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APPENDIX A: 2-PARTICLE IRREDUCIBILITY 

The virtue of the diagrammatic derivation of the 1PI Green 

functions, section 2.G, is that one does not need to prove 1P­

irreducibility; it is built-in, by construction. To test the 

power of the method, I do it here for 2-particle irreducible 

Green functions, and am (almost) successful. This is a warming-

up exercise for computing QCD bound states. Besides, it is crowd­

ing my notebooks. 

Introduce 2 kinds of sources: J = (Ji,Jij) 

1-particle sources 

2-particle sources 

J. =:l!; 
l. 

J. = 1.j i 

:i. 

n = J .. 
j J l. 

The connected Green functions are the same as usual 

G(c) = ~ = ....9..... ....9..... ....9..... W[J] 
ijk ... t . ..· dJ. dJ .•• dJn 0 

I j It, t l. J J<, J= 

(A.1) 

as they are evaluated at Ji =Jij=O. The generating functional is 

a double expansion in Ji and Jij; 

W[J] = 

' 
1,t 1 ~ +- +- + ..... 
2 3! 

+ ~ + ~ + ~ + ~+ ••••• 

+..!.. A + .... (A.2) 
2 

Removing a two-particle source can disconnect a connected 

diagram: 

= d 2W[J] + dW[J] dW[J] 
dJ.dJ. dJ. dJ. 

(A.3) 
l. J l. J 

Nota bene: 

dJd Jmn=.211( o. o. +o. o.), . . 2\ im Jn 1.n Jm 
l.J 

(A.4) 

do not forget symmetrizations! 
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To define 2~particle irreducible graphs, we have to remove tad­

poles (connected to the rest of the diagram by 1 line) and self­

energy insertions (connected to the rest of the diagram by 2 

lines), Hence introduce 

cf,=(cf,.,D .. ) 
~ l.J 

fields: 

propagators: D = d
2
W[J] 

ij dJ.dJ. 
1. J 

= ___._. (A.5) 
i j 

If we pull out a leg, it either ends on a source, or 2PI 

diagram, or 2P-reducible diagram: 

<P = dW[jJ = ~ + ~ + .... + -,(fJ,-4/JJ) -+ ~ 
i dJ. 

1. 

<P • = t:, • • (J · + J · k<Pk + r · + 1r • k<Pk + r · k · Dk D 
1. l.J J J J J J-2.:. ~ 

(A. 6) 

The 2-particle irreducible (2PI) Green functions are drawn 

as black blobs, with each external line coming into a separate 

vertex: 

= J·~t. R. r. 'k n l.J .. ~ • 
k ••• 

(A. 7) 

4J. =D .. =O 
1. 1. J 

Derivatives with respect to self-energies are denoted by the 

corresponding pairs of lines coming into a white vertex: 

d d d 
=---r[cp]I dD .. dcf,k dDi 

l.J m 4J=O 

(A.8) 
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caution: 1) ec can be 2-particle reducible 

2) d * __.9_ __.9_ 
dD. . d<j>. d<j>. 

l.J 1 J 

~*~ 
example, a term like~ contains diagrams such as 

When 

when we remove the propagator, the remainder is 2-particle re­
ducible 

2-particle reducible _Jf, 

, , 
, , 

In the above expansion of dW/d.h, the TTij = ~ term 

is 2PI. We sum up its iteration by defining 

r =- t1-::+n .. , 
ij l.J l.J 

(A.9) 

and the expansion can be rewritten as the first duality relation: 

O=J +J <I> +dr[<j)] 
j jk k d<j). 

J 

0 = ---K + ~ +-e 

textra term due to 2-particle sources 

The second duality relation is 

0 =J .. +dr[<j)] 
iJ dD .. 

l.J 

0=---M-- + ---'--

(A.10) 

(A. 11) 
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I do not know how to derive this diagrammaticallyt, but 

algebraically it comes from the second Legendre transform: 

r[ <P] = W[J] _ dW[J] J. _ dW[J] J. . , 
dJ. 1 dJ.. 1] 

1 1] 

(A.12) 

by differentiating with respect to D ... To go from connected to 
1] 

2PI Green functions, use the chain rule: 

tthis has to be re-expressed 
in terms of ~i,Dij 

To eliminate~, use the identity 

dJ mn 
dJ. - 0 • 

1 

(A.13) 

(A.14) 

Substituting df/dDmn for Jmn and using the chain rule, we obtain 

0 = (o _.£.._ + d3W[J] ~ )dr[q>] 
ij dq>. dJ.dJ.dJk dD.k dD 

J 1 J J mn 

(A.15) 

Define 2-particle propagator as the inverse of rkt mn: 

(A.16) 

~=-==tt=:. =-½(=+><) 
tsymmetrized, 2-particle subspace 

(A.17) 

t 
Here is where my derivation falls flat on its face. 
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Now we can eliminate _.,, in terms of <Pi, D .. functions: 
~ 1-J 

~ =~ (A.18) 

and the chain rule takes a sensible form 

~ = D (~ + dzf[<fJ] D[<fl] ~) 
dJ. ij dqi. d<fJ.dDk" k£ mn dD 

i J J J<, -- mn 

(A.19) 

This says that if we follow a line into a connected diagram, we 

either encounter a 2PI piece, or a 2P-reducible piece. 

To be able to evaluate 

d d 
dJ. dJ. 

]_ J 
di W[J] 

k 

in terms of 2PI bits, we also need to compute d/d<Pi Dk£ 

d/dDijDkt mn· They follow from the definition of Dk£ 

inverseoffk£ mn: 

~D =rr< d<fl. k£ mn 
]_ -- i 

= 

~D =~= dD.. k£ mn 
1) --

mn 

mn 
as 

and 

the 

(A.20) 

This is also sensible, as will be clear from the perturba­

tive expansion of the 2-particle propagator. 

Finally, we need to relate d/dDij (a diagrammatically ob­

scure thing) to d/d<Pi d/d<Pj (an operation which yields 2PI Green 

functions). This we obtain by differentiating the first duality 

relation with respect to d/dJ and using the chain rule 

O=---t-~+..-+~(A.21) 

Replacing Jij by the second duality rule and multiplying by in­

verse propagator, we obtain 
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= + 

dr[cj>] _d2 r[cj>] + d 2 f[cj>] D[cj>] d 2 r[cj>] + 0-i[cp] 
~- dcj>.d<ji. dcj>

1
.dDk" kt mn dD dcj>. ij 

1J 1 J }f., - - mn J 
(A.22) 

This enables us to systematically get rid of d/dD .. derivatives. 
1] 

Now we can rewrite any relation between connected Green 

functions in terms of 1PI functions by going from 

d 
J. ,J .. 'dJ ,W[J] 

1 1] i 

to dual variables and functions 

d 
<P. ,D .. 'd<ji ,r(cj>] 

1 1) i 

using D .. k" and d/dD. . in intermediate steps. 
~-/1., 1] 

Sundry expansions: 

*=A+h+ Tri 

~~ K+,._, +r'-,+H 
+~+~+~+~ 

+ A T ~ -t M (tedious, but obvious) 

~= ~t hTM+M- n 

(A.23) 

(A.24) 

The last term shows that not only is rij kt not 2P-irreducible, 

it is not even connected. That is a goodthing; it is necessary 

so that Dij H can be the inverse of r ij kt: it has to start as 
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+ (connected pieces) (A.25) 

Perturbative expansions for 2PI graphs 

Perturbative expansions isolate the quadratic part of the 

action (bare propagator) and treat the rest as "interaction" 

parts. In the general formalism, the bare propagator is hidden 

in 

• - - -+-+¾- (A.26) 

It is convenient to also isolate the non-interacting part of the 

two-particle propagator: 

r = - 1/ n-10-1 +n-1n-1) + K 
ij kl 2\ · ik jR, • H jk ij kR, 

+ 

t 
-.:¥'connected part 

(A.27) 

We implement these reshufflings by defining an "interaction" 

general functional 

r[cp] = r (I) (<P] - _21 <P. ti-:-:cp. +-21 tr R-nD • 
l. l.J J 

(A.28) 

Now we can expand the two-particle propagator in terms of 

Kij kl: 

(A.29) 
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APPENDIX B: Solution of "find 7 errors" (Exercise 2.H.3) 

Pull a third leg out of the equation (2.35): 

+ 

+ I 

2... + 
I 
b 

As we need r .. k only to g 5 order, truncate all subdiagram expan-
1.J 

sions 

-0- -::. - -t- • .2.. + .. 

A:.A+ 4-+ A 
'J(<&X+ :¥ 

t 
order g 2 

(where subscript k means all 
terms of order gk) 

• ',J!;/A · +higher, drop 
~ all such 
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Substituting such expansions, and keeping only g 5 terms: (re­

member,~ == 0) 

+ 1~ +~ 

-+ Js__ -+ ~+A+A+A 
-t ~4 + ~ 
A +~ A+ I ~ -+ -

2.. 

l A + A -+ -2. 2... 

+1.A 
l 

+ 6 (0({1)-1hsf) 

Need subdiagram expansions 

-e-- :. .!. -0- + ..L ..Q._ 
2.. 2.. z.. 

The last expansion comes from pulling out a leg from ~ and 

immediately dropping all terms higher than g1 (the last 7 terms 

in _. Dyson-Schwinger equation). Substituting, one obtains 

the correct expansion: 



I 
+ -2.. 
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+~*-ti~ "T~~ 

f~rfZ+~~-t-k~ 

t-­
A 

+~~+1A 

-+ ½ R + ½ h + ½~ 
+~A+iA+~~ 
.. ~A+~A+~A 
~~~+½ A_-t;_A 
-+ A + A + A 
+A-tA+fo-.. 
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APPENDIX C: SOME POPULAR GAUGES 

Covariant gauges: (Feynrnan a= 1 ; Landau a = 0) : 

General axial gauges: 

Usually n = (0,0,0,1) picks out a spatial axis. 
µ 

Axial or temporal gauges (a=O): 

n k +kn n
2
k k ] 

D = g - µ v µ \/ + µ \I , n Dµv = 0 
µv k +1.E · µv (n•k) (n•k) 2 µ 

0 

General planar gauges: 

. [ n k + k n n 2
k k 

D - -1. µ v µ v + ( 1-a) µ v] , 
µv - k 2 +iE gµv - (n•k) (n•k) 2 

Lightcone (a=O, n 2=0) and planar (n 2= - ak 2 * 0) gauges: 

General Coulomb gauges: 

hµ = k2 (n•k) nµ-:- kµ 

(n•k) 2 -k2 

(C.1) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

Usually nµ= (1,0,0,0) picks out the time direction so that 
:+ 

kµ - (n•k) nµ = (0 ,k) . 
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Coulomb gauge (a= O , n 2 =1) : 

See (6.63) for the gauge-fixing terms £f .. 
lX 

(C. 7) 
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APPENDIX D: FEYNMAN RULES FOR QCD 

Propagators 

-i µ\/ .-, __ ..,, = 6 . . - g Feynman gauge . 
J.J k2 

-i 
•····◄······• = 6 -

ij k2 
ghost 

quark • ~ " = 6c1 i 
b a bp:m 

(cf. appendix C for other gauges). 

Vertices 

= ( - g2 C C ) i (g g - g g ) 
ijm mkt µo vp µp vo 

+ ( - g 2C C ) i (g g - g g ) 
tim mjk µv po µp vo 

. + ( - g2 C. C . ) i (g g -g g ) . p. l ikm mJ t µv po µp vo 

~ .. 1... = ( - igC .. k) ( - ihµ) "i p"• .. t{ l.J 

)/.I., 

0Aa 

(covariant gauges) 

(D.1a) 

(D. 1b) 

(D.2) 

(D .3) 

(D.4) 

(D.5) 

(D .6a) 

(D.6b) 

(D. 7) 

All momenta flow outward. Ghost vertices for other gauges 

are given in appendix C. The first factor is the color weight 

fddk 
(cf. exercises 6.E.1 and 6.F.4). A factor· -a for each loop. 

(2n) 



- 11 6 -

Diagrammatic notation 

One way to avoid the proliferation of color indices, Minkow­

ski indices, and other QCD factors is to introduce auxiliary 

Feynman rules: 

Auxiliary propagators: 

j •·············• i 

. p . 
J •··········~ l. 

µ 

. p . 
J ............ [>---.l. 

µ 

% C i 
µ 

a I I f 'II a b 

j ( i 
• • 

\) t µ 

j • p// i 
• 

\) µ 

j •·········I·········• i 

....... .,..__...... ...... 

= • 

o .. -i 
l.J p2 

0 .. 
-i (± p ) + if arrow along p 

l.J p2 µ - if arrow against p 

0 .. 
-i (± h (p)) , + if arrow along p 

l.J p2 µ - if arrow against p 

0 .. 
-i -g (±p) 

l.J p2 vµ µ 

o .. ( - i) g 
l.J µv 

o ij (-i) (gµv - PµP/P2) 

I • 

o .. ( - i) 
l.J 

+ ~·········~ 

O .. ( - i)g g 0 J.J oµ µ\/ 

= - ........... , ......... . 

(D.8a) 

(D.8b) 

(D.9a) 

(D.9b) 

(D.9c) 

(D.1 Oa) 

(D.1 Ob) 

(D.10c) 

(D.1 Od) 

(D.1 Oe) 

(D .1 Of) 
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Each line connecting two vertices (or an external source and a 

vertex) carries factor - i/p2 for gluons and ghosts, and i/ (p-m) 

for quarks. Dotted lines keep track of color indices; thin lines 

keep track of Minkowski indices. 

Auxiliary vertices: 
: i. 

Signs 

( - iC .. k) i 
l.J 

( -iC .. k)ig 
l.J j.J\) 

( - iC .. k) ig 0 g ~ 
l.J Clµ yu 

(D.11a) 

(D.11b) 

(D.11c) 

(D.11d) 

(D.11e) 

C. 'k indices are read anticlockwise around the vertex. Due 
l.J 

to the antisymmetry of C. 'k' the corresponding vertices 
l.J 

change sign under interchange of any two legs: 

A = 

= - (D.12) 

Arrows for pJJ and hJJ factors indicate the momentum flow and 

change sign under arrow reversal: 

......... ~ = - ········+--

··········t>-- = - ······<l-- (D. 13) 
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Jacobi identities, Lie algebra 

They are all statements of (6.48) and {6.21), but decorated 

with different Minkowski factors: 

{D.14) 

Comments: It would be more consistent to treat propagators 

as two-leg vertices, but it is traditional to denote them by 

lines. This causes some unnecessary ugliness, such as slash 

notation • } • for lines without propagators, and confusion 

between •···-.--. and •····~ which we tried to clarify in 

equation (7.20). 
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