

To see what solutions look like in general, we need to resort to numerical in-

tegration. A typical numerically integrated long-time trajectory is sketched in figure 2.6
(see also figure 11.10). ** Trajectories that start out sufficiently close to the origin seem
to converge to a strange attractor. We say ‘seem’ as there exists no proof that such

cise 6.4

an attractor is asymptotically aperiodic—it might well be that what we see is but a )I(grr)g
transient on a way to an attractive periodic orbit. For now, accept that figure 2.6 and
similar figures in what follows are examples of ‘strange attractors.’ (continued in

exercise 2.8 and example 3.3) (R. PasSkauskas)

The Rossler flow is the simplest flow which exhibits many of the key aspects
of chaotic dynamics; we shall use it and the 3-pinball (see chapter 8) systems
throughout ChaosBook to motivate introduction of Poincaré sections, return maps,
symbolic dynamics, cycle expansions, and much else. Rdssler flow is integrated
in exercise 2.7, its equilibria are determined in exercise 2.8, its Poincaré sections
constructed in exercise 3.1, and the corresponding return Poincaré map computed
in exercise 3.2. Its volume contraction rate is computed in exercise 4.4, its topol-
ogy investigated in exercise 4.5, the shortest Rossler flow cycles are computed and
tabulated in exercise 13.11, and its Lyapunov exponents evaluated in exercise6.5.

2.2.1 Lagrangian and Eulerian viewpoints

Continuum mechanics offers two profoundly different but mathematically equiva-
lent ways to represent a given state space flow, the ‘Lagrangian’ and the ‘Eulerian’
viewpoints. From the Eulerian perspective one only cares about what is the state
of system here and now; think of a field of grass, each grass blade the local ve-
locity vector. From the Lagrangian viewpoint one cares about where a state space
point come fromand where is it going to; think of the state space foliated into a
bowl of linguini, each noodle an orbit, marked with a label % somewhere along
it. In the Eulerian formulation the flow is defined by specifying @.7), the velocity
field v(x). In the Lagrangian formulation it is given by the finite time flow @.10),
i.e., the totality of the trajectories x(t) comprising the deformed region, labeled by
their origin xg in the initial undeformed region. If we mark the trajectory x(t) by
its initial point xo, we are describing the flow in the Lagrangian coordinates. The
Eulerian velocity v(x) at a fixed state space position x is equal to the Lagrangian
velocity v(x(t)) at the trajectory passing through x at the instant t. Because f is

Opredrag: not right - recheck
1predrag: change to sect 3.2
figure 2.6 Fig/RosslAtr.ps is way too big 0.35MB
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a single-valued function, any point on the trajectory can be used to label the tra- Lagrangian!coordinates
jectory. The transport of the ‘material point” % at t = 0 to its value at the current E#'”'aln (;oordldn_ates
point x(t) = f'(xo) is a coordinate transformation from the Lagrangian coordinates changetof coordinates

. . 12 coordinate!change
to the Eulerian coordinates. smoothlconjugacy

. . . . . conjugacy!smooth
In numerical work we are given the equations of motion (the local Eulerian

velocity field v(x)), but we care about the solutions of these equations (the global
Lagrangian flow). Conversely, in experimental work we observe ensembles of
Lagrangian trajectories from which we then extract the velocity field (in fluid
dynamics this is achieved by particle image velocimetry (PIV)). Once an Eulerian
velocity field has been specified or extracted from the observational data, it is
straightforward to compute the Lagrangian trajectories, objects of great practical
interest in studies of long time dynamics, mixing, and transport. 3

fast track:
W chapter 3, p. 64
2.3 Changing coordinates

14 Problems are handed down to us in many shapes and forms, and they are not
always expressed in the most convenient way. In order to simplify a given prob-
lem, one may stretch, rotate, bend and mix the coordinates, but in doing so, the
vector field will also change. The vector field lives in a (hyper)plane tangent to
state space and changing the coordinates of state space affects the coordinates of
the tangent space as well, in a way that we will now describe.

Denote by h the conjugation function which maps the coordinates of the initial
state space M into the reparameterized state space M = h(M), with a point
X € M related to a pointy € M’ by

y =h(x) = (1(x),y2(x), . ... ya(x)) -

The change of coordinates must be one-to-one and span both M and M, so given
any point y we can go back to x = h™1(y). For smooth flows the reparameterized
dynamics should support the same number of derivatives as the initial one. If h is
a (piecewise) analytic function, we refer to h as a smooth conjugacy.

The evolution rule g'(yg) on M’ can be computed from the evolution rule
f(xg) on M by taking the initial point y, € M’, going back to M, evolving, and
then mapping the final point x(t) back to M:

y(t) = g'(yo) = ho f' o h™(yo). (2.20)

2predrag: once P. J. Morrison reduction is in chapter 10 put a pointer to that remark here
3predrag: say continuum vision continues in sect. 32.1
14predrag: 2013-03-20 move this section to flows.tex
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Here ‘o’ stands for functional composition h o f(x) = h(f(x)), so €.20) is a timglrg?netrization
shorthand for y(t) = h(f'(h~1(yp))). ¥ P

The vector field x = v(x) is locally tangent to the flow f!; it is related to the
flow by differentiation (2.6) along the trajectory. The vector fieldy = w(y),y € M

t H . 16
locally tangent to g, follows by the chain rule: exercise B2

B PR T
W) = G| = glherteno)
= WV ) = MRV, (2.21)

In order to rewrite the right-hand side as a function of y, note that the g, differen-
tiation of h(h™1(y)) = y implies

oh1
ay

oh1
x oy

oh

1
o o - 222

oh
=1 - &(X):[

y

so the equations of motion in the transformed coordinates, with the indices rein-
stated, are

ot 71t
i =w) = |G- it (223
ij

Imagine the state space as a rubber sheet with the flow lines drawn on it.
A coordinate change h corresponds to pulling and tugging on the rubber sheet
smoothly, without cutting, gluing, or self-intersections of the distorted rubber
sheet. Trajectories that are closed loops in M will remain closed loops in the
new manifold A, but their shapes will change. Globally, h deforms the rubber
sheet in a highly nonlinear manner, but locally it simply rescales and shears the
tangent field by the Jacobian matrix o;h;, yielding the simple transformation law
(2.21) for the velocity fields.

Time itself is a parametrization of points along flow lines, and it can also
be reparameterized, s = s(t), with the concomitant modification of 2.23). An
example is the 2-body collision regularization of the helium Hamiltonian (7.8), to
be undertaken in appendix B.2 below.
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2.4 Computing trajectories

On two occasions | have been asked [by members of Par-
liament], "Pray, Mr. Babbage, if you put into the machine
wrong figures, will the right answers come out?’ | am not
able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.

— Charles Babbage

You have not learned dynamics unless you know how to integrate numerically
whatever dynamical equations you face. Sooner or later, you need to implement
some finite time-step prescription for integration of the equations of motion @.7).
The simplest is the Euler integrator which advances the trajectory by 67 x velocity
at each time step: 1/

Xji = Xj + Vi(X) oT. (224)

This might suffice to get you started, but as soon as you need higher numerical ac-
curacy, you will need something better. There are many excellent reference texts
and computer programs that can help you learn how to solve differential equations
numerically using sophisticated numerical tools, such as pseudo-spectral methods
or implicit methods. If you are interested in Hamiltonian flows you might want
to implement a symplectic integrator of type discussed in appendix1.2.1. '8 If a
‘sophisticated’ integration routine takes days and gobbles up terabits of memory,
you are using brain-damaged high level software. Try writing a few lines of your
own Runge-Kutta code in some mundane everyday language. While you abso-
lutely need to master the requisite numerical methods, this is neither the time nor
the place to expound upon them; how you learn them is your business. And if you
have developed some nice routines for solving problems in this text or can point
another student to some, let us know.

In chapter 27 we shall dispose of the fear of “infinite-dimensional’ dynamical
systems—you might prefer to skip the section on first reading. 1° 20

Résumeé

21 Chaotic dynamics with a low-dimensional attractor can be visualized as a suc-
cession of nearly periodic but unstable motions. In the same spirit, turbulence in
spatially extended systems can be described in terms of recurrent spatiotemporal

5Mason: present KAM theorem here?

6predrag: do this in maps.tex as well

"Predrag: add figure

8predrag: perhaps quote Numerical Recipes

predrag: list all Lorenz exercises here

2predrag: read Jeremy Gray: Linear Differential Equations for history
Zlpredrag: totally misplaced: use in the maps.tex instead
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patterns. Pictorially, dynamics drives a given spatially extended system through
a repertoire of unstable patterns; as we watch a turbulent system evolve, every so
often we catch a glimpse of a familiar pattern. For any finite spatial resolution
and finite time the system follows approximately a pattern belonging to a finite
repertoire of possible patterns, and the long-term dynamics can be thought of as
a walk through the space of such patterns. Recasting this image into mathematics
is the subject of this book.

Commentary

Remark 2.1 ‘State space’ or ‘phase space?’ In ChaosBook we denote by the term
state space the set of admissible states of a general d- or co-dimensional dynamical sys-
tem, and reserve the term phase space to Hamiltonian 2D-dimensional state spaces, where
D is the number of Hamiltonian degrees of freedom. If the state space is a continuous
smooth manifold much of the literature [?, 12] refers to it as ‘phase space,” but we find
the control engineering usage sharper: in the state space (or ‘time-domain’) description of
an autonomous physical system, the state of the system is represented as a vector within
the ‘state space,” space whose axes are the state variables, and the evolution of a state
is given by differential equations which are first-order in time. Hopf [ 11] would refer to
such a state as an ‘instantaneous phase’ of the system obeying a “differential law of the
phase motion’. The distinction made here is needed in a text where one treats determin-
istic dynamical systems, stochastic systems and quantum-mechanical systems. The term
‘phase’ has a precise meaning in wave mechanics, quantum mechanics and dynamics of
integrable systems at the heart of Hamilton’s formulation of Newtonian mechanics (see
chapter 38), while ‘state space’ is more descriptive of the way the notion is used in the
general theory of dynamical systems. Further confusion arises when prefix spatio- as
in ‘spatiotemporal’ is used in reference to states extended in the (1, 2, or 3-dimensional)
physical configuration space. They may exhibit spatial wave-like behaviors, but their state
space is co-dimensional.

Much of the literature denotes the vector field in a first order differential equation
(2.7) by f(x) or F(x) or even X(x), and its integral for time t by the ‘time-t forward map’
or ‘flow map’ x(Xg,t) = D(Xg,t), or ¢(Xo), or something else. As we shall treat here
maps and flows on equal footing, and need to save Greek letters for matters quantum-
mechanical, we reserve the notation ft(x) for maps such as (2.10), and refer to a state
space velocity vector field as v(x). We come to regret this choice very far into the text,
only by the time we delve into Navier-Stokes equations.

Remark 2.2 Rossler and Duffing flows.  The Duffing system (2.8) arises in the study
of electronic circuits [4]. The Rossler flow (2.18) is the simplest flow which exhibits many
of the key aspects of chaotic dynamics. It was introduced in ref. [ 5] as a set of equations
describing no particular physical system, but capturing the essence of Lorenz chaos in a
simplest imaginable smooth flow. Otto Réssler, a man of classical education, was inspired
in this quest by that rarely cited grandfather of chaos, Anaxagoras (456 B.C.). This, and
references to earlier work can be found in refs. [6, 7, 8]. We recommend in particular
the inimitable Abraham and Shaw illustrated classic [9] for its beautiful sketches of the
Rassler and many other flows. Timothy Jones [10] has a number of interesting simulations
on a Drexel website. Check out, compare with Rossler wiki and Rdssler scholarpedia.
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Axenides and Floratos [38] have many observations and references of interest.

Remark 2.3 Lorenz equation. The Lorenz equation (2.13) is the most celebrated
early illustration of “deterministic chaos” [12] (but not the first - the honor goes to Dame
Cartwright [13]). Lorenz’s paper, which can be found in reprint collections refs. [ 14, 15],
is a pleasure to read, and is still one of the best introductions to the physics motivating such
models. For a geophysics derivation, see Rothman course notes [ 16]. The equations, a set
of ODEs in R®, exhibit strange attractors. W. Tucker [17, 18, 19] has proven rigorously
via interval arithmetic that the Lorenz attractor is strange for the original parameters (no
stable orbits), and has a long stable periodic orbit for the slightly different parameters.
In contrast to the hyperbolic strange attractors such as the weakly perturbed cat map,
the Lorenz attractor is structurally unstable. Frgyland [20] has a nice brief discussion
of Lorenz flow. Frgyland and Alfsen [21] plot many periodic and heteroclinic orbits of
the Lorenz flow; some of the symmetric ones are included in ref. [20]. Guckenheimer-
Williams [22] and Afraimovich-Bykov-Shilnikov [23] offer in-depth discussion of the
Lorenz equation. The most detailed study of the Lorenz equation was undertaken by
Sparrow [24]. For a physical interpretation of p as “Rayleigh number.” see Jackson [ 25]
and Seydel [26]. Lorenz truncation to 3 modes is so drastic that the model bears no relation
to the geophysical hydrodynamics problem that motivated it. For a detailed pictures of
Lorenz invariant manifolds consult Vol 11 of Jackson [ 25]. Lorenz attractor is a very thin
fractal — as we saw, stable manifold thickness is of order 10 =% — whose fractal structure has
been accurately resolved by D. Viswanath [27, 28]. If you wander what analytic function
theory has to say about Lorenz, check ref. [29]. Refs. [30, 31] might also be of interest.
(continued in remark 9.2)

Remark 2.4 Diagnosing chaos. 22 In sect. 1.3.1 we have stated that a determin-
istic system exhibits ‘chaos’ if its trajectories are locally unstable (positive Lyapunov
exponent) and globally mixing (positive entropy). In sect. 6.2 we shall define Lyapunov
exponents, and discuss their evaluation, but already at this point it would be handy to
have a few quick numerical methods to diagnose chaotic dynamics. Laskar’s frequency
analysis method [32] is useful for extracting quasi-periodic and weakly chaotic regions of
state space in Hamiltonian dynamics with many degrees of freedom. For pointers to other
numerical methods, see ref. [33].

Remark 2.5 Dynamical systems software: J.D. Meiss [34] has maintained for many
years Sci.nonlinear FAQ which is now in part superseded by the SIAM Dynamical Sys-
tems website www.dynamicalsystems.org. The website glossary contains most of
Meiss’s FAQ plus new ones, and a up-to-date software list [35], with links to DSTool,
xpp, AUTO, etc.. Springer on-line Encyclopaedia of Mathematics maintains links to dy-
namical systems software packages on eom.springer.de/D/d130210.htm. Kuznetsov [14]
Appendix D.9 gives an exhaustive overview of software available in 2004.  (see also
remark 12.1) 23

22predrag: move this to Hamiltonian chapter
Zpredrag: dig up Guckenheimer SIAM reference on AUTO
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The exercises that you should do have underlined titles. The rest (smaller type) Semigroup!dynamical

are optional. Difficult problems are marked by any number of *** stars. evolution!group
group'evolution

ODEs!almost

differential
equations!almost

gradient!system

dynamical
system!gradient

Exercises boyscout potential problems

2.1. Trajectories do not intersect. A trajectory in the state
space M is the set of points one gets by evolving x € M
forwards and backwards in time:

Cx={yeM: f(x)=y forteR}.

Show that if two trajectories intersect, then they are the
same curve.

2.2. Evolution as agroup.  The trajectory evolution f!is a
one-parameter semigroup, where (2.4)

ft+S — ft o fS.

Show that it is a commutative semigroup.

In this case, the commutative character of the semigroup
of evolution functions comes from the commutative char-
acter of the time parameter under addition. Can you think
of any other semigroup replacing time?

2.3. Almost ODE’s.

(@) Consider the point x on R evolving according x =
e*. Is this an ordinary differential equation?

(b) Is x = x(x(t)) an ordinary differential equation?
(c) Whatabout x = x(t+1)?

2.4. All equilibrium points are fixed points. Show that
a point of a vector field v where the velocity is zero is a
fixed point of the dynamics f*.

24

2.5. Gradient systems. Gradient systems (or ‘potential
problems’) are a simple class of dynamical systems for
which the velocity field is given by the gradient of an aux-
iliary function, the ‘potential” ¢

X = ~Vo(x)

where x € RY, and ¢ is a function from that space to the
reals R.

(a) Show that the velocity of the particle is in the direc-
tion of most rapid decrease of the function ¢.

24Mason: Make up Poincaré-Benedixon and Lasaller’s theorem exercises
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2.6.

2.7.

2.8.

2.9.

(b) Show that all extrema of ¢ are fixed points of the
flow.

(c) Show that it takes an infinite amount of time for the
system to reach an equilibrium point.

(d) Show that there are no periodic orbits in gradient
systems.

Runge-Kutta integration.  Implement the fourth-order
Runge-Kutta integration formula (see, for example, ref. [ 36])
for x = v(x):

Xns1 = xn+%+%+%+%+0(&5)
ki = 6tv(Xn), ko=0tv(Xy+Kyi/2)
ks = otv(Xy +ka/2)
ke = 6tv(Xy +ks3).

If you already know your Runge-Kutta, program what
you believe to be a better numerical integration routine,
and explain what is better about it.

Rassler flow. Use the result of exercise 2.6 or some
other integration routine to integrate numerically the Rossler
flow (2.18). Does the result look like a “strange attrac-
tor’?

Equilibria of the Rdssler flow.

(a) Findall equilibrium points (Xq. Yq, Zq) of the Rossler
system (2.18). How many are there?

(b) Assume that b = a. As we shall see, some surpris-
ingly large, and surprisingly small numbers arise in
this system. In order to understand their size, intro-
duce parameters

e=a/c, D=1-4¢, p* =1+ VD)/2.

%5 Express all the equilibria in terms of (c, €, D, p*),
expand to the first order in ¢, and evaluate for a =
b = 0.2, ¢c = 57 in (2.18). In the case studied
€ ~ 0.03, so these estimates are quite accurate. .
(continued in exercise 3.1)

(Rytis PaSkauskas)

Can you integrate me?  Integrating equations numeri-
cally is not for the faint of heart. It is not always possible
to establish that a set of nonlinear ordinary differential
equations has a solution for all times and there are many
cases were the solution only exists for a limited time in-
terval, as, for example, for the equation x = x?, x(0) = 1.

(&) For what times do solutions of

X = x(x(1)

exist? Do you need a numerical routine to answer
this question?

®predrag: really (c, €, D, p*)?
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(b) Let’s test the integrator you wrote in exercise 2.6. helium!collinear
The equation X = —x with initial conditions x(0) =
2 and X = 0 has as solution x(t) = e'(1 + e?!).
Can your integrator reproduce this solution for the
interval t € [0, 10]? Check you solution by plotting
the error as compared to the exact result.

(c) Now we will try something a little harder. The
equation is going to be third order

X +0.6X+Xx—|x|+1=0,

which can be checked—-numerically—to be chaotic.
As initial conditions we will always use X(0) = x(0) =
x(0) = 0. Can you reproduce the result x(12) =
0.8462071873 (all digits are significant)? Even though
the equation being integrated is chaotic, the time
intervals are not long enough for the exponential
separation of trajectories to be noticeable (the ex-
ponential growth factor is ~ 2.4).

(d) Determine the time interval for which the solution
of x = x2, x(0) = 1 exists. Ronnie:  Check this
Lyapunov
2.10. Classical collinear helium dynamics. Inorderto apply
periodic orbit theory to quantization of helium we shall
need to compute classical periodic orbits of the helium
system. In this exercise we commence their evaluation
for the collinear helium atom (7.8)
1, 1, Z Z 1

= Zpi+ — + .
PPt 5P rh rp r+r

H

The nuclear charge for helium is Z = 2. Colinear he-
lium has only 3 degrees of freedom and the dynamics can
be visualized as a motion in the (ry,r2), r; > 0 quad-
rant. In (ry, rp)-coordinates the potential is singular for
ri — 0 nucleus-electron collisions. These 2-body col-
lisions can be regularized by rescaling the coordinates,
with details given in sect. B.2. In the transformed coordi-
nates (X1, X2, p1, p2) the Hamiltonian equations of motion
take the form
. P2 2
P1 = 2Q: [2 -5~ %)]
) P2 2
P, = 2Q2[2—§1—Q§(1+% ]

: 1 .1
Q = ZPlQ%’ Q2 = ZPZQf (2.25)
where R = (Q3 + Q2)¥2.

(a) Integrate the equations of motion by the fourth or-
der Runge-Kutta computer routine of exercise 2.6
(or whatever integration routine you like). A conve-
nient way to visualize the 3-dimensional state space
orbitis by projecting it onto the 2-dimensional (r1(t), r»(t))
plane. (continued in exercise 3.4)
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Chapter 3

Discrete time dynamics

Gentles, perchance you wonder at this show; But wonder
on, till truth make all things plain.

— W. Shakespeare, A Midsummer Night’s Dream

tinuous or discrete. Discrete time dynamical systems arise naturally from

flows. In general there are two strategies for replacing a continuous-time
flow by iterated mappings; by cutting it by Poincaré sections, or by strobing it
at a sequence of instants in time. Think of your partner moving to the beat in a
disco: a sequence of frozen stills. While ‘strobing’ is what any numerical inte-
grator does, by representing a trajectory by a sequence of time-integration step
separated points, strobing is in general not a reduction of a flow, as the sequence
of strobed points still resides in the full state space M, of dimensionality d. An
exception are non-autonomous flows that are externally periodically forced. In
that case it might be natural to observe the flow by strobing it at time intervals
fixed by the external forcing, as in example 7.8 where strobing of a periodically
forced Hamiltonian leads to the ‘standard map.’

section 2.1

THE TIME PARAMETER iNn the definition of a dynamical system can be either con-

In the Poincaré section method one records the coordinates of a trajectory
whenever the trajectory crosses a prescribed trigger. This triggering event can be
as simple as vanishing of one of the coordinates, or as complicated as the trajectory
cutting through a curved hypersurface. A Poincaré section (or, in the remainder
of this chapter, just ‘section’) is not a projection onto a lower-dimensional space:
rather, it is a local change of coordinates to a direction along the flow, and the
remaining coordinates (spanning the section) transverse to it. No information
about the flow is lost by reducing it to its set of Poincaré section points and the
return maps connecting them; the full space trajectory can always be reconstructed
by integration from the nearest point in the section.

Reduction of a continuous time flow to its Poincaré section is a powerful vi-
sualization tool. But, the method of sections is more than visualization; it is also
a fundamental tool of dynamics - to fully unravel the geometry of a chaotic flow,
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Figure 3.1: A trajectory x(t) that intersects a Poincaré
section # at times t;,t,,t3,t;, and closes a cycle
(R1, X2, %3, Rg), X = X(t) € P of topological length
4 with respect to the section. In general, the intersec-
tions are not normal to the section. Note also that the
crossing z does not count, as it in the wrong direction.

one has to quotient all of its symmetries, and evolution in time is one of these
(This delphic piece of hindsight while be illuminated in chapter 10).

3.1 Poincaré sections

A continuous time flow decomposes the state space into Lagrangian ‘spaghetti’ of
figure 2.2, a union of non-intersecting 1-dimensional orbits. Any point on an orbit
can be used to label the orbit, with the state space thus reduced to a ‘skew-product’
of a (d—1)-dimensional space % of labeling points X; € # and the corresponding
1-dimensional orbit curves M on which the flow acts as a time translation. How-
ever, as orbits can be arbitrary complicated and, if unstable, uncontrollable for
times beyond the Lyapunov time (L.1), in practice it is necessary to split the orbit
into finite trajectory segments, with time intervals corresponding to the shortest re-
currence times on a non-wondering set of the flow, finite times for which the flow
is computable. ' A particular prescription for picking the orbit-labeling points
in called a Poincaré section. In introductory texts Poincaré sections are treated
as pretty visualizations of a chaotic flows, akin to plastic surgery and Botox, but
their dynamical significance is much deeper than that. Once a section is defined,
a ‘Lagrangian’ description of the flow (discussed above, page51) is replaced by
the ‘Eulerian’ formulation, with the trajectory-tangent velocity field v(X),X € P
enabling us to go freely between the time-quotiened space # and the full state
space M. The dynamically important transverse dynamics —description of how
nearby trajectories attract / repeal each other— is encoded in mapping of # — #
induced by the flow - dynamics along orbits is of secondary importance.

Successive trajectory intersections with a Poincaré section, a (d-1)-dimension-
al hypersurface embedded in the d-dimensional state space M, figure3.1, define
the Poincaré return map P(X), a (d—1)-dimensional map of form ?

8 = PR = AR, K ReP. (3.1)

Here the first return function 7(X)-sometimes referred to as the ceiling function—is
the time of flight to the next section for a trajectory starting at X. The choice of
the section hypersurface P is altogether arbitrary. It is rarely possible to define

!Predrag: to Predrag - write that one can always make the return time much shorter than the
Lyapunov time, by taking sufficiently many Poincaré sections (or ‘multi-shooting’)
2Predrag: in figure 3.1 x —

maps - 16mar2012 boyscout version14.4, Mar 19 2013

_Urst return time

Poincar*’e section—(
Lagrangian!coordinates
ulerian coordinates

~{on, Poincar“’e
plreturn
oincar*’e return map

chapter 10



CHAPTER 3. DISCRETE TIME DYNAMICS 66

a single section that cuts across all trajectories of interest. Fortunately, one often
needs only a local section, a finite hypersurface of codimension 1 intersected by
a swarm of trajectories near to the trajectory of interest (the case of several sec-
tions is discussed in sect. 3.4). Such hypersurface can be specified implicitly by a
single condition, through a function U(x) that is zero whenever a point x is on the
Poincaré section,

ReP iff UR) =0. (3.2)

The gradient of U(x) evaluated at X € P serves a two-fold function. First, the
flow should pierce the hypersurface #, rather than being tangent to it. A nearby
point X + §x is in the hypersurface # if U(X + 6x) = 0. A nearby point on the
trajectory is given by 6x = vét, so a traversal is ensured by the transversality
condition

d
. . R
(V-VU):;vj(x)ajU(x);tO, (9jU(X):8—)A(jU(x), ReP. (33)

Second, the gradient VU defines the orientation of the hypersurface #. The flow
is oriented as well, and a periodic orbit can pierce P twice, traversing it in either
direction, as in figure 3.1. Hence the definition of Poincaré return map P(X) needs
to be supplemented with the orientation condition

)’in_'.]_ = P()’zn) 5 U()’zn_'.]_) = U()’zn) = 0 5 ne Z+
d
D Vi) 9jU (%) > 0. (3.4)
j=1

In this way the continuous time t flow x(t) = f'(x) is reduced to a discrete time n
sequence X, of successive oriented trajectory traversals of P.

With a sufficiently clever choice of a Poincaré section or a set of sections, any
orbit of interest intersects a section. Depending on the application, one might need
to convert the discrete time n back to the continuous flow time. This is accom-

plished by adding up the first return function times 7(%,), with the accumulated
flight time given by

tn+]_ = tn + T()’zn) R to = 0 . Xn € 7) (35)

Other quantities integrated along the trajectory can be defined in a similar manner,
and will need to be evaluated in the process of evaluating dynamical averages.

A few examples may help visualize this.
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Example 3.1 A template and the associated hyperplane Poincaré sectionPoincaré
; ) . . L g . , gﬁﬁnon!hyperplane
The simplest choice of a Poincaré section is a plane P specified by a ‘template ﬁ i llat
(located at the tip of the vector X’) and a normal vector fi perpendicular to the pIaRg. /’4;9 OS;’__a (7r i
point X is in this plane if it satisfies the linear condition ossler@ ossieriow
Rossler@Rdssler!attractor

o oo a . ge attrac-
U =(R-%)A=0 forke®. e o oRossler

flow
Consider a circular periodic orbit centered at X’, but not lying in P. It pierces

the hyperplane twice; the v - i > 0 traversal orientation condition (3.4) ensures that the
first return time is the full period of the cycle. (continued in example 12.1) 2

What about smooth, continuous time flows, with no obvious surfaces that
would be good Poincaré sections?

Example 3.2 Pendulum: The phase space of a simple pendulum is 2-dimensional:
momentum on the vertical axis and position on the horizontal axis. We choose the
Poincaré section to be the positive horizontal axis. Now imagine what happens as a
point traces a trajectory through this phase space. As long as the motion is oscillatory,
in the pendulum all orbits are loops, so any trajectory will periodically intersect the line,
that is the Poincaré section, at one point.

Consider next a pendulum with friction, such as the unforced Duffing system
plotted in figure 2.4. Now every trajectory is an inward spiral, and the trajectory will
intersect the Poincaré sectiony = 0 at a series of points that get closer and closer to
either of the equilibrium points; the Duffing oscillator at rest.

Motion of a pendulum is so simple that you can sketch it yourself on a piece
of paper. The next example (as well as example 27.3) * offers a better illustration

of the utility of visualization of dynamics by means of Poincaré sections. UPRIVATE

IPRIVATE

Example 3.3 Rdssler flow: (continued from example 2.3) Consider figure 2.6, a
typical trajectory of the 3-dimensional Réssler flow (2.18). The strange attractor wraps
around the z axis, so one choice for a Poincaré section is a plane passing througef)(et T 31
z axis. A sequence of such Poincaré sections placed radially at increasing angles with
respect to the x axis, figure 3.2, illustrates the ‘stretch & fold’ action of the Rdssler flow,

by assembling these sections into a series of snapshots of the flow. ° A line segment

in (a), traversing the width of the attractor aty = 0,x > 0 section, starts out close to

the x-y plane, and after the stretching (a) — (b) followed by the folding (c) — (d), the
folded segment returns (d) — (a) close to the initial segment, strongly compressed. In

one Poincaré return the interval is thus stretched, folded and mapped onto itself, so the

flow is expanding. It is also mixing, as in one Poincaré return a point from the interior

of the attractor can map onto the outer edge, while an edge point lands in the interior.

Once a particular Poincaré section is picked, we can also exhibit the return map
(3.1), as infigure 3.3. Cases (a) and (d) are examples of nice 1-to-1 return maps. While
(b) and (c) appear multimodal and non-invertible, they are artifacts of projecting a 2-
dimensional return map (rn, Zn) — (n+1, Zns1) ONto a 1-dimensional subspace r,, —%ﬁfﬁ'.s €32

(continued in example 3.5) ©

3Predrag: draw concentric circles and a spiral
“Predrag: check this link!

SPredrag: Move this discussion to chapter 11?
®Predrag: remember unstable manifold return map!
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Figure 3.2: (Right:) A sequence of Poincaré sec-
tions £ = {r,z} of the Rossler strange attractor,
defined by planes through the z axis, oriented at
angles (a) —60° (b) 0°, (c) 60°, (d) 120°, in the x-
y plane. (Left:) A side and the x-y plane views
of a typical trajectory with the Poincaré sections
superimposed. (R. PaSkauskas)

Figure 3.3: Return maps for the r, — 1y ra-
dial distance Poincaré sections of figure 3.2. The
‘multi-valuedness’ of (b) and (c) is only appar-
ent: the full return map is 2-dimensional, {r',z’} =
P{r,z}. (R. PaSkauskas)

fast track:

The above examples illustrate why a Poincaré section gives a more informative
snapshot of the flow than the full flow portrait. For example, while the full flow
portrait of the Rdssler flow figure 2.6 gives us no sense of the thickness of the
attractor, we see clearly in the Poincaré sections of figure 3.2 that even though the
return maps are 2-dimensional — 2-dimensional, the flow contraction is so strong
that for all practical purposes it renders the return maps 1-dimensional. (We shall
quantify this claim in example 4.5.)

3.1.1 Section border

How far does the neighborhood of a template extend along the hyperplane (8.6)?
A section captures faithfully neighboring orbits as long as it cuts them transver-
sally; it fails the moment the velocity field at point X* fails to pierce the section.
At this location the velocity is tangent to the section and, thus, orthogonal to the
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template normal A,
f-v(X*) =0, eSS, (3.7)

i.e., v, (X), component of the v(X) normal to the section, vanishes at . For a
smooth flow such points form a smooth (d—2)-dimensional section border S c P,
encompassing the open neighborhood of the template characterized by qualita-
tively similar flow. We shall refer to this region of the section hyperplane as the
(maximal) chart of the template neighborhood for a given hyperplane @3.6).

If the template point is an equilibrium X, there is no dynamics exactly at this
point as the velocity vanishes (v(x;) = O by the definition of equilibrium) and
cannot be used to define a normal to the section. Instead, we use the local lin-
earized flow to construct the local Poincaré section #. We orient # so the unsta-
ble eigenvectors are transverse to the section, and at least the slowest contracting
eigenvector is tangent to the section, as in figure4.7. This ensures that the flow is
transverse to # in an open neighborhood of the template .

Visualize the flow as a smooth 3-dimensional steady fluid flow cut by a 2-
dimensional sheet of light. Lagrangian particle trajectories either cross, are tan-
gent to, or fail to reach this plane; the 1-dimensional curves of tangency points de-
fine the section border. An example is offered by the velocity field of the Rossler
flow of figure 4.6. Pick a Poincaré section hyperplane so it goes through both equi-
librium points. The section might be transverse to a large neighborhood around
the inner equilibrium x_, but dynamics around the outer equilibrium x, is totally
different, and the competition between the two types of motion is likely to lead
to vanishing of v, (X), component of the v(X) normal to the section, someplace
in-between the two equilibria. A section is good up to the section border, but be-
yond it an orbit infinitesimally close to X generically does not cross the section
hyperplane, at least not infinitesimally close to S.

For 3-dimensional flows, the section border S is a 1-dimensional closed curve
in the section 2-dimensional P, and easy to visualize. In higher dimensions, the
section border is a (d —2)-dimensional manifold, not easily visualized, and the
best one can do is to keep checking for change of sign (3.4) at Poincaré section
returns of nearby trajectories close to the section border hypersurface S; @.7) will
be positive inside, negative immediately outside S.’

Thus for a nonlinear flow, with its complicated curvilinear invariant manifolds,
a single section rarely suffices to capture all of the dynamics of interest.

3.1.2 What is the best Poincaré section?

In practice, picking sections is a dark and painful art, especially for high-dimens-
ional flows where the human visual cortex falls short. It helps to understand why
we need them in the first place.

"Predrag: draw a 3-dimensional flow figure

maps - 16mar2012 boyscout version14.4, Mar 19 2013

chart
border@*“poincBord

exercise 3.7



CHAPTER 3. DISCRETE TIME DYNAMICS 70

Whenever a system has a continuous symmetry G, any two solutions related quotient!statespace@"statesp
by the symmetry are equivalent. We do not want to keep recomputing these over gzauge f"f‘l'”g
and over. We would rather replace the whole continuous family of solutions by orenz fiow

L . . .~ equilibrium!Lorenz

one solution in order to be more efficient. This approach replaces the dynamics —fiow
(M, f) with dynamics on the quotient state space (M/t,f). For now, we only
remark that constructing explicit quotient state space flow f is either extremely
difficult, impossible, or generates unintelligible literature. Our solution (see chap-

ter 10) will be to resort to the method of slices.

chapter 10

Time evolution itself is a 1-parameter Lie group, albeit a highly nontrivial one
(otherwise this book would not be much of a doorstop). The invariants of the flow
are its infinite-time orbits; particularly useful invariants are compact orbits such
as equilibrium points, periodic orbits, and tori. For any orbit it suffices to pick a
single state space point x € M,, the rest of the orbit is generated by the flow.

Choice of this one ‘labeling’” point is utterly arbitrary; in dynamics this is
called a ‘Poincaré section’, and in theoretical physics this goes by the excep-
tionally uninformative name of ‘gauge fixing’. The price is that one generates
‘ghosts’, or, in dynamics, increases the dimensionality of the state space by addi-
tional constraints (see sect. 13.4). It is a commonly deployed but inelegant proce-
dure where symmetry is broken for computational convenience, and restored only
at the end of the calculation, when all broken pieces are reassembled.

With this said, there are a few rules of thumb to follow: (a) You can pick as
many sections as convenient, as discussed in sect. 3.4. We shall even pick in-
finitely many. (b) For ease of computation, pick linear sections 3.6) when possi-
ble. (c) If equilibria play important role in organizing a flow, pick sections that go
through them (see example 3.4). In that case, try to place contractor eigenvectors
inside the hyperplane, see Lorenz figure 3.4. Remember, the stability eigenvectors
are never orthogonal to each other, unless that is imposed by some symmetry. (d)
If you have a global discrete or continuous symmetry, pick sections left invariant
by the symmetry (see example 9.14). For example, setting the normal vector fi in
(3.6) at x to be the velocity v(x) is natural and locally transverse. (e) If you are
solving a local problem, like finding a periodic orbit, you do not need a global
section. Pick a section or a set of (multi-shooting) sections on the fly, requiring
only that they are locally transverse to the flow (see sect.F.2.1). (f) If you have
another rule of thumb dear to you, let us know.

UJPRIVATE
IPRIVATE

chapter 9

UJPRIVATE
IPRIVATE

Example 3.4 Sections of Lorenz flow: (continued from example 2.2) The plane
P fixed by the x =y diagonal and the z-axis depicted in figure 3.4 is a natural choice
of a Poincaré section of the Lorenz flow of figure 2.5, as it contains all three equilib-
ria, Xeq, = (0,0,0) and the (2.14) pair Xeq,, Xeq,. A section has to be supplemented
with the orientation condition (3.4): here points where flow pierces into the section are
marked by dots.

8 Equilibria XeQ,, XEq, are centers of out-spirals, and close to them the section
is transverse to the flow. However, close to EQq trajectories pass the z-axis either
by crossing the section # or staying on the viewer'’s side. We are free to deploy as

8Predrag: figure 3.4 (b): generate .eps from lorenz2Poinc2D.pdf, this is the old version. Raise it
a bit.
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Figure 3.4: (a) Lorenz flow figure 2.5 cut by y = x
Poincaré section plane # through the z axis and
both EQ1, equilibria. Points where flow pierces
into section are marked by dots. To aid visualiza-
tion of the flow near the EQg equilibrium, the flow
is cut by the second Poincaré section, ', through
y = —x and the z axis. (b) Poincaré sections ¥ and
%’ laid side-by-side. The singular nature of these
sections close to EQq will be elucidated in exam-
ple 4.6 and figure 11.8 (b). (E.
Siminos)

EQp P

EQ

(b)

many sections as we wish: in order to capture the whole flow in this neighborhood
we add the second Poincaré section, ', through the y = —x diagonal and the z-axis.
Together the two sections, figure 3.4 (b), capture the whole flow near EQq. In contrast
to Rossler sections of figure 3.2, these appear very singular. We explain this singularity
in example 4.6 and postpone construction of a Poincaré return map until example 9.14.
9 (E. Siminos and J. Halcrow)

3.2 Computing a Poincaré section

O3

(R. Mainieri)

For almost any flow of physical interest a Poincaré section is not available in
analytic form, so one tends to determine it crudely, by numerically bracketing
the trajectory traversals of a section and iteratively narrowing the bracketing time
interval. We describe here a smarter method, which you will only need when
you seriously look at a strange attractor, with millions of points embedded in a
high(er)-dimensional Poincaré section - so skip this section on the first reading.

remark 3.2

Consider the system (2.7) of ordinary differential equations in the vector vari-
able x = (X1, X2, ..., Xq)

dXi .
S = Vito D), (3.8)

where the flow velocity v is a vector function of the position in state space x and
the time t. In general, the map f™(xp) = Xp + f dr v(x(r)) cannot be integrated
analytically, so we will have to resort to numerical integration to determine the
trajectories of the system. Our task is to determine the points at which the numer-
ically integrated trajectory traverses a given hypersurface. The hypersurface will
be specified implicitly through a function U(x) that is zero whenever a point X is
on the Poincaré section, such as the hyperplane 3.6).

®Predrag: Should I mention that ¢ contains contracting eigenvector?
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If we use a tiny step size in our numerical integrator, we can observe the value Poincar’e section—)
of U as we integrate; its sign will change as the trajectory crosses the hypersurface.
The problem with this method is that we have to use a very small integration time
step. However, there is a better way to land exactly on the Poincaré section.

Let t; be the time just before U changes sign, and t, the time just after it
changes sign. The method for landing exactly on the Poincaré section will be to
convert one of the space coordinates into an integration variable for the part of the
trajectory between t; and t,. Using

dxc dx;  dxg 3
AT dxlvl(x,t) = W(x, 1) (3.9)

we can rewrite the equations of motion (3.8) as

dt_l dXd_Vd
7dX1_V1‘

Now we use x; as the ‘time’ in the integration routine and integrate it from x (t3) to
the value of x; on the hypersurface, determined by the hypersurface intersection
condition (3.6). This is the end point of the integration, with no need for any
interpolation or backtracking to the surface of section. The x—axis need not be
perpendicular to the Poincaré section; any % can be chosen as the integration
variable, provided the x-axis is not parallel to the Poincaré section at the trajectory
intersection point. If the section crossing is transverse 3.3), v1 cannot vanish in
the short segment bracketed by the integration step preceding the section, and the
point on the Poincaré section. °

Example 3.5 Computation of Rossler flow Poincaré sections. (continued from
example 3.3) Convert Réssler equation (2.18) to cylindrical coordinates:

i = v =-zcosé+arsin’g

: z . a .

6 = vg=1+Fsm9+§sm26

Z = v;,=b+z(rcosfd-c). (3.11)

Poincaré sections of figure 3.2 are defined by the fixing angle U(X) = 6 — 6y = 0. In
principle one should use the equilibrium x, from (2.19) as the origin, and its eigen-
vectors as the coordinate frame, but here original coordinates suffice, as for parameter
values (2.18), and (Xo, Yo, Zo) sufficiently far away from the inner equilibrium, 6 increases
monotonically with time. Integrate

dr

t dz
— =vur/vg, — =1/ve, = =v:/vg (3.12)

d
de de de
from (ry, 6, 2,) to the next Poincaré section at 6,.1, and switch the integration back to
(X,Y,2) coordinates. (continued in example 4.1) (Radford Mitchell, Jr.)

%Mason: nonlinear co-dimensional systems: compare PDEs, coupled map lattices, CLMs etc.;
they run the gamut from everything (time,space, field variable) continuous to everything discrete;
can then discuss when each setting is appropriate. PC: | am all for it, as long as it makes ChaosBook
shorter.
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Figure 3.5: A flow x(t) of figure 3.1 represented by a
Poincaré return map that maps points in the Poincaré
section P as X1 = f(X,). In this example the orbit of
X1 is periodic and consists of the four periodic points
(X1, %2, %3, Ra)-

3.3 Mappings

Do it again!
—Ilsabelle, age 3
Though we have motivated discrete time dynamics by considering sections of a
continuous flow and reduced the continuous-time flow to a family of maps P(X)
mapping points X from a section to a section, there are many settings in which

dynamics is inherently discrete, and naturally described by repeated iterations of
the same map *

f: M- M,

or sequences of consecutive applications of a finite set of maps, a difterent map,
fa, fa, ..., for points in different regions {Ma, Mg, - - -, Mz},

{fA, fB,...fz}IM—>M, (313)

for example maps relating different sections among a set of Poincaré sections. The
discrete ‘time’ is then an integer, the number of applications of the map or maps.
As writing out formulas involving repeated applications of a set of maps explicitly
can be awkward, we streamline the notation by denoting the (non-commutiative)
map composition by ‘o’

fz(- - fe(fa(X)))-+-) = fz 0 fg o fa(X), (3.14)
and the nth iterate of map f by

f(x) = fo f"1(x) = f(1"1(x)) , fO(x) = x.
12" The trajectory of x is the finite set of points

% (0, (). ")} .

1predrag: rewrite
12predrag: ref to figure 2.2 or better?
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traversed in time n, and My, the orbit of x, is the subset of all points of M that orbit

can be reached by iterations of f. A periodic point (cycle point) % belonging to a Pomiﬁfgé?;ﬁéﬁ?au
periodic orbit (cycle) of period n is a real solution of Henon@Hénon map
map!Hénon
) = FOFC.. F0W) .. ) = %, k=0,1,2,....n—1. (3.15)

For example, the orbit of X; in figure 3.5 is a set of four cycle points, (X, X2, X3, X4) .

The functional form of such Poincaré return maps P as figure 3.3 can be ap-
proximated by tabulating the results of integration of the flow from X to the first
Poincaré section return for many X € %, and constructing a function that inter-
polates through these points. 2 If we find a good approximation to P(X), we can
get rid of numerical integration altogether, by replacing the continuous time tra-
jectory fY(X) by iteration of the Poincaré return map P(X). Constructing accurate
P(X) for a given flow can be tricky, but we can already learn much from approxi-
mate Poincaré return maps. Multinomial approximations * 1°

d d
Pk()A():ak"‘Zbkj)’zj"'chij)’zif(j*‘---7 KeP (3.16)
j=1 i,j=1

to Poincaré return maps

R1n+1 P1(Xn)

X P (X N A

2l o 2(%a) , Xn, Xn41 € P
)’zd,n+1 Pd()A(n)

motivate the study of model mappings of the plane, such as the H&non map.

Example 3.6 Hénon map: The map

Xni1 1 -ax2 + by,
Vel = Xn (3.17)

is a nonlinear 2-dimensional map frequently employed in testing various hunches about
chaotic dynamics. The Hénon map is sometimes written as a 2-step recurrence relation

Xne1 = 1 — ax2 + bxy 1. (3.18)

16 Ann-step recurrence relation is the discrete-time analogue of an nth order differential
equation, and it can always be replaced by a set of n 1-step recurrence relations.

3predrag: add exercise

14predrag: refer to Wisdom’s approach in remarks

5Mason: I can contribute some nice Poincaré map figures

Spredrag: replace figure 3.6 by one without 7-cycle, move this fig to a symbolic dynamics
chapter
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19

stretch & fold
Lozi map
]]]]]]] = map!Lozi

1010011

jjjjjj

W00 i/ \

lllllll

Figure 3.6: The strange attractor and an unstable pe- i
riod 7 cycle of the Hénon map (3.17) with a = 1.4, ' Xeoq
b = 0.3. The periodic points in the cycle are connected

to guide the eye. (from K.T. Hansen [2])

The Hénon map is the simplest map that captures the ‘stretch & fold’ dynamics
of return maps such as Rdssler’s, figure 3.2. It can be obtained by a truncation of a
polynomial approximation (3.16) to a Poincaré return map (3.16) to second order.

A quick sketch of the long-time dynamics of such a mapping (an example is
depicted in figure 3.6), is obtained by picking an arbitrary starting point and iterating
(3.17) on a computer.

Always plot the dynamics of such maps in the (Xn, Xh+1) plane, rather than in the
(Xn, Yn) plane, and make sure that the ordinate and abscissa scales are the same, so
Xn = Xns1 IS the 45° diagonal. There are several reasons why one should plot this way:
(a) we think of the Hénon map as a model return map X, — Xn.1, and (b) as parameter
b varies, the attractor will change its y-axis scale, while in the (Xn, Xn+1) plane it goes to

a parabola as b — 0, as it should. )
exercise 3.5

As we shall soon see, periodic orbits will be key to understanding the long-time
dynamics, so we also plot a typical periodic orbit of such a system, in this case an
unstable period 7 cycle. Numerical determination of such cycles will be explained in
sect. 33.1, ' and the periodic point labels 0111010, 1110100, - - - in sect. 12.2.

Example 3.7 Lozi map:  Another example frequently employed is the Lozi map, a
linear, ‘tent map’ version of the Hénon map (3.17) given by '8

Xnel 1 —alxy| + bys
Yneir = Xn. (319)

Though not realistic as an approximation to a smooth flow, the Lozi map is a verK/
helpful tool for developing intuition about the topology of a large class of maps (ny #)9 ATE
‘stretch & fold’ type. example 14.10

MPRIVATE

What we get by iterating such maps is—at least qualitatively—not unlike what

we get from Poincaré section of flows such as the Rossler flow figure 3.3. For
an arbitrary initial point this process might converge to a stable limit cycle, to a

"Predrag: recheck this refsect
8predrag: need figure of Lozi strange attractor
®Predrag: move example 3.7 to chapter 11
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strange attractor, to a false attractor (due to roundoff errors), or diverge. In other quadratic map
words, mindless iteration is essentially uncontrollable, and we will need to resort Map!quadratic

to more thoughtful explorations. As we shall explain in due course, strategies for ;ﬁ‘;ﬁ;‘g@l
systematic exploration rely on stable/unstable manifolds, periodic points, saddle- g,/ boi n
straddle methods and so on. 2 map—)

Example 3.8 Parabola: ?' For sufficiently large value of the stretching parameter a,
one iteration of the Hénon map (3.17) stretches and folds a region of the (x,y) plane
centered around the origin, as will be illustrated in figure 12.4. The parameter a controls
the amount of stretching, while the parameter b controls the thickness of the folded
image through the ‘1-step memory’ term bx,_1 in (3.18). In figure 3.6 the parameterb is
rather large, b = 0.3, so the attractor is rather thick, with the transverse fractal structure
clearly visible. %> For vanishingly small b the Hénon map reduces to the 1-dimensional
quadratic map

Xne1 = 1—ax?. (3.20)

exercise 3.6

By setting b = 0 we lose determinism, as on reals the inverse of map (3.20) has two

real preimages {x;_l, X4} for most x,. If Bourbaki is your native dialect: the Hénon

map is injective or one-to-one, but the quadratic map is surjective or many-to-one. Still,
this 1-dimensional approximation is very instructive. (continued in example 11.5)

As we shall see in sect. 11.3, an understanding of 1-dimensional dynamics is
indeed the essential prerequisite to unraveling the qualitative dynamics of many
higher-dimensional dynamical systems. For this reason many expositions of the
theory of dynamical systems commence with a study of 1-dimensional maps. We
prefer to stick to flows, as that is where the physics is.

appendix K.9

23 2425

UJPRIVATE
MIPRIVATE

fast track:
E sect. 4, p. 86
3.4 Charting the state space

In simple examples, such as the Rdssler example 3.3, a single Poincaré section Cﬁb
suffices, but this is rarely the case for flows of physical interest. In this section
(skip it on first reading) we commence a discussion of the general case.

2predrag: that we shall discuss in chapters 12 and 13

2lpredrag: motivate ala Henon

22predrag: use Biham figures

23predrag: insert here Tanner’s mixed phase space, standard map

%predrag: find L.-S. Young reference, genuflect to Carleson

Ppredrag: Give the example of (xy)? elliptic island, highlight Dahlgvist-Russberg [17]; “found
the island of stability that disproved the long-standing conjecture that x?y? (with E = 0 in your case)
potential is fully ergodic. ”// construct the example or exercise for the (xy)? elliptic island.
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Figure 3.7: Reduction of a continuous-time flow (left
frame) to a set of Poincaré maps (right frame), with a
point on 1-cycle and the two cycle points of a 2-cycle
used as template points.

A Poincaré section is constructed by picking a ‘template’ point X within a
state space region of interest, and defining a hypersurface (3.2) that goes through
the template point. In theory, this Poincaré section could be any (d-1)-dimensional
manifold. In practice, a hyperplane (3.6) is the most convenient, the natural choice
for the vector normal to the section being A = v(X), the velocity field at the
template point X'. This Poincaré section X € # is a hyperplane,

V. R=-%)=0, VvV =v{X), (3.21)

normal to the flow direction V' at the template point X'. Such section cuts the
nearby trajectories transversally, and is a good description of solutions similar to
the given template.

So one hyperspace # will, in general, not suffice. A more insightful picture
of the dynamics is obtained by partitioning the state space into N qualitatively
distinct regions { My, Mo, ..., My} and constructing a Poincaré section per re-
gion, global atlas of the state space composed of N local Poincaré sections 7))
or charts, each one capturing a neighborhood of a qualitatively prominent state
() e S. We shall refer to these states as templates, each represented in the state
space M of the system by a template point {1, @ ... gMN)},

Our Poincaré section is a hyperplane. If we pick another template point
%@, it comes along with its own section hyperplane. The (d —1)-dimensional
Poincaré sections for an adjacent pair of template intersects in a ‘ridge” (‘bound-
ary,” ‘edge’), a (d —2)-dimensional hyperplane, easy to compute. Follow an ant
(the sequence of Poincaré map iterates) as it progresses along the Poincaré sec-
tion P, The moment (X () — ¥ @) - A changes sign, the ant has crossed the
ridge, we switch the Poincaré section, and the ant continues its merry stroll now
confined to the P section. Each Poincaré section ), provides a local chart
at ') for a neighborhood of an important, qualitatively distinct class of solu-
tions; together they “Voronoi’ tessellate the curved manifold in which the reduced
dynamics is replaced by a finite set of mappings between hyperplane tiles. An ex-
ample is the periodic-orbit implementation of the idea of state space tessellation
by neighborhoods of recurrent points, so dear to professional cyclists, illustrated
in figure 3.7.

For a given dynamical flow, the physical task is to pick a minimal set of qual-
itatively distinct templates. The state space might be filled by all kinds of highly
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unstable, never revisited equilibria and relative periodic orbits. The choice of gauge!fixing
templates should reflect the dynamically prominent states seen in the long-time 92ugetinvariance
simulations of system’s dynamics. We have only vague advice on how to pick a fnecnﬁni Prcr)]lncar €
si_ngle Poincaré section (see sect. 3.1.2), and no advice on how to_syst_ematically P;Ebaerg,e return map
pick a set of *good” templates, other than that the associated section tiles should fjrst return time

be as large as possible, but still sufficiently small to exclude orbit tangencies, i.e., Poincar*’e section
stop before crossing their section borders (3.7). Ideally, one wold like to pick as section, Poincar*’e
few templates as possible in figure 3.7. Once templates are picked, the rest is ge-

ometry of hyperplanes, so checking whether the section border is on the far side

of the tile edge (ridge between two sections) is a fast, linear computation.

There is a rub, though - you need to know how to pick the neighboring tem-
plates. Perhaps a glance at figure 3.7 helps visualize the problem; imagine that
the tiles belong to the Poincaré sections through template points on these orbits.
One could slide templates along their trajectories until the pairs of straight line
segments connecting neighboring template points are minimized, but that seems
a bit arbitrary. At this time we have no advice as how to ‘synchronize’ the tem-
plates relative to each other. The astute reader will instantly recognize this as the
problem of ‘local gauge invariance’ or ‘gauge fixing’ of Quantum Field Theory
and General Relativity.

3.4.1 Navigating the Poincaré-charted state space

Our goal now is to replace the continuous-time dynamics by a set of Poincaré
maps between a set of hyperplane sections, as in figure 3.7. The flat hyperplane
(3.6) is an ad hoc construct; one Poincaré section rarely suffices to capture all
of the dynamics of interest. Instead we chart the state space by partitioning it
into N qualitatively distinct regions {AMy, Mo, ..., My}. Successive trajectory
intersections with the set of (d—1)-dimensional hypersurfaces £ embedded in the
d-dimensional state space M, define the set of (d—1) — (d—1) Poincaré maps 2°

section 11.1
Rt = Pspis(Rn) = FO(Ry) (3.22)
Rni1 € P, Ry € P, se{l,2,...,N}.
The d-dimensional continuous time flow is thus reduced to discrete time compo-
sition
Psosisy = Psysyy © 7+ 0 Psys; 0 Py
of a set of Poincaré maps (3.22) that map the coordinates of Poincaré section %,
to those of s, ,,, the next section traversed by a given trajectory.
If a trajectory traverses regions My, —» Ms, — --- — Ms,, the sequence
SpS1-++Sn = Sp « -+ « S1 « Sg is said to be admissible. The return map cection 11.6

%predrag: draw figure
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1 1

12123 13132

a)

bl

cl

Figure 3.8: Some examples of 3-disk cycles: (a)
12123 and 13132 are mapped into each other by the

return

1map
ssiblelsequence
>aré section

— i 1323
flip across 1 axis. Similarly (b) 123 and 132 are related
by flips, and (c) 1213, 1232 and 1323 by rotations. (d) 2 2
The cycles 121212313 and 121212323 are related by
rotation and time reversal. These symmetries are dis- d) 1 !
cussed in chapter 9. (From ref. [1]) 3 3
121212313 121212323
Ps, from section P, to itself has a contribution from any admissible returning
(periodic, s, = sp) sequence of compositions
PSOSI"'SnflSO = PSOSn—l O--+0 PSZSI [©] PSISO (323)
The next example offers an unambiguous set of such Poincaré sections which chapter 11
do double duty, providing us both with an exact representation of dynamics in
terms of maps, and with a symbolic dynamics, a subject that we will return to in
chapter 11.
Example 3.9 Pinball game, Poincaré dissected. (continued from sect. 1.4) A

phase-space orbit is fully specified by its position and momentum at a given instant,
so no two distinct phase-space trajectories can intersect. The configuration space
trajectories, however, can and do intersect, in rather unilluminating ways, as e.g. in
figure 3.8(d), %’ and it can be rather hard to perceive the systematics of orbits from
their configuration space shapes. The problem is that we are looking at the projections
of 4-dimensional state space trajectories onto a 2-dimensional configuration subspace.
A much clearer picture of the dynamics is obtained by constructing a set of Poincaré
sections.

Suppose that the pinball has just bounced off disk 1. Depending on its posi-
tion and outgoing angle, it could proceed to either disk 2 or 3. Not much happens in
between the bounces—the ball just travels at constant velocity along a straight line—so
we can reduce the 4-dimensional flow to a 2-dimensional map P, —,; that maps the
coordinates (Poincaré section 1) of the pinball from one disk edge to another. Just
after the moment of impact the trajectory is defined by s,, the arc-length position of the
nth bounce along the billiard wall, and p, = psin¢, the outgoing momentum compo-
nent parallel to the billiard wall at the point of impact, figure 3.9 (a). These coordinates
(due to Birkhoff) are smart, as they conserve the phase-space volume. Trajecef‘é?lrec'sSe

2"Predrag: narrow text, broaden figure in figure 3.8
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psin Oy

psind,

Figure 3.9: (a) Poincaré section coordinates for
the 3-disk game of pinball. (b) Collision sequence
(s1, p1) = (S2, p2) + (s3, p3) from the boundary
of a disk to the boundary of the next disk is coded
by the Poincaré maps sequence Pz, ,P,. ;.

(@)

psin g

Poincaré section
ieaﬂ@n Poincaré

£31rkhoﬂ7§o\rdlnates
map!retyrn

‘rah 1rn man

CrarrTae

lhree-dlsk@B}
disk!state |

Spa (S2:P2)

itine, ary.

Sz

J

(S3.P3)

S3

originating from one disk can hit either of the other two disks, or escape without further
ado. We label the survivor state space regions P12, P13. In terms of the three Poincaré
sections, one for each disk, the dynamics is reduced to the set of six maps 28

oe{l,2,3) (3.24)

(Sn+1> Pn+1) = Poyyo (Sns P)

from the boundary of a disk to the boundary of the next disk, figure 3.9 (b). The explicit
form of this map is easily written down, see example 8.1, but much more economical

is the symmetry quotiented version of chapter 9 which replaces the above 6 forKvard

29

maps by a return map pair Pg, P1. (continued in chapter 8) *°

Billiard dynamics is exceptionally simple - free flight segments, followed by
specular reflections at boundaries, with billiard boundaries the obvious choice as
Poincaré sections. For a general flow one is never so lucky. Also, so far we have
discussed only flows with a 1 continuous parameter (the time). The general case
of N-parameter continuous symmetries we postpone to chapter 10.

Résumeé

In recurrent dynamics a trajectory exits a region in state space and then reenters
it infinitely often, with finite return times. If the orbit is periodic, it returns after
a full period. So, on average, nothing much really happens along the trajectory—
what is important is behavior of neighboring trajectories transverse to the flow.
This observation motivates a replacement of the continuous time flow by iterative
mapping, the Poincaré maps. A visualization of a strange attractor can be greatly
facilitated by a felicitous choice of Poincaré sections, and the reduction of flow
to Poincaré maps. This observation motivates in turn the study of discrete-time
dynamical systems generated by iterations of maps.

ZPpredrag: thicken arrows, fonts put also the ‘conventional’ arrow on particle trajectory in fig-
ure 3.9 (a), or replace by Grigo soluFlows.tex plot.

2predrag: Is figure 1.9 still misnumbered?

%0predrag: Include fig. 15 from LNN.
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A particularly natural application of the Poincaré section method is the reduc-
tion of a billiard flow to a boundary-to-boundary return map, described in chap-
ter 8. As we shall show in appendix B, further simplification of a Poincaré return
map, or any nonlinear map, can be attained through rectifying these maps locally
by means of smooth conjugacies.

In truth, as we shall see in chapter 10, the reduction of a continuous time
flow by the method of Poincaré sections is not a convenience, but an absolute
necessity - to make sense of an ergodic flow, all of its continuous symmetries
must be reduced, evolution in time being one of these symmetries.

Commentary

Remark 3.1 Functions, maps, mappings. In mathematics, ‘mapping’ is a noun,
‘map’ is a verb. Nevertheless, ‘mapping’ is often shortened to ‘map’ and is often used
as a synonym for ‘function.” ‘Function’ is used for mappings that map to a single point
in R or C, while a mapping which maps to RY would be called a ‘mapping,” and not a
“function.” Likewise, if a point maps to several points and/or has several pre-images, this
is a “‘many-to-many’ mapping, rather than a function. In his review [ 27], Smale refers to
iterated maps as ‘diffeomorphisms’, in contradistinction to ‘flows’, which are 1-parameter
groups of diffeomorphisms. In the sense used here, in the theory of dynamical systems,
dynamical evolution from an initial state to a state finite time later is a (time-forward)
map.

Remark 3.2 Determining a Poincaré section. The trick described in sect. 3.2 is due
to Hénon [3, 4, 5]. The idea of changing the integration variable from time to one of the
coordinates, although simple, avoids the alternative of having to interpolate the numerical
solution to determine the intersection.

Remark 3.3 Hénon, Lozi maps.  The Hénon map is of no particular physical im-
port in and of itself-its significance lies in the fact that it is a minimal normal form for
modeling flows near a saddle-node bifurcation, and that it is a prototype of the stretching
and folding dynamics that leads to deterministic chaos. It is generic in the sense that it
can exhibit arbitrarily complicated symbolic dynamics and mixtures of hyperbolic and
non-hyperbolic behaviors. Its construction was motivated by the best known early ex-
ample of ‘deterministic chaos,” the Lorenz equation, see example 2.2 and remark 2.3.

Y. Pomeau’s studies of the Lorenz attractor on an analog computer, and his insights into
its stretching and folding dynamics motivated Hénon [ 6] to introduce the Hénon map in
1976. Hénon’s and Lorenz’s original papers can be found in reprint collections refs. [ 7, 8].
They are a pleasure to read, and are still the best introduction to the physics motivating
such models. Hénon [6] had conjectured that for (a, b) = (1.4, 0.3) Hénon map a generic
initial point converges to a strange attractor. Its existence has never been proven. While
for all practical purposes this is a strange attractor, it has not been demonstrated that long
time iterations are not attracted by some long attracting limit cycle. Indeed, the pruning
front techniques that we describe below enable us to find stable attractors arbitrarily close
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by in the parameter space, such as the 13-cycle attractor at (a, b) = (1.39945219,0.3). A
rigorous proof of the existence of Hénon attractors close to 1-dimensional parabola map is
due to Benedicks and Carleson [9]. A detailed description of the dynamics of the Hénon
map is given by Mira and coworkers [10, 11, 12], as well as very many other authors. The
Lozi map (3.19) is particularly convenient in investigating the symbolic dynamics of 2-
dimensional mappings. Both the Lorenz and Lozi [ 13] systems are uniformly expanding
smooth systems with singularities. The existence of the attractor for the Lozi map was
proven by M. Misiurewicz [14], and the existence of the SRB measure was established by
L.-S. Young [15]. 3

3lpredrag: ref. [?] probably history
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3.1. Poincaré sections of the Rossler flow. (continuation of
exercise 2.8) Calculate numerically a Poincaré section
(or several Poincaré sections) of the Rossler flow. As the
Rossler flow state space is 3D, the flow maps onto a 2D
Poincaré section. Do you see that in your numerical re-
sults? How good an approximation would a replacement
of the return map for this section by a 1-dimensional map
be? More precisely, estimate the thickness of the strange
attractor. (continued as exercise 4.5)

(R. Paskauskas)

3.2. A return Poincaré map for the Rdéssler flow.  (contin-
uation of exercise 3.1) That Poincaré return maps of fig-
ure 3.3 appear multimodal and non-invertible is an artifact
of projections of a 2-dimensional return map (R, z,) —
(Rn+1, Zns1) ONnto a 1-dimensional subspace R, — Rp.1.

Construct a genuine sp.1 = f(s,) return map by parame-
terizing points on a Poincaré section of the attractor fig-
ure 3.2 by a Euclidean length s computed curvilinearly
along the attractor section.

This is best done (using methods to be developed in what
follows) by a continuation of the unstable manifold of the
1-cycle embedded in the strange attractor, figure 13.2 (b).

(P. Cvitanovit)

3.3. Arbitrary Poincaré sections.  We will generalize the
construction of Poincaré sections so that they can have
any shape, as specified by the equation U(x) = 0.

(a) Start by modifying your integrator so that you can
change the coordinates once you get near the Poincaré
section. You can do this easily by writing the equa-

tions as
ka
— = «f 3.25
ds (3.25)

with dt/ds = «, and choosing « to be 1 or 1/f;.
This allows one to switch between t and x; as the
integration "time.’

(b) Introduce an extra dimension x,,1 into your system
and set

Xne1 = U(X). (3.26)
How can this be used to find a Poincaré section?

3.4. Classical collinear helium dynamics.

(continuation of exercise 2.10) Make a Poincaré surface
of section by plotting (ry, p1) whenever r, = 0: Note that
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for r, = 0, p, is already determined by (7.8). Compare Henonﬁcp_H%non_
your results with figure B.3 (b). map:fixed points

. fixed point!maps
(Gregor Tanner, Per Rosenqvist) map!fixed point

3.5. Hénon map fixed points. Show that the two fixed points Rossler@Rossler!flow
(X0, X0), (X1, X1) of the Hénon map (3.17) are given by tragfsversallty!border
Poincaré
_ ~(A-b)-y(-by+4a section!border
2a ’
-1-b)+ (@ -b)2+4a
= . 3.27
X1 7a ( )
3.6. Fixed points of maps. A continuous function F is
a contraction of the unit interval if it maps the interval
inside itself.

(a) Use the continuity of F to show that a 1-dimensional
contraction F of the interval [0, 1] has at least one
fixed point.

(b) In a uniform (hyperbolic) contraction the slope of
F is always smaller than one, |F’| < 1. Is the com-
position of uniform contractions a contraction? Is
it uniform?

3.7. Section border for Rossler. (continuation of ex-
ercise 3.1) Determine numerically section borders (3.7)
for several Rossler flow Poincaré sections of exercise 3.1
and figure 3.2, at least for angles

(@) —60°, (b) 0°, and

(c) A Poincaré section hyperplane that goes through
both equilibria, see (2.19) and figure 4.6. Two points
only fix a line: think of a criterion for a good ori-
entation of the section hyperplane, perhaps by de-
manding that the contracting eigenvector of the ’in-
ner’ equilibrium x_ lies in it.

(d) (Optional) Hand- or computer-draw a visualization
of the section border as 3-dimensional fluid flow
which either crosses, is tangent to, or fails to cross
a sheet of light cutting across the flow.

As the state space is 3-dimensional, the section borders
are 1-dimensional, and it should be easy to outline the
border by plotting the color-coded magnitude of v , (X),
component of the v(X) normal to the section, for a fine
grid of 2-dimensional Poincaré section plane points. For
sections that go through the z-axis, the normal velocity
v, (X) is tangent to the circle through X, and vanishes for
6 in the polar coordinates (3.11), but that is not true for
other Poincaré sections, such as the case (c).

(P. Cvitanovit)®?

32predrag: move exercise 3.7 up on the list.
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Chapter 4

Local stability

(R. Mainieri and P. Cvitanovit)

o FAR We have concentrated on description of the trajectory of a single initial
point. Our next task is to define and determine the size of a neighborhood
of x(t). We shall do this by assuming that the flow is locally smooth, and

describe the local geometry of the neighborhood by studying the flow linearized
around x(t). Nearby points aligned along the stable (contracting) directions re-
main in the neighborhood of the trajectory x(t) = f(xo); the ones to keep an eye
on are the points which leave the neighborhood along the unstable directions. As
we shall demonstrate in chapter 18, in hyperbolic systems what matters are the
expanding directions. The repercussion are far-reaching: As long as the num-
ber of unstable directions is finite, the same theory applies to finite-dimensional
ODEs, state space volume preserving Hamiltonian flows, and dissipative, volume
contracting infinite-dimensional PDEs.

In order to streamline the exposition, in this chapter all examples are collected
in sect. 4.8; you can get to them and back to the text by clicking on the [example]
links, such as

example 4.8
4.1 Flows transport neighborhoods

As a swarm of representative points moves along, it carries along and distorts
neighborhoods. The deformation of an infinitesimal neighborhood is best un-
derstood by considering a trajectory originating near % = X(0) with an initial
infinitesimal displacement 6x(0), and letting the flow transport the displacement
Sx(zeit) along the trajectory x(x,t) = f{(Xo).

86

stability—(
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Figure 4.1: A swarm of neighboring points of x(t) is 5t ~quation!of variations
instantaneously sheared by the action of the stability A snt!space
matrix A. It is a tensorial field, so it is a bit hard (if not ntlbundle
impossible) to draw. ix!stability
ability!'matrix
velocity gradients
4.1.1 Instantaneous shear matrix
The system of linear equations of variations for the displacement of the infinites-
imally close neighbor x + 6x follows from the flow equations 2.7) by Taylor
expanding to linear order
Xi + OXi _v.(x+6x)~v(x)+z (5xJ
The infinitesimal displacement §x is thus transported along the trajectory x(%, t),
with time variation given by
OV
6x (X0, 1) = Z ax; ™ 8Xj(X0. 1) (4.1)
X=X(Xo,t)
As both the displacement and the trajectory depend on the initial point % and the
time t, we shall often abbreviate the notation to x(x,t) — X(t) — X, 6%i(Xo,t) —
6xi(t) — ox in what follows. Taken together, the set of equations
= Vi(x), 8% = ) Aij(X)0X; (4.2)
]
governs the dynamics in the tangent bundle (x, §x) € TM? obtained by adjoining
the d-dimensional tangent space 6x € T M to every point x € M in the d-dim-
ensional state space M c RY. The stability matrix (velocity gradients matrix)
2
aVi(X)
A (X) = 4.3
'l( ) axj ( )
describes the instantaneous rate of shearing of the infinitesimal neighborhood of
x(t) by the flow, figure 4.1. 3
(t) by g UPRIVATE
NPRIVATE

example 4.1
W p. 99
Predrag: fix notation: (T)M?

2Predrag: is it worth defining here the Cartesian decomposition into symmetric stretching ma-
trix (volume, shape changes) D = (A + AT)/2 and antisymmetric spin matrix (rigid body rotations)
Q=(A-AT)/2?

3Predrag: 2012-01-25 figure 4.1 is hopeless, give up on it. Perhaps use Mainieri vector field.
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initial'point $“xInit$

Jago 416 Imatrix
ra g?ian!coordinates

EYlerian coordinates

v(t)

Figure 4.2: A local frame is transported along the or-
bit and deformed by Jacobian matrix Jt. As J! is not
self-adjoint, initial orthogonal frame is mapped into a
non-orthogonal one.

x(0)

4.1.2 Finite time linearized flow

Taylor expanding a finite time flow to linear order,

t
fl(xo + 6x) = fi(x0) + Z ot (X_O)(SX i (4.4)

i 0]

one finds that the linearized neighborhood is transported by the Jacobian matrix ek a1

0Xi
ox(t) = 3'(x0)ox0,  Jfj(%0) = o —

JO(x0) = 1. 45
5%, , (Xo) (4.5)

x=X(t)

For example, in 2 dimensions the Jacobian matrix for change from initial to final
coordinates is

ox.y) (%
J=(v' = :( Y
ax0.Y0) | 755 jy%

The map f! is assumed invertible and differentiable so that J exists. For a con-
tinuous time flow, for short times J' remains close to 1, so detJ' > 0, and, by
continuity, det J' is positive for any finite time t. However, for discrete time maps,
det J* can have either sign.

4.1.3 Covariant frames

J describes the deformation of an infinitesimal neighborhood at finite time t in
the co-moving frame of x(t), or, in the language of sect.2.2.1, the Jacobian matrix
maps the initial, Lagrangian coordinate frame into the current, Eulerian coordinate
frame. This deformation of an initial frame at xy into a non-orthogonal frame at
X(t) is described by the eigenvectors and eigenvalues of the Jacobian matrix of the
linearized flow (see figure 4.2),

Jteld = Aj e j=1,2,---,d. (4.6)

Throughout this text the symbol A¢ will always denote the kth eigenvalue (some-
times referred to as the multiplier) of the finite time Jacobian matrix J. Symbol

stability - 18mar2013 boyscout version14.4, Mar 19 2013



CHAPTER 4. LOCAL STABILITY 89

A% will be reserved for the kth stability or characteristic exponent, or character- characteristiclexponent

istic value, with real part ;) and phase w®: characteristiclvalue
covariant Lyapunov

vector
Ay = et 20 = 40 4 ju® (4.7) Lyapunov!covariant
vector
Lyapunov!vector
As Jis a real matrix, its eigenvalues are either real, or come in complex pairs,  eigendirection
stability!marginal
marginal!stability
stability!indifferent
indifferent!stability

with magnitude |Ax|, and phase w which describes the rotation velocity in the
plane defined by the corresponding pair of real orthogonal eigenvectors, {Re é9, Im e®)},
with one period of rotation given by T = 2r/w .

{Ak Ak+1} — {en(y(k)+iw(k)) en(ll(k)—iw(k))}

example 4.4
W p. 101
J'(xo) depends on the initial point % and the elapsed time t. For notational
brevity we omitted this dependence, but in general both the eigenvalues and the
eigenvectors, Aj = Aj(xo.t), -+, e = el)(xg, 1), also depend on the trajectory
traversed and the choice of coordinates. In the t — co limit eigenvectors é)) are

sometimes referred to as ‘covariant Lyapunov vectors’ or ‘Lyapunov vectors’, yet
another case where Lyapunov has nothing to do with the object named after him.

Nearby trajectories separate along the unstable directions, approach each other
along the stable directions, and change their distance along the marginal direc-
tions at a rate slower than exponential, corresponding to the eigenvalues of the
Jacobian matrix with magnitude larger than, smaller than, or equal 1. In the lit-
erature adjectives neutral, indifferent, center are often used instead of ‘marginal,’
(attracting) stable directions are sometimes called ‘asymptotically stable,” and so
on. 4

One of the preferred directions is what one might expect, the direction of the
flow itself. To see that, consider two initial points along a trajectory separated
by infinitesimal flight time t: 6x9 = f%'(xo) — X0 = V(Xo)dt. By the semigroup
property of the flow, ft*+ot = fo*t where

9 (xo) = fm:jrv(x(r)) + fi(x0) = stv(x(t)) + fi(xo).
t

Expanding both sides of f'(f%(xq)) = fo'(f!(xo)), keeping the leading term in
t, and using the definition of the Jacobian matrix (4.5), we observe that J'(xo)
transports the velocity vector at x, to the velocity vector at x(t) (see figure4.2):

v(x(1) = J'(x0) V(o). (4.8)

“4Predrag: redraw figure 4.2
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4.2 Computing the Jacobian

As we started by assuming that we know the equations of motion, from @.3) we
also know stability matrix A, the instantaneous rate of shear of an infinitesimal
neighborhood ¢x(t) of the trajectory x(t). What we do not know is the finite time
deformation (4.5), so our next task is to relate the stability matrix A to Jacobian
matrix Jt. On the level of differential equations the relation follows by taking the
time derivative of (4.5) and replacing 6x by (4.2)

d dJt t
m ox(t) = a oXp = ASX(t) = AJ 6Xg.

Hence the d? matrix elements of Jacobian matrix satisfy ‘tangent linear equations,’
the linearized equations (4.1)

%Jt(xo) = A(X) J'(x0), x=f'(xo), initial condition °(xo) = 1. (4.9)

® For autonomous flows, the matrix of velocity gradients A(x) depends only on
X, not time, while J depends on both the state space position and time. Given a
numerical routine for integrating the equations of motion, evaluation of the Jaco-
bian matrix requires minimal additional programming effort; one simply extends
the d-dimensional integration routine and integrates concurrently with f(xo) the
d? elements of J'(xo). The qualifier ‘simply’ is perhaps too glib. Integration will
work for short finite times, but for exponentially unstable flows one quickly runs
into numerical over- and/or underflow problems. For high-dimensional flows the
analytical expressions for elements of A might be so large that it fits on no com-
puter. Further thought will have to go into implementation this calculation.

So now we know how to compute Jacobian matrix Jt given the stability matrix
A, at least when the d? extra equations are not too expensive to compute. Mission
accomplished.

fast track:
W chapter 7, p. 137
And yet... there are mopping up operations left to do. We persist until we de-

rive the integral formula (4.18) for the Jacobian matrix, an analogue of the finite-
time “Green’s function’ or ‘path integral’ solutions of other linear problems.

We are interested in smooth, differentiable flows. If a flow is smooth, in a suf-
ficiently small neighborhood it is essentially linear. Hence the next section, which
might seem an embarrassment (what is a section on linear flows doing in a book
on nonlinear dynamics?), offers a firm stepping stone on the way to understanding
nonlinear flows. Linear charts are the key tool of differential geometry, general

SPredrag: left, right eigenvectors
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relativity, etc., so we are in good company. If you know your eigenvalues and linear!flow
eigenvectors, you may prefer to fast forward here. flow!linear

trajectory
fast track:
@ sect. 4.4, p. 93
4.3 A linear diversion

Linear is good, nonlinear is bad.
—Jean Bellissard

Linear fields are the simplest vector fields, described by linear differential equa-
tions which can be solved explicitly, with solutions that are good for all times.
The state space for linear differential equations is M = R, and the equations of
motion (2.7) are written in terms of a vector x and a constant stability matrix A as

X = V(X) = AX. (4.10)
Solving this equation means finding the state space trajectory

X(t) = (xa(t), x2(b), ..., Xa(t))

passing through a given initial point x. If x(t) is a solution with x(0) = X and
y(t) another solution with y(0) = yp, then the linear combination ax(t) + by(t) with
a,b € R is also a solution, but now starting at the point ax + byg. At any instant
in time, the space of solutions is a d-dimensional vector space, spanned by a basis
of d linearly independent solutions.

How do we solve the linear differential equation @.10)? If instead of a matrix
equation we have a scalar one, X = Ax, the solution is x(t) = é'xo. In order
to solve the d-dimensional matrix case, it is helpful to rederive this solution by
studying what happens for a short time step 6t. If at time t = 0 the position is x(0),
then

ot) — x(0

X=X _ ). (4.11)
ot

which we iterate m times to obtain Euler’s formula for compounding interest

X(t) ~ (1 ; %a)m X(0) ~ e1x(0). (4.12)

UPRIVATE
exercise N.1
MPRIVATE
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The term in parentheses acts on the initial condition x(0) and evolves it to x(t) by
taking m small time steps 6t = t/m. Asm — oo, the term in parentheses converges
to e*. Consider now the matrix version of equation (¢.11):

X(6t) — x(0)

i = Ax(0).

(4.13)

A representative point x is now a vector in RY acted on by the matrix A, as in
(4.10). Denoting by 1 the identity matrix, and repeating the steps ¢.11) and (4.12)
we obtain Euler’s formula for the exponential of a matrix:
. t \m
X0 =3x0),  I=e*= lim (1 ; EA) . (4.14)
We will find this definition the exponential of a matrix helpful in the general case,
where the matrix A = A(x(t)) varies along a trajectory.

How do we compute the exponential (4.14)?

example 4.2 fast track:
W p. 100 W sect. 4.4, p. 93
in depth:

Henriette Roux: So, computing eigenvalues and eigenvectors seems like a good
thing. But how do you really do it?

appendix N.2, p. 1204

A: Any text on numerics of matrices discusses how this is done. We like the eco-
nomical description of neighborhoods of equilibria and periodic orbits afforded
by projection operators. The requisite linear algebra is standard, but usually not
phrased in language of projection operators. As this is a bit of sidetrack that you
will find confusing at the first go, it is relegated to appendixE.

Henriette Roux: In my 61,506/dmn/ computation of an equilibrium | generated
about 30 eigenvectors before | wanted to move on. How many of these eigenvec-
tors are worth generating for a particular solution and why?

A: Arrule of the thumb is that you need all equilibrium eigenvalues / periodic orbit
Floguet exponents with positive real parts, and at least those negative exponents
whose magnitude is less or comparable to the largest expanding eigenvalue. More
precisely; keep adding the next least contracting eigenvalue to the sum of the
preceding ones as long as the sum is positive (Kaplan-Yorke criterion). Then, just
to be conservative, double the number of eigenvalues you keep. You do not need to
worry about the remaining (60 thousand!) eigen-directions for which the negative
eigenvalues are of larger magnitude, as they always contract: nonlinear terms
cannot mix them up in such a way that expansion in some directions overwhelms
the strongly contracting ones.

®Predrag: try student questions in italics?
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Now that we have some feeling for the qualitative behavior of eigenvectors flow!stability

and eigenvalues of linear flows, we are ready to return to the nonlinear case. SEtaIbHEtIY!f!?W
ulertiimi

Euler!product
time!ordered

4.4 Stability of flows

" How do you determine the eigenvalues of the finite time local deformation J for
a general nonlinear smooth flow? The Jacobian matrix is computed by integrating
the equations of variations (4.2)

X(t) = f'(x0), x(Xo,t) = J'(X0) 6x(Xo,0). (4.15)

The equations are linear, so we should be able to integrate them—but in order to
make sense of the answer, we derive this integral step by step.

Consider the case of a general, non-stationary trajectory x(t). The exponential
of a constant matrix can be defined either by its Taylor series expansion, or in
terms of the Euler limit (4.14):

UPRIVATE
appendix N.1
MIPRIVATE

(o)

tA tkA"—l' 1 tAm 4.16
G_ZH_Im(JrE)' (4.16)

m—oo
k=0

Taylor expanding is fine if A is a constant matrix. However, only the second,
tax-accountant’s discrete step definition of an exponential is appropriate for the
task at hand, as for a dynamical system the local rate of neighborhood distortion
A(X) depends on where we are along the trajectory. The linearized neighborhood
is multiplicatively deformed along the flow, and the m discrete time-step approx-
imation to J' is therefore given by a generalization of the Euler product @.16):

1 1
30 = lim [ ]@+6tA) = lim [ Jetatw (4.17)
n=m n=m

= lim eStAGm)gItAGn-1) . .. @Ot A(X2) Ot Alxs)

m—oo

where 6t = (t — tp)/m, and x, = x(tp + nét). Indexing of the products indicates that
the successive infinitesimal deformation are applied by multiplying from the left.

The m — oo limit of this procedure is the formal integral ®
UPRIVATE

appendix |
t
3 (%) = [Te A dTA(X(T))]ij 7 (4.18) MPRIVATE

where T stands for time-ordered integration, defined as the continuum limit of

the successive left multiplications @.17). This integral formula for J is the
UPRIVATE

appendix J.1
MIPRIVATE
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semigroup!dynamical
map!stability
stability!maps
monodromy matrix
semigraupddynamical

main conceptual result of this chapter, the finite time companion of the differential
definition (4.9). The definition makes evident important properties of Jacobian
matrices, such as that they are multiplicative along the flow,

JHN) = (X)) IY(x),  where X' = fY(xo), (4.19)

an immediate consequence of time-ordered product structure of @.17). However,
in practice J is evaluated by integrating (4.9) along with the ODEs that define a
particular flow.

4.5 Stability of maps

R

The transformation of an infinitesimal neighborhood of a trajectory under the iter-
ation of a map follows from Taylor expanding the iterated mapping at finite time
n to linear order, as in (4.4). The linearized neighborhood is transported by the
Jacobian matrix evaluated at a discrete set of timesn =1,2, ...,

at"(x)
3Xj

Ii(x0) = (4.20)

X=Xo

As in the finite time case (4.7), we denote by Ay the kth eigenvalue or multiplier
of the finite time Jacobian matrix J". There is really no difference from the con-
tinuous time case, other than that now the Jacobian matrix is evaluated at integer
times.

example 4.10
W p. 105
The formula for the linearization of nth iterate of a d-dimensional map

I"(%0) = I(Xn-1) -+ I(x)I(X0), Xj = Fl(x0), (4.21)

in terms of single time steps Jj = dfj/0x, follows from the chain rule for func-
tional composition,

df(x)
3Xi '

0 G )
a—xifj(f(x))—g; o

y=f(x)

If you prefer to think of a discrete time dynamics as a sequence of Poincaré sec-
tion returns, then (4.21) follows from (4.19): Jacobian matrices are multiplicative

along the flow. _
exercise 6.4

"Predrag: check Frgyland’s book.
8Predrag: need integration exercises for (4.18)
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Poi

%fal’ e return

—aplstability

Figure 4.3: If x(t) intersects the Poincaré section

P at time 7, the nearby x(t) + 6x(t) trajectory inter-

—(U - J6X)/(U7 - V).

sects it time 7 + ot later. As (U’ - Vv'ét) = —(U’ - /]); v6t
J 6x), the difference in arrival times is given by 6t = yx\

X(£)+ox(t)

example 4.11 fast track:
W p. 105 W chapter 7, p. 137
4.6 Stability of Poincaré return maps

(R. Pa3kauskas and P. Cvitanovic)

We now relate the linear stability of the Poincaré return map P : £ — P defined
in sect. 3.1 to the stability of the continuous time flow in the full state space.

The hypersurface # can be specified implicitly through a function U (x) that is
zero whenever a point x is on the Poincaré section. A nearby point x + §x is in the
hypersurface # if U(x+6x) = 0, and the same is true for variations around the first
return point X' = X(7), so expanding U(X') to linear order in variation §x restricted
to the Poincaré section, and applying the chain rule leads to the condition®

Zd: JU(x) dx

on O, =0. (4.22)

P

i=1

In what follows U; = ;U is the gradient of U defined in (3.3), unprimed quantities
refer to the starting point x = X € P, v = V(Xg), and the primed quantities to the
first return: X' = x(r), V' = v(x’), U’ = U(X’). For brevity we shall also denote
the full state space Jacobian matrix at the first return by J = J(xo). Both the first
return X’ and the time of flight to the next Poincaré section 7(x) depend on the
starting point x, so the Jacobian matrix *°

’

A dxi
J(X)ij =

o (4.23)

P

with both initial and the final variation constrained to the Poincaré section hyper-
surface # is related to the continuous flow Jacobian matrix by

dx!

_1
de

—%4_%2—\]--4_\/’3
P B oxj  dr dx; - 'de'

®Predrag: replace U; by normal to the surface n; = %ﬂx) XeP

predrag: replace J by M when monodromy gets defined
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The return time variation dr/dx, figure 4.3, is eliminated by substituting this ex- Jjacobian
pression into the constraint (4.22),

0=aU" Jij + (V- 6U)d
J

11 yielding the projection of the full space d-dimensional Jacobian matrix to the
Poincaré map (d—1)-dimensional Jacobian matrix:

- vi okU’
\]ij = |0k — —(V’ -6U’) ka . (4.24)

Substituting (4.8) we verify that the initial velocity v(x) is a zero-eigenvector of J
jv=0, (4.25)

so the Poincaré section eliminates variations parallel to v, and J is a rank (d—1)-

dimensional matrix, i.e., one less than the dimension of the continuous time flow.
12 1314

4.7 Neighborhood volume

Consider a small state space volume AV = dx centered around the point X at

time t = 0. The volume AV’ around the point X' = x(t) time t later is *° rema,. 6.2
, AV
AV' = = AV = ’det —’ AV = |det J'(xo)| AV, (4.26)

so the |det J| is the ratio of the initial and the final volumes. The determinant
det J'(xo) = 1‘[?:1 Ai(Xp, t) is the product of the Jacobian matrix eigenvalues. We
shall refer to this determinant as the Jacobian of the flow. The Jacobian is easily
evaluated. Take the time derivative, use the J evolution equation @.9) and the
matrix identity Indet J = tr In J: 1

exercise 4.1

:tInAV(t)_ gIndetJ _trgan _tr—J =trA=0yv;.

dt J

Upredrag: redraw figure

2predrag: find Thiffeault [24] reference

3predrag: write out J in matrix form?

14predrag: find Thiffeault [24] reference

5Predrag: bring here Jacobian identities from QM discussions

6predrag: explain that eigenvalue 1 along the flow requires ‘gauge fixing,” choice of arbitrary
starting point
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(Here, as elsewhere in this book, a repeated index implies summation.) Integrate repeated index

. . . . e . summation
both sides to obtain the time evolution of an infinitesimal volume index summation,

repeated
t t Lyapunov!exponent
det J'(xo) = exp [f drtr A(X(T))] = exp [f dTﬁiVi(X(T))] : (4.27)  contracting!flow
0 0 flow!contracting
incompressible flow
As the divergence djv; is a scalar quantity, the integral in the exponent ¢4.18) needs flow!incompressible
no time ordering. So all we need to do is evaluate the time average

Aivi lim %fo dr ; Aii(x(1))

d d
1_[ Ai(Xo, 1)
i=1 1

%ln _ Z A0(xg, 1) (4.28)

along the trajectory. If the flow is not singular (for example, the trajectory does
not run head-on into the Coulomb 1/r singularity), the stability matrix elements
are bounded everywhere, |Ajjl < M, and so is the trace }; Aji. The time integral
in (4.28) thus grows at most linearly with t, gv; is bounded for all times, and
numerical estimates of the t — oo limit in (4.28) are not marred by any blowups.

example 4.8
W p. 104
Even if we were to insist on extracting dv; from (4.17) by first multiplying
Jacobian matrices along the flow, and then taking the logarithm, we can avoid ex-
ponential blowups in Jt by using the multiplicative structure (4.19), det J¥ +{(xo) =
det JU(x’) det J%(xo) to restart with J°(x’) = 1 whenever the eigenvalues of J(xo)
start getting out of hand. In numerical evaluations of Lyapunov exponents defined

as Ai = limee0 M (X0, 1), the sum rule (4.28) can serve as a helpful check on the
accuracy of the computation. ’

section 6.2

The divergence 0;v;j characterizes the behavior of a state space volume in the
infinitesimal neighborhood of the trajectory. If gvi < 0, the flow is locally con-
tracting, and the trajectory might be falling into an attractor. If gvj(x) < 0, for
all x € M, the flow is globally contracting, and the dimension of the attractor is
necessarily smaller than the dimension of state space M. If gv;j = 0, the flow
preserves state space volume and det J' = 1. A flow with this property is called
incompressible.  An important class of such flows are the Hamiltonian flows
considered in sect. 7.3.

But before we can get to that, Henriette Roux, the perfect student and always
alert, pipes up. She does not like our definition of the Jacobian matrix in terms of
the time-ordered exponential (4.18). Depending on the signs of multipliers, the

left hand side of (4.27) can be either positive or negative. But the right hand side UPT'VA;EZ
section .
Predrag: fix - these are not Lyapunov exponents MIPRIVATE
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is an exponential of a real number, and that can only be positive. What gives? As Roux, Henriette
we shall see much later on in this text, in discussion of topological indices arising Floduet!exponent

. acei g o : tability—)
in semiclassical quantization, this is not at all a dumb question. S
g a {rriordered

seli50HI9Y

’ in depth: ’ in depth:
Q’ _ Qz _ PRIVATE
appendix N.1, p. 1202 appendix E.4, p. 1093

Résumeé

A neighborhood of a trajectory deforms as it is transported by a flow. In the
linear approximation, the stability matrix A describes the shearing / compression
/ expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite time t is described by the Jacobian matrix

34(x0) = Te o deAGE) |

where T stands for the time-ordered integration, defined multiplicatively along
the trajectory. For discrete time maps this is multiplication by time-step Jacobian
matrix J along the n points X, X1, X2, ..., X,—1 0N the trajectory of X,

J"(X0) = I(Xn-1)I(Xn—2) - - - I(x1)I(Xo) ,

with J(x) the single discrete time-step Jacobian matrix. In ChaosBook A, denotes
the kth eigenvalue of the finite time Jacobian matrix J(xo), u® the real part of kth
eigen-exponent, and o® its phase,

A = ellerio)

For complex eigenvalue pairs the “angular velocity’ w describes rotational motion
in the plane spanned by the real and imaginary parts of the corresponding pair of
complex eigenvectors.

The eigenvalues and eigen-directions of the Jacobian matrix describe the de-
formation of an initial infinitesimal cloud of neighboring trajectories into a dis-
torted cloud a finite time t later. Nearby trajectories separate exponentially along
unstable eigen-directions, approach each other along stable directions, and change
slowly (algebraically) their distance along marginal, or center directions. The Ja-
cobian matrix Jt is in general neither symmetric, nor diagonalizable by a rotation,
nor do its (left or right) eigenvectors define an orthonormal coordinate frame.
Furthermore, although the Jacobian matrices are multiplicative along the flow, in
dimensions higher than one their eigenvalues in general are not. This lack of mul-

e . . . . PRIVATE
tiplicativity has important repercussions for both classical and quantum dynamics. U ,
18 appendix J.1
NPRIVATE
Use Eckmann and Ruelle [?] discussion of characteristic exponents. UPRIVATE
18predran. b - JacobianHist.d chapter 42
redrag: remember to |ncorporate acobianHist.doc ﬂPRlVATE
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Commentary

Remark 4.1 Linear flows. The subject of linear algebra generates innumerable tomes
of its own; in sect. 4.3 we only sketch, and in appendix E recapitulate a few facts that our
narrative relies on: a useful reference book is [1]. The basic facts are presented at length
in many textbooks. Frequently cited linear algebra references are Golub and Van Loan [ 2],
Coleman and Van Loan [3], and Watkins [4, 5]. The standard references that exhaus-
tively enumerate and explain all possible cases are Hirsch and Smale [6] and Arnol’d [7].
A quick overview is given by Izhikevich [8]; for different notions of orbit stability see
Holmes and Shea-Brown [9]. For ChaosBook purposes, we enjoyed the discussion in
chapter 2 Meiss [10], chapter 1 of Perko [11] and chapters 3 and 5 of Glendinning [12],
and liked the discussion of norms, least square problems, and differences between sin-
gular value and eigenvalue decompositions in Trefethen and Bau [ 13]. Truesdell [2] and
Gurtin [3] are excellent references for the continuum mechanics perspective on state space
dynamics. We enjoyed Christov et al. [1] easy introduction to parallels between dynami-
cal systems and continuum mechanics.

The nomenclature tends to be a bit confusing. Jacobian matrix (4.5) is sometimes
referred to as the fundamental solution matrix or simply fundamental matrix, a name in-
herited from the theory of linear ODEs, or the Fréchet derivative of the nonlinear mapping
f{(x). In continuum mechanics it is called the deformation gradient, or transplacement
gradient. It is often denoted D f, but for our needs (we shall have to sort through a plethora
of related Jacobian matrices) matrix notation J is more economical. Single discrete time-
step Jacobian Jj = 0f;/dx; in (4.21) is referred to as the ‘tangent map’ by Skokos [ 15, 16].
In referring to velocity gradients matrix A defined in (4.3) as the ‘stability matrix” we fol-
low Tabor [14]. Goldhirsch, Sulem, and Orszag [17] call it the ‘Hessenberg matrix’. *°
Sometimes A, which describes the instantaneous shear of the neighborhood of x(x o, t), is
referred to as the ‘Jacobian matrix,” a particularly unfortunate usage when one consid-
ers linearized stability of an equilibrium point (5.1). A is not a Jacobian matrix, just as
a generator of SO(2) rotation is not a rotation; A is a generator of an infinitesimal time
step deformation, J% ~ 1 + Ast. What Jacobi had in mind in his 1841 fundamental pa-
per [18] on the determinants today known as ‘jacobians’ were transformations between
different coordinate frames. These are dimensionless quantities, while dimensionally Aj;
is 1/[time]. More unfortunate still is referring to the Jacobian matrix J! = exp(tA) as an
‘evolution operator,” which here (see sect. 17.2) refers to something altogether different.
In this book Jacobian matrix J! always refers to (4.5), the linearized deformation after a
finite time t, either for a continuous time flow, or a discrete time mapping.

4.8 Examples

The reader is urged to study the examples collected here. To return back to the

main text, click on [click to return] pointer on the margin.

Example 4.1 Rd&ssler and Lorenz flows, linearized:

¥predrag: this seems wrong: “Arnold [1] calls it the ‘matrix of variations’.”
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(continued from example 3.5) For
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Figure 4.4: Streamlines for several typical 2-
dimensional flows: saddle (hyperbolic), in node (at-
tracting), center (elliptic), in spiral.

e

the Rossler (2.18) and Lorenz (2.13) flows the stability matrices are, respectively

0 -1 -1 - o 0
ARoss Z( 1 a 0 ] s ALor Z( p—-z -1 x ] . (4.29)
z 0 x-c y X =b

continued in example 4.5
( P ) click to return: p. 87

Example 4.2 Jacobian matrix eigenvalues, diagonalizable case:  Should we be
so lucky that A = Ap happens to be a diagonal matrix with eigenvalues (A, 2@ .. 1@),
the exponential is simply

et® ..
Jt= et = . (4.30)

0 ... gu®

Next, suppose that A is diagonalizable and that U is a nonsingular matrix that brings it
to a diagonal form Ap = U™LAU. Then J can also be brought to a diagonal form (insert

factors 1 = UU™! between the terms of the product (4.14)): .
exercise 4.2

Ji=eh = yeout, (4.31)

The action of both A and J is very simple; the axes of orthogonal coordinate system
where A is diagonal are also the eigen-directions of J', and under the flow the neigh-
borhood is deformed by a multiplication by an eigenvalue factor for each coordinate
axis.

We recapitulate the basic facts of linear algebra in appendix E. The following
2-dimensional example serves well to highlight the most important types of linear
flows:

Example 4.3 Linear stability of 2-dimensional flows: For a 2-dimensional flow the
eigenvalues 1M, 1@ of A are either real, leading to a linear motion along their eigen-
vectors, Xj(t) = xj(0) exp(tAV), or a form a complex conjugate pair A9 = p +iw, A1? =
u —iw, leading to a circular or spiral motion in the [X1, X2] plane.

These two possibilities are refined further into sub-cases depending on the
signs of the real part. In the case of real AM > 0, 1@ < 0, x; grows exponentially

stability - 18mar2013 boyscout version14.4, Mar 19 2013
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in/out nodes
inward/outward

spirals

center

saddle

center  outspiral in spiral SO(2)@50(2)

turnover time

X X timelturnover

X X Rossler@Rdsslerlequilibria

equilibrium!Réssler
flow

saddle out node in node

Figure 4.5: Qualitatively distinct types of expo-
nents {1, 1@} of a [2x2] Jacobian matrix.

with time, and X, contracts exponentially. This behavior, called a saddle, is sketched in
figure 4.4, as are the remaining possibilities: in/out nodes, inward/outward spirals, and
the center. The magnitude of out-spiral |x(t)| diverges exponentially when u > 0, and
in-spiral contracts into (0, 0) when the u < 0, whereas the phase velocity w controls its
oscillations.

If eigenvalues AV = 1@ = 1 are degenerate, the matrix might have two linearly
independent eigenvectors, or only one eigenvector. We distinguish two cases: (a)
A can be brought to diagonal form. (b) A can be brought to Jordan form, which (in
dimension 2 or higher) has zeros everywhere except for the repeating eigenvalues on
the diagonal, and some 1’s directly above it. For every such Jordan [d,xd,] block there
is only one eigenvector per block.

We sketch the full set of possibilities in figures 4.4 and 4.5, and work out in

il the most importan in ndix E, example E.3. 20
detail the most important cases in appendix E, example E.3 click to return: p. 92

Example 4.4 In-out spirals. Consider an equilibrium whose stability exponents
(AD, 4@} = {u + iw, u — iw} form a complex conjugate pair. The corresponding com-
plex eigenvectors can be replaced by their real and imaginary parts, {e®, e@} —

(Ree®, Ime®}. The 2-dimensional real representation (E.36),
UPRIVATE

T 10 0 -1 NIPRIVATE
(6 W )=mlo 1)ely )

consists of the identity and the generator of SO(2) rotations in the {Ree®, Im e} plane.
Trajectories Xx(t) = J'x(0), where (omitting e®, e, ... eigen-directions)

It = ehet = ghe (CF’S wt —sin “’t) , (4.32)
sin wt  cos wt

spiral in/out around (X,y) = (0,0), see figure 4.4, with the rotation period T, and con-
traction/expansion radially by the multiplier A qgia, @and by the multiplier A j along the

el eigen-direction per a turn of the spiral:
g P P exercise E.1

T=2rlw, Aradial = et s A= eT"(D . 4.33
]

We learn that the typical turnover time scale in the neighborhood of the equilibrium
(x,y) = (0,0) is of order ~ T (and not, let us say, 1000T, or 1072T). A; multipliers
give us estimates of strange-set thickness in eigen-directions transverse to the rotation
plane. *!
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Lorenz flow

Figure 4.6: Two trajectories of the Rossler flow initi-

ated in the neighborhood of the ‘+’ or “outer’ equilib-
rium point (2.19). (R. PaSkauskas)

Example 4.5 Stability of equilibria of the Réssler flow. (continued from ex-
ample 4.1)  The Rosler system (2.18) has two equilibrium points (2.19), the inner

e e . . exercise 4.5
equilibrium (x-,y-,z-), and the outer equilibrium point (x*,y*,z*). Together Wlthezﬁ%ll’ 028
exponents (eigenvalues of the stability matrix), the two equilibria yield quite detaﬁe '
information about the flow. Figure 4.6 shows two trajectories which start in the neigh-
borhood of the outer +’ equilibrium. Trajectories to the right of the equilibrium point ‘+’
escape, and those to the left spiral toward the inner equilibrium point ‘—’, where they
seem to wander chaotically for all times. The stable manifold of outer equilibrium point
thus serves as the attraction basin boundary. Consider now the numerical values for

eigenvalues of the two equilibria

@, u® +iw?) = (-5.686, 0.0970 + i0.9951)
o @, @) 6, (4.34)
(i, pf 1w’y = (01929, -4.596x107° +i5.428)
Outer equilibrium: The ,uf) +i wf) complex eigenvalue pair implies that neighborhood
of the outer equilibrium point rotates with angular period T, = |2n/w£f)| = 1.1575. The
muiltiplier by which a trajectory that starts near the ‘+’ equilibrium point contracts in the
stable manifold plane is the excruciatingly slow multiplier A} ~ exp(u®T.) = 0.9999947
per rotation. For each period the point of the stable manifold moves away along the
unstable eigen-direction by factor A7 = exp(,uﬁrl)TJ,) = 1.2497. Hence the slow spiraling
on both sides of the +’ equilibrium point.

hood of the ‘-’ equilibrium point rotates with angular period T_ = |27r/w(_2)| = 6.313,
slightly faster than the harmonic oscillator estimate in (2.15). The multiplier by which
a trajectory that starts near the =’ equilibrium point spirals away per one rotation is
Aradial = exp(u(_z)T_) = 1.84. The u(_l) eigenvalue is essentially the z expansion cor-
recting parameter c¢ introduced in (2.17). For each Poincaré section return, the trajec-
tory is contracted into the stable manifold by the amazing factor of A1 =~ exp(u(_l)T_) =
107156 (1),

Suppose you start with a 1 mm interval pointing in the A1 eigen-direction. After
one Poincaré return the interval is of order of 10~ fermi, the furthest we will get into sub-
nuclear structure in this book. Of course, from the mathematical point of view, the flow
is reversible, and the Poincaré return map is invertible. (continued in example 11.3)

(R. PasSkauskas)

Inner equilibrium: The 1@ + iw® complex eigenvalue pair tells us that neighbor-

Example 4.6 Stability of Lorenz flow equilibria: ~ (continued from example 4.1) A
glance at figure 3.4 suggests that the flow is organized by its 3 equilibria, so lets have
a closer look at their stable/unstable manifolds.

2 The EQq equilibrium stability matrix (4.29) evaluated at Xgq, = (0,0,0) is

block-diagonal. The z-axis is an eigenvector with a contracting eigenvalue 1 = n:é)r.k 0.14

2predrag: add mathworld list?
2lpredrag: link to Rossler and Lorenz attractors.
22predrag: ChaosBook: add pointer
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Figure 4.7: (a) A perspective view of the lin- tirnover tima
earized Lorenz flow near EQ; equilibrium, see fig-
ure 3.4(a). The unstable eigenplane of EQ; is A

spanned by Ree® and Ime®. The stable eigen- -1
vector e®. (b) Lorenz flow near the EQ, equi-
librium: unstable eigenvector e, stable eigen-
vectors e@, e® . Trajectories initiated at distances |
1078 ... 10712, 1012 away from the z-axis exit fi- @
nite distance from EQ, along the (e®, e®) eigen- 10~ -05

) 10Jy

7 10*10\_J

vectors plane. Due to the strong A® expansion, the
0 X
‘D,_,_ ) 1071
EQy, &

EQqo equilibrium is, for all practical purposes, un-
reachable, and the EQ; — EQ, heteroclinic con-
nection never observed in simulations such as fig-
ure 2.5. (E. Siminos; continued in figure 11.8.) 5
10713

From (4.40) it follows that all [x,y] areas shrink at rate —(o- + 1). Indeed, the [X,Y]
submatrix

A =( ‘p" fl ) (4.35)

has a real expanding/contracting eigenvalue pair A% = —(o+1)/2+ /(o — 1)2/4 + po,
with the right eigenvectors e, e® in the [x,y] plane, given by (either) column of the
projection operator %3

Pi

L —o— A o
T T 0 -0 p -1-20

), i#je(l3). (4.36)

EQ12 equilibria have no symmetry, so their eigenvalues are given by the roots
of a cubic equation, the secular determinant det (A — A1) = 0:

B+ 22 +b+1)+Ab(c+p)+20b(p-1)=0. (4.37)

For p > 24.74, EQ1 > have one stable real eigenvalue and one unstable complex con-
jugate pair, leading to a spiral-out instability and the strange attractor depicted in fig-
ure 2.5.

As all numerical plots of the Lorenz flow are here carried out for the Lorenz
parameter choice o = 10,b = 8/3, p = 28, we note the values of these eigenvalues for
future reference,

EQo: (AM, 1@ 0) (11.83, —2.666, -22.83) (4.38)
EQi: (u® + iw® 2®) = (0.094 +i10.19, -13.85), '

as well as the rotation period Teq, = 2_7r/w(1) about EQq, and the associated expan-
sion/contraction multipliers A" = exp(uWTeq,) per a spiral-out turn:

Teg, =0.6163, (AW, A®) =(1.060,1.957x107%). (4.39)

We learn that the typical turnover time scale in this problem is of order T ~ Tgq, ~ 1
(and not, let us say, 1000, or 10~2). Combined with the contraction rate (4.40), this tells
us that the Lorenz flow strongly contracts state space volumes, by factor of ~ 10~ per
mean turnover time.

Z3predrag: ChaosBook: give refeq here
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In the EQ; neighborhood the unstable manifold trajectories slowly spirdi@giz flow
with very small radial per-turn expansion multiplier AW ~ 1.06, and very strongggfocliniclorbit
traction multiplier A® ~ 10~* onto the unstable manifold, figure 4.7 (a). This contr&igAZ flow
confines, for all practical purposes, the Lorenz attractor to a 2-dimensional surface evi-
dent in the section figure 3.4. % %

In the Xeq, = (0,0,0) equilibrium neighborhood the extremely strong 1® =~
—23 contraction along the e® direction confines the hyperbolic dynamics near EQq to
the plane spanned by the unstable eigenvector e®, with A0 ~ 12, and the slowest
contraction rate eigenvector e® along the z-axis, with A?) ~ —3. In this plane the strong
expansion along e® overwhelms the slow 1?) ~ —3 contraction down the z-axis, making
it extremely unlikely for a random trajectory to approach EQq, figure 4.7 (b). Thus
linearization suffices to describe analytically the singular dip in the Poincaré sections
of figure 3.4, and the empirical scarcity of trajectories close to EQq. (continued in
example 4.8)

(E. Siminos and J. Halcrow)

Example 4.7 Lorenz flow: Global portrait. ~ (continued from example 4.6) As the
EQ: unstable manifold spirals out, the strip that starts out in the section above EQ1 in
figure 3.4 cuts across the z-axis invariant subspace. This strip necessarily contains a
heteroclinic orbit that hits the z-axis head on, and in infinite time (but exponentially fast)
descends all the way to EQg. ?°

How? As in the neighborhood of the EQq equilibrium the dynamics is linear
(see figure 4.7 (a)), there is no need to integrate numerically the final segment of the
heteroclinic connection - it is sufficient to bring a trajectory a small distance away from
EQo, continue analytically to a small distance beyond EQg, then resume the numerical
integration.

What happens next? Trajectories to the left of z-axis shoot off along the e®
direction, and those to the right along —e®. As along the e® direction xy > 0, the
nonlinear term in the z equation (2.13) bends both branches of the EQq unstable man-
ifold W"(EQo) upwards. Then ... - never mind. Best to postpone the completion of
this narrative to example 9.14, where the discrete symmetry of Lorenz flow will help us
streamline the analysis. As we shall show, what we already know about the 3 equilib-
ria and their stable/unstable manifolds suffices to completely pin down the topology of
Lorenz flow. (continued in example 9.14)

(E. Siminos and J. Halcrow)

Example 4.8 Lorenz flow state space contraction: (continued from exam-
ple 4.6) It follows from (4.29) and (4.28) that Lorenz flow is volume contracting,

3
AV = Z A t)=-oc-b-1, (4.40)
i=1

24predrag: ChaosBook: develop this text from steady.tex: “For an unstable complex pair A™"%
of equilibrium EQ, let Wmnfldu(n, n + 1)EQ denote the orbit of a circle of infinitesimal radius in
the plane about EQ spanned by ", e”. This part of the EQ unstable manifold is 2-dimensional; its
shape can be traced out by computing a set of trajectories with initial conditions EQ + (e cos 6 +
e sin ) for a set of values of 6.

Zpredrag: remember to delete halcrow/figs/hyperb.* 2?

%predrag: This needs more explaining. As EQ, has 2 contracting dimensions (and fluids will
have 50,000), whole volumes get scrunched into EQp, not just 1-dimensional heteroclinic orbits.
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Figure 4.8: A unimodal map, together with fixed
points 0, 1, 2-cycle 01 and 3-cycle 011.

105

110"

s

__Henbn@Hénon
_.“map!stability
# jacobian!Hénon map

at a constant, coordinate- and p-independent rate, set by Lorenz to div; = —13.66 . As
for periodic orbits and for long time averages there is no contraction/expansion along
the flow, A1) = 0, and the sum of A0 is constant by (4.40), there is only one independent
exponent A" to compute. (continued in example 4.7)

Example 4.9 Rd&ssler flow state space contraction:

27

click to return: p. 97
UPRIVATE

click to return: p. 97
MPRIVATE

Example 4.10 Stability of a 1-dimensional map: Consider the orbit{.. ., X_1, Xg, X1, X2, . . .}
of a 1-dimensional map Xn+1 = f(Xn). Since point X, is carried into point Xn.1, in study-
ing linear stability (and higher derivatives) of the map it is often convenient to deploy
a local coordinate systems z, centered on the orbit points X,, together with a notation
for the map, its derivative, and, by the chain rule, the derivative of the kth iterate f*

evaluated at the point X,

X = Xa+Za, fa(za) = f(Xa+2a)
f, = f'(xa)
Alxo.K) = f=fog - fafl, k=2

(4.41)

Here a is the label of point X5, and the label a+1 is a shorthand for the next pointb on
the orbit of X5, Xy = Xay1 = f(Xa). For example, a period-3 periodic point in figure 4.8
might have label a = 011, and by X110 = f(Xo11) the next point label is b = 110.

Example 4.11 Hénon map Jacobian matrix:

bian matrix for the nth iterate of the map is

1
W) = [ |

m=n

1

—2aXm

b

0 ) , Xm = (X0, Yo) -

click to return: p. 94

For the Hénon map (3.17) the Jaco-

(4.42)

The determinant of the Hénon one time-step Jacobian matrix (4.42) is constant,

detM = A1Ay, = -b

(4.43)

so in this case only one eigenvalue A1 = —b/A; needs to be determined. This is not
an accident; a constant Jacobian was one of desiderata that led Hénon to construct a

map of this particular form.

28

click to return: p. 95

2"predrag: use classroom solutions - sections are better than flow, because in each Poincare
section return flow contracts and explodes insanely.
2predrag: explain Henon = normal form in conjug.tex
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Exercises boyscout

4.1. Trace-log of a matrix. Prove that

det M = ell "M

for an arbitrary nonsingular finite dimensional matrix M,
detM #0. 3¢

4.2. Stability, diagonal case.  Verify the relation (4.31)
Ji=e" = Ule®™U, Ap=UAU"T.

4.3. Transport of local eigenframes.  (a) Derive (4.8).

(b) More generally, consider the eigenvectors e ) of J{(x)
(sometimes referred to as ‘covariant Lyapunov vectors,’
or, for periodic orbits, as ‘Floquet vectors’)

3'(x) eV (x(®) = A eV (x(®)) , (4.44)
and show that time t’ they are transported into eigenvec-
tors e (x(t + t)) of IV (x). (P.
Cvitanovit)

4.4, State space volume contraction.

(a) Compute the Rossler flow volume contraction rate
at the equilibria.

(b) Study numerically the instantaneous djv; along a
typical trajectory on the Rdssler attractor; color-
code the points on the trajectory by the sign (and
perhaps the magnitude) of d;v;. If you see regions
of local expansion, explain them.

(c) (optional) color-code the points on the trajectory by
the sign (and perhaps the magnitude) of d;v; — d;vi.

(d) Compute numerically the average contraction rate
(4.28) along a typical trajectory on the Rossler at-
tractor. Plot it as a function of time.

(e) Argue on basis of your results that this attractor is
of dimension smaller than the state space d = 3.

(f) (optional) Start some trajectories on the escape side
of the outer equilibrium, color-code the points on
the trajectory. Is the flow volume contracting?

2Predrag: insert Rossler discussion here

UJPRIVATE

MIPRIVATE

%0predrag: ask Christov et al. [1] for permission to include exercise 6.1, exercise 6.2, and exer-

cise 6.3.
3lpredrag: move to a better place - like count.tex - it is not used in this chapter
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(continued in exercise 20.12)

4.5. Topology of the Rossler flow. (continuation of exer-
cise 3.1)

(&) Show that equation |det (A — A1)| = 0 for Rdssler
flow in the notation of exercise 2.8 can be written
as

B+2%¢ (pT—€)+A(p*/e+1—c2ep™)Fc VD = 0(4.45)

(b) Solve (4.45) for eigenvalues A* for each equilib-
rium as an expansion in powers of e. Derive

A7 = —C+ec/(c® + 1) + 0(e)
A, = ec®/[2(c? + 1)] + o(€®)
6, =1+ €/[2(c? + 1)] + o(e)
A =ce(l-e)+ o(e?)
3= —-€°¢%/2 + 0(e%)

63 = V1+1/€e(1+ 0(e))

Compare with exact eigenvalues. What are dynam-
ical implications of the extravagant value of 17?
(continued as exercise 13.11)

(4.46)

(R. PaSkauskas)

4.6. Time-ordered exponentials.  Given a time dependent
matrix V(t) check that the time-ordered exponential

(L{(t) — Tefot drV(r)

may be written as

s t ty -1
w(t):mzzofo dtlfo o|t2.-.fO dtmV(t1) - - V(tm)

and verify, by using this representation, that Z{(t) satisfies
the equation

Ut = VOUQ),

with the initial condition 2/(0) = 1.

4.7. A contracting baker’s map. Consider a contract-
ing (or “dissipative’) baker’s map, acting on a unit square
[0, 1] = [0, 1] x [0, 1], defined by

Xn+1 _ Xn/3
(322)-(52) v

Xnet | _ [ Xn/3+1/2
(yn+1)‘( 2y -1 ) Yn>1/2.

This map shrinks strips by a factor of 1/3 in the x-direction,
and then stretches (and folds) them by a factor of 2 in the
y-direction.

By how much does the state space volume contract for
one iteration of the map? (continued in exercise 11.3)

refsStability - 18aug2006 boyscout version14.4, Mar 19 2013
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Chapter 5

Cycle stability

and the ways in which the orbits intertwine— are invariant under a general

continuous change of coordinates. Equilibria and periodic orbits are flow-
invariant sets, in the sense that the flow only shifts points along a periodic orbit,
but the periodic orbit as the set of periodic points remains unchanged in time. Sur-
prisingly, there also exist quantities that depend on the notion of metric distance
between points, but nevertheless do not change value under a smooth change of
coordinates. Local quantities such as the eigenvalues of equilibria and periodic
orbits, and global quantities such as Lyapunov exponents, metric entropy, and
fractal dimensions are examples of properties of dynamical systems independent
of coordinate choice.

TOPOLOGICAL rEATURES Of a dynamical system —singularities, periodic orbits,

We now turn to the first, local class of such invariants, linear stability of equi-
libria and periodic orbits of flows and maps. This will give us metric information
about local dynamics, as well as the key concept, the concept of a neighborhood
of a point x: its size is determined by the number of expanding directions, and the
rates of expansion along them: contracting directions play only a secondary role
(see sect. 5.6).

If you already know that the eigenvalues of periodic orbits are invariants of a
flow, skip this chapter.

fast track:
W chapter 7, p. 137
As noted on page 45, a trajectory can be stationary, periodic or aperiodic. For
chaotic systems almost all trajectories are aperiodic—nevertheless, equilibria and

periodic orbits turn out to be the key to unraveling chaotic dynamics. Here we
note a few of the properties that make them so precious to a theorist. *

IMason: does not jive with relative equilibria in a 3-body problem? This must be rephrased
more carefully. PC: a step at a time - discussed in the continuous symmetries chapter 10.
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CHAPTER 5. CYCLE STABILITY 111
5.1 Equilibria

For a start, consider the case where X; is an equilibrium point (2.9). Expanding
around the equilibrium point X, using the fact that the stability matrix A = A(x;)
in (4.2) is constant, and integrating, f'(x) = Xq + eA(X — Xq) + - - - , we verify that
the simple formula (4.14) applies also to the Jacobian matrix of an equilibrium
point,

Jo=eft 3 =0(xg). Ag = Alxg). (5.1)

As an equilibrium point is stationary, time plays no role, and the eigenvalues and
the eigenvectors of stability matrix A evaluated at the equilibrium point X,

Aqel) = 10 el (5.2)

describe the linearized neighborhood of the equilibrium point, with stability expo-
nents /lfo’) = ug) + iwg). The eigenvectors are also the eigenvectors of the Jacobian
matrix, J§el) = exp(tal) e .

If all x) < 0, then the equilibrium is stable, or a sink.

If some 1 < 0, and other () > 0, the equilibrium is hyperbolic, or a
saddle.

If all () > 0, then the equilibrium is repelling, or a source.

If some () = 0, think again (you have a symmetry or a bifurcation).

5.2 Periodic orbits

An obvious virtue of periodic orbits is that they are topological invariants: a
fixed point remains a fixed point for any choice of coordinates, and similarly a
periodic orbit remains periodic in any representation of the dynamics. Any re-
parametrization of a dynamical system that preserves its topology has to preserve
topological relations between periodic orbits, such as their relative inter-windings
and knots. So the mere existence of periodic orbits suffices to partially organize
the spatial layout of a non—wandering set. No less important, as we shall now
show, is the fact that cycle eigenvalues are metric invariants: they determine the
relative sizes of neighborhoods in a non-wandering set. 2

We start by noting that due to the multiplicative structure @.19) of Jacobian
matrices, the Jacobian matrix for the rth repeat of a prime cycle p of period T is

3T = ITEIT0) - ITHT0)IT() = Ip(0)" (5.3)

2Predrag: give references to templates, praise Gilmore
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CHAPTER 5. CYCLE STABILITY 112

where Jp(X) = JT(X) is the Jacobian matrix for a single traversal of the prime covariant Lyapunov
cycle p, x € M, is any point on the cycle, and fT(x) = x as fY(x) returns to x Ly\;f)(ijtﬁcr)vlcovariant
every multiple of the period T. Hence, it suffices to restrict our considerations to  “vector

the stability of prime cycles. Floquet!multiplier

Floquet!theorem
fast track:
W sect. 5.3, p. 115
5.2.1 Floquet theory

When dealing with periodic orbits, some of the quantities already introduced in
chapter 4 inherit names from the Floguet theory of differential equations with
time-periodic coefficients. Consider the equation of variations @.2) evaluated on
a periodic orbit p of period T, at point x(t) € M,,

5% = A(t) 6X, Alt) = At +T),

with A(t) = A(x(t)). The periodicity of the stability matrix implies that if 5§x(t)
is a solution, then also 6x(t + T) satisfies the same equation: moreover the two
solutions are related by (4.5)

OX(t+T) = Jp(X) ox(1), XeM,. (5.4)

Even though the Jacobian matrix J,(x) depends upon x (the ‘starting’ point of the
periodic orbit), we shall show in sect. 5.3 that its eigenvalues do not, so we may
write the eigenvalue equation as

Jp() e (x) = Ajel(x), (5.5)

where Aj are independent of x, and eigenvectors ) are sometimes referred to as
‘covariant Lyapunov vectors,” or, for periodic orbits, as ‘Floquet vectors’.

Expand 6x in the (5.5) eigenbasis, ox(t) = 3 oxj(t)el), el = e)(x(0)).
Taking into account (5.4), we get that ¢x;(t) is multiplied by A;j per each period

Sx(t+T)= > oxj(t+T)eD =" Ajoxj(t)ed.
j j

We can absorb this exponential growth / contraction by rewriting the coefficients
Sxj(t) as oxj(t) = exp(AVt)uj(t), uj(0) = 6x;(0). Thus each solution of the
equation of variations (4.2) may be expressed in the Floquet form,

ax() =Y eMujmed . ut+T) =), (5.6)
j

invariants - 17mar2013 boyscout version14.4, Mar 19 2013



CHAPTER 5. CYCLE STABILITY 113

Figure 5.1: For a prime cycle p, Floquet matrix
Jp returns an infinitesimal spherical neighborhood of
Xo € M, stretched into an ellipsoid, with overlap ra-
tio along the eigendirection e of J,(x) given by the
Floquet multiplier |[A;|. These ratios are invariant un-
der smooth nonlinear reparametrizations of state space
coordinates, and are intrinsic property of cycle p.

with uj(t) periodic with period T. The exp(At) factor is not an eigenvalue of the
Jacobian matrix Jt, it is only an interpolation between x and fT(x). The contin-
uous time t in (5.6) does not imply that eigenvalues of the Jacobian matrix enjoy
any multiplicative property for t # rT: exponents AV refer to a full traversal of
the periodic orbit. Indeed, while u;(t) describes the variation of 6x(t) with respect
to the stationary eigen-frame fixed by eigenvectors at the point x(0), the object of
dynamical significance is the co-moving eigen-frame defined below in 6.13). 3

5.2.2 Cycle stability

The time-dependent T-periodic vector fields, such as the flow linearized around
a periodic orbit, are described by Floquet theory. Hence from now on we shall
refer to a Jacobian matrix evaluated on a periodic orbit p either as a [dxd] Flogquet
matrix Jp or a [(d—1) x (d—1)] monodromy matrix My, to its eigenvalues A;j as
Floquet multipliers (5.5), and to /IEJ‘) = ,uE,‘) + iwg) as Floquet or characteristic
exponents. The stretching/contraction rates per unit time are given by the real
parts of Floquet exponents

)1
1P = T n |Apj| - (5.7)

The factor 1/Tp, in the definition of the Floquet exponents is motivated by its form
for the linear dynamical systems, for example (4.30), as well as the fact that expo-
nents so defined can be misinterpreted as Lyapunov exponents 6.12) evaluated on
the prime cycle p. When A is real, we do care about oV = Aj/|Aj] € {+1, -1},
the sign of the jth Floquet multiplier. If o) = —1 and |Aj| # 1, the corresponding
eigen-direction is said to be inverse hyperbolic. Keeping track of this by case-
by-case enumeration is an unnecessary nuisance, so most of our formulas will
be stated in terms of the Floquet multipliers A;j rather than in the terms of the
multiplier signs o)), exponents () and phases .

3Predrag: study Floquet theory: the punch line is that it reduces cycle stability to a fixed point
stability, but I do not get it... Reread Anishchenko, Dynamica Chaos - Basic Concepts (Teubner,
Leipzig 1987)

4Predrag: Update reference to (6.12). Contrast Floquet vs. singular values - Lyapunov expo-
nents [15, 16]
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expanding!Floquet
multipliers
arginal!stability
oNtracting!Floquet
Itipliers
oglet!theory
Hlogpet!multiplier
ulfiplier, Floquet
exponent!characteristic
Aaracteristic!exponent
Floquet!exponent
exponent!Floquet
Floguet!exponent

. . L . exponent!Floquet
In dynamics the expanding directions, |A¢| > 1, have to be taken care of first, ¢,

while the contracting directions |A¢| < 1 tend to take care of themselves, hence we saddle
always order multipliers A in order of decreasing magnitude |Aq| > |A2] > ... > source
IAgl. Since |Aj| = e%”, this is the same as ordering by 4@ > 4@ > ... > 4@ We limitcycle
sort the Floguet multipliers {Ap1, Apy2, ..., Apa} of the Floquet matrix evaluated cycle!limit
on the p-cycle into three sets {e,m, ¢}

Figure 5.2: An unstable periodic orbit repels every
neighboring trajectory x'(t), except those on its center
and stable manifolds.

expanding: (Ale = {Apj:|Apj|>1)
e =19 1 >0
marginal: {Alm = {Ap,j: |Ap,j| =1 (5.8)
(A = (2P 1Y =0)
contracting:  {A} = {Apj:|Apj <1}
(e =) 4 <0}

In what follows, the volume of expanding manifold will play an important role.
We denote by Ap (no jth eigenvalue index) the product of expanding Floquet
multipliers

[

As Jp is a real matrix, complex eigenvalues always come in complex conjugate
pairs, Apis1 = A, 50 the product (5.9) is always real. 567
A periodic orbit of a continuous-time flow, or of a map, or a fixed point of a

map is 0. 111

e stable, a sink or a limit cycle if all |Aj| < 1 (real parts of all of its Floquet
exponents, other than the vanishing longitudinal exponent for perturbations
tangent to the cycle, see sect. 5.3.1, are strictly negative, 0 > D > p(1).

SPredrag: explain figure 5.1 true for singular vectors, cite Lorenz
®Predrag: define center manifold
"Predrag: For what to tabulate for a given periodic orbit, see appendix E.3.
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e hyperbolic or a saddle, unstable to perturbations outside its stable manifold
if some |Aj| > 1, and other |Aj| < 1 (a set of g > umin > 0 is strictly
positive, the rest is strictly negative).

o elliptic, neutral or marginal if all [Aj] = 1 (u®) = 0).

e partially hyperbolic, if 1)) = 0 for a subset of exponents (other than the
longitudinal one).

e repelling, or a source, unstable to any perturbation if all |A;| > 1 (all Flo-
quet exponents, other than the vanishing longitudinal exponent, are strictly
positive, u() > 4@ > 0).

The region of system parameter values for which a periodic orbit p is stable is
called the stability window of p. The set of initial points that are asymptotically
attracted to M ast — +oo (for a fixed set of system parameter values) is called
the basin of attraction of limit cycle p. 8 Repelling and hyperbolic cycles are
unstable to generic perturbations, and thus said to be unstable, see figure5.2.

If all Floguet exponents (other than the vanishing longitudinal exponent) of
all periodic orbits of a flow are strictly bounded away from zero, the flow is
said to be hyperbolic. Otherwise the flow is said to be nonhyperbolic. A con-
fined smooth flow or map is generically nonhyperbolic, with partial ellipticity or
marginality expected only in presence of continuous symmetries, or for bifurca-
tion parameter values. As we shall see in chapter 10, in presence of continuous
symmetries equilibria and periodic orbits are not likely solutions, and their role
is played by higher-dimensional, toroidal, relative equilibria and relative periodic
orbits. For Hamiltonian flows the Sp(d) symmetry (Liouville phase-space volume
conservation, Poincaré invariants) leads to a proliferation of elliptic and partially
hyperbolic tori. ° 10

example 5.1
p. 123

=

5.3 Floquet multipliers are invariant
If the stability matrix A is computed on a flow-invariant equilibrium point g,

Aq = A(Xq) » (5.10)

8Predrag: refer to where that is defined

Predrag: comment on continuous.tex

©Mason: for infinite dimensional flows one cannot have Au,; in my thesis have a sequence
[Ail = 0, and all |4;] # 0.
PC: | think you are mixing up stability eigenvalues A with Floquet exponents A in this and the next
comment. My Anin is a lower bound on |4, not 4;, so I’'m OK unless | have eigenvalues arbitrarily
close to 0; but then the flow is not hyperbolic.
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Figure 5.3: The parallelepiped spanned by Flogquet
eigenvectors (’covariant vectors’, ’covariant Lyapunov
vectors”) is transported along the orbit and deformed
by Jacobian matrix. After a period of a periodic or-
bit, the eigenframe maps into itself (up to rescaling by
A; along each eigendirection e). As Jacobian matrix
is not self-adjoint, the eigenvectors are not orthogonal,
the eigenframe is ‘non-normal’.

its eigenvalues A = 1% (xq) are flow-invariant, so we label them by g, omit (x,).

The 1-dimensional map Floquet multiplier (5.25) is a product of derivatives
over all points around the cycle, and is therefore independent of which periodic
point is chosen as the initial one. In higher dimensions the form of the Floquet
matrix Jy(Xo) in (5.3) does depend on the choice of coordinates and the initial
point Xo € M,. Nevertheless, as we shall now show, the cycle Floquet multipliers
are intrinsic property of a cycle in any dimension. Consider the ith eigenvalue,
eigenvector pair (A;, e() computed from Jp evaluated at a periodic point x, *

Ip()edx) = Ajed(x), xeM,. (5.11)

Consider another point on the cycle at time t later, X = f!(x) whose Floquet
matrix is J(X'). By the semigroup property (4.19), J7*' = J*T  and the Jacobian
matrix at X’ can be written either as

ITHx) = IT(x) 3'(x) = Ip(x') 39,

or J'(x) Jp(x). Multiplying (5.11) by J'(x), we find that the Floquet matrix evalu-
ated at X’ has the same Floquet multiplier,

() ey = AjeD(x), eD(x) = 3(x)ePD(x), (5.12)

but with the eigenvector el) transported along the flow x — x to e(x) =
J{(x) eD(x). Hence, in the spirit of the Floquet theory (5.6) one can define time-
periodic eigenvectors (in a co-moving ‘Lagrangian frame’)

ety =e "3 x)e©0), ety =eD(x(t), x(t)e M,. (5.13)

Jp evaluated anywhere along the cycle has the same set of Floquet multipliers
{A1,Ag, -+, 1,---, Ag_1}. As quantities such as tr Jp(x), det Jp(x) depend only
on the eigenvalues of J,(x) and not on the starting point X, in expressions such as
det (1 — J5(x)) we may omit reference to x,

det(1 - J5) = det(1- Jp(x)) forany x e M, . (5.14)

Upredrag: fix scale in figure 5.3, refer to it
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Figure 5.4: Any two points along a periodic orbit
p are mapped into themselves after one cycle period
T, hence a longitudinal displacement 6x = v(Xo)dt is
mapped into itself by the cycle Jacobian matrix J,.

We postpone the proof that the cycle Floguet multipliers are smooth conjugacy
invariants of the flow to sect. 5.4; time-forward map (5.12) is the special case of
this general property of smooth manifolds and their tangent spaces.

5.3.1 Marginal eigenvalues

The presence of marginal eigenvalues signals either a continuous symmetry of the
flow (which one should immediately exploit to simplify the problem), or a non-
hyperbolicity of a flow (a source of much pain, hard to avoid). In that case (typical
of parameter values for which bifurcations occur) one has to go beyond linear
stability, deal with Jordan type subspaces (see example4.3), and sub-exponential
growth rates, such as t*. For flow-invariant solutions such as periodic orbits, the
time evolution is itself a continuous symmetry, hence a periodic orbit of a flow
always has a marginal Floquet multiplier, as we now show.

12 The Jacobian matrix J'(x) transports the velocity field v(x) by @.8), v(x(t)) =
J'(X0) V(Xo) . In general the velocity at point x(t) does not point in the same direc-
tion as the velocity at point X, so this is not an eigenvalue condition for J; the
Jacobian matrix computed for an arbitrary segment of an arbitrary trajectory has
no invariant meaning. However, if the orbit is periodic, x(T) = x(0), after a com-
plete period

Jp(X)v(X) = v(X), XeMp. (5.15)

Two successive points on the cycle initially distance 6x = X(0) — x(0) apart, are
separated by the exactly same distance after a completed period 6x(T) = 6X, see
figure 5.4, hence for a periodic orbit of a flow the velocity field v at any point
along cycle is an eigenvector €!)(x) = v(x) of the Jacobian matrix Jp with the unit
Flogquet multiplier, zero Floquet exponent

Ay=1, aW=p, (5.16)

The continuous invariance that gives rise to this marginal Floquet multiplier is
the invariance of a cycle (the set M,) under a time translation of its points along

2pPredrag: Currently exercise 4.3 appears too early?
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the cycle. As we shall see in sect. 5.5, this marginal stability direction can be Floguet!multiplier,

L . . , . . . metric invariant
eliminated by cutting the cycle by a Poincaré section and replacing the continuous metrictinvariant!Floquet
flow Floguet matrix by the Floquet matrix of the Poincaré return map. multiplier

smooth!conjugacy
If the flow is governed by a time-independent Hamiltonian, the energy is con- smooth!conjugacy

served, and that leads to an additional marginal Floquet multiplier (we shall show conjugacy!smooth
in sect. 7.4 that due to the symplectic invariance (7.31) real eigenvalues come in
pairs). For the collinear helium of sect. B.2 this marginal Floguet multiplier is
made explicit in appendix E.5. Further marginal eigenvalues arise in presence of
continuous symmetries, as discussed in chapter 10.

UJPRIVATE
MIPRIVATE

5.4 Floquet multipliers are metric invariants

R
In sect. 5.3 we established that for a given flow, the Floquet multipliers are intrin-
sic to a given cycle, independent of the starting point along the cycle. Now we
prove a much stronger statement: cycle Floguet multipliers are smooth conjugacy
or metric invariants of the flow, the same in any representation of the dynamical
system. That follows by elementary differential geometry considerations: 2

If the same dynamicals is given by a map f in x coordinates, and a map g
in the y = h(x) coordinates, then f and g (or any other good representation) are
related by a smooth conjugacy, a reparameterization and a coordinate transforma-
tion g = ho f oh~! which maps nearby points of f into nearby points of g. As both
f and g are arbitrary representations of the dynamical system, the explicit form
of the conjugacy h is of no interest, only the properties invariant under any trans-
formation h are of general import. Furthermore, a good representation should not
mutilate the data; the mapping h must be a smooth conjugacy which maps nearby
points of f into nearby points of g.

This smoothness guarantees that the cycles are not only topological invariants,
but that their linearized neighborhoods are also metric invariants. For a fixed point
f(x) = x of a 1-dimensional map this follows from the chain rule for derivatives,

GO = W) )
h (x)f(x) h,ix) = (). (5.17)

In d dimensions the relationship between the maps in different coordinate rep-
resentations is again g o h = h o f. The chain rule now relates M, the Jacobian
matrix of the map g, to the Jacobian matrix of map f:

M ()i = T(f ()Ml () (5.18)

3predrag: explain someplace the intuitive idea: smooth conjugacy is like stretching rubber -
local length ratios are preserved. Move text after (2.23) to here?

invariants - 17mar2013 boyscout version14.4, Mar 19 2013



CHAPTER 5. CYCLE STABILITY 119

where

a .
T(X)ic = 6_3(/:( and T =

%
Ak

If x is an equilibrium point, x = f(x), " is the matrix inverse of I, and (5.18) is
a similarity transformation and thus preserves eigenvalues. It is easy to verify that
in the case of period n, cycle My (y) and M(x) are again related by a similarity
transformation. (Note, though, that this is not true for M'(x) with r # np). As
stability of a flow can always be reduced to stability of a Poincaré return map, a
Floguet multiplier of any cycle, for a flow or a map in arbitrary dimension, is a
metric invariant of the dynamical system. 1° 1617

The ith Floquet (multiplier, eigenvector) pair (A;, e®) are computed from M
evaluated at a periodic point x, M(x)eP(x) = Aje®(x), x e M,. Multiplying
by T'(x) from the left, and inserting 1 = T'(x)"'I'(x), we find that the monodromy
matrix evaluated at y = h(x) has the same Floquet multiplier,

Mi(y) ey = AieO(y), (5.19)

but with the eigenvector e (x) mapped to e®(y)" = T'(x) e®(x).

5.5 Stability of Poincaré map cycles

(R. PaSkauskas and P. Cvitanovi€)

If a continuous flow periodic orbit p pierces the Poincaré section # once, the
section point is a fixed point of the Poincaré return map P with stability ¢.24)

A viU
Jij = (5ik - V'—k) Jj » (5.20)

with all primes dropped, as the initial and the final points coincide, X = fT(x) = x.
If the periodic orbit p pierces the Poincaré section n times, the same observation
applies to the nth iterate of P.

We have already established in (4.25) that the velocity v(x) is a zero eigen-
vector of the Poincaré section Floquet matrix, Jv = 0. Consider next (A, @),
the full state space ath (eigenvalue, eigenvector) pair 6.11), evaluated at a peri-
odic point on a Poincaré section,

JX) e (x) = Ape@(x), xeP. (5.21)

14Predrag: might need to derive (2.22) here?

15Roberto: Exercise? Maybe contained in linear algebra supplementary material..
6predrag: argue det — tr can be waste of time

Predrag: add d-dimensional case
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Multiplying (5.20) by e® and inserting (5.21), we find that the full state space
Floquet matrix and the Poincaré section Floquet matrix J have the same Floquet
multiplier

JX) 8D (x) = Ap 8D(x), xeP, (5.22)

where & is a projection of the full state space eigenvector onto the Poincaré
section: 8

(i = (&k NC ,li,k))(e@)k : (5.23)

Hence, jp evaluated on any Poincaré section point along the cycle p has the same
set of Floquet multipliers {A1, Ao, - - - Ag} as the full state space Floquet matrix Jp,
except for the marginal unit Floquet multiplier (5.16).

As established in (4.25), due to the continuous symmetry (time invariance) JAp
is a rank d—1 matrix. We shall refer to the rank [(d—1—N)x (d—1-N)] submatrix
with N -1 continuous symmetries quotiented out as the monodromy matrix M,
(from Greek mono- = alone, single, and dromo = run, racecourse, meaning a
single run around the stadium). Quotienting continuous symmetries is discussed
in chapter 10 below. *°

5.6 There goes the neighborhood

In what follows, our task will be to determine the size of a neighborhood of x(t),
and that is why we care about the Floquet multipliers, and especially the unstable
(expanding) ones.

Nearby points aligned along the stable (contracting) directions remain in the
neighborhood of the trajectory x(t) = f{(Xo); the ones to keep an eye on are the
points which leave the neighborhood along the unstable directions: all chaos arises
from flights along these these directions. The sub-volume || = [] Ax; of the
set of points which get no further away from f'(xo) than L, the typical size of the
system, is fixed by the condition that AxA; = O(L) in each expanding direction
i. Hence the neighborhood size scales as [V, | o O(Lde)/|Ap| o 1/|Ap| where A,
is the product of expanding Flogquet multipliers (6.9) only; contracting ones play
a secondary role. Discussion of sect. 1.5.1, figure 1.9, and figure 5.1 illustrate
intersection of initial volume with its return, and chapters 12 and 18 illustrate the
key role that the unstable directions play in systematically partitioning the state
space of a given dynamical system. The contracting directions are so secondary
that even infinitely many of them (for example, the infinity of contracting eigen-
directions of the spatiotemporal dynamics of Chapter27) will not matter.

8predrag: note: normalization not preserved; replace & by def.tex macros
predrag: 2013-03-17 merge this: “ In case of a periodic orbit, " (x) = x, we shall refer to this
Jacobian matrix as the monodromy matrix M, = J%. ”
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So the dynamically important information is carried by the expanding sub- cycle!stability—)

volume, not the total volume computed so easily in @.28). That is also the reason
why the dissipative and the Hamiltonian chaotic flows are much more alike than
one would have naively expected for ‘compressible’ vs. ‘incompressible’ flows.
In hyperbolic systems what matters are the expanding directions. Whether the
contracting eigenvalues are inverses of the expanding ones or not is of secondary
importance. As long as the number of unstable directions is finite, the same theory
applies both to the finite-dimensional ODEs and infinite-dimensional PDEs. 2°

Résumeé

Periodic orbits play a central role in any invariant characterization of the dynam-
ics, because (a) their existence and inter-relations are a topological, coordinate-
independent property of the dynamics, and (b) their Floquet multipliers form an
infinite set of metric invariants: The Floguet multipliers of a periodic orbit remain
invariant under any smooth nonlinear change of coordinates f — ho fol! . Let
us summarize the linearized flow notation used throughout the ChaosBook.

Differential formulation, flows: Equations
X=v, 56X = ASX

govern the dynamics in the tangent bundle (x, 6x) € T M obtained by adjoining the
d-dimensional tangent space 6x € T M to every point X € M in the d-dimension-
al state space M c RY. The stability matrix A = dv/dx describes the instantaneous
rate of shearing of the infinitesimal neighborhood of x(t) by the flow.

Finite time formulation, maps: A discrete sets of trajectory points {X, X1, - - -,
Xn,-+-} € M can be generated by composing finite-time maps, either given as
Xn+1 = fF(Xn), or obtained by integrating the dynamical equations

i1
Xn+]_ = f(Xn) = Xn + dTV(X(T)) N Atn = tn+_‘]_ - tn N (524)

tn
for a discrete sequence of times {y, t1, - - -, tn, - - -}, specified by some criterion such

as strobing or Poincaré sections. In the discrete time formulation the dynamics in
the tangent bundle (x, 5x) € TM is governed by

Xne1 = F(Xn),  0Xnr1 = I(Xn) 0Xn, J(xn) = \]Atn(xn) ,

2predrag:  H.H. Rugh and Christiansen chose the Lorenz attractor as demonstration in their
Gram-Schmidt/Lyapunov paper, not the Rdssler. In Lorenz the eigenvalue is also quite small - the
Lyapunov exponent is of order of -14, but there is a nice check since the sum of the exponents is
given by the equations. “ Christiansen believes that for the Rossler system he got a result accurate
to machine precision and concluded that the eigenvalue was at least as small as that. If Christiansen
finds the time, he might stuff the Réssler equation into the Gram-Schmidt program. ” (ha, ha)
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where J(Xn) = 0Xny1/0X%n = de exp (A7) is the 1-time step Jacobian matrix.

Stability of invariant solutions: The linear stability of an equilibrium v(>) = 0
is described by the eigenvalues and eigenvectors {41, e} of the stability matrix
A evaluated at the equilibrium point, and the linear stability of a periodic orbit
fT(X) = X, X € M,

JIp(x) e(x) = Aj e(x), Aj= DT 7

by its Floguet multipliers, vectors and exponents {A;, e}, where A0 = p() +
iw) For every continuous symmetry there is a marginal eigen-direction, with
Aj =120 =0. With all 1 + N continuous symmetries quotiented out (Poincaré
sections for time, slices for continuous symmetries of dynamics, see sect.10.4)
linear stability of a periodic orbit (and, more generally, of a partially hyperbolic
torus) is described by the [(d-1-N) x (d-1-N)] monodromy matrix, all of whose
Floquet multipliers |Aj| # 1 are generically strictly hyperbolic,

Mp(x) e (x) = AjeD(x), x € My/G.

We shall show in chapter 11 that extending the linearized stability hyperbolic
eigen-directions into stable and unstable manifolds yields important global infor-
mation about the topological organization of state space. What matters most are
the expanding directions. The physically important information is carried by the
unstable manifold, and the expanding sub-volume characterized by the product of
expanding Floquet multipliers of J,. As long as the number of unstable directions
is finite, the theory can be applied to flows of arbitrarily high dimension.

: in depth: fast track:
3 appendix E, p. 1080 W chapter 9, p. 175
Commentary

Remark 5.1 Periodic orbits vs. ‘cycles’. Throughout this text, the terms “periodic
orbit” and ‘cycle’ (which has many other uses in mathematics) are used interchangeably;
while ‘periodic orbit’ is more precise, ‘pseudo-cycle’ is easier on the ear than ‘pseudo-
periodic-orbit.” In Soviet times obscure abbreviations were a rage, but here we shy away
from acronyms such as UPOs (Unstable Periodic Orbits). Lost in the mists of time is
the excitement experienced by the first physicist to discover that there are periodic orbits
other than the limit cycles reached by mindless computation forward in time (many a
mathematician starting with Poincaré had appreciated that); but once one understands that
there are at most several stable limit cycles (SPOs?) as opposed to the Smale horseshoe
infinities of unstable cycles (UPOs?), what is gained by prefix *U’? It is like calling all
bicycles *unstable bicycles’ rather than “bicycles’.
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Remark 5.2 Periodic orbits and Floquet theory. Study of time-dependent and T-
periodic vector fields is a classical subject in the theory of differential equations [ 1, 2]. In
physics literature Floguet exponents often assume different names according to the context
where the theory is applied: they are called Bloch phases in the discussion of Schrodinger
equation with a periodic potential [3], or quasi-momenta in the quantum theory of time-
periodic Hamiltonians. For further reading on periodic orbits, consult Moehlis and K.
Josi¢ [4] Scholarpedia.org article. 2* 2

5.7 Examples

The reader is urged to study the examples collected here. To return back to the

main text, click on [click to return] pointer on the margin.

Floquet!theory
criticallpoint
cycle!superstable
superstable!cycle
cycle!stable
stable!cycle
unstablelcycle

Henon@Hénon
map!stability

Example 5.1 Stability of cycles of 1-dimensional maps:  The stability of a prime
cycle p of a 1-dimensional map follows from the chain rule (4.41) for stability of the nyth

iterate of the map

q np—1 ,
Ap = d—XOf”p(xo) = H) ' (Xm),  Xm = F™(Xo).

m

(5.25)

Ap is a property of the cycle, not the initial periodic point, as taking any periodic point

in the p cycle as the initial one yields the same A .

A critical point X is a value of x for which the mapping f(x) has vanishing

derivative, f'(x.) = 0. A periodic orbit of a 1-dimensional map is stable if

|Ap| =

£ (np) F' (1) -+ F/0) F (x0)] < 1,

and superstable if the orbit includes a critical point, so that the above product vanishes.
For a stable periodic orbit of period n the slope A, of the nth iterate f"(x) evaluated
on a periodic point x (fixed point of the nth iterate) lies between —1 and 1. If |Ap| > 1,
p-cycle is unstable.

Example 5.2 Stability of cycles for maps: No matter what method one uses to
determine unstable cycles, the theory to be developed here requires that their Floquet
multipliers be evaluated as well. For maps a Floquet matrix is easily evaluated by
picking any periodic point as a starting point, running once around a prime cycle, and
multiplying the individual periodic point Jacobian matrices according to (4.21). For
example, the Floquet matrix My for a prime cycle p of length n, of the Hénon map
(3.17) is given by (4.42),

M(x)—ﬁ —2axc b X € M
p\A0) = 1 0/’ k p>

k=n,

2lpredrag: add quasi-momenta reference
22predrag: mkbook did not print the next page - It always seems to skip two pages. Why?
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and the Floquet matrix M, for a 2-dimensional billiard prime cycle p of length n,, Stability!billiards

billiard!stability
1
1 1 0
'V'P:(‘l)n"l_[( 01 )( e 1 )

k=np

follows from (8.11) of chapter 8 below. The decreasing order in the indices of the
products in above formulas is a reminder that the successive time steps correspond
to multiplication from the left, Mp(x1) = M(Xn,)--- M(x1). We shall compute Floquet
multipliers of Hénon map cycles once we learn how to find their periodic orbits, see

exercise 13.14. % .
click to return: p. 115

Zpredrag: add exercise for by-hand fixed point, 2-cycle for Hénon
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5.2.

5.3.

54.

Driven damped harmonic oscillator limit cycle.  Driven

damped harmonic oscillator equations of motion are:

A limit cycle with analytic Floquet exponent.  There
are only two examples of nonlinear flows for which the
Floguet multipliers can be evaluated analytically. Both
are cheats. One example is the 2-dimensional flow

4 = p+ql-9°-p%
p = —q+pl-9°-p?.

Determine all periodic solutions of this flow, and deter-
mine analytically their Floguet exponents. Hint: go to
polar coordinates (q, p) = (r cos 8, r sin 6). G. Bard
Ermentrout

The other example of a limit cycle with analytic Flo-
quet exponent.  What is the other example of a non-
linear flow for which the Floquet multipliers can be eval-
uated analytically? Hint: email G.B. Ermentrout.

Yet another example of a limit cycle with analytic Flo-
quet exponent. Prove G.B. Ermentrout wrong by
solving a third example (or more) of a nonlinear flow for
which the Flogquet multipliers can be evaluated analyti-
cally.
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Chapter 6

Lyapunov exponents

We owe it to a book to withhold judgment until we reach
page 100.

—Henrietta McNutt, George Johnson’s seventh-
grade English teacher

subject: Is a given system ‘chaotic’? And if so, how chaotic? If all points

in a neighborhood of a trajectory converge toward the same trajectory, the
attractor is a fixed point or a limit cycle. However, if the attractor is strange, any
two trajectories x(t) = f!(xo) and x(t) + ox(t) = f'(xg + 5Xo) that start out very
close to each other separate exponentially with time, and in a finite time their
separation attains the size of the accessible state space.

I ET US APPLY the newly acquired tools to the fundamental diagnostics in this

This sensitivity to initial conditions can be quantified as
16x(t)] ~ e|5xo (6.1)

where A, the mean rate of separation of trajectories of the system, is called the
leading Lyapunov exponent. As it so often goes with easy ideas, it turns out that
Lyapunov exponent are not natural for study of dynamics, and we would have
passed them over in silence, were it not for so much literature that talks about
them. So in a textbook we are duty bound to explain what all the excitement is
about. 1?2

6.1 Stretch and twirl

Diagonalizing the matrix: that’s the key to the whole thing.
— Governor Arnold Schwarzenegger

!Predrag: remember to move Henrietta McNutt close to p. 100
2Predrag: 2013-0320 remember to correct en.wikipedia.org/wiki/Lyapunov_exponent
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attractorlstrange

strange attractor

limit cycle

cycle!limit

sensitivity to initial
conditions

example 2.3

section 1.3.1

remark 6.2


http://prairiehome.publicradio.org/programs/20031129/scripts/guy_noir.shtml
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Figure 6.1: The linearized flow maps a swarm of
initial points in an infinitesimal spherical neighbor-
hood of squared radius 6x* at X, into an ellipsoid
oxT(J7J)6x at x(t) finite time t later, rotated and
stretched/compressed along the principal axes by sin-
gular values {oj} .

In general the Jacobian matrix J! is neither diagonal, nor diagonalizable, nor con-
stant along the trajectory. What is a geometrical meaning of the mapping of a
neighborhood by J? Here the continuum mechanics insights are helpful, in par-
ticular the polar decomposition which affords a visualization of the linearization
of a flow as a mapping of the initial ball into an ellipsoid (figure6.1).

First, a few definitions: A symmetric [d xd] matrix Q is positive definite,
Q > 0, if X"Qx > 0 for any nonzero vector x € R4, Q is negative definite,
Q < 0, if x"Qx < 0 for any nonzero vector x. Alternatively, Q is a positive
(negative) definite matrix if all its eigenvalues are positive (negative). A matrix
R is orthogonal if R"R = 1, and proper orthogonal if detR = +1. Here the
superscript T denotes the transpose. For example, (X, - -, Xq) iS a row vector,
(X1,-+ -, Xg) " is a column vector.

By the polar decomposition theorem, a deformation J can be factored into a
rotation R and a right / left stretch tensor U / V,

J=RU = VR, (6.2)

where R is a proper-orthogonal matrix and U, V are symmetric positive definite
matrices with strictly positive real eigenvalues {01, 07, -, 04} called principal
stretches (singular values), and with orthonormal eigenvector bases,

U0 = ou®.  u® @y
wi = o, @O vy (6.3)

oi > 1 for stretching and 0 < oy < 1 for compression along the direction u®
or v, {u(Dy are the principal axes of strain at the initial point »; {v{)} are the
principal axes of strain at the present placement x. From a geometric point of
view, J maps the unit sphere into an ellipsoid, figure 6.1, the singular values are
then the lengths of the semiaxes of this ellipsoid. The rotation matrix R carries the
initial axes of strain into the present ones, V = RUR" . The eigenvalues of the 3

right Cauchy-Green strain tensor: JJ =U?
left Cauchy-Green strain tensor: JJT =V? (6.4)

3Predrag: In spirit of sect. 2.2.1: Lagrangian=co-moving, Eulerian=external ‘reference’ coor-
dinate frame: “the columns of the matrix V are the principal axes ¢ of stretching in the Lagrangian
coordinate frame, and the orthogonal matrix R gives the orientation of the ellipse in the Eulerian
coordinates.
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are {0'?}, the squares of principal stretches.

Stretches {cj} are not related to the the Jacobian matrix J eigenvalues {Aj)
in any simple way: the eigenvectors {u()} of strain tensor J7J that determine the
orientation of the principal axes, are distinct from the Jacobian matrix J eigenvec-
tors {e)}, and strain tensor J7J satisfies no semigroup property such as (¢.19). To
emphasize this distinction, the Jacobian matrix eigenvectors {¢))} are sometimes
called “covariant’ or ‘covariant Lyapunov vectors’. Under time evolution the co-
variant vectors map forward as &) — Je()) (transport of the velocity vector (4.8)
is an example), In contrast, the principal axes have to be recomputed from the
scratch for each timet. 4°°©

Eigenvectors / eigenvalues are suited to study of iterated forms of a matrix,
such as Jacobian matrix J' or exponential exp(tA), and are thus a natural tool for
study of dynamics. Principal vectors are not, they are suited to study of the matrix
JUitself. The polar (singular value) decomposition is convenient for numerical
work (any matrix, square or rectangular, can be brought to such form), as a way
of estimating the effective rank of matrix J by separating the large, significant
singular values from the small, negligible singular values.

=

example 6.2
p. 134

6.2 Lyapunov exponents

(J. Mathiesen and P. Cvitanovic)

The mean growth rate of the distance |5x(t)|/|0%]| between neighboring trajec-
tories (6.1) is given by the The leading Lyapunov exponent can be estimated for
long (but not too long) time t as

A= % In [6X(t)|/16Xol (6.5)

(For notational brevity we shall often suppress the dependence of quantities such
as A = A(xg), ox(t) = 6x(xo, t) on the initial point X5). One can take (6.5) as is, take
a small initial separation §xy, track the distance between two nearby trajectories
until |6x(t)| gets significantly bigger, then record A1 = In(|6x(t1)|/|6X%0]), rescale
6X(t1) by factor |6%o]/|6x(t1)], and continue add infinitum, as in figure 6.2, with the

“Predrag: fix this: figure 4.2 is for J, figure 6.1 is for J7J

SPredrag: Make Trevisan [12] 2D example an exercise (with given answers). Discuss transient
growth.

SPredrag: replace the tensors by the invariants - then the relations between {A;} and {c-j} should
be immediate?
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dx; error correlation
matrix

dX%g

x(0)

Figure 6.2: A long-time numerical calculation of the
leading Lyapunov exponent requires rescaling the dis-
tance in order to keep the nearby trajectory separation
within the linearized flow range.

dx,

leading Lyapunov exponent given by
A= lim th-/l- (6.6)
= lim > i idi. :

Deciding what is a safe ’linear range’ before the separation vector 6x(t) should be
rescaled is a dark art.

We can start out with a small 6x and try to estimate the leading Lyapunov ex-
ponent A from (6.6), but now that we have quantified the notion of linear stability
in chapter 4, we can do better. The problem with measuring the growth rate of the
distance between two points is that as the points separate, the measurement is less
and less a local measurement. In the study of experimental time series this might
be the only option, but if we have equations of motion, a better way is to measure
the growth rate of vectors transverse to a given orbit.

Given the equations of motion, for infinitesimal 6x we know the ¢%(t)/5x;(0)
ratio exactly, as this is by definition the Jacobian matrix

oxi(t)  oxi(t)
SO0 6xj(0) — axj(0)

‘]itj(XO)v
so the leading Lyapunov exponent can be computed from the linearization ¢.15)

|Jt(Xo)5Xo| e Lo tTata
e lim = In(A7J'7%) . (6.7)

.1

A(Xg) = tllm n In
In this formula the scale of the initial separation drops out, only its orientation
given by the initial orientation unit vector A = 6X%/|0Xo| matters. As we do not
care about the orientation of the separation vector between a trajectory and its per-
turbation, but only its magnitude, we can interpret|Jt(xo)(5xo|2 = 0Xo T (JTTINHSX0 ,
as the error correlation matrix. In the continuum mechanics language, 6.4), or
the right Cauchy-Green strain tensor J'J is the natural object to describe how
linearized neighborhoods deform. Stretches of continuum mechanics are called

Lyapunov - 20mar2013 boyscout version14.4, Mar 19 2013
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Figure 6.3: A numerical computation of the loga- Lya|
C

punov!exponent,
cle

rithm of the stretch AT (J'TJY)A in formula (6.10) for the
Rossler flow (2.18), plotted as a function of the Rossler
time units. The slope is the leading Lyapunov exponent
A ~ 0.09. The exponent is positive, so numerics lends
credence to the hypothesis that the Rdssler attractor is
chaotic. The big unexplained jump illustrates perils of

cyc

00 05 10 15 20 25

e!Lyapunov
ponent

Lyapunov exponents numerics. (J. Mathiesen)

the finite-time Lyapunov or characteristic exponents in the theory of dynamical
systems,

1 1
Ao, A1) = T In 134 = T In(A7J'T%) . (6.8)

They depend on the initial point % and on the direction of the unit vector fi,
|| = 1 at the initial time. If this vector is aligned along the ith principal stretch,
A = u® then 4 = Incoj/t. If u® is the direction of the largest principal stretch,
the corresponding finite-time Lyapunov exponent is given by the largest stretch:’

1
A1(xo; 1) = A(xo, uP;t) = n In o1 (Xo; 1) (6.9)
The leading Lyapunov exponent is given by®
A(xo, A) = lim 1 In |13t = lim 1 In(A7J'7J'%) (6.10)
’ t—oo t t—oo 2t ’ )

9 Expanding the initial orientation in the strain tensor eigenbasis €.3), i = >.(f -
uu® | we have 1°

d
ATITIN = Z(ﬁ U0y = (- uDy2od (1 + O(a3/0?))
i=1
with stretches ordered by decreasing magnitude, o3 > o > o3---. For long

times the largest stretch dominates exponentially .7), provided the orientation A
of the initial separation was not chosen perpendicular to the dominant expanding
eigen-direction u?. The Lyapunov exponent is 11 12

1 . o
Jlim = {In1A - u®] + In JAg(x0. B)] + O 24—42)))

1

A(Xo)

"Predrag: make Trevisan [12], original Lorenz 3D Lorenz model singular vectors exerBox here

8Predrag: Rates of stretching?

%Predrag: why do they say: “Extending this relation to the case of a position-dependent defor-
mation gradient requires the notion of simultaneous diagonalization?” Read ref. [26]

Opredrag: wrong, need to prove the A; dominance

Upredrag: prove this

12John G: Notation for eigenvalue on LHS should match that on LHS of (6.7).
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where A (o, t) is the leading eigenvalue of Ji(xo). By choosing the initial dis- Lyapunov!exponent!numerical
placement such that fi is normal to the first (i-1) eigen-directions we can define sossler@ll? ossler!flow
not only the leading, but all Lyapunov exponents as well: 13 1 yapunov!exponent—)

.1 .
i(Xo) = lim T In|Ai(Xo, t)l, i=12,---,d. (6.12)

t—oo

The leading Lyapunov exponent now follows from the Jacobian matrix by numer-
ical integration of (4.9). The equations can be integrated accurately for a finite
time, hence the infinite time limit of (6.7) can be only estimated from plots of

1 In(ATJ'T3'R) as function of time, such as figure 6.3 for the Rossler flow (2.18).
fs

As the local expansion and contraction rates vary along the flow, the temporal
dependence exhibits small and large humps. The sudden fall to a low level is
caused by a close passage to a folding point of the attractor, an illustration of why
numerical evaluation of the Lyapunov exponents, and proving the very existence
of a strange attractor is a difficult problem. '° The approximately monotone part
of the curve can be used (at your own peril) to estimate the leading Lyapunov
exponent by a straight line fit.

As we can already see, we are courting difficulties if we try to calculate the
Lyapunov exponent by using the definition (6.11) directly. First of all, the state
space is dense with atypical trajectories; for example, if % happens to lie on a
periodic orbit p, A would be simply In|Ap|/Tp, a local property of cycle p, not
a global property of the dynamical system. 1’ Furthermore, even if xy happens
to be a ‘generic’ state space point, it is still not obvious that In|A (%, t)|/t should
be converging to anything in particular. In a Hamiltonian system with coexisting
elliptic islands and chaotic regions, a chaotic trajectory gets captured in the neigh-
borhood of an elliptic island every so often and can stay there for arbitrarily long
time; as there the orbit is nearly stable, during such episode In|A (%, t)|/t can dip
arbitrarily close to 0". For state space volume non-preserving flows the trajec-
tory can traverse locally contracting regions, and In|A (%, t)|/t can occasionally
go negative; even worse, one never knows whether the asymptotic attractor is

periodic or ‘chaotic’, so any finite estimate of 1 might be dead wrong. '8 UPRIVATE

section 45.2
MPRIVATE
exercise 6.4

Résumeé

A neighborhood of a trajectory deforms as it is transported by a flow. In the
linear approximation, the stability matrix A describes the shearing / compression

13predrag: edit figure 6.3

14predrag: make problem set, mention rescaling to avoid overflows

'5John G: Figure 6.3 must be for a fixed, finite 6xo. If you integrated Mj;(x) along with f(x) as
described in early chapters, you would’t get the drop-off, right? PC: do not know...

6predrag: who knows? recompute

"Predrag: correct this

BMason: there is a good Matlab module that computes a Lyapunov exp - will provide a reference
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/ expansion of an infinitesimal neighborhood in an infinitesimal time step. The
deformation after a finite time t is described by [...]

Furthermore, although the Jacobian matrices are multiplicative along the flow,
in dimensions higher than one their eigenvalues in general are not.  This lack
of multiplicativity has important repercussions for both classical and quantum
dynamics. *°

Use Eckmann and Ruelle [?] discussion of characteristic exponents.

Commentary

Remark 6.1 Matrix decompositions of the Jacobian matrix. A ‘polar decomposition’
of a matrix or linear operator is a generalization of the factorization of complex number
into the polar form, z = r exp(¢). Matrix polar decomposition is explained in refs. [ 25, 2,
3, 26]. One can go one step further than the polar decomposition (6.2) into a product of a
rotation and a symmetric matrix, diagonalize the symmetric matrix by a second rotation,
and express any matrix with real elements in the singular value decomposition (SVD)
form

J=RiDR,", (6.13)

where D is diagonal and real, and R1, R, are orthogonal matrices, unique up to permuta-
tions of rows and columns. The diagonal elements {o-1, 0, ..., o4} of D are the singular
values of J.

Though singular values decomposition provides geometrical insights into how tan-
gent dynamics acts, many popular algorithms for asymptotic stability analysis (computing
Lyapunov spectrum) employ another standard matrix decomposition: the QR scheme [ 1],
through which a nonsingular matrix J is (uniquely) written as a product of an orthogonal
and an upper triangular matrix J = QR. This can be thought as a Gram-Schmidt decom-
position of the column vectors of J. The geometric meaning of QR decomposition is that
the volume of the d-dimensional parallelepiped spanned by the column vectors of J has a
volume coinciding with the product of the diagonal elements of the triangular matrix R,
whose role is thus pivotal in algorithms computing Lyapunov spectra [ 21, 22, 16]. %

Remark 6.2 Lyapunov exponents.  The Multiplicative Ergodic Theorem of Oseledec [6

7] states that the limits (??7-??) exist for almost all points xo and all tangent vectors A.
There are at most d distinct values of A as we let fi range over the tangent space. These
are the Lyapunov exponents [ 1] 2i(Xo). Moreover there is a fibration of the tangent space
TuM, LY(X) € L?(X) € -+~ c L"(X) = TxM, such that if i € L'(x) \ L'"1(x) the limit (??)
equals 2;(x).

We are doubtful of the utility of Lyapunov exponents as means of predicting any
observables of physical significance, but that is the minority position - in the literature

9predrag: remember to incorporate JacobianHist.doc
2predrag: credit Lorenz 1965, 1984; Yoden and Nomura 1993 for introducing singular vectors
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one encounters many provocative speculations, especially in the context of foundations of
statistical mechanics (“hydrodynamic’ modes) and the existence of a Lyapunov spectrum
in the thermodynamic limit of spatiotemporal chaotic systems.

There are volumes of literature on numerical computation of the Lyapunov exponents,
see for example refs. [24, 5, 6, 8]. Citiulike.org search yields a ton of references.
For early numerical methods to compute Lyapunov vectors, see refs. [ 7, 8]. The draw-
back of the Gram-Schmidt method is that the vectors so constructed are orthogonal by
fiat, whereas the stable / unstable eigenvectors of the Jacobian matrix are in general not
orthogonal. Hence the Gram-Schmidt vectors are not covariant, i.e., the linearized dy-
namics does not transport them into the eigenvectors of the Jacobian matrix computed
further downstream. For computation of covariant Lyapunov vectors, see refs. [ 9, 11]. 2!

Probably not worth mentioning: a chaotic attractor characterized by more than one
positive Lyapunov exponent: hyperchaos, with a ‘thick’ chaotic attractor (12,15).
12: H. Haken, Phys. Lett. A 94 (1983) 71.
13: S. Hayes, C. Gerbogi, E. Ott, Phys. Rev. Lett. 70 (1993) 3031.
14: M.P. Kennedy, IEEE Trans. Circuits Syst. 1 41 (1994) 771.
15: E. Lindberg, A. Tamasevicius, A. Cenys, G. Mykolaitis, A. Namajunas, Hyperchaos
via X Diode, in: Proceedings of the 6th International Specialist Workshop on Nonlinear
Dynamics of Electronic Systems, Budapest, 1998, pp. 125 to 128. 22 24

6.3 Examples

The reader is urged to study the examples collected here. To return back to the

main text, click on [click to return] pointer on the margin.

covariant Lyapunov
vector

Lyapunov!covariant
vector

UJPRIVATE
IPRIVATE

UJPRIVATE

MPRIVATE

Example 6.1 Lyapunov exponent. Given a 1-dimensional map, consider observable

A(X) = In|f'(x)| and integrated observable

n-1
[]fe0
k=0

The Lyapunov exponent is the average rate of the expansion

of"
= 1n|Z-(x0)

n-1
A(x0) = > Inlf (4] = In
k=0

1S
A(xo0) = lim — > In|f'(x)].
k=0

See sect. 6.2 for further details.

2lpredrag: read Skokos [10] review

22John G: Can let A; > 0 without loss of generality; no need for abs val signs throughout.
PC: no, A; can be real with either sign, or come in complex pairs. Would have to write AjA;. %

%4predrag: Trevisan [12] “the Floquet eigenvectors have the desired properties of being indepen-
dent of the definition of the norm.” “The leading Lyapunov vectors, as well as the asymptotic final
singular vectors, are tangent to the attractor, while the leading initial singular vectors, in general,
point away from it. Perturbations that are on the attractor and maximize growth should be consid-
ered in applications. These perturbations can be found in the subspace of the leading Lyapunov
vectors.” While Euclidean norm might seem ‘natural’, what is a good norm if you are trying to
define Lyapunov exponents for PDEs? General relativity?
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25

26

singular values
polar decomposition

) ] Henon@Hénon
Example 6.2 Singular values and geometry of deformations: Suppose we @a! Lyapunov

in three dimensions, and the Jacobian matrix J is not singular, so that the diagd@onent
elements of D in (6.13) satisfy o1 > o5 > o3 > 0. Consider how J maps thEleifin@Hénon
ball S = {x € R3|x2 = 1}. V is orthogonal (rotation/reflection), so /'S is still the [J}jp*attractor
sphere: then D maps S onto ellipsoid S = {y € R®|y2/a? + y2/o2 + y2/o2 = 1) viHGgiortHenon
principal axes directions -y coordinates - are determined by V. Finally the ellipsoid is

further rotated by the orthogonal matrix U. The local directions of stretching and their

images under J are called the right-hand and left-hand singular vectors for J and are

given by the columns inV and U respectively: it is easy to check that Jvx = oyUy, if

Vk, Uk are the k-th columns of V and U. .
click to return: p. 128

UPRIVATE
remark 6.1
MPRIVATE

yscout

6.1.

6.2.

6.3.

6.4.

Principal stretches. Consider dx = f(Xo+dxXp)— f(Xo),
and show that dx = Mdxo+ higher order terms when
[[dxoll < 1. (Hint: use Taylor’s theorem for a vector func-
tion.) Here, ||dXol| = VdXp - dXp is the norm induced by
the usual Euclidean dot (inner) product. Then let dxo =
(d¢)ej and show that ||dXxo|| = d¢ and ||dX|| = ojd¢. (Chris-
tovetal. [1])

Eigenvalues of the Cauchy-Green strain tensor.  Show
that ki = o2 using the definition of C, the polar decompo-
sition theorem, and the properties of eigenvalues. (Chris-
tovetal. [1])

??.  Derive (??) using the Rayleigh-Ritz theorem from
linear algebra [26]. Hint: write out the norm in the def-
inition of A as a dot product and re-arrange terms. Also,
you are allowed to bring the max inside any logarithm or
square root because these functions are monotonically in-
creasing. %’ (Christov et

al. [1])

How unstable is the Hénon attractor?

(a) Evaluate numerically the Lyapunov exponent A by
iterating some 100,000 times or so the Hénon map

X | | 1-ax?+y
y | 7| bx

fora=14,b=0.3.

Ppredrag: 2012-07-17: for some reason the edits of June 29 seem to have vanished. Reinstated

example 6.1, make sure it is meant to be here?

%predrag: give 2-dimensional example of ellipsoid explicitly
2"Predrag: read up on Rayleigh-Ritz theorem
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(b) Would you describe the result as a ’strange attrac- Rossler@Rdssler!Lyapunov
tor'? Why? exponent

(c) How robust is the Lyapunov exponent for the Hénon
attractor? Evaluate numerically the Lyapunov ex-
ponent by iterating the Hénon map fora = 1.39945219,
b = 0.3. How much do you now trust your result
for part (a) of this exercise?

(d) Re-examine this computation by plotting the iter-
ates, and erasing the plotted points every 1000 it-
erates or so. Keep at it until the ’strange’ attractor
vanishes like the smile of the Chesire cat. What
replaces it? Do a few numerical experiments to es-
timate the length of typical transient before the dy-
namics settles into this long-time attractor.

(e) Use your Newton search routine to confirm exis-
tence of this attractor. Compute its Lyapunov ex-
ponent, compare with your numerical result from
above. What is the itinerary of the attractor.

(f) Would you describe the result as a ’strange attrac-
tor’? Do you still have confidence in claims such as
the one made for the part (b) of this exercise?

6.5. Rossler attractor Lyapunov exponents.

(a) Evaluate numerically the expanding Lyapunov ex-
ponent A, of the Rossler attractor (2.18).

(b) Plot your own version of figure 6.3. Do not worry
if it looks different, as long as you understand why
your plot looks the way it does. (Remember the
nonuniform contraction/expansion of figure 4.4.)

(c) Give your best estimate of 1. The literature gives
surprisingly inaccurate estimates - see whether you
can do better.

(d) Estimate the contracting Lyapunov exponentA.. Even
though it is much smaller than A, a glance at the
stability matrix (4.29) suggests that you can prob-
ably get it by integrating the infinitesimal volume
along a long-time trajectory, as in (4.28).
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Chapter 7

Hamiltonian dynamics

Conservative mechanical systems have equations of mo-
tion that are symplectic and can be expressed in Hamilto-
nian form. The generic properties within the class of sym-
plectic vector fields are quite different from those within
the class of all smooth vector fields: the system always
has a first integral (“energy”) and a preserved volume, and
equilibrium points can never be asymptotically stable in
their energy level.

— John Guckenheimer

Rossler flow of figure 2.6 is of concern only to chemists or biomedical

engineers or the weathermen; physicists do Hamiltonian dynamics, right?
Now, that’s full of chaos, too! While it is easier to visualize aperiodic dynam-
ics when a flow is contracting onto a lower-dimensional attracting set, there are
plenty examples of chaotic flows that do preserve the full symplectic invariance of
Hamiltonian dynamics. The whole story started with Poincaré’s restricted 3-body
problem, a realization that chaos rules also in general (non-Hamiltonian) flows
came much later.

You MIGHT THINK that the strangeness of contracting flows, flows such as the

Here we briefly review parts of classical dynamics that we will need later
on; symplectic invariance, canonical transformations, and stability of Hamiltonian
flows. If your eventual destination are applications such as chaos in quantum
and/or semiconductor systems, read this chapter. If you work in neuroscience
or fluid dynamics, skip this chapter, continue reading with the billiard dynamics
of chapter 8 which requires no incantations of symplectic pairs or loxodromic
quartets.

W fast track:
chapter 8, p. 159

137

Hamiltonian!dynamics—(
Newtonian dynamics
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7.1 Hamiltonian flows

(P. Cvitanovic and L.V. Vela-Arevalo)

L An important class of flows are Hamiltonian flows, given by a Hamiltonian
H(g, p) together with the Hamilton’s equations of motion

. OH . oH
C_ , = 7.1
i ap; Pi a0 (7.1)

with the d = 2D phase-space coordinates x split into the configuration space
coordinates and the conjugate momenta of a Hamiltonian system with D degrees
of freedom (dof):

x=(9,p), q=(d1,92,..-,0p) > P = (p1. P2.---, PD). (7.2)

The equations of motion (7.1) for a time-independent, D-dof Hamiltonian can be
written compactly as 2

Xi = a)in,j(X), H,j(X) = %XjH(X), (7.3)

where X = (q,p) € M is a phase-space point, and the a derivative of (-) with
respect to x; is denoted by comma-index notation (-) j,

w:(g B), (7.4)

is an antisymmetric [dxd] matrix, and I is the [Dx D] unit matrix.

The energy, or the value of the time-independent Hamiltonian function at the
state space point x = (g, p) is constant along the trajectory x(t),

d OoH . oH .
aH(Q(t), pt) = a—qiq.(t) + 6_pip'(t)
OHOH OH oH
_ OHOH oHOH _, 75
0q; dpi  Jp; 04 (7:9)

so the trajectories lie on surfaces of constant energy, or level sets of the Hamilto-
nian {(g, p) : H(g, p) = E}. For 1-dof Hamiltonian systems this is basically the
whole story.

Predrag: revert to (g, p) order throughout the book
2Predrag: use O. de Almeida book [9] argument here?

newton - 18jan2012 boyscout version14.4, Mar 19 2013
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1g oscillator
-able system
mlcollinear

Figure 7.1: Phase plane of the unforced, undamped
Duffing oscillator. The trajectories lie on level sets of
the Hamiltonian (7.6).

10

Figure 7.2: A typical collinear helium trajectory in 6
the [ry, r2] plane; the trajectory enters along the r;-axis L
and then, like almost every other trajectory, after a few
bounces escapes to infinity, in this case along the r,-
axis. In this example the energy issetto H = E = -1,
and the trajectory is bounded by the kinetic energy = 0

line.

Example 7.1 Unforced undamped Duffing oscillator:

When the damping term

is removed from the Duffing oscillator (2.8), the system can be written in Hamiltonian

form,

2 2 4
Ha.p =2 -1+ T

(7.6)

This is a 1-dof Hamiltonian system, with a 2-dimensional state space, the plane (q, p).

The Hamilton’s equations (7.1) are

(7.7)

For 1-dof systems, the ‘surfaces’ of constant energy (7.5) are curves that foliate the
phase plane (q, p), and the dynamics is very simple: the curves of constant energy are
the trajectories, as shown in figure 7.1. 3

Thus all 1-dof systems are integrable, in the sense that the entire phase plane
is foliated by curves of constant energy, either periodic, as is the case for the
harmonic oscillator (a ‘bound state’), or open (a ‘scattering trajectory’). Add one
more degree of freedom, and chaos breaks loose.

Example 7.2 Collinear helium: In chapter 43 we shall apply the periodic orbit
theory to the quantization of helium. In particular, we will study collinear helideQ/AT

example B.1

doubly charged nucleus with two electrons arranged on a line, an electron onTER¥WATE

side of the nucleus. The Hamiltonian for this system is *

UPRIVATE

1 1 2 2 1 chapter 43
H=zpl+zpd-=-Z4 . )

2 2 rn I r+n PRIVATE

3Predrag: trajectories need arrows, label font too small in figure 7.1
4Mason: mention briefly ‘transition state’
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Collinear helium has 2 dof, and thus a 4-dimensional phase space M, which ef vation!phase-
conservation foliates by 3-dimensional constant energy hypersurfaces. In order tqsl ﬁ?ne
sualize it, we often project the dynamics onto the 2-dimensional configuration Ff_’mille'theorem

the (r1,r2), ri > 0 quadrant, figure 7.2. It looks messy, and, indeed, it will turn BHéstQ space

be no less chaotic than a pinball bouncing between three disks. As always, a Poi %pace
section will be more informative than this rather arbitrary projection of the flow.S ectic!2-form
difference is that in such projection we see the flow from an arbitrary perspectiveD i UX bésis

trajectories crisscrossing. In a Poincaré section the flow is decomposed into intrinsic
coordinates, a pair along the marginal stability time and energy directions, and the rest
transverse, revealing the phase-space structure of the flow.

Note an important property of Hamiltonian flows: if the Hamilton equations
(7.1) are rewritten in the 2D phase-space form % = vj(x), the divergence of the
velocity field v vanishes, namely the flow is incompressible, V-v = gv; = wiH jj =
0. The symplectic invariance requirements are actually more stringent than just
the phase-space volume conservation, as we shall see in sect.7.3.

Throughout ChaosBook we reserve the term ‘phase space’ to Hamiltonian
flows. A ‘state space’ is the stage on which any flow takes place. ’Phase space’
is a special but important case, a state space with symplectic structure, preserved
by the flow. For us the distinction is necessary, as ChaosBook covers dissipative,
mechanical, stochastic and quantum systems, all as one happy family.

7.2 Symplectic group

Either you’re used to this stuff... or you have to get used
to it.
—NMaciej Zworski

A matrix transformation g is called symplectic,
9'wy =w, (7.9)

if it preserves the symplectic bilinear form (X|x) = X" wx, where g™ denotes the
transpose of g, and w is a non-singular [2D x 2D] antisymmetric matrix which
satisfies
remark 7.3

w' =-w, w?=-1. (7.10)

While these are defining requirements for any symplectic bilinear form, w is often
conventionally taken to be of form (7.4).

Example 7.3 Symplectic form for D = 2: For two degrees of freedom the phase
space is 4-dimensional, x = (q1, 42, P1, P2) , and the symplectic 2-form is

0 0 10
0 0 01

o= o o0 0l (7.12)
0 -1 00

newton - 18jan2012 boyscout version14.4, Mar 19 2013
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The symplectic bilinear form (x®|x@) is the sum over the areas of the parallelep?)é%}%ecgggrow
spanned pairwise by components of the two vectors, pn

roup
Oy = ()T x® = @Pp? - oPp) + @57 - o pS) . it83roup
group!'Lie

It is this sum over oriented areas (not the Euclidean distance between the two VeEﬁ@fﬁlgebra

[x® — x)) that is preserved by the symplectic transformations. generator!Lie algebra

Sp(d)@%$“Spnd$!symplectic

symplectic!transformation

. . Lo 1 . : canonical
If g is symplectic, so is its inverse g, and if g1 and g, are symplectic, SO .20 <formation

is their product g2g;1. Symplectic matrices form a Lie group called the symplec- Hamiltonian!matrix
tic group Sp(d). Use of the symplectic group necessitates a few remarks about Cartan!-Killing
Lie groups in general, a topic that we study in more depth in chapter10. A Lie  classification
group is a group whose elements g(¢) depend smoothly on a finite number N of

parameters ¢,. In calculations one has to write these matrices in a specific basis,

and for infinitesimal transformations they take form (repeated indices are summed

throughout this chapter, and the dot product refers to a sum over Lie algebra gen-

erators):

96p) ~1+6¢-T, 6peRN, |60 <1, (7.13)

where {Ty, T, ---, Tn}, the generators of infinitesimal transformations, are a set
of N linearly independent [dxd] matrices which act linearly on the d-dimensional
phase space M. The infinitesimal statement of symplectic invariance follows by
substituting (7.13) into (7.9) and keeping the terms linear in d¢,

TaTC() + C()Ta = 0 . (714)

This is the defining property for infinitesimal generators of symplectic transfor-
mations. Matrices that satisfy (7.14) are sometimes called Hamiltonian matrices.
A linear combination of Hamiltonian matrices is a Hamiltonian matrix, so Hamil-
tonian matrices form a linear vector space, the symplectic Lie algebra sp(d). By
the antisymmetry of w,

(wTa)" = wT,. (7.15)

is a symmetric matrix. Its number of independent elements gives the dimen-
sion (the number of independent continuous parameters) of the symplectic group

Sp(d),
N = d(d + 1)/2 = D(2D + 1). (7.16)

The lowest-dimensional symplectic group Sp(2), of dimension N = 3, is isomor-
phic to SU(2) and SO(3). The first interesting case is Sp(3) whose dimension is
N =10.°

SPredrag: recheck that this is not isomorphic to something else?
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It is easily checked that the exponential of a Hamiltonian matrix
g=e?T (7.17)

is a symplectic matrix; Lie group elements are related to the Lie algebra elements
by exponentiation.

symplectic!distance
distancel!symplectic

matrix!positive
definite

positive definite
matrix

UJPRIVATE

Example 7.4 So near, and yet so far  ° The notion of distance has no meaning
for Sp(d). Under symplectic action areas are mapped into equal areas of different
shapes, so the Euclidean distance between two points has no invariant meaning, it can
be mapped into any other separation under a symplectic transformation. Consider the
sum of oriented areas (a sophisticate would say the ‘action’), as in (7.12)

D
SO %) = %) = > (@VpP - qPplY)
=1

spanned by a pair of vectors joined by the symplectic 2-form.

Think of one of the patterns (represented by a point X’ in the phase space M)
as a ‘template’ or a ‘reference state’ and act with elements of the symplectic group
Sp(d) on it, X’ — g(¢) X, until its ‘distance’ to the second pattern (a point x in the phase
space),

S(X,9(¢) X') = S(X,X) (7.18)

is extremized. Here X is the point on the group orbit of x (the set of all points that X is
mapped to under the group actions),

x=9g() X, geG. (7.19)

Unlike the Euclidean length, the symplectic bilinear form is not positive definite
(see (7.12)), and this ‘distance’ is emphatically not a Euclidean distance, but it is -by
the definition- invariant under symplectic transformations, S (gx,g%’) = S(x,X’). If X is
on the group orbit of X, the form can be made to exactly vanish by its antisymmetry,
(X'IX") = 0, so nearby group orbits do have a small minimal ‘distance’ |S (X, X")| which
satisfies the extremum conditions

0 . . . o
£<Xlg(¢) Ky=@&ltzy=0,  g@)k=x, tg=TaX. (7.20)

The closest group orbit points thus lie in a (d—N)-dimensional hyperplane M = MJG,
the set of vectors X € M orthogonal to the template tangent space in the symmetric
(wTy) norm

ii(wTa)iji’j =0. (7.21)
In what follows we shall refer to this hyperplane as a slice, and to (7.20) as the slice

conditions. The slice reduces the symplectic symmetry, with the reduced state space
of (negative !) dimensiond — N =d —d(d + 1)/2 = —d(d — 1)/2.

SPredrag: For ChaosBook; use Sophus Lie’s mug and Sonya Kovaleskaya pretty face as tem-
plates, Wiener as the state observed in the evolution
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Dream student Henriette Roux: “Something is amiss here... The group orbit of
X € M is embedded into M, so it cannot be of a higher dimension than d, but
the dimension of the tangent space of the most general action of the group is
N oc d? (I’m thinking of U(d), SO(d) and Sp(d) now), so | cannot fit all of it in a
d-dimensional phase space. What gives?”

A: “not sure...”

We make an attempt in sect. 38.1.

7.3 Stability of Hamiltonian flows

Hamiltonian flows offer an illustration of the ways in which an invariance of equa-
tions of motion can affect the dynamics. In the case at hand, the symplectic in-
variance will reduce the number of independent Floquet multipliers by a factor of
20r4.’

7.3.1 Canonical transformations

The evolution of J! (4.5) is determined by the stability matrix A, @4.9):
d t t
Gl 0 =AKI(X),  AK) = wikHi(X), (7.22)

where the symmetric matrix of second derivatives of the Hamiltonian, Hy, =
dkonH, is called the Hessian matrix. From (7.22) and the symmetry of Hy, it
follows that for Hamiltonian flows (7.3)

ATw+wA=0. (7.23)

This is the defining property (7.14) for infinitesimal generators of symplectic (or
canonical) transformations.

Consider now a smooth nonlinear coordinate change form y = h;(x) (see
sect. 2.3 for a discussion), and define a ‘Kamiltonian’ function K(x) = H(h(x)).
Under which conditions does K generate a Hamiltonian flow? In what follows we
will use the notation d; = 9/dyj, si,j = ohi/dx;j. By employing the chain rule we
have that

Kij = Hjsi; (7.24)

"Gregor: One could argue that it is always only a factor of 2; complex numbers have twice as
much information than real numbers.

newton - 18jan2012 boyscout version14.4, Mar 19 2013
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. . ted index
nmation
. . “summation,
eated
complex saddle saddle—center Tical
1sformation
lectic!map
® )
degenerate saddle real saddle
@
Figure 7.3: Stability exponents of a Hamiltonian equi-
librium point, 2-dof. @
generic center degenerate center

(Here, as elsewhere in this book, a repeated index implies summation.) By virtue
of (7.1), d/H = —wimym, SO that, again by employing the chain rule, we obtain

wij0jK = —wijSj1WimSmnXn (7.25)

The right hand side simplifies to % (yielding Hamiltonian structure) only if

— WijSI,jWimSmn = Oin (7.26)

or, in compact notation, &

— w@h)Tw@Eh) = 1 (7.27)

which is equivalent to the requirement (7.9) that oh is symplectic. h is then called
a canonical transformation. We care about canonical transformations for two
reasons. First (and this is a dark art), if the canonical transformation h is very
cleverly chosen, the flow in new coordinates might be considerably simpler than
the original flow. Second, Hamiltonian flows themselves are a prime example of
canonical transformations.

example B.1

Dream student Henriette Roux: “I hate these s, 5. Can’t you use a more sensible
notation?” A: “Be my guest.”

Example 7.5 Hamiltonian flows are canonical: For Hamiltonian flows it follows
from (7.23) that % (JTwd) = 0, and since at the initial time J°(xo) = 1, Jacobian matrix
is a symplectic transformation (7.9). This equality is valid for all times, so a Hamiltonian
flow f(x) is a canonical transformation, with the linearization d f'(x) a symplectic trans-
formation (7.9): ° 1° For notational brevity here we have suppressed the dependence

8Predrag: continue exercise B.1: verify that —w(h")Twh’ = 1.
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on time and the initial point, J = J'(Xo). By elementary properties of determinantsG@fsiervation/phase-
lows from (7.9) that Hamiltonian flows are phase-space volume preserving, |det J| Zigace

lume
The initial condition (4.9) for J is J° = 1, so one always has Liouvilleltheorem

Floguet!exponent
detd = +1. (7.28)

7.3.2 Stability of equilibria of Hamiltonian flows

For an equilibrium point x; the stability matrix A is constant. Its eigenvalues
describe the linear stability of the equilibrium point. A is the matrix (7.23) with
real matrix elements, so its eigenvalues (the Floquet exponents of ©.1)) are either
real or come in complex pairs. In the case of Hamiltonian flows, it follows from

(7.23) that the characteristic polynomial of A for an equilibrium x, satisfies = _
section 5.1

exercise 7.4
det (a)_l(A — A)w) = det (~wAw — A1) exercise 7.5
det (AT + A1) = det(A + A1). (7.29)

det (A — A1)

That is, the symplectic invariance implies in addition that if A is an eigenvalue,
then —4, A* and —A* are also eigenvalues. Distinct symmetry classes of the Floquet
exponents of an equilibrium point in a 2-dof system are displayed in figure7.3.
121t is worth noting that while the linear stability of equilibria in a Hamiltonian
system always respects this symmetry, the nonlinear stability can be completely
different. 13 14

7.4 Symplectic maps

So far we have considered only the continuous time Hamiltonian flows. As dis-
cussed in sect. 4.4 for finite time evolution mappings, and in sect. 4.5 the iterated
discrete time mappings, the stability of maps is characterized by eigenvalues of

9Gregor: Related to Fig 7.3, discuss marginal directions.
PC: can you continue sect. 5.3.1 here, replace there the obscure Hamiltonian remark by reference
to text here, harmonize the two discussions? We will need to refer to this Hamiltonian case in
chapter 13. Problem is linear flow of exposition - | had to discuss cycle stability after introducing
linear stability, putting chapter 5 after chapter 7 postpones that too far.

©predrag: can you make this into a problem set? Argument might be that at the initial time
detM = 1 and evolution cannot change that - in our example - or - probably the real reason:
S p(2D) is defined only in even dimensions, unless you continue them into odd dimension by the
dimensional trickery in the style of birdtracks.eu.

1 Gregor: dimA is even, so no — sign in front of determinant.

12pPredrag: need to replace figure 4.5 (a) by edited version of figure 7.3

B3predrag: Luz, give references in a remark

14Gregor: Transition from flows to maps a bit abrupt here; discuss in particular that flows always
have a pair of Eigenvalues 1 related to energy and time. This pair is usually lost when going to
Poincaré map.
PC: yes. It would be good to expand here the Hamiltonian case of stability of Poincaré map cycles,
sect. 5.5, to motivate “Symplectic maps.”
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Figure 7.4: Stability of a symplectic map in R*.

their Jacobian matrices, or ‘multipliers.” A multiplier A = A(x,t) associated to
a trajectory is an eigenvalue of the Jacobian matrix J. As J is symplectic, (7.9)
implies that *

Jl=—wiw, (7.30)
so the characteristic polynomial is reflexive, namely it satisfies

det(J—Al) = det(J” - Al) = det(~wdTw— Al)

det (371 — A1) = det (1) det(1 - AJ)
= APdet(J-A11). (7.31)

16 17 Hence if A is an eigenvalue of J, so are 1/A, A* and 1/A*. Real eigenvalues
always come paired as A, 1/A. The Liouville conservation of phase-space vol-
umes (7.28) is an immediate consequence of this pairing up of eigenvalues. The
complex eigenvalues come in pairs A, A*, |A| = 1, or in loxodromic quartets A,
1/A, A* and 1/A*. These possibilities are illustrated in figure 7.4.

Example 7.6 Hamiltonian Hénon map, reversibility: By (4.43) the Hénon

map (3.17) for b = =1 value is the simplest 2-dimensional orientation preserving area-

preserving map, often studied to better understand topology and symmetries of Poincaré
sections of 2 dof Hamiltonian flows. We find it convenient to multiply (3.18) by a and
absorb the a factor into x in order to bring the Hénon map for the b = —1 parameter

value into the form

Xis1 +Xia=a—-x>, i=1..,np, (7.32)

5Predrag: shouldn’t monodromy matrix be reserved for periodic, relative periodic etc values of
the Jacobian matrix? mono-dromos means once around the stadium, i.e., periodic... RA: ok

6Gregor: Would take out the two degenerate cases - confuses more than being helpful

7Gregor: Mention EVs 1 of flow somewhere.
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The 2-dimensional Hénon map for b = —1 parameter value Henon@Hénon map
Greene’s residue
y C a2 criterion
1l = n~Yn residue!Greene’s
Vel = Xn. (EiRRlic!stability

residue!stability
is Hamiltonian (symplectic) in the sense that it preserves area in the [x,y] plane. stapilityiresidue

For definitiveness, in numerical calculations in examples to follow we shaypgebolic!flow
(arbitrarily) the stretching parameter value to a = 6, a value large enough to guar8ave&yperbolic

that all roots of 0 = f"(x) — x (periodic points) are real. '8 inverse!hyperbolic
ﬁ’é”r/(f?}ﬁ?/ér;;
hyperbolic
standard map
Example 7.7 2-dimensional symplectic maps: In the 2-dimensional case the

eigenvalues (5.8) depend only on tr M!

A1o = %(tr M' = /(tr Mt = 2)(tr Mt + 2)) . (7.34)

Greene'’s residue criterion states that the orbit is (i) elliptic if the stability residue [tr M Y-
2 < 0, with complex eigenvalues Ay = €', A = Aj = e If|trM'| -2 > 0, A is real,
and the trajectory is either

(i) hyperbolic Ar=e", Ary=et or (7.35)
(iii) inverse hyperbolic Ap=—-el, Ap=—et. (7.36)

Example 7.8 Standard map.  Given a smooth function g(x), the map

Xn+1 = Xn+Yna1
Yoi1 = Yn+0(Xn) (7.37)

is an area-preserving map. The corresponding nth iterate Jacobian matrix (4.20) is

1
n _ 1+g'(x) 1
M" (X0, Yo) = Q ( v’ 1 ) (7.38)

The map preserves areas, det M = 1, and one can easily check that M is symplectic.
In particular, one can consider X on the unit circle, and y as the conjugate angular
momentum, with a function g periodic with period 1. The phase space of the map is
thus the cylinder S; x R (S1 stands for the 1-torus, which is fancy way to say “circle”):
by taking (7.37) mod 1 the map can be reduced on the 2-torus S ». *°

The standard map corresponds to the choice g(X) = k/2x sin(2xx). Whenk = 0,
Yn+1 = Yn = Yo, SO that angular momentum is conserved, and the angle X rotates with
uniform velocity

Xne1 = Xn+Yo = Xo + (N + 1)yo mod 1.

The choice of yy determines the nature of the motion (in the sense of sect. 2.1.1): for
Yo = 0 we have that every point on the yy = 0 line is stationary, fory, = p/q the motion

8predrag: link to next exer
predrag: July 2008 recheck: Vlad Bezuglyy (a PhD student), Mehling, Wilkinson (?) refer to
state space regions with complex finite time Lyapunovs as ‘gyres’
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Figure 7.5: Phase portrait for the standard map
for (a) k = 0: symbols denote periodic orbits, full
lines represent quasiperiodic orbits. (b) k = 0.3,
k = 0.85 and k = 1.4: each plot consists of 20
random initial conditions, each iterated 400 times.

@ "

is periodic, and for irrational yo any choice of Xo leads to a quasiperiodic motion (see
figure 7.5 (a)).

Despite the simple structure of the standard map, a complete description of its
dynamics for arbitrary values of the nonlinear parameter k is fairly complex: this can
be appreciated by looking at phase portraits of the map for different k values: when
k is very small the phase space looks very much like a slightly distorted version of
figure 7.5 (a), while, when K is sufficiently large, single trajectories wander erratically on
a large fraction of the phase space, as in figure 7.5 (b). %°

This gives a glimpse of the typical scenario of transition to chaos for Hamilto-
nian systems.

Note that the map (7.37) provides a stroboscopic view of the flow generated by
a (time-dependent) Hamiltonian

HOGY) = 547 + Gu() (7.39)

where 6, denotes the periodic delta function

o0

s1(t) = Z 5(t —m) (7.40)
and
G'(X) = —g(x). (7.41)

Important features of this map, including transition to global chaos (destruction
of the last invariant torus), may be tackled by detailed investigation of the stability of
periodic orbits. A family of periodic orbits of period Q already present in the k = 0 rota-
tion maps can be labeled by its winding number P/Q 2! The Greene residue describes
the stability of a P/Q-cycle:

1
RP/Q = Z (2 —1r MP/Q) . (742)

If Rpjq € (0,1) the orbit is elliptic, for Rp,q > 1 the orbit is hyperbolic orbits, and for

Rp/q < 0 inverse hyperbolic.
UPRIVATE
23 For k = 0 all points on the yo = P/Q line are periodic with period Q, winding, - 5

number P/Q and marginal stability Rp;qg = 0. As soon as k > 0, only a 2Q OfTﬁ‘IE?R/ATE

2predrag: temporarily replaced sm1.eps by a bad resolution reduced file, please produce a better
one by saving raster file from your program, then generate .eps of 100KB max

2lpredrag: either we do it later in the book, refer here to where we do it, or we shut up? By the
way, circle maps are discussed at length in chapter 30, so that should also be cross-referenced.

22predrag: refer to where it is defined first - once before in this chapter, (7.34)

23predrag: much of this belongs to a later chapter. Presumably you want to move this to chap-
ter 13, either as examples or a separate section. we have barely defined a periodic orbit so far.
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orbits survive, according to Poincaré-Birkhoff theorem: half of them elliptic, an&i®agn@Hénon

h .
hyperbolic. ?* If we further vary k in such a way that the residue of the elliptic Q-c ’E@P 9 eve;)s;/blllt_a’,
goes through 1, a bifurcation takes place, and two or more periodic orbits of H@%f?gleri'l,e' enon
period are generated. % réversible!Hénon

map
geReRygon! phase-
space
volume
Example 7.9 Hamiltonian Hénon map, reversibility: The Hénon map (7.B&usille!theorem
reversible, with its inverse interchanging the roles of X and y: Poincar“’e invariants
Xn-1 = Yn
Yoor = a-Yi-Xn, (7.43)

hence the dynamics is symmetric in the [X,y] plane: a trajectory maps into a trajectory
under the flip across the x =y diagonal

(y x)=R(x y)=(2$)(x y) (7.44)

and time reversal. The reversor R is orientation reversing, det[dR] = -1, and is an
involution, R? = 1. In other words, the Hamiltonian Hénon map is conjugate to its
inverse foR = Rof~1, and can be factored into a pair of orientation reversing involutions,
f=(fR)oR =T oR, with

T(x y)=(x a=x-y). (7.45)
Equivalently, writing f =S o (Sf) = S o U, the reversor
U(x y)=(a-y-x y) (7.46)

factorizes the Hénon map as f = ST.

IPRIVATE

7.5 Poincaré invariants

Let C be a region in phase space and V(0) its volume. Denoting the flow of the
Hamiltonian system by f!(x), the volume of C after a time t is V(t) = f'(C), and
using (7.28) we derive the Liouville theorem:

B B aft(x)| .,
V(i) = fft(c)dx_fcdet Ix dx
jkaumx=j£x=VQ, (7.47)
C C

Hamiltonian flows preserve phase-space volumes.

24predrag: need to write a remark about Poincaré-Birkhoft
Zpredrag: what about going through Rp;q < 0?
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The symplectic structure of Hamilton’s equations buys us much more than Stokes theorem
the ‘incompressibility,” or the phase-space volume conservation. Consider the Hamiltoniantdynamics—)
symplectic product of two infinitesimal vectors

(OX6R) = X" wdK = 6pidli — 60id P
D
{oriented area in the (i, p;) plane} . (7.48)
i=1

Time t later we have
OX|6%') = X" ITwIoK = OX woX .

This has the following geometrical meaning. Imagine that there is a reference
phase-space point. Take two other points infinitesimally close, with the vectors 6x
and 6% describing their displacements relative to the reference point. Under the
dynamics, the three points are mapped to three new points which are still infinites-
imally close to one another. The meaning of the above expression is that the area
of the parallelepiped spanned by the three final points is the same as that spanned
by the initial points. The integral (Stokes theorem) version of this infinitesimal
area invariance states that for Hamiltonian flows the sum of D oriented areas Y
bounded by D loops QV;, one per each (g, pi) plane, is conserved:

f dp Adg= 9€ p - dq = invariant. (7.49)
v Qv

One can show that also the 4, 6, - - -, 2D phase-space volumes are preserved. The
phase space is 2D-dimensional, but as there are D coordinate combinations con-
served by the flow, morally a Hamiltonian flow is D-dimensional. Hence for
Hamiltonian flows the key notion of dimensionality is D, the number of the de-
grees of freedom (dof), rather than the phase-space dimensionality d = 2D.

Dream student Henriette Roux: “Would it kill you to draw some pictures here?”
A: “Be my guest.”

: in depth:
3 appendix E.4, p. 1093
Résumé

Physicists do Lagrangians and Hamiltonians. Many know of no world other
than the perfect world of quantum mechanics and quantum field theory in which
the energy and much else is conserved. From the dynamical point of view, a
Hamiltonian flow is just a flow, but a flow with a symmetry: the stability matrix
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Aij = wik Hj(x) of a Hamiltonian flow X = wijH j(x) satisfies ATw + wA = 0. Its
integral along the trajectory, the linearization of the flow J that we call the ‘Jaco-
bian matrix,” is symplectic, and a Hamiltonian flow is thus a canonical transforma-
tion in the sense that the Hamiltonian time evolution X = f!(x) is a transformation
whose linearization (Jacobian matrix) J = 9X/dx preserves the symplectic form,
JTwd = w. This implies that A are in the symplectic algebra sp(2D), and that the
2D-dimensional Hamiltonian phase-space flow preserves D oriented infinitesimal
volumes, or Poincaré invariants. The Liouville phase-space volume conservation
is one consequence of this invariance.

While symplectic invariance enforces |A| = 1 for complex eigenvalue pairs
and precludes existence of attracting equilibria and limit cycles typical of dissipa-
tive flows, for hyperbolic equilibria and periodic orbits |A| > 1, and the pairing
requirement only enforces a particular value on the 1/A contracting direction.
Hence the description of chaotic dynamics as a sequence of saddle visitations is
the same for the Hamiltonian and dissipative systems. You might find symplec-
ticity beautiful. Once you understand that every time you have a symmetry, you
should use it, you might curse the day [26] you learned to say ‘symplectic’.

Commentary

In theory there is no difference between theory and prac-
tice. In practice there is.
—Yogi Berra

Remark 7.1 Hamiltonian dynamics, sources.  If you are reading this book, in theory
you already know everything that is in this chapter. In practice you do not. Try this:
Put your right hand on your heart and say: “l understand why nature prefers symplectic
geometry.” Honest? We make an attempt in sect. 38.1.

Where does the skew-symmetric w come from? Newton f = ma law for a motion in
a potential is mg = —dV . Rewrite this as a pair of first order ODEs, ¢ = p/m, p = -0V,
define the total energy H(q, p) = p?/2m+ V/(q) , and voila, the equation of motion take on
the symplectic form (7.3). What makes this important is the fact that the evolution in time
(and more generally any canonical transformation) preserves this symplectic structure, as
shown in sect. 7.3.1. Another way to put it: a gradient flow x = —9V(X) contracts a state
space volume into a fixed point. When that happens, V(X) is a ’Lyapunov function’, and
the equilibrium x = 0 is “Lyapunov asymptotically stable’. In contrast, the ‘—’ sign in the
symplectic action on (g, p) coordinates, p = —9V induces a rotation, and conservation of
phase-space areas: for a symplectic flow there can be no volume contraction.

Out there there are centuries of accumulated literature on Hamilton, Lagrange, Jacobi
etc. formulation of mechanics, some of it excellent. In context of what we will need here,
we make a very subjective recommendation—-we enjoyed reading Percival and Richards [ 3]
and Ozorio de Almeida [4]. Exposition of sect. 7.2 follows Dragt [15]. There are two con-
ventions in literature for what the integer argument of Sp(: - -) stands for: either Sp(D) or
Sp(d) (used, for example, in refs. [15, 17]), where D = dof, and d = 2D. As explained
in Chapter 13 of ref. [17], symplectic groups are the ‘negative dimensional,” d — —d
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sisters of the orthogonal groups, so only the second notation makes sense in the grander
scheme of things. Mathematicians can even make sense of the d =odd-dimensional case,
see Proctor [18, 19], by dropping the requirement that w is non-degenerate, and defining
a symplectic group Sp(M, w) acting on a vector space M as a subgroup of GI(M) which
preserves a skew-symmetric bilinear form w of maximal possible rank. The odd sym-
plectic groups Sp(2D + 1) are not semisimple. If you care about group theory for its own
sake (the dynamical systems symmetry reduction techniques of chapter 10 are still too
primitive to be applicable to Quantum Field Theory), chapter 14 of ref. [ 17] is fun, too.

Referring to the Sp(d) Lie algebra elements as ‘Hamiltonian matrices’ as one some-
times does [15, 20] conflicts with what is meant by a ‘Hamiltonian matrix’ in quantum
mechanics: the quantum Hamiltonian sandwiched between vectors taken from any com-
plete set of quantum states. We are not sure where this name comes from; Dragt cites
refs. [21, 22], and chapter 17 of his own book in progress [ 16]. Fulton and Harris [21] use
it. Certainly Van Loan [23] uses in 1981, and Taussky in 1972. 2° Might go all the way
back to Sylvester?

Dream student Henriette Roux wants to know: “Dynamics equals a Hamiltonian plus a
bracket. Why don’t you just say it?” A: “It is true that in the tunnel vision of atomic
mechanicians the world is Hamiltonian. But it is much more wondrous than that. This
chapter starts with Newton 1687: force equals acceleration, and we always replace a
higher order time derivative with a set of first order equations. If there are constraints, or
fully relativistic Quantum Field Theory is your thing, the tool of choice is to recast New-
ton equations as a Lagrangian 1788 variational principle. If you still live in material but
non-relativistic world and have not gotten beyond Heisenberg 1925, you will find Hamil-
ton’s 1827 principal function handy. The question is not whether the world is Hamiltonian
- itis not - but why it is so often profitably formulated this way. For Maupertuis 1744 vari-
ational principle was a proof of God’s existence; for Lagrange who made it mathematics,
it was just a trick. Our sect. 38.1.1 “Semiclassical evolution” is an attempt to get inside 17
year old Hamilton’s head, but it is quite certain that he did not get to it the way we think
about it today. He got to the “‘Hamiltonian’ by studying optics, where the symplectic struc-
ture emerges as the leading WKB approximation to wave optics; higher order corrections
destroy it again. In dynamical systems theory, the densities of trajectories are transported
by Liouville evolution operators, as explained here in sect. 16.6. Evolution in time is a
one-parameter Lie group, and Lie groups act on functions infinitesimally by derivatives.
If the evolution preserves additional symmetries, these derivatives have to respect them,
and so ‘brackets’ emerge as a statement of symplectic invariance of the flow. Dynamics
with a symplectic structure are just a special case of how dynamics moves densities of tra-
jectories around. Newton is deep, Poisson brackets are technology and thus they appear
naturally only by the time we get to chapter 16. Any narrative is of necessity linear, and
putting Poisson ahead of Newton [ 1] would be a disservice to you, the student. But if you
insist: Dragt and Habib [24, 15] offer a concise discussion of symplectic Lie operators
and their relation to Poisson brackets.

Remark 7.2 Symplectic. The term symplectic —Greek for twining or plaiting together—
was introduced into mathematics by Hermann Weyl. ‘Canonical’ lineage is church-
doctrinal: Greek ‘kanon,” referring to a reed used for measurement, came to mean in
Latin a rule or a standard.

Remark 7.3 The sign convention of w. The overall sign of w, the symplectic invariant
in (7.3), is set by the convention that the Hamilton’s principal function (for energy con-

serving flows) is given by R(q,q’,t) = qu/ pidg; — Et. With this sign convention the action

%predrag: add Taussky reference
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along a classical path is minimal, and the kinetic energy of a free particle is positive. Any
finite-dimensional symplectic vector space has a Darboux basis such that w takes form
(7.9). Dragt [15] convention for phase-space variables is as in (7.2). He calls the dynam-
ical trajectory xg — X(Xo,1t) the ‘transfer map,” something that we will avoid here, as it
conflicts with the well established use of ‘transfer matrices’ in statistical mechanics.

Remark 7.4 Loxodromic quartets. For symplectic flows, real eigenvalues always
come paired as A, 1/A, and complex eigenvalues come either in A, A* pairs, |A| = 1, or
A, 1/A, A*, 1/A* loxodromic quartets. As most maps studied in introductory nonlinear
dynamics are 2d, you have perhaps never seen a loxodromic quartet. How likely are
we to run into such things in higher dimensions? According to a very extensive study of
periodic orbits of a driven billiard with a four dimensional phase space, carried in ref. [ 28],
the three kinds of eigenvalues occur with about the same likelihood.

Remark 7.5 Standard map. Standard maps model free rotors under the influence
of short periodic pulses, as can be physically implemented, for instance, by pulsed opti-
cal lattices in cold atoms physics. 2 On the theoretical side, standard maps illustrate a
number of important features: small k values provide an example of KAM perturbative
regime (see ref. [11]), while larger k’s illustrate deterministic chaotic transport [9, 10],
and the transition to global chaos presents remarkable universality features [5, 12, 7].
The quantum counterpart of this model has been widely investigated, as the first example
where phenomena like quantum dynamical localization have been observed [ 13]. Stabil-
ity residue was introduced by Greene [12]. For some hands-on experience of the standard
map, download Meiss simulation code [14].

Flotsam: Predrag 16jan2012 Left this text out of sect. 7.2: “ 28 In a linearized
neighborhood of a given group element,

09(¢)
Oadp

N
o(p +6¢) = 9(9) + ) 6¢a
a=1

the [dxd] matrices dg(¢)/da¢ span the tangent space at g(¢). With an application
of the inverse of a group element g1, this neighborhood can be mapped into a
neighborhood g(6¢) of the identity g(0) = 1, so the local structure of Lie groups
can be understood by studying the tangent space near the identity element, gener-
ated by

99(¢)
9a¢ ly—o

N
9(69) =1+ > 6¢a 9(#) "
a=1

{T1, T2 -+, Tn}, the generators of infinitesimal transformations, are a set of N
linearly independent [dxd] matrices which span the tangent space and act linearly

2"Predrag: add references

2predrag: Motivation: We only need to say that for a continuous group (compact or not) we
can linearize the flow , and that the tangent space is spanned by the Lie algebra, without too much
jargon about double covers and what-not.
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on the d-dimensional phase space M. As we shall see in sect.10.1.1, they endow adjoint

the tangent space with a Lie algebra structure. Globally different Lie groups may Liouvilleloperator
have the same local structure: for example, near the identity the rotation group

SO(n) and the rotations + inversion group O(n) have the same Lie algebra so(n).

Hamiltonian matrices form a linear vector space, the symplectic Lie algebra
sp(d), or, in the Cartan-Killing classification of simple Lie algebras, Lie algebra
Cp.

29 Symplectic matrices are by definition linear transformations that leave the
(antisymmetric) quadratic form Xwijjyj invariant. This immediately implies that
any symplectic matrix satisfies

Q'wQ = w, (7.50)

and — when Q is close to the identity Q = 1 + 6tA — it follows that that A must
satisfy (7.23).

In mathematical literature the Lie operator : f : is sometimes referred to as
ad(f) where ad is shorthand for adjoint. Dragt uses the : f : notation instead of
ad(f) because ‘it facilitates the writing of complicated expressions.’

30 The book is more extreme than even ChaosBook.org: 1872 pages. But

considerably more repetitive. _
section 38.1.1

MIPRIVATE

2predrag: This paragraph seems to be a repeat of the first paragraph of sect. 7.3.1?
%0Predrag: incorporate this into the Liouville operator discussion in ChaosBook.org
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Exercises boyscout

7.1. Complex nonlinear Schrodinger equation.  Consider
the complex nonlinear Schrodinger equation in one spa-
tial dimension [26]:

2
i(;—‘f + % +Belpl? =0, B#0.

(a) Show that the function ¢ : R — C defining the
traveling wave solution ¢(x,t) = ¥(x —ct) forc > 0
satisfies a second-order complex differential equa-
tion equivalent to a Hamiltonian system in R* rel-
ative to the noncanonical symplectic form whose
matrix is given by

0 0 1 O

W = 0 0 0 1
c”]1 -1 0 0 -c
0 -1 ¢ O

(b) Analyze the equilibria of the resulting Hamiltonian
system in R* and determine their linear stability
properties.

(c) Let y(s) = e'°s/2a(s) for a real function a(s) and
determine a second order equation for a(s). Show
that the resulting equation is Hamiltonian and has
heteroclinic orbits for 8 < 0. Find them.

(d) Find ‘soliton’ solutions for the complex nonlinear
Schrddinger equation.

(Luz V. Vela-Arevalo)

7.2. Symplectic vs. Hamiltonian matrices. In the language
of group theory, symplectic matrices form the symplectic
Lie group Sp(d), while the Hamiltonian matrices form the
symplectic Lie algebra sp(d), or the algebra of generators
of infinitesimal symplectic transformations. This exercise
illustrates the relation between the two:

(a) Show that if a constant matrix A satisfy the Hamil-
tonian matrix condition (7.14), then J(t) = exp(tA),
t € R, satisfies the symplectic condition (7.9), i.e.,
J(t) is a symplectic matrix.

(b) Show that if matrices T, satisfy the Hamiltonian
matrix condition (7.14), then g(¢) = exp(¢ - T),
¢ € RN, satisfies the symplectic condition (7.9),
i.e., g(¢) is a symplectic matrix.

(A few hints: (i) expand exp(A), A = ¢ - T, as a power
series in A. Or, (ii) use the linearized evolution equation
(7.22).)
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7.3. When is a linear transformation canonical?

(a) Let A be a [n x r invertible matrix. Show that the
map ¢ : R?" — R*" givenby (q, p) = (Aq, (A™)"p)
is a canonical transformation.

(b) If R is arotation in R3, show that the map (g, p) —
(R g, Rp) is a canonical transformation.

(Luz V. Vela-Arevalo)

7.4. Determinants of symplectic matrices. Show that
the determinant of a symplectic matrix is +1, by going
through the following steps:

(a) use (7.31) to prove that for eigenvalue pairs each
member has the same multiplicity (the same holds
for quartet members),

(b) prove that the joint multiplicity of 2 = +1 is even,

(c) show that the multiplicities of A = 1and 1 = -1
cannot be both odd. (Hint: write

P() = (1-1)*™ (1 +1)"Q(2)
and show that Q(1) = 0).

7.5. Cherry’s example. What follows refs. [25, 27] is
mostly a reading exercise, about a Hamiltonian system
that is linearly stable but nonlinearly unstable. Consider
the Hamiltonian system on R* given by

1 1
H = (a1 + p1) = (@7 + P2) + 5P2(Pf — G7) — talzP1.

(a) Show that this system has an equilibrium at the ori-
gin, which is linearly stable. (The linearized system
consists of two uncoupled oscillators with frequen-
cies in ratios 2:1).

(b) Convince yourself that the following is a family of
solutions parameterize by a constant 7:

- 2t —
qlz_\/ico:‘(t T)’ 0 = cos2(t— 1)
-7 t—7

L 2t —
p1=‘/§SIrl(t T)’ pzzsm (t r).

-7 t—7

)

These solutions clearly blow up in finite time; how-
ever they start at t = 0 at a distance V3/7 from the
origin, so by choosing  large, we can find solutions
starting arbitrarily close to the origin, yet going to
infinity in a finite time, so the origin is nonlinearly
unstable.

(Luz V. Vela-Arevalo)

7.6. Symplectic volume preservation.  Check that the se-
quence of mappings (1.15) is volume preserving, det U =
1.

refsNewt - 7oct2011 boyscout version14.4, Mar 19 2013

UJPRIVATE

MIPRIVATE



References 157

References

[7.1] M. Stone and P. Goldbart, Mathematics for Physics: A Guided Tour for
Graduate Students (Cambridge Univ. Press, Cambridge, 2009).

[7.2] R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin-
Cummings, Reading, Mass., 1978).

[7.3] I. Percival and D. Richards, Introduction to dynamics (Cambridge Univ.
Press, Cambridge 1982).

[7.4] A.M. Ozorio de Almeida, Hamiltonian systems: Chaos and quantization
(Cambridge Univ. Press, Cambridge 1988).

[7.5] J.M. Greene, “A method for determining a stochastic transition,” J. Math.
Phys. 20, 1183 (1979).

[7.6] C. Mira, Chaotic dynamics—From one dimensional endomorphism to two
dimensional diffeomorphism (World Scientific, Singapore, 1987).

[7.7] S.J. Shenker and L. P. Kadanoft, “Critical behavior of a KAM surface: 1.
Empirical results,” J. Stat. Phys. 27, 631 (1982).

[7.8] J.M. Greene, R.S. MacKay, F. Vivaldi and M.J. Feigenbaum, “Universal
behaviour in families of area—preserving maps,” Physica D 3, 468 (1981).

[7.9] B.V. Chirikov, “A universal instability of many-dimensional oscillator sys-
tem,” Phys. Rep. 52, 265 (1979).

[7.10] J.D. Meiss, “Symplectic maps, variational principles, and transport,” Rev.
Mod. Phys. 64, 795 (1992).

[7.11] J.V.José and E.J. Salatan, Classical dynamics - A contemporary approach
(Cambridge Univ. Press, Cambridge 1998).

[7.12] J.M. Greene, “Two-dimensional measure-preserving mappings,” J. Math.
Phys. 9, 760 (1968).

[7.13] G. Casati and B.V. Chirikov, Quantum chaos: Between order and disorder
(Cambridge Univ. Press, Cambridge 1995).

[7.14] J.D. Meiss, “Visual explorations of dynamics: The standard map,”
arXiv:0801.0883.

[7.15] A.J. Dragt, “The symplectic group and classical mechanics,” Ann. New
York Acad. Sci. 1045, 291 (2005).

[7.16] A.J. Dragt, Lie methods for nonlinear dynamics with applications to ac-
celerator physics, www.physics.umd.edu/dsat/dsatliemethods.html (2011).

[7.17] P. Cvitanovi¢, Group Theory - Birdtracks, Lie’s, and Exceptional Magic
(Princeton Univ. Press, Princeton, NJ, 2008), birdtracks. eu.

[7.18] R.A. Proctor, “Odd symplectic groups,” Inv. Math. 92, 307 (1988).

refsNewt - 7oct2011 boyscout version14.4, Mar 19 2013


http://arXiv.org/abs/0801.0883

References 158

[7.19] I. M. Gel’fand and A. V. Zelevinskii, “Models of representations of classi-
cal groups and their hidden symmetries,” Funct. Anal. Appl. 18, 183 (1984).

[7.20] Wikipedia, Hamiltonian matrix, en.wikipedia.org/wiki/Hamiltonian. matrix.

[7.21] W. Fulton and J. Harris, Representation Theory (Springer-Verlag, Berlin,
1991).

[7.22] H. Georgi, Lie Algebras in Particle Physics (Perseus Books, Reading, MA,
1999).

[7.23] C. Paige and C. Van Loan, “A Schur decomposition for Hamiltonian ma-
trices,” Linear Algebra and its Applications 41, 11 (1981).

[7.24] AJ. Dragt and S. Habib, “How Wigner functions transform under sym-
plectic maps,” arXiv:quant-ph/9806056 (1998).

[7.25] T.M. Cherry, “Some examples of trajectories defined by differential equa-
tions of a generalized dynamical type,” Trans. Camb. Phil. Soc. XXI1I, 165
(1925).

[7.26] J. E. Marsden and T. S. Ratiu, Introduction to mechanics and symmetry
(Springer, New York, 1994).

[7.27] K.R. Meyer, “Counter-examples in dynamical systems via normal form
theory,” SIAM Review 28, 41 (1986).

[7.28] F. Lenz, C. Petri, F.N.R. Koch, F.K. Diakonos and P. Schmelcher, “Evolu-
tionary phase space in driven elliptical billiards,”
arXiv:0904.3636.

refsNewt - 7oct2011 boyscout version14.4, Mar 19 2013


http://arXiv.org/abs/quant-ph/9806056
http://arXiv.org/abs/0904.3636

Chapter 8

Billiards

HE DYNAMIcs that we have the best intuitive grasp on, and find easiest to grap-

I ple with both numerically and conceptually, is the dynamics of billiards.

For billiards, discrete time is altogether natural; a particle moving through

a billiard suffers a sequence of instantaneous kicks, and executes simple motion

in between, so there is no need to contrive a Poincaré section. We have already

used this system in sect. 1.3 as the intuitively most accessible example of chaos.

Here we define billiard dynamics more precisely, anticipating the applications to
come. !

8.1 Billiard dynamics

A billiard is defined by a connected region Q c RP, with boundary dQ c RP-1
separating Q from its complement RP \ Q. The region Q can consist of one com-
pact, finite volume component (in which case the billiard phase space is bounded,
as for the stadium billiard of figure 8.1), or can be infinite in extent, with its
complement RP \ Q consisting of one or several finite or infinite volume compo-
nents (in which case the phase space is open, as for the 3-disk pinball game in
figure 1.1). In what follows we shall most often restrict our attention to planar
billiards. 2

A point particle of mass m and momentum p, = mv,, moves freely within the
billiard, along a straight line, until it encounters the boundary. There it reflects
specularly (specular = mirrorlike), 3 with no change in the tangential component
of momentum, and instantaneous reversal of the momentum component normal to
the boundary,

P =p-2(p-A)f, (8.1)

!Predrag: Do in detail the disk scattering dynamics; LiversageFig.1
2Predrag: put arrows everywhere on figure 8.1, denote ball position by (s, ¢n, 7n)
3Predrag: check OED
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ion, Poincar“’e

Figure 8.1: The stadium billiard is a 2-
dimensional domain bounded by two semi-circles
of radius d = 1 connected by two straight walls of
length 2a. At the points where the straight walls
meet the semi-circles, the curvature of the border
changes discontinuously; these are the only sin-
gular points of the flow. The length a is the only
parameter.

n
T )
o

Figure 8.2: (a) A trajectory of a general billiard
is fixed by specifying the perimeter wall arclength,
the outgoing wall-normal momentum, and the out-
going wall-parallel momentum (s, p;, p.). Fory <
1 the ball loses its bounce, ¢* < ¢~. [REDRAW]
(b) [REPLACE by a perspective 3-dimensional N s=0
section.]

(a)

with A the unit vector normal to the boundary dQ at the collision point. The angle
of incidence equals the angle of reflection, as illustrated in figure8.3. A billiard is
a Hamiltonian system with a 2D-dimensional phase space x = (g, p) and potential
V(q) =0forge Q, V(q) = = for g € 9Q.

remark 2.1
UPRIVATE

MIPRIVATE

4

5 A billiard flow has a natural Poincaré section defined by Birkhoff coordinates
Sn, the arc length position of the nth bounce measured along the billiard boundary,
and p, = |plsin¢,, the momentum component parallel to the boundary, where
¢n, is the angle between the outgoing trajectory and the normal to the boundary.
We measure both the arc length s, and the parallel momentum p counterclockwise
relative to the outward normal (see figure 8.3 as well as figure 3.9 (a)). In D = 2,
the Poincaré section is a cylinder (topologically an annulus), figure 8.4, where
the parallel momentum p ranges for —|p| to |p|, and the s coordinate is cyclic
along each connected component of Q. ® The volume in the full phase space is
preserved by the Liouville theorem (7.47). The Birkhoff coordinates x = (s, p) €
P, are the natural choice, because with them the Poincaré return map preserves
the phase-space volume of the (s, p) parameterized Poincaré section (a perfectly
good coordinate set (s, ¢) does not do that).

exercise 8.6

exercise 8.6
section 8.2

“4Predrag: Smilansky teaches: generating function; canonical transformations; action angle vari-
ables. Problem: prove reflection law by minimization of action

SPredrag: move 1, -1 on the p axis of figure 8.3 inward

®Predrag: label the two areas Q;, Q; in figure 8.4. Draw corresponding rectangles?
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Figure 8.3: (a) A planar billiard trajectory is fixed

billiard!map
three-disk@ 3-
1 disk!pinball

by specifying the perimeter length parametrized
by s and the outgoing trajectory angle ¢, both mea-
sured counterclockwise with respect to the out-
ward normal fi. (b) The Birkhoff phase-space co-
ordinate pair (s, p) fully specifies the trajectory,

(s:p)
o

ST p o0

where p = [p|sin¢ is the momentum component
tangential to the boundary As the pinball kinetic
energy is conserved in elastic scattering, the pin-
ball mass and the magnitude of the pinball mo-

; —Inl = —1L | | | \ |
mentum are customarily setto m = [p| = 1. o 6 4 2 0 2 4 6

s

Figure 8.4: In D = 2 the billiard Poincaré section
is a cylinder, with the parallel momentum p ranging
over p € {-1,1}, and with the s coordinate is cyclic
along each connected component of 9Q. The rectangle
figure 8.3 (b) is such cylinder unfolded, with periodic
boundary conditions glueing together the left and the
right edge of the rectangle.

Without loss of generality we set m = |v| = |p| = 1. Poincaré section condition
eliminates one dimension, and the energy conservation |p| = 1 eliminates another,
so the Poincaré section return map P is (2D — 2)-dimensional.

The dynamics is given by the Poincaré return map

P (Sn, Pn) = (Sn+1, Pn+1) (8.2)

from the nth collision to the (n+1)st collision. ’ @ The discrete time dynamics map
P is equivalent to the Hamiltonian flow (7.1) in the sense that both describe the
same full trajectory. Let t, denote the instant of nth collision. Then the position
of the pinball € Q at time t, + 7 < tn,1 IS given by 2D — 2 Poincaré section
coordinates (sn, pn) € P together with 7, the distance reached by the pinball along
the nth section of its trajectory (as we have set the pinball speed to 1, the time of
flight equals the distance traversed). ° 1

Example 8.1 3-disk game of pinball: ' In the case of bounces off a circular disk,
the position coordinate s = rf is given by angle 6 € [0, 2r]. For example, for the 3-disk

game of pinball of figure 1.6 and figure 3.9 (a) we have two types of collisions: exercise 8.1

! = —¢ + 2arcsin
Po: {¢ o+ np back-reflection (8.3)

p’=—-p+ gsing’

"Predrag: replace the reference to figure 3.9 (a) by ?

8Mason: Poincare sections cannot handle flows like Shilnikov. Mention exceptional case, like
when the section cannot decipher the type of the trajectory

9Predrag: emphasize that the discrete/continuous time averages are the same

©predrag: draw from FigSrc/jpeg/3diskPinb.jpg

predrag: add figures from my lectures
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12 stability!billiards
billiard!stability
" = ¢ - 2arcsin p + 2/3 : i
P :{¢ ¢ - 2arcsinp + 2/ reflect to 3rd disk. g%ﬁ'ﬂroulﬁ’_!dy”?m'ca'
pr=p-gsing’ inal-Bunimovich
curvature

3 Here a = radius of a disk, and R = center-to-center separation. Actually, as icuthature!Sinai-
example we are computing intersections of circles and straight lines, nothing more tfpimovich
high-school geometry is required. There is no need to compute arcsin - one only needs

to compute one square root per each reflection, and the simulations can be very fast.

14

exercise 8.2
Trajectory of the pinball in the 3-disk billiard is generated by a series of Py’s and

P1’s. At each step one has to check whether the trajectory intersects the desired disk
(and no disk in-between). With minor modifications, the above formulas are valid for
any smooth billiard as long as we replace a by the local curvature of the boundary at
the point of collision.

8.2 Stability of billiards

We turn next to the question of local stability of discrete time billiard systems. In-
finitesimal equations of variations (4.2) do not apply, but the multiplicative struc-
ture (4.19) of the finite-time Jacobian matrices does. As they are more physical
than most maps studied by dynamicists, let us work out the billiard stability in
some detail.

On the face of it, a plane billiard phase space is 4-dimensional. However, one
dimension can be eliminated by energy conservation, and the other by the fact
that the magnitude of the speed is constant. We shall now show how going to a
local frame of motion leads to a [2x2] Jacobian matrix. In sect.8.2.1 we show
that due to the symplectic invariance the situation is even simpler; the stability of UPRIVATE
a 2-dimensional billiard flow is given by a single number, the Sinai-Bunimovich

curvature.
NPRIVATE

Consider a 2-dimensional billiard with phase-space coordinates x = (g, g2, P1, P2)-
Let t, be the instant of the nth collision of the pinball with the billiard boundary,
and t = t, + €, € positive and infinitesimal. With the mass and the speed equal to
1, the momentum direction can be specified by angle 8: x = (q, g2, Sin 6, cos 6).
Now parametrize the 2-dimensional neighborhood of a trajectory segment by

5% = (62, 66), where 1°
UPRIVATE

. NIPRIVATE
6z =60y €C0sH —5Qpsin g, (8.5)

66 is the variation in the direction of the pinball motion. Due to energy conserva-
tion, there is no need to keep track of 5q, variation along the flow, as that remains

2predrag: replace this by a smarter formula!

13predrag: make int exercise!

14predrag: rewrite this section in the way we really compute - this impact parameter stuff is not
the right thing!

5Predrag: draw the figure!
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Figure 8.5: Variations in the phase-space coordinates
of a pinball between the (n — 1)th and the nth collision.
(a) 6qn variation away from the direction of the flow.
(b) 6z, angular variation transverse to the direction of
the flow. (c) 6q variation in the direction of the flow is
conserved by the flow.

constant. (6qs, 6qp) is the coordinate variation transverse to the kth segment of
the flow, figure 8.5. From the Hamilton’s equations of motion for a free particle,
dgi/dt = pj, dp;/dt = 0, we obtain the equations of motion (4.1) for the linearized UPRIVATE
neighborhood IPRIVATE

d d
a(gg = 0, aéz =006. (86)

Let 66, = d6(t}) and 6z, = dz(t;) be the local coordinates immediately after the
nth collision, and 66, = d6(t;), 6z, = 6z(t;) immediately before. Integrating the
free flight from t'_, to t; we obtain °

0z,
06,

0Zn-1 + Tnobn_1, Th=1th —th
69[‘]_1 5 (87)

and the Jacobian matrix (4.18) for the nth free flight segment is

Mr (%) :( 5 ) (8.8)

At incidence angle ¢, (the angle between the outgoing particle and the outgoing
normal to the billiard edge), the incoming transverse variation 67, projects onto an
arc on the billiard boundary *” of length 6z, / cos ¢,. The corresponding incidence
angle variation é¢, = 6z, /pn COS ¢, pn = local radius of curvature, increases the
angular spread to

0Zn

-0z,
50, = —o0- 2 s (8.9)
" " ppcosg '

8predrag: draw figure
"Predrag: doodle a little picture here - then the relation becomes obvious, it is a ‘footprint” of
flashlight shining on a surface at an angle.
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volume preservation

Figure 8.6: Defocusing of a beam of nearby trajecto-
ries at a billiard collision. (A. Wirzba)

18 50 the Jacobian matrix associated with the reflection is

10 2
MR(Xn) = —( rn 1 ) rn = m . (810)

The full Jacobian matrix for n, consecutive bounces describes a beam of tra-
jectories defocused by My along the free flight (the 7, terms below) and defo-

cused/refocused at reflections by Mg (the r,, terms below) ° 20 exercise 8.4

- 12 72 8).

n=np

where 1, is the flight time of the kth free-flight segment of the orbit, , = 2/pn C0S ¢y,
is the defocusing due to the kth reflection, and g, is the radius of curvature of
the billiard boundary at the nth scattering point (for our 3-disk game of pinball,
p = 1). As the billiard dynamics is phase-space volume preserving, detM = 1,
and the eigenvalues are given by (7.34). %

This is an example of the Jacobian matrix chain rule @.21) for discrete time
systems (the Hénon map stability (4.42) is another example). Stability of every
flight segment or reflection taken alone is a shear with two unit eigenvalues,

1 7,

0 1

det Mt = det ( —

), detMdeet( . 0), (8.12)

but acting in concert in the interwoven sequence @.11) they can lead to a hyper-

bolic deformation of the infinitesimal neighborhood of a billiard trajectory. exercise 13.8

As a concrete application, consider the 3-disk pinball system of sect.1.3. An-
alytic expressions for the lengths and eigenvalues of 0, 1 and 10 cycles follow
from elementary geometrical considerations.  Longer cycles require numerical

I ibed i ise 13.9
evaluation by methods such as those described in chapter 13. eerase

exercise 8.3
chapter 13

8predrag: Tanner changed signs here, Predrag changed them back

®Predrag: replace n, fundamental domain - count symmetry wall reflections
2predrag: 2008-09-16 someone said: “this is analog to matrix optics (see e.g. Hecht
ZLpredrag: replace figure 8.6
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Figure 8.7: A horocycle.

22

23

8.2.1 Sinai-Bunimovich curvatures

165

Sinai-Bunimovich
curvature

curvature!Sinai-

Bunimovich

UJPRIVATE

O3

Imagine a set of projectiles leaving a point (g, gz) in all directions, parameterize
by angle 0; they generate a ‘horocycle’ in the configuration space, a set of all
points reached by time t, see figure 8.7. A 60 wedge of angles stretches into a
horocycle arc 6z = t69, and x = 60/6z = 1/t is the local curvature of the horocycle.

24

Egs. (8.7) and (8.9) can be rewritten as

52; 5Zn_1

- = + Tn

69,-] 69[‘]_1

0 _ oty 2

8z, 6z,  pnCOS¢y

(8.13)

leading to the continued fraction recursion for the curvature « immediately after

the nth bounce

1 66,
—_— Kn=——.
S A

25 26

22predrag: explain that Liouville holds, but phase space is lost thorugh escape
Z3Predrag: add the billiard mean-time of flight section from Sune article
24predrag: need to draw a figure of a horocycle!

Zpredrag: Somehow this came out backwards in time?

%predrag: add exercise relating M and «

billiards - 16sep2008
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8.3 General billiard flows billiard!general
restitution coefficient

section, Poincaré

Consider a trajectory x(t) obtained by integrating vector field v(x) Poincaré section
ty
Xy = T(Xn-1) = Xn-1 + f drv(x(7)). (8.15)
G

Here t = t, + € denotes the time infinitesimally after the instant of the kth kick,
t; = ty — € the time infinitesimally before it, and X; = x(t;), X» = x(t). The
trajectory is smooth almost all of the time, except for a sequence of instantaneous
kicks (such as hard wall billiard collisions),

Xn = R(Xy) . (8.16)

Map T is the integral (8.15) of the smooth flow evolution between two consecu-
tive kicks, from t*_, to t;. R describes the instantaneous kick change of velocity
at time t;, to velocity at t;. The discrete ‘time’ k is an integer, the number of ap-
plications of the R o T map, where we streamline the notation by denoting a map
composition by ‘o’

Xn=RoT---RoT(Xg) = (RoT)"(Xo). (8.17)

Example 8.2 When the ball loses its bounce. A point particle with position and
momentum x(t) = (q(t), p(t)) moves within the billiard, along a given integrable trajec-
tory (free flight, gravity, constant electric or magnetic field, harmonic oscillator, .. .) until
it encounters a boundary. *" There it reflects following the Newton’s law of restitution,
with no change in the tangential component of momentum, and instantaneous reversal
of the momentum component normal to the boundary, in the p, fi plane:

q=q
R: on 0<y<1, 8.18
{p=p-—(1+y)(p--n)n v (8.18)

with f the unit vector normal to the billiard boundary dQ at the collision point, and y the
restitution coefficient.

To avoid confusion: for Hamiltonian flight segments, the flow field v in (8.15)
combines the Newtonian velocities and accelerations, v(x) = (4(X), p(x)).

Due to the collisional loss of energy, an inelastic billiard is not a Hamiltonian
system. For y < 1 the phase-space volume is not preserved, the Liouville theo-
rem (7.47) does not apply, and sustaining motion requires an external driving mech-
anism that can compensate for the collisional energy loss. Poincaré section condition
eliminates one dimension, hence a 3-dimensional Poincaré section for a plane billiard
flow can be defined by marking sn, the arc length position of the nth kick measured
along the billiard boundary, and the outgoing wall-normal and wall-parallel momenta
(Sns Pns Pyn)- Alternatively, on can can keep track of the wall-parallel momentum p
and the energy shell E, = p2/2m + V(qy,) that the particle is on after nth billiard wall
reflection.

2"Predrag: is “Consider a D = 2 planar billiard” needed?
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We turn next to the question of local stability of a general billiard flow. billiard!map
stability!billiards

If x(t) reaches the wall at time t,, a neighboring trajectory (see figure 4.3) Pilliard!stability
reflects off the billiard wall time 6t later, following the reflection law @.18):

X(t + 6t) + ox(t7 + 6t) = R(x(t, + 6t) + ox(t, + 6t)).

To linear order

dx(t* dx(ty
X+ + X( n)ét + 6)(; = R(XH + );(tn)ét + 6XH)

"odt
= X+ 6Z(;E)(6x; +V,6t),.
Hence
Xp = MRr(X;)0%,; — (Vi — MRr(X;)Vv;,) 6t (8.19)
where
Ma0) = 0l v, ve = o).

If you wish, you can compute the extra flight time 6t by elementary geometry,
from figure 4.3, as in (4.24). However, Mg(x™) is a Jacobian matrix like any other;
you can think of it as a limit of a smooth flow where the trajectory is strongly
deflected over a time interval 2¢, € — 0. According to (4.8), a Jacobian matrix
transports the velocity vector at X to the velocity vector at x(t) at time t:

v(x(1) = J'(x0) V(X0) »

hence the prefactor of 6t in (8.19) vanishes. Another way to think of this is as in
sect. 4.6, where we have proven that the spectrum of transverse eigenvalues of a
Jacobian matrix for a continuous flow is independent of the choice of a transverse
Poincaré sections, with different choices differing by such 6t’s contributions along
the direction of the flow.

The cycle Jacobian matrix for ny consecutive bounces describes a beam of
trajectories defocused by My along the flight segments and defocused/refocused
at kicks by Mg

1
Mp = [ | MrOG,1)Mr(x0). (8.20)

n=np

billiards - 16sep2008 boyscout version14.4, Mar 19 2013
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The product limits are a reminder that the product is time-ordered, with later times
corresponding to multiplication from the left, as in @.21) and (4.42).

To summarize: we have shown that the time delay contributes only along
the direction of the flow, and by (4.8) the longitudinal part does not contribute
computation of Floguet multipliers of a cycle.

Guys, what am | missing? If you do no believe me, why does the Hamilto-
nian linearized stability for particles bouncing in gravity not require this 6t term?
There are accelerations...

The generalized billiard dynamics is not phase-space volume preserving; for
impact normal to the billiard wall det M = 12, 28 29

Résumeé

A particulary natural application of the Poincaré section method is the reduction
of a billiard flow to a boundary-to-boundary return map.

Commentary

Remark 8.1 Billiards. The 3-disk game of pinball is to chaotic dynamics what a
pendulum is to integrable systems; the simplest physical example that captures the essence
of chaos. Another contender for the title of the “harmonic oscillator of chaos’ is the baker’s
map which is used as the red thread through Ott’s introduction to chaotic dynamics [ 11].
The baker’s map is the simplest reversible dynamical system which is hyperbolic and
has positive entropy. We will not have much use for the baker’s map here, as due to its
piecewise linearity it is so nongeneric that it misses all of the subtleties of cycle expansions
curvature corrections that will be central to this treatise.

That the 3-disk game of pinball is a quintessential example of deterministic chaos
appears to have been first noted by B. Eckhardt [1]. The model was studied in depth
classically, semiclassically and quantum mechanically by P. Gaspard and S.A. Rice [3],
and used by P. Cvitanovi¢ and B. Eckhardt [4] to demonstrate applicability of cycle ex-
pansions to quantum mechanical problems. It has been used to study the higher order 7
corrections to the Gutzwiller quantization by P. Gaspard and D. Alonso Ramirez [ 5], con-
struct semiclassical evolution operators and entire spectral determinants by P. Cvitanovi¢
and G. Vattay [6], and incorporate the diffraction effects into the periodic orbit theory by
G. Vattay, A. Wirzba and P.E. Rosenqvist [ 7]. The full quantum mechanics and semiclas-
sics of scattering systems is developed here in the 3-disk scattering context in chapter 40.
30 Gaspard’s monograph [8], which we warmly recommend, utilizes the 3-disk system in
much more depth than will be attained here. For further links check ChaosBook.org.

A pinball game does miss a number of important aspects of chaotic dynamics: generic
bifurcations in smooth flows, the interplay between regions of stability and regions of

2predrag: fix this
2predrag: start with Sinai (convex), then Bunimovich (concave)
%0Predrag: repeat/move this remark to QC part of ChaosBook
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chaos, intermittency phenomena, and the renormalization theory of the ‘border of order’
between these regions. To study these we shall have to face up to much harder challenge,
dynamics of smooth flows.

Nevertheless, pinball scattering is relevant to smooth potentials. The game of pinball
may be thought of as the infinite potential wall limit of a smooth potential, and pinball
symbolic dynamics can serve as a covering symbolic dynamics in smooth potentials. One
may start with the infinite wall limit and adiabatically relax an unstable cycle onto the
corresponding one for the potential under investigation. If things go well, the cycle will
remain unstable and isolated, no new orbits (unaccounted for by the pinball symbolic
dynamics) will be born, and the lost orbits will be accounted for by a set of pruning rules.
The validity of this adiabatic approach has to be checked carefully in each application, as
things can easily go wrong; for example, near a bifurcation the same naive symbol string
assignments can refer to a whole island of distinct periodic orbits.

Remark 8.2 Stability analysis. The chapter 1 of Gaspard monograph [8] is rec-
ommended reading if you are interested in Hamiltonian flows, and billiards in particular.
A. Wirzba has generalized the stability analysis of sect. 8.2 to scattering off 3-dimensional
spheres (follow the links in ChaosBook.org/extras). A clear discussion of linear sta-
bility for the general d-dimensional case is given in Gaspard [ 8], sect. 1.4.

Knauft’s 3! scattering problem is surprising in this context, as it is Anosov flow that
resembles a billiard. (continued in exercise 11.3)

Remark 8.3 Impact oscillators.
ture, refs. [12, 13, 14, 15].

Relate sect. 8.3 to the elastic impact oscillator litera-

Remark 8.4 Restitution coefficients. (From Ref. [16]): In the normal direction,
the restitution laws mostly used are those given by Newton and by Poisson. Newton’s
is a purely kinematical law, Poisson’s is dynamical and Begin-Boulanger uses energy
consideration.

The coefficient of restitution given by Newton considers the normal relative velocities
pre and post-collision.

The coefficient of restitution given by Poisson is the ratio between the normal impulse
in the expansion phase and the normal impulse in the compression phase. This coefficient
of restitution takes into consideration the dynamics of the system in the virtual process of
collision.

The coefficient of restitution given by Beghin-Boulanger considers the relation be-
tween the kinetic energies in the expansion phase and compression phases. This coeffi-
cient of restitution considers the exchange of energy during the virtual process of collision.

When friction is not considered all three coefficients of restitution are equivalent
(ref. [3] in Ref. [16]).

vt = coefficient of tangential restitution

intermittency
bifurcation!generic
renormalization
smooth!potential
three-disk@3-
disk!pinball

symbolic dynamics!at
a bifurcation

three-dimensional @3-

sedimensignal
spherel!scattering

scattering!3-
dimensional
spheres

UJPRIVATE

PRIVATE
PRIVATE

MIPRIVATE

3lpredrag: find Knauff scattering reference
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Exercises boyscout three-disk @3-
disk!simulator

pinball!simulator

three-disk@3-
disk!simulator

stadium billiard
billiard!stadium

8.1. A pinball simulator. Implement the disk — disk maps
to compute a trajectory of a pinball for a given starting
point, and a given R:a = (center-to-center distance):(disk
radius) ratio for a 3-disk system. As this requires only
computation of intersections of lines and circles together
with specular reflections, implementation should be within
reach of a high-school student. Please start working on
this program now; it will be continually expanded in chap-
ters to come, incorporating the Jacobian calculations, New-
ton root—finding, and so on.

Fast code will use elementary geometry (only one /-
per iteration, rest are multiplications) and eschew trigono-
metric functions. Provide a graphic display of the trajec-
tories and of the Poincaré section iterates. To be able to
compare with the numerical results of coming chapters,
work with R:a = 6 and/or 2.5 values. Draw the correct
versions of figure 1.9 or figure 12.3 for R:a = 2.5 and/or
6.

8.2. Trapped orbits.  Shoot 100,000 trajectories from one
of the disks, and trace out the strips of figure 1.9 for var-
ious R:a by color coding the initial points in the Poincaré
section by the number of bounces preceding their escape.
Try also R:a = 6:1, though that might be too thin and re-
quire some magnification. The initial conditions can be
randomly chosen, but need not - actually a clearer picture
is obtained by systematic scan through regions of interest.
32

8.3. Pinball stability. Add to your exercise 8.1 pinball sim-
ulator a routine that computes the [2x2] Jacobian matrix.
To be able to compare with the numerical results of com-
ing chapters, work with R:a = 6 and/or 2.5 values.

8.4. Stadium billiard. Consider the Bunimovich sta-
dium [9, 10] defined in figure 8.1. The Jacobian matrix
associated with the reflection is given by (8.10). Here we
take px = —1 for the semicircle sections of the bound-
ary, and cos ¢y remains constant for all bounces in a ro-
tation sequence. The time of flight between two semi-
circle bounces is y = 2cos¢y. The Jacobian matrix of
one semicircle reflection folowed by the flight to the next

bounce is
1 2cosgy 1 0
(‘1)( 0o 1 )( —2/cosgy 1 )

(_1)( -3 2C0S P )

[
Il

2/ cos ¢k 1

A free flight must always be followed by k = 1,2,3,---
bounces along a semicircle, hence the natural symbolic

32predrag: Include fig. 15 from LNN.
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dynamics for this problem is nary, with the correspond- thrde_ei(dlis_k@ﬁ-
ing Jacobian matrix given by shear (ie. the eigenvalues Bi Il<sh 'Ef'lmu a;c_Jr t
remain equal to 1 throughout the whole rotation), and k rknofizcoordinates

S - Birkhoff!coordinates
bounces inside a circle lead to
! st ! Birkhoff!coordinates
—2k—1 2kcos¢ )

K _ [ 1\
e 21
%3 The Jacobian matrix of a cycle p of length n, is given
by 34

3, = (—1)E“k]_[( 5% )( nklrk ; ) (8.22)

k=1
35

Adopt your pinball simulator to the stadium billiard.

8.5. A test of your pinball simulator. Test your exercise 8.3
pinball simulator by computing numerically cycle stabili-
ties by tracking distances to nearby orbits. Compare your
result with the exact analytic formulas of exercise 13.8
and 13.9.

8.6. Birkhoff coordinates.  Prove that the Birkhoff coordi-
nates are phase-space volume preserving.

8.7. Birkhoff coordinates. [Predrag 18apr2011 - not
edited yet] In a plane billiard the ball travels between
bounces along a straight line with a constant velocity—
so the 4-dimensional phase space flow can be reduced
to a 2-dimensional map Ps,s; that maps the coordinates
(Poincaré section Py) of the pinball from one disk edge to
another.

A billiard flow has a natural Poincaré section defined by
Birkhoff coordinates sy, the arc length position of the
nth bounce measured along the billiard boundary, (fig-
ure ?? (b)), and p, = |plsin¢y, the momentum compo-
nent parallel to the boundary, where ¢, is the angle be-
tween the outgoing trajectory and the normal to the bound-
ary. We measure both the arc length s, and the parallel
momentum p counterclockwise relative to the outward
normal. (see figure 8.3 as well as figure 3.9). InD = 2,
the Poincaré section is a cylinder (topologically an annu-
lus), figure 8.4, where the parallel momentum p ranges
for —|p| to |p|, and the s coordinate is cyclic along each
connected component of 9Q. 7 The volume in the full
phase space is preserved by the Liouville theorem (7.47).
Prove that the Birkhoff coordinates x = (s, p) € P, see
figure 8.3, are the natural choice, because with them the
Poincaré return map preserves the phase space volume
of the (s, p) parameterized Poincaré section (a perfectly
good coordinate set (s, ¢) does not do that).

UJPRIVATE

exercise 8.6

33predrag: compare to Jonas section 8.2
34predrag: whole formula looks wrong

%5predrag: append Jonas results here

6predrag: Find Woytkowski’s purely geometric description

$"Predrag: label the two areas Qy, Q; in figure 8.4. Draw corresponding rectangles?
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8.8.

8.9.

Without loss of generality we set m = |v| = |p| = 1.
Poincaré section condition eliminates one dimension, and
the energy conservation |p| = 1 eliminates another, so the
Poincaré section return map P is (2D — 2)-dimensional.

Just after the moment of impact the trajectory is defined
by sn, the arc-length position of the nth bounce along the
billiard wall, and p, = psin¢, the momentum compo-
nent parallel to the billiard wall at the point of impact,
figure 3.9.

Prove that these coordinates (due to Birkhoff) are phase
space volume preserving.

The Jacobian matrix for the nth free flight segment is

1
Mr (X) =( 0 T ) (8.23)
The Jacobian matrix associated with the reflection is
1 0 2
M = - = .(8.24
R(xn) ( m 1 ) o Pn COS én, (8.24)

The full Jacobian matrix for n, consecutive bounces de-
scribes a beam of trajectories defocused by M+ along the
free flight (the 7, terms below) and defocused/refocused
at reflections by Mg (the ry, terms below)

1
Mp=(—1)“p]_[((1) Tl)(rln 8) (8.25)

n=n,

where 7, is the flight time of the kth free-flight segment of
the orbit, r, = 2/py, €OS ¢y is the defocusing due to the kth
reflection, and p, is the radius of curvature of the billiard
boundary at the nth scattering point.

Verify the ChaosBook formulas (8.8), (8.11) and (8.25).
Hint: is is more elegant if you derive them separately,
rather than going directly for the (8.11) multiplied out.

No need to reinvent the wheel; use the same notation as
ChaosBook, i.e., sj instead a;é.

Sinai-Bunimovich curvature. Make an exercise relat-
ing k and J.

3-disk repeller fit. Show by numerical comparison that
the R:a =6:1 3-disk repeller has a rather thin repeller, and
can be roughly fit with a =~ 20 in (??).

References
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Chapter 9

World in a mirror

A detour of a thousand pages starts with a single misstep.
—Chairman Miaw

flection and rotation symmetries of various potentials. In this chapter we

study quotienting of discrete symmetries, and in the next chapter we study
symmetry reduction for continuous symmetries. We look at individual orbits, and
the ways they are interrelated by symmetries. This sets the stage for a discussion
of how symmetries affect global densities of trajectories, and the factorization of
spectral determinants to be undertaken in chapters21 and 25.

DYNAMICAL systems Often come equipped with symmetries, such as the re-

As we shall show here and in chapter 21, discrete symmetries simplify the dy-
namics in a rather beautiful way: If dynamics is invariant under a set of discrete
symmetries G, the state space M is tiled by a set of symmetry-related tiles, and
the dynamics can be reduced to dynamics within one such tile, the fundamental
domain M/G. In presence of a symmetry the notion of a prime periodic orbit
has to be reexamined: a set of symmetry-related full state space cycles is replaced
by often much shorter relative periodic orbit, the shortest segment of the full state
space cycle which tiles the cycle and all of its copies under the action of the group.
Furthermore, the group operations that relate distinct tiles do double duty as letters
of an alphabet which assigns symbolic itineraries to trajectories.

Familiarity with basic group-theoretic notions is assumed, with details rele-
gated to appendix K.1. We find the abstract notions easier to digest by working
out the examples interspersed throughout this chapter.The erudite reader might
prefer to skip the lengthy group-theoretic overture and go directly to G = D;
example 9.12, example 9.14, and C3, = D3 example 9.1, backtrack as needed.

!Predrag: recheck chapter relative.tex 22jul2006: Relativity for cyclists
replace Chairman Miaw by Alice in W. quote ‘Looking-Glass’ is the Victorian name for a mirror.
Mirror images are reflections reproductions, w...
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\ al'washing

Oz chine
' s Mfinite
/
/ ylorder of
C3 s
Figure 9.1: The symmetries of three disks on an equi-

) disks on M
lateral triangle. A fundamental domain is indicated by 0{37
the shaded wedge. . /

9.1 Discrete symmetries

Normal is just a setting on a washing machine.
—Borgette, Borgo’s daughter

We show that a symmetry equates multiplets of equivalent orbits, or “stratifies’ the
state space into equivalence classes, each class a ‘group orbit’. We start by defin-
ing a finite (discrete) group, its state space representations, and what we mean by
a symmetry (invariance or equivariance) of a dynamical system. As is always the
problem with ‘gruppenpest’ (read appendix A.6) way too many abstract notions
have to be defined before an intelligent conversation can take place. Perhaps best
to skim through this section on the first reading, then return to it later as needed.

Definition: A group consists of a set of elements

G={e,02,....0n,...} (9.1)
and a group multiplication rule g;j o g; (often abbreviated as g;g;), satisfying

1. Closure: If gi,gj € G, thengjogi € G
2. Associativity: gk o (j © gi) = (9k © 9j) © Ji
3. Identitye: goe=eog=gforallgeG

4. Inverse g~1: For every g € G, there exists a unique elementh = gt € G
such that
hog=goh=e.

If the group is finite, the number of elements, |G| = n, is called the order of the
group. 2

example K.1

2Predrag: use a triangle example to explain that C; is the symmetry group of the triangle example K.2
example K.3
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Example 9.1 Cs, = D3 symmetry of the 3-disk game of pinball:  If the thredhi I?:C,’i5k@3't
radius disks in figure 9.1 are equidistantly spaced, our game of pinball has a six Pdcsy mmetry

symmetry. The symmetry group of relabeling the 3 disks is the permutation gro

however, it is more instructive to think of this group geometrically, as Csy, also
as the dihedral group

Ds = {e, 012, 013, 073, C1/3,C23)

metry!3-disk
ﬂﬁ 31,
,!?5 gtion

Inversion
group!matrix
matrix!group

@.A@$GL(d)$!general
linear group

general linear group

the group of order |G| = 6 consisting of the identity element e, three reflections across
Symmetry axes {012, 023, 013}, and two rotations by 2r/3 and 4x/3 denoted {C1/3,C?/3}.

(continued in example 9.6)

Definition: Coordinate transformations. Consider a map X = f(x), X,x’ €
M. An active coordinate transformation Mx corresponds to a non-singular [dxd]
matrix M that maps the vector x € M onto another vector Mx € M. The corre-
sponding passive coordinate transformation f(x) — M™1f(x) changes the coor-
dinate system with respect to which the vector f(x) € M is measured. Together,
a passive and active coordinate transformations yield the map in the transformed
coordinates:

f(x) = ML (Mx). (9.3)

Example 9.2 Discrete groups of order 2 on R®.  Three types of discrete group of

order 2 can arise by linear action on our 3-dimensional Euclidian space R3:

reflections: o(x,y,2) = (XY, —2)
rotations: CY%(x,y,z) = (=X, -Y,2)
inversions: P(X,y,z) = (=X,-Y,-2).

(9.4)

o is areflection (or an inversion) through the [x,y] plane. C*/? is [x, y]-plane, constant z
rotation by m about the z-axis (or an inversion thorough the z-axis). P is aninversion (or
parity operation) through the point (0,0, 0). Singly, each operation generates a group
of order 2: Dy = {e, o}, C, = {e,CY?}, and Dy = {e, P}. Together, they form the dihedral

group D, = {e, o, CY/2, P} of order 4. (continued in example 9.3)

Definition: Matrix group. The set of [dxd]-dimensional real non-singular ma-
trices A, B,C, ... € GL(d) acting in a d-dimensional vector space V € R forms
the general linear group GL(d) under matrix multiplication. The product of matri-
ces A and B gives the matrix C, Cx = B(Ax) = (BA)x € V, for all x € V. The unit
matrix 1 is the identity element which leaves all vectors in V unchanged. Every
matrix in the group has a unique inverse.

discrete - 7feb2012 boyscout version14.4, Mar 19 2013
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Definition: Matrix representation. Linear action of a group element g on
states x € M is given by a finite non-singular [d xd] matrix g, the matrix rep-
resentation of element g € G. We shall denote by ‘g’ both the abstract group
element and its matrix representation.

However, when dealing simultaneously with several representations of the
same group action, notation Dj(g), j a representation label, is preferable (see ap-
pendix K.1). A linear or matrix representation D(G) of the abstract group G acting
on a representation space V is a group of matrices D(G) such that

1. Any g € G is mapped to a matrix D(g) € D(G).

2. The group product g» o g; is mapped onto the matrix product D(g o g1) =
D(92)D(01)-

3. The associativity follows from the associativity of matrix multiplication,
D(93 © (92 © 91)) = D(g3)(D(92)D(91)) = (D(g3)(D(g2))D(91)-

4. The identity element e € G is mapped onto the unit matrix D(e) = 1 and
the inverse element g~! € G is mapped onto the inverse matrix D(g™!) =

[D(@]* = D(g).

matrix!representation
representation
symmetry!dynamical
system
dynamics!symmetry
equivariance

Example 9.3 Discrete operations on R3. (continued from example 9.2) The matrix

representation of reflections, rotations and inversions defined by (9.4) is

10 0 -1 0 0 -1 0 0
0:(0 1 0 ] cl/zz( 0 -1 o], P:[ 0 -1 0 ]
0 0 -1 0 0 1 0 0 -1

(9.5)

with detC12 = 1, det o = det P = —1; that is why we refer to C¥/? as a rotation, and o, P
as inversions. As g° = e in all three cases, these are groups of order 2. (continued in

example 9.5)

If the coordinate transformation g belongs to a linear non-singular represen-
tation of a discrete finite group G, for any element g € G there exists a number
m < |G| such that

g"=gogo...og=e — [detg/=1. (9:6)

m times

As the modulus of its determinant is unity, detg is an mth root of 1. Hence all
finite groups have unitary representations.

Definition: Symmetry of a dynamical system. A group G is a symmetry of the
dynamics if for every solution f(x) € M and g € G, gf(x) is also a solution.

Another way to state this: A dynamical system (M, f) is invariant (or G-
equivariant) under a symmetry group G if the time evolution f : M — M (a

discrete - 7feb2012 boyscout version14.4, Mar 19 2013
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\ f(X) equivariance

1

{5 X

Figure 9.2: The bimodal Ulam sawtooth map with the o 1 X
D; symmetry f(-x) = —f(x). If the trajectory xo — | /7~

X1 — X — ---isasolution, so is its reflection o-xy —

oXy — 0Xp — ---. (continued in figure 9.4) T oX

discrete time map f, or the continuous flow f' map from the d-dimensional man-
ifold M into itself) commutes with all actions of G,

f(@x) = gf(x). (9.7)

In the language of physicists: The ‘law of motion’ is invariant, i.e., retains its form
in any symmetry-group related coordinate frame (9.3),

f) =g7(9%), (9.8)

for x € M and any finite non-singular [dxd] matrix representation g of element
g € G. As these are true any state x, one can state this more compactly as f o g =
gof,orf=glofog.

Why ‘equivariant?” A scalar function h(x) is said to be G-invariant if h(x) =
h(gx) for all g € G. The group actions map the solution f : M — M into different
(but equivalent) solutions gf(x), hence the invariance condition f(x) = g* f(gx)
appropriate to vectors (and, more generally, tensors). The full set of such solu-
tions is G-invariant, but the flow that generates them is said to be G-equivariant.
It is obvious from the context, but for verbal emphasis applied mathematicians
like to distinguish the two cases by inkqui-variant. The distinction is helpful in
distinguishing the dynamics written in the original, equivariant coordinates from
the dynamics rewritten in terms of invariant coordinates, see sects.9.5 and 10.4.
3

exercise 9.7
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Example 9.4 A reflection symmetric 1d map.  Consider a 1d map f with reflé@ygigoth map
symmetry f(-x) = —f(x), such as the bimodal ‘sawtooth’ map of figure 9.2, piecéR@gsawtooth
linear on the state space M = [-1, 1], a compact 1-dimensional line interval, spllf‘?ﬁ@&z

three regions M = M| U Mc U Mg. Denote the reflection operation by ox = —X, RY !sy mmetry
2-element group G = {e,o’} goes by many names, such as Z, or C,. Here Wet@ﬁ@f/gjfn@mge-try
refer to it as D;, dihedral group generated by a single reflection. The G-equivar%ﬁ)étry!g_ disk
of the map implies that if {X,} is a trajectory, than also {oX,} is a symmetry-equi\ﬁ% Couette

trajectory because oxn.1 = o f(Xy) = f(ox,) (continued in example 9.12) 4 flow!symmetries

Example 9.5 Equivariance of the Lorenz flow. (continued from example 9.3) The
velocity field in Lorenz equations (2.13)

X oy —Xx)
y | = px—y—xz}
Z Xy — bz

is equivariant under the action of cyclic group C, = {e, C1/?} acting on R® by a n rotation
about the z axis,

CY2(x,y,2) = (-X, -V, 7). (9.9)

(continued in example 9.14)

Example 9.6 3-disk game of pinball - symmetry-related orbits:  (continued from
example 9.1) Applying an element (identity, rotation by +2r/3, or one of the three
possible reflections) of this symmetry group to a trajectory yields another trajectory.
For instance, o3, the flip across the symmetry axis going through disk 1 interchanges
the symbols 2 and 3; it maps the cycle 12123 into 13132, figure 9.3(c). ° Cycles 12, 23,
and 13 in figure 9.3 (a) are related to each other by rotation by +2r/3, or, equivalently,
by a relabeling of the disks. (continued in example 9.8)

Example 9.7 Discrete symmetries of the plane Couette flow.  The plane Couette
flow is a fluid flow bounded by two countermoving planes, in a cell periodic in stream-
wise and spanwise directions. The Navier-Stokes equations for the plane Couette flow
have two discrete symmetries: reflection through the (streamwise , wall-normal) plane,
and rotation by n in the (streamwise , wall-normal) plane. That is why the system has
equilibrium and periodic orbit solutions, (as opposed to relative equilibrium and relative
periodic orbit solutions discussed in chapter 10). They belong to discrete symmetry
subspaces. (continued in example 10.4)

9.1.1 Subgroups, cosets, classes

Inspection of figure 9.3 indicates that various 3-disk orbits are the same up to a
symmetry transformation. Here we set up some abstract group-theoretic notions
needed to describe such relations. The reader might prefer to skip to sect.9.2,
backtrack as needed.

3Predrag: include a sketch of plane Couette flow in example 9.7

“Predrag: write up exercise exer:ReflectA: write down the formula for the map of figure 9.2,
verify its D;-equivariance.

SPredrag: use here the same orbit as in figure 9.3)(c).
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Figure 9.3: The 3-disk pinball cycles: (a) 12, 13,
23, 123; the clockwise 132 not drawn. (b) Cy-
cle 1232; the symmetry related 1213 and 1323 not
drawn. (c) 12323; 12123, 12132, 12313, 13131
and 13232 not drawn. (d) The fundamental do-
main, i.e., the 1/6th wedge indicated in (a), con-
sisting of a section of a disk, two segments of sym-
metry axes acting as straight mirror walls, and the
escape gap to the left. The above 14 full-space cy-
cles restricted to the fundamental domain and re-
coded in binary reduce to the two fixed points 0,
1, 2-cycle 10, and 5-cycle 00111 (not drawn). See
figure 9.9 for the 001 cycle.

181

Definition: Subgroup. A set of group elements H = {e,bp,bs,...,by} € G

closed under group multiplication forms a subgroup.

Definition: Coset. LetH = {e,by,bs,...,by} € G be a subgroup of order h =
|[H|. The set of h elements {c, cby, cbs,...,cby}, ¢ € G but not in H, is called left
coset cH. For a given subgroup H the group elements are partitioned into H and
m — 1 cosets, where m = |G|/|H|. The cosets cannot be subgroups, since they do
not include the identity element. We learn that a nontrival subgroup can exist only
if |G|, the order of the group, is divisible by |H|, the order of the subgroup, i.e.,
only if |G| is not a prime number.

Example 9.8 Subgroups, cosets of D3: (continued from example 9.6) The
3-disks symmetry group, the D3 dihedral group (9.2) has six subgroups

{e}, {e,o12), {e,013), {e,023), {e,CY3,C*3), Djs. (9.10)

The left cosets of subgroup D, = {e,o1,) are {013, CY3), {023, C?/3). The coset of
subgroup C3 = {e,CY/3,C?/3} is {012, 013, 0723}. The significance of the coset is that if a
solution has a symmetry H, for example the symmetry of a 3-cycle 123 is Cs, then all
elements in a coset act on it the same way, for example {012, 013, 023}123 = 132.

The nontrivial subgroups of D3 are D, = {e, o}, consisting of the identity and
any one of the reflections, of order 2, and C; = {e, C'/3,C?/3}, of order 3, so possible
cycle multiplicities are |G|/|Gy| = 1, 2, 3 or 6. Only the fixed point at the origin has
full symmetry G, = G. Such equilibria exist for smooth potentials, but not for the 3-
disk billiard. Examples of other multiplicities are given in figure 9.3 and figure 9.7.
(continued in example 9.9)

Next we need a notion that will, for example, identify the three 3-disk 2-cycles

in figure 9.3 as belonging to the same class.
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Definition: Class. An element b € G is conjugate to a if b = cac™ where cis three-disk@3-

. . disk!symmetry
some other group element. If b and c are both conjugate to a, they are conjugate symmetry!3-disk
to each other. Application of all conjugations separates the set of group elements g}@gigg@sgbgroup
into mutually not-conjugate subsets called classes, types or conjugacy classes. normalldivisor
The identity e is always in the class {e} of its own. This is the only class which is factor %rg%o

a subgroup, all other classes lack the identity element. aﬁ%rtcl'esnt.group
orbit
compactlinvariant set
Example 9.9 D3 symmetry - classes: (continued from example 9.8) Theitasgant!set, compact

classes of the 3-disk symmetry group D; = {e, C1/3,C?/3, &, eC1/3, 0C?/3), are the iden-
tity, any one of the reflections, and the two rotations,

012 Cl/3
{e}, o1 g, { c2/3 } . (9.11)
023
In other words, the group actions either flip or rotate. (continued in example 9.13)

Physical importance of classes is clear from (9.8), the way coordinate trans-
formations act on mappings: action of elements of a class (say reflections, or
rotations) is equivalent up to a redefinition of the coordinate frame.

Definition: Invariant subgroup. A subgroup H C G is an invariant subgroup
or normal divisor if it consists of complete classes. Class is complete if no conju-
gation takes an element of the class out of H.

Think of action of H within each coset as identifying its [H| elements as equiv-
alent. This leads to the notion of the factor group or quotient group G/H of G,
with respect to the invariant subgroup H. H thus divides G into H and m — 1
cosets, each of order |H|. The order of G/H is m = |G|/|H|, and its multiplication
table can be worked out from the G multiplication table class by class, with the
subgroup H playing the role of identity. G/H is homeomorphic to G, with [H]|
elements in a class of G represented by a single element in G/H.

9.1.2 Orbits, quotient space

So far we have discussed the structure of a group as an abstract entity. Now we
switch gears and describe the action of the group on the state space. This is the key
step; if a set of solutions is equivalent by symmetry (a circle, let’s say), we would
like to represent it by a single solution (cut the circle at a point, or rewrite the
dynamics in a ‘reduced state space,” where the circle of solutions is represented
by a single point).

section 2.1

Definition: Orbit. The subset My, c M traversed by the infinite-time trajec-
tory of a given point X is called the orbit (or time orbit, or solution) x(t) = ft(xo).
An orbit is a dynamically invariant notion: it refers to the set of all states that can
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be reached in time from xg, thus as a set it is invariant under time evolution. The
full state space M is foliated into a union of such orbits. We label a generic orbit
My, by any point belonging to it, X, = x(0) for example.

A generic orbit might be ergodic, unstable and essentially uncontrollable. The
ChaosBook strategy is to populate the state space by a hierarchy of orbits which
are compact invariant sets (equilibria, periodic orbits, invariant tori, ...), each
computable in a finite time. They are a set of zero Lebesgue measure, but dense
on the non-wandering set, and are to a generic orbit what fractions are to normal
numbers on the unit interval. We label orbits confined to compact invariant sets by
whatever alphabet we find convenient in a given context: point EQ = %q = Mg
for an equilibrium, 1-dimensional loop p = M, for a prime periodic orbit p, etc.
(note also discussion on page 235, and the distinction between trajectory and orbit
made in sect. 2.1; a trajectory is a finite-time segment of an orbit).

Definition: Group orbit or the G-orbit of the point x € M is the set

My =1{gx|geG} (9.12)

of all state space points into which x is mapped under the action of G. If G is a
symmetry, intrinsic properties of an equilibrium (such as stability eigenvalues) or
a cycle p (period, Floquet multipliers) evaluated anywhere along its G-orbit are
the same.

A symmetry thus reduces the number of inequivalent solutions M,. So we
also need to describe the symmetry of a solution, as opposed to @.8), the sym-
metry of the system. We start by defining the notions of reduced state space, of
isotropy of a state space point, and of the symmetry of an orbit.

Definition: Reduced state space. The action of group G partitions the state
space M into a union of group orbits. This set of group orbits, denoted M/G, has
many names: reduced state space, quotient space or any of the names listed on
page 223.

Reduction of the dynamical state space is discussed in sect. 9.4 for discrete
symmetries, and in sect. 10.4 for continuous symmetries. ©

Definition: Fixed-point subspace. My is the set of all state space points left
H-fixed, point-wise invariant under subgroup or ‘centralizer’ H c G action

My =Fix(H) ={xe M:hx=xforallheH}. (9.13)

®Predrag: added to OUPbook on the margin:
‘same’-‘turn,” meaning ‘identical in all directions.’

‘Isotropic’ is derived from Greek ‘iso-tropos,’
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Points in state space subspace Mg which are fixed points of the full group action
are called invariant points,

Mg =Fix(G) = {xe M:gx=xforallg e G}. (9.14)

Definition: Flow invariant subspace. A typical point in fixed-point subspace
Mgy moves with time, but, due to equivariance (9.7), its trajectory x(t) = f(x)
remains within f(My) € My for all times,

hft(x) = fi(hx) = f'(x), heH, (9.15)

i.e., it belongs to a flow invariant subspace. This suggests a systematic approach
to seeking compact invariant solutions. The larger the symmetry subgroup, the
smaller My, easing the numerical searches, so start with the largest subgroups H
first.

We can often decompose the state space into smaller subspaces, with group
acting within each ‘chunk’ separately:

Definition: Invariant subspace. M, c M is an invariant subspace if
{M, :gxe M, forallge Gand x e M,}. (9.16)

{0} and M are always invariant subspaces. So is any Fix(H) which is point-wise
invariant under action of G. 7 8

Definition: Irreducible subspace. A space M, whose only invariant subspaces
are {0} and M, is called irreducible.

Definition: Free action. An group action on a state space submanifold Mis
free if all of the isotropy subgroups Gy, x € M are trivial.

Siminos: | propose to use the following terminology for cycles: asymmetric, set-wise symmet-
ric (instead of symmetric), point-wise symmetric (instead of boundary). PC eventually return this
remark to siminos blog

8Predrag: 3 sep 2008: you are right ‘boundary’ is wrong term to use here. Not sure I like ‘set-
wise symmetric,” *point-wise symmetric’ - orbit M, is already a set, so ‘Gp-invariant,” G,-fixed,’
might suffice.
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9.2 Symmetries of solutions

The solutions of an equivariant system can satisfy all of the system’s symmetries, a
subgroup of them, or have no symmetry at all. For a generic ergodic orbit f(x) the
trajectory and any of its images under action of g € G are distinct with probability
one, f'(x) ngf'(x) = 0 for all t, t’. For example, a typical turbulent trajectory
of pipe flow has no symmetry beyond the identity, so its symmetry group is the
trivial {e}. For compact invariant sets, such as fixed points and periodic orbits the
situation is very different. For example, the symmetry of the laminar solution of
the plane Couette flow is the full symmetry of its Navier-Stokes equations. ° In
between we find solutions whose symmetries are subgroups of the full symmetry
of dynamics.

Definition: Isotropy subgroup. The maximal set of group actions which maps
a state space point x into itself,

Gx ={geG:gx=x}, (9.17)

is called the isotropy group or little group of x.

A solution usually exhibits less symmetry than the equations of motion. The
symmetry of a solution is thus a subgroup of the symmetry group of dynamics.
We thus also need a notion of set-wise invariance, as opposed to the point-wise
invariance under Gy.

Definition: Symmetry of a solution, Gp-symmetric cycle.  We shall refer to the
subset of nontrivial group actions G, C G on state space points within a compact
set Mp, which leave no point fixed but leave the set invariant, as the symmetry G,
of the solution M,

Gp=19eGp:gxe My, gx#xforg e}, (9.18)

and reserve the notion of ‘isotropy” of a set M, for the subgroup Gy, that leaves
each point in it fixed.

A cycle p is Gp-symmetric (set-wise symmetric, self-dual) if the action of
elements of G, on the set of periodic points M, reproduces the set. g € G, acts
as a shift in time, mapping the periodic point x € M, into another periodic point.

plane Couette
flow!symmetries

isotropy!subgroup

subgroup!isotropy

little group

G-fixed@*“Group-
fixed

fixed point!under
“Group

G-
symmetric@$“Group’ p$-
symmetric
symmetry!lunder

$“Group ' p$
stabilizer
isotropy!subgroup

symmetry!lof a
solution

exercise 9.2

Example 9.10 D;-symmetric cycles: For D, the period of a set-wise symmetric
cycle is even (ns = 2ng), and the mirror image of the Xs periodic point is reached by
traversing the relative periodic orbit segment § of length ngs, f"(xs) = oXs, see fig-

ure 9.4 (b).

%Predrag: continue with clips from insertDiscrete.tex, (or discretelnsert.tex, extracted from
Siminos 2008-08-29 symODEs.tex?)
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Definition: Conjugate symmetry subgroups. The splitting of a group G into
a symmetry group Gp of orbit Mp and m — 1 cosets cGp, relates the orbit M, to
m—1 other distinct orbits cM,. All of them have equivalent symmetry subgroups,
or, more precisely, the points on the same group orbit have conjugate symmetry
subgroups (or conjugate stabilizers):

Gep =cGpc™, (9.19)

i.e., if Gp is the symmetry of orbit M,, elements of the coset space g € G/Gp
generate the my — 1 distinct copies of M, so for discrete groups the multiplicity
of orbit p is mp = [G|/|Gpl.

Definition: G,-fixed orbits:  Anequilibrium Xy or a compact solution p is point-
wise or Gp-fixed if it lies in the invariant points subspace Fix(Gp), gx = x for all
g € Gp, and x = xq or x € M,. A solution that is G-invariant under all group G
operations has multiplicity 1. Stability of such solutions will have to be examined
with care, as they lie on the boundaries of domains related by the action of the
symmetry group. °

isotropy!subgroup

stabilizer

symmetry!of a

exsplidtian,

G-fixed@*“Group-
fixed

fixed point!under
“Group

Example 9.11 D;-invariant cycles: In the example at hand there is only one G-

invariant (point-wise invariant) orbit, the fixed point C at the origin, see figure 9.4 (a). As
reflection symmetry is the only discrete symmetry that a map of the interval can have,
this example completes the group-theoretic analysis of 1-dimensional maps. We shall
continue analysis of this system in example 9.16, and work out the symbolic dynamics

of such reflection symmetric systems in example 12.5.

In the literature the symmetry group of a solution is often called stabilizer
or isotropy subgroup. Saying that G, is the symmetry of the solution p, or that
the orbit M, is ‘Gp-invariant,” accomplishes as much without confusing you with
all these names (see remark 9.1). In what follows we say “the symmetry of the
periodic orbit p is C, = {e, R},” rather than bandy about ‘stabilizers’ and such.

The key concept in the classification of dynamical orbits is their symmetry.
We note three types of solutions: (i) fully asymmetric solutions a, (ii) subgroup
Gs set-wise invariant cycles s built by repeats of relative cycle segments §, and
(iii) isotropy subgroup Geq-invariant equilibria or point-wise G,-fixed cycles b.

Definition: Asymmetric orbits. An equilibrium or periodic orbit is not sym-
metric if {xa} N {gxa} = 0 for any g € G, where {Xy} is the set of periodic points
belonging to the cycle a. Thus g € G generate |G| distinct orbits with the same
number of points and the same stability properties.

Opredrag: confused discussion: Boundary cycles also? ES: Yes, for example in Kuramoto-Siva-
shinsky equation in antisymmetric subspace, all cycles are point-wise invariant under reflections.

discrete - 7feb2012 boyscout version14.4, Mar 19 2013



CHAPTER 9. WORLD IN A MIRROR

Figure 9.4: The D;-equivariant bimodal sawtooth
map of figure 9.2 has three types of periodic or-
bits: (a) Dy-fixed fixed point C, asymmetric fixed
points pair {L,R}. (b) D;-symmetric (setwise in-
variant) 2-cycle LR. (c) Asymmetric 2-cycles pair
{LC,CR}. (continued in figure 9.8) (Y. Lan)

f(x)

187

sawtooth rf(ap
map!sawtooth

fL /1

threerdisk@3y| — .7/
disk!symmelryCR .-
symmetry}3-disk.-~

Cc

" LR

X

LC

(a) (b)

Example 9.12 Group D; - a reflection symmetric 1d map:  Consider the bimodal
‘sawtooth’ map of example 9.4, with the state space M = [-1, 1] split into three regions
M = {M_, Mc, Mg} which we label with a 3-letter alphabet L (eft), C (enter), and R(ight).
The symbolic dynamics is complete ternary dynamics, with any sequence of letters
A = {L,C, R} corresponding to an admissible trajectory (‘complete’ means no additional
grammar rules required, see example 11.6 below). The D;-equivariance of the map,
D; = {e, o}, implies that if {X,} is a trajectory, so is {oXn}.

Fix (G), the set of points invariant under group action of D1, MO oM, is just
this fixed point x = 0, the reflection symmetry point. If a is an asymmetric cycle, o maps
it into the reflected cycle oa, with the same period and the same stability properties,
see the fixed points pair {L, R} and the 2-cycles pair {LC, CR} in figure 9.4 (c).

The next illustration brings in the non-abelian, noncommutative group struc-

ture: for the 3-disk game of pinball of sect. 1.3, example 9.1 and example 9.17,
the symmetry group has elements that do not commute. 1* 2

Example 9.13 3-disk game of pinball - cycle symmetries:  (continued from exam-
ple 9.9) The C; subgroup G, = {e,C/3,C??3} invariance is exemplified by the two cy-
cles 123 and 132 which are invariant under rotations by 2r/3 and 4r/3, but are mapped
into each other by any reflection, figure 9.7 (a), and have multiplicity |G|/|Gp| = 2.

The C, type of a subgroup is exemplified by the symmetries of p = 1213. This
cycle is invariant under reflection 0,3{1213} = 1312 = 1213, so the invariant subgroup
is Gp = {e, 023}, with multiplicity is m = |G|/|G,| = 3; the cycles in this class, 1213, 1232
and 1323, are related by 2r/3 rotations, figure 9.7 (b).

A cycle of no symmetry, such as 12123, has G, = {e} and contributes in all six
copies (the remaining cycles in the class are 12132, 12313, 12323, 13132 and 13232),
figure 9.7 (c).

Besides the above spatial symmetries, for Hamiltonian systems cycles may
be related by time reversal symmetry. An example are the cycles 121212313 and
313212121 = 121213132 which have the same periods and stabilities, but are related
by no space symmetry, see figure 9.7. (continued in example 9.17)

(©)

exercise 9.5

Consider next perhaps the simplest 3-dimensional flow with a symmetry, the
iconic flow of Lorenz. The example is long but worth working throug: the symmetry-
reduced dynamics is much simpler than the original Lorenz flow. 2 14

predrag: add here parts of PER’s Appendix B.
2predrag: remember Golubitsky comments: in general, for even N there is a boundary 2-cycle — exercise 9.9

3predrag: redirect remark 2.3

14Predrag: dasbuch: add toRem rem:Lorenz
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Example 9.14 Desymmetrization of Lorenz flow: (continuation of example 9.L£9r angéRy
equation (2.13) is equivariant under (9.9), the action of order-2 group C, = {e, C1/?},
where C'/? s [x, y]-plane, half-cycle rotation by = about the z-axis:

(x,y,2) = CY2(x,y,2) = (-X, -y, 7). (9.20)

(CY?)?2 = 1 condition decomposes the state space into two linearly irreducible sub-
spaces M = M@ M, the z-axis M* and the [, y] plane M, with projection operators
onto the two subspaces given by (see sect. E.2.1)

1 ; 00 0 o ; 10 0
Pr=-(1+C¥=|0 0 0|, P =:a-c'»=|l0 1 0. (21
2 00 1 2 00 0

As the flow is Cy-invariant, so is its linearization X = AX. Evaluated at EQq, A com-
mutes with CY/2, and, as we have already seen in example 4.6, the EQy stability matrix
decomposes into [x,y] and z blocks. *°

The 1-dimensional M* subspace is the fixed-point subspace, with the z-axis
points left point-wise invariant under the group action

M* =Fix(Cy) = {(x e M : gx = x forg € {e,C'/?}} (9.22)

(here x = (x,Y,2) is a 3-dimensional vector, not the coordinate x). A C,-fixed point X(t)
in Fix (C,) moves with time, but according to (9.15) remains within x(t) € Fix (C,) for all
times; the subspace M* = Fix(C,) is flow invariant. In case at hand this jargon is a bit
of an overkill: clearly for (x,y,z) = (0,0, z) the full state space Lorenz equation (2.13) is
reduced to the exponential contraction to the EQq equilibrium, 16

7=-bz. (9.23)

However, for higher-dimensional flows the flow-invariant subspaces can be high-dim-
ensional, with interesting dynamics of their own. Even in this simple case this subspace
plays an important role as a topological obstruction: the orbits can neither enter it nor
exit it, so the number of windings of a trajectory around it provides a natural, topological
symbolic dynamics.

The M~ subspace is, however, not flow-invariant, as the nonlinear terms z =
Xy—Dbz in the Lorenz equation (2.13) send all initial conditions within M~ = (x(0), y(0), 0)
into the full, z(t) + O state space M/ M.

By taking as a Poincaré section any C'/?-equivariant, non-self-intersecting sur-
face that contains the z axis, the state space is divided into a half-space fundamental
domain M = M/ C;, and its 180° rotation C*/2 M. An example is afforded by the P plane
section of the Lorenz flow in figure 3.4. Take the fundamental domain M to be the half-
space between the viewer and #. Then the full Lorenz flow is captured by re-injecting
back into M any trajectory that exits it, by a rotation of = around the z axis.

As any such CY2-invariant section does the job, a choice of a ‘fundamental
domain’ is here largely mater of taste. For purposes of visualization it is convenient
to make the double-cover nature of the full state space by M explicit, through any
state space redefinition that maps a pair of points related by symmetry into a single
point. In case at hand, this can be easily accomplished by expressing (X,Y) in polar
coordinates (x,y) = (rcosé,rsind), and then plotting the flow in the ‘doubled-polar
angle representation:’

UJPRIVATE
5Predrag: create example in sect. 10.3 from the last sentence chapter 27
18predrag: pointer to turbulence chapter here IPRIVATE

section 9.5
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Figure 9.5: Lorenz attractor of figure 3.4, the full state
space coordinates [x, Y, z], with the unstable manifold
orbits WY(EQp). (Green) is a continuation of the unsta-
ble e® of EQy, and (brown) is its 7-rotated symmetric
partner. Compare with figure 9.6. (E. Siminos)

Figure 9.6: (a) Lorenz attractor plotted in [X, ¥, ],
the doubled-polar angle coordinates (9.24), with
points related by n-rotation in the [x, y] plane iden-
tified. Stable eigenvectors of EQ,: e® and e®,
along the z axis (9.23). Unstable manifold orbit
WY(EQo) (green) is a continuation of the unstable
e® of EQy. (b) Blow-up of the region near EQ;:
The unstable eigenplane of EQ; defined by Re e®
and Im e®, the stable eigenvector e®. The descent
of the EQo unstable manifold (green) defines the
innermost edge of the strange attractor. As it is
clear from (a), it also defines its outermost edge.
(E. Siminos)

Im e

(@)

(%,9,2) = (rcos26,rsin26,z) = ((x*> —y?)/r,2xy/r,2), (9.24)

as in figure 9.6 (a). In contrast to the original G-equivariant coordinates [x,Y,z], the
Lorenz flow expressed in the new coordinates [X, Y,z] is G-invariant, see example 9.18.
In this representation the M = M/ C, fundamental domain flow is a smooth, continuous
flow, with (any choice of) the fundamental domain stretched out to seamlessly cover the
entire [%,¥] plane. (continued in example 11.4)

(E. Siminos and J. Halcrow)

Note: nonlinear coordinate transformations such as the doubled-polar angle
representation (9.24) are not required to implement the symmetry quotienting
M/G.We deploy them only as a visualization aid that might help the reader dis-
entangle 2-dimensional projections of higher-dimensional flows. All numerical
calculations can still be carried in the initial, full state space formulation of a flow,
with symmetry-related points identified by linear symmetry transformations.

in depth:
ﬂ appendix K, p. 1146

9.3 Relative periodic orbits

R

So far we have demonstrated that symmetry relates classes of orbits. Now we
show that a symmetry reduces computation of periodic orbits to repeats of shorter,
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‘relative periodic orbit” segments.

Equivariance of a flow under a symmetry means that the symmetry image of
a cycle is again a cycle, with the same period and stability. The new orbit may be
topologically distinct (in which case it contributes to the multiplicity of the cycle)
or it may be the same cycle.

A cycle p is Gp-symmetric under symmetry operation g € Gy, if the operation
acts on it as a shift in time, advancing a cycle point to a cycle point on the sym-
metry related segment. The cycle p can thus be subdivided into m, repeats of a
relative periodic orbit segment, ‘prime’ in the sense that the full state space cycle
is built from its repeats. Thus in presence of a symmetry the notion of a periodic
orbit is replaced by the notion of the shortest segment of the full state space cycle
which tiles the cycle under the action of the group. In what follows we refer to this
segment as a relative periodic orbit. In the literature this is sometimes referred to

as a short periodic orbit, or, for finite symmetry groups, as a pre-periodic orbit.
17

Relative periodic orbits (or equivariant periodic orbits) are orbits x(t) in state
space M which exactly recur ¢ 19

X(t) =gx(@t+T) (9.25)

for the shortest fixed relative period T and a fixed group action g € G,. Parameters
of this group action are referred to as ‘phases’ or “shifts.” For a discrete group
g™ = e for some finite m, by (9.6), so the corresponding full state space orbit is
periodic with period mT. %°

The period of the full orbit is given by the m, x (period of the relative perlodlc
orbit), Ty = |Gp|T, and the ith Floquet multiplier Ap; is given by AJ.’ of the
relative periodic orbit. The elements of the quotient space b € G/G, generate the
copies bp, so the multiplicity of the full state space cycle p is m, = |G|/|Gpl. 2

short periodic orbit

periodic!orbit!short
irreducible!segment
Lorenz flow

Example 9.15 Relative periodic orbits of Lorenz flow: (continuation of exam-

ple 9.14) The relation between the full state space periodic orbits, and the fundamen-
tal domain (9.24) reduced relative periodic orbits of the Lorenz flow: an asymmetric full
state space cycle pair p, Rp maps into a single cycle p in the fundamental domain, and
any self-dual cycle p = Rp = fR} is a repeat of a relative periodic orbit p.

Predrag: perhaps call this pre-periodic, reserve ‘relative’ for continuous case, incommensurate

shift.

8predrag: must distinguish ‘segment” and “orbit’, p = p U gf

®Predrag: makes sure that relative equilibrium and relative periodic orbit refer to periodicity of
the group orbit as a set, not individual points on the group orbit

2predrag: recheck usage of g™ vs. multiplicity notation

2lpredrag: draw two periodic orbits to illustrate example 9.15
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Figure 9.7: Cycle 121212313 has multiplicity 6; 121212313 121313132
shown here is 121313132 = 03121212313. How-
ever, 121231313 which has the same stability and
period is related to 121313132 by time reversal,
but not by any Cg, symmetry.

9.4 Dynamics reduced to fundamental domain

I submit my total lack of apprehension of fundamental
concepts.

—John F. Gibson

So far we have used symmetry to effect a reduction in the number of independent
cycles, by separating them into classes, and slicing them into “prime’ relative orbit
segments. The next step achieves much more: it replaces each class by a single
(typically shorter) prime cycle segment. 22

1. Discrete symmetry tessellates the state space into dynamically equivalent
domains, and thus induces a natural partition of state space: If the dynamics
is invariant under a discrete symmetry, the state space M can be completely
tiled by a fundamental domain M and its symmetry images M, = aM,
/\7(b = b/\7t, ... under the action of the symmetry group G = {e,a,b,.. .},

M=MUMaU M- U Mg . (9.26)

2. Discrete symmetriy can be used to restrict all computations to the funda-
mental domain M = M|/G, the reduced state space quotient of the full state
space M by the group actions of G.

We can use the invariance condition (9.7) to move the starting point x into
the fundamental domain x = a&, and then use the relation a'b = h™! to
also 2 relate the endpoint y € M to its image in the fundamental domain
M. While the global trajectory runs over the full space M, the restricted
trajectory is brought back into the fundamental domain M any time it ex-
its into an adjoining tile; the two trajectories are related by the symmetry
operation h which maps the global endpoint into its fundamental domain
image.

3. Cycle multiplicities induced by the symmetry are removed by reduction
of the full dynamics to the dynamics on a fundamental domain. Each
symmetry-related set of global cycles p corresponds to precisely one fun-
damental domain (or relative) cycle p.

22predrag: Give formal definition of the fundamental domain.
Zpredrag: a~bh = h™'?
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Figure 9.8: The bimodal Ulam sawtooth map of

figure 9.4 with the D; symmetry f(-x) = —f(x) f(x f(x
restricted to the fundamental domain. f(x) is in- ( )T ( )

dicated by the thin line, and fundamental domain
map f(X) by the thick line. (a) Boundary fixed
point C is the fixed point 0. The asymmetric fixed
point pair {L,R} is reduced to the fixed point 2,
and the full state space symmetric 2-cycle LR is
reduced to the fixed point 1. (b) The asymmetric
2-cycle pair {LC,CR} is reduced to 2-cycle 01. (c)
All fundamental domain fixed points and 2-cycles.
(Y. Lan)

(b)

4. Conversely, each fundamental domain cycle p traces out a segment of the
global cycle p, with the end point of the cycle p mapped into the irreducible
segment of p with the group element hs. A relative periodic orbit segment
in the full state space is thus a periodic orbit in the fundamental domain.

5. The group elements G = {e, g, ...,gg/} which map the fundamental do-
main M into its copies gM, serve also as letters of a symbolic dynamics
alphabet.

For asymmetry reduction in presence of continuous symmetries, see sect.10.4.

exercise 9.6
Example 9.16 Group D; and reduction to the fundamental domain. Consider
again the reflection-symmetric bimodal Ulam sawtooth map f(-x) = —f(x) of exam-

ple 9.12, with symmetry group D; = {e, o}. The state space M = [-1, 1] can be tiled by
half-line M = [0, 1], and o M = [-1, 0], its image under a reflection across x = 0 point.
The dynamics can then be restricted to the fundamental domain X, € M = [0, 1]; every
time a trajectory leaves this interval, it is mapped back using o .

In figure 9.8 the fundamental domain map f (X) is obtained by reflecting x < 0
segments of the global map f(x) into the upper right quadrant. ~f~ is also bimodal and
piecewise-linear, with M = [0, 1] split into three regions M = { My, M1, Mz} which we
label with a 3-letter alphabet A= {0,1,2}. The symbolic dynamics is again complete
ternary dynamics, with any sequence of letters {0, 1, 2} admissible.

However, the interpretation of the ‘desymmetrized’ dynamics is quite different
- the multiplicity of every periodic orbit is now 1, and relative periodic segments of the
full state space dynamics are all periodic orbits in the fundamental domain. Consider
figure 9.8:

In (a) the boundary fixed point C is also the fixed point 0.

The asymmetric fixed point pair {L,R} is reduced to the fixed point 2, and the
full state space symmetric 2-cycle LR is reduced to the fixed point 1. The asymmetric
2-cycle pair {LC,CR} is reduced to the 2-cycle 01. Finally, the symmetric 4-cycle LCRC
is reduced to the 2-cycle 02. This completes the conversion from the full state space
for all fundamental domain fixed points and 2-cycles, figure 9.8 (c). %

24predrag: draw this cycle both in the full and in the fundamental domain.
in figure 9.8 (a) double label, with 0, 1 and 2.
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three-disk@3-
disk!symmetry

symmetry!3-disk

Figure 9.9: (a) The pair of full-space 9-cycles, the
counter-clockwise 121232313 and the clockwise
131323212 correspond to (b) one fundamental do-
main 3-cycle 001.

(b)

Example 9.17 3-disk game of pinball in the fundamental domain

If the dynamics is equivariant under interchanges of disks, the absolute disk
labels ¢ = 1,2,---,N can be replaced by the symmetry-invariant relative disk— disk
increments g, where g; is the discrete group element that maps disk i-1 into disk i. For
3-disk system g; is either reflection o back to initial disk (symbol ‘0’) or 2r/3 rotation
by C to the next disk (symbol ‘1’). An immediate gain arising from symmetry invariant
relabeling is that N -disk symbolic dynamics becomes (N —1)-nary, with no restrictions
on the admissible sequences.

An irreducible segment corresponds to a periodic orbit in the fundamental do-
main, a one-sixth slice of the full 3-disk system, with the symmetry axes acting as
reflecting mirrors (see figure 9.3(d)). A set of orbits related in the full space by dis-
crete symmetries maps onto a single fundamental domain orbit. The reduction to
the fundamental domain desymmetrizes the dynamics and removes all global discrete
symmetry-induced degeneracies: rotationally symmetric global orbits (such as the 3-
cycles 123 and 132) have multiplicity 2, reflection symmetric ones (such as the 2-cycles
12, 13 and 23) have multiplicity 3, and global orbits with no symmetry are 6-fold degen-
erate. Table 12.2 lists some of the shortest binary symbols strings, together with the
corresponding full 3-disk symbol sequences and orbit symmetries. > Some examples
of such orbits are shown in figures 9.7 and 9.9. % (continued in example 12.7)

UJPRIVATE

9.4.1 Boundary orbits

O3

Peculiar effects arise for orbits that run on a symmetry lines that border a fun-
damental domain. The state space transformation h # e leaves invariant sets of
boundary points; for example, under reflection o~ across a symmetry axis, the axis
itself remains invariant. Some care need to be exercised in treating the invariant

Zpredrag: recheck with Freddy!
%predrag: In figure 9.9 put the two on top of each other, the SFIG it
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“boundary” set (see (9.26)) M = M N My N My --- N Mg). The properties of three-disk@3-

disk!boundary

boundary periodic orbits that belong to such G-fixed (point-wise invariant) sets  grpits
will require a bit of thinking. %’ boundary orbits
invariant!polynomial
In our 3-disk example, no such orbits are possible, but they exist in other ‘?as"S,
systems, such as in the bounded region of the Hénon-Heiles potential (remark9.3) G'I.’,f;'v"grriggtt,g)%;nomia,
and in 1d maps of example 9.12. For the symmetrical 4-disk billiard, there are in  pasis

principle two kinds of such orbits, one kind bouncing back and forth between syzygy

two diagonally opposed disks and the other kind moving along the other axis of
reflection symmetry; the latter exists for bounded systems only. While for low-
dimensional state spaces there are typically relatively few boundary orbits, they
tend to be among the shortest orbits, and thus play a key role in dynamics.

While such boundary orbits are invariant under some symmetry operations,
their neighborhoods are not. This affects the Jacobian matrix M, of the orbit and
its Floquet multipliers. 2

MIPRIVATE

9.5 Invariant polynomials

Physical laws should have the same form in symmetry-equivalent coordinate frames,
so they are often formulated in terms of functions (Hamiltonians, Lagrangians,
--+) invariant under a given set of symmetries. The key result of the representation
theory of invariant functions is:

Hilbert-Weyl theorem. For a compact group G there exists a finite G-invariant
homogenous polynomial basis {u;, Uz, ..., Uy}, m > d, such that any G-invariant
polynomial can be written as a multinomial

h(x) = p(ur(X), u2(x), ..., um(x)), xe M. (9.27)

These polynomials are linearly independent, but can be functionally dependent
through nonlinear relations called syzygies.

O3

Example 9.18 Polynomials invariant under discrete operations onR®. (continued

from example 9.2) o is a reflection through the [X,y] plane. Any {e, o }-invariant

function can be expressed in the polynomial basis {u, Uz, U3} = {X, Y, 7).

C2 js a[x, y]-plane rotation by & about the z-axis. Any {e, CY/?}-invariant

func-

tion can be expressed in the polynomial basis {Uy, Uy, U3, Us} = {X?, Xy, Y2, z}, with one

syzygy between the basis polynomials, (x?)(y?) — (xy)? = 0.

2"Predrag: dig out Viviane’s Manning multiples

2predrag:  In remark 9.3 use Hénon-Heiles potential equilibrium at origin to explain that the
corresponding equilibrium has multiplicity 1
incorporate into remark 2.3
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P is an inversion through the point (0, 0, 0). Any {e, P}-invariant function cEH'B%jrt'WeW theor.em
expressed in the polynomial basis {Uy,---,Us} = {X?,y?,7%, Xy, Xz, yz}, with three '§)\{3§3VSJ?S““F)0|ynomla|

ies between the basis polynomials, (x2)(y?) — (xy)? = 0, and its 2 permutations. _ =" .
g poly (A7) = 0v) p G-invariant@“Group-

For the D, dihedral group G = {e, o, C'/?, P} the G-invariant polynomial bagigriant!polynomial
is {Uy, Up, Us, Us} = {X2,Y2, 22, Xy}, with one syzygy, (x2)(y?) — (xy)?> = 0. (continuelaHs
example 10.15) compact!group
group!compact
symmetry!discrete—)
In practice, explicit construction of G-invariant basis can be a laborious un- group!orlbltb
dertaking, and we will not take this path except for a few simple low-dimensional 'SCtroPY:subgroup
. . symmetry!of a
cases, such as the 5-dimensional example of sect. 10.5. We prefer to apply the ~ solution
symmetry to the system as given, rather than undertake a series of nonlinear co-
ordinate transformations that the theorem suggests. (What ‘compact’ in the above
refers to will become clearer after we have discussed continuous symmetries. For

now, it suffices to know that any finite discrete group is compact.) exercise 9.1

Résumeé

A group G is a symmetry of the dynamical system (M, f) if its ‘law of motion’
retains its form under all symmetry-group actions, f(x) = g™ f(gx) . A mapping u
is said to be invariant if gu = u, where g is any element of G. If the mapping and
the group actions commute, gu = ug, u is said to be equivariant. The governing
dynamical equations are equivariant with respect to G.

We have shown here that if a dynamical system (M, f) has a symmetry G,
the symmetry should be deployed to ‘quotient’ the state space toM = M/G, i.e.,
identify all symmetry-equivalent x € M on each group orbit, thus replacing the
full state space dynamical system (M, f) by the symmetry-reduced (/\7( f). The
main result of this chapter can be stated as follows:

In presence of a discrete symmetry G, associated with each full state space
solution p is the group of its symmetries G, € G of order 1 < |G| < |G|, whose
elements leave the orbit M, invariant. The elements of G, act on p as shifts, tiling
it with |G| copies of its shortest invariant segment, the relative periodic orbit .
The elements of the coset b € G/G,, generate mp = |G|/|Gp| equivalent copies of

p.

Once you grasp the relation between the full state space M and the desym-
metrized, G-quotiented reduced state space M/G, you will find the life as a funda-
mentalist so much simpler that you will never return to your full state space ways
of yesteryear. The reduction to the fundamental domain M = M/G simplifies
symbolic dynamics and eliminates symmetry-induced degeneracies. For the short
orbits the labor saving is dramatic. For example, for the 3-disk game of pinball
there are 256 periodic points of length 8, but reduction to the fundamental domain
non-degenerate prime cycles reduces this number to 30. In the next chapter con-
tinuous symmetries will induce relative periodic orbits that never close a periodic
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ree-disk@3-

orbit, and in the chapter 26 they will tile the infinite periodic state space, and re- thre!
disk!cycle!count

duce calculation of diffusion constant in an infinite domain to a calculation on a
compact torus.
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Commentary

Remark 9.1 Literature. We found Tinkham [1] the most enjoyable as a no-nonsense,
the user friendliest introduction to the basic concepts. Byron and Fuller [ 2], the last chap-
ter of volume two, offers an introduction even more compact than Tinkham’s. For a
summary of the theory of discrete groups see, for example, ref. [ 3]. Chapter 3 of Rebecca
Hoyle [4] is a very student-friendly overview of the group theory a nonlinear dynamicist
might need, with exception of the quotienting, reduction of dynamics to a fundamental do-

isotypic

decomposition
short periodic orbit
periodic!orbit!short
isotropy!subgroup
stabilizer

symmetry!of a
solution

main, which is not discussed at all. We found sites such as en.wikipedia.org/wiki/Quotient group

helpful. Curiously, we have not read any of the group theory books that Hoyle recom-
mends as background reading, which just confirms that there are way too many group
theory books out there. For example, one that you will not find useful at all is ref. [ 5]. The
reason is presumably that in the 20th century physics (which motivated much of the work
on the modern group theory) the focus is on the linear representations used in quantum
mechanics, crystallography and quantum field theory. We shall need these techniques in
Chapter 21, where we reduce the linear action of evolution operators to irreducible sub-
spaces. However, here we are looking at nonlinear dynamics, and the emphasis is on the
symmetries of orbits, their reduced state space sisters, and the isotypic decomposition of
their linear stability matrices.

In ChaosBook we focus on chaotic dynamics, and skirt the theory of bifurcations,
the landscape between the boredom of regular motions and the thrills of chaos. Chapter
4 of Rebecca Hoyle [4] is a student-friendly introduction to the treatment of bifurca-
tions in presence of symmetries, worked out in full detail and generality in monographs
by Golubitsky, Stewart and Schaeffer [6], Golubitsky and Stewart [7] and Chossat and
Lauterbach [8]. Term ‘stabilizer’ is used, for example, by Broer et al. [9] to refer to a
periodic orbit with Z, symmetry; they say that the relative or pre-periodic segment is in
this case called a ‘short periodic orbit.” In Efstathiou [10] a subgroup of ‘short periodic
orbit’ symmetries is referred to as a ‘nontrivial isotropy group or stabilizer” Chap. 8 of
Govaerts [11] offers a review of numerical methods that employ equivariance with respect
to compact, and mostly discrete groups. (continued in remark 10.1)

Remark 9.2 Symmetries of the Lorenz equation:  (continued from remark 2.3) Af-
ter having studied example 9.14 you will appreciate why ChaosBook . org starts out with
the symmetry-less Rossler flow (2.18), instead of the better known Lorenz flow (2.13).
Indeed, getting rid of symmetry was one of Rdssler’s motivations. He threw the baby
out with the water; for Lorenz flow dimensionalities of stable/unstable manifolds make
possible a robust heteroclinic connection absent from Réssler flow, with unstable mani-
fold of an equilibrium flowing into the stable manifold of another equilibrium. How such
connections are forced upon us is best grasped by perusing the chapter 13 “‘Heteroclinic
tangles’ of the inimitable Abraham and Shaw illustrated classic [12]. Their beautiful
hand-drawn sketches elucidate the origin of heteroclinic connections in the Lorenz flow
(and its high-dimensional Navier-Stokes relatives) better than any computer simulation.
Miranda and Stone [13] were first to quotient the C, symmetry and explicitly construct
the desymmetrized, ‘proto-Lorenz system,” by a nonlinear coordinate transformation into
the Hilbert-Weyl polynomial basis invariant under the action of the symmetry group [ 14].
For in-depth discussion of symmetry-reduced (‘images’) and symmetry-extended (‘cov-
ers”) topology, symbolic dynamics, periodic orbits, invariant polynomial bases etc., of
Lorenz, Rossler and many other low-dimensional systems there is no better reference
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than the Gilmore and Letellier monograph [15]. They interpret [16] the proto-Lorenz
and its ‘double cover’ Lorenz as ‘intensities’ being the squares of ‘amplitudes,” and call
quotiented flows such as (Lorenz)/C, ‘images.” Our ‘doubled-polar angle’ visualization
figure 11.8 is a proto-Lorenz in disguise; we, however, integrate the flow and construct
Poincaré sections and return maps in the original Lorenz [X, y, z] coordinates, without any
nonlinear coordinate transformations. The Poincaré return map figure 11.9 is reminiscent
in shape both of the one given by Lorenz in his original paper, and the one plotted in a
radial coordinate by Gilmore and Letellier. Nevertheless, it is profoundly different: our
return maps are from unstable manifold — itself, and thus intrinsic and coordinate inde-
pendent. In this we follow ref. [17]. This construction is necessary for high-dimensional
flows in order to avoid problems such as double-valuedness of return map projections on
arbitrary 1-dimensional coordinates encountered already in the Rossler example of fig-
ure 3.3. More importantly, as we know the embedding of the unstable manifold into the
full state space, a periodic point of our return map is - regardless of the length of the cycle
- the periodic point in the full state space, so no additional Newton searches are needed.
In homage to Lorenz, we note that his return map was already symmetry-reduced: as z
belongs to the symmetry invariant Fix (G) subspace, one can replace dynamics in the full
space by z, 7, - - -. That is G-invariant by construction [15]. %

Remark 9.3 Examples of systems with discrete symmetries. Almost any flow
of interest is symmetric in some way or other: the list of examples is endless, we list
here a handful that we found interesting. One has a C, symmetry in the Lorenz system
(remark 2.3), the Ising model, and in the 3-dimensional anisotropic Kepler potential [ 18,
19, 20], a D4 = C4, symmetry in quartic oscillators [21, 22], in the pure x2y? potential [23,
24] and in hydrogen in a magnetic field [25], and a D, = Cy, = V4 = C, x C, symmetry
in the stadium billiard [26]. A very nice nontrivial desymmetrization is carried out in
ref. [27]. *° An example of a system with D3 = Cg, symmetry is provided by the motion
of a particle in the Hénon-Heiles potential [28, 29, 30, 31] **

1 1. .
V(r,6) = Erz + §r3 sin(36) .

Our 3-disk coding is insufficient for this system because of the existence of elliptic islands
and because the three orbits that run along the symmetry axis cannot be labeled in our
code. As these orbits run along the boundary of the fundamental domain, they require the
special treatment [31] discussed in sect. 9.4.1. A partial classification of the 67 possible
symmetries of solutions of the plane Couette flow of example 9.7, and their reduction 5
conjugate classes is given in ref. [32].

Evangelos Siminos, Jan 28 2010: According to Byron and Fuller 2], which |
find a very reliable and carefully written book, what I use right now is the conven-
tion most physicists use for active transformations. This I’ve also used in thesis
and 1’d be happy to stick with this. With this choice small angle, active rotations,
are counterclockwise, so I’ve updated our orientation condition as well.

29predrag: ChaosBook: link this to the figures (what figures?)

%0Predrag: I think ref. [27] is not the one | mean - they did a nice decomposition on dodecahedron
in some publication? “An irreducible representation of S5 may become reducible when restricted
to 915 ... group of motions of an icosahedron (or, equivalently, of a dodecahedron)...”

31predrag: make into exercise: reduce Hénon-Heiles symmetry
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PC 2010-01-28: Thanks, let’s make sure that we have the right sign in dis-

crete.tex, continuous.tex . Never seen Byron and Fuller.
NPRIVATE
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9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

Polynomials invariant under discrete operations on R2.

Prove that the {e, o}, {e,C¥?}, {e, P} and {e, o, CY/2, P}-
invariant polynomial basis and syzygies are those listed
in example 9.18.

Gyx ¢ G. Prove that the set G as defined in (9.17) is a
subgroup of G.

Transitivity of conjugation.  Assume that g1, g2, g3 €
G and both g, and g, are conjugate to g3. Prove that g; is
conjugate to gs.

Isotropy subgroup of gx. Prove that for g € G, x and
gx have conjugate isotropy subgroups:
Ggx = 9 G« g_l

Ds: symmetries of an equilateral triangle.  Consider
group D3 = Cgy, the symmetry group of an equilateral tri-
angle:

2 3

(a) Listthe group elements and the corresponding geo-
metric operations

(b) Find the subgroups of the group D3.

(c) Find the classes of D3 and the number of elements
in them, guided by the geometric interpretation of
group elements. Verify your answer using the defi-
nition of a class.

(d) Listthe conjugacy classes of subgroups of D3. (con-
tinued as exer:FractRot and exercise 21.3)

Reduction of 3-disk symbolic dynamics to binary. (con-

tinued from exercise 1.1)

() Verify that the 3-disk cycles
{(12,13,23},{123,132}, {1213 + 2 perms.},
{121 232 313 + 5 perms.}, {121 323+ 2 perms.}, - - -,
correspond to the fundamental domain cycles 0, 1,

01, 001, 011, - - - respectively.

(b) Check the reduction for short cycles in table 12.2
by drawing them both in the full 3-disk system and
in the fundamental domain, as in figure 9.9.

exerDiscrete - 12feb2012

boyscout version14.4, Mar 19 2013
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(c) Optional: Can you see how the group elements listed Lofrlenzl ;
in table 12.2 relate irreducible segments to the fun- ow:symmetry

. - . Lorenz flow!polar
m m ? i
damental domain periodic orbits? coordinates

(continued in exercise 12.7) Lorenz flow
o . Lorenz
9.7. Cy-equivariance of Lorenz system. Verify that the flow!proto-Lorenz
vector field in Lorenz equations (2.13)
X oy —Xx)
X:v(x):{y ={px—y—xz} (9.28)
z Xy — bz

is equivariant under the action of cyclic group C, = {e,C'/?}
acting on R® by a r rotation about the z axis,

Cl/z(x’ y’ Z) = (_X’ _y7 Z) )

as claimed in example 9.5. (continued in exercise 9.8)

9.8. Lorenz system in polar coordinates: group theory.
Use (B.3), (B.4) to rewrite the Lorenz equation (9.28) in
polar coordinates (r, 8, z), where (x,y) = (rcosé,r siné).

1. Show that in the polar coordinates Lorenz flow takes

form
o= %(—0'—1+(0'+p—2)3in2«9
+(1 — o) cos 26)
0 = %(—0'+p—z+(0'—l)sin29
+(o + p — 2) cos 26)
z = -bhz+ r—Zsin29. (9.29)

2

2. Argue that the transformation to polar coordinates
is invertible almost everywhere. Where does the in-
verse not exist? What is group-theoretically special
about the subspace on which the inverse not exist?

3. Show that this is the (Lorenz)/C, quotient map for
the Lorenz flow, i.e., that it identifies points related
by the = rotation in the [x, y] plane.

4. Rewrite (9.28) in the invariant polynomial basis of
example 9.18 and exercise 9.29.

5. Show that a periodic orbit of the Lorenz flow in po-
lar representation (9.29) is either a periodic orbit or
a relative periodic orbit (9.25) of the Lorenz flow in
the (x,y, z) representation.

By going to polar coordinates we have quotiented out the
n-rotation (x,y,z) — (=x, -y, z) symmetry of the Lorenz
equations, and constructed an explicit representation of
the desymmetrized Lorenz flow.

9.9. Proto-Lorenz system. Here we quotient out the
C, symmetry by constructing an explicit “intensity” rep-
resentation of the desymmetrized Lorenz flow, following
Miranda and Stone [13].
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1. Rewrite the Lorenz equation (2.13) in terms of vari-
ables

U, v,2) = (X* - y*,2xy,2), (9.30)
show that it takes form

u —(c+Du+(-rv+(1-0)N+vz
{v} [(r—o-)u—(a-+1)v+(r+a-)N—uz—uN
z
N

v/2 - bz
Vu2 +v2, (9.31)

2. Show that this is the (Lorenz)/C, quotient map for
the Lorenz flow, i.e., that it identifies points related
by the = rotation (9.20).

3. Show that (9.30) is invertible. Where does the in-
verse not exist?

4. Compute the equilibria of proto-Lorenz and their
stabilities. Compare with the equilibria of the Lorenz
flow.

5. Plot the strange attractor both in the original form
(2.13) and in the proto-Lorenz form (9.31)

45,
40t
35 \|f
30/

=2 25;
20/
15t
10t

0 200 490 600 800

for the Lorenz parameter values oo = 10, b = 8/3,
p = 28. Topologically, does it resemble more the
Lorenz, or the Raossler attractor, or neither? (plot
by J. Halcrow)

7. Show that a periodic orbit of the proto-Lorenz is
either a periodic orbit or a relative periodic orbit of
the Lorenz flow.

8. Show that if a periodic orbit of the proto-Lorenz
is also periodic orbit of the Lorenz flow, their Flo-
quet multipliers are the same. How do the Floquet
multipliers of relative periodic orbits of the Lorenz
flow relate to the Floquet multipliers of the proto-
Lorenz?

9 What does the volume contraction formula (4.40)
look like now? Interpret.
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10. Show that the coordinate change (9.30) is the same
as rewriting (9.29) in variables

(u,v) = (r?cos26,r?sin26),

i.e., squaring a complex number z = x + iy, z% =
u+iv.

11. How is (9.31) related to the invariant polynomial
basis of example 9.18 and exercise 9.29?
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Chapter 10

Relativity for cyclists

Physicists like symmetry more than Nature
— Rich Kerswell

HAT IF THE LAWS OF MOTION retain their form for a family of coordinate fra-
mes related by continuous symmetries? The notion of ‘fundamental do-
main’ is of no use here. If the symmetry is continuous, the dynamical

system should be reduced to a lower-dimensional, desymmetrized system, with
‘ignorable’ coordinates eliminated (but not forgotten).

We shall describe here two ways of reducing a continuous symmetry. 2 In
the “‘method of slices’” or *‘moving frames’ of sect. 10.4 we slice the state space in
such a way that an entire class of symmetry-equivalent points is represented by a
single point. In the Hilbert polynomial basis approach of sect.10.5 we replace the
equivariant dynamics by the dynamics rewritten in terms of invariant coordinates.
In either approach we retain the option of computing in the original coordinates,
and then, when done, projecting the solution onto the symmetry reduced state
space.

Instead of writing yet another tome on group theory, in what follows we con-
tinue to serve group theoretic nuggets on need-to-know basis, through a series of
pedestrian examples (but take a slightly higher, cyclist road in the text proper).

10.1 Continuous symmetries

First of all, why worry about continuous symmetries? Here is an example of
the effect a continuous symmetry has on dynamics (for physics background, see
remark 10.2). 3

exercise 10.1
exercise 10.8

!Predrag: remember to rescue chapter relative.tex 22jul2006:

2Predrag: Emphasize the two situation in which we must reduce (i) To partition the state space,
(if) 1t is automatic for trace formulas, see chapter 25.

SPredrag: figure 10.1: Replot it. Label axes, use legible fonts in all figures.
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Figure 10.1: Atypical {3, X, z} trajectory of the com-
plex Lorenz flow, with a short trajectory of figure 10.5
whose initial point is close to the relative equilibrium
TW, superimposed. See also figure 10.8. (R. Wilczak)

Example 10.1 Complex Lorenz flow:  Consider a complex generalization of Lorenz
equations (2.13),

>
Il

—-oX+0Y, y = (o—2)x—ay
(xy* + Xy)/2 =Dz, (10.1)

N.
Il

where X,y are complex variables, z is real, while the parameters o, b are real and
p = p1+ip2, a=1—ie are complex. Recast in real variables, this is a set of five coupled
ODEs

X1 = —0oX1+o0Y1

Xo = —0X2+0Y2

Y1 = (p1—2)X1 —p2X2 — Y1 —€Y2

Yo = paXat(p1—2)X2+ey1 -y

z = =bz+xy1+ Xy2. (10.2)

In all numerical examples that follow, the parameters will be set to p; = 28, p, =0, b =
8/3, o = 10, e = 1/10, unless explicitly stated otherwise. As we shall show in exam-
ple 10.7, this is a dynamical system with a continuous SO(2) (but no discrete) symmetry.

Figure 10.1 offers a visualization of its typical long-time dynamics. What is
wrong with this picture? It is a mess. As we shall show here, the attractor is built up by
a nice ‘stretch & fold’ action, but that is totally hidden from the view by the continuous
symmetry induced drifts. In the rest of this chapter we shall investigate various ways
of ‘quotienting’ this SO(2) symmetry, and reducing the dynamics to a 4-dimensional
reduced state space. We shall not rest until we attain the simplicity of figure 10.15, and
the bliss of the 1-dimensional return map of figure 10.18.

)lex Lorenz flow

We shall refer to the component of the dynamics along the continuous sym-
metry directions as a ‘drift.” In a presence of a continuous symmetry an orbit
explores the manifold swept by combined action of the dynamics and the sym-
metry induced drifts. Further problems arise when we try to determine whether
an orbit shadows another orbit (see the figure 13.1 for a sketch of a close pass
to a periodic orbit), or develop symbolic dynamics (partition the state space, as
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in chapter 11): here a 1-dimensional trajectory is replaced by a (N + 1)-dimens-
ional ‘sausage,” a dimension for each continuous symmetry (N being the total
number of parameters specifying the continuous transformation, and ‘1’ for the
time parameter t). How are we to measure distances between such objects? In
this chapter we shall learn here how to develop more illuminating visualizations
of such flow than figure 10.1, ‘quotient’ symmetries, and offer computationally
straightforward methods of reducing the dynamics to lower-dimensional, reduced
state spaces. The methods should also be applicable to high-dimensional flows,
such as translationally invariant fluid flows bounded by pipes or planes (see ex-
ample 10.4).

drift, along group
tangent

sausage, $(N$+$1)$-
dim“-ens“-ion“-al

Lielgroup

group!Lie

Peter-Weyl theorem

Weyl!Peter-Weyl
theorem

reducible
representation

representation!reducible

SO(2)@S0(2)
But first, a lightning review of the theory of Lie groups. The group-theoretical
concepts of sect. 9.1 apply to compact continuous groups as well, and will not be
repeated here. All the group theory that we shall need is in principle contained in
the Peter-Weyl theorem, and its corollaries: A compact Lie group G is completely
reducible, its representations are fully reducible, every compact Lie group is a
closed subgroup of a unitary group U(n) for some n, and every continuous, unitary,
irreducible representation of a compact Lie group is finite dimensional.

Example 10.2 Special orthogonal group SO(2) (or S') is a group of length-
preserving rotations in a plane. ‘Special’ refers to requirement that detg = 1, in con-
tradistinction to the orthogonal group O(n) which allows for length-preserving inversions
through the origin, with detg = —1. A group element can be parameterized by angle ¢,
with the group multiplication law g(¢”)g(¢) = g(¢’ + ¢), and its action on smooth periodic
functions u(¢ + 2r) = u(¢) generated by

-4

T (10.3)

g(¢) =e’T,
Expand the exponential, apply it to a differentiable function u(¢), and you will recognize
a Taylor series. So g(¢’) shifts the coordinate by ¢’, g(¢") u(¢) = u(¢’ + ¢).

UPRIVATE
exercise 10.41
Example 10.3 Translation group: Differential operator T in (10.3) is reminieRINATE
of the generator of spatial translations. The ‘constant velocity field’ v(x) = v = ¢ -
T’ acts on Xj by replacing it by the velocity vector cj. It is easy to verify by Taylor
expanding a function u(x) that the time evolution is nothing but a coordinate translation
by (time x velocity): 4
e Tu(x) = e Fu(x) = u(x — 7¢). (10.4)
As X is a point in the Euclidean RY space, the group is not compact. In general, a

sequence of time steps in time evolution always forms an abelian Lie group, albeit
never as trivial as this free ballistic motion.

If the group actions consist of N rotations which commute, for example act on
an N-dimensional cell with periodic boundary conditions, the group is an abelian group
that acts on a torus TN, ® 67

4Predrag: introduce traveling wave here already?

SPredrag: add Barkley definition of the Euclidean group E(2).
SPredrag: make up an exercise. Rebecca blog?

"Predrag: add a picture of a plane Couette flow.
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Example 10.4 Continuous symmetries of the plane Couette flow. (cont?fded) @S0(2)

from example 9.7) The plane Couette flow is a Navier-Stokes flow bounded b}/ Couette
countermoving planes, in a cell periodic in streamwise and spanwise directions. E g sy mmet(/es
solution of Navier-Stokes equations belongs, by the SO(2) x SO(2) symmetry, 68" sentation!linear
torus T2 of equivalent solutions. Furthermore these tori are interrelated by a discréte Givariant@$*Group$-
group of spanwise and streamwise flips of the flow cell. (continued in example 10£Uivariant

grouporbit

Let G be a group, and gM — M a group action on the state space M. The slice
centralizer

[d xd] matrices g acting on vectors in the d-dimensional state space M form a fixed-point subspace

linear representation of the group G. If the action of every element g of a group G G-fixed @G-fixed

commutes with the flow fixed point!under G
invariant!points

gv(x) =v(@x),  gf"(x) = f7(9x), (10.5)

G is a symmetry of the dynamics, and, as in (9.7), the dynamics is said to be
invariant under G, or G-equivariant.

In order to explore the implications of equivariance for the solutions of dyn-
amical equations, we start by examining the way a compact Lie group acts on state
space M. For any x € M, the group orbit My of x is the set of all group actions
(see page 183 and figure 10.2) 8

My ={gx|geG}. (10.6)
UPRIVATE

Definition: Group orbit The orbit of a point x under the group G is the set of
all points that x is mapped to under the groups actions

My ={gx:geG}. (10.7)

The points in the fixed-point subspace Mg are those points whose group orbit
consists of only the point itself (M = {x}).

Definition: Fixed-point subspace ° My or a ‘centralizer’ of a subgroup H c
G, G a symmetry of dynamics, is the set of all state space points left H-fixed,
point-wise invariant under action of the subgroup

My =Fix(H) ={xe M:hx=xforallheH}. (10.8)

Points in the fixed-point subspace Mg are fixed points of the full group action.
They are called invariant points,

Mg =Fix(G) ={xe M:gx=xforall g € G}. (10.9)

8Predrag: Marsdenites use Orb(x) for My
®Predrag: repeat from discrete, probably remove again
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Figure 10.2: (a) The group orbit My of state
space point x(0), and the group orbit My, reached
by the trajectory x(t) time t later. As any point on
the manifold M, is physically equivalent to any
other, the state space is foliated into the union of
group orbits. (b) Symmetry reduction M — M
replaces each full state space group orbit M by a
single point X € M.

(b)

If a point is an invariant point of the symmetry group, by the definition of
equivariance (10.29) the velocity at that point is also in Mg, so the trajectory
through that point will remain in Mg. Mg is disjoint from the rest of the state
space since no trajectory can ever enter or leave it. The fixed-point subspace of
the SO(2) symmetry group of the complex Lorenz equations is the z-axis (see
example 10.6). The velocity (10.2) at a point on the z-axis points only in the
z-direction and so the trajectory remains on the z-axis for all times, as expected.

As we saw in example 10.3, the time evolution itself is a noncompact 1-
parameter Lie group. Thus the time evolution and the continuous symmetries
can be considered on the same Lie group footing. For a given state space point
x a symmetry group of N continuous transformations together with the evolution
in time sweeps out, in general, a smooth (N-+1)-dimensional manifold of equiv-
alent solutions (if the solution has a nontrivial symmetry, the manifold may have
a dimension less than N + 1). For solutions p for which the group orbit of x, is
periodic in time Tp, the group orbit sweeps out a compact invariant manifold M,.
The simplest example is the N = 0, no symmetry case, where the invariant mani-
fold M, is the 1-torus traced out by a periodic trajectory p. If M is a smooth C*
manifold, and G is compact and acts smoothly on M, the reduced state space can
be realized as a ‘stratified manifold,” meaning that each group orbit (a ‘stratum’)
is represented by a point in the reduced state space, see sect.10.4. Generalizing
the description of a non—-wandering set of sect. 2.1.1, we say that for flows with
continuous symmetries the non—-wandering set Q of dynamics @.3) is the closure
of the set of compact invariant manifolds M,. Without symmetries, we visualize
the non—-wandering set as a set of points; in presence of a continuous symmetry,
each such “point’ is a group orbit.

10.1.1 Lie groups for pedestrians

[...] which is an expression of consecration of ‘angular
momentum.’

— Mason A. Porter’s student
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Definition: A Lie group is a topological group G such that (i) G has the struc-
ture of a smooth differential manifold, and (ii) the composition map G xG — G :
(9,h) — ght is smooth, i.e., C* differentiable.

Do not be mystified by this definition. Mathematicians also have to make
a living. Historically, the theory of compact Lie groups that we will deploy here
emerged as a generalization of the theory of SO(2) rotations, i.e., Fourier analysis.
By a ‘smooth differential manifold” one means objects like the circle of angles that
parameterize continuous rotations in a plane, example10.2, or the manifold swept
by the three Euler angles that parameterize SO(3) rotations.

Definition: A compact Lie group isal[... DEFINE]

An element of a compact Lie group continuously connected to identity can be
written as

g(¢):e¢—r7 ¢'T:Z¢3Ta’ a:1729"'9N7 (1010)

where ¢ - T is a Lie algebra element, and ¢, are the parameters of the transforma-
tion. Repeated indices are summed throughout this chapter, and the dot product
refers to a sum over Lie algebra generators. The Euclidian product of two vectors
x,y will be indicated by x-transpose times y, i.e., X'y = Z? Xiyi. Unitary trans-
formations exp(¢ - T) are generated by sequences of infinitesimal steps of form

906p) ~1+6¢-T, bRV, |6¢ <1, (10.11)

where T,, the generators of infinitesimal transformations, are a set of linearly
independent [d xd] anti-hermitian matrices, (T,)" = —Ta, acting linearly on the
d-dimensional state space M. In order to streamline the exposition, we post-
pone discussion of combining continuous coordinate transformations with the
discrete ones to sect. 10.2.1. 1% Unitary and orthogonal groups (as well as their
subgroups) are defined as groups that preserve these ‘length’ norms, (gx|gx) =
(X|x), and infinitesimally their generators (??) induce no change in the norm,
(TaX|X) + (X|Tax) = 0, hence the Lie algebra generators T are antisymmetric
for orthogonal groups, and antihermitian for unitary ones,

T =-T. (10.12)

This antisymmetry of generators implies that the action of the group on vector x
is locally normal to it,

(Xta(x)y = 0. (10.13)

Opredrag: find “insert B” on equivariance...?
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SO(2)@*SOn2
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dot product
Lielalgebra
generator!Lie algebra

UJPRIVATE
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exercise 10.2
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tangent!field
group!tangent field
tangent!space

Figure 10.3: Lie algebra fields {t;,---,ty} span the
tangent space of the group orbit M at state space point
X, see (10.6).

A group tangent (10.15) is a vector both in the group tangent space and in
the state space. We shall indicate by (t(X)|ty(y)) the sum over state space inner
product only, and by

N
O = D O)ltaly)) = (IT*- Ty) (10.14)
a=1
the sum over both group and spatial dimensions.
NPRIVATE
For continuous groups the Lie algebra, i.e., the set of N generators T, of
infinitesimal transformations, takes the role that the |G| group elements play in the
theory of discrete groups. The flow field at the state space point x induced by the
action of the group is given by the set of N tangent fields (see figure10.3) IPRIVATE
NPRIVATE

ta(X)i = (Ta)ijXj (10.15)

which span the tangent space. Any representation of a compact Lie group G is
fully reducible, and invariant tensors constructed by contractions of T are useful
for identifying irreducible representations. The simplest such invariant is

T -T=) c¥ 1@, (10.16)

where Cé”) is the quadratic Casimir for irreducible representation labeled «, and
1@ is the identity on the e-irreducible subspace, 0 elsewhere. The dot product of
two tangent fields is thus a sum weighted by Casimirs,

t()7 - t(x) = Z cx 6i(}’)x’j : (10.17)

a
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Example 10.5 SO(2) irreducible representations:  (continued from example 1@@22 ERSO(2)lirreducible
pand a smooth periodic function u(¢ + 2r) = u(¢) as a Fourier series répresentation

generator!anti-
N hermitian
. ti
u(g) =ao + Z (am COSM¢ + by siNMeY) . aa%@rmitian!generator
m=1 SO(2)@S0(2)
] [-
The matrix representation of the SO(2) action (10.3) on the mth Fourier coefficierge@n’@lef;tigggnu
(8. bm) 5 anti-
hermitian!generator
m) _ cosmg’  sinmg’
9" (¢) = ( _sinm¢’  cosmg’ (10.19)
with the Lie group generator
m) _ 0 m
™ = ( “m 0 ) . (10.20)
The SO(2) group tangent (10.15) to state space point u(¢) on the mth invariant sub-
space is
M (y) = b
t™(u) = m . (10.21)
—am

The L2 norm of t(u) is weighted by the SO(2) quadratic Casimir (10.16), C{" = m?,

00

9§ g—i’ (Tu(®) Tu@r — ¢) = Z (a2 +1b2) (10.22)

m=1

and converges only for sufficiently smooth u(¢). What does that mean? We saw in
(10.4) that T generates translations, and by (10.20) the velocity of the mth Fourier
mode is m times higher than for the m = 1 component. If u™| does not fall off faster
the 1/m, the action of SO(2) is overwhelmed by the high Fourier modes.

Example 10.6 SO(2) rotations for complex Lorenz equations: Substituting the
Lie algebra generator ™

(10.23)

_i
Il
|
OOOHO
[oNeoNoNoN
|
O'_\OOO
OO RFrrOOoO
[cNoNoNoNe)

acting on a 5-dimensional space (10.2) into (10.10) yields a finite angle SO(2) rotation:

cos¢ sing 0 0 0
—sing cos¢ 0 0 O
g(p) = 0 0 cos¢ sing O (10.24)
0 0 -—sing cos¢ O
0 0 0 0 1

Upredrag: is the sign standard?
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From (10.19) we see that the action of SO(2) on the complex Lorenz equations@_t%ﬂét!Lie groups
space decomposes into m = 0 G-invariant subspace (z-axis) and m = 1 subspact-WAgfoup

muiltiplicity 2. group!Lie
. . » + . Peter-Wey!l theorem
The generator T is indeed anti-hermitian, T" = =T, and the group is co f!Peter-WeyI

its elements parametrized by ¢ mod 2r. Locally, at x € M, the infinitesimal action of rem

group is given by the group tangent field t(x) = Tx = (X2, —X1, Y2, —Y1, 0). In other weddsible

the flow induced by the group action is normal to the radial direction in the (x1, X,) &fafesentation

(y1,Y2) planes, while the z-axis is left invariant. representation!reducible

fast track:
W sect. 10.2, p. 215
10.1.2 Lie groups for cyclists

Henriette Roux: “Why do you devote to Lie groups only
a page, while only a book-length monograph can do it
justice?” A: “ChaosBook tries its utmost to minimize
the Gruppenpest jargon damage, which is a total turnoft
to our intended audience of working plumbers and elec-
tricians. The sufferings of our master plumber Fabian
Waleffe while reading chapter 9 - World in a mirror are
chicken feed in comparison to the continuous symmetry
reduction nightmare that we embark upon here.”

appendix A.6

All the group theory that we shall need is in principle contained in the Peter-Weyl (ﬁ@
theorem, and its corollaries: A compact Lie group G is completely reducible, its
representations are fully reducible, every compact Lie group is a closed subgroup

of a unitary group U(n) for some n, and every continuous, unitary, irreducible
representation of a compact Lie group is finite dimensional.

Here comes all of the theory of Lie groups in one quick serving. You will live
even if you do not digest this section, or, to spell it out; skip this section unless
you already know the theory of Lie algebras.

The [d xd] matrices g acting on vectors in the state space M form a linear
representation of the group G. Tensors transform as

W< = g g; 7 g4 1 (10.25)

A multilinear function h(g,T, ..., s) is an invariant function if (and only if) for any
transformation g € G and for any set of vectors g,r, s, ... it is unchanged by the
coordinate transformation

h(@q, r,...gs) = h(A,F,....S) = hap.. “CPrP---s. (10.26)
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Examples of such invariant functions are the length r(xy = 6ij xixj and the volume invariant!tensor
V(x,y,2) = éxyjz. Substitute the infinitesimal form of group action (10.11) }_e-ns;o[hnl;/anant
into (10.25), keep the linear terms. In the index-notation longhand, the Lie algebra Ietalgenra

. structure constant
generator acts on each index separately,

(Ta)i hy )+ (Ta) by o = (Ta)lohy; ¥+ = 0. (10.27)

Hence the tensor hij... ~Kjs invariant if T;h = 0, i.e., the N generators T, ‘annihi-
late’ it.

As one does not want the symmetry rules to change at every step, the genera-
tors Tag,a=1,2,...,N, are themselves invariant tensors:

(Ta) | = ' 9 Gaar (Tar) (10.28)

where gap = [e“¢"°]ab is the adjoint [N x N] matrix representation of g € G. The
[dxd] matrices T are in general non-commuting, and from (10.27) it follows that
they close N-element Lie algebra

[Ta, To]l = TaTp = TpTa = —Canc e, a,b,c=1,2,..,N,
where the fully antisymmetric adjoint representation hermitian generators

[Cc]ab = Cabc = _Cbac = —Cacb

are the structure constants of the Lie algebra. *?

As we will not use non-abelian Lie groups in this chapter, we omit the deriva-
tion of the Jacobi relation between Cyc’s, and you can safely ignore all this talk of
tensors and Lie algebra commutators as far as the pedestrian applications at hand
are concerned.

10.1.3 Equivariance under infinitesimal transformations

A flow x = v(x) is G-equivariant (10.5), if symmetry transformations commute

with time evolutions .
exercise 10.4

exercise 10.5

v(x) = g7t v(gx), forallgeG. (10.29)

For an infinitesimal transformation (10.11) the G-equivariance condition becomes

v(x)=(1—¢-T)v(x+¢-Tx)+m:v(x)—¢'Tv(x)+%¢-Tx+m.

2pPredrag: recheck Cy,c Normalization
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The v(x) cancel, and ¢, are arbitrary. Denote the group flow tangent field at x by
ta(X)i = (Ta)ijXj. Thus the infinitesimal, Lie algebra G-equivariance condition is

ta(v) - A(X) ta(x) = 0, (10.30)

where A = dv/ox is the stability matrix (4.3). If case you find such learned
remarks helpful: the left-hand side of (10.30) is the Lie derivative of the dynamical
flow field v along the direction of the infinitesimal group-rotation induced flow
ta(X) = TaX,

L,V =

(Ta - (%(Tax)) v(y) (10.31)

y=x

The equivariance condition (10.30) states that the two flows, one induced by the
dynamical vector field v, and the other by the group tangent field t, commute if
their Lie derivatives (or the ‘Lie brackets * or ‘Poisson brackets’) vanish. 2

Example 10.7 Equivariance of complex Lorenz flow:

group!tangent field

tangent!field, group

Lie!derivative

Lie!bracket

Poisson!bracket

SO(2)@S0(2)

equivariance!complex@complex
Lorenz flow

complex Lorenz
flow!equivariance

symmetry!solution
solution!symmetry

exercise 10.6
exercise 10.7
exercise 10.12

That complex Lorenz flow

(10.2) is equivariant under SO(2) rotations (10.24) can be checked by substituting the
Lie algebra generator (10.23) and the stability matrix (4.3) for complex Lorenz flow

(10.2),
- 0 o 0 0
0 -0 0 o 0
A=l ppr-2 -p2 -1 -e -x1 |, (10.32)
p2 p1—2 e -1 -Xx
Y1 Y2 X1 X2 —b

into the equivariance condition (10.30). Considering that t(v) depends on the full set of
equations (10.2), and A(X) is only its linearization, this is not an entirely trivial statement.

For the parameter values (10.2) the flow is strongly volume contracting (4.28),
5
AV = Z/li(x, )= —b—2(c+1) = -24-2/3,
i=1

at a coordinate-, p- and e-independent constant rate.

Checking equivariance as a Lie algebra condition (10.30) is easier than checking
it for global, finite angle rotations (10.29).

10.2 Symmetries of solutions

predrag: define directional derivative Df (x)¢ limy_,o {¢H9=1¢)
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Let v(x) be the dynamical flow, and 7 the trajectory or ‘time-r forward map’ of
an initial point xg,

% —v(x),  x(r) = F7(X0) = %o + fo g v(x(T). (10.34)

As discussed in sect. 9.2, solutions x(r) of an equivariant system can satisfy all
of the system’s symmetries, a subgroup of them, or have no symmetry at all. For
a given solution x(t), the subgroup that contains all symmetries that fix x (that
satisfy gx = x) is called the isotropy (or stabilizer) subgroup of x. A generic
ergodic trajectory x(r) has no symmetry beyond the identity, so its isotropy group
is {e}, but recurrent solutions often do. At the other extreme is equilibrium, whose
isotropy group is the full symmetry group G.

1415 16 The simplest solutions are the equilibria or steady solutions @.9).

Definition: Equilibrium xgq = MEq is a fixed, time-invariant solution,

0,
XEQ + f dr’ V(X(T’)) = XEQ - (1035)
0

V(XEQ)

X(Xeq, 7)
An equilibrium with full symmetry,
9 XEQ = XEQ forallg e G,

lies, by definition, in Fix (G) subspace subspace (10.8), for example the x5 axis in
figure 10.4 (a). The multiplicity of such solution is one. An equilibrium xq with
symmetry Ggq smaller than the full group G belongs to a group orbit G/Ggq. If
G is finite there are |G|/|Ggg| equilibria in the group orbit, and if G is continuous
then the group orbit of x is a continuous family of equilibria of dimension dim G —
dim Ggq. For example, if the angular velocity c in figure 10.4 (b) equals zero, the
group orbit consists of a circle of (dynamically static) equivalent equilibria.

Definition: Relative equilibrium solution xrw(7) € Myw: the dynamical flow
field points along the group tangent field, with constant ‘angular’ velocity c, and
the trajectory stays on the group orbit, see figure 10.4 (a): 1/

14predrag: main point; either group action moves trajectories around the invariant torus, or it
keeps them fixed, in disjoint families

15Siminos: | still think one needs to mention the direct product group G x S* because then one
can regard the symmetry group of a set-wise symmetric cycle as an stabilizer of G x S*. Proposed
addition in order to tell the full story: “Thus we can think of the symmetry group as the direct
product group G x S* where S* is the circle group parametrized by 7 € [0, T,] and acting on the
time variable by shifting time by 7. A set-wise symmetric cycle then has a non-trivial stabilizer
Gp,cGxSL”

6predrag: might want to define semidirect product such as the Euclidean group E(2) of transla-
tions and rotations in a plane

Predrag: experiment with labels other than TW
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Figure 10.4: (a) A relative equilibrium orbit starts out
at some point x(0), with the dynamical flow field v(x) =
¢ - t(x) pointing along the group tangent space. For the X,
SO(2) symmetry depicted here, the flow traces out the
group orbit of x(0) in time T = 2x/c. (b) An equilib-
rium lives either in the fixed Fix (G) subspace (xz axis
in this sketch), or on a group orbit as the one depicted
here, but with zero angular velocity c. In that case the
circle (in general, N-torus) depicts a continuous family
of fixed equilibria, related only by the group action.

v=cg@t

Figure 10.5: {xg, Xz, 2} plot of the complex Lorenz
flow with initial point close to TW;. In figure 10.1 this
relative equilibrium is superimposed over the strange
attractor. (R. Wilczak)

c-t(x), X € Mrw
g(-7c) x(0) = e "¢Tx(0). (10.36)

v(X)
X(7)

A traveling wave
X(r) = g(—ct) Xrw = Xrw — €7, C€R (10.37)

is a special type of a relative equilibrium of equivariant evolution equations, where
the action is given by translation (10.4), g(y) X(0) = x(0) + y. A rotating wave is
another special case of relative equilibrium, with the action is given by angular ro-
tation. By equivariance, all points on the group orbit are equivalent, the magnitude
of the velocity c is same everywhere along the orbit, so a ‘traveling wave’ moves
at a constant speed. *® For an N > 1 trajectory traces out a line within the group
orbit. As the c; components are generically not in rational ratios, the trajectory
explores the N-dimensional group orbit (L0.6) quasi-periodically. In other words,
the group orbit g(r) x(0) coincides with the dynamical orbit x(r) € Mrw and is
thus flow invariant.

traveling wave
rotating wave
grouplorbit, slice

X(®=9()x(0)

remark 10.3

Example 10.8 A relative equilibrium: For complex Lorenz equations and our
canonical parameter values of (10.2) a computation yields the relative equilibrium TW;

with a representative group orbit point

(X1, X2, Y1, 0, Z)7w1 = (8.48492, 0.0771356, 8.48562, 0, 26.9999) , (10.38)

and angular velocity crw1 = 1/11. This corresponds to period Ttwi1 = 2xn/C ~ 69, so
a simulation has to be run up to time of order of at least 70 for the strange attractor in

figure 10.1 to start filling in.

8predrag: remove boxes in figure 10.5 and the like

continuous - 15june2012 boyscout version14.4, Mar 19 2013



CHAPTER 10. RELATIVITY FOR CYCLISTS 218

Figure 10.6: A periodic orbit starts out at x(0) with the
dynamical v and group tangent t flows pointing in dif-
ferent directions, and returns after time T, to the initial
point x(0) = x(T,). The group orbit of the temporal
orbit of x(0) sweeps out a (1+N)-dimensional torus, a
continuous family of equivalent periodic orbits, two of
which are sketched here. For SO(2) this is topologi-

complex Ginzburg
Landau equation

Ginzburg Landau

cally a 2-torus.

Figure 10.5 shows the complex Lorenz flow with the initial point (10.38) on the
relative equilibrium TW,. It starts out by drifting in a circle around the z-axis, but as the
numerical errors accumulate, the trajectory spirals out.

Calculation of the relative equilibrium stability reveals that it is spiral-out un-
stable, with the very short period Tspira = 0.6163. This is the typical time scale for
fast oscillations visible in figure 10.1, with some 100 turns for one circumambulation
of the TWy orbit. In that time an initial deviation from Xtw1 is multiplied by the factor
Avradial ® 500. It would be sweet if we could eliminate the drift time scale ~ 70 and focus
just on the fast time scale of ~ 0.6. That we will attain by reformulating the dynamics in
a reduced state space.

UJPRIVATE

Example 10.9 Traveling, rotating waves: Names ‘traveling waves,” and ‘rotat-
ing waves’ are descriptive of solutions of some PDEs with simple continuous symme-
tries. Complex Ginzburg Landau equation is equivariant under the action of the group
9(6,y) € G = S xR on u(x) € R?, given by translation in the domain and the rotation of
U(X), 19

cosf sind ) (10.39)

g@,y)ux) = RO uUx+y), R(0) = ( _sing coso

Hence complex Ginzburg Landau equation allows for rotating wave solutions of form
u(x, t) = R(—wt) G(x — ct) with fixed profile 0(x), velocity ¢ and angular velocity w. Trav-
eling waves are typical of translationally invariant systems such as the plane Couette

flow, example 10.11.

Definition: Periodic orbit. Let x be a periodic point on the periodic orbit p of
period T,

fTx)=x, xeM,
By equivariance, g x is another periodic point, with the orbits of x and gx either

identical or disjoint.

If gx lands on the same orbit, g is an element of periodic orbit’s symmetry
group Gp. If the symmetry group is the full group G, we are back to (10.36),
i.e., the periodic orbit is the group orbit traced out by a relative equilibrium. The

¥predrag: define Complex Ginzburg Landau
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Figure 10.7: A relative periodic orbit starts out at x(0)
with the dynamical v and group tangent t flows point-
ing in different directions, and returns to the group or- X3
bit of x(0) after time T at x(Tp) = g,x(0), a rotation of

the initial point by g,. For flows with continuous sym- PR
metry a generic relative periodic orbit (not pre-periodic
to a periodic orbit) fills out ergodically what is topo-
logically a torus, as in figure 10.6; if you are able to
draw such a thing, kindly send us the figure. As il-
lustrated by figure 10.9 (a) this might be a project for
Lucas Films.

other option is that the isotropy group is discrete, the orbit segment {x, gx} is pre-
periodic (or eventually periodic), x(0) = gyx(Tp), where T, is a fraction of the
full period, T, = T/m, and thus 20 2

x(0)
x(0)

ng(Tp)a XEMp, gp EGp
gIX(MTp) = X(T) = X(0). (10.40)

If the periodic solutions are disjoint, as in figure 10.6, their multiplicity (if G
is finite, see sect. 9.1), or the dimension of the manifold swept under the group
action (if G is continuous) can be determined by applications of g € G. They form
a family of conjugate solutions (9.19), 2

Mgp=gMpgt. (10.41)

Definition: Relative periodic orbit p is an orbit M, in state space M which
exactly recurs

Xp(0) = 9pXp(Tp).  Xp(7) € My, (10.42)

at a fixed relative period Tp, but shifted by a fixed group action g, which brings
the endpoint x,(T,) back into the initial point x,(0), see figure 10.7. The group
action gp parameters ¢ = (¢1, ¢, - - - ¢n) are referred to as “phases,” or “shifts.”
In contrast to the pre-periodic (10.40), the phase here are irrational, and the tra-
jectory sweeps out ergodically the group orbit without ever closing into a periodic
orbit. For dynamical systems with only continuous (no discrete) symmetries, the
parameters {t, ¢y, - - -, ¢n} are real numbers, ratios r/¢; are almost never rational,
likelihood of finding a periodic orbit for such system is zero, and such relative
periodic orbits are almost never eventually periodic.

2predrag: draw a plot

2predrag: caution - Ruelle uses pre-periodic differently, see sect. G.1, chapter/dahlqvist.tex

22predrag: In figure 10.6: color orbits blue; make figure tall and narrow, to attain the same SFIG
scale as in the rest; redraw it thicker
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Figure 10.8: (Figure 10.1 continued) A group portrait
of the complex Lorenz equations state space dynamics.
Plotted are relative equilibrium TW; (red), its unsta-
ble manifold (brown), equilibrium EQq, one trajectory
from the group orbit of its unstable manifold (green), 3
repetitions of relative periodic orbit 01 (magenta) and
a generic orbit (blue). (E. Siminos)

When a ‘traveling wave’ goes unstable through a Hopf bifurcation, the result-
ing motion resembles the initial traveling wave weakly periodically ‘modulated’ in
time, hence such relative periodic orbit is often called a modulated traveling wave
(MTW). These were studied, for instance, by Armbruster et al. (1988,1989), and
a detailed computation of numerous bifurcation branches of these solutions was
presented by [Brown and Kevrekidis 1996]. They find quasiperiodic secondary
Hopf bifurcations. In chaos unstable recurrent motions typically arise come from
other, stretching and folding mechanisms, so for our purposes ‘MTW?” is too nar-
row a concept, merely a particular case of a relative periodic orbit.

Relative periodic orbits are to periodic solutions what relative equilibria (trav-
eling waves) are to equilibria (steady solutions). Equilibria satisfy f(x) — x =0
and relative equilibria satisfy f7(x) — g(r) x = 0 for any 7. In a co-moving frame,
i.e., frame moving along the group orbit with velocity v(x) = ¢ - t(x), the relative
equilibrium appears as an equilibrium. Similarly, a relative periodic orbit is peri-
odic in its mean velocity ¢, = ¢, /T co-moving frame (see figure 10.9), but in the
stationary frame its trajectory is quasiperiodic. A co-moving frame is helpful in
visualizing a single ‘relative’ orbit, but useless for viewing collections of orbits,
as each one drifts with its own angular velocity. Visualization of all relative peri-
odic orbits as periodic orbits we attain only by global symmetry reductions, to be
undertaken in sect. 10.4.

lex Lorenz
wvlrelative
riodic orbit

MIPRIVATE

Example 10.10 Complex Lorenz flow with relative periodic orbit: Figure 10.8
is a group portrait of the complex Lorenz equations state space dynamics, with several

important players posing against a generic orbit in the background. 23

The unstable manifold of relative equilibrium TW, is characterized by a 2-

dimensional complex eigenvector pair, so its group orbit is a 3-dimensional. Only one
representative trajectory on it is plotted in the figure. The unstable manifold of equi-
librium EQq has one expanding eigenvalue, but its group orbit is a cone originating at
EQo. Only one representative trajectory on this cone is shown in the figure. It lands
close to TW1, and then spirals out along its unstable manifold. 3 repetitions of a short
relative periodic orbit 01 are drawn. The trajectory fills out ergodically a 2-dimensional

Z3predrag: Wirzba advice for figure 10.8. Too busy. Remove generic orbit in the background,
refer to figure 10.1 instead. TW; could be blue, easier to distinguis it from the unstable manifold

brown.
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Vy Vi V2

Figure 10.9: A relative periodic orbit of
Kuramoto-Sivashinsky flow projected on (a) the V3
stationary state space coordinate frame {vi, v, v3},
traced for four periods T,; (b) the co-moving
{V1,V,,V3} coordinate frame, moving with the
mean angular velocity ¢, = ¢,/Tp. (from ref. [1])

(a) (b)

Figure 10.10: State space group orbit of a periodic
orbit sweeps out a torus.

orbit Moi. The assignment of its symbolic dynamics label will be possible only after the

symmetry reduction, see figure 10.18 and figure 11.9.

10.2.1 Discrete and continuous symmetries together

We expect to see relative periodic orbits because a trajectory that starts on and
returns to a given torus of a symmetry equivalent solutions is unlikely to intersect
it at the initial point, unless forced to do so by a discrete symmetry. This we
will make explicit in sect. 10.4, where relative periodic orbits will be viewed as
periodic orbits of the reduced dynamics. 24 2°

If, in addition to a continuous symmetry, one has a discrete symmetry which is
not its subgroup, one does expect equilibria and periodic orbits. However, a relati-
ve periodic orbit can be pre-periodic if it is equivariant under a discrete symmetry,
as in (10.40): If g™ = 1 is of finite order m, then the corresponding orbit is periodic
with period mT,. If g is not of a finite order, a relative periodic orbit is periodic
only after a shift by gp, as in (10.42). Morally, as it will be shown in chapter 21,
such orbit is the true ‘prime’ orbit, i.e., the shortest segment that under action of
G tiles the entire invariant submanifold M. 6 27 28

Definition: Relative orbit Mgy in state space M is the time evolved group
orbit My of a state space point x, the set of all points that can be reached from x

24predrag: remove v’s fromfigure 10.9

Zpredrag: merge with GHC Sect 3.1

%predrag: write up Onn as an example

2"Predrag: no, distinguish pre-periodic from relative. Use this: “ In either discrete or continuous
symmetry case, we refer to the orbits M,, in M satisfying (10.42) as relative periodic orbits. ”

2predrag: figure 10.10: try gnuplt — SVG, inkscape periodic orbit and rpo onto it?
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by all symmetry group actions and evolution of each in time. 2° orbit!relative
relativelorbit

plane Couette

Mypy ={gxt :teR,g € G} . (10.43) ng’gg{glve

standing wave
In presence of symmetry, an equilibrium is the set of all equilibria related by wave, standing
symmetries, an relative periodic orbit is the hyper-surface traced by a trajectory in Stability!ctontinuous
time T and all group actions, etc.. symmetry

Example 10.11 Relative orbits in the plane Couette flow. (continued from
example 10.4) Translational symmetry allows for relative equilibria (traveling waves),
characterized by a fixed profile Eulerian velocity urw(X) moving with constant velocity
c, le.

u(x,7) = urw(x —c7). (10.44)

As the plane Couette flow is bounded by two counter-moving planes, it is easy to see
where the relative equilibrium (traveling wave) solutions come from. A relative equi-
librium solution hugs close to one of the walls and drifts with it with constant velocity,
slower than the wall, while maintaining its shape. A relative periodic solution is a solu-
tion that recurs at time T, with exactly the same disposition of the Eulerian velocity fields
over the entire cell, but shifted by a 2-dimensional (streamwise,spanwise) translation
0p- By discrete symmetries these solutions come in counter-traveling pairs ug(X — ct),
—Ug(—x + c7): for example, for each one drifting along with the upper wall, there is a
counter-moving one drifting along with the lower wall. Discrete symmetries also imply
existence of strictly stationary solutions, or ‘standing waves.” For example, a solution
with velocity fields antisymmetric under reflection through the midplane has equal flow
velocities in opposite directions, and is thus an equilibrium stationary in time.

chapter 21

10.3 Stabilit
y R

exercise 10.28
exercise 10.29

A spatial derivative of the equivariance condition (L0.5) yields the matrix equiv-
ariance condition satisfied by the stability matrix (stated here both for the finite
group actions, and for the infinitesimal, Lie algebra generators): %

GAMI =A@),  [TeAl= 2600, (10.45)

For a flow within the fixed Fix(G) subspace, t(x) vanishes, and the symmetry
imposes strong conditions on the perturbations out of the Fix(G) subspace. As
in this subspace stability matrix A commutes with the Lie algebra generators T,
the spectrum of its eigenvalues and eigenvectors is decomposed into irreducible
representations of the symmetry group. This we have already observed for the
EQo of the Lorenz flow in example 9.14. 3!

2predrag: move this ahead of the special cases?
%predrag: emphasize time is abelian in derivation of trace formulas
3lpredrag: evaluate (10.45) for relative equilibria
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A infinitesimal symmetry group transformation maps the initial and the end
point of a finite trajectory into a nearby, slightly rotated equivalent points, so we
expect the perturbations along to group orbit to be marginal, with unit eigenvalues.
The argument is akin to (4.8), the proof of marginality of perturbations along a pe-
riodic orbit. Consider two nearby initial points separated by an N-dimensional in-
finitesimal group transformation (10.11): 6xg = g(6¢)Xo—Xo = 6¢-TXg = d-t(Xg).
By the commutativity of the group with the flow, g(d¢) f"(Xo) = f7(g(6¢)Xo). Ex-
panding both sides, keeping the leading term in 6¢, and using the definition of the
Jacobian matrix (4.5), we observe that J7(xg) transports the N-dimensional group
tangent space at x(0) to the rotated tangent space at x(7) at time r: 32 33

ta(r) = J"(X0) ta(0) , ta(7) = Tax(7). (10.46)

For a relative periodic orbit, gpx(Tp) = x(0), at any point along cycle p the group
tangent vector t;(7) is an eigenvector of the Jacobian matrix with an eigenvalue of
unit magnitude, 3*

Jpta(x) = ta(x), Ip(X) = gpd TP (x), XxeMp. (10.47)

For a relative equilibrium flow and group tangent vectors coincide, v = ¢ - t(x).
Dotting by the velocity c (i.e., summing over cit;) the equivariance condition
(10.30), ta(v) — A(X) ta(x) = 0, we get

(c-T-Ayv=0. (10.48)

In other words, in the co-rotating frame the eigenvalues corresponding to group
tangent are marginal, and the velocity v is the corresponding right eigenvector. %

Two successive points along the cycle separated by 6% = d¢ - t(r) have the
same separation after a completed period 6x(Tp) = gpdXo, hence eigenvalue of
magnitude 1. In presence of an N-dimensional Lie symmetry group, N eigenval-
ues equal unity.

10.4 Reduced state space

Maybe when 1I’m done with grad school I'll be able to fig-
ureitall out...

— Rebecca Wilczak, undergraduate

32predrag: missing step in the derivation here?

33predrag: replace this whole derivation by simply taking a derivative?

34Predrag: recheck this

$predrag: Is anything smart to be said for the corresponding left eigenvectors - in the theory of
rotating spirals they call them “Response Functions” (and capitalize them), while the right group
tangent vectors they call “Goldstone modes” and they make a big deal out of them.
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y(t) group!symmetry,
X(t)" reduction

desymmetrized
“statesp

symmetry-reduced
space

orbit!space
quotient!statespace@*“statesp
quotient space

Figure 10.11: A point x on the full state space trajec-
tory x(t) is equivalent up to a group rotation g(t) to the
point X on the curve X(t) if the two points belong to the

same group orbit My, see (10.6). moving frame

freezin
cross-section
slice

invariant!polynomial
basis

36 Given Lie group G acting smoothly on a C* manifold M, we can think
of each group orbit as an equivalence class. Symmetry reduction is the identifi-
cation of a unique point on a group orbit as the representative of its equivalence
class. We call the set of all such group orbit representatives the reduced state
space M/G. In the literature this space is often rediscovered, and thus has many
names - it is alternatively called ‘desymmetrized state space,” ‘symmetry-reduced
space,” ‘orbit space’ (because every group orbit in the original space is mapped to
a single point in the orbit space), or ‘quotient space’ (because the symmetry has
been “divided out’), obtained by mapping equivariant dynamics to invariant dy-
namics (‘image’) by methods such as ‘moving frames,” ‘cross sections,” ‘slices,’
‘freezing,” “Hilbert bases,” ‘quotienting,” ‘lowering of the degree,” ‘lowering the
order,” or ‘desymmetrization.’

remark 10.1

Symmetry reduction replaces a dynamical system (M, f) with a symmetry by
a ‘desymmetrized’ system (M, f), a system where each group orbit is replaced
by a point, and the action of the group is trivial, gX = X for all X eM, g eG.
The reduced state space M is sometimes called the ‘quotient space’ M/G because
the symmetry has been ‘divided out.” For a discrete symmetry, the reduced state
space M/G is given by the fundamental domain of sect. 9.4. In presence of a
continuous symmetry, the reduction to M/G amounts to a change of coordinates
where the ‘ignorable angles’ {¢,-- -, ¢} that parameterize N group translations
can be separated out. 37 38 3°

We start our discussion of symmetry reduction by considering the finite-rotations
method of moving frames, and its differential formulation, the method of slices.

%predrag: clipped - rewrite this in own words! Use also Siminos thesis sect 2.3. ES:Started
rewriting using thesis sect 2.3

$"Predrag: omitted time in “{t, ¢1,- - -, #n}, that parameterize N+1 time and group translations
can be separated out,” as we discuss Poincaré sections separately

%predrag: separate the time direction out?

39Predrag: difficult: try to draw state space explored by unstable N + 1 dimensional tori
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Figure 10.12: Slice Misa hyperplane (10.50) pass-
ing through the slice-fixing point X', and normal to the
group tangent t’ at X’. It intersects all group orbits (in-
dicated by dotted lines here) in an open neighborhood
of X'. The full state space trajectory x(z) and the re-
duced state space trajectory X(r) belong to the same
group orbit M, and are equivalent up to a group ro-
tation g(7), defined in (10.49).

10.4.1 Go with the flow: method of moving frames

40 The idea: *' We can, at least locally, map each point along any solution x(r) to
the unique representative () of the associated group orbit equivalence class, by
a suitable rotation

X(7) = 9(7) X(7). (10.49)

42 43 Equivariance implies the two points are equivalent. In the ‘method of slices’
the reduced state space representative X of a group orbit equivalence class is picked
by slicing across the group orbits by a fixed hypersurface. We start by describing
how the method works for a finite segment of the full state space trajectory.

Definition: Slice. Let G act regularly on a d-dimensional manifold M, i.e., with
all group orbits N-dimensional. A slice through point X is a (d—N)-dimensional
submanifold M such that all group orbits in an open neighborhood of the slice-
defining point X’ intersect M transversally and only once (see figure 10.12).

The simplest slice condition defines a linear slice as a (d — N)-dimensional
hyperplane M normal to the N group rotation tangents t, at point X: 4

K-, =0, t=t,(8)=Ta¥X. (10.50)

In other words, “slice’ is a Poincaré section (3.6) for group orbits. > “¢ Each “big
circle’ —group orbit tangent to t,— intersects the hyperplane exactly twice, with

40Siminos: Equivariance implies we can rigidly rotate a solution x(z) by any g(z). In moving
frames the rotation parameter depends on the point.

“1Siminos: dropped: As the symmetries commute with dynamics, we can evolve a solution x(r)
for as long as we like, and then rotate it to any equivalent point (see figure 10.11) on its group orbit,

42Siminos: dropped: any time and any way we like.

43Siminos: rephrased:

“Predrag: use FigSrc/xfig/PCunrot.fig to draw z axis, a point at 6 a circle, and a slice cutting the
circle.

4Siminos: Condition (10.50) is trivially satisfied for points in Fix(G) but does not lead to solu-
tions for the group parameters (or for the case of Fix(H), where H c G and H is not finite, it leads
to solutions for M < N of the parameters). So I’ve dropped: The G-invariant subspaces are always
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X7=X2 ,
X@ =<
Figure 10.13: Method of moving frames for a flow N
SO(2)-equivariant under (10.24) with slice through x(0) 0
% = (0,1,0,0,0), group tangent t = (1,0,0,0,0). - VU2

The clockwise orientation condition restricts the slice X(Tl)
to half-hyperplane %, = 0, %X, > 0. A trajectory started
on the slice at X(0), evolves to a state space point with _ ! '

moving frame
post-processing

a non-zero x;(t;). Compute the polar angle ¢; of x(t;)
in the (X1, X2) plane. Rotate x(t;) clockwise by ¢; to
L(t1) = g(—¢1) x(t1), so that the equivalent point on the ‘
circle lies on the slice, X, (t;) = 0. Repeat for all sample )/
points X(t;) along the trajectory. .
X(w)

the two solutions separated by . 4’ As for a Poincaré section (3.4), we add an
orientation condition, and select the intersection with the clockwise rotation angle
into the slice.

Definition: Moving frame. Assume that for a given x € M and a given slice
M there exists a unique group element g = g(x) that rotates x into the slice,
gx=X¢€ M. The map that associates to a state space point x a Lie group action
g(x) is called a moving frame.

As ()"t = 0 by the antisymmetry of T, the slice condition (10.50) fixes ¢
for a given x by

0=%"t, = x"g(¢)"t;, (10.51)

where g denotes the transpose of g. *® The method of moving frames can be
interpreted as a change of variables

(1) = g1 (D) x(v) (10.52)

within the slice, as T,x = 0 for x in an invariant subspace, see (10.27).

4Siminos: Serious notation problem that | am sure will confuse any reader but me and Predrag:
In CLe we have x and y as variables and their complex and imaginary parts as X%, yi. In the rest

of the text reduced space variables are currently y so we get a conflict whenever CLe is used as an
example, as in this figure. Is it ok to switch to using overline or tilde for reduced state quantities?
We do it anyway for CLe example but do not notify the reader.
PC: It did not look good any way | tried it, so | settled for y’s (somebody in the literature does it).
CLe is only an example, so | propose you use overline or tilde only there, explaining why, as you
do in this footnote

47Siminos: For KS this is not true as noted in siminos/blog so we need to work out a general
statement.
PC: as noted after that in siminos/blog, it might work (you need to test it) if one uses component
magnitudes bounded by the Casimirs. In general you are right. Will rephrase.

“8predrag: Figure 10.14: try x(t;) — x;? Perhaps confusing...
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that is passing to a frame of reference in which condition (10.51) is identically
satisfied, see example 10.12. Therefore the name ‘moving frame.” Method of
moving frames should not be confused with the co-moving frames, such as the
one illustrated in figure 10.9. Each relative periodic orbit has its own co-moving
frame. In the method of moving frames (or the method of slices) one fixes a
stationary slice, and rotates all solutions back into the slice.

The method of moving frames is a post-processing method; trajectories are
computed in the full state space, then rotated into the slice whenever desired, with
the slice condition easily implemented. The slice group tangent t is a given vec-
tor, and g(¢) x is another vector, linear in x and a function of group parameters ¢.
Rotation parameters ¢ are determined numerically, by a Newton method, through
the slice condition (10.51).

Figure 10.14 illustrates the method of moving frames for an SO(2) slice nor-
mal to the x, axis. Looks innocent, except there is nothing to prevent a trajectory
from going through (x¢, X2) = (0, 0), and what ¢ is one to use then? We can always
chose a finite time step that hops over this singularity, but in the continuous time
formulation we will not be so lucky. *°

How does one pick a slice point X? A generic point X' not in an invariant
subspace (on the complex Lorenz equations z axis, for example) should suffice
to fix a slice. The rules of thumb are much like the ones for picking Poincaré
sections, sect. 3.1.2. The intuitive idea is perhaps best visualized in the context
of fluid flows. Suppose the flow exhibits an unstable coherent structure that —
approximately— recurs often at different spatial dispositions. One can fit a ‘tem-
plate’ to one recurrence of such structure, and describe other recurrences as its
translations. A well chosen slice point belongs to such dynamically important
equivalence class (i.e., group orbit). A slice is locally isomorphic to M/G, in an
open neighborhood of X¥. As is the case for the dynamical Poincaré sections, in
general a single slice does not suffice to reduce M — AM/G globally.

The Euclidian product of two vectors x, y is indicated in (L0.50) by x-transpose
timesy,i.e., x'y = 2? XiYi. More general bilinear norms (x, y) can be used, as long
as they are G-invariant, i.e., constant on each irreducible subspace. An example is
the quadratic Casimir (10.17).

SO(2)@*“SOn2
moving
frame!SO(2)@S0(2)

Example 10.12 An SO(2) moving frame: (continued from example 10.2) The

SO(2) action

(X1, X2) = (X1 €0S @ + X2 SiNH, —X1 SiN + X, COS ) (10.53)

is regular on R?\{0}. Thus we can define a slice as a ‘hyperplane’ (here a mere line),
through X’ = (0, 1), with group tangentt’ = (1,0), and ensure uniqueness by clockwise
rotation into positive X, axis. Hence the reduced state space is the half-line x; = 0, X, =
X2 > 0. The slice condition then simplifies to X1 = 0 and yields the explicit formula for
the moving frame parameter

0(x1, X2) = tan~}(xq/x2) (10.54)

“SPredrag: add example here
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i.e., the angle which rotates the point (X1, X,) back to the slice, taking care that tan™*
distinguishes (X1, X2) plane quadrants correctly. Substituting (10.54) back to (10.53)
and using cos(tan~! a) = (1 + a?)"V/2, sin(tan~* a) = a(1 + a%)"\/? confirms %, = 0. It also
yields an explicit expression for the transformation to variables on the slice,

Ko = X2+ X3, (10.55)

This was to be expected as SO(2) preserves lengths, X2 + x5 = %4 + %3. If dynamics is
in plane and SO(2) equivariant, the solutions can only be circles of radius (x5 + x3)*/2,
so this is the “rectification” of the harmonic oscillator by a change to polar coordinates,
example B.1. Still, it illustrates the sense in which the method of moving frames yields

group invariants. (E. Siminos)

The slice condition (10.50) fixes N directions; the remaining vectors (Xn+1 . . . Xg)
span the slice hyperplane. They are d — N fundamental invariants, in the sense
that any other invariant can be expressed in terms of them, and they are function-
ally independent. Thus they serve to distinguish orbits in the neighborhood of the
slice-fixing point X', i.e., two points lie on the same group orbit if and only if all
the fundamental invariants agree.

10.4.2 Dynamics within a slice

I made a wrong mistake.
—Yogi Berra

As an alternative to the post-processing approach of the preceding sections, we
can proceed as follows: Split up the integration into a sequence of finite time
steps, each followed by a rotation of the final point (and the whole coordinate
frame with it; the ‘moving frame’) °° such that the next segment’s initial point
is in the slice fixed by a point ¥, see figure 10.14. > It is tempting to see what
happens if the steps are taken infinitesimal. As we shall see, we do get a flow
restricted to the slice, but at a price. >

Using decomposition (10.49) one can always write the full state space tra-
jectory as x(r) = g(r) X(r), where the (d — N)-dimensional reduced state space
trajectory X(7) is to be fixed by some condition, and g(r) is then the corresponding
curve on the N-dimensional group manifold of the group action that rotates X into
x at time 7. The time derivative is then x = v(gX) = X+ gV, with the reduced state
space velocity field given by ¥ = d%/dt. Rewriting this as ¥ = g-*v(g %) — g~1g R
and using the equivariance condition (10.29) leads to

I=v-glgx.

0predrag: reinstated ‘coordinate frame’ - it was there because Rebecca rotated different trajec-
tories by different angles

SIPredrag: can you now also rewrite the captions of figure 10.13 and figure 10.14?

52Siminos: Why does x; axis point downwards? PC: right hand rule; if x, gets rotated 90 deg
clockwise, x; axis point downwards. It’s because of “The entire state space is then rotated (hence
‘moving frame’)” statement that you keep censoring. Please reinstate correct arrow in figure 10.13,
which is hard to understand anyway. We’ll have to go 3-dimensional.
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Figure 10.14: Method of moving frames for a flow
SO(2)-equivariant under (10.24) with slice through
L = (0,1,0,0,0), group tangent t' = (1,0,0,0,0).
The clockwise orientation condition restricts the slice
to half-hyperplane %, = 0, %X, > 0. A trajectory started
on the slice at X(0), evolves to a state space point with -
a non-zero x;(t;). Compute the polar angle ¢; of x(t;) //X/(tz)
in the (X1, X2) plane. Rotate x(t;) clockwise by ¢; to

L(t1) = g(—¢1) x(t1), so that the equivalent point on the T
circle lies on the slice, %;(t;) = 0. Thus after every X(ty) . ©
finite time step followed by a rotation the trajectory .

group!orbit, slice

“70,,y(t)

restarts from the %, (t) = O reduced state space. y(t) y(0)
Xl

The Lie group element (10.10) and its time derivative describe the group tangent
flow

d .
1y — 19 T _
99=9 4 ¢-T.

This is the group tangent velocity g-1§ % = ¢ - t(X) evaluated at the point £, i.e.,
with g = 1 (see figure 10.3). The flow ¥ = dX/dt in the (d—N) directions transverse
to the group flow is now obtained by subtracting the flow along the group tangent
direction, >3

U(R) = V(%) — ¢(%) - t(R), (10.56)

for any factorization (10.49) of the flow of form x(r) = g(r) X(r). To integrate
these equations we first have to fix a particular flow factorization by imposing
conditions on X(7), and then integrate phases ¢(r) on a given reduced state space
trajectory X(7).

Here we demand that the reduced state space is confined to a hyperplane slice.
Substituting (10.56) into the time derivative of the fixed slice condition (10.51), >*

Ut = V(R ~ da t(R)'; =0,

yields the equation for the group phases flow ¢ for the slice fixed by %, together
with the reduced state space M flow 9(X): >

IR = v(®) - ¢(R)-t(X), Re M (10.57)
o V'Y
ga(X) = T (10.58)

S3predrag: link exercises given here

S4Predrag: explain that we have used “ T," Ty = 3, C{6 1@~ _

5Predrag: open problem: show that in the presence of discrete symmetries, ¢, = 0 is one of the
solutions
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Figure 10.15: A slice fixed by taking as a tem-
plate a point on the complex Lorenz equations
relative equilibrium group orbit, & = Xrwi. (a)
The strange attractor of figure 10.1 in the reduced
state space of (10.57), {xq, X2,z} projection. (b)
{X2, Y2, 2} projection. The reduced state space com-
plex Lorenz flow strange attractor of figure 10.1
now exhibits a discontinuity due to the vanishing
denominator in (10.59).

(a)

Each group orbit My = {gx|g € G} is an equivalence class; method of slices
represents the class by its single slice intersection point X. By construction ¥ t’ =
0, and the motion stays in the (d—N)-dimensional slice. We have thus replaced the
original dynamical system {M, f} by a reduced system M, f}.

In the pattern recognition and ‘template fitting” settings (L0.58) is called the
‘reconstruction equation.” Integrated together, the reduced state space trajectory
(10.57) and g(r) = exp{¢(7) - T}, the integrated phase (10.58), reconstruct the full
state space trajectory x(r) = g(r) X(r) from the reduced state space trajectory X(7),
so no information about the flow is lost in the process of symmetry reduction. °°

exercise 10.33
exercise 10.35

Example 10.13 A slice for complex Lorenz flow. (continuation of example 10.6) Here
we can use the fact that

t(i)T -t = )?TTT TX = )_(1Xi + )_(2X£ + ylyi + yzyé

is the dot-product restricted to the m = 1 4-dimensional representation of SO(2). A
generic X' can be brought to form X" = (0, 1,y1,Y5,2) by a rotation and rescaling. Then
TX =(1,0,y5,-y;,0), and

VX)-U Vit VaY) —Vay)
t(x) -t/ X2 +Y1y) +Yays

(10.59)

57 A long time trajectory of (10.57) with & on the relative equilibrium TW, group orbit
is shown in figure 10.15. As initial condition we chose the initial point (10.38) on the
unstable manifold of TW1, rotated back to the slice by angle ¢ as prescribed by (10.51).
We show the part of the trajectory fort € [70, 100]. The relative equilibriumTW 1, now an
equilibrium of the reduced state space dynamics, organizes the flow into a Rdssler type
attractor (see figure 2.6). The denominator in (10.58) vanishes and the phase velocity
é&()‘() diverges whenever the direction of group action on the reduced state space point
is perpendicular to the direction of group action on the slice point X’. While the reduced
state space flow appears continuous in the {X1, X2,2} projection, figure 10.15 (a), this
singularity manifests itself as a discontinuity in the {x3,Y>, z} projection, figure 10.15 (b).
The reduced state space complex Lorenz flow strange attractor of figure 10.1 now

6predrag: add Siminos text on multiple sections?

S"Siminos: Why rescale and rotate a point like this? What does it buy us? | consider dropping
this. PC: It tells you that 2 numbers suffice to fix the Complex Lorenz flow slice, not 5. Did you
know that? Will not help us much for KS.
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Figure 10.16: Poincaré section through a slice fixed
by a point on the complex Lorenz equations relative
equilibrium group orbit, X = Xrw1, as in figure 10.15,
{X1, X2, Z} projection.

exhibits a discontinuity whenever the trajectory crosses this 3-dimensional subspace.

58

Slice flow equations (10.57) and (10.58) are pretty, but there is a trouble in
the paradise. The slice flow encounters singularities in subsets of state space, with
phase velocity ¢ divergent whenever the denominator in (10.59) changes sign, see
{X2, Y2, 2} projection of figure 10.15 (b). Hence a single slice does not in general
suffice to cover M/G globally.

10.4.3 Poincareé: slice and section

Taking the infinitesimal time step limit of the method of moving frames led to an
elegant differential equation for the reduced flow, but only in an open neighbor-
hood of the slice-fixing point . The apparent divergences of ¢ are artifacts of a
particular choice of a slice, and not genuine divergences. For the finite time steps
method of moving frames there is no such problem, as long as we chose time steps
that hop over the regions where ¢ diverges. This suggests the next idea. Instead of
the creeping along in infinitesimal time steps, let us go to the other extreme, and
take the longest possible leap in time: define a Poincaré section within the slice,
taking to heart the wise advice of sect. 3.1.2, and leap from section to section. If
the section is placed away from the slice singularity regions, nice return maps may
follow. >°

UJPRIVATE

Example 10.14 Slice and section for complex Lorenz flow. Here we can use the

fact that

%8Siminos: What’s the dimension of the subspace? | don’t see any discontinuity in fig-
ure 10.15(b). 1 don’t think there is such an issue with CLe. PC: Gawd - all that blogging to
no avail. The subspace is huge, one dimension less than the full space (you just need the two tan-
gents to be normal), one condition in 5 dimensions. Last summer you lulled me into believing that
if one uses relative equilibrium point as slice point, there is no discontinuity for Complex Lorenz
flow, but when | computed it | found that there is one, just as bad as in polar coordinates and in
Wilczak-Siminos-Poincaré choice of slice point. It is the V-shaped plane in figure 10.15 (b), you
can turn it around if you run my mathematica code for it.

S9Predrag: Use Siminos thesis Sect 4.2.6.3 here?
create figure 10.16

continuous - 15june2012 boyscout version14.4, Mar 19 2013



CHAPTER 10. RELATIVITY FOR CYCLISTS 232

A long time trajectory of (10.57) with X' on the relative equilibrium TW, gF8yp'orbit, slice

orbit is shown in figure 10.15. in\é%rsi?snt!polynomial
As initial condition we chose the initial point'( 10.38) on the unstable maniiglqiRfzriant@*Group-
TWS3, rotated back to the slice by angle ¢ as prescribed by (10.51). invariant!polynomial
basis

In figure 10.16 we show the part of the trajectory fort e [70, 100]. syzygy
There are no artificial, slice induced singularities within this section, ang(ﬂ@g)@SO(Z)

relative equilibrium TW1, now an equilibrium of the reduced state space dynagggiant!polynomial
organizes the flow into a Réssler type Poincaré section (see figure 2.6). % basis!SO(2)@S0(2)

fpeggARRCe
10.5 Method of images: Hilbert bases

(E. Siminos and P. Cvitanovic)

Erudite reader might wonder: why all this slicing and dicing, when the problem
of symmetry reduction had been solved by Hilbert and Weyl nearly a century
ago? Indeed, the most common approach to symmetry reduction is by means
of a Hilbert invariant polynomial bases (9.27), motivated intuitively by existence
of such nonlinear invariants as the rotationally-invariant length # = x2 + x3 +
cee xg, or, in Hamiltonian dynamics, the energy function. One trades in the
equivariant state space coordinates {x, X, - - -, Xq} for a non-unique set of m > d
polynomials {ug, Us,---,Un} invariant under the action of the symmetry group.
These polynomials are linearly independent, but functionally dependent through

m —d + N relations called syzygies.

Example 10.15 An SO(2) Hilbert basis. (continued from example 9.18) The
Hilbert basis

u = xX+x3, Up = Y2 +y3,

Uz = X1y2 — X2Y1, Ug = X1y1 + XoY2,

Us = Z. (10.60)

is invariant under the SO(2) action on a 5-dimensional state space (10.24). That im-
plies, in particular, that the image of the full state space relative equilibrium TW group
orbit of figure 10.5 is the stationary equilibrium point EQ1, see figure 10.17. The poly-
nomials are linearly independent, but related through one syzygy,

Ul —U3 —u2 =0, (10.61)
3~ Uy

yielding a 4-dimensional M/SO(2) reduced state space, a symmetry-invariant repre-
sentation of the 5-dimensional SO(2) equivariant dynamics. (continued in exam-
ple 10.16)

The dynamical equations follow from the chain rule

_aui.

= — Xj 10.62

Uj

0predrag: draw figure 10.16
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Figure 10.17: Invariant ‘image’ of complex Lorenz
flow, figure 10.1, projected onto the invariant polyno-
mials basis (10.60). Note the unstable manifold con-
nection from the equilibrium EQq at the origin to the
strange attractor controlled by the rotation around rela-
tive equilibrium EQ; (the reduced state space image of
TW,); as in the Lorenz flow figure 3.4, natural measure
close to EQy is vanishingly small but non-zero.

upon substitution {xg, X2, - -+, X4} — {uUz, Uz, ---,Uyn}. One can either rewrite the
dynamics in this basis or plot the ‘image’ of solutions computed in the original,
equivariant basis in terms of these invariant polynomials.

exercise 10.15

Example 10.16 Complex Lorenz equations in a Hilbert basis. (continuation of
example 10.15) Substitution of (10.2) and (10.60) into (10.62) yields complex Lorenz
equations in terms of invariant polynomials:

U = 20 (ug—uy),

Up = =2(uz—p2uz— (o1 —Us)Ug),

U3 = —(0o+1)uz+prU;+euy, (10.63)
Us = —(oc+1us+ (o1 —Us)Uuy + o0 Uy —eus,

Us = U4—bU5.

As far as visualization goes, we need neither construct nor integrate the invariant dy-
namics (10.63). It suffices to integrate the original, unreduced flow of Figure 10.1, but
plot the solution in the image space, i.e., u; invariant, Hilbert polynomial coordinates,
as in figure 10.17. (continued in example 10.17)

Reducing dimensionality of a dynamical system by elimination of variables
through inclusion of syzygies such as (L0.61) introduces singularities. Such elimi-
nation of variables, however, is not needed for visualization purposes; syzygies
merely guarantee that the dynamics takes place on a submanifold in the projec-
tion on the {ui, up, - - -, Uy} coordinates. However, when one reconstructs the dy-
namics in the original space M from its image M/G, the transformations have
singularities at the fixed-point subspaces of the isotropy subgroups in M.

Example 10.17 Hilbert basis singularities. (continuation of example 10.16) When
one takes syzygies into account in rewriting a dynamical system, singularities are intro-
duced. For instance, if we solve (10.61) for u, and substitute into (10.63), the reduced
set of equations, °*

Uy = 20(us—Uu)

U3 = —(0c+1uz+pruU;+euy

Uy = —(0 +1)Us+ (o1 —Us)Us + 0 (U3 +U3)/us —eus

Us = uz—bus, (10.64)

2.2
81predrag: | removed i, = —2( u3u+1u“ —paUs — (p1 — Us) u4)
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iant!polynomial
5iS
netrylcontinuous—)

Figure 10.18: Return map to the Poincaré section
u; = ug for complex Lorenz equations projected on
invariant polynomials (10.60). The return map coor-
dinate is the Euclidean arclength distance from TW;,
measured along the Poincaré section of its spiral-out
unstable manifold, as for the Lorenz flow return map 1
of example 11.4. 0 100 200 300 400 500
Sn

is singular as u; — 0. (E. Siminos)

Nevertheless we can now easily identify a suitable Poincaré section, guided
by the Lorenz flow examples of chapter 9, as one that contains the z-axis and
the image of the relative equilibrium TWj, here defined by the condition w, =
us. 52 As in example 11.4, we construct the first return map using as coordinate
the Euclidean arclength along the intersection of the unstable manifold of TW
with the Poincaré surface of section, see figure 10.18. Thus the goals set into
the introduction to this chapter are attained: we have reduced the messy strange
attractor of figure 10.1 to a 1-dimensional return map. As will be explained in
example 11.4 for the Lorenz attractor, we now have the symbolic dynamics and
can compute as many relative periodic orbits of the complex Lorenz flow as we
wish, missing none.

What limits the utility of Hilbert basis methods are not such singularities, but
rather the fact that the algebra needed to determine a Hilbert basis becomes com-
putationally prohibitive as the dimension of the system or of the group increases.
Moreover, even if such basis were available, rewriting the equations in an invari-
ant polynomial basis seems impractical, so in practice Hilbert basis computations
appear not feasible beyond state space dimension of order ten. When our goal is
to quotient continuous symmetries of high-dimensional flows, such as the Navier-
Stokes flows, we need a workable framework. The method of moving frames of
sect. 10.4 is one such minimalist alternative. 3

Résumeé

The message: If a dynamical systems has a symmetry, use it! ®* Here we have
described how, and offered two approaches to continuous symmetry reduction.
In the method of slices one fixes a “slice’ (X — X)Tt" = 0, a hyperplane normal
to the group tangent t' that cuts across group orbits in the neighborhood of the

62predrag: recheck: is u; = uy really all it takes to include the relative equilibrium?

%3predrag: add Siminos basis for KS as an exercise

4predrag: Symmetries foliate states space into group orbits, and time evolution then sweeps out
a relative orbit, union of trajectories equivalent up to a symmetry
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slice-fixing point X'. Each class of symmetry-equivalent points is represented by
a single point, with the symmetry-reduced dynamics in the reduced state space
M /G given by (10.57):

U=v-¢-t,  ¢a=V't)/(1t-1).

In practice one runs the dynamics in the full state space, and post-processes the
trajectory by the method of moving frames. In the Hilbert polynomial basis ap-
proach one transforms the equivariant state space coordinates into invariant ones,
by a nonlinear coordinate transformation

{X1,X2,- -+, Xd} = {u,Uz,---,um} + {syzygies},

and studies the invariant ‘image’ of dynamics (10.62) rewritten in terms of invari-
ant coordinates.

Continuous symmetry reduction is considerably more involved than the dis-
crete symmetry reduction to a fundamental domain of chapter9. Slices are only
local sections of group orbits, and Hilbert polynomials are non-unique and diffi-
cult to compute for high-dimensional flows. However, there is no need to actually
recast the dynamics in the new coordinates: either approach can be used as a vi-
sualization tool, with all computations carried out in the original coordinates, and
then, when done, projecting the solutions onto the symmetry reduced state space
by post-processing the data. The trick is to construct a good set of symmetry
invariant Poincaré sections (see sect. 3.1), and that is always a dark art, with or
without a symmetry.

We conclude with a few general observations: Higher dimensional dynamics
requires study of compact invariant sets of higher dimension than 0-dimensional
equilibria and 1-dimensional periodic orbits studied so far. In sect.2.1.1 we made
an attempt to classify “all possible motions:” (1) equilibria, (2) periodic orbits, (3)
everything else. Now one can discern in the fog of dynamics an outline of a more
serious classification - long time dynamics takes place on the closure of a set of
all invariant compact sets preserved by the dynamics, and those are: (1) 0-dimens-
ional equilibria Mgq, (2) 1-dimensional periodic orbits My, (3) global symmetry
induced N-dimensional relative equilibria Mrw, (4) (N+1)-dimensional relative
periodic orbits M,, (5) terra incognita. We have some inklings of the *terra incog-
nita:” for example, in symplectic symmetry settings one finds KAM-tori, and in
general dynamical settings we encounter partially hyperbolic invariant M-tori,
isolated tori that are consequences of dynamics, not of a global symmetry. They
are harder to compute than anything we have attempted so far, as they cannot be
represented by a single relative periodic orbit, but require a numerical computa-
tion of full M-dimensional compact invariant sets and their infinite-dimensional
linearized Jacobian matrices, marginal in M dimensions, and hyperbolic in the
rest. We expect partially hyperbolic invariant tori to play important role in high-
dimensional dynamics. In this chapter we have focused on the simplest example
of such compact invariant sets, where invariant tori are a robust consequence of
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a global continuous symmetry of the dynamics. The direct product structure of a
global symmetry that commutes with the flow enables us to reduce the dynamics
to a desymmetrized (d—1—N)-dimensional reduced state space M/G.

Relative equilibria and relative periodic orbits are the hallmark of systems
with continuous symmetry. Amusingly, in this extension of ‘periodic orbit’ theory
from unstable 1-dimensional closed periodic orbits to unstable (N+1)-dimension-
al compact manifolds M, invariant under continuous symmetries, there are either
no or proportionally few periodic orbits. In presence of a continuous symmetry,
likelihood of finding a periodic orbit is zero. Relative periodic orbits are almost
never eventually periodic, i.e., they almost never lie on periodic trajectories in
the full state space, so looking for periodic orbits in systems with continuous
symmetries is a fool’s errand.

However, dynamical systems are often equivariant under a combination of
continuous symmetries and discrete coordinate transformations of chapter9, for
example the orthogonal group O(n). In presence of discrete symmetries relative
periodic orbits within discrete symmetry-invariant subspaces are eventually peri-
odic. Atypical as they are (no generic chaotic orbit can ever enter these discrete
invariant subspaces) they will be important for periodic orbit theory, as there the
shortest orbits dominate, and they tend to be the most symmetric solutions.

Commentary

Remark 10.1 A brief history of relativity, or, ‘Desymmetrization and its discontents’
(after Civilization and its discontents; continued from remark 9.1):  The literature on
symmetries in dynamical systems is immense, most of it deliriously unintelligible. Would
it kill them to say ‘symmetry of orbit p’ instead of carrying on about ‘isotropies, quo-
tients, factors, normalizers, centralizers and stabilizers?’ [9, 10, 8, 15] Group action being
“free, faithful, proper, regular?” Symmetry-reduced state space being ‘orbitfold?’ For the
dynamical systems applications at hand we need only basic the Lie group facts, on the
level of any standard group theory textbook [ 2]. We found Roger Penrose [ 3] introduction
to the subject both enjoyable and understandable. Chapter 2. of ref. [ 4] offers a peda-
gogical introduction to Lie groups of transformations, and Nakahara [ 5] to Lie deriva-
tives and brackets. The presentation given here is in part based on Siminos thesis [6]
and ref. [7]. The reader is referred to the monographs of Golubitsky and Stewart [ 8],
Hoyle [9], Olver [11], Bredon [12], and Krupa [13] for more depth and rigor than would
be wise to wade into here.

Relative equilibria and relative periodic solutions are related by symmetry reduction
to equilibria and periodic solutions of the reduced dynamics. They appear in many physi-
cal applications, such as celestial mechanics, molecular dynamics, motion of rigid bodies,
nonlinear waves, spiralling patterns, and fluid mechanics. A relative equilibrium is a solu-
tion which travels along an orbit of the symmetry group at constant speed; an introduction
to them is given, for example, in Marsden [81]. According to Cushman, Bates [14] and
Yoder [15], C. Huygens [16] understood the relative equilibria of a spherical pendulum
many years before publishing them in 1673. A reduction of the translation symmetry
was obtained by Jacobi (for a modern, symplectic implementation, see Laskar et al. [ 17]).
In 1892 German sociologist Vierkandt [18] showed that on a symmetry-reduced space
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(the constrained velocity phase space modulo the action of the group of Euclidean mo-
tions of the plane) all orbits of the rolling disk system are periodic [ 19]. According to
Chenciner [20], the first attempt to find (relative) periodic solutions of the N-body prob-
lem was the 1896 short note by Poincaré [21], in the context of the 3-body problem.
Poincaré named such solutions ‘relative.” Relative equilibria of the N-body problem
(known in this context as the Lagrange points, stationary in the co-rotating frame) are
circular motions in the inertial frame, and relative periodic orbits correspond to quasiperi-
odic motions in the inertial frame. For relative periodic orbits in celestial mechanics see
also ref. [22]. A striking application of relative periodic orbits has been the discovery of
“choreographies” in the N-body problems [ 23, 24, 25].

The modern story on equivariance and dynamical systems starts perhaps with S.
Smale [26] and M. Field [27], and on bifurcations in presence of symmetries with Ru-
elle [28]. Ruelle proves that the stability matrix/Jacobian matrix evaluated at an equilib-
rium/fixed point x € Mg decomposes into linear irreducible representations of G, and that
stable/unstable manifold continuations of its eigenvectors inherit their symmetry proper-
ties, and shows that an equilibrium can bifurcate to a rotationally invariant periodic orbit
(i.e., relative equilibrium).

Gilmore and Lettelier monograph [29] offers a very clear, detailed and user friendly
discussion of symmetry reduction by means of Hilbert polynomial bases (do not look
for “Hilbert” in the index, though). Vladimirov, Toronov and Derbov [ 30] use an invari-
ant polynomial basis different from (10.60) to study bounding manifolds of the symme-
try reduced complex Lorenz flow and its homoclinic bifurcations. There is no general
strategy how to construct a Hilbert basis; clever low-dimensional examples have been
constructed case-by-case. % The example 10.15, with one obvious syzygy, is also mis-
leading - syzygies proliferate rapidly with increase in dimensionality. The determination
of a Hilbert basis appears computationally prohibitive for state space dimensions larger
than ten [31, 32], and rewriting the equations of motions in invariant polynomial bases
appears impractical for high-dimensional flows. Thus, by 1920’s the problem of rewrit-
ing equivariant flows as invariant ones was solved by Hilbert and Weyl, but at the cost
of introducing largely arbitrary extra dimensions, with the reduced flows on manifolds of
lowered dimensions, constrained by sets of syzygies. Cartan found this unsatisfactory,
and in 1935 he introduced [33] the notion of a moving frame, a map from a manifold to
a Lie group, which seeks no invariant polynomial basis, but instead rewrites the reduced
M/G flow in terms of d — N fundamental invariants defined by a generalization of the
Poincaré section, a slice that cuts across all group orbits in some open neighborhood. Fels
and Olver view the method as an alternative to the Grobner bases methods for computing
Hilbert polynomials, to compute functionally independent fundamental invariant bases
for general group actions (with no explicit connection to dynamics, differential equations
or symmetry reduction). ‘Fundamental’ here means that they can be used to generate all
other invariants. Olver’s monograph [11] is pedagogical, but does not describe the origi-
nal Cartan’s method. Fels and Olver papers [ 34, 35] are lengthy and technical. They refer
to Cartan’s method as method of ‘moving frames’ and view it as a special and less rigor-
ous case of their ‘moving coframe’ method. The name ‘moving coframes’ arises through
the use of Maurer-Cartan form which is a coframe on the Lie group G, i.e., they form a
pointwise basis for the cotangent space. In refs. [6, 7] the invariant bases generated by
the moving frame method are used as a basis to project a full state space trajectory to the
slice (i.e., the M/G reduced state space).

The basic idea of the ‘method of slices’ is intuitive and frequently reinvented, often
under a different name; for example, it is stated without attribution as the problem 1.
of Sect. 6.2 of Arnol’d Ordinary Differential Equations [ 36]. The factorization (10.49)

5Predrag: add the problem worked out by http://www.maths.usyd.edu.au/u/dullin/ ?
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is stated on p. 31 of Anosov and Arnol’d [37], who note, without further elaboration,
that in the vicinity of a point which is not fixed by the group one can reduce the order
of a system of differential equations by the dimension of the group. Ref. [38] refers to
symmetry reduction as ‘lowering the order.” For the definition of ‘slice’ see, for example,
Chossat and Lauterbach [32]. Briefly, a submanifold M containing X’ is called a slice
slice is invariant under the whole group. The slice theorem is explained, for example,
in Encyclopaedia of Mathematics. Slices tend to be discussed in contexts much more
difficult than our application - symplectic groups, sections in absence of global charts,
non-compact Lie groups. We follow refs. [ 39] in referring to a local group-orbit section as
a ‘slice.” Refs. [12, 40] and others refer to global group-orbit sections as ‘cross-sections,” a
term that we would rather avoid, as it already has a different and well established meaning
in physics. Duistermaat and Kolk [41] refer to “slices,” but the usage goes back at least
to Guillemin and Sternberg [40] in 1984, Palais [42] in 1961 and Mastow [43] in 1957.
Bredon [12] discusses both cross-sections and slices. Guillemin and Sternberg [40] define
the “cross-section,” but emphasize that finding it is very rare: “existence of a global section
is a very stringent condition on a group action. The notion of ‘slice’ is weaker but has a
much broader range of existence.”

Several important fluid dynamics flows exhibit continuous symmetries which are ei-
ther SO(2) or products of SO(2) groups, each of which act on different coordinates of
the state space. The Kuramoto-Sivashinsky equations [ 3, 4], plane Couette flow [31, 15,
55, 1], and pipe flow [56, 57] all have continuous symmetries of this form. In the 1982
paper Rand [58] explains how presence of continuous symmetries gives rise to rotating
and modulated rotating (quasiperiodic) waves in fluid dynamics. Haller and Mezi¢ [ 59]
reduce symmetries of three-dimensional volume-preserving flows and reinvent method
of moving frames, under the name ‘orbit projection map.” There is extensive literature
on reduction of symplectic manifolds with symmetry; Marsden and Weinstein 1974 ar-
ticle [60] is an important early reference. Then there are studies of the reduced phase
spaces for vortices moving on a sphere such as ref. [61], and many, many others.

Reaction-diffusion systems are often equivariant with respect to the action of a fi-
nite dimensional (not necessarily compact) Lie group. Spiral wave formation in such
nonlinear excitable media was first observed in 1970 by Zaikin and Zhabotinsky [ 44].
Winfree [45, 46] noted that spiral tips execute meandering motions. Barkley and collabo-
rators [47, 48] showed that the noncompact Euclidean symmetry of this class of systems
precludes nonlinear entrainment of translational and rotational drifts and that the inter-
action of the Hopf and the Euclidean eigenmodes leads to observed quasiperiodic and
meandering behaviors. Fiedler, in the influential 1995 talk at the Newton Institute, and
Fiedler, Sandstede, Wulft, Turaev and Scheel [49, 50, 51, 52] treat Euclidean symme-
try bifurcations in the context of spiral wave formation. The central idea is to utilize
the semidirect product structure of the Euclidean group E(2) to transform the flow into a
‘skew product’ form, with a part orthogonal to the group orbit, and the other part within
it, as in (10.57). They refer to a linear slice M near relative equilibrium as a Palais slice,
with Palais coordinates. As the choice of the slice is arbitrary, these coordinates are
not unique. According to these authors, the skew product flow was first written down by
Mielke [53], in the context of buckling in the elasticity theory. However, this decompo-
sition is no doubt much older. For example, it was used by Krupa [13, 32] in his local
slice study of bifurcations of relative equilibria. Biktashev, Holden, and Nikolaev [ 54]
cite Anosov and Arnol’d [37] for the “well-known’ factorization (10.49) and write down
the slice flow equations (10.57).

Neither Fiedler et al. [49] nor Biktashev et al. [54] implemented their methods nu-

merically. That was done by Rowley and Marsden for the Kuramoto-Sivashinsky [ 39] and
the Burgers [62] equations, and Beyn and Thimmler [63, 64] for a number of reaction-
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diffusion systems, described by parabolic partial differential equations on unbounded do-
mains. We recommend the Barkley paper [48] for a clear explanation of how the Eu-
clidean symmetry leads to spirals, and the Beyn and Thiimmler paper [ 63] for inspira-
tional concrete examples of how ‘freezing’/“slicing’ simplifies the dynamics of rotational,
traveling and spiraling relative equilibria. Beyn and Thiimmler write the solution as a
composition of the action of a time dependent group element g(t) with a ‘frozen,” in-slice
solution G(t) (10.49). In their nomenclature, making a relative equilibrium stationary by
going to a co-moving frame is ‘freezing’ the traveling wave, and the imposition of the
phase condition (i.e., slice condition (10.50)) is the ‘freezing ansatz.” They find it more
convenient to make use of the equivariance by extending the state space rather than reduc-
ing it, by adding an additional parameter and a phase condition. The ‘freezing ansatz’ [ 63]
is identical to the Rowley and Marsden [62] and our slicing, except that ‘freezing’ is for-
mulated as an additional constraint, just as when we compute periodic orbits of ODEs we
add Poincaré section as an additional constraint, i.e., increase the dimensionality of the
problem by 1 for every continuous symmetry (see sect. 13.4).

Derivation of sect. 10.4.2 follows most closely Rowley and Marsden [62] who, in
the pattern recognition setting refer to the slice point as a ‘template,” and call (10.58)
the ‘reconstruction equation’ [81, 65]. They also describe the ‘method of connections’
(called “orthogonality of time and group orbit at successive times’ in ref. [ 63]), for which
the reconstruction equation (10.58) denominator is t(X)" - t(X) and thus nonvanishing as
long as the action of the group is regular. This avoids the spurious slice singularities, but
it is not clear what the ‘method of connections’ buys us otherwise. It does not reduce
the dimensionality of the state space, and it accrues ‘geometric phases’ which prevent
relative periodic orbits from closing into periodic orbits. Geometric phase in laser equa-
tions, including complex Lorenz equations, has been studied in ref. [ 66, 67, 69, 70, 71].
Another theorist’s temptation is to hope that a continuous symmetry would lead us to
a conserved quantity. However, Noether theorem requires that equations of motion be
cast in Lagrangian form and that the Lagrangian exhibits variational symmetries [ 72, 73].
Such variational symmetries are hard to find for dissipative systems.

Sect. 10.1.2 title “‘Lie groups for cyclists’ is bit of a joke in more ways than one.
First, “cyclist,” “pedestrian’ throughout ChaosBook.org refer jokingly both to the title of
Lipkin’s Lie groups for pedestrians [74] and to our preoccupations with actual cycling.
Lipkin’s “pedestrian’ is fluent in Quantum Field Theory, but wobbly on Dynkin diagrams.
More to the point, it is impossible to dispose of Lie groups in a page of text. As a counter-
dote to the 1-page summary of sect. 10.1.2, consider reading Gilmore’s monograph [ 75]
which offers a quirky, personal and enjoyable distillation of a lifetime of pondering Lie
groups. As seems to be the case with any textbook on Lie groups, it will not help you with
the problem at hand, but it is the only place you can learn both what Galois actually did
when he invented the theory of finite groups in 1830, and what, inspired by Galois, Lie
actually did in his 1874 study of symmetries of ODEs. Gilmore also explains many things
that we pass over in silence here, such as matrix groups, group manifolds, and compact
groups.

One would think that with all this literature the case is shut and closed, but not so.
Applied mathematicians are inordinately fond of bifurcations, and almost all of the pre-
vious work focuses on equilibria, relative equilibria, and their bifurcations, and for these

problems a single slice works well. Only when one tries to describe the totality of chaotic
orbits does the non-global nature of slices become a serious nuisance.

(E. Siminos and P. Cvitanovit)

Remark 10.2 Complex Lorenz equations (10.1) were introduced by Gibbon and
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McGuinness [76, 77] as a low-dimensional model of baroclinic instability in the atmo-
sphere. They are a generalization of Lorenz equations (2.13). Ning and Haken [78] have
shown that equations isomorphic to complex Lorenz equations also appear as a trunca-
tion of Maxwell-Bloch equations describing a single mode, detuned, ring laser. They set
e+ p, = 050 that SO(2)-orbits of detuned equilibria exist [ 77]. Zeghlache and Mandel [?]
also use equations isomorphic to complex Lorenz equations with e+p, = 0 in their studies
of detuned ring lasers. This choice is ‘degenerate’ in the sense that it leads to non-generic
bifurcations. As existence of relative equilibria in systems with SO(2) symmetry is the
generic situation, we follow Bakasov and Abraham [79] who set p, = O ande # 0 in
order to describe detuned lasers. Here, however, we are not interested in the physical ap-
plications of these equations; rather, we study them as a simple example of a dynamical
system with continuous (but no discrete) symmetries, with a view of testing methods of
reducing the dynamics to a lower-dimensional reduced state space. Complex Lorenz flow
examples and exercises in this chapter are based on E. Siminos thesis [ 6] and R. Wilczak
project report [80]. %

Remark 10.3 Velocity vs. Speed  \elocity is a vector, the rate at which the object
changes its position. Speed, or the magnitude of the velocity, is a scalar quantity which
describes how fast an object moves. We denote the rate of change of group phases, or
the phase velocity by the vector ¢ = (¢1,---,¢én) = (C1,---,Cn), @ component for each
of the N continuous symmetry parameters. These are converted to state space velocity
components along the group tangents by

v(x) = c(t) - t(x) . (10.65)
For rotational waves these are called “angular velocities.”

Remark 10.4 Killing fields.  The symmetry tangent vector fields discussed here are a
special case of Killing vector fields of Riemannian geometry and special relativity. If this
poetry warms the cockles of your heart, hang on. From wikipedia ( this wikipedia might
also be useful): A Killing vector field is a set of infinitesimal generators of isometries on
a Riemannian manifold that preserve the metric. Flows generated by Killing fields are
continuous isometries of the manifold. The flow generates a symmetry, in the sense that
moving each point on an object the same distance in the direction of the Killing vector
field will not distort distances on the object. A vector field X is a Killing field if the Lie
derivative with respect to X of the metric g vanishes:

Lxg=0. (10.66)

67 Killing vector fields can also be defined on any (possibly nonmetric) manifold M if we
take any Lie group G acting on it instead of the group of isometries. In this broader sense,
a Killing vector field is the pushforward of a left invariant vector field on G by the group
action. The space of the Killing vector fields is isomorphic to the Lie algebra g of G.

If the equations of motion can be cast in Lagrangian