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4. FERMIONS 

A. Pauli principle 

In chapter 2 we have assumed that the Green functions are 

symmetric, i.e. that the particles we are describing are bose 

particles. What happens if the Pauli principle is at work? The 

Pauli principle is the quantum mechanical version of Archimedes' 

law. Archimedes' law says that two bodies cannot be in the same 

place at the same time; the Pauli principle does not allow 

existence of more than one particle in a given quantum-mechani­

cal state. 

In the Green function formalism the state of a particle is 

specified by its collective index (particle type, spin, posi­

tion ... ). Take a source which produces a particle in a definite 

quantum-mechanical state, i.e. a source which is nonvanishing 

only for one value of the collective index: 

J. = 0. . 
l. im 

If the Pauli principle is at work, the Green functions must 

vanish any time two or more of their indices take the same 

value: 

G. 'k 0 J.J. =O 
l.J • • JI., l. J 

(4 .1) 

The basic assumption of the whole scheme that we are expounding 

here is that the amplitudes are additive. A linear superposition 

of state is also a state, and it too must satisfy the Pauli 

principle (here Ki = oH is a source for a particle in state !) : 

G. 'k (J. +K.) (J. +K.) =O 
l.J • • l. l. J J 

=> (G. 'k + G .. k )J.K. 
l.J • • Jl. • • l. J 

Consequently, the Green functions inust be antisymmetric under 

interchange of fermionic indices: 

G. 'k =-G .. k = G.k. 
l.J ••• Jl. ••• J l. .•• 

= (4 .2) 
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(In the compact index notation a multiplet can include both 

bosons and fermions: for example, for QED ·(cf. equation (3.27)) 

<Pi = (lj!,~,Aµ) stands for electrons, positrons and photons. In such 

cases we have to distin·guish between the f ermionic and the boson­

ic indices.) 

From now on I will consider only the theories in which all 

Green functions have even riunibers of fermioriic legs. Another way 

of saying this is that we shall always as·sume that the action is 

a commuting nuniber. 

Fermionic Green ·functions with even ·numbers of legs are anti­

cyclic: 

~ = - = = -

t first leg 

(4.3) 

In order to keep track of signs, the diagrammatic notation must 

indicate which leg is the first leg. We do it by always drawing 

the fermionic legs below the Green function blobs, and taking 

the leftmost leg to be the first one. This fixes all relative 

signs. The overall sign is physically irrelevant. 

The perturbation expansion can be generated by the Dyson­

Schwinger equations, just as in the bosonic case. The diagrams 

and the combinatoric factors are the same; the only difference 

is the signs due to the antisymmetry of Green functions. For ex­

ample, the free fermion field theory DS equations are 

(4 .4) 

Fermionic propagators are antisymmetric, so the first and the 

second legs must be distin·guished. We do this diagrammatically 

by drawing a little wart on the propagator: 

/::,.,. = 
l.J 

A 
i j 

=-~ 
i j 

=- 6 .. (4.5) 
J l. 
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Exercise 4.A.1 Can.you prove that fermionic Green functions must have 
an even number of legs? 

Exercise 4.A.2 Can you prove that fermionic Green functions need not 
have an even number of legs? 

B. Anticonvnuting sources 

In the bosonic· case, the disbussion of the general proper­

ties of Green functions was greatly facilitated by the intro­

duction of generating functionals. In the fermionic case we can­

not simply add scalar source ·functions (2. 4) and form the vacuum 

Green function (2.10), because this would yield zero, identical­

ly: 

1 
G. "k. J.J.Jk ••• =G. "k. -2(J.J. -J.J.)J:k=O 
1) • • • 1 J 1) . . . 1 J J 1 

However, a simple trick provides a way out; we replace Ji by 

anticommuting sources: 

(4. 6) 

Then the fermionic generating functional can be defined as 

- 1 1 - +-
2 

+ ..... 

(4.7) 

(Remember, our Green functions always have even numbers of legs.) 

The signs due to s·ources are kept track of by drawing the 

sources ordered along the bottom of the diagram. Green functions 

can be retrieved from the generating 'functional by differenti­

ation, just as in the bosonic case (2.11). However, the deriva­

tives must also be anticominuting: 

(4 .8) 



- 50 -

All the relations between the ·full, connected and 1 PI gen­

erating functionals that we have derived for the bosonic case 

take the same form for the fermionic generating functionals. 

There is only one sign subtlety. As all the terms in (4.7) in­

volve even numbers of sources, all generating functionals are 

commuting numbers, and the sources implicit in them lead to no 

sign confusion. However 7 if a leg is pulled out by differenti­

ation, the relative ordering of the implicit sources is impor­

tant for the sign determination. Diagrammatically we fix the 

sign by requiring that all the implicit s·ources lie to the right 

of the pulled legs: 

+-1-
31 
~ nn + ••• (4.9) 

Exercise 4.B.1 Fermionic loops. (This exercise is a convoluted attempt 
to prove the minus sign rule for fermions by diagrammatic means.) 
The simplest interacting fermionic field theory has only a bi­
linear interaction term: 

1 
SI[ip] =~i,.jilpj 

,. .. = . ~ . = - . A . = - ,.]. i· • 
l.J J. J J. J 

Here ;. could be an external background photon field J{ij = gAµ (yµ) ij , 
as in (3.27). The DS equations corresponding to (4.4) are • 

--:-'-'--Zdd [ n] = t-. . . (n. + J( . dd )z[ nl . 
ni 1J J '"kJ nk 

(4.10a) 

Construct the DS equation for pulling out a "photon";.. This can 
be done by differentiating z[n] with respect to the coupling con­
stant; a 2-leg vertex gets pulled out. Pull the first fermion leg. 
It either ends in the second leg, on a source, or on a 2-leg ver­
tex: 

½( d d d) -trJ{t-. + n.t-. .. ;..k -d + (i.t-.J{) .. -d -a z[n] 1 1J J nk 1J n. n. 
J J. 

(4.10b) 

According to our convention (4.9) all implicit sources lie to 
the right of the explicit legs. The real trick consists of get­
ting the signs straight. The relative sign between the first and 
second term is due to the antisymmetry of fermionic Green func­
tions. The overall sign is fixed by requiring consistency with 
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the DS equations (4.10a). For example, if we substitute the 
4-leg free fermionic Green function (4.4) into the above, we 
obtain 

1~ 1AAn lf:!fl lct(i -- = --~ +- --
2 2 2 2 

ij 
1 

= - -2 ( trti,t) t. . . + A .. t . kAk . • 
1] 1] J J 

The sign of the connected term must be consistent with the 
expansion ( 4. 11) : 

-(~ ~ )~.- f -1i+i ,+ ... ~ 
n=O 

Show by iterating (4.10b) that 

1 1 ( 1 ) w[n]= ttrin(l-ti,t)+ 2ni 6 _1 _t i/j. 

Compare with (3.25). The difference between the bosonic and 
the fermionic theories is that each fermionic loop carries a 
factor - 1. 

Exercise 4.B.2 Derive the relations between the full, connected and 
lPI fermionic generating functionals. Write down the Dyson­
Schwinger equations such as 

( ds [~] + n.)z[n] = o 
dl/J. dn 1 

1 

without getting confused about fermionic signs. 

C. Fennion arrows 

(4.11) 

(4.12) 

In the literature, fermionic generating functionals are 

never defined in terms of a single source, as in (4.7). We have 

introduced them in this way to parallel the bosonic formalism. 

However, usually a pair of sources is used; one for fermions, 

and one for antifermions. We shall now rewrite the fermionic 

generating functionals in this more conventional form. 

we start by considering the most trivial fermionic theory; 

we take the range of the collective index to be i = 1, 2. The 

propagator is a (2 x 2) antisymmetric matrix: 

and the action (2.13) takes the form 
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The (2x2) matrix /J. has eigenvalues .±i>... We can eliminate this 

matrix by replacing it, 1 ,1" 2 by 

(this is reminiscent of the introduction of charged bosonic 

fields, equation (3.12)). The propagator is now just a number: 

- - 1 
S[i/J,it,] = - 1/J X 1/J . 

Matrix /J. is invertible only if Det /J..z1:0. For an antisym­

metric matrix this is possible only in even dimensions. A real 

antisymmetric (2mx2m) matrix /J.ij can always be brought to form 

(4.13) 

by means of a sympletic. rotation GESp(2m). (This is the fermion­

ic analogue of the diagonalization which leads to (3.6) .) De­

fining 

(4.14) 

we can write the free action as 

(4.15) 

where the propagator is now an (mxm) matrix which in the diagona­

lized form looks like 

Al 0 

tJ.? = 
>..2 

l. 

0 "A m 

In this way a 2m-dimensional fermionic field ijJican always be re-
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placed by a pair of m-dimensional fields iJj,i,JJ. Diagrammatically 

we distinguish the upper and the lower indices by drawing arrows 

flowing away from upper indices and into the lower indices: 

l'!~ = • 1111 I 
1 i j 

(4.16) 

ni = ii nj 
= t~ 

One advantage of the fermion-antifermion formalism is that the 

antisymmetric propagator (4.13) is replaced by (4.16) which 

carries no funny signs. However, it still follows from the defi­

nition (4.14) that the fermion and the antifermion fields and 

sources are anticommuting: 

1 ! =-X 
= (4.17) 

The fermionic generating functionals are now a double series in 

terms of the fermion, antifermion sources: 

Z[n,n] 

n in-legs 
~ 

~ .,.., .k' 
=~Z l._J ••• 

ijk ... JI, 
m, n '--....--~ 

m out-legs 

JI, j i nk, .. n.,n., n •• n n 
. J l. 

n! m! 

Exercise 4.C.1 Fermionic loops. Show that the connected generating 
functional for fermion propagation in a background "photon" 
field is given by: 

(4.18) 

W[n,n] = Jln tr(l-ll~) + rjll_ 1
1
_~n . (4.19) 

Compare with the bosonic case (3.28). The difference between 
the bosonic and the fermionic theories is that each fermionic 
loop carries a factor -1. 

Exercise 4.C.2 Dyson-Schwinger equations. The fermionic (~~) 2 theory 
DS equations for full Green functions are given diagrammatical-
ly by 
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Show that the DS equations for directed fermions can be 
written as 

(
dS [ d d] i) -dij,. dn'dn +n Z[n,n]=O. 

l. 

Exercise 4.C.3 QED DS equations. The four vertex in the preceeding 
exercise could be a phenomenological approximation to a boson 
exchange (Fermi theory of weak interactions is of this type) 

(is this consistent with fermionic symmetry?). Add a boson 
propagator to the theory and write the boson and fermion DS 
equations for this theory. 

D. Fennionic path integrals 

(4.20) 

We have seen in chapter 3 that a lot can be gained by de­

fining a "Fourier" transform which diagonalizes the differential 

operators: 

d ~ -d Z[n] ➔ ijJ.Z[ijJ] . n. i 
l. 

(4.21) 

For fermions the derivatives anticornrnute (4.8) so 1/Ji have to be 

anticornrnuting numbers. Let us blindly imitate the bosonic case 

and write down 

What is this "integral"? Consider first the one-dimensional case. 

The left-hand side must be independent of 1jJ and, in particular, 

invariant under translations 1jJ ➔ 1/J + e: 

r[dip]VJ = J [dip] (ijJ + 0) . 

This works only if 

J [dijJ] = 0 

J [di/J]ljJ* 0 • 

We take J [dijJ]i/J = 1 (just a normalization convention). As 1jJ 2 =1jJ 3 = 

... = 0, there are no other integrals to be evaluated. The inte-
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gration operation must be anticominutative because 1/)0 = - 01/J im­

plies 

J[dl/J] 01/J = -0 J [dl/J]l/J = -[J [dip]iJi ]0 • 

The generalization to many dimensions is 

(4.22) 

Curiously, the fermionic "integration" is indistinguishable from 

the fermionic "differentiation" (4.8). It is really no integration 

at all; it is simply an operational rule which implements the de­

sired diagonalization (4.21): 

J 
n·i/J· 

d~. Z[n] = [dl/J]a~:. J Z(l/J] 
1 1 

d - -· Z[n] 
dn 

= JcdwJl/JiZ[l/Jl , (4.23) 

(as usual, we assume that the number of fermionic dimensions is 

even). Now, just as in the bosonic case (3.4), we can compute 

Z[l/J] from (4.20) by solving the fermionic Dyson-Schwinger 

equation: 

(4.24) 

This is the path integral representation for the fermionic Green 

functions. 

Exercise 4.D.1 Can you think of a simple argument which will give the 
correct iE prescription for fermionic propagators, analogous 
to (3.10) for the bosonic theory? 

Exercise 4.D.2 Check (4.23). 

E. Fermionic determinants 

The simplest fermionic analogue to the bosonic gaussian in­

tegral (3.5) is the 2-dimensional integral 
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f
[d•'• d•'• ]e-½it,ilii]l/lj =f[diJI diJI] (1-.!. iJi 1/J) 

o/1 o/2 1 2 A 1 2 

1 -½ =-=Detti A I (4.25) 

where 

( 
0 ->,.) 

tiij = >,. 0 

In odd dimensions ~uch integrals always vanish, as at least one 

f [dl/Ji] is unmatched. In even dimensions 

(4.26) 

Derivation (analogous to (3 .6)): Liij = - Liji, hence there exists 
a sympletic rotation G such that Liij can be brought to form (4.13). 
Sympletic rotations are volume preserving, so d(Gl/J) = dip. This 
rotation reduces the 2m dimensional integral to a product of m 
two-dimensional integrals (4.25): the result is 

m 1 -½ 
IT~ =DetLi . QED. 

i=l/\i 

The important thing to note is that the fermionic "gaussian" in­

tegral yields inverse determinant, in contrast to the bosonic 

integral (3.6). If you repeat the saddlepoint analysis of sect. 

3.F and use .Rn(detM) =tr·(R.nM) rule (3 .23), you will find that in 

the fermionic case the effective action (3.25) is given by 

oo K 
r[lJF] = S[l/Jc] -½ I: ½tr(tiy[iJic]) . 

k=l 
(4.27) 

As we have already shown diagrammatically in exercises 4.B.1 and 

4.C.1, each fermion loop carries a factor -1. 

Exercise 4~E.1 Introduce a source term nil/Ji in (4.26) and compute the 
generating functional (cf. (3.7)) for the free fermionic field 
theory. 

Exercise 4.E.2 Show that for directed fermions, sect.4.C, the fermion­
ic gaussian integral is given by 

( 4. 28) 
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F. Fennionic jacobians 

The only possible redefinition of a one-dimensional fermion­

ic integration variable is 

'ljl ➔ lji'=alji+0. 

The jacobian d'ljl = Jdl/J' must be such that the integration ·rule 

(4.22) is preserved 

J 
a 

Hence the jacobian is J = d'ljl' /dlji, the inverse of the bosonic jacob­

ian. That is easy to understand if one remembers that the fermion­

ic "integration" is the same thing as the fermionic differentia­

tion: 

J 
d d [ dlji] = - ::r.r.--

dl/11 U'f'2 

d 
d'ljl2m 

As the fermionic differentiations anticommute, the term in the 

brackets is fully antisymmetric; the determinant. The jacobian 

in 2m dimensions is therefore 

fll/1' J [d'ljl] = J [d'ljl' ]det\a/) , 
J 

the inverse of a bosonic jacobian. 

Exercise 4.F.1 A trivial supersymmetry. Take one hose and two Fermi 
dimensions. Using detfi/detfi = 1, we can write 

A2 - 1 

I _ -v: - W/t_ W 
1 = [dAdwdw]e . 

(4.29) 

It is very easy to find a supersymmetry of this action. A shift 

A➔ A+ e/Xw e fermionic, 

produces an extra term in the action: -Aew/ri.. This can be com­
pensated by a shift of the antifermionic field 

w ➔ W - EA • 

The action S[A,w,w] of this free field theory is therefore 
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invariant under supersymmetric (Fermi-base mixing) transformations 

A ➔ A + e:/Aw 

W ➔ W - EA (4.30) 

Add sources 

ZO[J, nln] = f[dAdwdw]eS[A,w,w] +J~+nw+wn 

and show that the supersymmetry induces a Ward identity of type 
(3.34). Verify diagrammatically that the identity is satisfied. 
This is quite trivial, and still, the QED Ward identities amount 
to no more than this. In that case A is the photon field, /I longi­
tudinal insertion kµ, and w the QED ghost which nobody cares about 
because it always decouples. 
The main lesson of this exercise is this: if we (1) create fake 
boson degrees of freedom and (2) remove them by ghosts, the theory 
might have a hidden supersymmetry. 

G. SulTITlary 

Fermions (or Grassmann numbers) are tricks for manipulating 

antisymmetric Green functions. Green functions are still ordinary 

numbers (real for statistical mechanics, complex for quantum 

mechanics), and there is no mystique in computing them (only ted­

ium). The physical content of fermions is that they offer a way 

of imposing constraints. One such constraint is Pauli principle 

- electrons are fermions. The QCD ghosts which we will construct 

in chapter 6 are another example: they eat up the unphysical longi­

tudinal gluon degrees of freedom. Physically, fermions are to be 

counted as negative degrees of freedom (fermion loops carry minus 

signs) which cancel the unphysical bose degrees of freedom. 

Fermionic Green functions are antisymmetric under interchange 

of indices. The fermionic sources and fields anticommute; 

The fermionic integrals are defined by 

J 
[ dljl . ] dljl . = o . . 

1 J 1) 

The entire machinery developed for bose fields applies to Fermi 
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fields, modulo few irreleva.nt sign confusions and one relevant 

sign; factor - 1 for each fermionic loop. 

ALL THEORY 
'(OU'LL E.VE..R NE.ED -. -AND IT'S 

ALL YOURS FOR THE. AMAZINGLY 
1..ow, LOW PRIC.E. OF ONL.Y 

• f 't.-'15 ! • 

rANDE.RIN~ To Fl~LO THEORl,ST.S i 
... ·' ,• . . . • 
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